Memoirs on Differential Equations and Mathematical Physics

VOLUME 96, 2025, 143-162

Noufou Sawadogo, Stanislas Ouaro

MULTIVALUED NONLINEAR DIRICHLET BOUNDARY
p(u)-LAPLACIAN PROBLEM



Abstract. We study the following nonlinear homogenous Dirichlet boundary p(u)-Laplacian problem
B(u) —diva(z,u,Vu) > f in Q, uw=0 on 0.

The existence and partial uniqueness results of solutions for L'-data f are established.
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1 Introduction

We consider the following nonlinear elliptic p(u)-Laplacian problem with the Dirichlet boundary con-
dition
B(u) —diva(x,u,Vu) > f in Q,
P(5.f) ) = divatzw. Vo)
u=20 on 0f),

where ) is an open bounded domain of RY (N > 3) with smooth boundary and 3 is a maximal mono-
tone graph on R such that 0 € 5(0), a is a Leray—Lions type operator and f € L'(Q). diva(z,u, Vu)
is called a p(u)-Laplacian operator, a prototype case is div(|Vu|P( ") =2 . V).

The problem P(8, f) is adapted to a generalized Leray-Lions framework under the assumption
that a: Q x (R x RY) — RY is a Carathéodory function with

a(z,z,0)=0 forall z€ R and a.e. z € (1.1)

satisfying the strict monotonicity assumption

(a(z,2,€) —alz,z,m) - (E—n) >0 forall &neRY, £#n, (1.2)

as well as the growth and the coercivity assumptions with variable exponent
(e, z, @) < O (g + M(x)), (1.3)

a(z,2,€)- € > Ci [P, (1.4)

Here, C}, Cy are positive constants and M is a positive function such that M € L(Q).
p: QxR = [p_,p4]is a Carathéodory function, 1 < p_ < p(z,2) < py < oo and p'(z,2) = %
is the conjugate exponent of p(z, z) with

p_:= essinf p(x,z) and py := esssup p(w,2).
(z,2)EQxR (z,2)EQXR

We assume that
p_ > N and p is uniformly log-Hélder continuous on Q x [—M, M] for all M > 0. (1.5)

Problem P(f, f) can be seen as an extension of the following problem:

1.6
u=20 on 02, (16)

{b(u) —diva(z,u,Vu) = f in Q,
with b : R — R nondecreasing, normalized by b(0) = 0, and f € L*(). Andreianov et al. (see [2])
studied problem (1.6) and established the existence results for such problems with variable exponent
p(x,u), issues of uniqueness and structural stability.

Since S is nonlinear, a bounded Radon diffuse measure appears in the definition of the solution
to account of the boundary of the domain. Here, we use the notion of renormalized solution for
the problem P(f, f) in the context of variable exponent. The concept of renormalized solution was
introduced by Diperna and Lions [8]. Note that the standard Leray-Lions elliptic problem with L!
source terms is well posed in the framework of renormalized solutions.

We define M;(Q) as the set of bounded Radon measures in . For the variable exponent 7(-),
where 7(-) is to be defined later, given u € My(2), we say that p is diffuse with respect to the
capacity W&’W(')(Q) if 4(A) = 0 for every set A such that Capr(.y(A,Q) = 0 (see [12,13]). For
A C Q, we denote

Sr(y(A) = {uEWOI’ﬂ(')(Q)ﬂC'O(Q): u=1 on Aand u >0 in Q}
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The 7( - )-capacity for every subset A with respect to 2 is defined by

Capr(.1(A,Q) = uESiI(l_f)(A) { / |Vu|”(-) d;p}.
Q

The set of bounded Radon diffuse measures in variable exponent setting 7 ( - ) is denoted by /\/lg( ) Q).

Moreover, we use the Young measure associated to the weak convergence method of sequences
of solution gradients to obtain some useful convergence results (cf. [1,2,10,12]). We also adapt the
techniques exposed in [11] for passing to the limit in the sequence (5 (uc))e>o which will be defined
later.

The interest of the study of this kind of problem is due to the fact that it can model phenomena
which arise in the study of elastic mechanics (see [3]), electrorheological fluid (see [15]) or image
restoration (see [7]). In particular, in the case of image restoration, several numerical examples
suggest that the consideration of the exponent p(-,u) preserves the edges and reduces the noise of
restored images u, as presented in [16, Section 8].

The remaining part of this article is organized as follows: in the next section, we introduce some
preliminary results. In the third section, we study the existence and partial uniqueness results of
renormalized solutions for the problem P(3, f).

2 Preliminary results

e We will use the so-called truncation function

it |s| < k 1 if s>0,

Ti(s) := {Z e (5) %f |S| ; k, where signg(s):=40 if s=0,
signy(s) if |s , )

-1 if s<0.

The truncation function possesses the following properties:
Ti(—s) = =Ti(s), |Tk(s)| = min{|s|,k},

1
lim Ty(s) =s and lim ETk(S) = sign,(s).

k—o0 k—0
e We will also use the following mapping to truncate vector value-function:

A if |A] <m,

RN N _
h : RY = RY) hyp(A) = m& i A > m, where m > 0.

Taking into account the growth and the coercivity assumptions (1.3) and (1.4), we need to work in
the variable exponent Sobolev space E™(*)(Q) defined below (notice that the exponent 7(-) itself is
related to w by 7(-) := p(-,u(-)), so the solutions and different data will possess different integrability
properties). For the sake of completeness, we also recall the definition of variable exponent Lebesgue
and Sobolev spaces L™ )(Q) and WH7()(Q). In the sequel, we will use the same notation L™(*)(Q)
for the space (L™(")(2))N of vector-valued functions.

