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THE L NEUMANN PROBLEM
FOR HIGHER ORDER ELLIPTIC EQUATIONS



Abstract. We solve the Neumann problem in the half-space Rﬁ“ for higher order elliptic differential
equations with variable self-adjoint ¢-independent coefficients and with boundary data in LP, where
max(1, 2 —¢) <p < 2.

We also establish nontangential and area integral estimates on layer potentials with inputs in L?
or WELP for a similar range of p, based on the known bounds for p > 2; in this case, we may relax

the requirement of self-adjointness.

2020 Mathematics Subject Classification. Primary 35J30, Secondary 35C15.

Key words and phrases. Elliptic equation, higher-order differential equation, Neumann problem,
layer potentials

tgboydyg.  Sdmblbogmos 6godsbols sdm3065 R:L_J"l bobggomlbogmgBo dopemo @oyol gmoglgmo

©08IMIbG YN0 BbGHmEogdolngol Ggmoge Mmzondggemdgmo t=by Esdmyggzorgdgmo jmg-

3030969500 ©s Lsbobmgmm dmbsigdgdom LP Loggdo, Lswpsi max(l, nQ—fQ —eg)<p<2
53Mgmgg EoEgbogos s®Msdbgoo ©0 Dgesd3o®mgmo 0bdgydemmg®o Ygaslgdgdo ¢gbols 3m@gb3o-

sgmgdobmgols dmbs3gdgdom LP sb WELP-80 p-ol dLaoglo 0s3sbmbolmgol, p > 2-0ls (36mdogo

Lobmgmgdol Logygdggmbyg; o8 Ygdmbgggsdo, dglsdmgdgmos mg0mBggmegdagmmdols dmmbmgbols
Yg3bgdggds.



The LP Neumann problem for higher order elliptic equations 31

1 Introduction

In this paper, we study the Neumann boundary value problem and layer potentials for higher order
elliptic differential operators of the form

Lu=(-1)" Y 0%(Aapd’u), (1.1)

lor|=|Bl=m
where m is a positive integer, and with coeflicients A that are t-independent in the sense that
A(z,t) = A(z,s) = A(z) forall z € R" and all s, ¢t € R. (1.2)

Our coefficients may be merely bounded measurable in the n horizontal variables. Second order
operators with ¢-independent coefficients have been studied extensively; see, for example, [2,5-8, 10—
12,19, 25,43-45,47,48,51, 52,56, 57,64]. Higher order operators with ¢-independent coefficients have
been studied by Hofmann and Mayboroda together with the author of the present paper in [15,20-24].

Specifically, in [21,24], we established the following result. Suppose that L is an operator of the
form (1.1) associated to the coefficients A that are t-independent, bounded, self-adjoint in the sense
that Ans = Age whenever |a| = || = m, and satisfy the boundary Gérding inequality

Re Y 0%p(x,1) Aap(x) 0% (x, 1) dz > N[V (-, )] 72 gny (1.3)
la|=|Bl=mn

for all ¢+ € R, all smooth test functions ¢ that are compactly supported in R**!, and some A > 0
independent of ¢ and . Then for every § € L?(R™) there is a solution w, unique up to the adding
polynomials of degree m — 1, to the L? Neumann problem

Lw =0 in R},
My w > g, N (1.4)
AT (V™ 0yw) | L2 @ny + [N+ (VW) || L2 @n) < Cllg] L2 @ny-

Here, J\~f+ is the modified nontangential maximal operator introduced in [51] and given (in Rf_ﬂ) by

N, H(z) sup{( ][ |H(z,1)|? dzdt)m; $>0, lz—y|< s}. (1.5)

B((y,s),5/2)

A7 is the Lusin area integral given by

1/2
dy dt) . (1.6)

At = ( [ [ etz

0 o—y|<t

We adopt the convention that if ¢ appears inside the argument of a tent space operator such as .A;' ,
then it denotes the (n + 1)th coordinate function.
M; w denotes the Neumann boundary values of w, and is the equivalence class of functions given by

geMjw if Z /8“’(,0(96,0) gy(x) dx = Z / 0“9 Anp 0%w (1.7)

[v|=m—1gn |04|:\B|:mRn+1
+

for all smooth test functions ¢ that are compactly supported in R™*!. An integration by parts
argument shows that the right-hand side depends only on the behavior of ¢ near the boundary, and
so M, w is well defined as an operator on the space {melcpbmﬂ : p € O (R

In the second order case 2m = 2, Mgw consists of a single distribution; however, if m > 2,
then, by equality of mixed partials, M; w contains many arrays of distributions, and so is indeed an
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equivalence class. This is the formulation of the Neumann boundary data used in [14,15,20,21,23,24],
and is closely related to the Neumann boundary values for the bilaplacian in [29,60,67,71] and for
general constant coefficient systems in [61,72,73]. We refer the reader to [18,20] for further discussion
of higher order Neumann boundary data.

In the present paper we extend from results for L? boundary data to LP boundary data for p < 2.
The first of the two main results of the present paper is the following theorem. (The second main
result is Theorem 1.2 below.)

Theorem 1.1. Suppose that L is an elliptic operator of the form (1.1) of order 2m associated with
coefficients A that are bounded, t-independent in the sense of formula (1.2), satisfy the ellipticity
condition (1.3), and are self-adjoint in the sense that Aqp(x) = Aga(x) for all |a| = |B| = m and all
xz e R”.

Then there is a positive number € > 0, depending only on the dimension n+ 1, the order 2m of
the operator L, the constant A in the bound (1.3), and ||Al|pe®ny, with the following significance.
Suppose that p satisfies

2n
L——f—) 2. 1.8
max( s <p< (1.8)

Then for every g € LP(R™), there is a solution w, unique up to adding polynomials of degree at most
m — 1, to the LP Neumann problem

Lv =0 in R,
M} v 3 g, R (1.9)
A5 (tV™0w) | Loy + | N4 (VW) Loy < Collgll o)

where Cy, depends only on p, n, m, A, and || A| g @n)-

1.1 The history of the Neumann problem

We now discuss the history of the Neumann problem with boundary data in a Lebesgue space. The
Neumann problem for the Laplacian with LP boundary data is traditionally the problem of finding a
function u such that

—Au=0inQ, v -Vu=g ondf, ||NQ(VU)||L:D(3Q) < CHgHLp(aQ).

Here, NoH(X) = sup{|H(Y)| : |X —Y| < 2dist(Y,09Q)} is the standard nontangential maximal
operator in € and v is the unit outward normal to 0§2. We observe that if Au = 0 in Q and u and

0N are sufficiently smooth, then
/ch-VudU:/Vgo-Vu
Q

o0

and so the formulation of higher order Neumann boundary values (1.7) is in the spirit of the original
harmonic Neumann problem. The harmonic Neumann problem with L? boundary data was shown to
be well posed in [50] for all bounded Lipschitz domains 2, and the Neumann problem with L? data
for p with 1 < p < 24 ¢ was shown to be well posed in [31], where € > 0 depends on .

