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A NEW FRACTIONAL VERSION OF BULLEN INEQUALITY
FOR hA-CONVEX FUNCTIONS



Abstract. In this study, the Bullen inequalities for h-convex functions involving Riemann—Liouville
fractional operators are established, where h is a B-function. In addition, new results are presented
that generalize various inequalities known in the literature.
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1 Introduction

For the convex function f, the well-known Hermite-Hadamard inequality reads as follows [10]:

b
(50 < [roa< HOHI0, (L.1)

In [4], Bullen improved the right-hand side of (1.1) by using the following inequality, known as
Bullen’s inequality:
/ £)
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In 2016, the authors presented an estimate of Bullen-type inequalities for functions whose absolute
values of first derivatives are convex [12, Remark 4.2]:
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Bullen’s inequalities provide an estimate of the average value of a function that is convex on both
sides, while simultaneously ensuring that the function is integrable. This inequality has been exten-
sively studied in the literature, leading to numerous directions for extension and a rich mathematical
literature (see [5,6,8,9,11,12,16]).

The analysis of fractional calculations is a generalization of classical analysis, and it advanced
rapidly thanks to the exciting concept of convexity. Its extensive applications in functional analysis
and optimization theory have made it a very popular research area. The author in [17] introduced a
novel class of functions called h-convex functions.

Definition 1.1. Let A : J — R be a non-negative function, h # 0. We say that f : I — R is an
h-convex function if f is non-negative and for all z,y € I, A € (0,1), we have

FOx+ (1 =Ay) <h(A) (@) +h(1 =) f(y). (1.3)
If inequality (1.3) is reversed, then f is said to be h-concave.
Setting
e h(\) = )\, Definition 1.1 reduces to convex function [14].
o h(A) =1, Definition 1.1 reduces to P-functions [7,15].

o h(\) = A%, Definition 1.1 reduces to s-convex functions [3].

1 n
o h(\) =— Z A%, Definition 1.1 reduces to polynomial n-fractional convex functions [13].
n

k=1

In recent works [1,2], the authors introduced a novel class of functions termed B-functions, defined
as follows.

Definition 1.2. Let g : [0, 00) — R be a non-negative function. The function g is called a B-function if

a+b>’ (1.4)

9w —a) +g(b— ) < 29(

where a < x < b with a,b € [0, 00).
If inequality (1.4) is reversed, g is called A-function, or g belongs to the class A(a,b). If we have
equality in (1.4), g is called AB-function, or g belongs to the class AB(a,b).
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Corollary 1.1. Let h: (0,1) — R be a non-negative function. The function h is a B-function if for
all A € (0,1), we have

1
- A) < = . .
h(\) + h(1 )\)_2h<2) (1.5)
o The functions h(\) = A and h(\) = 1 are AB-function, B-function and A-function.

o The function h(A\) = X*, s € (0,1], is a B-function.

n
ZA%, n,k € N, is a B-function.
k=1

o The function h(A

SM—‘

Let f € L[a,b]. The left- and right-sided Riemann-Liouville fractional operators of order o > 0
are defined as follows:

x

3 f@) = g [0 W 2>
1 ab
30 f(a) = m/(t _ )"ty dt, @ <b.

x

Based on earlier research, we developed an additional version of Bullen inequality for h-convex
functions using Riemann—Liouville integral operators.

2 Bullen inequalities

Lemma 2.1. If a > 0 and f : [a,b] = R is a differentiable mapping such that ' € Li([a,b]), then
the following identity holds:

1k (“>§f = +f(“§b>} e (50w (U5)

29 a5 (- (e (] o

Proof. Using the integration by parts, we deduce
i 1 1
N +t —t
/ — 217 . )a+(—2 J) dt
0
2 1+t 1—t\ |
==(=a)a-2r((5)e+ (5] -
(b — a) ( + 2

- ()l +i ()] - 22) " e vas ().

2
where we apply 7 = (1t)a + (151)b, then

[ (5
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Similarly,

(o ()] + (22) " e v s(55),

where we apply 7 = (151)a + (11)b, then
[ (e (5
0

b
(=) [ ) e = () e (U5,

As a result,
b2 = L0 (] E D (1) o ()
This gives us the desired result. O

We now present the first results on the estimation of the Bullen inequality.

