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ON THE Lp HEISENBERG–PAULI–WEYL INEQUALITY
FOR FLENSTED–JENSEN PARTIAL DIFFERENTIAL OPERATORS



Abstract. We establish an Lp Heisenberg–Pauli–Weyl inequality related to the Flensted-Jensen
differential operators.
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1 Introduction
The qualitative uncertainty principle states that a function and its Fourier transform cannot both
be sharply localized unless the function is identically zero. This fundamental principle has multiple
formulations, each highlighting different aspects of this inherent limitation.

The most quantitative formulation is the standard Heisenberg–Pauli–Weyl inequality, which states
that for u ∈ L2(R), we have(∫

R

x2|u(x)|2 dx
)(∫

R

ξ2|û(ξ)|2 dξ
)

≥ 1

4
∥u∥4, (1.1)

where
û(ξ) =

1√
2π

∫
R

u(x)e−iξx dx.

This classical result has been extended in various settings. A notable generalization of inequality
(1.1) states that for 1 ≤ p ≤ 2, the following inequality holds (see [3]):

∥xu∥p∥ξû∥p ≥ ∥u∥22
4π

(1 ≤ p ≤ 2).

In this paper, we give an Lp-Heisenberg–Pauli–Weyl inequality associated to the Flensted-Jensen
partial differential operators.

2 Preliminary
We start this section by setting some notations and collecting some basic results about the Flensted-
Jensen partial differential operators.

Let α ≥ 0, we consider the system of Flensted-Jensen partial differential operators defined by
Dθ =

∂

∂θ
,

Dα =
∂2

∂y2
+
[
(2α+ 1) coth(y) + tanh(y)

] ∂

∂y
− 1

cosh2(y)

∂2

∂θ2
+ (α+ 1)2,

where (y, θ) ∈ K = [0,+∞[×R.
We denote K̂ = L ∪ Ω, where L = R× [0,+∞[ and Ω =

⋃
m∈N

(D+
m ∪D−

m) with D+
m, D−

m given by

D+
m =

{
(α+ 2m+ 1 + η; iη); η > 0

}
and

D−
m =

{
(−α− 2m− 1− η; iη); η > 0

}
.

For 1 ≤ p < ∞, consider Lp(K), the space of measurable functions f on K such that
∥f∥p,mα =

(∫
K

|f(y, θ)|p dmα(y, θ)

) 1
p

< ∞, 1 ≤ p < ∞,

∥f∥∞ = ess sup
(y,θ)∈K

|f(y, θ)| < ∞,

where
dmα(y, θ) = 22(α+1)(sin(y))2α+1 cosh(y) dy dθ.

Now, we define the Fourier transform related to the Flensted-Jensen operators on L1(K) by

∀ (λ, µ) ∈ K̂ : Fα(f)(λ, µ) =

∫
K

f(y, θ)φ−λ,µ(y, θ) dmα(y, θ),
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where
φλ,µ(y, θ) = eiλθ(cosh(y))λφα,λ

µ (y)

and
φα,λ
µ ((y) = 2F1

(α+ λ+ 1 + iµ

2
,
α+ λ+ 1− iµ

2
;α+ 1;− sinh2(y)

)
.

Here, 2F1 is the Gaussian hypergeometric function defined by

2F1(a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)nn!

zn,

where (a)n is the Pochhammer symbol given by

(a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1), n ≥ 1,

and (a)0 = 1.
It is known that the inverse of Fα is given by

F−1
α (f)(y, θ) =

∫
K̂

f(λ, µ)φλ,µ(y, θ) dγα(λ, µ),

where γα(λ, µ) is the Plancherel measure defined on K̂ by∫
K̂

g dγα(λ, µ) =
1

(2π)2

∫
R×[0,+∞[

g(λ, µ)
dλ dµ

|C1(λ, µ)|2

+
1

(2π)2

∞∑
m=0

∞∫
0

{
g(α+ 2m+ 1 + η, iη)C2(α+ 2m+ 1 + η, iη) dη

+

∞∫
0

g(−α− 2m− 1− η, iη)C2(−α− 2m− 1− η, iη) dη

}
,

where
C1(λ, µ) =

2α+1−iµΓ(α+ 1)Γ(iµ)

Γ(α+λ+1+iµ
2 )Γ(α−λ+1+iµ

2 )
, (λ, µ) ∈ L,

and
C2(λ, µ) = −2iπ Resz=µ

[
C1(λ, z)C1(λ,−z)

]−1
, (λ, µ) ∈ Ω.