Definition 2.1. Let w: Q — [1,00) be a measurable function.

e L™(")(Q) is the space of all measurable functions f : © — R such that the modular

prco ) i= [ 117 do < o,
Q
If p4 is finite, this space is equipped with the Luxembourg norm

7w o= i {3 > 0 piy (£) < 1),
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e WHT(-)(Q) is the space of all functions f € L™(*)(Q) such that the gradient of f (taken in the
sense of distributions) belongs to L™(')(Q). If p, is finite, the space WHT()(Q) is equipped
with the norm

HUHWM(-)(Q) = HUHL"(')(Q) + HVUHL”(')(Q)~
Wy ™) () is the closure of C§°(€) in the norm of W1m(-)(Q).
Further, £7(')(Q) is the set of all f € Wol’l(Q) such that Vf € L™(")(Q). This space is equipped with
the norm
\|U||Ew<~>(n) = ||vu||L“(')(Q)-
When 1 < p_ <7(-) < py < oo, all the above spaces are separable and reflexive Banach spaces.

Generally, Wol’ﬂ(‘)(Q) C E™()(Q). In the present paper, we assume that m(x) = p(z,u(x)) verify

the log-Holder continuity assumption (2.1) below. Furthermore, we denote

7e(x) := p(a, us(x)).

Proposition 2.1 (see [1, Proposition 2.3]). For all measurable functions m : Q@ — [p_,p4], the
following properties hold:

(i) Z™C)N(Q) and WHTC)(Q) are separable and reflexive Banach spaces.

(i) L™C)(Q) can be identified with the dual space of L™ )(Q), and the following Hélder type
inequality holds:

VfeL™(Q), geL”)(Q), ‘/fgdx <2 fllz=cH@llgll=rcr s
&

with % + ﬂ(lm) =1 for all x € Q.
(iii) One has pr(.y(f) =1 if and only if
[fllL~cH@) =1
further, if pr.y(f) <1, then
LIy < prr () < I o

zfpw()(f) > 1, then
||f||]z;(.)(9) < Pw(»)(f) < ||f|]zt(.)(g)-

In particular, if (fu)nen is a sequence in L™)(Q), then | full L= (@) tends to zero (resp., to infinity)
if and only if pr(.)(fn) tends to zero (resp., to infinity) as n — oco.

The following lemma prove that the space VVO1 o )(Q) is stable by truncation (see [1, Lemma 2.9]).

Lemma 2.1. Ifu e Wo™(Q) then Ty(u) € Wo™ (Q) for all k > 0.

Notice that E™()(Q) is also stable by truncation, since Wy () is stable by truncation and
VT (u)| < |Vu| € L™)(Q), whenever u € E™() ().
From the results of Fan and Zhikov (see [1, Corollary 2.6]), we deduce the following

Lemma 2.2. Assume thatm: Q — [p—,p4] has a representative which can be extended to a continuous
function up to the boundary 02 and satisfying the log-Hélder continuity assumption:

Then D(Q) is dense in E™C)(Q). In particular, the spaces E™)(Q) and Wol’“(')(ﬂ) are Lipschitz
homeomorphic and hence they may be identified.
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Young measures and nonlinear weak-* convergence

Throughout the paper, we denote by d. the Dirac measure on R? (d € N) concentrated at the point
c € R4,

In the following theorem, we compile the results of Ball [4], Pedregal [14] and Hungerbiihler [10]
which are needed for our purposes (we limit the statement to the case of a bounded domain Q). It
should be noted that the results (ii), (iii) below, expressed in terms of the convergence in measure,
are very convenient for the applications we have in mind.

Theorem 2.1.

(i) Let Q C RN, N € N, and (v,)nen be a sequence of R?-valued functions, d € N, such that (v,)nen
is equi-integrable on ). Then there exist a subsequence (ny)ren and a parametrized family (vy),
of probability measures on RY (d € N), weakly measurable in x with respect to the Lebesgue
measure on Q, such that for all Carathéodory functions F : Q2 x R — R*, t € N, one has

klim F(z,vp,)dx = //F(:c,)\) dv, (\) dz, (2.2)
—o0
Q Q Rd

whenever the sequence (F(-,v,(+)))nen @8 equi-integrable on Q. In particular,

v(x) ZZ//\dl/w(/\) (2.3)
R

is the weak limit of the sequence (vn, )ken n LY(Y). The family (vy)zeq is called the Young
measure generated by the subsequence (vn, )pen as k — 00.

(i) If Q is of finite measure and (Vy)zcq s the Young measure generated by a sequence (Vn)nen,
then vy = dy(y) for a.e. x € ) <= v, converges in measure on §) to v as n — o0.

(iii) IfQ is of finite measure, (un)nen generates a Dirac Young measure (0y(z))e 0N R% | and (v,)nen
generates a Young measure (vg), on R then the sequence (un,vn)nen generates the Young
measure (8,(y) ® Vg)y on R,

Whenever a sequence (v, )nen generates a Young measure (v, )., following the terminology of [9],
we say that (v,)nen is nonlinear weak-* convergent, and (), is the nonlinear weak-* limit of the
sequence (vn)nen. In the case when (v,)nen possesses a nonlinear weak-* convergent subsequence,
we say that it is nonlinear weak-* compact. Theorem 2.10(i) in [1] means that any equi-integrable
sequence of measurable functions is nonlinear weak-*compact on €.

Lemma 2.3 (see [1, Theorem 3.11] and [2, Step 2 of proof of Theorem 2.6]). Assume that (un)nen
converges a.e. on ) to some function u, then

Ip(z, un () — p(z,u(x))| converges in measure to 0 on Q, and for all bounded subsets K of RN,

sup |a(z, un(2), &) — a(z, u(z),€)| converges in measure to 0 on Q.
(EK

In the sequel, we will give a useful convergence result.