Theorem 2.1. Let h be a B-function on (0,1) and assume that the assumptions of Lemma 2.1 hold.
If |f'] is a h-convexr mapping on [a,b], then the following Bullen inequality for Riemann—Liouville
fractional operators holds:

s ()] - e s (55) v s(55))

< * 70 n(3) Callf @)+ 0],

e =(3) () + (G5 22)

Proof. Using the absolute value of identity (2.1) and the h-convexity of the function |f’|, we deduce

‘; [f(a) + f(b) +f<a+b)} 22 (a+1) {,%f(a—i-b) +j?f(a—2i—b)H

where
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Since h is a B-function, applying inequality (1.5) for A = Ht yields the following inequality:

L1 (5] - e () e ()

1
'2 2 2
1
<2 n(5) [P @I+ o] [ -2 at
0
Given .
12 te(O,(%)g),
)1—2#* - 1
2% — 1 te((%)z,l),
we have
(L
/|172t°‘|dt / (1—20%)dt + /1 (2% — 1) dt = (%)a(%) + ((11;01‘) 0
0 (3=

Taking o = 1, we obtain the following Bullen inequalities via the Riemann integral for h-convex

function.
Corollary 2.1. Let h be a B-function on (0,1) and assume that the assumptions of Lemma 2.1 hold

If |f'| is a h-convex mapping on [a,b], then

) o] <

2 2
Next, consider some particular cases on h-convexity.
* with s € (0,1] in Theorem 2.1 and Corollary 2.1, we deduce the following

“h(5) I @]+ 17 ®)])-

N | =

1. Putting h(t) =
result.
Corollary 2.2. Assume a and f are defined according to Theorem 2.1. If |f'| is a s-convex function

on [a,b], then

B0 ()] - ZE D () ()]
<P D) Clif @I+ IOl @3)

where Cy, 1s defined by (2.2).
Fora=1,

L0 ety /f ] < 25

2
Putting s = 1 in inequality (2.4), we get the Bullen inequality via the Riemann integral for the

(%)S [F @+ £ O] (24

N =

convex function in (1.2).
2. Setting h(A) = 1 in Theorem 2.1 and Corollary 2.1, we obtain the following new result for the
class of P-function. This also corresponds to the cases s — 0% in inequalities (2.3) and (2.4).
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Corollary 2.3. Assume « and f are defined according to Theorem 2.1. If |f'| is a P-function on

[a,b], then
'; [f(a);f(b) +f<a—2kb)] B 2“;;1:((63:)-: 1) {%ﬂf(a—i_b) ‘*‘jl?f(a;b)}’
< 0, (1 @]+ 170
and .
’; [f(a);f(b) +f(a;b)} - bia/f(t)dt' <2+ o).

1 n
3. Set h(A\) = — Z A¥ in Theorem 2.1 and Corollary 2.1.

3

Corollary 2.4. Assume « and [ are defined according to Theorem 2.1. If |f'| is a n-fractional

polynomial convex mapping on [a,b], then

3PP r ()] - T [ (450 + 2. 5(550))
<P o0y (5 calir@l+ r o]
k=1
and
L) e e

Putting n = 1 in inequality (2.5), we get inequality (1.2).

Theorem 2.2. Let h be a B-function on (0,1), p,q > 1 with %—i— % =1 and assume that o, f are
defined as in Lemma 2.1. If |f'|P is a h-convex mapping on [a,b], we get the following Bullen type

inequality:

[\)

S ) )

</|12ta|th> ( (1)>%[|f( )|p+|f/(b)|p]%
a (/I—Zta|th)‘l’<h<1>>é[|f( NI (26

‘1 [f(a)Jrf(
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Proof. Using the absolute value of identity (2.1), we get

T [ (55 +f‘?f(“2“’)}|

1+t) +(1_t ‘dter a/1|1 2| _t) +<12+t)b)‘dt.
0

B 10 g

_a/|1 2|




88

Bouharket Benaissa, Noureddine Azzouz

Applying Holder inequality and Av + By =275 (A+ B)%, we conclude that

‘; {f(a)%—f(b) +f(a+b)] 207 (a4 1) [jg+f<a+b) +j?f(a—2kb)H

2 2 (b—a)~
a(g/ugtwdt)é(() (o (550 )’
P (5 )

b 1 1
+ _a(/l—Zt"‘|th) </
8
0 0
1 1
b—a a 1—1
< (/|1—2t‘”dt> 21~}
0
1 1
(e G s
2 2
0 0

Assuming | f'|P is an h-convex function, we have

T () - T o w‘(“b) H?—f(“ib)}l

(e e
0 0

[ r@r () or)a)

0

(5o ()]

- (/lu—ztawdt)ézé(/l () n (5] ) Lr@p s o

Applying inequality (1.5) for A = #, we obtain

‘; [f(a)‘;f(b) _~_f<a—2|—b)} B 2“;;1;(2)-: 1) { f(a—i-b) "'j?f(a;_b)H

<05 fu-eena) ((3) 1o s ron?