We have (see [2])

C2(λ, µ) = 2−2(n−1)πη
(m+ 1)n−1(η +m+ 1)n−1

((n− 1)!)2
,

where n = α+ 1 ∈ N∗.
Now, let Lp(K̂) be the space of functions f on K̂ such that

∥f∥p,γα
=

(∫
K̂

|f(λ, µ)|p dγα(λ, µ)
) 1

p

< ∞, 1 ≤ p < ∞,

∥f∥∞,γα = ess sup
(λ,µ)∈K̂

|f(λ, µ)| < ∞.

For f ∈ L1(K), we have
∥Fα(f)∥∞,γα ≤ ∥f∥1,mα . (2.1)
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For f ∈ L2(K), we also have the Plancherel theorem

∥Fαf∥2,γα
= ∥f∥2,mα

. (2.2)

Hence, using the Marcinkiewicz interpolation with (2.1) and (2.2), for every 1 ≤ p ≤ 2 and
f ∈ Lp(K), we obtain

∥Fα(f)∥q,γα
≤ ∥f∥p,mα

, (2.3)

where q = p
p−1 .

For all (y, θ) ∈ K, we denote |y, θ| = |y|+ |θ| = y + |θ| and (λ, µ) ∈ K̂ : |λ, µ| = |λ|+ |µ|.
From now on, we suppose α = 1. In order to prove our main result, we begin by establishing the

following Lemma.

Lemma 2.1. For q > 1 and t > 0, we have

∥∥e−t(|λ,µ|2+4)
∥∥
q,γ

≤ h(t) =


C

t
4
q

if 0 < t < 1,

Ce−
4t
q

t
1
q

if 1 ≤ t.

Proof. We have

∥e−t(|λ,µ|2+4)∥qq,γ

≤ Ce−4t

( ∫
R×[0,+∞[

e−qt|λ,µ|2 dλ dµ

|C1(λ, µ)|2
+

2

(2π)2

∞∑
m=0

∞∫
0

e−qt(2+2m+2η)2C2(2 + 2m+ η, iη) dη

)
.

According to [7, p. 50], we have |C1(λ, µ)|−2 ≤ (1 + |λ|2 + |µ|2)2[α+ 1
2 ]+1. Then∫

R×[0,+∞[

e−qt(|λ,µ|2+4) dλ dµ

|C1(λ, µ)|2
≤ e−4t

∫
R×[0,+∞[

e−qt|λ,µ|2(1 + |λ|2 + |µ|2
)3

dλ dµ

≤ e−4t

∫
R×[0,+∞[

e−qt(|λ|2+|µ|2)(1 + |λ|2 + |µ|2)3 dλ dµ ≤ Ce−4t

∞∫
0

e−qts2(1 + s2)3s ds

≤ Ce−4t
( 3

(qt)4
+

3

(qt)3
+

3

2(qt)2
+

1

2(qt)

)
≤


C

t4
if 0 < t < 1,

Ce−4t

t
if 1 ≤ t.

It remains to show that for all t > 0,

S(qt) ≤


C

t4
if 0 < t < 1,

Ce−4t

t
if 1 ≤ t,

where

S(t) =
π

4

∞∑
m=0

∞∫
0

e−t(2+2m+2η)2C2(2 + 2m+ η, iη) dη

=
π

4

∞∑
m=0

∞∫
0

(m+ 1)e−t(2+2m+2η)2η(η +m+ 1) dη.
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Making a change of variables s = 2
√
t (1 +m+ η) and integrating, we obtain

∞∫
0

e−t(2+2m+2η)2η(η +m+ 1) dη = erfc
(
2
√
t (m+ 1)

)
,

where erfc is the complementary error function defined by

erfc(x) =
2√
π

∞∫
x

e−t2 dt, x ∈ R.