Lemma 2.4. Let (B,)n>1 be a sequence of mazimal monotone graph such that 5, — B in the sense of
graphs (i.e., for all (x,y) € B, there exists (Xpn,Yn) € Bn such that x, — x and y, — y). We consider
(Zn)n>1 and (wy)n>1, two sequences of LY(Q) such that w, € Bn(z,)LY ace. in Q. If (wn)n>1 s
bounded in L*(Q) and z, — z in L} (), then z € dom(B)LYN a.e. in Q.

The main tool of the proof of the above lemma is the “biting lemma of Chacon” (see [6]).

Lemma 2.5. Let Q be an open bounded subset of RN and (fn)n>1 be a bounded sequence in L*(Q).

Then there exist f € L'(Q), a subsequence (fn, )n,>1 and a sequence of the measurable set (E;)jen+,

E; CQ,VjeN* with Ej 11 C E; and lim |Ej| =0 such that for any j € N*, f,, — f in L'(Q\ E;)
— 00

as ny — 0o. !
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Proof of Lemma 2./. Since the sequence (wy,),>1 is bounded in L'(Q), using the “biting lemma of
Chacon”, there exist w € L'(£2), a subsequence (wy, )n,>1, & sequence of mesurable sets (E;);jen-,
E; C Q,Vj e N* with Ej1 C E; and lim |E;| = 0 and for all j € N*, w,,, — w in L'(Q\ E}), as
ny — 00. Since z,, — z in L'(2) and so in L'(Q\ E;), Vj € N and 3, — 8 in the sense of graph,
we have w € (z) a.e. in Q\ E;. Thus, z € dom(f) a.e. in Q\ E;. Finally, we obtain z € dom() a.e.
in Q. O

For all measurable functions u : 2 — R we write
{lul<k (<k, >k, 2k, =k)} or [|u|<k (<k, >k, >k, =k)]
for the set
{zeQ; [u@)|<k (<k, >k, >k =k},

and meas(Q2) or || denote the measure of the set .
Let us set int(dom ) = (m, M) with —co <m <0< M < oo.

3 Existence and partial uniqueness of the renormalized
solution

We give our notion of solution of the problem P(S, f) due to Igbida et al. in [11].

Definition 3.1. For f € L'(Q), a renormalized solution of problem P(3, f) is a couple (u,w) with
u a measurable function such that Tj(u) € E7()(Q) for all & > 0 and u € dom(B)LY a.e. in Q,

w € LYQ) and w € B(u)LY a.e. in Q; and there exists a measure y € ./\/l;r(')(Q) such that u 1 LV,
p™ is concentrated on [u = M| N [u # o], u~ is concentrated on [u = m] N [u # —oo] such that

/wh(u)gader/a(:c,u, Vu)V (h(u)p) der/h(u)cpdu = Q/fh(u)cpdx (3.1)

Q Q Q

for all ¢ € E™()(Q) N L>®°(R) and h € CL(R), and

lim / a(x,u, Vu) - Vudx = 0.

M—o0
[M<|u|<M+1]

All the terms of (3.1) are well defined. Since h(u)p € E™()(Q) N L>=(Q), the first integral of the
left-hand and right-hand sides of (3.1) are well defined. The second integral of the left-hand side is
well defined thanks to (1.3). The third integral of the left-hand side is also well defined, since the
measure p is diffuse.

Remark 3.1. If M = oo and —oo < m (resp. m = —oo and M < 00), then py =0 (resp. pu_ = 0).
Thus, (3.1) holds true with g = py (resp. p = pu_).
If M = oo and m = —oo, then the domain of 3 is equal to R and relation (3.1) becomes

/a(m,u,Vu)V(h(u)cp) dx—l—/wh(u)gadx: /fh(u)godx
Q

Q Q

for all ¢ € E™()(Q) N L®(Q) and h € CL(R). In the case where the domain of 3 is bounded, the
renormalization with A is not necessary in Definition 3.1. We can take h = 1.
Now, we are going to prove the following existence result.

Theorem 3.1. Assume that (1.1)~(1.5) hold and f € L'(Q). Then there exists at least one renor-
malized solution to the problem P(f, f).
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Proof. The proof of Theorem 3.1 is divided into two steps.

Step 1. The approzimate problem
For every ¢ > 0, we consider the Yosida regularization 3. of 8 given by 5. = é (I —(I+¢B)71Y). Due
to [5], there exists a non negative, convex and lower semicontinuous function j defined on R such that

8 =8j.

To regularize 3, we consider

. 1 )
Je(s) = Irnellg{?g ls — 7|2 -|—j(7")}, VseR, Ve>0.

Using Proposition 2.11 from [5], we have

dom(S) C dom(j) C dom(j) = dom(f),

. € . _
o) = S18.5)7 + 5(.(5)), where J. := (I +26)™,
je is convex, Frechet-differentiable and S, = 97,
JeTJj as €l0.

Moreover, for any € > 0, 8. is nondecreasing, Lipschitz continuous function and j.(0) = 0. Now, we
consider the following problem:

P(Be, f) {&(ZE) — diva.(z,u;, Vue) = f in Q,

0 on 0f),

Ue

where a.(z,2,€) = a(x,2,€) + ¢|€|P+72¢ and f € LY(Q), a. satisfies assumptions (1.1)—(1.4) with
p(x, 2) replaced by the constant exponent py (see [13, Lemma 3.1]). Since py > p_ > N, L}(Q) C
W@ (Q), we have f € W@+ (Q). Therefore, there exists a weak solution u. € Wol’m(Q) of
the problem P(f., f) in the sense

Be(ue) — divaes(z,ue, Vue) = f in D'(Q), (3.2)

thanks to [1, Theorem 3.11] and [13, Remark 3.2].

