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Abstract. We investigate mixed boundary value problems (BVP) of the linear theory of viscoelasticity
for isotropic and homogeneous Kelvin—Voigt materials with voids when on one part of the boundary
of the body under consideration the Dirichlet type condition is given and on the remaining part of
the boundary the Neumann type condition is prescribed. Using the potential method and the theory
of pseudodifferential equations we prove the existence and uniqueness of solutions in the appropriate
Sobolev—Slobodetskii, Bessel potential, and Besov spaces. Using the embedding theorems, we establish
almost optimal regularity results for solutions to the mixed BVPs near the collision curves where
different types of boundary conditions collide. In particular, we prove that the solutions belong to
the space of Holder continuous functions in the closed region occupied by the viscoelastic body. An
efficient algebraic algorithm is described for finding the Hoélder smoothness exponents which, in turn,
efficiently determined the corresponding stress singularity exponents near the collision curves. It is
shown that these exponents depend essentially on the material parameters.
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1 Introduction

The development of viscoelasticity theories was initiated by Maxwell, Meyer, and Boltzmann, and
further advanced by Voigt, Kelvin, Zaremba, Volterra, among others. Classical models such as the
Maxwell model, the Kelvin—Voigt model, and the standard linear solid model were formulated to
describe the behaviour of materials under various loading conditions (see Eringen [41], Truesdell and
Noll [99], Christensen [20], Amendola et al. [4], Fabrizio and Morro [44]). Viscoelastic materials hold
significant relevance across diverse fields, including civil and geotechnical engineering, technological
applications, and more recently, biomechanics. Materials like amorphous polymers, semicrystalline
polymers, and biopolymers can be effectively modelled to capture their stress or strain responses and
time-dependent characteristics. The viscoelastic properties of bone are crucially analysed with respect
to strain levels and frequency domains encountered during daily activities and diagnostic procedures
(see Lakes [62]).

The study of wave propagation in viscoelastic media, as well as the attenuation of seismic waves,
remains vital for geophysical exploration. Moreover, viscoelastic porous materials are extensively
analysed at the nanoscale, providing detailed predictions of their behaviour. These materials have a
wide range of applications, notably including potential contributions to NASA’s missions involving
soil behaviour prediction on the Moon and Mars (for more details, see Voyiadjis and Song [101], Polarz
and Smarsly [80], Chen et al. [13], and the references therein).

Great attention has been paid to the theories considering the viscoelastic effects (see Amendola
et al. [4], Fabrizio and Morro [44], Di Paola et al. [35,36], Shaw and MacKnigh [88], Seema and
Abhina [90]). Investigations concerning the existence, stability and asymptotic behaviour of solutions
within the framework of linear viscoelasticity have been carried out by Fabrizio and Morro [44],
Fabrizio and Lazzari [43] and Appleby et al. [6]. Important results regarding free energy in linear
viscoelasticity are obtained in the papers [28-33,45,49].

Materials containing small-scale voids, commonly referred to as porous materials or materials with
voids, play a critical role in a variety of scientific domains. The classical elasticity theories often
fall short when applied to geological materials like rocks and soils, as well as biological and engi-
neered porous structures. Besides seismology and elasticity, the viscoelasticity theories for materials
with voids are widely applied in medicine, biological sciences, the oil industry, and nanotechnology.
Several integral-type models for viscoelastic materials with voids have been proposed by Cowin [25],
Ciarletta and Scalia [21], De Cicco and Nappa [27], and Martinez and Quintanilla [64]. More recently,
the differential-type theories have garnered attention. In this context, Iesan [54] developed a nonlinear
model treating a viscoelastic composite as a mixture of a porous elastic solid and a Kelvin—Voigt ma-
terial. Quintanilla [84] formulated a linearized version of this model and established the existence and
exponential stability of solutions. Furthermore, Iesan and Nappa [59] introduced nonlinear theories
for heat-conducting mixtures composed of Kelvin—Voigt materials, while Chirita et al. [14] derived
exponential decay estimates for steady vibration equations.

The thermoviscoelastic behaviour of composites modelled as interacting Cosserat continua has
been explored by Iesan [56]. In [57], Iesan expanded upon the classical theory of elastic materials with
voids by establishing the fundamental equations for nonlinear thermoviscoelastic materials with voids,
particularly for “virgin” materials without pre-existing stresses (see also Nunziato and Cowin [24,77],
Fabrizio and Morro [44], and Deseri et al. [31]). In the framework of the linearized theory, the
uniqueness of solutions and continuous dependence on initial and external data were also proven.
Additionally, Passarella et al. [79] recently developed a thermoviscoelastic theory for Kelvin—Voigt
microstretch composites. Comprehensive reviews on elastic materials with voids can be found in the
references [12,22,26,82], Iesan [15,16,55,58,78,81,84-87,92].

Regarding the application of the potential method in the linear theory of viscoelasticity for isotropic
and homogeneous Kelvin—Voigt materials with voids, we would like to mention that the basic boundary
value problems, when on the whole boundary of a viscoelastic body either the Dirichlet type condition
or the Neumann type condition is given, have been studied by M. M. Svanadze in the spaces of
regular vector-functions, having the first order continuous derivatives in closed domains with smooth
boundaries (see [93-96]).

In the present paper, using the potential method and the theory of pseudodifferential equations, we
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investigate the Dirichlet—Neumann type mixed boundary value problems for the system of differential
equations of the linear theory of Kelvin—Voigt viscoelastic materials, when on one part of the boundary
of the body under consideration the Dirichlet type condition is given and on the remaining part of
the boundary the Neumann type condition is prescribed. It is well-known that, in general, this type
of mixed boundary value problems have no solutions in the space of regular vector-functions even for
infinitely differentiable boundary data and infinitely smooth boundary surface. The main goal of the
present investigation is to establish the of existence and uniqueness of solutions for the mixed BVPs
in appropriate generalized vector-function spaces and to conduct detailed analysis of their almost
optimal smoothness properties in the closed domain occupied by the body with a smooth or Lipschitz
boundary. To the best of our knowledge, these types of mixed boundary value problems for Kelvin—
Voigt viscoelastic materials have not been studied by the potential method which is a very powerful
and efficient tool to study qualitative and quantitative properties of solutions.

The paper is organized as follows. In Section 2, we present the system of basic differential equa-
tions of the theory of steady state viscoelastic vibrations, introduce the related boundary differential
operators and write down the corresponding Green formulas. In Section 3, we formulate the mixed
boundary value problem and prove the uniqueness theorem. In Section 4, we define the corresponding
layer potentials and the generated by them boundary integral (pseudodifferential) operators, anal-
yse their mapping and coercivity properties in the appropriate Bessel potential and Besov spaces.
Section 5 is devoted to detailed investigation of the mixed BVP. Using a special representation of
the sought for solution by the single layer potential, the mixed BVP under consideration is reduced
equivalently to the pseudodifferential equation which lives on the Neumann part of the boundary and
contains the generalized Steklov—Poincaré type operator. We prove that the boundary pseudodiffer-
ential equation is uniquely solvable, that leads to the corresponding existence results for the mixed
BVP in the appropriate Sobolev—Slobodetskii, Bessel potential, and Besov spaces. Further, we estab-
lish almost optimal regularity results for solutions to the mixed BVP near the collision curve, where
different types of boundary conditions collide. It is shown that the solutions belong to the space
of Hoélder continuous vector-functions in the closed region occupied by the viscoelastic body. The
efficient algebraic algorithm is described for finding the Holder exponents which, in turn, determine
the corresponding stress singularity exponents near the collision curves. It should be mentioned that
these exponents essentially depend on the material parameters. In the final part of the paper, in
Appendices A, B, C, and D, for the readers convenience, we have collected the necessary auxiliary
material needed for our analysis in the main text.

2 Basic differential equations and Green identities

Let an isotropic homogeneous Kelvin—Voigt material occupy a bounded three-dimensional domain
Q= QF c R? with a connected boundary 9Q = S. The unbounded complement of the domain Q we
denote by O~ = R3\ Q.

Further, let the boundary 80T = 902~ = S be divided into two connected disjoint parts, Sp and
Sy, SpUSy =S, Sp NSy = @. For simplicity, throughout the paper, we assume that S € C™®
and ¢ = 0Sp = 0Sny € C unless otherwise stated. Some of the results obtained in the paper are
valid when S, Sp, and Sy are Lipschitz surfaces, and these cases will be singled out separately. For
detailed description of properties of the Lipschitz surfaces, we refer to [76,100].

By L,, W;, H;, and B, , (r>0,seR 1<p<oo, 1<g< o0)we denote the well-known
Lebesgue, Sobolev—Slobodetskii, Bessel potential, and Besov spaces of complex-valued functions of real
variables, respectively (see, e.g., [7,63,97,98]). Note that the relations Hy = W3 = By ,, H; = B3 5,
W; = th),p’ and Hllf = Wlf, hold for any r > 0, for any s € R, for any positive and non-integer ¢, and
for any non-negative integer k.

By C** we denote the space of k time continuously differentiable functions whose kth order
derivatives satisfy the Holder condition with an exponent « € (0, 1].

In our analysis we also use the spaces

Hy(S1) == {f: f € H}(S), supp fC 51},
B} (S1):={f: f€B},(S). suppfC S},
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Hy(81) = {rs [+ [ € Hy(S)},
By (S1) = {rs, f: [ € B, ,(9)},

where S7 € {Sp, Sn}, 75, 1s the restriction operator onto ;. The norms in these spaces are determined
naturally:

HUHﬁ;(sl) = ”u”H;(S)v ||u|\3 ,(51) = [|ul B ,(8)>
[ullrrs(sy) = inf|[v]|ms(s), veE HP(S), Ts, V= U,

[l

B (s0) = nf (vl (s), veEBy,(S), rev=u

Let a function f be defined on an open proper submanifold S, € {Sp,Sy}. Let f € B (Sl) and
f be the extension of f by zero to 5\ Sy. If the extension preserves the space, that is, if f 6 4 (51),
then we write f € pyq(Sl) instead of f € vy B, ,(51), when it does not lead to mlsunderstandlng.
N Note that Equ(Sl) and B, (S1) with % + i =1 and é + % = 1 are dual spaces. Similarly,
H;(S1) and H,*(S1) are also dual spaces (for details see [65,71,97,98]).

Therefore, for the functions f € B, ,(51) and g €B .q(S1) (resp., f € H,*(51)and g € Hs(Sl))
the duality relation (f,g)s, is well deﬁned and generahzes the classical Lo- 1nner product:

.9, = / f@)g(@) dS, for f,g € La(Sh),

where the overbar denotes complex conjugation.

By the symbols { - } ™ and { -}~ we denote the standard one-sided traces of functions on the surface
S = 00F from Q1 and O, respectively. In the case of Lipschitz domains, we also use the symbols
{-} and {-}., for the nontangential limiting boundary values. In [1], it is shown that if a function
v belongs to H() and has almost everywhere on S a nontangential limiting boundary value with
a square integrable maximal function, then this boundary value coincides with the trace (with the
Sobolev boundary value) of v on S. For general properties of the trace operator for Sobolev spaces
on the Lipschitz domains we refer to the references [23,34].

Throughout the paper, the summation over the repeated indices is meant from 1 to 3 and the
superscript ()T denotes transposition operation.