Therefore, we have

S(t) =
π
√
π

128

∞∑
m=1

m
erfc(2

√
tm)

t
3
2

.

Since t → S(t) is continuous on R∗
+, it suffices to show that lim

t→0+
t4S(t) ∈ R+ and lim

t→∞
tS(t) ∈ R.

Towards this end, we set g(x) = xerfc(2
√
t x), x ≥ 1. One has

g′(x) = e−4t2x2
(
e4t

2x2

erfc
(
2
√
t x

)
− 4

√
t

π
x
)
.

But (see [1, p. 303])

2√
π

e−x2

x+
√
x2 + 2

< erfc(x) <
2√
π

e−x2

x+
√
x2 + π

4

, x ≥ 0.

Hence
lim

x→+∞
e4t

2x2

erfc
(
2
√
t x

)
− 4

√
t

π
x = −∞,

and so ∃m0 ∈ N : x ≥ m0 =⇒ g′(x) < 0.
Thus g is a decreasing function on [m0,∞[ , henceforth it follows that

∀ t > 0 :

∞∫
m0+1

x erfc
(
2
√
t x

)
dx ≤

∞∑
n=m0+1

n erfc
(
2
√
t n

)
≤

∞∫
m0

x erfc
(
2
√
t x

)
dx.

But
2√
π

e−x2

x+
√
x2 + 2

< erfc(x) <
2√
π

e−x2

x+
√
x2 + π

4

, x ≥ 0,

so lim
x→∞

x2 erfc(x) = 0 and by integration by parts we obtain

∞∫
m

x erfc
(
2
√
t x

)
dx

=
1

16t
√
π

(
− 8m2t

√
π erfc

(
2
√
tm

)
e−4tm2

+ 4m
√
t e−4tm2

+
√
π erfc

(
2
√
tm

))
,

where m ∈ N.
Hence

lim
t→0+

t4S(t) = 0.

On the other hand, we have

∀ t > 0 : 0 ≤ tS(t) ≤ Ct

∞∑
k=0

∞∫
0

(k + 1)e−t(1+k+η)η(η + k + 1) dη.
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Since for s > 0,
∞∑

m=0

me−ms =
e−s

(e−s − 1)2
,

∞∑
m=0

m2e−ms =
e−s(1 + e−s)

(1− e−s)3
,

∞∑
m=0

e−ms =
1

1− e−s
,

it follows that

t

∞∑
m=0

∞∫
0

(m+ 1)e−t(1+m+η)η(η +m+ 1) dη =
et(tet + 2et − 2 + t)

t2(et − 1)3
.

Consequently,
lim
t→∞

tS(t) = 0.

Thus the proof of lemma is complete.

Let Br = {(y, θ) ∈ K : |y, θ| < r} and Bc
r = K \ Br for some r > 0. Denote by χ

Br
and χ

Bc
r

the
characteristic functions.

Proposition 2.1. Let 1 < p ≤ 2, q = p
p−1 and 0 < a < 5

q . Then for all f ∈ Lp(K) and t > 0, we
have ∥∥e−t(|λ,µ|2+4)Fαf

∥∥
q,γ

≤ Ct−
4a
5 ∥ |y, θ|af∥p,mα

.

Proof. We have ∥∥e−t(|λ,µ|2+4)Fα(fχBr
)
∥∥
q,γ

≤
∥∥e−t(|λ,µ|2+4)

∥∥
q,γ

∥Fα(fχBr
)∥∞,γ

(by (2.1)) ≤
∥∥e−t(|λ,µ|2+4)

∥∥
q,γ

∥fχ
Br

∥1
(by Hölder’s inequality) ≤ h(t)∥ |y, θ|−aχ

Br
∥q,mα

∥ |y, θ|af∥p,mα
.