In [51], the LP Neumann problem for more general second order equations

—div(AVu) =0 in Q, v-AVu=g on 09, ||J\~fQ(Vu)HLp(aQ) < Cllglle )

was shown to be well posed for 1 < p < 2 + ¢ in starlike Lipschitz domains with coefficients that are
bounded, elliptic, real, symmetric, and independent of the radial coordinate. (This situation is very
similar to the case of t-independent coefficients in the domain above a Lipschitz graph.) Here, Ngz is
a suitable modification of Ng; we remark that if Q = ]R:L_H, then Nq = NJF is given by formula (1.5).

The case of real nonsymmetric ¢-independent coefficients was addressed in [52,64], in which the
LP Neumann problem was solved in two dimensions for all p with 1 < p < 1+ e&. (As shown in the
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appendix to [52], there exist bounded real nonsymmetric ¢t-independent coefficients for which the L?

Neumann problem is ill posed.) The well posedness of the L? Neumann problem in the domain above

a Lipschitz graph was shown to be stable under ¢-independent perturbation in [5] (and, under certain

additional assumptions, in [2]), and some additional extrapolation type results were established in [7].
The LP Neumann problem for a second order system of equations can be written as

n+ln+1 N
(L) =D 3> 0, (A0s,up) =0 in Qfor 1< j < N,

a=1p=1k=1 (1.10)
M d=g, [INa(VD)|Lron) < Colldllieon),

where Mg U is given by

n+ln+l1 N

N N
NI =g i z/%do—zzzz/a%%ﬂamuk
J=1 Q

a=1p=1j=1 k=1

for all g € C§°(R™1). As observed in [67], the traction boundary value problem for the Lamé system
of elastostatics can be written in this form. The traction problem and the Neumann problem for the
Stokes system, with boundary data in LP(92), 2—e < p < 2+¢, were shown to be well posed in [34,38];
in [67], Shen observed that their arguments apply to general second order systems with real symmetric
constant coefficients that satisfy an appropriate ellipticity condition. The traction boundary problem
was shown to be well posed for L? boundary data, 1 < p < 2, in [32]; their arguments relied on
the fact that the Lamé system is defined in three dimensions, and applies to many more general
three-dimensional (but not higher-dimensional) systems. In [67], Shen showed that if Q C R"T! is
a Lipschitz domain with n+1 > 4, then for any second order elliptic system with real symmetric
constant coefficients, the LP Neumann problem (1.10) is well posed whenever % —e<p<2

Turning to higher order equations, the LP Neumann problem for the biharmonic equation is
given by

(=A)Pu=0inQ, MJusg, [No(VZu)|Leo0) < ColldllLeon),

where
n+1
Mgu >4 if /pAuA<p+ (I1—p Z O ey 00,0 = /!j.VgodU
Q Jk=1 o0

for all sufficiently smooth test functions . The constant p is called the Poisson ratio; we remark that
an appropriate choice of coeflicients A, for the biharmonic equation yields

- H]Ri“
My u=M," wu,

where Mjg u is given by formula (1.7). The biharmonic Neumann problem was shown to be well posed
in bounded Lipschitz domains for p sufficiently close to 2 in [71] in dimension n+ 1 > 2, and for p
with n—H — e < p<2in [67] in dimension n + 1 > 4. (The case of C' domains in R? was considered
earlier in [29].)

Finally, the L? Neumann problem (1.4) was shown to be well posed in [21,24].

We observe that Shen’s paper [67] yields the well posedness of the L? Neumann problem for both
the biharmonic equation and for constant coefficient second order systems, for the same range of p as
in our Theorem 1.1. The present paper builds heavily on our preceding paper [15], and the techniques
of [15] owe much to the techniques of Shen. However, we remark that the arguments of [15] are more
closely related to those of Shen’s earlier paper [65] concerning the Dirichlet problem than to those of
the later paper [67] concerning the Neumann problem.

Our proof of Theorem 1.1 involves the well posedness of the subregular Neumann problem as
established in [15]. The subregular Neumann problem is the Neumann problem with boundary data
in W-1P(R"). Here, W~2P(R") is the dual space to W1# (R"), the homogeneous Sobolev space

in R"™ with [|¢llyi10r gey = V)@l e @n), where 1/p+1/p" =1 and V) denotes the gradient in R”
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(rather than R™*1). We will discuss the main result of [15] in more detail in Section 7. Here, we
only mention that subregular Neumann problems have received relatively little study; see [71] (the
harmonic and biharmonic problems), [7,10] (second order equations with t-independent coefficents),
and [15,21,24] (higher order equations with ¢-independent coefficients).

The sharp range of p for which a higher order LP Neumann problem is well posed is not known, even
for special cases such as the biharmonic Neumann problem. However, the results for related problems
are somewhat suggestive. Specifically, the range of p for which the biharmonic W* Dirichlet problem

(=Au=0inQ Vu=f ondQ [No(V*u)|rr@2) < Clflwieon

is well posed in all Lipschitz domains Q@ C R"*! is known to be [6/5,2] in dimension n+1 = 4,
to be [4/3,2] in dimension n+ 1 = 5, 6, or 7, and is known to be a subset of [4/3,2] in dimension
n+ 1> 8. See [65,66,70] for the well posedness results, [33, Section 5] and [62, Theorem 10.7] for the
ill posedness results for the L*" Dirichlet problem, and [53] for the duality between the L¥ and WP
Dirichlet problems for the bilaplacian.

This suggests that the L? Neumann problem (1.9) is probably not well posed for the full range
1 < p <2 in dimension 4 and higher.

1.2 Layer potentials

We will prove Theorem 1.1 by using the method of layer potentials. In the second order case 2m = 2,
the double and single layer potentials are explicitly defined integral operators given by

DA(X) = / VY) A VVEL (Y, X) f(Y) do(Y),

o0

Skg(X /EL (X,Y) g(Y)do(Y),

where v is the unit outward normal vector to the domain Q@ C R"*! and E' is the fundamental
solution for the operator L in R™*!. For reasonably well behaved domains 2 and inputs f and g, the
outputs D& f and S§g are locally Sobolev functions satisfying L(Dg&) = L(S5g) = 0 away from 0.
Certain other properties of layer potentials (in particular, the Green formula and jump relations) are
well known. It is possible to generalize layer potentials to the case of higher order operators. This
may be done by using integral kernels composed of various derivatives of higher order fundamental
solutions (see [1,28,29,60,61,67,71]) or by using the Lax-Milgram lemma to construct operators with
appropriate properties (bee [14 20] or Subsection 2.4 below).

