Memoirs on Differential Equations and Mathematical Physics

VOLUME 96, 2025, 93—102

Adil Bouhrara

ON THE LP HEISENBERG-PAULI-WEYL INEQUALITY
FOR FLENSTED-JENSEN PARTIAL DIFFERENTIAL OPERATORS



Abstract. We establish an LP Heisenberg—Pauli-Weyl inequality related to the Flensted-Jensen
differential operators.
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1 Introduction

The qualitative uncertainty principle states that a function and its Fourier transform cannot both
be sharply localized unless the function is identically zero. This fundamental principle has multiple
formulations, each highlighting different aspects of this inherent limitation.

The most quantitative formulation is the standard Heisenberg—Pauli-Weyl inequality, which states
that for u € L?(R), we have

2lu@)Pde ) [ Ea©rd) = ul, (L1)
([t as) ([ etmerac) = g

u —i u(z)e %" dx
u(f)mR/ (z)ei€" da.

This classical result has been extended in various settings. A notable generalization of inequality
(1.1) states that for 1 < p < 2, the following inequality holds (see [3]):

where

2

lzullpllgall, = = <

In this paper, we give an LP-Heisenberg—Pauli-Weyl inequality associated to the Flensted-Jensen
partial differential operators.
2 Preliminary
We start this section by setting some notations and collecting some basic results about the Flensted-

Jensen partial differential operators.
Let a > 0, we consider the system of Flensted-Jensen partial differential operators defined by

0
Do =36
D, = a—2+ [(2c + 1) coth(y) + tanh(y)] 2*;872+(05+1)2
“= By Y ) 3y~ com(y) 962 ;

where (y,0) € K = [0, +oo[xR.

We denote K = LU, where L =R x [0,+oc[ and Q = | (D}, UD,,) with D}, D, given by
meN

D = {(a+2m+ 1+ n;yin); n> 0}

and
D, = {(—a—?m— 1—mn;in); n> O}.

For 1 < p < oo, consider LP(K), the space of measurable functions f on K such that

1l = ( / If(yﬁ)pdma(y,@)) " oo, 1<p<oo,
K

[flloc = esssup [f(y,0)| < oo,
(y,0)€K

where
dme(y,0) = 22T (sin(y)) 2+ cosh(y) dy do.

Now, we define the Fourier transform related to the Flensted-Jensen operators on L!(K) by

VOup) eR: FalH)Op) = / 00002 u(y.0) dma (. 0),
K
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where |
Pru(:0) = € cosh(y) ¢ ()
and - o
@ a+A+14+iu a+A+1—1 .
%’A((y) N 2F1( 2 M’ 9 'u;a +1;— Slnh2(y)>.
Here, o F is the Gaussian hypergeometric function defined by
o F1(a,b;c; 2) = ;WZ 7

where (a),, is the Pochhammer symbol given by
(@)n=ala+1)(@a+2)---(a+n—-1), n>1,

and (a)y = 1.
It is known that the inverse of F, is given by

Fa ' (f)(y,0) = /f(A,u)sDA,u(y,(?) dva (A, 1),
R

where v, (A, ) is the Plancherel measure defined on K by

1 d\d
/gd'Yoz()\y,U) = (27T)2 / Q(A;U) m

& Rx [0,4-o0]

(2m)?

m=0

oo
1 oo
+ Z/{g(a+2m+1+n,in)C’2(a+2m+1+n,in)dn
0

oo

+/g(—a —2m—1—mn,in)Ce(—a —2m —1 —n,in)dn},
0

where ]
201 (o + 1) (i)
F( a+)\—;1+zp )F( a—A—gl+Z/L)

Cl()‘7/1’) = ) ()\,,U,) € L7

and

Co(A, ) = —2im Res., [C1(A, 2)C1 (A, —2)] ', (A, ) € Q.
We have (see [2])

(m4+1)p_1(n+m+1)p_1
(CEEVICa—

Co(A, p) = 272 Dy

where n = a+1 € N*. R
Now, let LP(K) be the space of functions f on K such that

1l = ( / If(/\,u)l”dva(/\,u)) "o, 1<p<oo
K

[fllooye = esssup [f(A, p)| < oc.
[CWDISIS

For f € L'(K), we have
[Fa(Moora < 1F11ma- (2.1)
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For f € L?(K), we also have the Plancherel theorem
[Fafll2 e = [ Fll2,ma- (2.2)

Hence, using the Marcinkiewicz interpolation with (2.1) and (2.2), for every 1 < p < 2 and

f € LP(K), we obtain
(2.3)

[P

[Fa(laqre < IIf
where g = ]ﬁ .

For all (y,0) € K, we denote |y,0| = |y| + 0| =y + 0] and (A, u) € K : A, g = |A] + |l
From now on, we suppose o = 1. In order to prove our main result, we begin by establishing the

following Lemma.