Step 2. A priori estimates
This part is divided into several assertions and lemmas.

Assertion 3.1. The sequence (B:(uc))e>o s uniformly bounded in L(£2).
Proof. For all ¢ € D(Q), using (3.2), we obtain
/ [ﬁg(us)go + a(z, ue, Vus )V + 5|Vu5|p+_2Vu5V<p} de = /fapda:. (3.3)
Q Q
Taking ¢ = T (uc) in (3.3), we get
/ [ﬁe(uE)Tk(ug) + a(z,ue, Vue ) VT (ue) + 5|Vu5|p+_2Vu€VTk(u€)} de = /ka(ug) dx.
Q Q

Since all the terms of the left-hand side of the above equality are nonnegative, we deduce that

/ B () Th(u2) dar < / fTi(ue) dz,
Q Q

which implies that
[ BTl do < K1 3o
Q
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Dividing the above inequality by k and letting k tend to 0, we obtain

[ 15wl do < 1711200 !
Q
Assertion 3.2. One has
/IVuEI“E(‘) do < K, (3.4)
and
||'U/5H Lp— (Q) < K2 (35)

Proof. Using (1.4) with variable exponent p(z, ue( )) on a(z,u., Vue) and (3.3), u. satisfies

/35 Ue) ugdm+—/|Vu e (- )dﬂc—l—e/|Vu5|er dsc—/fuE dx. (3.6)

Applying Young’s inequality to the right-hand side of (3.6) and the fact that
fe Q) cwteD)'(Q) c whe-)(Q),

we get

[ fuede < [1flhuelde < 1y somr gl gy = 1y o1 | Vel o)
Q Q

(2:2)L Hf”W L) (@) (2270 ) Vel r- (o)

1 2CYy -
<o ) ’ an“’_l(p ,

1
EHVUEHI;;—(Q)' (3.7)

(p-)’ @
Moreover, as p_ < m( ), we have
IVl o) = / V|- da < meas(Q) + / V™) da. (3.8)
Q Q
Combining (3.6), (3.7) and (3.8), it follows that
/55 U )ue dx + —/|Vu |7r5( )dach&?/|VuE|p+ dz < Const(p_,Q, f), (3.9)

where
(r_)’

1 2Co\ 55— Y meas({)
Const(p.0. ) = —— (22) 7 110, + D)

(p-)’ @ 20,
From (3.9), we deduce that
/ (V. |™() de < 2C, Const(p_,Q, f) == K. (3.10)
Thus, thanks to (3.8) and (3.10), we infer [luc| ;1. - () < Ko. O

Remark 3.2. Using (3.5) and the compact embedding VV0 P=(Q) — LP- (), for some subsequence
still labelled with € and some function u, one gets
Ue — u in Wol’p’(Q) ase — 0,
Vue. = Vu in LP~(Q) as ¢ — 0, (3.11)
ue = u in LP~(Q) as ¢ — 0,
Ue = u a.e. inQase—0. (3.12)
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Assertion 3.3. The sequence (Vu.).so converges to a Young measure v,(\) on RN in the sense of
nonlinear weak-* convergence and

Vu= [ Advg(X). (3.13)
R‘][

Proof. From (3.11) and (3.12), up to a subsequence still labelled with €, u. converges a.e. in Q to
a limit u and Vu. weakly converges to Vu in LP- (). Furthermore, (Vu,).>o is bounded, so it is
equi-integrable on €. Thus, using the representation of a weakly convergent sequences in L'(Q) in
terms of Young measures (see Theorem 2.1 and formula (2.3)), we can write

Vu = //\dyx(A). O
RN

Assertion 3.4. |\|™(") s integrable with respect to the measure vy,(\)dx on RN x Q and Vu €
L™C)(Q).

Proof. We know that . converges in measure to 7. Using Theorem 2.1 (ii) and (iii), it follows that

(7o, Vue)eso converges in R x RN to the Young measure j, = Or(z) ® Vz. Thus, we can apply the
weak convergence properties (2.2) to the Carathéodory function

Fo o (2,20, A) € QX (R xRY) — |h, (AP0

with m € N, where h,,, is defined in the preliminary, to get

[ O dnyde = [ )P due( ) d

QxRN QX (RXRN)
:/ / Fo(z, X0, A) dptg (Ao, A) do = lin(l)/Fm(z,ws(x),Vus(x)) dz
e—
Q RxRN Q
= lim / [P (Ve )7 do < lim / [Vue | doe < K.
e—0 e—0
Q Q

Since hpy,(A) = A as m — oo, using the Lebesgue dominated convergence theorem, as m — hy,(\) is
increasing, we deduce that

/ IANTC) dug (M) da < K.

QxRN

Hence, |A\|™(*) is integrable with respect to the measure v, (\) dz in RN x Q.
Now, we prove that Vu € L™(')(Q). Using (3.13), the Jensen inequality and the last inequality,

we get
/|Vu”(')dx:/‘/)\dyw(/\)
Q Q RN

Thus, Vu € L™ (Q). O

()
dx < / IATC) dyy (M) de < K.

QxRN

Assertion 3.5. The sequence (P.)c>0, defined by ®. := a(z,u., Vu,), is equi-integrable on €.