If the operator f — MQ Dg f is invertible ® — N, for some function spaces ® and I, where M’ A
is an appropriate Neumann boundary operator, then the function u = DA((MQ DA) 1g) is a solution
to the Neumann problem

Lu=0 in Q, Mgu:g

with boundary data g. Furthermore, we may establish the bounds on u (such as the nontangential

bound HNQ (V™u)||Lr90) < Cpllgllm) by establishing the corresponding bound

”]\NIQ(Vngf)”LF(BQ) < Gl fllo

on the double layer potential.
Similarly, if g — Tr¥ melSég is invertible 91 — ®, then solutions to the Dirichlet problem

Lu=0inQ, Tr*Vv"lu=Ff

exist for all f € D.

This is the classic method of layer potentials. This method of constructing solutions to the Dirichlet
or Neumann problem was used in [31,37,39,58,69,74] in the case of harmonic functions (that is, in the
case L = —A), in [34,36,38,41,67] for second order constant coefficient systems, in [2,12,19,43,47] for
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second order operators with variable t-independent coefficients, in [1,28,29,60,61,67,71] for higher order
operators with constant coefficients, and in [21] for higher order operators with variable t-independent
coefficients. ) .

We will construct solutions to problem (1.9) by showing that MX DA is invertible Mjg DA
WALP (R™) — (WA%P | (R™))*, where WAZP | (R™) is the space of all arrays of functions in W7?(R™)
(or LP(R™) if j = 0) that can arise as the gradient V™~! of order m — 1 of a common function. If
m > 2, then by the equality of mixed partials, WA?? | (R") is a proper subspace of W/ (R™). Then
(WAE,’IP_, 1(R™))* is a quotient space of LP(R™) whose elements are equivalence classes of L? functions;
in light of definition (1.7) of Neumann boundary values, Mjg D4 is naturally such an equivalence
class.

Invertibility of the operator M} D4 : WALP (R™) — (WA%P  (R™))* yields existence of solutions
to problem (1.9) if, in addition, we have the estimates

||A§r(tvm5tDAf)HLp(Rn) + [N (VDA )| 1oy < Cpr'HWAml(Rny

Thus, we have to establish these estimates for p and A as in Theorem 1.1. In fact, we will establish
these estimates for A satisfying weaker conditions. (In particular, we do not need A to be self-adjoint
to bound the layer potentials.) Furthermore, we will establish estimates on the single layer potential
and additional estimates on the double layer potential.

To discuss known the results for higher order layer potentials and to state the bounds on layer
potentials to be established in this paper, we introduce some terminology. We will consider the
coeflicients A that satisfy the ellipticity condition

Re Z 0p(w,t) Aap(x) 0P p(x,t) dudt > N|V™¢| 72 @1 (1.11)
Rrnt+1 lal=18]=

for all p € C§°(R™1) and some A > 0 independent of . Observe that condition (1.11) is weaker than
condition (1.3) of Theorem 1.1.

Meyers’s reverse Holder inequality for gradients of solutions is well known. In [9,27], it was
generalized to operators of higher order. That is, if L is an operator of order 2m, m > 1, of the form
(1.1) and associated to bounded coeflicients A that satisfy the ellipticity condition (1.11), then there
is a constant € > 0 such that if 2 < p <2+ ¢, then

1/p 1/2
m C(O7L7p’2) m, |2
( / Y U|p> Sr(n+1)(1/2—1/p)< / V™ ul (1.12)

B(Xo,r) B(Xo,2r)

whenever u € W"2(B(Xy,2r)) and Lu = 0 in B(Xy, 2r).

In [40, Section 9, Lemma 2], it was shown that if L = —A, then the L? norm on the right-hand
side can be replaced by an L? norm for any ¢ < 2. The argument generalizes to arbitrary elliptic
operators; see [13, Theorem 24]. Furthermore, the Gagliardo—Nirenberg—Sobolev and Caccioppoli
inequalities allow us to establish bounds on the lower order derivatives; see [13, Section 4].

Thus, we define p;f 1, as the extended real number such that, whenever p and ¢ satisfy 0 < ¢ <p <

p;L, there is a constant ¢(j, L, p, q) < oo such that

1/p . 1/q
—J c(j,L,p,q) m—j
( / v Ju|p> S S (/a-1/p) ( / v j“|q) (1.13)

B(Xo,r) B(Xo,2r)
whenever u € W™2(B(X,2r)) and Lu = 0 in B(Xo,2r). We define p; 1 by

1 1
—+——=1 (1.14)

+
Pir  PjL

By the results mentioned above, p 1, exists whenever 0 < j < m. By [9, Theorem 49], [13, Section 4],
and [15, Propositions 3.3 and 3. 6] 'if A is bounded, t-independent in the sense of formula (1.2), and
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elliptic in the sense of formula (1.11), then there are numbers £ > 0 and £ > 0, depending only on the
order 2m of the operator L, the ambient dimension n + 1, the number X in the ellipticity condition
(1.11), and the norm || A| ze®n) of the coefficients, such that the numbers p;'L satisfy

pSﬁL:oo, piL:oo if n+1=2,
pa:LZZJre, piL:oo if n+1=3,
2

ng >2+e¢, pr > 7n2—|—5 if n+12>4.

: ; n—
Therefore, there is an € > 0 depending only on n and e such that
Por =1, P =1 if n+1=2,
Pop <2-¢ pp=1 if n+1=3, (1.15)

2n

“n+2
Remark 1.1. If p < 2+e¢, orif p < oo and n + 1 = 2, then again by [13, Section 4] and [15, Section 3],
the numbers ¢(0, L, p, q) in the bound (1.13) may be bounded by constants depending only on p, ¢

and the standard parameters m, n, A, and ||A||L~. The same is true of the numbers ¢(1, L, p, q) if
n+1§3andp<ooorn—|—124andp<%4—6.
We can now discuss old and new bounds on layer potentials. In [15,20,22,24], Hofmann, Mayboroda

and the author of the present paper showed that if L is an operator of the form (1.1) associated to
the bounded elliptic t-independent coefficients, then there is € > 0 such that

—g ifn+1>4.

IN. (V" SEG) | Le(ny < C(O, L)1l pony, 2—e<p< Po.L (1.16)
NV DA@)| Loy < C(0, L, p)||<P||WA1 v &y 27 € <D <Py (1.17)
A5 (tV" 0,8 g) || Loy < C(L, L, p)gllLr@ny, 2—€ <p<pip, (1.18)
A5 (tV ™ DAQ) | Lo (my < C(1, L, PIPlhware @ny, 2<p< 20 (1.19)
A5tV SER) | o@ny < C(L, Ly p) IRl Loy, 2—e <p <pfy, (1.20)
A5tV DA F)l| 1o ey < C(1, L, p)”f”WAOP @&y 25D <pip, (1.21)
IN(V" L SER) | Lo ny < C(L, L p) || poeny, 2—€ <p<pfy, (1.22)
[NV DA S| oy < C(LL L p)”.f”WAOP (mny 2-E<p<piy (1.23)

where p 1, is as in the bound (1.13), and C(j, L, p) is a constant depending only on m, n, A, || A|| <,
p, and the number ¢(j, L, p, 2) in the bound (1.13). These bounds played a crucial role in solving the
L? Neumann problem (1.4) (and the subregular problem of [15]).