Lemma 2.1. Forq>1 andt >0, we have

|Q

fo<t<l,

o~
Qe

< h(t) =

He—t(\x7u|2+4)H
q,y —

alk

Q
)

if 1<t

~+
Q=

Proof. We have

_ 2
||e~tIAnl +4)||qﬁ

z  dAdp 2 =
< Ce / et p] + E
e iR (@) 2
X [0,4+00

/e—qt(2+2m+2n)2(j2(2 +2m +n,in) dn) .
0

According to [7, p. 50], we have |Cy(\, )] 72 < (14 |A[2 4 |u[?)2+2]+1 Then

/ eqt(|)\,u2+4)% < o4 / efqt|)\,u\2 (1 + |>\|2 + |/1'|2)3 d)\d,u
1 )

RX[0,+00] RX[0,+o00]
o0

< e—4t / e—qt(\,\|2+|u|2)(l + |)\|2 + |/~L‘2)3 d)\d/l < Ce—4t/e—qt32(1 +s2)38ds
RX[0,+00][ 0
C
— if 0<t<1,
t4

S Ce—4t

3 3 3 1 )

—4t
<Ce (i * i+ oatE T

if 1<¢t.

It remains to show that for all £ > 0,

C
7 if 0<t<l,
S(qt) < Ce—4t
if 1<t¢,

where

e HEH2MEI 0, (2 4 2m 0, im) diy

(m + 1)e~t 220" () 4 m 4 1) d.
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Making a change of variables s = 21/t (1 +m + 7)) and integrating, we obtain

oo

/6—t(2+2m+2n)2n(n +m+1)dn = erfe(2Vt (m + 1)),
0

where er fc is the complementary error function defined by

2 o0
erfe(x —/ dt, z eR.
f

Therefore, we have

B erfe Q\fm)
T2 Z '

Since t — S(t) is continuous on R%, it suffices to show that lim ¢*S(t) € RT and tlim tS(t) € R.
— 00

t—0t

Towards this end, we set g(x) = zerfc(2v/tx), x > 1. One has

g'(z) = e 4% (e4t2xzerfc(2\/£x) - 4\/Zx)

But (see [1, p. 303])

2 2 ein
<erfe(r) < ——= —————=, z>0.
Vo422 + 7%

2 —x
VT x4+ V2?2 +2
Hence
wgrfooe erfc(?x/fx) - 4\/> = —00,

and so 3mp e N: z>myg = ¢'(x) < 0.
Thus ¢ is a decreasing function on [mg, oo, henceforth it follows that

oo oo
o0

Vt>0: / xerfc(2\/ix) dr < Z nerfc(2\/in) < /xerfc(%/im) dx
mo+1 n=mo+1 mo
But
2 —.sz —91'2
<erfe(z) <

T s f i,
VT oz + 2?2 2 VT a4+ /22 + 5

so lim 2%erfe(z) = 0 and by integration by parts we obtain
Tr—r00

o0

/xerfc(2\/1€x) dx

1

= Tor/s (f 8m2t\/7>1'€7’fc(2\/zm)674tm2 /T e—4tm® \/Eerfc(Q\/{fm))’

where m € N.

Hence
lim #*S(t) = 0.

t—0+
On the other hand, we have

Vi>0: 0<tS(t) < tZ/k—f—l —t R () 4+ | 4+ 1) .
k=07
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Since for s > 0,

> meme =t
- —s 27
— (e 1)
[eS) 1 _s
m2€7ms — 1( +_i 3) ,
m=0 ( —€ )
= —ms 1
Z € - 1—es’
m=0 €

it follows that

> 7 (1t et(tet +2et — 2+ t)
£y, / m 4 e Dn(n 4 m 4+ 1) dn = 2et—17
m=07

Consequently,
lim tS(t) =

t—o0

Thus the proof of lemma is complete. O

Let B, = {(y,0) € K: |y,0] <r} and Bf = K\ B, for some 7 > 0. Denote by x, and x,. the
characteristic functions.