The basic system of partial differential equations of the theory of steady state viscoelastic vibrations
reads as follows (see Appendix A):

p1Au + (A + py) grad divu + by grad ¢ + pw?u = —oF, (2.1)
a1Ap + gow?p — frp — v divu = —oFy, (2.2)
where A is the Laplace operator, u = (uy, us,us3) " is the displacement vector, ¢ is the volume fraction

field, F = (Fi,F2,F3) ' is the body force per unit mass, F; is the extrinsic equilibrated forces per
unit mass, g is the reference mass density, oo = kp with k being the equilibrated inertia,

A=A —iwA*, pp =p—iwp”, by =b—iwb*, (2.3)
o1 =a—iwa®, v =b—iwrv*, [ =p—iws", '

the constants A\, A\*, u, u*, b, b*, v, v*, a, a*, B, B*, and k are material parameters satisfying some
inequalities that will be specified later.
Rewrite the above system in a matrix form

A(amw)U =9,

where 0 = (01, 02,03), 0; = 61 yU = (u,0) T, & = (—oF,—0F4) T, and —A(9,w) is a non-self-adjoint
strongly elliptic differential operator (see Appendix B):

A0z, w) = [Arj(02,0)] 40
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Ak](aa:aw) = ,U/I(Sk:jA + (Al + ,ul)akraj + Qw26kj7 ka] = 17 2737
A4j(8z,w) = —Vlaj Ak4(6x,w) = blak, k7] = 1,2,3,
Ags (05, w) = a1 A + (0ow” — Bu).

The formally adjoint operator of A(9,,w) without complex conjugation we denote by the symbol
A*(0z,w), that is, A*(0,,w) = AT (=04, w).

The principal homogeneous parts of the operators A(9,,w) and A*(9,,w) coincide, they are for-
mally self-adjoint operators without complex conjugation and read as follows:

A0 (Og,w) = A*(O (Op,w) = [A]ig)(ax,w)]4x47 (2.4)
A;(fj) (0p,w) = p10k; A + (M + p1)0k0;,  Aaa(0z,w) = au A, (2.5)
A (05,w) = A (0s,w) =0, k,j=1,2,3. (2.6)

Further, let us introduce the generalized stress-type boundary operators P(9,,n) and P*(9,,n)
associated with the differential operators A(9,,w) and A*(9y,w):

P(0y,n) = [ij(ﬁx,n)hM,

Pri(0z,n) = p10k;0n + pain;0k + Aing0;, k,j =1,2,3,
Pyj(0y,n) =0, Pya(0y,n) =bing, k,j=1,2,3,
Pyy(0y,n) = 10y,

P*(0,n) = [Pi(00,n)] 4 0
Ppi(0z,m) = p16kjOn + piniOk + Aing0;, k,j=1,2,3,
Py;(0z,n) =0,  Ppy(Osyn) =ving, k,j=1,2,3,
P} (0x,n) = 10y,

where n = (n1, ng, ng) is a unit outward normal vector to the boundary of the body under consideration
and 0, denotes the normal derivative, 9,, = n101 + n20s + n3d3.

The principal homogeneous parts of the boundary stress operators P(9,n,w) and P*(9,n,w) co-
incide and read as follows:

PO(9,n) = PO*(9,n) = [P (0:,1)] ..,

Pé?)(ax,n) = Mlékjan + .ulnjak + Alnkaj,
Pzg))(aw’n) = P]gg)(aw’n) = 0’ Pﬁfg)(ait,n) = Oélany k?] = 17273.
Let U = (u,) " and V = (v,%)" with v = (uy,us,u3)’ and v = (vy,v2,v3) " be regular vector-

functions of the class [C?(Q2)]*. Then the following first and the second Green formulas (cf., [61])
hold:

/A(aw,w)U(x)-V(x) dxz/{P(@x,n(x))U(x)}+ . {V(x)}+ds—/E(U, V) de, (2.8)
Q S Q
/U(x)-A*(@x,w)V(ac) dx:/{U(x)}+~{P*(@x,n(x))V(a:)}erS—/E(U, V) da, (2.9)
Q S Q

/ [A(0z,w)U(z) - V(z) — U(x) - A" (9, w)V (z)] dz
Q

:/[{P(&z,n(x))U(x)}+~{V(x)}+—{U(m)}+~{P*(3z,n(x))V(x)}+} ds, (2.10)

S
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where for the complex valued vectors a = (aj,as2,...,a,) and b = (by,bs,...,b,) the central dot
denotes the “real” scalar product, a-b= )" a;b;,
j=1
E(U, V) = E,(u,v) — ow?u - v+ brpdivu + a1V - Vi — (0ow? — 1)ty + vipdivu, (2.11)
E,(u,v) = E(u,v; \, u) — iwE(u, v')\*,u*) (2.12)
3
E(u,v; A\, p) = )\Zem Ze” + 24 Z eji(u)eji(v
Jj=1 lj=1
3
1 . . 1
=3 (BA 4+ 2u) divudive + p 3 Z (Oruy + O5w)(O1v; + 05v;)
1i=1(10)
13
F 3 (O~ 0y 00w - am] , (2.13)
1j=1
3
E(u,v;/\*,u*):)\*Ze]J Ze” ) +2u” Zeﬂ u)e;i(v
j=1 1j=1
3
=3 (BA" 4 2p") divudive + p [2 Z (Oru; + Ojup) (Oyv; + Ojvy)
1j=1(1£1)
13
+ g Z (8lul — 8jUj)(aﬂ)l — ajvj)] N (214)
lj=1

where e (u) = 3 (Oiu; + d;w;) and egj(v) = 3(dv; + d;v;) are the components of the mechanical strain
tensor associated with the complex-valued vector-functions u and v.
For V =U, from (2.11), separating the real and imaginary parts, we get

E(U,U) = {E(U,U;)\,u) — ow?(ul® + a|Ve? — (0o w? — B1)|¢l* + Re (bipdiva + V1¢divu)}
— iw{E(u,ﬂ; NS )+ |Vol2 + B |o? + (b* +v¥) Re(godivﬂ)} (2.15)

with

3 2 3
Bl A1) = M| D ejs ()] + 20> fenl?, (2.16)
j=1

Lj=1

E(u,u; X', p*) = A"

3 3
3 ej(u ‘ +2u" 3 Jequlu). (2.17)
j=1

1j=1
Here, we used the identity
Im [bipdiva + v1pdivu] = —w(b* + v*) Re(p diva).

Lemma 2.1. Let U = (u, )" be a complex-valued differentiable vector-function and let the following
inequalities hold:

3
wr >0, (3NF+2u")B* > 1 (b +v*)?% a*>0, B*>0 w>0. (2.18)

Then there is a positive constant Cy, depending on the material parameters involved in inequalities
(2.18) such that

~Im E(U,T) wC’l( Z les (W) |* + [Vol* + |l )

l,yj=1

where ej(u) = 1 (yu; + djw;) are the components of the mechanical strain tensor.
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Proof. From (2.15), with the help of relations (2.11)—(2.14), we get
~ImE(U,U) = w{E(u,ﬂ; A1) + B2 4+ (" 4+ v*) Re (¢ diva) + a*|V<p|2}. (2.19)

Assume that u = v/ +iu” and ¢ = @' +1i ¢, where v’ = (u},uh,u}) ", v = (uf,u,uf)", ¢, and "

are the real-valued functions. Let us introduce the notations:
G=en() =01, (G =exn()=0duy, (3=esu)=0us,
1 1
Ca=ep(u) = 5 (Oruy + Daut), (5 =eis(u') = 5 (O1uf + O3uy),

]' ! /
C6 = eas(u’) = 5 (Oaufy + O3usy), Cr=¢', (=09, (=20, C(io=05¢,

m =en(u”) =0y, na=exn(u’) =0y, n3=-es(u")=0zus,

1 1
= ep(u”) = 3 (O1uy + Bouy), s =erz(u”’) = 3 (Ousy + Ozuf),

1
ne = ea3(u”) = By (Oaus 4+ Osuy), nr=¢", ng=01¢", ng=0¢", 1Mo =05¢".

Then equality (2.19) can be rewritten as a sum of two quadratic forms with respect to the real-valued
10-dimensional vectors ¢ = ({1, (2, ..., C10) and = (91,72, ... ,M10):

~Im E(U,T) = w(Q({) + Q(n)), (2:20)
where
Q(2) = X (21 + 22 + 23)° + 20" (27 + 25 + 23) + 4p* (25 + 22 + 2¢)
+ 8% 22 + (b +v)zr(21 + 2 + 23) + ¥ (23 + 25 + 23), 2z € RY.

By the Sylvester criterion it can be shown that if conditions (2.18) hold, then Q(z) is a positive definite
quadratic form. Therefore, from (2.20), we deduce

~Im E(U,T) > wCi (|¢1° + [nl?).
which completes the proof. O

Corollary 2.1. Let u = (uy,uz,u3)’ be a complez-valued differentiable vector-function and let the
following inequalities hold:
pt >0, 3\ +2u">0. (2.21)

Then there is a positive constant C3, depending on the material parameters \* and p*, such that
3
BE(u,m A, p1*) 2 C5 Y e ().
1j=1
Remark 2.1. Evidently, the counterpart of Corollary 2.1 holds also true for E(u,@; A, ), i.e.,
3
E(u,m A, p) > Cy Y lerj(u)]?
lj=1

if
w>0, 3X+2p>0. (2.22)

Throughout the paper, we assume that conditions (2.18), (2.21), and (2.22) are satisfied.
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Remark 2.2. If the vector-functions U and V and their first and second order derivatives decay at
infinity as O(|x|~2), then the Green identities hold true also for the exterior unbounded domain :

/A(am,w)U(ac)~ /{P D, n(@))U ()} - {V(2)} ™ dS - /E U.VY)d (2.23)

/ [A(0z, w)U(z) - V(z) = U(z) - A*(0y,w)V (z)] da

Q-

= —/ [{P(az,n(x))U(x)}’ AV(@)}) - {U@)} - {P*(ax,n(a;))V(x)}*} ds, (2.24)

S

Remark 2.3. The Green formulas (2.8), (2.10), (2.23), and (2.24) can be extended to domains with
Lipschotz boundaries and to vector-functions with the properties U € [H}(QF)]*, V € [H), (QF)]* and
A(0,w)U € [Ly(F)]*, A(0,w)V € [Ly(QF)]* (for details, see the references [10,65-67,70]). In this
case, the integrals over the surface S should be replaced by the appropriate duality relations.

In particular, the first Green identity reads as follows:

({P@s (@)U @)} {V (@) /Aaz,w V(x) dm+/EUV

Uel[HyQ, A@@,w)U € [Ly(Q)]*, Ve [Hy ()], % + % =1,

where the brackets (-, -)s denote the duality between the mutually adjoint vector-function spaces
1 1
[Bp,5 (S)]* and [B, ,(S)]*. By this formula, the generalized boundary functional { P(d,, n(z))U (z)}*

_1 _ 1
€ [Bpj (S)]* is defined correctly, in view of the inclusion {V}T € [B;,’p’il (9)]* = [B];’,’p,(S)]‘L.

In what follows, we assume that if integrals do not exist in the standard Lebesgue sense, they
are then understood as functionals in the duality sense provided that the corresponding generalized
functions belong to the mutually adjoint spaces. This will be clear from the context when we refer to
an ordinary integral or to a functional.

Remark 2.4. From Lemma 2.1 it follows that if Im E(U,U) = 0 in Q, then ¢(z) = 0 and u(z) is a
rigid displacement, u(z) = a X x + b, where a and b are arbitrary complex constant vectors and “Xx
denotes the cross product (see, e.g., [61]).

3 Formulation of the mixed BVPs and uniqueness theorems

The mixed interior boundary value problem (BVP) in the linear theory of viscoelasticity for an
isotropic homogeneous Kelvin—Voigt material occupying a bounded domain €2 is formulated as fol-
lows: Find a vector-function U = (u, )" € [H}(Q)]* = [W, ()]*, p > 1, satisfying

(i) the differential equation
A0y, w)U(x) = ®(z) in Q, (3.1)

(ii) The Dirichlet type boundary condition (on Sp)
{U(2)}" = f(x) on Sp, (3.2)

(iii) The Neumann type boundary condition (on Sy)
{P(9,,n(x))U(x)}" = F(z) on Sy, (3.3)
where S = 9Q = SpU SN, SpN Sy = &, and the data of the problem satisfy natural inclusions

O = (&), By, b3, 4)T € [HAQ)]" = [L,(2)]", (3.4)



112 David Natroshvili, Maia Svanadze

£ =i for fr )T € [Bo? (Sp)]* (3.5)

F=(F\,Fy, F3, F))T € [Byj (Sw)]™. (3.6)

-

Recall that the trace {h}T on S = 9 of a function h € H,(£2) belongs to the space B;;,E(S).