Proof. Using (1.3) with the exponent 7. (), we obtain

la(z, ue, Va )| < Oy (|Vue () + M(x)).
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The above inequality gives us

1

la(z, ue, Vue)| < o((1 + Vg |[=()) +M(x)) 0

1 we(-) 1
< c((1 + M(2)TEO 4 |we\fé<->) < 0(1 + M(x) + [Vue 7= )
For all sets E C Q,

/Ia(x,us,Vus)ldw < C/(l + M(@)) do + C'|| [Vue ™ O™ e IXe meo@) - (3:14)
E E

where C" = const(p—). The first term of the right-hand side of the last inequality is small for meas(F)
small enough, since 1 + M € L} ().
According to Proposition 2.1, we obtain

1 1

1 1 1
X llire o) < max { pr ) (0) 7 ) ()7 | = max { (meas(E)) 7, (meas(E)) 7~ .

Analogously,

1 1t
192 s gy < max { (o (Ve =7 ), (s ([T 7071 @0 ) |

(Cam Cam
:max{(/vugrrs(')) +7 </|vu6ﬂg(‘)> }
Q Q

Using (3.4) and (3.14), [ |a(z, us, Vue)|dz is small for meas(E) small enough.
E

Hence, (®.).~0 is equi-integrable. O

Assertion 3.6 (see [13], Assertion 3.4). The weak limit ® of (P.)eso (or of a subsequence) belongs
to L™ C)(Q) and

B(x) = / a(z, u(z), N) dvs(N).

RN
Assertion 3.7.
/<I> -Vudz > / a(z,u(x), A) - Advy (A) de. (3.15)
Q QxRN

Proof. For all ¢ € D(Q) in (3.2), we have
/Bg(us)apdx—l—/a(x,us,VuE)-Vgadx—i—s/|Vu5|p+_2Vu5V<pdm:/f<pdx. (3.16)
Q Q Q Q

First of all, we recall that (8:(uc))e>0 is uniformly bounded in L!(€2). Then, up to a subsequence still
labelled with ¢, there exists z € M(£2) such that

Be(ug) =" z in Mp(R2) as e — 0. (3.17)
Thus, letting € tend to 0 in (3.16), we obtain

/cpder/q%Vgade/fgod:c, (3.18)

Q Q

by virtue of (3.17), Assertion 3.6 and (3.9).
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Using the density argument, we can replace ¢ with u. in (3.16) to get
/Bs(ug)ug dx + /a(m,ug, Vu.) - Vu. dz + 6/ |Vu Pt doe = /fua dx. (3.19)
Q Q Q Q

Moreover, u € WO1 P (Q) € C%(Q) and p(-, -) is locally uniformly log-Hélder continuous, then the
exponent 7( - ) verifies (2.1). Therefore, D(Q) is dense in E™(*)(Q), so, we change ¢ by u in (3.18) to

obtain
/udz+/@~Vudm:/fud:c. (3.20)
Q Q Q

hmlnf/ﬂg Ue ) Ue dx > /udz (3.21)

Q

By Fatou’s lemma, we get

Furthermore, the sequence (fuc)e>o converges a.e. in Q to fu and

| fuel < [flluellzoe (-

Since (ue)eso is also uniformly bounded in L% (), applying Lebesgue dominated convergence Theo-
rem, we obtain

hm fug dr = /fudx (3.22)
Combining (3.21) and (3.22), it follows that

hmmf/fuE da:—/udz > hmlnf/(fuE Be(ug)ue) de.

Q Q

Using (3.19), (3.20), (3.22), the last inequality and the definition of ®., we infer

/<I> Vudx > hmmf/ (CIJE -Vu, + 6|Vu5\p+) dx > liminf/ ®, - Vu, dx.
e—0 e—0
Q Q Q

Hence,
/(I> -Vudz > liminf | ®, - Vu,.dz. (3.23)
e—0
Q Q
By Lemma 2.1 in [1], m — a(z, ue, hm(Vue)) - hm(Vue) is increasing and converges to a(z, ue, Vue) -
Vu, for m large enough. Then

a(x, Ue, hyn (V) - b (Vue) < alz, ue, Vue) - Vue.

Therefore, using (3.23) and Theorem 2.1, we have

/‘I) -Vudr > liminf/cb8 - Vue dx
e—0
Q Q

> g% a(z, Uue, hy (Vue)) - hy(Vue) de = / a(z, u, by (A)) - ha () dvg () dze. (3.24)

Q QxRN

Using in (3.24) the Lebesgue dominated convergence Theorem as m tends to co, we get (3.15). O
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Assertion 3.8 (see [13], Assertion 3.6 and Assertion 3.7).

(i) The following “div-curl” inequality holds:

/ (a(z,u(z), A) — a(z,u(z), Vu(x))) (A = Vu(z)) dvy(X) dz < 0.

QxRN

(i) ®(x) = a(z,u(z), Vu(z)) a.e. z € Q and Vue converges to Vu in measure on @ as e — 0.
Lemma 3.1.
(i) (Vue)eso is uniformly bounded in L'(€2).
(i) (ue)eso 4s uniformly bounded in L*(£2).
(iii) u € dom(B) LN -a.e. in Q and Tj(u) € E™()(Q).

Proof.
(i) Since p_ > 1, we have

/|Vu€| dzx < / (1+ |VuelP~) dz < meas(Q2) + C,
Q
with C being a positive constant depending on K5 and p_. Thus, as  is bounded, (i) follows.

(ii) We firstly recall that WO1 P=(Q) = LP-(Q) (compact embedding). So, there exists a positive
constant C such that
Juellzr- @ < Clhuellygro- o

So,

/\us\ dx < / (1+ |uc[P~) dz < Const(Q, Ko, p-).