Here,

N*H(x):sup{( ][ |H(z,t)2dzdt)1/2: sER, |x—y|<|s|}, (1.24)

((y,8),151/2)
, dydt \'?
1.2
(/ J |tn+1) (1.25)
—00 |z—y|<|t|

are two-sided analogues of the nontangential and area integral operators of formulas (1.5) and (1.6).
The second of the two main results of the present paper is the following theorem, in which we
expand the range of the parameter p in the bounds (1.16)—(1.23) to include more values below 2.

Theorem 1.2. Suppose that L is an operator of the form (1.1) of order 2m associated with bounded
coefficients A that are t-independent in the sense of formula (1.2) and satisfy the ellipticity condition
(1.11) for some A > 0.
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Then the double and single layer potentials D2, ST and Sé, originally defined as in Subsection 2.4
below, extend by density to operators that satisfy the following bounds for all p in the given ranges and
all inputs f, g, h, and ¢ in the indicated spaces:

INA(V"S"G) | Lo (ny < C(L L )Gl o@n)s Prpe <P <2, (1.26)
IN(V"DAG)| Lo ey < CLL", ) Bllyiare @y Proe <P <2 (1.27)
A5tV 0.8 G) | o (ny < C(L LY, )Gl Lonys P1p- <P <2 (1.28)
A3 (V™0 DA@) Loy < CL LY p) 1@t @nys Pro- <P <2 (1.29)
A5 (tV " SER) || 1o ey < CO, L%, )|l Lony, Py <P <2, (1.30)
A5V DA L) | Lo @ny < CO, L P F a0 @nys Pope <P <2 (1.31)
IN(V L SER) | Lo @y < C(O, L7, p) Al Lo @n)s Poe <P <2 (1.32)
[NV DA | oy < C’(QL*,p’)HfHWAer &y Pope <P <2 (1.33)

Here, the numbers p; ;. are as in formulas (1.13), (1.14) and, in particular, satisfy the bounds (1.15).
The constants C(j, L*,p") depend only on the standard parameters m, n, A, |A| g ®n), the number
p, and the constants ¢(j, L*,p',2) in the bound (1.13), where 1/p+1/p’ = 1.

The use of the numbers pjf ;, allows us to efficiently summarize several known special cases from
the case 2m = 2.

In particular, if A is constant then pSﬁL = piL =o00. If n4+1 =2 and A is t-independent, then we
still have that paL = pf’L = o0; see [11, Théoréme I1.2] in the case 2m = 2 and [15, Proposition 3.3]
(reproduced in the bound (1.15) above) in the general case. Thus, in either of these two special cases,
Theorem 1.2, and the bounds (1.16)—(1.23), imply that all eight bounds (1.26)—(1.33) (or (1.16)—
(1.23)) are valid for all p with 1 < p < co. If 2m = 2 and if A is constant or n + 1 = 2, then all eight
bounds are known (see [10, Theorem 12.7]) for 1 < p < oco.

Furthermore, if the well known De Giorgi-Nash-Moser regularity conditions are valid (which is
true if A is real and 2m = 2, and which by [2, Appendix B] is true for complex t-independent
coefficients in dimension n + 1 = 3), then p]; = oo, and so the bounds (1.28) and (1.29) are valid for
1 < p < o0, the bounds (1.26) and (1.27) are valid for 1 < p < 24 ¢, and the bounds (1.30)~(1.33)
are valid for 2 — e < p < co. The 24+ < p < oo case of the bound (1.29) was established in [15];
the remaining bounds on layer potentials were established earlier for the second order t-independent
operators satisfying the De Giorgi-Nash-Moser conditions in [7, 43,44, 46, 47].

Finally, in the general case (with n + 1 > 4), [15, Proposition 3.6] (reproduced in the bound (1.15)
above) implies that the bounds (1.28) and (1.29) are valid for nQ—fQ —e < p< -2 +¢, the bounds
(1.26) and (1.27) are valid for % — € < p < 2+ ¢, and the bounds (1.30)—(1.33) are valid for
2—e<p< 2 +e Again, the 24+ ¢ < p < 2% + ¢ cases of the bounds (1.28) and (1.29) are
due to [15]; the remaining bounds on the layer potentials for general second order operators with

t-independent coefficients are due to [10, Theorem 12.7].

Remark 1.2. In [4], Auscher identifies two numbers, which he calls p4 (L) and ¢ (L), that govern the
L? behavior of a number of operators related to the operator L, such as the Riesz transform L'/2
and various Littlewood—Paley—Stein type functionals. We now remark on the connections between
these numbers and the numbers pf ;, mentioned above and governing (or at least guaranteeing) the
LP behavior of layer potentials. 7

In [4, Corollary 5.24], Auscher identifies the number g (L) as the supremum of the exponents p
for which L extends to an isomorphism from W™ (R"*1) to W —mP(R"H1),

It is known that invertibility of L : WP (R"+1) — W~"P(R"1) is equivalent to the following



38 Ariel Barton

statement: there is ¢(0, L, p, 2) > 0 such that if Lu = div,, H in B(Xy, 2r), then

()"

B(Xo,r)
1/p ~ 1/2
~ . C(O,LJD,Q) m
caorpa( [ UEP) GRS vrap) L sy

B(Xo,2r) B(Xo,2r)

Observe that this is a generalization of the bound (1.12). Validity of the bound 1.34 for at least some
p > 2 was proven in [59] in the second order case, and in [13,27] in the higher order case.

The argument that invertibility of L yields the bound (1.34) is clearly stated in the second order
case in the proof of [25, Proposition 3.9], and is given explicitly in the higher order case in [16,
Theorems 64 and 66]. The converse (that the bound (1.34) yields invertibility of L) may be easily
established by using the invertibility of L : W2 (R*t1) — W ~"2(R"+1) (which follows from the Lax-
Milgram lemma), letting 7 — oo and applying density (which yields the boundedness of L~!div,, :
LP — WP ), and using the Hahn—-Banach and Riesz representation theorems to show that div,, is a
surjection from LP(R"1) to WP (R"!) with a bounded right inverse.

Thus, the exponent g (L) is the supremum of the exponents p for which the bound (1.34) is valid.
But the bound (1.34) clearly implies the bound (1.12), and thus is valid for the same or smaller range
of p; so,

q+(L) <pg

and the two numbers are closely connected.
The number py (L) of [4] is noted in [4, Section 8.2] to satisfy

1 < ma (0 1 m )
x(0,————=).
p+(L) — (L) n+1

The Gagliardo—Nirenberg—Sobolev inequality and the Caccioppoli inequality readily show that the
number p;} 1, also satisfies

1 < (0 1 m )
<max (0, — —
P pg—,L n+1

)

and so the number p;l’ 1, of the present paper and the number p, (L) of [4] do satisfy similar inequalities
and it is natural to conjecture that they are also related.