In the formulation of the above mixed problem, equation (3.1) is understood in the weak sense, the
boundary condition (3.2) is understood in the usual trace sense, while condition (3.3) is understood in
the generalized functional sense defined with the help of Green’s first identity (2.8) (see Remark 2.3)

({P@rn(@U@)} {V@)}"), = /A(am,w)U(z).v(x) der/E(U, Vyde  (3.7)

Q Q

11
for all V € [H}(,5p)]", St

/

where
[H3(@.50)]* = {V e [Hy@)]": rs,{V}* =0}
and 1the brackets (1, -) denote the duality between the mutually adjoint vector-function spaces
[Bos (Sn)]* and (B, (Sx)]".
Evidently, if U € [H}(Q)]* with A(9,w)U € [L,(Q)]*, p > 1, relation (3.7) correctly defines the
1

generalized trace on S of the stress vector-function {P(d,, n(x)w)U(x)}* € [Bpp (Sn)]*
For a special case p = 2, the following uniqueness theorem holds.

Theorem 3.1. Let S = 9Q be a Lipschitz surface, the material parameters meet inequalities (2.18),
and let inclusions (3.4)—(3.6) hold for p = 2. Then the mized boundary value problem possesses at
most one solution in the space [Ha(Q)]* = [W3(Q)]*.

Proof. Due to the linearity of the mixed boundary value problem (3.1)—(3.3), we have to show that
the homogeneous problem has only the trivial solution. Let U = (u,¢) " € [H3(€2)]* be a solution of
the homogeneous problem. Then the first Green formula (3.7) with V' = U leads to the relation

/E(U, U)dz =0, (3.8)

Q

where E(U, U) is given by (2.15). Separating the imaginary part of relation (3.8), in view of Lemma 2.1,
we deduce e;;(u) =0, 1,7 =1,2,3, and ¢ = 0 in Q. Therefore, due to Remark 2.4, the vector-function
u is a rigid displacement, v = a X x + b with a and b being arbitrary complex constant vectors.
Finally, the homogeneous Dirichlet type condition (3.2) implies that v = 0 in €, which completes the
proof. O

The uniqueness theorem for other values of the parameter p will be shown below, in Section 5.

We investigate the existence of solutions to the mixed boundary value problem under consider-
ation by the potential method and the theory of pseudodifferential operators on the manifold with
a boundary. To this end, in the next section, we study the mapping properties of volume and layer
potentials and the corresponding boundary integral operators in different function spaces.

4 Properties of potentials and boundary integral operators

Denote by I'(z) = [['kj(z)]axa and U(x) = [¥y;(x]axa the fundamental matrices of the operators
A(Dy,w) and A (9,,w), respectively,

A0y, w)T(z) = 0(x) Iy, A(O)(al,w)\lf(m) = 6(x) 1y,

where 0(-) is Dirac’s delta functional and I, is m X m unite matrix. These fundamental matrices
are explicitly constructed in Appendix B. By a different approach, these matrices were constructed
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in [93]. The matrix ¥(z) is a principal singular part of the matrix I'(z) in a vicinity of the origin and
the following relations hold (see Appendix B):

I'ij(x) — Yij(x) = const + O(|z|),

opP

[Thj(2) = Wiy (2)] = O(|]' "), p=p1+p2+ps. (1)

Actually, the matrix [U;(x)]3x3 formally coincides with the Kelvin fundamental matrix for the Lame
system of the classical theory of elasticity with the complex parameters A; and gy defined in (2.3)
(see Appendix B).

Note that at infinity the matrices I'(x) and ¥(x) have different behaviour. The entries of the
matrix I'(z) decay exponentially as |z| — oo, while the entries of the matrix ¥(x) are homogeneous
functions in z of order —1.

Now, let us introduce the single and double layer potentials and the Newtonian type volume
potential, defined respectively by the equalities:

V@)@ = [T - ngwds, ze2\S, (4.2)
S

W) = [ [P0n)E (e~ ) o0) S, v € B\ (43)
S

Na((a) = [Tl = i) dy. = € (1.4)
Q

where P*(0,n) is the boundary differential operator defined by (2.7), g = (g1,...,94) " is a density
vector-function defined on S, while h = (hy,...,hy)" is a density vector-function defined on .

Note that the above-introduced potentials (4.2)—(4.4) and their derivatives of arbitrary order decay
exponentially at infinity.

Let us introduce also the layer potentials associated with the operator A(O)(a, w) and constructed
by the fundamental matrix ¥(z),

VO(g)(z) = [ ¥(z—y)g(y)dS,, z€R?\S, (4.5)

WO (g)(x) = | [PO,,n(y)¥(z —y)] 9(y)dS,, =ecR>\S. (4.6)

R A

Here, we applied the relations ¥(z —y) = ¥ (z —y) = U(y — z).
We have the following general integral representations in €2 of a smooth vector-function, which can
be derived with the help of the second Green formula (2.10) (see [93]).

Theorem 4.1. Let S = 99 be CYF-smooth with 0 < k < 1 and let U be a reqular vector-function of
the class [C%(Q1)]*. Then the following the integral representation formula holds:

U(z) for x €9,

0 for x € Q™. (47)

W{U} ") (@) = VEPUY)(2) + N (A0, w)U)(x) = {

Due to the exponential decay behaviour at infinity of the fundamental matrix ¥, using the second
Green identity (2.24), one can derive similar integral representation formula in the unbounded exterior
domain Q7.

Theorem 4.2. Let S = 02~ be Cl’”—sg)oth with 0 < kK < 1 and let U be a polynomially bounded
reqular vector-function of the class [C*(2~)]* with polynomially bounded at infinity derivatives:

U(z) = O0(z|™), wUi(xz) =0O(z|™), 0k0;Ui(z) = (’)(|x|m), 1=1,2,3,4, k,j=1,2,3, (4.8)
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where m is an integer number. Then the following the integral representation formula holds:

{0 for x € QF,

~W{U} ) (2) + V{PU}")(z) + No- (A(8, w)U)(x) = (4.9)

U(z) for x €.

Corollary 4.1. Let S = 9QF be CY"-smooth with 0 < k < 1 and let U € [C*(QF)]* be a solution to
the homogeneous equation A(9,w)U = 0 in QF and Q™ satisfying conditions (4.8). Then the following
representation formula holds:

U(z) = W([Uls)(z) = V([PU]s)(z), z€QTUQT,
where [Uls = {U}s — {U}g and [PU|s = {PU}s — {PU}5.

Remark 4.1. By the standard arguments applied, for example, in [65] and [8], formulas (4.7) and
(4.9) can be extended to Lipschitz domains and to vector-functions satisfying the conditions U €
(W (QF)]* = [H)(9F)]* and A(0,w)U € [Ly(0F)]* with 1 < p < occ.

Now, we describe the mapping properties of layer potentials.

Theorem 4.3. Let S = 0QF € C™" with integer m > 1 and 0 < k < 1. Let k < m — 1 be integer
and 0 < k' < k. Then the operators

4 P

. k,x k41,5 4
v:[c /(S)]4 - [C f fi)] ) (4.10)
W [CFF(9)]" = [CF (OF)]

are continuous.
For any g € [C%" (9)]*, h € [CY* (S)]4, and for any x € S, the following jump relations hold:

{(V(9)@)} " = {V(9)(x)}~, (4.11)
{P(@2, (), )V () @)} = [ 5 1+ Ko(a), (4.12)
(W) @)} = [i %L; + K]g(x), (4.13)
{P(&U,n(ar:))VV(h)(a:)}Jr = {P(9z,n(x))W(h)(z)} = Lh(x), m > 2, (4.14)
where
Ho(w)i= {V(9)(@)}* = [T - )gw)dS,. we s, (4.15)
S

I%g(a:) = / [P(ax, n(x))(x — y)]g(y) ds,, xz €S, (4.16)

S
Kg(z) = / [P0, n)TT (= — v)] " g(y)dS,, = € 5, (4.17)

S

+

Lh(zx) = {P(0z,n(x))W (h)(z) }

— lim P(.,n()) / [P* 8y, n ()T (= — )] "h(y)dS,, z€S.  (4.18)
S

QFf>z—z€S

Proof. The proof of relations (4.10)—(4.13) can be performed by standard arguments employed in the
proof of similar theorems in [61, Chapter 5].

We demonstrate here only a simplified proof of relation (4.14), known as the Liapunov—Tauber
type theorem. Let h € [CV%'(S)]%, S € C2*, and consider the double layer potential U = W (h) €
[C1F(QF)]8. Then, by Corollary 4.1 and the jump relations (4.13), we have

U(z) = W([U]s)(z) = V([PU]s)(x), =€ QF,
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- W(n) (@) = W)~ V(PWR)s) (@), @ €0,
since [U]g = {W(h)}* — {W(h)}~ = h on S, due to (4.13). Therefore, V([PW (h)]s) = 0 in QF and,
in view of (4.12), we conclude

{PV([PW()]s)} —{PV([PW(R)]s)}" = [PW(R)] g = {PW(h)}" = {PW(h)} =0
on S, which completes the proof. O

Note that the operator H is a weakly singular integral operator, i.e., a pseudodifferential operator
of order —1. The operators K and K are the Calderé6n—Zygmund type singular integral operators, i.e.,
pseudodifferential operators of zero order. The operator L is an integro-differential operator, i.e., a
pseudodifferential operator of order 4+1. In the case of smooth surfaces, the principal homogeneous
symbols of these pseudodifferential operators will be analyzed below.

Theorem 4.4. Let S = 90T € C™" with the integer m > 1 and 0 < k < 1. Let k < m —1 be an
integer and 0 < k' < k. Then the operators

e [CFF(9)] = [ (9L, m> 1, (4.19)
j:% L+ K, i% L+K:[CF(9)" = [ (9)]", m>1, (4.20)
L:[CH (9] = [CF (9], m>2, k>1, (4.21)

are continuous.
Moreover, the following operator identities hold:

. . 1 1 =
KH=HK, LK=KL, 7—[[2:—1]4—1—1@, £’H:—ZI4+IC2. (4.22)

Proof. The proof of mapping properties is word for word of the proofs of the counterpart theorems
in [61,72,75], and [73]. Operator identities (4.24) can be obtained by taking the trace on S of formula
(4.8) written for the single and double layer potentials. O

Remark 4.2. Due to relations (4.1), it is evident that the above-formulated theorems remain true for
the potentials V(9 and W(® defined by (4.5) and (4.6) and generated by them the boundary integral
operators H©, K KO and £, defined by relations (4.15)—(4.18) with ¥ for I' and P (8, n) for
P(9,n) and for P*(9,n).

The above-formulated theorems can be extended to more general function spaces. In particular,
for the Lipschitz domains we have the following mapping properties.

Theorem 4.5. Let S = 02 be a Lipschitz surface. Then the operators

v [H, 2(9)]" - [HhQ)]", (4.23)

W By (5)]" - [Hh @), (4.24)

e [Hy H(S)])" > [H7(5)]", (4.25)

HO  [Hy 2 (S)]* — [Hy (5)]", (4.26)

i% L+ K (B (9)]" = [ (9)]", (4.27)
sl LR [y hs) - [y ) @)
c:[HF (9] = [Hy 2 (9)]* (4.29)

are continuous.
Moreover, operators (4.25)—(4.29) are invertible.
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Proof. The proof of the continuity of operator (4.23)—(4.29) is word for word of the proofs of the
similar theorems in [1,23,65], and [69].