This completes the proof of the first inequality in (2.6).
For p>1and A, B > 0, we get AP + BP < (A + B)P, yielding the second inequality in (2.6). O
(1-2t), te (0,

11— 27 = 1
(2t — 1)1, te (5,1),

m»—'

Putting o = 1, we have

N =

thus
1 2 1 1
1—-2¢t|7dt = 1—2tth+/2t—1th:7
Jr-era= fa-2nraes [ee-nra—
0 0

and the following Bullen inequalities hold via the Riemann integral for an h-convex function.

D=
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Corollary 2.5. Let h be a B-function on (0,1), p,q > 1 with %—i—% =1 and assume that f are defined
as in Lemma 2.1. If |f'|P is a h-convex mapping on [a,b], we get the following Bullen type inequality:

< () (G) e rery
<2 () (k(3)) @i+ )

Now, some special cases on an h-convex function are established.

1. Given h(M\) = A\* with s € (0, 1] in Theorem 2.2 and Corollary 2.5, we deduce the following
result.

Corollary 2.6. Assume « and f are defined according to Theorem 2.2. If | f'|P is an s-convex function
on [a,b], then

IO ()] - 2D o () g ()|

<2 (fn —2t“|th);<;)z[|f'(a)p+ 7 ®))
0

DN =

=

<hoe (/Il—%alth);(;);[If’(a) PO @)
0
and
b
‘; [f(a)—;f(b) +f<a;rb)} ~ bia/f(t)dt‘
<P () G) r@r e
<2 () G) @l @9

Remark 2.1. Putting s = 1 in (2.8) yields the following: for p,q > 1, where Il) + % =1, if |[f'|Pisa

convex function on [a, b], then
b

fla) + f(b) atb 1 b—a (|f'(@" +|f'®)"\5
‘ [ 2 +f< 2 >}_b—aa/f(t)dt‘<4(q+1)é( ) '

2. Setting h(A) = 1 in Theorem 2.2 and Corollary 2.5 gives the following new result for the class
of P-functions. Consider s — 07 in inequalities (2.7) and (2.8).

(2.9)

[N

2

Corollary 2.7. Assume o and f are defined according to Theorem 2.2. If |f'|P is a P-function on
[a,b], then

'; [f(a);rf(b) +f<a—2kb)} 227 (a4 1) [3g+f(“+b) +j?f(a+b)H

(b—a) 2
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1

<222 (fn —2t“|th>;[|f'(a)|p+ ot <22 (fn —2t“|th);[|f’<a)l 17 0]

0 0

B [f(a);rf(b) Jrf(a;rb)] = ! a/bf(t)dt‘

a

<2 () P @P + 1w <

() @0

1 n
3. Setting h(A) = — Z A¥ in Theorem 2.2 and Corollary 2.5, we get the following new result for
n
k=1
the class of n-fractional polynomial convex functions.

Corollary 2.8. Assume a and f are defined according to Theorem 2.1. If |f'|? is an n-fractional
polynomial convex mapping on [a,b], then

'; [f(a)-;f(b) +f<a—2kb)] B 2“(;1:(3)-: 1) {334(“?) +3?f(a-2kb)H
1 1 n 11 1
< (0/ o)’ (32 (5)") (@p + 7o)
<03t (fu-era) 3 G)) e+ o)
and

) Dr@r+1rme?
<2 (W)é(nznj(;)’l“);’uf'(wuf’(b)]. (2.10)

k=1

Setting n =1 in (2.10) yields inequality (2.9).

3 Applications

We consider the means for arbitrary positive numbers b > a > 0 as follows,

e The arithmetic mean: ;
A@m:“;.

e The generalized logarithmic mean:

bn+1 _ an+1

m)n, TLER—{—l,O}

%@wz(
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Proposition. Let b >a > 0,n > 1 and p > 1. Then the following inequality holds:

‘A(a",b”) + A™(a,b) b—a

— L'(a,b)| < Av (gD pn=1ipy,
2 A(g+1)7

Proof. Applying Remark 2.1 and taking f(t) = t" for t > 0, one gets f'(t) = nt" 1. Since

(7' ®IP)" = nPp(n = D(p(n 1) = r*=H=2 > 0,

the function |f/(¢)|? is convex. O
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