1.3 Outline

The outline of this paper is as follows. In Section 2, we will define our terminology. In Section 3, we
will state some known results of the theory that we will use several times throughout the paper, and
(in Subsection 3.3) will establish a number of results concerning the tent space operators, that is, the
operators N, AT, N,, Aj given by formulas (1.5), (1.6), (1.24), and (1.25), as well as the related
Carleson operators Eli, ¢} given by formulas (2.2) and (2.3).

We will prove Theorem 1.2 in Section 5. We will prove it by duality with the Newton potential,
and so in Section 4 we will study the Newton potential. Specifically, we will establish duality formulas
relating the Newton potential to the double and single layer potentials, then bound the Newton poten-
tial using the known bounds (1.16)—(1.23) on the double and single layer potential, a decomposition
argument in the spirit of [46, Lemma 4.1], and the good-A results of [15] modeled on those of [65].

In Section 7, we will conclude the paper by proving Theorem 1.1 using the method of layer
potentials. A crucial ingredient in the proof of uniqueness of solutions is the Green formula; this
formula is the subject of Section 6.
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2 Definitions

In this section, we will provide precise definitions of the notation and concepts used throughout this
paper.

We will always work with an operator L of order 2m in the divergence form (1.1) (interpreted in
the weak sense of formula (2.7) below) acting on functions defined in open sets in R** n +1 > 2.

As usual, we let B(X,r) denote the ball in R"*! of radius r and center X. We let R?™" and
R™*! denote the upper and lower half-spaces R" x (0, 00) and R” x (—o0,0); we will identify R”™ with
IR If Q is a cube, we will let £(Q) be its side length, and let ¢Q be the concentric cube of side
length ¢/(Q). If E is a set of finite measure, let

][f(x) dz = ;'/f(x) dz.

If FE is a measurable set in the Euclidean space and H is a globally defined function, we will let
1gH = xgH, where xg is the characteristic function of E. If H is defined in all of F, but is not
globally defined, we will let 1z H be the extension of H by zero, that is,

H(X), Xe€E,
0, otherwise.

1pH(X) = {
We will use 11 as a shorthand for IRTL

2.1 Multiindices and arrays of functions

We will routinely work with multiindices in (Ng)"*!. (We will occasionally work with multiindices in
(Ng)™.) Here, Ny denotes the nonnegative integers. If ¢ = ((1,(,...,(nt1) is a multiindex, then we
define |¢| and 9 as [¢| = ¢+ Co + - + (o1 and 8¢ = 951 0S2 --- gt

Recall that a vector H is a list of numbers (or functions) indexed by integers j with 1 < j < N for
some N > 1. We similarly let an array H be a list of numbers or functions indexed by multiindices ¢
with |¢| = k for some k > 1. In particular, if ¢ is a function with weak derivatives of order up to k,
then we view V¥ as such an array.

The inner product of two such arrays of functions F and G defined in a measurable set © in the
Euclidean space is given by

(F,.G), = /Fg(X) Ge(X)dX.

[CI=k o

2.2 Function spaces and Dirichlet boundary values

Let © be a measurable set in the Euclidean space. Let C§°(€2) be the space of all smooth functions
supported in a compact subset of Q2. Let LP(£2) denote the usual Lebesgue space with respect to the
Lebesgue measure with the standard norm given by

1/p
Ifll ey = (/f(m)|pda:> .
)

If Q is a connected open set, then we let the homogeneous Sobolev space V.V"”"Z’(Q) be the space of
equivalence classes of functions u that are locally integrable in 2 and have weak derivatives in €2 of
order up to k in the distributional sense, and whose kth gradient V¥u lies in LP(£2). Two functions
are equivalent if their difference is a polynomial of order at most £ — 1. We impose the norm

lallprs iy = 1V%ulzo -

Then u is equal to a polynomial of order at most k£ — 1 (and thus equivalent to zero) if and only if its
WkP(Q)-norm is zero.
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If 1 < p < oo, then W—17' (R™) denotes the dual space to W“’(R"), where 1/p+ 1/p’ = 1; this is
a space of distributions on R™.
The use of a dot to denote homogeneous Sobolev spaces (as opposed to the inhomogeneous spaces

WHEP(Q) with [[u[7.. p(Q) = Z NE uHLP(Q ) is by now standard. The use of a dot to denote arrays

of functions, as in Subsect1on 2 1, is also standard (see, for example, [1,28,29, 60,61, 63,66]). We
apologize for any confusion arising from this overloading of notation, but the conventions of these
fields seem to require it.

We say that u € L} () or u € VVl’Zcp(Q) if u € LP(U) or u € W*P(U) for any bounded open set
U with U C Q.

We will need a number of more specialized norms on functions. In the introduction, we defined
the nontangential maximal function N, N, and the Lusin area integral A3, Aj. See formulas (1.5),
(1.24) and (1.6), (1.25). We will also need the corresponding operators in the lower half-space; thus,
we define

_ 1/2
NiH(zx) = sup ][ |H(z,t)|? dzdt) 08>0, [r—yl< s}, (2.1)

B((y,%5),s/2)

dy dt\*
2
(/ / :I:t | tn+1>

0 |z—y|<t

for all x € R™.
We will need one other tent space operator. Following [30,46], the averaged Carleson operator is

given by
N 1/2
CEH(z) = sup — // ( ][ |H(z,t)|2dzdt> dsdy (2.2)
Q3x |Q| S

B((y,+s),5/2)

where the supremum is taken over the cubes @ in R™ containing x. We will let the two-sided averaged
Carleson operator be given by

CiH(z) = max(¢] H(z), €7 H(z)). (2.3)

We adopt the convention that if ¢ appears inside the argument of one of the above operators, then
it denotes the (n + 1)th coordinate function.
Following [23], we define the boundary values Tr* u of a function u defined in R by

TrE u = fif tl_igli”u("t) _f||L1(K) =0 (2.4)

for all compact sets K C R™. We define
Trj[ u = Tr Viu. (2.5)

We remark that if Vu is locally integrable up to the boundary, then Tr* u exists and, furthermore,
Tr* u coincides with the traditional trace in the sense of Sobolev spaces. Furthermore, if Vu is locally
integrable in a neighborhood of the boundary, then Tr™ v = Tr™ u; in this case, we will refer to the
boundary values (from either side) as Tru.

We are interested in the functions with boundary data in the Lebesgue or Sobolev spaces. However,
observe that if j > 1, then the components of TrjE u are the derivatives of a common function and
so must satisfy certain compatibility conditions. We thus define the following Whitney—Lebesgue,
Whitney—Sobolev and Whitney-Besov spaces of arrays that satisfy these conditions.