First, let us prove the invertibility of operator (4.26). Consider the single layer potential con-
structed by the fundamental matrix W,

Ux) = (u,0) " =VO(g)(x) = | T(x—y)g(y)dS,, =€ QF

A

and the corresponding boundary integral operator

H O g(z) = {VO(g) / U(x y)dS,, x€S.
S

Evidently, the operator
H—HO : [Hy(5)]" = [Hf (5)]" (4.30)

is compact due to (4.1). Actually, the range of the operator H—H(? is in [H3(S)]* and the compactness
of (4.30) follows from the well-known Rellich-Kondrachov compact embedding theorem.

The components of the vector-function V(9 (g)(x) decay at infinity as O(|z|~"), while their first
order derivatives decay as O(|x|~2). Therefore, we can write the first Green formula for the vector-
functions U = V) (g) = (u, )" and U for both domains, Q and Q~ (cf. (2.8)),

({PO@.V O} {09} ) = /ELO>(V<°>(9),V<0>(9))dz, (4.31)
Q
<{P0> 0,n)VO ()}, {VO(g)}~ >S = / EO (V9 (g), VO)(g)) da, (4.32)
a-
where B
EOU,U) = E,(u,7) + a1|Veg|? (4.33)

with E,,(u, @) defined by (2.12)—(2.14). Using the properties of the single layer potential, from (4.31),
(4.32) we deduce

(=9 Hg) = [ EQ(1O(),VO() ds,
QUO—

ie.,

(~#95) = [ EP(VO0).V00) b

Qu-
From (4.33) we have
EO(U.T) = B(u,: M. 1) + o|Vel? — ieo{ B, m X", ") +a* [V}, (4.34)

where E(u,u; A\, u) and E(u,w; \*, u*) are given by (2.16) and (2.17), respectively. Therefore, by
Corollary 2.1 and Remark 2.1, we derive

3
Re(~H0.9)s = [ {BmAn)+alVeP}do> o Y leylu)f +]7) >0
QuO- bi=1
Im< - H(O)g’§>s =w / {E(u,ﬂ; N ') + a*|ch|2}d wC’4( Z lezj(u)|* + |Vl )
QUO— l,j=1

where C5 and Cj are positive constants and e;;(u) = % (Oruj + Ojuy).
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Since U = V) (g) € [H'(R3)]*, by exactly the same arguments as in the proof of Theorem 4.6
in [10, Section 4.2], we deduce the following coercivity properties:

0 = 2
Re(=Hg.9)5 > Cslall’, 4

0 — 2
Im{—-Hg,5) ;> wOsllgll’, 3 gy

N+’

with some positive constants C5 and Cg. Therefore, by the Lax—Milgram theorem, the operator
1 1
HO : [Hy 2(8)]" = [HE (5)]*

is invertible and, consequently, operator (4.25) is Fredholm operator with zero index. It remains to
show that the null space of operator (4.25) is trivial.

Let g € [H2(S)]* be a solution of the homogeneous equation Hg = 0 on S. Then the vector-
function U(z) = V(g)(x) belongs to the spaces [Ha(Q]* and [H1(Q27)]* and is a solution of the
homogeneous interior and exterior Dirichlet type BVPs:

A0z, w)U(x) =0 in Q,
and

A(0y,w)U(x) =0 in Q,
{U(x)} =0 on 5.

As in the proof of Theorem 3.1, with the help of the corresponding Green identities, we can show
that these BVPs possess only the trivial solution, i.e., U(z) = V(g)(z) = 0 for x € QU Q~, implying
g={P(0,n,w)V(g9)}~ — {P(0,n,w)V(g)}~ =0 on S. Consequently, operator (4.25) is invertible.
Now, we prove the invertibility of operator (4.29).
To this end, let us recall that the operator £(©) is defined by the relation

LOB(z) := {PO @, n(z)) WO (h)(2)}*

= dim  PO(0.,n(z) / [PO@,,n(y)¥(z - y)] h(y)dS,, =€S.
S

Evidently, £ is a principal singular part of the operator £, implying that the operator

4 4

£—cO: [H2 ()] = [Hy *(5)] (4.35)
is compact due to relations (4.1). Indeed, since the boundary S is a Lipschitz manifold, the unite
normal vector n is an essentially bounded vector-function with respect to € S and the range of the
operator £ — £ is in [Ly(S)]*. Therefore, as in the previous case, the compactness of (4.35) follows
from the Rellich-Kondrachov compact embedding theorem.

Further, we write two Green formulas of type (4.31), (4.32) with the double layer potential U =
(u, )T = WO (g) in the place of a single layer potential V(°)(g). By adding these two relations and

using the properties of double layer potential, we obtain

(£9g,5), = / EQ (W©® (g), WO (g)) da, (4.36)
QuUO—

where EX) (WO (1), T) is given by (4.34) with U = (u, )T = W©)(g).
From (4.36), by Corollary 2.1 and Remark 2.1, we get

3
Re(Lg,7)4 = / {Bw,m A u) + Vel do > Cr( 3 fey(w) +|Vel2) 20, (437)

QUO- Lyj=1
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m(—£Og,7), —w / {E(u,ﬂ; )\*,u*)+a*|Vg0|2}dx >wcg( Z lew; ()| + [Vigl? ) . (4.38)
QuUO- Li=1
where C7 and Cy are positive constants and e;;(u) = 3 (Qu; + djw).

Since U = (u, )" = WO (g) € [H"(Q2%)]*, by the same arguments as in [10, Section 5.5, one can
derive the following Garding type inequalities:

Re (£ > Cyllgl? ,
e(L%g,9), > 9||g||[H2(S)]4 10||9|| S
m< - E(O)g7§>s > wCillgl? » 12”9”

[H3(3)]* 3(S)4°

with some positive constants Cg, C1g, C11, and C15. Therefore, the operator

4 -1 4

£O (13 (8)]* = [Hy *(S)]
is a Fredholm operator with zero index (see, e.g., [65, Theorem 2.34]. Then operator (4.29) is also a
Fredholm operator with zero index due to the compactness of operator (4.35).

Further, we show that the corresponding null space is trivial. To this end, let g € [Hz(S)]* be
a solution of the homogeneous equation £g = 0 on S. Then the vector-function U(z) = W(g)(z)
belongs to the spaces [H3(2)]* and [H3(227)]* and is a solution of the homogeneous interior and
exterior Neumann type BVPs:

A(Og,w)U(x) =0 in Q,
{P(@,n)U(x)}" =0 on S,

and

A0z, w)U(x) =0 in Q7
{P(,n)U(z)} =0 on S.

As in the proof of Theorem 3.1, we can show that these BVPs possess only the trivial solution, i.e.,
U(zx) = W(g)(z) =0 for z € QU Q™ implying g = {W(g)}T — {W(g9)}~ = 0 on S. Consequently,
operator (4.29) is invertible.

In the proof of the invertibility of operators (4.27) and (4.28), the crucial point is that they are
the Calder6n—Zygmund type singular integral operators (see, e.g., [61,65]). The null spaces of these
operators and their adjoint operators have the trivial null spaces, which follows from the fact that
the interior and exterior Dirichlet and Neumann type homogeneous boundary value problems for the
differential operators A(9,w) and A*(9,w) possess only the trivial solutions due to the Green formulas
(2.8) and (2.9) and Lemma 2.1. Consequently, operators (4.27) and (4.28) are invertible. O

The next assertion is a consequence of the general theory of elliptic pseudodifferential operators on
smooth manifolds without a boundary (see, e.g., [1-3,8,10,38-40,42,52,53,74,89] and the references
therein).

Theorem 4.6. Let s € R, 1 < p < oo, 1 < q < oo, and let S € C°. Then the layer potential
operators (4.10) and the boundary operators (4.19)—(4.21) can be extended to the following continuous
operators:

VB, (9] = [ @) [ (B, ()" By ) ] (4.39)
W (B, (9)])' = (1 @) [ [, > (B @] ], (4.40)
e [H(S)]" = S]] (B8]~ (B (9] ], (4.41)
HO [H(9)]' = [ 6] [ [Ba(9)" = [B5 )] ). (1.42)
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i% L+K: [H(S)] = [H(9)]! [ [B,(9)]" = [Bs,(9)]" } (4.43)
i% L+K:[H(S)]" = [H(9)]" [ [B,(9)]" = [B (9] ] (4.44)
£ [ ] = )] | B )] = [Bra(s)])' ] (4.45)

Operators (4.41)—~(4.45) are invertible.
The jump relations (4.11)—(4.14) and formulas (4.22) remain valid in the appropriate function
spaces. In particular,

1

1 1
(i) if g € [Bp.& (9)]*, relation (4.11) is valid in the sense of the space [B,l,,q” (S)]4, while relations
1
(4.12) are understood in the sense of the space [By & (S)]*;

1

1 1
(i) if g,h € [B;yqp(S)}‘l, then relation (4.13) is valid in the sense of the space [le,,qp(S)]‘l, while
_1
relation (4.14) is understood in the sense of the space By & (S)]*.

Proof. Mapping properties (4.39) and (4.40) can be shown by word for word arguments applied in the
proofs of the similar theorems in [8,37-39], and [40].

Further, in accordance with Appendix C and Theorem 4.5, due to the properties of their principal
homogeneous symbols, operators (4.41), (4.42), and (4.45) are strongly elliptic pseudodifferential
operators respectively of order —1, —1 and +1 with trivial null-spaces, while operators (4.43) and
(4.44) are the Calder6n—Zygmund type singular integral operators of normal type, i.e., they are pseudo-
differential operators of zero order with non-degenerate symbol matrices and with trivial null spaces.
Therefore, the invertibility of operators (4.25)—(4.29) for particular values of parameters stated in
Theorem 4.7 implies their invertibility for all s e R, p > 1, and ¢ > 1if S € C*°. O

Corollary 4.2. Let S € C* and p > 1. Then the Dirichlet problem

A0y, )U(x) =0 inQ, U= (up) € [HXD)]" = [WH)]",

1

(U@ = (z) onS, fe[Bppr(5)]"

is uniquely solvable for arbitrary f and the solution can be represented by the single layer potential
U(z) = V(H'f)(z), where the operator

1—1
HL: [Bp,p”

is the inverse of the operator

1o (B (S)]' = [Brw’ (9)]" (4.46)

For the Lipschitz domains, the result holds true for p = 2.

Proof. The proof follows from the fact that the invertibility of operator (4.46) for p = 2 implies its
invertibility for arbitrary p > 1 due to the general theory of pseudodifferential equations on smooth
closed manifolds. In turn, this leads to the unique solvability of the Dirichlet problem in the space
[H, ()]* = W ()] O

Further, we describe the mapping properties of the Newtonian volume potential.

First of all, let us note that the Newtonian volume potential defined by (4.4) with a compactly
supported density decays exponentially at infinity.

Using the same arguments as in [51,61,68], and [5], one can show that if S = 9Q € C%2, then the
volume potential operator N possesses the following mapping properties:

No: [Loo(@)]" = [CY1(R*)]" forall 0 <~ <1,
4

No: [CP@)]" = [c*P@)]", 0<pB<1,
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0 [CYP@)] = [C*P@)]F, 0<B<a<l
Further, let h € [Ly comp(R?)]* with p > 1. Then (cf. [61, Chapter 5, Section 10], [68, Chapter 11])
Npga(h) € W2 10(R*)]*, A(d,w)Ngs(h) = h almost everywhere in R?.
Moreover, the following assertion holds.

Theorem 4.7. Let Q be a bounded open three—dimensional region of R3 with a simply connected,
closed, infinitely smooth boundary S = 00, and 1 < p,q < co. The following operators are continuous:

No: [H:@)]" = [H2(@)]* [ [Bs, ()] = [B2()]* } seR, (4.47)
No: [H3 ()] = [H:2(@Q)]" [ [Bs (] = [BsE2@)]* ] s>—1+ % . (4.48)

Proof. Since the Newtonian operator is a pseudodifferential operator with a rational symbol, the
mapping properties (4.47) and (4.48) can be shown by using exactly the same arguments applied in
the proof of Theorem 3.8 in [19]). O

Remark 4.3. Note that K© and £(© are mutually adjoint operators without complex conjugation,
while the operators H(?) and £(©) are symmetric operators.