But
4(sinh(y))3(cosh(y)) ∼0+ 4y3 and 4(sinh(y))3(cosh(y)) ∼+∞ 4e4y,

so if r < 1, we have

∥∥ |y, θ|−aχ
Br

∥∥q
q,mα

= 16

∫
R+×R

χ
Br

(|y|+ |θ|)−aq sin3(y) cosh(y) dy dθ

≤ C

∫
R+×R

χ
Br

(y, θ)(|y|+ |θ|)−aq+3 dy dθ ≤ C

r∫
0

s4−aq ds ≤ Cr5−aq,

and if r ≥ 1, we have∥∥ |y, θ|−aχ
Br

∥∥q
q,mα

≤ C + C ′
∫

{(y,θ)∈R+×R: 1≤|y|+|θ|<r}

(|y|+ |θ|)−aqe4y dy dθ

≤ C + C ′e4r
∫

{(y,θ)∈R+×R: 1≤|y|+|θ|<r}

(|y|+ |θ|)−aq dy dθ

≤ C + C ′e4r
∫

{ 1
2≤s<r}

s−aq ds ≤ Cr−aq+1e4r.
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In the last line, we have used the fact that the function y → y1−aqe4y is increasing for y ≥ aq−1
4 and

r ≥ 1 > aq−1
4 . Thus ∥∥ |y, θ|−aχ

Br

∥∥
q,mα

≤ r−aV (r),

where

V (r) =

{
Cr

5
q if 0 < r < 1,

Cr
1
q e

4r
q if 1 ≤ r.

Therefore, ∥∥e−t(|λ,µ|2+4)Fα(fχBr
)
∥∥
q,γ

≤ CV (r)h(t)∥|y, θ|af∥p,mα
,

and we have ∥∥e−t(|λ,µ|2+4)Fα(fχBc
r
)
∥∥
q,γ

≤ ∥e−t|λ,µ|2∥∞,γ∥Fα(fχBc
r
)∥q,γ

(by (2.3)) ≤ ∥fχ
Bc

r
∥p,mα

≤ r−a∥|y, θ|af∥p,mα
.

Hence∥∥e−t(|λ,µ|2+4)Fα(f)
∥∥
q,γ

≤
∥∥e−t(|λ,µ|2+4)Fα(fχBr

)
∥∥
q,γ

+
∥∥e−t(|λ,µ|2+4)Fα(fχBc

r
)
∥∥
q,γ

≤ C
(
V (r)h(t)r−a∥ |y, θ|af∥p,mα

+ r−a∥ |y, θ|af∥p,mα

)
≤ C(1 + V (r)h(t))r−a∥ |y, θ|af∥p,mα .

For r = t
4
5 , we obtain ∥∥e−t(|λ,µ|2+4)Fα(f)

∥∥
q,γ

≤ Ct
−4a
5 ∥|y, θ|af∥p,mα .

3 Lp-Heisenberg inequality
In order to prove our results we need the following Lemma.

Lemma 3.1. Let 1 < p ≤ 2, q = p
p−1 , 0 < a < 5

q and b > 0. Then for f ∈ Lp(K) one has

∥Fα(f)∥q,γ ≤ C(a, b)∥ |y, θ|af∥
b

a+b
p,mα

∥∥(|λ, µ|2 + 4)
4b
5 Fα(f)

∥∥ a
a+b

q,γ
,

where C(a, b) is a positive constant.

Proof. We have

∥Fα(f)∥q,γ ≤
∥∥e−t(|λ,µ|2+4)Fα(f)

∥∥
q,λ

+
∥∥(1− e−t(|λ,µ|2+4))Fα(f)

∥∥
q,γ

,

since x → (1− e−x)x− 4b
5 is bounded for x ≥ 0 if b ≤ 5

4 . Further,∥∥(1− e−t(|λ,µ|2+4))Fα(f)
∥∥
q,γ

= t
4b
5

∥∥∥(− t(|λ, µ|2 + 4)
)− 4b

5
(
1− e−t(|λ,µ|2+4)

)
(|λ, µ|2 + 4)

4b
5 Fα(f)

∥∥∥
q,γ

≤ Ct
4b
5

∥∥(|λ, µ|2 + 4)
4b
5 Fα(f)

∥∥
q,γ

.