Definition 2.1. Let

D= { Trom_1 @ : ¢ is smooth and compactly supported in R”+1}.
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If 1 < p < oo, then we let WA%” | (R") be the closure of the set ® in LP(R™). We let WAL? | (R™)
be the closure of © in WP (R"). Finally, we let WA}H/EIQ (R™) be the closure of © in the Besov space

B;/z’z(R”); the norm in this space can be written as

1/2

122y = ([ \FC@OIdE) 26)

]Rn
where fdenotes the Fourier transform of f in R™.

Remark 2.1. Tt is widely known that f € WA:,{E% (R™) if and only if f = Tr, | F for some F with
V™F € LA(R'}™). This was essentially proven in [49,55]; see [22, Lemma 2.6] for further discussion.
Remark 2.2. There is an extensive theory of Besov spaces (see, for example, [68]). We will make use
only of the Besov space B, 1/2.2 (R™) given by formula (2.6) and the space By 1/2, 2(R") This space has

the norm
1/2
g 1/2,2 n) = /g ) .
loll 52 ( 9P

The two important properties of this space we will use are, first, that B 1/2, 2(R”) is the dual space to

Bé/2 2(]R"), and, second, that f € B;/Q 2(]R”) if and only if the gradient V f exists in the distributional

sense and satisfies vaHBQ—I/Q,Z(R") ~ ||f\|321/2,2(Rn).

2.3 Elliptic differential operators and Neumann boundary values

Let A = (Aag) be a matrix of measurable coefficients defined on R, indexed by multtiindices «,
B with |a| = |8| = m. If F is an array indexed by multiindices of length m, then AF is the array

given by
Flo= > AusFs.
|B|=m
Let L be the 2mth-order divergence form operator associated with A. The weak formulation of
such an operator is given by

Lu =0 in Q in the weak sense if (V"p, AV™u)q =0 for all ¢ € C5°(Q). (2.7)

Throughout we require our coefficients to be pointwise bounded and to satisfy the Garding inequality
(1.11), which by density we may restate as

Re (V™p, AV 0)pn1 > AV 0| 72gns1y for all o € W™ (R™H)

for some A > 0. The stronger Garding inequality (1.3) will play a minimal role in this paper; it is
needed only because the proof of the primary results of [21] required this stronger inequality, the
paper [15] used the results of [21], and our proof of Theorem 1.1 uses the results of [15].

We let L* be the elliptic operator associated with the adjoint matrix A*, where (4%),5 = Agq.

Recall from the introduction that the Neumann boundary values of a solution w to Lw = 0 in
R} that satisfies estimates as in the problem (1.4) or (1.9) are given by formula (1.7).

We will also be concerned with the solutions u or v to Lu = 0 that satisfy u € W™2(R}*") or
A (tV™u) e LV (R™) for p/ with 1 < p/ < oc.

Ifue Wm’Q(]R{iH), then we can still use formula (1.7) to define M; u. Furthermore, by density,
if ue W™2(R%™) and M} u is given by formula (1.7), then

(Mfu, T}, @)y, = (AV™0, V™ P)gyr forall p € Wm2(REH. (2.8)

Thus, if u € W™2(R"-"), then M} u is a bounded linear operator on WA,IT{:Q (R™).
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If v satisfies AF (tV™u) € LP (R™), then V™0 may not be locally integrable up to the boundary
and thus the integral on the right-hand side of formula (1.7) may not converge. Thus, the definition of
Mj‘ v in this case is more delicate. We refer the reader to [23, Section 2.3.2] for the precise formulation
of the Neumann boundary values M, v of a solution v to Lv = 0 with AJ (tV™v) € L¥' (R™).

The numbers C' and ¢ denote the constants whose value may change from line to line, but which
are always positive and depend only on the dimension n + 1, the order 2m of any relevant operators,
the bound ||A[ -~ ®n) on the coefficients, and the number X in the bound (1.11). We say that
A =~ B if there are some positive constants £ and C depending only on the above quantities such that
eB< A<CB.

The numbers p;:L are always as in the bound (1.13). The notation C(j, L,p) denotes a constant
that depends only on the standard parameters n, m, A, ||A||L~®n), the number p, and the constant
¢(4, L,p,2) in the bound (1.13). (If p is small enough, then ¢(j, L, p, 2) may be taken as depending only
on p and the standard parameters, and so in this case we may simply write C), rather than C(j, L, p).
See Remark 1.1.)

2.4 Potential operators

In this section, we will define the double and single layer potentials of Theorem 1.2.

We will also define the Newton potential and use the Newton potential to define the double layer
potential. Furthermore, we will prove Theorem 1.2 by establishing various bounds on the Newton
potential and using duality to pass to estimates on the double and single layer potentials.

For any H € L2 (R™*1), by the Lax-Milgram lemma, there is a unique function X H in Wm’Q(R""'l)
that satisfies

(V™Mp, AV'TIFH ), = (V70 H)gas1 for all o € W™2(R™), (2.9)

We will use the operator II” operator frequently, and refer it as the Newton potential. This rep-

resents a break from tradition, as the traditional Newton potential N’ is usually taken to satisfy
<vm§07 AVmNLH>]R"+1 = <507 H>]R"+1 .

We record here that, by [13, Lemma 43], there is some € > 0 such that if 2 —e < r < 2 + ¢, then

IV IEH | 1 gty < Cr || H| pr o) (2.10)

for all H € L"(R™t1) N L2(R™1).

We are interested in the gradient V"~ 'TIX H of order m—1. However, II* H, as defined by formula
(2.9), is an element of W™2(R"*1), and as such, it is the gradient V"II* H of order m that is well
defined; V™ IIX H is defined only up to adding constants.

We may fix an additive normalization as follows. If n +1 > 3, then by the Gagliardo—Nirenberg—
Sobolev inequality (see, for example, [35, Section 5.6]), there is a unique additive normalization of
V7™~ IE H such that

[V I H || pa gy < C| V™ IIEH || 2@ty (2.11)
where (n+1)/¢ = (n+1)/2 — 1 (and, in particular, where ¢ < c0).

Ifn+1=2 let r < 2beasin the bound (2.10). If He L?(R™*!) is compactly supported or, more

generally, if H € L2(R"t1) 0 L"(R™*1), then, again by the Gagliardo-Nirenberg-Sobolev inequality,
there is a unique additive normalization of V™~ 'II* H such that

IV H | pagey < Cr |V IIEH || e (2, (2.12)

where 2/g = 2/r — 1 (and so again ¢ < 00).

We will use this additive normalization throughout.