5 Existence and regularity theorems

In this section, for the sake of simplicity, we assume that the boundary surface S is sufficiently
smooth, say S € C°°. We use the potential method and the theory of pseudodifferential equations on
manifolds with a boundary and prove the existence and regularity theorems for the mixed boundary
value problem (3.1)—(3.3), provided inclusions (3.4)—(3.6) are satisfied. Since the Newtonian potential
Nq(®) is a particular solution of the nonhomogeneous equation (3.1), in what follows, without loss
of generality, we consider the homogeneous equation (3.1), i.e., we assume that ® = 0. Therefore,
the mixed problem under consideration reads as follows: Find a complex-valued vector-function U =
(u, )T € [Hy()]* = [W(Q)]*, p > 1, satisfying the relations:

A0y, w)U(x) =0 in Q, (5.1)
{ ()} = f(z) on Sp, (5.2)
{P(8y,n(x))U(2)} " = F(z) on Sy, (5.3)
where
f =1 for S5 1) € [Brp (Sp)]", (5:4)
F=(F,F,F,F)" € p,,(SN)}‘l. (5.5)

Denote by f(¢) a fixed extension of the vector-function f from Sp onto the whole S preserving the
functional space,

£ € [Bap (8)])", 1o £ =1 on Sp. (5.6)

Recall that r,, denotes the restriction operator onto M. If f =0 on Sp, we always choose in the role
of a fixed extension the zero function f (©) =0on S.

Evidently, an arbitrary extension f of f onto the whole S, which preserves the function space, can
be then represented as

f=f 47 with ge [ (SN)} . (5.7)

In accordance with Corollary 4.2, we can seek a solution in the form

U=VH () +7),
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where g € [E;,;E(SN )]* is an unknown vector-function and H ™! is a pseudodifferential operator,
1 1
inverse to the operator H : [By 3 (S)]* — [B,l),pp (9)]4, ie.,
_ -2 4 -3 4
Ho [Bp,pp(s)] - [Bp,zf (S)] .

In view of (5.6), (5.7), and Theorem 4.6, the vector-function U = V(H~1(f(¢) 4+ g)) belongs to the
space [H} (Q)]* = [W,(Q)]* and the differential equation (5.1) and the Dirichlet condition (5.2) on Sp
are satisfied automatically. It remains to satisfy the Neumann condition (5.3) on Sy, which leads to
the following pseudodifferential equation for the unknown vector-function g:

1 -
re, ( ~ 5t zc)H—l(f<e> +3)=F on Sy. (5.8)
Let us introduce the Steklov—Poincaré type operator
1 -
A=(-sn+R)n,

which is a pseudodifferential operator of order 1 and has the following mapping property:

due to Theorem 4.6. Denote

and rewrite equation (5.8) as
reAG = FO on Sy, (5.9)

which is a pseudodifferential equation on the submanifold Sy with the boundary 0Sy. We would like
to investigate the solvability of equation (5.9) in the appropriate function spaces.
To this end, we first prove the following assertion.

Theorem 5.1. Let se R, 1 <p<oo,1<g< o0, and let S € C*. Then the operators

A [H(S)] = [H(5)], (5.10)
A [Bs(9)] = B, (5)] (5.11)

are invertible.
The principal homogeneous symbol matriz S(A; x,£’) of the operator A is strongly elliptic and the
following inequalities hold:

Re [&(A;2,8)n 7] > 61|¢| In? forall z € S, ¢ € R*\ {0}, neC, (5.12)
—Im [&(A;2,8)n - 7] = &€ Inf* for all z €S, & eR*\ {0}, neC, (5.13)

with the positive constants 1 and ds.

Proof. The invertibility of operators (5.10) and (5.11) follows from Theorem 4.8, since they are the
compositions of invertible operators.

To prove inequalities eqref5.16 and (5.13), let us note that the principal homogeneous symbol
matrices of the operators A = (—3 Is + K)H! and A® = (=5 Is + KO)H ]~ are the same, since
the difference A — A is a compact operator between the spaces shown in (5.10) and (5.11) in view
of relations (4.1).

Due to the local principal technique, it suffices to prove inequalities (5.12) and (5.13) in the case
of a half-space with the outward unit normal vector n = (ni, ng,ng) to the boundary plane.

Without loss of generality, let us consider the upper half-space domain Q:Ri ={zeR3: 13> 0}
with the boundary S = R?. Let n = (0,0,—1) be the outward-oriented unit normal vector to the
boundary S = R2.
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Let Fp¢ and .7:5,%‘,1‘,/
forms in the space of tempered distributions (Schwartz space S'(R?)), which for regular summable
functions f and g read as follows:

denote the direct and inverse generalized two-dimensional Fourier trans-

A — 1 —iz’-¢’
Forse[fl = f(€ /f e da Foliwlg) = W/Q(ﬁl)e Sdg, o ¢ e R
]RQ

Assume that g belongs to the Schwartz space of rapidly decreasing at infinity functions, g €
[S(R?)]%, and consider the single layer potential with the integration surface S = R?,

VO (O] ) () = / V(o — ) (K] 9(s')) 4y
/ S M€ )] FL (SO 05Ny, (5.14)

where z = (2/,23) € R, 2/ = (z1,22) €R?%, y = (¢¥/,0), v/ = (yl,yg) € R?, [7—[(0)] is a pseudodiffer-
ential operator with the homogeneous symbol matrix [S(H?;¢)]~! = [G(H;¢')] " of order 41, and
the matrix TI(¢’, z3) is introduced in Appendix C (see (C.1)),

H(é'/’xg) — % / {A(O)(_ié,w)}—le—kﬂgf:} df?, — %/ [A(O)(_if,W)]_le_izs&s d€3

R? L=

Note that the Fourier transform of g again belongs to the Schwartz space, g € [S(R?)]%.
From (5.14) we have

PO (0, n)VO(HI] g) (2) = / [P0, )W (2 — )] (M1 9() dy, (5.15)
]RQ

implying the relation for the one-sided limit on S = R? from 2 = Ri,

{PO@, mVO (1)) (as)}+ - (- %14 +KO) [HO) T ga') = A g(a). (5.16)

With the help of equalities (5.14)-(5.16), we deduce

/ Lo [0 Fa [S (O] €)7(€)] (5.17)

where II(¢’,0) is the symbol matrix of the operator 3L+ KO (cf. (C.3)),

fig'0) = o [ POCign[A0(igw)] = o [ POEWAVEW)] s 619
£= =

Taking into consideration that (5.17) is a convolution type operator, we find
Folie [AQg(a")] =TI, 08 ([H D] ¢)5(¢).
Therefore, the symbol matrix of the operator A reads as
S(A:¢) =108 (1] ¢). (5.19)

Now, we show that the matrix defined by (5.19) meets conditions (5.12) and (5.13). To this end,
let us consider the Neumann type boundary value problem for the system of ordinary differential
equations on the unbounded interval (0, +00):

~

A (=g’ 8, w)U(x3) =0 for 23>0, U= (3,p), (5.20)
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{(PO(—ig',8,,,n)U (xg)}j _,=F(€) for x3=0, (5.21)
9, 0 =0

where & = (&1,&2) € R?\ {0} is a parameter, n = (0,0, —1), and F' € C* is a given vector-function of
the parameter £’

It is evident that problem (5.20), (5.21) is obtained by the Fourier transform F,/_,¢ from the coun-
terpart Neumann type boundary value problem for the partial differential equation A (9,,w)U(z)=0
in R? with the boundary condition {P(*)(9,,n)U(z)}* = F on R2.

Using the Cauchy theorem for analytic functions, it can easily be checked that the columns of
the matrix TI(¢/,x3) are linearly independent solutions of equation (5.20), since II(¢’,0) is a non-
degenerate matrix. The matrix II(¢/,0) is the principal homogenous symbol of the operator H() (see
(C.2)). The components of these solutions decay exponentially at infinity due to the Cauchy residue
theorem. Therefore, any solution of the problem can be represented in the form

Ulxs) = 11(¢, 23)C

where C' € C* is an arbitrary complex constant vector with respect to 3, it may depend on £’. In
particular, since the matrix &([H(?)]~1;¢’) is non-degenerate, we can look for a solution to problem
(5.20), (5.21) in the form

Ul(zs) = (€', 23)S((H Q)1 ¢)C

where the unknown vector C' € C* is to be determined from the following system of linear algebraic
equations due to the boundary condition (5.21):

(', 0)8(H V] 1 ¢)C = F,

where TI(¢/,0) is defined in (5.18).
In view of (5.19), this equation can be rewritten as

S(AD;¢"hC = F. (5.22)

Further, we show that the determinant of the matrix &(A®);¢’) is different from zero.
For this purpose, we write the Green type identity associated with the operator A©®)(d,,w), which
is a counterpart of formula (4.31) and reads as follows:

/A(O)(—ig’,am)ﬁ W dz = {PO (g, 0,y )0 - W}~ /5(6,?) dzs, (5.23)

~ —~

where we assume that the improper integrals involved in (5.23) are convergent, U = (u,3)", W =
(@,9)7, and E(U, W) has the form (cf. (2.13), (2.14))

+2uz% )2, (@) + a(I¢' P30 + 02, 50:,7)

3
i S e @@ + o (€260 + 01, 20.,7)]

with

5 5N T, . ) . 00
ei; (V) = 5 (v) = 5 (& + &), 1,j=1,2, e33(0) = (sz’

5 ov; . .
£j3(0) = €3;(v) = (ax Zéjvs), j=1,2.
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From Green’s identity, substituting U = W = (4, 3) T = I(¢, 23)S([H©@]~1;¢)C and keeping in
mind that U solves equation (5.20), we obtain the relation

=~

{PO(=i€',0,,,m)T - U} _ /5 (U,0) das, (5.24)

933

where

£(0,0) = A\zgﬂ \HMZ@ P+ a1 PI1? + 10, 21)

lyj=1

iw[x*\zsﬁrl fot 3 @ + ot (€PIER +10n20)|. (.25)
j=1

l,j=1

Let us show that the homogeneous problem (5.20), (5.21) with F/(£') = 0 possesses only the trivial
solution. We prove it by contradiction. Assume that U = (%, )" is a nontrivial solution to the
homogeneous problem. Then, by Corollary 2.1 and Remark 2.1, from the Green formula (5.24), we

deduce Re E(U,U) =0 and ImE(U, [7) =0 1in [0, 4+00), implying
Z.:lj(il‘\) = 07 l»] = 1,2737 (ﬁ: 07

which, in turn, imply & = 0 and @ = 0 in the interval [0,+00). Thus the homogeneous prob-
lem (5.20), (5.21) possesses only the trivial solution. Consequently, the determinant of the matrix
S(AO; ¢ is different from zero and system (5.22) is uniquely solvable.

Now, employing the equalities (cf. (C.1), (C.2), (5.19)):

1(g,0) = 8(H”:¢), T, 0&(H)71¢) = §(A”: ),
for the vector-function U(zs) = II(¢/, 23)S([HO]~1; ¢ )y with n € C*\ {0}, we have
{0}, = {1, 2)& (MO )n} ) ) =,
(PO (—ig/, 8m3,n)ﬁ};:0 — 1, 0)& (KO &)y = S(AD; ¢y,

Therefore, equality (5.24) can be rewritten as
S(AD; ¢y /5 (U,0) das. (5.26)
0

Since for nonzero 7 the real part of the right-hand side expression in (5.26) is strictly positive, while
the imaginary part is strictly negative, due to (5.25), we conclude that

Re [6(AQ: &)y 7] >0, —Im[6(AD:¢)n 7] >0 (5.27)
for arbitrary ¢ € R?\ {0} and for arbitrary n € C*\ {0}.