Q Q
(iii) Since (B:(ue))eso is uniformly bounded in L'(Q) and u. — w in L'(Q) as ¢ — 0, it follows
that v € dom(8) LN-a.e. in ©, due to Lemma 2.4. Moreover, u € Wol’p’(Q) c W), due to
Assertion 3.2. Thus Assertion 3.4 yields u € E™C)(Q). Since E7(1)(Q) is stable by truncation and
u € E™C)(Q), it follows that Ty (u) € E™()(Q). O

Lemma 3.2. For all p € D(Q) and h € C}(R),

/a(x,us, Vue) - V(h(ue)p) doe — /a(x, u, Vu) - V(h(u)p)dz as € — 0. (3.25)
Q

Proof. First of all,
a(x,ue, Vue) - V(h(ue)p) — a(z,u, Vu) - V(h(u)p) a.e. in Qase—0,

by (3.12) and Assertion 3.8(ii). It remains to prove that (a(x,u., Vue) - V(h(ue)p))eso is equi-
integrable, and one can use Vitali’s convergence theorem to obtain the convergence in L!().
Let £ C Q, it follows from Young’s inequality that

7r( ) )=
[ lote e, 9u0) - V(o) de < / o e, ) /|v ),

/|a (2, ue, Vug) |”E( )d:r—i—/\v ©)[™() dz. (3.26)
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Using (1.3) for the first term of the right-hand side of (3.26), we have

[l T < [ 010400 470

So, [ |a(z,ue, Vue)|™() dz is small for meas(E) small enough, since M + |Vau.|™(*) € L*(Q).
Eor the second term of the right-hand side of (3.26), we first recall that
V(h(ue)p) = h(ue)Vep + h' (ue)pVue.
Since h € CL(R) and ¢ € L*(2), we have |h'(u:)p| < C3 and |h(u.)| < Cy. Tt follows that
IV (h(ue)@)| < [h(ue) Vel + |1 (ue)oVue| < Cy Vool + Cs| V|-
We recall that 1

op
for all a,b > 0 and p > 1. Thus, for all set £ C 2,

—(a+b)P < =(aP + bP)

1
S 2

J ¥ i< [ [(@uwel)™ ) ¢ (vue) ) do
B E
< /2p+—1[1+ (C4|Ve|)"* + (03|vu5|)”5(‘)} dz. (3.27)
B
From Assertion 3.2 and the density argument between D(Q2) and WO1 PH(Q), it follows that

(C3|Vu)™() e L (Q) and (C4|Ve|)P+ € L'(Q). So, the left-hand side of (3.27) is small for meas(F)
small enough. Therefore, [ |a(z,u., Vu.) - V(h(us)p)| dz is small for meas(E) small enough. Hence,
B

(a(x, ue, Vue) - V(h(ue)p))eso is equi-integrable. Finally, (3.25) follows from Vitali’s convergence
theorem. O

Lemma 3.3. (u,w) is a solution of the problem P(B, f).

Proof. First of all, we need to pass to the limit in S (ug).
Let us consider ¢ € D(Q2), h € C}(R) and h(u.)p as a test function in (3.3). We have

/a(m, e, Vue) - V(h(ue)p) do
Q

+€/|Vu5\p+_2Vu5~V(h(u5)<p) d:lc—l—/ﬂg(ug)h(ug)godx:/fh(ug)godm. (3.28)
Q

Q Q

Since (B:(ue))eo is uniformly bounded in L'(2), up to a subsequence still labelled with ¢, there exists
z € My(9) such that
Be(ue) =" z in Mp(Q) ase — 0

and
h(ue)p — h(u)p in Co(Q) ase — 0

for all p € D().
We also recall that (M;(€2))" = Cp(§2). Then

lim/ﬁg(ug)h(ug)godx:/h(u)godz. (3.29)

e—0
Q
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Using the Lebesgue dominated convergence theorem, we get
hm fhlue)pdr = /fh Y da. (3.30)
Q

For the first term of the left-hand side of (3.28), we have

Eli_r}r%) a(x,ue, Vue) - V(h(ue)p) de = /a(m,u7 Vu) - V(h(u)p) de, (3.31)
Q Q

due to Lemma 3.2. For the second term of the left-hand side of (3.28), we get

hms/|Vu [P+ 72V u, - V(h(u.)p) dz = 0. (3.32)

e—0
Q

So, using (3.29), (3.30), (3.31) and (3.32), from (3.28) we infer that

/h(u)godz = /fh(u)gadx—/a(x,u, Vu) - V(h(u)p) dz (3.33)
Q Q Q

for all ¢ € D(Q). O

Remark 3.3. Since u € Wol’p_ (Q) € C%*(Q) for p— > N and p(-, -) is locally uniformly log-Hélder
continuous, p(-,u(-)) := w(-) verifies (1.5). Therefore, D(Q) is dense in E™()(Q). Thus, relation
(3.33) holds true with ¢ € E™(-)(Q) N L>(Q).

In other words,

/h(u)apdz = /fh(u)godx—/a(x,u, Vu) - V(h(u)p) dx (3.34)

Q Q Q

for all ¢ € E’T(')(Q) N L*°(Q), which implies that z € ./\/l;r(')(Q), since, by Lemma 2.2, the spaces
E™()(Q) and Wol’ﬂ(')(Q) can be identified.
Now, we give a Radon—Nikodym decomposition result of the measure z.

Lemma 3.4. The Radon-Nikodym decomposition of the measure z, given by (3.34) with respect to LV,
z=wlN 4+ p with p L LN,
satisfies the following properties:

we Bw)LN-a.e. inQ, wel(Q), pe Mg(')(Q),
ut s concentrated on [u = M] N [u # oo| and

W~ s concentrated on [u = m] N [u # —o0].