We now define the double layer potential. Suppose that _f € WA%E% (R™). As mentioned in
Remark 2.1, f = Tr,, | F for some F € Wm’2(RTrl). We define

DAf = —ITI*(1_AV™F) +1_F. (2.13)



The LP Neumann problem for higher order elliptic equations 43

This operator is well defined, that is, does not depend on the choice of F. See [20, Section 2.4]
or [14, Section 4]. Using the bounds (1.17) and (1.23), we may extend D by density to an operator
on all of WAf,ﬂl(R”), for k € {0,1} and for an appropriate range of p.

We now define the single layer potential. Let § be a bounded linear operator on WA:,{E% (R™).

Then by Remark 2.1, F — (Tr,,_1 F,§)g~ is a bounded linear operator on Wm™2(R"1). By the
Lax-Milgram lemma, there is a unique function S¥g € W 2(R"*1) that satisfies

(VMo AV™SEG) oy = (Trm_1 9, @) for all p € W™2(R™M), (2.14)

See [14]. We mote that formula (2.14) is also meaningful and S'g is defined for ¢ € B;l/z’z(R”).
This definition coincides with that of S*§ involving the Newton potential given in [20,22]. Using the
bound (1.16), we may extend S” by density to an operator on all of LP(R") for all 2 — ¢ < p < pSCL.

Remark 2.3. If L is an operator of the form (2.7), then L may generally be associated to many choices
of coefficients A; for example, if A,g = Ava/@ + Mg, where M is a constant and M,g = —Mpg,, then
the operators associated to A and A are equal. The single layer potential S depends only on the
operator L, while the double layer potential DA depends on the particular choice of coefficients A.

In [24], the operator S& was defined in terms of integrals involving the fundamental solution. In
the present paper, we simply define S& as the operator satisfying [24, formulas (4.5-4.6)]. These
formulas are as follows. If ¢ is a multiindex, then é. is the unit array associated to the multiindex ¢;
that is,

(éc)¢ =1, (éc)g =0 whenever |0| =|(| and 6 # (. (2.15)

Let h € B;/Q’Q(R”)OB;UZQ(R"). Suppose that « and v are multiindices with || = m and |y| = m—1;
in particular, we require that all entries of v be nonnegative. Then

VSE(héq)(x,t) = =V™SY((05,h)é,)(z,1) if 1<j<n and a=7+§ (2.16)

and
VTISE(héy)(x,t) = =V 10 SE(hey) (2,t) if o =7+ &,p1. (2.17)

We define Séil, for general h by linearity. As shown in [24, Lemma 4.4], S& is well defined in the sense
that if 1 < a,41 < m—1, then we may use either formula (2.16) or (2.17) to define V'S (hé, ), and
furthermore, if ay > 1 and ay > 1, then the value of the right-hand side of formula (2.16) is the same
whether we choose j =k or j = /.

Furthermore, by [24, Lemma 4.8], if h € L2(R") C B;/Q’Q(R”) N BQ_I/Q’Q(R”), then there is a
(necessarily unique) additive normalization of V"~ 'S%h that satisfies

lim ||V SEA(- =0.

t—+oo

Dl

Using the bound (1.22), we may extend S& by density to an operator on all of LP(R") for 2—e < p <
+
Pi1-

3 Preliminaries

In this section, we will discuss a few known results and establish some general results that will be of
use throughout the paper.

Specifically, in Subsection 3.1, we will discuss the change of variables (z,t) — (x,—t), and how
it allows us to easily generalize from the upper half-space to the lower half-space. In Subsection 3.2,
we will list some known results from the theory of solutions to elliptic equations Lu = 0. Finally, in
Subsection 3.3, we will establish some general results involving tent spaces, that is, spaces of functions
H for which the tent space norms Ny H, A H or ¢ H lie in LP(R").
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3.1 The lower half-space

It is often notationally convenient to establish the bounds only in the upper half-space and to use a
change of variables arguments to generalize to the lower half-space.

The change of variables (z,t) — (z,—t), for z € R™ and ¢t € R, interchanges the upper and
lower half-spaces. In [24, Section 3.3], it was shown that if Lu = 0 in , then L"u~ = 0 in 7,
where v~ (x,t) = u(z,—t), Q7 = {(x,t) : (x,—t) € Q}, and L~ is the operator of the form (2.7)
associated to the coefficients A~ given by A_; = (—1)an+1+Bnt1 4, 5. Notice that if A is bounded,

t-independent and satisfies the condition (1.11) (or (1.3)), then A~ satisfies the same conditions with
| All Lo (mny = || A7 || oo (rny and with the same value of .

We observe that by the same change of variables argument, if j is an integer with 0 < j < m, and
if pj:L and ¢(j, L, p, q) are as in the bound (1.13), then

pip=p - and c(j,L,p,q) = c(j, L™, p,q) forall 0 <q<p<pj;.

Furthermore, by [24, Section 3.3],

DAf(x,—t) = —DA f (2,1), Stg(x,—t)=8" ¢~ (a,t),
UEH (2, —t) =05 H (2,1), Shh(z,—t) =SE h™(x,1),
where

[y (@) = (1) fy (@), () = (=1)"* gy (2),
Hy (z,t) = (=1)"*" Ho(z, —t) hg (z) = (=1)%+ g ().

It is straightforward to calculate that if f = Tr | ¢ in the sense of formula (2.5), then f =
’I"r;L_1 @~ . Thus, f.i is in the distinguished subspace © of Definition 2.1 if and only if j" is, and

so the mapping f — f is an automorphism of WA®*” (R") for all spaces WA®?  (R") defined by
Definition 2.1.

We observe further that if l\./[j&u) > g, then by the definition (1.7) of the Neumann boundary
values, if ¢ € C§°(R"H1); then

<Tl‘m_1 SO,g R" = <T1‘m 1( ) g.>]R" = <Vm(g0_),AVmw>Ri+1 = <Vm<p,A7Vmw_>R7_L+1,
and so, . )
if Mjw>g then M,_w™ 3¢ (3.1)
An examination of the definition of Neumann boundary values in [23, Section 2.3.2] reveals that

formula (3.1) is valid if that definition of Neumann boundary values is used instead.
Thus, we may easily pass from the bounds in the upper half-space to bounds in the lower half-space.

3.2 Solutions to elliptic equations

It is well known that solutions to the elliptic equation Lu = 0 display many useful properties. In this
section, we will state two regularity results that will be used throughout the paper.

We begin with the higher order analogue of the Caccioppoli inequality. This lemma was proven in
full generality in [13] and some important preliminary versions were established in [9,27].

Lemma 3.1 (The Caccioppoli inequality). Let L be an operator of the form (2.7) of order 2m
associated to bounded coefficients A that satisfy the ellipticity condition (1.11).
Let u € W™2(B(X,2r)) with Lu = 0 in B(X,2r). Then we have the bound
& 2 qods < & vi-l >dad
[V u(z, s)|* dx s< 5 | u(zx, s)|* drds

B(X,r) B(X,2r)

for any 7 with 1 < j < m.
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If A is t-independent, then solutions to Lu = 0 have additional regularity. In particular, the
following lemma was proven in the case m = 1 in [2, Proposition 2.1] and generalized to the case
m > 2 in [22, Lemma 3.20].