Thus, A is a strongly elliptic pseudodifferential operator.
Since G(A©);¢) is a homogeneous function of order +1 in ¢, inequalities (5.12) and (5.13) follow
from (5.27) with the constants ¢; and d2 defined by the relations

1 = inf{Re [&(AD;&)m-7]} >0, |¢]=1, [n|=1,
6 =inf{ — Im [& (A©. ¢ n-m} >0, [€=1, |n|=1.

This completes the proof. O
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Remark 5.1. By the same arguments, one can show that the Steklov—Poincaré type operator associated
with the exterior unbounded domain 2~

A = —(% I+ E)’H71

and its principal homogeneous symbol matrix have exactly the same properties stated in Theorem 5.1
for the operator A.

Remark 5.2. Using identities (4.22), we can show that

A:(—%I4+I€)H_1:H‘1(—%I4+IC>. (5.28)

From Theorem 5.1, Remark 5.1, and relations (5.28), (C.6), (C.7), it follows that the principal homo-

geneous symbols of the operators :I:% Iy+ K and :I:% 14 + K are non-degenerate.

In our analysis we need the following auxiliary lemmas (cf. [10]).

Lemma 5.1. If \j(z), j =1,2,3,4, are the eigenvalues of the matriz
M = [6(A®;2,0,+1)] 'S(AD;2,0,—1), z €S =09, (5.29)
then Re \;j(z) > 0 and

1

—7 < 9i(2) = Re [(2mi) "' n Ay ()] = arg A, (x)

1
o <1 forall x € 8, (5.30)

where In ¢ denotes the branch of the logarithm analytic in the complex plane cut along (—oo,0].
Proof. Let A be an eigenvalue of matrix (5.29) and let € C*\ {0} be the corresponding eigenvector,

Mn =Xy, ie, S(AD;z2,0,-1)np=IS(AD;z,0,+1)n. (5.31)
Denote

ReS(A:2,0,-1) =MD, —Im&SAD;2,0,-1) = M),

ReS(A;2,0,1)=M®, —Im&SA®;2,0,1)=M®.

From (5.31) we obtain
]\4(1),7 - iM(2)77~ﬁ = )\[M(S)n - iM(4)77~ﬁ},

implying the relation

(MO -7 — iM P - 7) (M - 74 iM O - 7)

A p—
|M @)y -7 — iM S - 772

Therefore, in view (5.27), we deduce

(MBy ) (M) -7) + (MPq - 7) (MW - 77)

Re ) = My 7 — M@y -2 > 0.
This completes the proof. O
Introduce the notation
a; = inf 0j(z), az= sup 8;(z), (5.32)

. J ’
r€I0SN, 1<j<4 z€ASN, 1<j<4

where §; is defined in (5.30).
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Lemma 5.2. Let Q be the set of all non-singular k X k, k € N, square matrices with complex-valued
entries having the structure

Q] (k—1)x(k=1) 10} (k—1)x1

{0} (k-1) Qkk with Qux 7 0. (5.33)

kxk

If X,Y € Q, then XY € Q and X~ € Q. Moreover, if, in addition, X = [Xji|kxr and Y = [Yjilkxk
are strongly elliptic, i.e.,

Re(XC-¢) >0, Re(Y(¢-¢)>0 forall ¢ €CF\{0},

and X, Yrr > 0 are real numbers, then at least one eigenvalue of the matriz XY is positive.
In particular, if XppYer =1, then X =1 is an eigenvalue of the matriz XY .

Taking into consideration that the principal homogeneous symbol matrices defined by formulas
(C.3)—(C.5) have the structure (5.33) with k = 4, we can show that one of the eigenvalues of the
matrix M given by (5.29) equals 1, say Ay = 1. Consequently, the argument of A4 equals zero and the
corresponding d4 = 0. Therefore, for the numbers a1 and ay defined by (5.32) the inequalities

1 1
—Z<a1<0<a2<1 (534)
hold.
Now, we are ready to formulate and prove the main results of the paper.
Theorem 5.2. The operators
s 4 o 4
roy A [H(SN)]" = [Hy 7 (Sn)] 5.35)
S 4 S 4
re A [Bpﬂ(SN)] — [Bpﬂl(SN)} , qg>1, (5.36)
are invertible if
! 1+ < <1+1+ (5.37)
D 5 as S P D) aq, .

where a; and ag are given by (5.32).

Proof. The mapping properties (5.35) and (5.36) follow from Theorems 4.5 and 4.6.

To prove the invertibility of operators (5.35) and (5.36), we first consider the particular values of
the parameters s = 1/2 and p = ¢ = 2, which fall into the region defined by inequalities (5.37), and
show that the null space of the operator

~1 4 -1 4
rs A [Hs (Sn)]” — [Hy *(Sn)] (5.38)
is trivial, i.e., the equation

r, Ag=0 on Sy (5.39)

SN
admits only the trivial solution in the space [PNIQ%(SN)}“. Recall that H3(Sy) = Bjo(Sy) and
H5(Sn) = BS,Q(SN) for s € R. '

Let § € [Hz(Sy)]* be a solution of the homogeneous equation (5.39). It is evident that the vector-
function U = V(H~1g) belongs to the space [H3 (Q2)]* = [W}(Q)]* and solves the homogeneous mixed
BVP (5.1)—(5.3) with f = 0 and F = 0. Therefore, U(z) = V(H1g)(z) = 0 for x € QF, due to the
uniqueness Theorem 3.1, and, consequently, {U}T =g =0 on S.

Since the principal homogeneous symbol matrix of the operator A is strongly elliptic, by Theo-
rem D.1 (see Appendix D) we conclude that for all values of the parameters satisfying inequalities
(5.37), operators (5.35) and (5.36) are Fredholm with zero index and with trivial null spaces. There-
fore, they are invertible. O
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Remark 5.3. From Theorems 3.1 and 4.5 and from the proof of the above theorem, it follows that
Theorem 5.2 remains true for the Lipschitz surfaces with s = % and p = 2, that is, operator (5.38) is
invertible.

Indeed, let us write Green s first identity of type (4.31) for the vector-function U=V ) ([H(0)]~1g)

= (u,)T with g € [H2(Sn)]*

(©) OV TponT) = / EO) (7). 7o)
({PO@mUOY fuo}") = [ EQ U, U0)da,

Q

implying the relation (see (4.33))

oy A00.5) = [ [Falw) + ou V]

Q
= / [E(u,u; A\, 1) + | V|| do — iw/ [E(u,u; X, 1*) + | V|| dz,  (5.40)
Q Q

where E(u,u; A\, u) and E(u,w; A*, u*) are defined in (2.16) and (2.17), respectively. Using the well-
known Korn and Poincaré inequalities, from (5.40) we deduce (see, e.g., [60])

Re <TSN'A(O)97§>S > O (|lU© |z s — 1u© liLa(e)e)s (5.41)
—Im(r, A9g,5) ¢ > wCo(IU Dz ys — 1T izo0) (5.42)

where C and C5 are positive constants depending on material parameters.
The trace theorem in the Lipschitz domains and the properties of the single layer potential U() =
VO ([H©]71g) lead to the following relations (see, e.g., [34,46], [66, Section 6]):

= {U O} < Cs|UD |1 e

190213 RGN

10 gz < IOy gye < CallH gl csype < Callgln=csy,
where ¢ is a sufficiently small positive number.

Now, from (5.41) and (5.42), we conclude that there are the positive constants Cs and C7 such
that

0, = 2
Re(r, A%g.3) > CG(HQH (s — 1191 sy74)
0, = 2
—Im <TSN.A( )g»9>5 > C?(HQH (1% (3)) Hg”[HE(S) )
Therefore, the operator r, A(O) [H (S Nt = [Hy 5 (Sn)]* is a Fredholm operator with zero index

(see, e.g., [65, Theorem 2 34]) Taklng into consideration that in the case of Lipschitz surfaces the
operator g A— Tsy A is again a compact operator in view of relations (4.1), we infer that operator
(5.38) is a Fredholm operator with zero index. Due to the uniqueness Theorem 3.1, it follows that the
corresponding null space is trivial, implying that operator (5.38) is invertible.

Theorem 5.3. Let conditions (5.4), (5.5) be fulfilled and

4 4
3-2a, Y124,

(5.43)

where a; and ag are defined by (5.32).
Then the mized boundary value problem (5.1)~(5.3) possesses a unique solution U € [W()]*,
which is representable in the form of single layer potential

U=VH () +7),
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where f(¢) € [B;l,,;l/p(S)]4 is a fized extension of the vector-function f € [B ;pl/p(SD)] from Sp

onto S preserving the functional space and g € [B p;,l/p(SN)] is defined by the uniquely solvable

pseudodifferential equation

sy AG = FO on Sy (5.44)

with
FO.=F—r, Af© e [B,Yr(sy)]".

Proof. Flrst we note that, in accordance with Theorem 5.2, equation (5.44) is uniquely solvable for
s=1- 5 , Where p meets mequahty (5.43), since inequalities (5.37) are fulfilled. This implies that the
mixed boundary value problem (5.1)~(5.3) is solvable in the space [W, (€2)]* with p satisfying (5.43).

Next, we show the uniqueness of the solution in the space [WI} (2)]* for arbitrary p satisfying
(5.43). Note that p = 2 belongs to the interval defined by inequality (5.43) and the uniqueness for
p = 2 was proved in Theorem 3.1. Now, let U € [W(Q2)]* be a solution of the homogeneous mixed
boundary value problem (5.1)—(5.3). Evidently, then

Uy e [BLSY7(50)]°. (5.45)
By Corollary 4.2, we have the representation
U(z) =V(H H{UI)(z), =€
Since U satisfies the homogeneous Neumann condition (5.3) on Sy, we arrive at the equation
’I“SN.A+{U}+ =0 on Sy,

whence {U}T = 0 on S follows due to inclusion (5.45), Theorem 5.2, and inequality (5.43) implying
conditions (5.37). Therefore, U = 0 in Q. O

Note that due to (5.34) we have the inclusion

(8 8) c ( 4 4 )

5 ’ 3 3*20,2 ’ 1*20,1 '

Remark 5.4. Using Remark 5.3, one can easily show that Theorem 5.3 remains true in the case of
Lipschitz domains for p = 2.

Further, we prove almost the best regularity results for solutions to the mixed type boundary value
problems.

Theorem 5.4. Let conditions (5.4), (5.5) hold and let

<p< l<r< 1<ag< - = < s < — (546)
o0 0] + as S +-+a .
3 — 2aq9 b 1—2(11’ ’ 4 T 2 T 2 b

with a1 and ay defined by (5.32).
Further, let U € [W) ()]* be a unique solution to the mized boundary value problem (5.1)~(5.3).
Then the following hold:

) if ) )
f € [Bi,r(SD)] , Fe [B:,;l(SN)] )

then U € [H, HT ()N [Bf:‘r_%(Q)]zl;
(ii) ) )
fe[Bi,(Sp)]", Fel[B,'(Sy)],

then
U e [ (Q+)] (5.47)
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(iii) if
felc?@p)', Fe[BLLsy)]!, 0<B<1, (5.48)
then
ve () [¢¥ @),
B'<km
where

1 1
0< km m1n{5,a1+2} 5
Proof. The proofs of items (i) and (ii) follow easily from Theorems 5.2, 5.3, and D.1.
To prove (iii), we use the following embedding (see, e.g., [98, Sections 2.3.5, 3.3.1], [7, Theo-
rem 6.2.4], [97, Section 4.6], [83, Section 2.1.2]):

CP(M) = BE, (M) C BL (M) C B £(M) C B 5(M) € O (M), (5.49)
where ¢ is an arbitrary small positive number, M C R? is a compact k-dimensional (k = 2, 3) smooth
manifold with a smooth boundary, 1 < ¢ <oo, 1 <r<oo, f—¢— % >0,and 8 and f — ¢ — é are
not integers.