Proof. For the proof of Lemma 3.4, we use the arguments of [11, Lemma 3.2].
Let (z:)e>0 be a subsequence of (B:(ue))e>0 such that z. —=* z in M(Q).
Since, for any € > 0, z. € Jj(u.), we have

3(8) > je(t) > jelue) + (¢ — uc)zLN-ae. in Q, Vi€R,
for any h € CL(R), h > 0 and ¢ > 0, it follows that
Bh(ue)i(t) > $h(ue)je(ue) + (£ — ue)dh(u)zeLV-ac. in 9, Vi € R,
Moreover, for any 0 < € < g,

Yh(ue)j(t) > Yh(us)j=(ue) + (t — ue)ph(ue)z.LN-a.e. in Q, Vit € R,
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and integrating over §2, we get

/wh(ug)j(t) dx > /wh(u6 )jz(ue) dx—f—/ (t — ue)h(ue)ze do.
Q

Q Q

As € — 0, using Fatou’s Lemma, we obtain

/wh t)dx > /z/;h (u)jz(u )d:v+11m1nf/ (t — ue)h(ue)ze dx.

Now, for any 1 € C1(Q) and ¢ € R, let h(r) = (t — r)h(r), we arrive at

lim [ (t — ue)vh(ue)ze de = ;i_r}(l)/ﬁ(ug)z/}zg dzx = /(t —u)h(u)y dz.

e—=0
Q Q Q

So,
/wh d:c>/wh (u)j=(u )dm+/(t—u) (u)) dz.

Q

As € — 0, using Fatou’s Lemma, we get
/wh t)dx > /wh u)dx + /(t —u)h(u)p dz.

From the last inequality, we infer
h(u)j(t) > h(u)j(u) + (t —u)h(u)z in Mp(Q), Vt eR. (3.35)

Using the Radon-Nikodym decomposition of z, we find that z = wLY + p with p L £V, w € L'(Q),
and then, comparing the regular and singular parts of (3.35), for any h € C}(R), we obtain
h(w)j(t) > h(u)j(u) + (t — uw)h(w)wlY (Q)-a.e. in Q, VteR (3.36)
(t—uw)h(w)p <0 in My(Q), Vt e dom(y). (3.37)
From (3.36), we get
§(t) > j(u) + (t —w)wLN(Q) ae. in Q, VteR.
So, w € 95(u) LN (Q). Relation (3.37) implies that for any ¢ € dom(j),
>0 in [u € (t,+o00) Nsupp(h)] (3.38)
and
@ <0 in [u € (—oo,t) Nsupp(h)]. (3.39)

In particular, this implies that
p([m < u < M]) =0.

Furthermore, if m # —oo (resp. M # o0), then (3.38) (resp. (3.39)) implies that

+

p" is concentrated on [u = M| N [u # oo] (resp. p~ is concentrated on [u =m] N [u # —o0]).

By the construction of measure z, it is obvious that u([u = £oo]) = 0. O

Furthermore, using the Radon—Nikodym decomposition of measure z, the first term of (3.34)
becomes

/h(u)godz = /h(u)wapdm—i—/h(u)g&du. (3.40)

Q Q Q
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Combining (3.34) and (3.40), we infer
/h(u)wgodx—l—/a(x,u,Vu)-V(h(u)go) dx—i—/h(u)godu = /fh(u)godx (3.41)
Q Q Q Q

for all p € E™()(Q) N L>(Q).
To end the proof of Theorem 3.1, it remains to prove that

M—o0
[M<|ul<M+1]

lim / a(z,u, Vu) - Vudz = 0. (3.42)

Since |Vu| € L™()(Q), using (1.3) with a variable exponent 7(-), a(z,u, Vu) € L™ ()(Q), and it
follows from Hélder type inequality with a variable exponent that a(z,u, Vu) - Vu € L1(Q).
Moreover, using Lemma (3.1)(ii) and Fatou’s Lemma, [ |u|dz < co. Therefore,

Q

/|u| de > / ful dz > M meas ([Ju] > M]).

Then ) o
meas ([Ju| > M]) < i / lu| dx < i (3.43)
Q

for any M > 0 and C' being a positive constant not depending of M. Now, we have

/ a(xz,u, Vu) - Vudr < / a(z,u, Vu) - Vudr < / a(z,u, Vu) - Vudz.

[M<[ul<M+1) (Jul>M] fJul>M)]

Since meas([|u| > M]) — 0 as M — oo, taking into account (3.43) and the fact that a(z,u, Vu)-Vu €
LY(2), we get

M—o0
[lu|>MM]

lim / a(z,u, Vu) - Vudzr = 0.

Hence,

lim / a(xz,u, Vu) - Vudx = 0.
M—o0
[M<|u|<M+1]

Finally, using Lemma 3.1, Lemma 3.4, (3.41) and (3.42), we deduce that (u,w) is a solution of problem
P(B, f).

This concludes the proof of the existence result. O

In order to prove the partial uniqueness result, we make the following hypotheses on the function
a, namely, the local Lipschitz continuity with respect to z.
For all bounded subsets K of R x RY, there exists a constant C(K) such that

ae. x€Q, forall (2,n),(Z,n) €K, |a(z,z,n)—alz,zn)| < CK)|z -2 (3.44)

Remark 3.4. Let (u,w) be a solution of the problem P(83, f), then u € C(fQ), since u € Wol’p‘ (Q) and
p_ > N. Moreover, if u is a Lipschitz continuous function, then u € W1°°(Q).