So, by Proposition 2.1, we have

∥Fα(f)∥q,γ ≤ C
(
t−

4a
5 ∥|y, θ|af∥p,m + t

4b
5

∥∥(|λ, µ|2 + 4)
4b
5 Fα(f)

∥∥
q,γ

)
.

Now, choosing

t =
(a
b

∥ |y, θ|af∥p,m
∥(|λ, µ|2 + 4)

4b
5 Fα(f)∥q,γ

) 5
4(a+b)

,
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we obtain
∥Fα(f)∥q,γ ≤ C(a, b)∥ |y, θ|af∥

b
a+b
p,mα

∥∥(|λ, µ|2 + 4)
4b
5 Fα(f)

∥∥ a
a+b

q,λ
.

If b > 5
4 , letting b′ < 5

4 , we have

∀ ϵ > 0 : (|λ, µ|2 + 4)
4b′
5 ≤ ϵb

′
+ ϵb

′−b(|λ, µ|2 + 4)
4b
5 .

So, ∥∥(|λ, µ|2 + 4)
4b′
5 Fα(f)

∥∥
q,γ

≤ ϵb
′
∥Fα(f)∥q,γ + ϵb

′−b∥(|λ, µ|2 + 4)
4b
5 Fα(f)

∥∥
q,γ

.

Optimizing in ϵ, we get∥∥(|λ, µ|2 + 4)
4b′
5 Fα(f)

∥∥
q,γ

≤ C∥Fα(f)∥
1− b′

b
q,γ

∥∥(|λ, µ|2 + 4)
4b
5 Fα(f)

∥∥ b′
b

q,γ
.

Therefore,

∥Fα(f)∥q,γ ≤ C(a, b′)∥ |y, θ|af∥
b′

a+b′
p,m

∥∥(|λ, µ|2 + 4
) 4b′

5 Fα(f)
∥∥ a

a+b′

q,λ

≤ C(a, b)∥ |y, θ|af∥
b′

a+b′
p,m ∥Fα(f)∥

(1− b′
b ) a

a+b′
q,γ

∥∥(|λ, µ|2 + 4)bFα(f)
∥∥ b′

b
a

a+b′
q,γ

,

which gives the result for b > 5
4 .

Now, we can give an L2 Heisenberg inequality for the Flensted-Jensen partial differential operators.

Theorem 3.1. Let a, b > 0. Then for f ∈ L2(K), one has

∥f∥2,mα
≤ C(a, b)∥ |y, θ|af∥

b
a+b

2,mα

∥∥(|λ, µ|2 + 4)
4b
5 Fα(f)

∥∥ a
a+b

2,γ
, (3.1)

where C(a, b) is a positive constant.

Proof. By Lemma 3.1 and the Plancherel formula, inequality (3.1) holds for p = 2, when 0 < a < 5
q .

If a ≥ 5
q , let 0 < a′ < 5

q , for x ≥ 0, we have

∀ ϵ > 0 :
(x
ϵ

)a′

≤ 1 +
(x
ϵ

)a

.

So, for f ∈ L2(K), one has

∥ |y, θ|a
′
f∥2,mα

≤ ϵa
′
∥f∥2,mα

+ ϵa
′−a∥|y, θ|af∥2,mα

.

Optimizing in ϵ, we get
∥ |y, θ|a

′
f∥2,mα

≤ C∥f∥
a−a′

a
2,mα

∥ |y, θ|af∥
a′
a
2,mα

. (3.2)

Therefore, using Lemma 3.1 for a′ and b and inequality (3.2), we obtain

∥f∥2,mα ≤ C(a′, b)∥ |y, θ|a
′
f∥

b
a′+b

2,mα

∥∥(|λ, µ|2 + 4)
4b
5 Fα(f)

∥∥ a′
a′+b

2,γ

≤ C(a′, b)∥f∥
b(a′−a)

a(a′+b)

2,mα
∥ |y, θ|af∥

a′b
a(a′+b)

2,mα

∥∥(|λ, µ|2 + 4)
4b
5 Fα(f)

∥∥ a′
a′+b

2,γ
,

which leads to (3.1).
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