From (5.48) and embedding (5.49), condition (5.47) follows with any s < 8 —e.
Bearing in mind (5.46) and taking r sufficiently large and e sufficiently small, we can put
1 1 1 1
s=fF—-cif ——=—4a<pf—-e<-—+4+=+ay, (5.50)
ro 2 ro 2
and 11 11 11
- == -+ = if — 4= —e. .51
SE(T 2+ag,r+2+a1)1 r+2+a1<,8 € (5.51)

By (5.47), for the solution vector, we have U € [B:’Jﬁ(QJF)]‘1 with
1 1
s+-=f—c+=
T r

if (5.50) holds, and with

Therefore, we have either

or
Ue [Bi @)

in accordance with inequalities (5.50) and (5.51). The last embedding in (5.49) (with & = 3) yields
then that either N
Ue[cP=@N)],

or

U e [cista—r @),
These relations lead to the inclusion
U e [crme R @), (5.52)

where k,, = min{$,a; + 1} and 0 < k,, < % due to inequalities (5.34). Since r is sufficiently large
and ¢ is sufficiently small, inclusions (5.52) accomplish the proof. O



130 David Natroshvili, Maia Svanadze

Remark 5.5. Using the approach developed in [9,11,17,18], for investigating the asymptotic behaviour
of solutions to the mixed boundary value problems near the collision curve ¢, where the different types
of boundary conditions collide, one can characterise optimal regularity results for the displacement
vector in the closed domain under consideration and find a possible maximal Holder continuous ex-
ponent explicitly with the help of the eigenvalues of matrix (5.29). Analyzing the first dominant
terms of the asymptotic expansion, it can be shown that, in general, the Hoélder continuous exponent
does not exceed the number &, defined in Theorem 5.4(iii), but in the case of simple eigenvalues the
Holder exponent equals k,,. Therefore, Theorem 5.4 gives an almost optimal regularity result for the
displacement vector.

6 Appendix A: Dynamical field equations

The complete system of the dynamical model of the linear theory of viscoelasticity for a homogeneous
and isotropic Kelvin—Voigt material with voids consists of the following field equations (for details see
Tesan [57]):

(i) The constitutive equations:

ty; = 2Melj + /\errdlj + b@élj + 2M*élj + /\*érrdgj + b*<p6lj,
Hj = adjp+a’0;¢,
HO = 7berr - 530 - V*érr - 5*507 laj = 17273'

(ii) The equations of motion:

ajtlj = p(’l)l — ]:l), 1=1,2,3,
0;H; + Hy = pop — pFua,

where the superposed dot denotes differentiation with respect to the time variable t.

(iii) The geometrical equations
1 .
ej(u) = 5 (O + 0yu), 1,j=1,2,3.

These relations lead to the following partial differential equations of dynamics:

pAu+ (A + p) graddivu + bgrad o + p*Ad + (A\* 4+ p*) grad diva + b* grad ¢ = p(ii — F),
(@A =8 —bdivu+ (A = &) —v* divi = pop — pFa.

In the above relations, t;; are the components of the total stress tensor, e;; are the components
of the strain tensor, H; are the components of the equilibrated stress vector, Hy is the intrinsic
equilibrated body force, u = (uy,us,u3)' is the displacement vector, ¢ is the volume fraction field,
F = (F1,F2,F3)" is the body force per unit mass, F is the extrinsic equilibrated body force per unit
mass, o is the reference mass density, x is the equilibrated inertia, o = px. The real-valued constants
A, AR, w* b, b5 v, vt of, B, 8%, and k are material parameters satisfying inequalities (2.18).

All the functions involved in the above dynamical equations depend on the spatial variables z =
(z1,%2,23) and the time variable ¢. If all the functions are harmonic time dependent, i.e., they are
products of functions of the spacial variables & = (1,72, 73) and the function of time variable e,
where w is a real-valued frequency parameter and ¢ = /—1 is the imaginary unit, then the dynamical
equations can be rewritten as system (2.1), (2.2).

7 Appendix B: Fundamental matrices

Let Fy—¢ and fg_ia: denote the direct and inverse generalized three-dimensional Fourier transforms
in the space of tempered distributions (Schwartz space S’(R?)), which for regular summable functions
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f and g read as follows:

Foself] = F6) = / f@)e =t ds, Fol[g) = ﬁ / g(E)e " E de, 1,6 € R,
RS

R3

First, we calculate the inverse Fourier transform of the regular functional (|¢[2—72)71, where 7 = w+ie

with w € R and € > 0. This will be employed below to construct explicitly the fundamental matrix of

the operator A(9,w). Since the function under consideration is square integrable, we can write (see,
g [47))

H(z,r) = FL [(I€ —72) 7]

1 e—zw-£
§—>x[(|§|2 (s—iw)2)7]— ! lim /|€|2,d§. (B.1)

(27)3 R—><>o|£| . + (e —iw)?
<

Let A(Z) = [Ag;(Z)]3xs with T = x/|x| be an orthogonal matrix with the properties

det A(Z) =1, AT (Z)z=(0,0,]z|)"
Using the substitution £ = A(Z)n and keeping in mind that « - A(Z)n = |z|ns, |£] = |n| and d€ = dn,
from (B.1) we get

_Z|‘T‘773

H T dn. B.2
(2,7) = 27r 3 Rl—r>noo / 02 + (e —iw)? g (B2)
Inl<R

Introduce the spherical co-ordinates
m = gcospsind, ny = gsingsind, 73 =ogcos?d, o=|n|, ¢ €|0,2x], J€[0,7],

and rewrite (B.2) as follows:

- —z|x\gcos19
0

1 0 1 0 .
— I d (7 —z|3:|@cos19) do
42 RS0 0%+ (e —iw)? Q/img av ©
0 0

1 . 0 X »
_ _ 0 qglele _ gilale] g
An2[z| Riﬁo/g2+(54w)2 [e e e do
0

R .
_ 1 lim / osin(|z|o)

272|z| R=o0 | 02 + (6 — iw)?

_ / QSIH (zle)
B 27r2|a?| 0%+ (e —iw)? e

With the help of the formula [48, 3.723.3]

o

tsin(at) T _ap
/mdt:§6 for a>0, R6B>O,
0

we finally get

€—|r\(s—iw) ei7|m|

H = =
@7 = = dnlz]’
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ie.,

. 1 R 1 B iT|z|
J:EH“’ [|§|2 — 7'2] - ]:fﬁm[\fP —(w+ is)Q}  dr|x]’ (B.3)

where 7 = w + i¢ with € > 0 and w € R.
Quite analogously we can derive the similar formula

—i7|z|
= (B.4)

o
—ig)? 47 ||

Pl = Pkl

for 7 =w —ie with e >0 and w € R.

The fundamental matrix I'(x) of the operator A(9,w) can be constructed by the Fourier transform
technique:
lim (—i&)e™ € de, (B.5)

87T3 R—o0
IEI<R

D(z) = Fo i, [A7H(=ig)] =

where A~1(—i€) is the inverse of the symbol matrix A(—i&) of the differential operator A(9,w).
Evidently,
A(=i&,w) = [Agj (=&, w)] 1 ps €= (€1,62,63) €R?,
Apj (=i, w) = = lé*o; — A\ + p)6ré; + 0w?dny, kyj=1,2,3,
Agj(—ig w) =g,  Apa(—i§,w) = —ibi&e, k,j =1,2,3,
Agg(—i€,w) = —au[€]* = B1 + oow?,

where A1, p1, b1, a1, v1, and f; are given by (2.3). The determinant of the matrix A(—i¢,w) is an
eighth order polynomial in |£]:

A )| = (= ml€? + ow?) D(l¢],w), (B.6)
D(|¢],w) = a1 (A1 + 2m1)[€]*
- [blVl +arow’ + (A1 + 2H1)(Qow2 - 51)] |§|2 + (Qow2 - 51)9‘*’2- (B.7)

Note that all cofactors of the matrix A(—i&,w) contain the common factor —pu1|€]? + ow?. Therefore,
the entries of the inverse matrix A~1(—i¢,w) read as follows:

AN (=it w) = [Aijl(—if»w)hxw
Ay =52 A;ﬁ:%, A&l:%
Di([¢],w) = (= mlé]* + ow®) D(IE],w),
Bii(&w) = =bin (& + &) + [11& + M1+ 2m) (65 + &3) — ow?] (e |€]* + B1 — oow?),
Bia(&,w) = Ba1(&,w) = &&[bivn — (M + p1)(ca|€]? + Broow?)],
Bi3(&,w) = B31(&,w) = &&s[bivr — (A + 1) (e |€]? + B1 — oow?)], (B.8)
Bos(&,w) = —bin (&5 + &3) + [111&5 + (M1 + 21 (6] + &3) — ow?] (e |€]* + B1 — oow?),
Bas(§,w) = Bag = &a&s[bivn — (M1 + pa) (€ + B1 — ow?)],
Bis(&,w) = —bin (& + &) + [111&65 + (M1 + 2m) (6] + &3) — ow?] (e |€]* + B1 — oow?),
Biy(§,w) = —ibi&1,  Bau(§,w) = ibi1&2, Baa(§,w) = ib13,
By (§,w) = =&, Bga(§,w) = =i, Buz(§,w) = —ivi&s,
Bu(,w) = ow® = (A1 +2m) €[

B
P AZ41:#3 kaj:17273a

The symbol matrix of the operator A (9,w) defined by (2.4)-(2.6) has the following form:

AO (=g w) = [AD(—ig,w)],, 0 €= (€1,6,&) €R?,
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A (—i6,0) =~ EPok — O + )ity AL (—igw) = —an g,
Afg_)(—z’f,w) = Al(c(i)(—if,w) =0, k,j=1,23.
It
w>0, 3A+2u>0, a>0, p* >0, 3\*"+2u* >0, a* >0, w>0,

then there are the positive constants C; and Cs, depending on the material parameters, such that

Re (— A (=i€)¢ - ) = Re (A©(&)¢ - €) > Cl¢?[¢[%,
—Im (- AO(=i£)¢ - {) = —Im (AD(€)¢ - Q) = wCa|¢[?|¢P?, (B.9)
for all ¢ € R® and for all ¢ € C*.

Therefore, —A©)(9,,w) and —A(9,,w) are strongly elliptic differential operators.
Note that relations (B.9) imply the following inequalities:

Re (= [A©(=i6)]7'¢- ¢) = Re ([AD(©))7'¢- Q) = Cale| (¢,
Im (— [A9(=i)]7'¢- () = Tm ([AQ()) ¢ {) > wCal|I¢I, (B.10)
for all ¢ € R® and for all ¢ € C*,

where C'5 and Cy are positive constants depending on the material parameters.