Proposition 2.1. Let 1 <p <2, ¢ = # and 0 < a < 2. Then for all f € LP(K) and t > 0, we
have

—t(|\ul®+4) - a
e Fafll,, < O %1501 fllpn..
Proof. We have

et A+ D F (fxy, )

oy < e P Fal X0, ) oo

(by (2.1)) < |Je=t (M0l +4>Hm||fx3,, !
(by Holder’s inequality) < A(t)|| |y, 01" X5, lq.mall 14, 01 Fllpme -

But
4(sinh(y))*(cosh(y)) ~o+ 4y* and 4(sinh(y))® (cosh(y)) ~ oo 4™,

so if r < 1, we have

- 617 aXBT gma — 16 / Xz, (Jyl +10]) % sin®(y) cosh(y) dy df
R+XR
<C / XBT Y, )(Iy\ + |9|) aq+3 dy do < C/ d—aq ¢ < Crd— aq_
R+><R
and if r > 1, we have
Y, 01X ! <Cc+C yl +160 _aq€4ydyd9
Brllgma

{(y,0)€R 4 XR: 1<|y|+]0]<r}
<CyClet / (gl + 6])=“7 dy o
{(y,0)€R 4 XR: 1<|y|+]60]<r}
< C+Cle*r / s ds < Cr—atledr,

{3<s<r}
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In the last line, we have used the fact that the function y — y'~%e* is increasing for y > aq;1 and
r>1> %‘1. Thus
1,617 x, [, . <7V,
where .
Cra if 0 1
V=4 . T
Craea if 1 <r.
Therefore,
e~ D F (3, ), < OV 5,01
and we have
_ 2 _ 2
||e B2 +4)-7:a(fXBg) ’q;y <lle Huul ”oo,v”}—oz(fXBg)”qﬁ
(by (2.3)) < [IfXs¢llp.ma
<7 Ny, 01 fllpma-
Hence
—t(| X p|?+4 —t(| X p|?+4 —t(| 2 p|?+4
Jem D EL(D, . < Nle D F(fxp ), + e D Fo(fxo)], ,
< (VOO 9.0 Fllpma + 1 1900 .
< CA+ V)@= y, 01" fllp.me-
For r = t%, we obtain
2 —4a
le™ D ELON, ., < CE My 01 Fllpm- O
3 LP-Heisenberg inequality
In order to prove our results we need the following Lemma.
Lemma 3.1. Let 1 <p <2, qzﬁ, 0<a< 2 and b > 0. Then for f € LP(K) one has
a |45 @ =
1Fallan < Cla )y, 01 FI [ (A 2 + 4% Ful D] 7,
where C(a,b) is a positive constant.
Proof. We have
1Falf)llay < [l PO LD, + ([0 = e =D F(f]],
since x — (1 — e*"’”)x’% is bounded for z > 0 if b < % . Further,
_4b
J(1 = et P E (), = ][ el + ) (1= e ) a1 ) R F()|
' ay
4b 4b
<ot¥ (A uP + 9% Falp)),

So, by Proposition 2.1, we have

1ol < € (4% M1y 017 lpm + £

(A ul? + ) EFa(D),,):

Now, choosing

t = (E || |y79‘af‘|p,m ﬁ
- 10
DAIOA 1l +4)F FalH)llar

)
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we obtain ,
a a @ %
IIfa(f)Ilm < Ca, )1y, 01 fllpma [ (A l* +4) = Fa ()| 25
If b > 2 letting b’ < 2, we have
Ve>0: (MuP+4)% <& 1M pu2+4)%.
So,
4b’ / /_ 4b
10X 12 + 95 Fa(H, < € I1Falllaq + NN 1 + 9T Fal(H],
Optimizing in €, we get
4b” 4b b
(X 62 + 95 Fa (D], < ClIFa(F)llan H(M ul? +4) = Fa(H L
Therefore,
at+bl 47 a at+bl
[Fa(H)llgy < Cla, bl Iy, 0] flla“’ [\l +4) = FalH)][ 43 5
a @ 7 (lfbfl) a+b’ bfl L,
< Cla, )y, 01 F 15 1Fal Dl ™ T || 2 + 4 Fo( D] 2,757,
which gives the result for b > %. O

Now, we can give an L? Heisenberg inequality for the Flensted-Jensen partial differential operators.

Theorem 3.1. Let a,b > 0. Then for f € L?>(K), one has

oiT (3.1)

L 4
e | (s 1l +4) % Fa ()57

< C(a,b)| |y,

where C'(a,b) is a positive constant.

Proof. By Lemma 3.1 and the Plancherel formula, inequality (3.1) holds for p = 2, when 0 < a < g )
Ifaz%,let0<a’<%,formZO,wehave

Ve>0: (%)a <1+ (E)a
So, for f € L?(K), one has

Iy. 01 f

’ ’
< € fll2me €y,

Optimizing in €, we get

[y, 01 fll2,ma < 19501 Fll 5, - (3-2)

Therefore, using Lemma 3.1 for a’ and b and inequality (3.2), we obtain

o g W
< C(@ B[l 1y, 01" Flls o [N, ul” +4) 5 Fa(f) ;;
b(a'—a) ’

a(a’ a(a 4b 7
< C@ o)z 5" Iy, 01 f||2(mfb) (X 1l +4) 5 Fo ()55

2,y
which leads to (3.1). O

i
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