Indeed, Q2 is an open bounded domain with a smooth boundary 02, so, the space of Lipschitz
functions C%1(Q) and W1°°(Q) are homeomorphic and they can be identified. The uniqueness in the
sense of Theorem 3.1 seems difficult to demonstrate. Therefore, our partial uniqueness result reduces
to the case where the domain of 8 is bounded.
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Theorem 3.2. Suppose (1.1)—(1.5) and (3.44) are satisfied, and M in (1.3) can be taken as a constant.
Assume that —oo < m < 0 < M < oco. Moreover, assume that [ € Ll(Q) such that the problem
P(B, f) has a solution (u,w) in the sense that u is a measurable and Lipschitz continuous function
with T, (u) € E™C)(Q) for all k > 0 and u € dom(B)LN a.e. in Q, w € L*(Q) and w € Bu)LN a.e.
in Q; and there exists a measure p € Mg(i)(Q) such that p L LN, u* is concentrated on [u = M],
W~ is concentrated on [u = m] and

/wgpdw—i—/a(x,u,Vu)Vgodx—&—/(pdu: /fgada:, (3.45)
Q Q Q

Q

for all o € E™()(Q) N L®(Q).

Then any other solution (u,w) of the problem P(B, f) in the sense of equality (3.45) partially
coincides with (u,w), i.e., w =W a.e. in Q and p = [
Remark 3.5. Establishing a partial uniqueness result without Lipschitz continuous assumption on
and condition (3.44) seems to be a rather difficult task, since there is no a priori guarantee that distinct
solutions u; and uy are in a same test space. The uniqueness result is valid for W1 *-solutions.

Proof of Theorem 3.2. First of all, we complete the proof of the existence by proving the relation
(3.45). Here, we consider the function hy, where k is a positive constant such that

hi, € CL(R), hi(s) >0, Vs€R,
hi(s) =1 if |s| <k and hg(s) =0 if |s| > k.

Since the domain of 3 is bounded and equality (3.41) holds for any h € C}(R), we take h(s) = hyp(s) = 1
for all s € [m, M] C [k, k] = supp(hg), which implies

/wgpdx-i—/a(x,u,Vu)-Vgodx+/<pdﬂz/fé0dxa
Q

Q Q Q

for all ¢ € E™()(Q) N L>().

Now, we prove the partial uniqueness result (for more details, see [2, Proof of Theorem 2.8|
and [13, Proof of Theorem 3.7]).

Let (u1,w1) be a solution of the problem P(S, f), where u; is a Lipschitz continuous function, and
(ug,ws) is another solution to problem P(S, f) in the sense of equality (3.45).

Let ¢ := %Tk (u1 — ug), then ¢ is an admissible test function in the formulations for both (u1,w1)
and (ug2,ws). Thus, with this test function, we have

k k
Q Q

1 1
/w1 — Tx(uy —ug) da + — /a(x,ul,Vul) V(U1 = U2)X 0y <y 4T

1 1
+ / E Tk(ul — UQ) d,U,l = /f E Tk(ul - ’LLQ) dx (346)
Q Q

1 1
/w2 Z Tk (ug — ug) dx + p /a(x,ug, Vuz) - V(w1 = u2)X g0, - uy< 4T
Q Q

1 1
+ / ETk(ul —ug) dug = /f ETk(ul —ug)dx. (3.47)
Q Q

We substract (3.46) and (3.47) to get

1

z / (a(x,ul,Vul) — a(m,u27Vu2)) V(U1 — U2) X[0< |uy —us|<k] 4T
Q
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1 1
+ /(w1 — ws) Z Ti(u1 — ug) dr + / z Ti(up — ug)(duy — dug) = 0. (3.48)
Q Q
By I we denote the first term of the left-hand side of (3.48). It is known that

(a(ac7 uy, Vuq) — a(z, us, Vug))V(ul — Ug)
= (a(z,u1, Vur) — a(z, uz, Vur)) V(ug — uz) + (a(x, uz, Vur) — a(x, uz, Vua)) V(ug — us) .

>0

Hence

1
I=1,+ / (a(z,u2, Vur) — a(z, uz, Vus)) Z V(ui = 42)X 01, i<y 4,
Q
where )
I, = / (a(x7u17 vul) - a(x,uz, VU1)> E V(Ul - u2)X[°<IU1—“r2\<’“] dz.
Q

Let us show that I, — 0as k — 0. Since u; is bounded, us is also bounded on the set [0 < |u;—uz| < k].
Thus,

1
1| < Z |a(x,u1,Vu1)fa(x,UQ,Vu1)||Vu1—Vu2|dx
[0<]ur —uz|<k]
1 .
< - C(||U1HLOO(Q)7 HVu1||Loo(Q))|u1 — ug| |[Vuy — Vug|dz  (by using (3.44))
[0<]|ur —uz|<k]
< C(||u1||Loc(Q), ||VU1HLO@(Q)) / |VU1 - VUQ‘ dr — 0 as k — 0. (349)

[0<|u1—uz|<k]
Notice that Ilin}) meas([0 < |u; — uz| < k]) = 0 and |Vu; — Vus| € L1(Q).
—
For the second term of the left-hand side of (3.48), we have
1
Ilirr%) (w1 — wa) Z Ti(uy — ug) dz = /(w1 — wa) signg(u; — ue) dz = / |lwi — ws| dz, (3.50)
—
Q Q Q
and for the third term of the left-hand side of (3.48),
: 1
lim % Tk (Ul — Ug)(dul - dﬂz)

k—0
Q

= [ signg(ur —uz)(dpr — dpz) = [ |dps — dpe| = [ |d(pa — p2)]. (3.51)
/ [t~

Finally, letting & tend to 0 in (3.48) and taking into account inequalities (3.49), (3.50) and (3.51), we
obtain

. 1
lim [ (a(x,usz, Vuy) — a(x,uz, Vuz)) Z V(U1 = U2)X 0o, —uy <) 4T

k—0
Q
+ / |wy — ws| dx + / |[d(p1 — p2)| =0. (3.52)
Q Q
Since all the terms of equality (3.52) are nonnegative, we deduces that [|w; — wo|dz = 0 and
Q

J1d(p1 — p2)| = 0. Hence wy = wo a.e. in Q and pq = po. O
Q
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