To find the explicit form of the fundamental matrix I'(z), we have to characterize the roots of the
equation D1 (7,w) = 0 and then employ formulas (B.3), (B.4). It can be shown that the equation has
no positive roots with respect to 72 (see [93]). Denote these roots by 72, 72, and 72, where

2 ow®  ow?(u+iwp”)
{11 | |? ’

while 77 and 73 are solutions of the biquadratic equation D(7,w) = 0 with respect to 72. By 71, 72,
and 73 we denote those complex roots of the equation D;(7,w) = 0 with respect to 7, which have
positive imaginary parts, that is,

=T+, 7, #0, 7/ >0, j=1,2,3. (B.11)
Evidently, another triplet of roots is {—7i, =72, —73}. Moreover, we assume that 7; # 75, for j # k,

k,j=1,2,3.
Using the relations

Di([¢|,w) = (= ml€)* + QWZ)D(|§|M) =—poq(M + 2#1)(|§|2 - 7'12)(|§|2 - 7'22)(|§|2 - 7'9?)7
D(|¢],w) = ar (A1 + 2u1) (1€)7 — 73) (|€)* — 73),

we derive the following identities:

1 _ 1 ( Al + A2 n A3 )
Dy (|¢],w) proa(M 4 2u) \[E2 =77 |6 =75 |2 -3/
1 1 Ay As
5 ( ):

= +
D(l¢l,w) a1 (A 42p1) \[§]2 =75 [¢> — 73

where
1 1
A = Ao =
- -n) T B - )
1 1 1
Az = 2\ -2 2 Ay = 2 25 As = 2 2
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Now, in view of (B.3), we obtain

3
1 mlwl
(1) = =
AD(z) : Fgﬂ[Dl(m’w)] ~#a >\1+2u1 ;AJ (B.12)
1 1 627’2\1| ez’rg|:r\
AD () = Fo, _ A A5 ). B.1
(@) = Fems [D(|§|7w)] 47ra1(A1+2M1)( 4 || + 4 || ) (B.13)

Therefore, for the fundamental matrix I'(z), due to (B.5) and (B.8), we obtain the following formula:

[(x) = [Tk;(2)],,, = Felo [A7'(=i8)], (B.14)

where
ij (a:) = Bk]' (iag;,w)A(l)(l‘), F4j(l‘) = B4j(i8w,w)A(2) (.Z‘),

Tps = Bra(idy,w)A P (2), Tyy = By(idy,w)A P (2), k,j=1,2,3,

the differential operators By (105, w) are defined by relations (B.8) with i0, for &.

Note that I'*(z) = I'T (—2) is a fundamental solution of the adjoint differential operator A*(9,w) =
AT (-0,w).

It is evident that the entries of the fundamental matrix I'(z) decay exponentially at infinity and
in a vicinity of the origin have the singularities of type O(|z|~1).

The fundamental matrix W(z) of the operator A©®)(9,w) defined by (2.4)—(2.6) can be constructed
similarly:

(B.15)

U(z) = Fo i, [(A9(=ig,w) ] = 5 lim / [A© (—ig,w)] e de,

87T3 R—o00
I§I<R

where the entries of the inverse matrix [A(O)(—if, w)] ~! are obtained from relations (B.6)—(B.8) if we
keep only the highest order terms in the corresponding polynomials.

Using the formula

1

—1 —27 _

]:§~>I [|§| ] - 47T|l“ ’

we find the explicit expression for ¥(z) (cf. [61, Chapter II]):

ad;  bxpz;

U(z) = [V (2)]axa, Yij(z)= 2] PR k,j=1,23,
Vas(r) =~ L W) = W) =0, kj=1,2,3
44 ~ iray |x|’ 4 = Y4 =V, By =1409,
_ A1+ 3 B A1+ g1
PR ek S NS S
8mpy (A1 + 2p1) 8mpr (A1 + 2p1)

Evidently, ¥(z) = ¥ (z) = ¥(—=z), which implies that H(?) is a symmetric operator.
Using the equalities

3 3 3

S A=0, Y A =0, > Apmi=1, Ai+ A5 =0, Ams+ A7 =1,
k=1 k=1 k=1

one can show that in a vicinity of the origin the following relations hold:

yj(x) = Wiy (x) = const + O(|z),

or _ (B.16)

8]191852853 [ij(‘r) - \Ijkj(x)] = O(|{E|1 p)v P =p1+ p2+ ps.

In view of relations (B.11) and (B.12)—(B.15), it is evident that the entries of the matrix I'(x) decay
exponentially at infinity.
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8 Appendix C: Explicit expressions for the principal
homogeneous symbol matrices

Here, we present the explicit expressions for the principal homogeneous symbol matrices of the bound-
ary pseudodifferential operators introduced in Section 4. The principal homogeneous symbol matrix
of a boundary pseudodifferential operator A defined on S we denote by &(A; z, '), where z € S and
¢ = (61,6) € R2.

Note that the principal homogeneous symbols of the boundary pseudodifferential operators con-
structed by the fundamental matrices I'(z — y) and ¥(z — y) coincide in view of relations (B.16).

Using the Cauchy integral theorem for analytic functions, we can represent the fundamental matrix
U(z) in the form

V(o) = Fl, [{AQ(-ig )} ] = Fol | egams{Ao) (—i€w)} ] = Fol, 1€ @),
5/ = (51752)7 = ('Tlva)v

with

H(glaxS) % / {A(O)(fif,w)}716*i$3§3 dés
R1

1 _ .
?/{A(O)(—ig,w)} teiwats d¢s  for xz3 <0,
™

_ o

=19 1 o e (C.1)
o {A (fzf,w)} e "33 dés for x3 >0,
™

where £_ (£4) is a closed contours in the lower (upper) complex &3 = & + i&4 half-plane, orientated
clockwise (counterclockwise) and enclosing all roots with negative (positive) imaginary parts of the
equation det A©)(¢) = 0 with respect to &3, while & = (£1,&) € R?\ {0} is to be considered as a
parameter.

Using the approach described in the monograph [10], one can write the explicit formulas for the
principal homogeneous symbols of the boundary integral operators generated by the single and double
layer potentials. These formulas read as follows:

S(H;x, &) =H(z,¢) = [ Hpqy(z, 5)]4X4 = l[ij(xafl)]PﬁXS [0]3x1 ]
4x4

[0]13 Hyy(2,€')
+oo
=g [ A0 e =g [ [A0@ew) e (€2
y —o0
A Fen e — K . _ | @ sk Ol
G(iZ [4 +IC, 75 ) - ( 5) [ ( 5)]4><4 - [ [0]1><3 :t2_1 s
::%/P(O)(Bf,n) [AO(Bg,w)] ™" dés, (C.3)
£t
st Ko €)= R ) = [RO 0 R @ les s
6(i2 I4+IC 5) 5) [ ( £)jlz,L><4 [ § [0]1><3 :|:271 ™
— i / [AO(BE,w)] " [PO(BE,n)] " des, (C4)

6('6;55»5,) :L(xvgl) = [qu(xaél)]4><4 = [[ij($,f/)]3x3 [0]3><1 ‘|
4

[0]1x3 Laa(z,8) |,
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= o [ POBE A0 Be )] [POBEn)] des, (©5)

£
where & = (£1,&) € R?\ {0}, £ = (£1,&2,&3) T, the matrices A () and PO(-, .) are

Ii(z) m
B(z) = |la(x) ma(z) na(x)
I3(x) m

is an orthogonal matrix with det B(z) = 1 for z € 90F = S; here, n(x) is the exterior unit normal
vector to S, while [(x) and m(x) are orthogonal unit vectors in the tangential plane associated with
some local chart; ¢_ (€) is a closed contour in the lower (upper) complex & = &; + i&4 half-plane,
orientated clockwise (counterclockwise) and enclosing all roots with negative (positive) imaginary
parts of the equation det A(°)(B¢) = 0 with respect to &3, while & = (£1,&) € R? )\ {0} is to be
considered as a parameter. Let R > 0 be a sufficiently large positive number such that the circle Cg,
centered at the origin and of radius R, encloses all the roots. Then, without loss of generality, we can
take
(. =[-R,+RUCS’), ¢, =[-R+RUCY,

where C’I({) C Cpg is a semi-circle in the lower half-plane orientated clockwise and CI(;) C Cgrisa
semi-circle in the upper half-plane orientated counterclockwise.

In (C.3) and (C.4), we employed the fact that K44 and K44 are weakly singular integral operators,
since their kernel functions, the normal derivatives 0y, (z)V44(x — y) and Oy, laa(z — y), are weakly
singular functions of type O(|x — y|=2™") on a C** smooth surface S with 0 < & < 1.

The entries of the matrices H(z,£’) and L(z,&’) are homogeneous functions in & of order —1
and +1, respectively, while the entries of the matrices K*)(z,¢') and I?(i)(x,f’) are homogeneous
functions in & = (&1, &) of order 0.

With the help of relations (B.10), it can easily be shown that there are positive constants dg,
k = 1,2, depending on the material parameters such that the following inequalities hold:

Re [ = S(H;z,&1,&)n 1] > 61| nl? forall z € S, (&,&) € R*\ {0}, neC, (C.6)
Im [ —6(H;x,81,8)n - n] > 5l€| 7 n|? for all z € S, (&,&) € R?\ {0}, neC* (C.7)

By the approach described in the proof of Theorem 5.1 and using relations (4.36)—(4.38) (cf. (5.24),
(5.26), (5.27)), we show that there are the positive constants d3 and d4, depending on the material
parameters, such that

Re [6(5;%51,52)77 . 77] > 03¢] |77|2 forall z €S, (&4,&) € R? \ {0}, ne C?, (C.8)
Im [&(L;2,&1,&)n - 0] = 64/¢| In|? for all z €S, (&,&) € R*\ {0}, neCh (C.9)

These inequalities imply that the principal homogeneous symbol matrices —&(H;x,&1,&2) and
&(L;x,&1,&) are strongly elliptic. Thus, the operators —H and L are strongly elliptic pseudodif-
ferential operators.

From (C.6)—(C.9) and the last two equalities in (4.22), it follows that the principal homogeneous
symbol matrices (C.3) and (C.4) are elliptic, which means that the operators 2711, +K and 42711, +
K are singular integral operators of normal type, i.e., the determinants of the principal homogeneous
symbol matrices are different form zero (see also Remark 5.2).

9 Appendix D: Fredholm properties of strongly elliptic
pseudodifferential operators on manifolds with boundary

Here, we present some results from the theory of strongly elliptic pseudodifferential equations on
manifolds with a boundary (see, e.g., [42,50,91]), which play a crucial role for proving existence
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theorems by the potential method for mixed boundary value problems, mixed boundary-transmission
and crack type problems.

Let M € C* be a compact, n-dimensional, non-self-intersecting manifold with the boundary
OM € C*, and let A be a strongly elliptic N x N matrix pseudodifferential operator of order v € R
on M. Denote by &(A;z,&) the principal homogeneous symbol matrix of the operator A in some
local coordinate system (z € M, £ € R™\ {0}).

Let A1(x),...,An(x) be the eigenvalues of the matrix

[S(A;2,0,...,0,+1)] "' [6(A;2,0,...,0,~1)], = €IM.
Introduce the notation
§j(z) =Re[(2mi) " 'InA;(z)], j=1,...,N,

where In ¢ denotes the branch of the logarithm analytic in the complex plane cut along (—o0, 0]. Due
to the strong ellipticity of A, we have the strict inequality

—fracl2 < §;(z) < fracl2 for xe M, j=1,...,N.

The numbers §;(x) do not depend on a particular choice of the local coordinate system at a fixed point
x € OM. Note that in particular cases, when G(A;x,§) is an even matrix function in & or G(A; z,§)
is a positive definite matrix for every z € M and £ € R™\ {0}, we have §;(x) =0 for j = 1,..., N,
since all the eigenvalues \j(z) (j = 1,..., N) are positive numbers for any = € M.

The Fredholm properties of strongly elliptic pseudodifferential operators on manifolds with a
boundary are given in the following theorem.

Theorem D.1. Let s e R, 1 <p < oo, 1<t <00, and let A be a strongly elliptic pseudodifferential
operator of order v € R, that is, there is a positive constant ¢y such that

Re&(A;z,&)n - n > colnl®

forx € M, € € R™ with |¢| =1, and n € CN.
Then the operators

A (MY = [H (M), (D.1)
A By, (M) = [Bi (M), (D.2)

are Fredholm with zero index if

1 1
};—14— sup d;(x) <s—2< -+ 3 (x). (D.3)

inf
2€OM, 1<j<N 2 " p  2€dM,1<EN

Moreover, the null-spaces and indices of operators (D.1) and (D.2) are the same (for all values of the
parameter t € [1,+00]) provided p and s satisfy inequality (D.3).
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