Lemma 3.2. Let L be an operator of the form (2.7) of order 2m associated to bounded t-independent
coefficients A that satisfy the ellipticity condition (1.11).

Let Q@ C R™ be a cube of side length ¢(Q) and let I C R be an interval with |I| = €(Q). If
we W™(2Q x 2I) and Lu = 0 in 2Q x 21, then

loc
/|Vm7jafu(a:,t)|p da < W//|ijﬁfu(x,s)p dsdx
Q 2Q 2I

for any t € I, any integer j with 0 < j <m, any p with 0 < p < pj'L, and any integer k > 0.

3.3 Tent spaces

Recall that Theorem 1.2 concerns nontangential maximal and area integral norms of layer potentials.
Thus, in order to prove Theorem 1.2, we will need a number of results concerning the area integral,
the nontangential maximal operator, and the Carleson operator of formula (2.2).

We begin with the following lemma concerning the Lebesgue norm and the area integral.

Lemma 3.3. Let o0 >0, k € R, and 0 < § < r < 2. Let F € L} (RT™) be such that A (t"F) €
LO(R™).
If0(n+1) < r(n+0k), then

o Cn,e,n,r KT
1F |l r @7 x (,00)) < gy [y p—y A (t"F) || Lo (gn)-

If0(n+1) > r(n+0k), then

> Cnﬂ,n,r KT
||| L7 (7 x (0,0)) < ey sy I AZ (" F)[| Lo (gn)-

Proof. Our argument is largely taken from [23, Remark 5.3], where the case r = 2, kK = 1 was
considered. Let j be an integer. Then

2t /m 2/ml(Q)
/ / F(z,t)|" dt de = Z/ / " dtde,
R™ 2i\/n Qe9i g Vne(Q

where G; is a grid of pairwise-disjoint open cubes in R™ of side length 27 whose union is almost all of
R™. If r < 2, then by Holder’s inequality,

20(Q)/n 20(Q)vn r/2
|F(z,t)|" dt da < (|Q|e(Q)\/ﬁ)”/2(/ / |F(x,t)]? dtda:) .
Q UQ)Vn Q UQ)Vn

For every z,y € Q and every ¢t > £(Q)+/n, we have
|z — y| < diam Q = £(Q)v/n < t,
and so, for any y € @), we have

26(Q)v/n

Q)n+1 2K
/ / F(x,t)] dtdx<CnK/ / i dx dt.

0 |z—y|<t



46 Ariel Barton

Thus,
2]+1\/ﬁ r/e
/ / |F(z,t)|" dtdx < Cp Z Z(Q)"“m<][¢4 (t"F)(y)? dy> .
R" 2i/n Qeg; Q
If 6 <r, then
/6 . r/6
> ( / Aseb)w’ay) < ([ Ao’ a)
QEeG; RN
and so ,
2]+1\/ﬁ ‘ r/0
[ [ 1o ads <o, (fage b a)
R™ 21\ /n R™
By summing over j with 2/71,/n > ¢ or with 2/\/n < o, we complete the proof. O

We now establish the following localization lemma involving the Carleson operator (2.2).

Lemma 3.4. Let 1 <r < oo, let Q C R" be a cube, and let H € L2 (R be such that Ef(tH) €
L™(16Q). Then
1€ (Liogx 0,0 tH) [ Lr@n) < Corl|€f (LH )| - (160)- (3.2)

In particular, if H € L2(R’j_+1) is supported in a compact subset of R:‘_H, then Eﬁf (tH) e L"(R™) for
alll <r < co.

Proof. We begin with the bound (3.2). If x € 16Q, then éf(lloQX(o_’z(Q))tﬂ)(x) < CF (tH)(x). Thus,
we need only consider x Z 16Q).
Let ®(x,t) = tH(z,t). By formula (2.2),

- 2 gs dy
& (Liogx (0.0 tH) (x) = sup —- \R| 110Gx (0,6(Q)) | @] —

R>ozx
B((y,s),s/2)

where the supremum is taken over the cubes R C R™ with = € R. Observe that if
S
B((y:5),3) 1 (10Q x (0,4Q)) # 2,

then s < 20(Q) and dist(y, 10Q) < s/2 < £(Q), so y € 12Q. Thus,

1/2 ds dy

110Qx(o,z(Q))|‘i’|2) 5

R* 0 B((y,s),5/2)
26(Q) s

. dsd

<[ [ F @) “<p@ne
12Q O B((y,s),s/2)
for all z € 12Q). Furthermore, if
«(R) 12
. ds dy
// ( ][ 110Qx(o,e(Q))|‘I>|2> . 70
((9,5),5/2)

then RN 12Q # @. But observe that if z ¢ 16Q and R > = with RN 12Q # &, then /nl(R) =
diam(R) > dist(z, 12Q). Thus, if ¢ 16Q, then

1/r
ot : ‘12Q| T r
€7 (L10gx (0,0@)tH ) (7) < 72 dist(z, 120)" CT(tH) (=) dz .
12Q
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A straightforward computation yields the bound (3.2) for all 7 > 1.

We now turn to the case of compactly supported H. If H is supported in a compact subset of
R}, then there is some € > 0 and some N < oo such that H(z,t) = 0 whenever t < e or t > N. We
compute that

. 1/2 .
O dedt) < o ey
B((y,s),5/2)
and is zero if s < 2¢/3 or s > 2N. Thus, by formula (2.2),

ot 242 V2 ds dy
o (tH = sup H(z, t)|* % da dt
Raz S

Y,8),8/2)

< /cns—l/Q—"/2||H\|L2(Mﬂ)ds.
2e/3

The right-hand side is finite and independent of x. Thus, if H is supported in a compact subset of
R}, then € (tH) is bounded and so the right-hand side of formula (3.2) is finite for any fixed cube

Q. But if H is compactly supported, then it is supported in 10Q x (0,4(Q)) for some cube Q; thus,
110QX(0’£(Q))H = H, and so, by the bound (3.2), we have that (’Zf(tﬂ) € L"(R™), as desired. O

We now come to a method for bounding nontangential maximal functions by duality. This is the
reason that the Carleson operator Cf is of interest in the present paper. It is well known (see [3,
Theorem 5.1]) that if 1 < p < oo and 1/p+ 1/p’ = 1, then the dual to the space of nontangentially
bounded functions

{U: N,U € L’(R")}, where N U(z) =sup{|U(y,t)|: |z —y| <t},
is the space of Borel measures

£Q)

€l € L7 (R)}, where € (1)(x) = sup 1 / / Lalpl(y.).

We claim that a similar result is true for the spaces defined by the averaged norms N+ and Qfl given
by formulas (2.1) and (2.2). More precisely, we will use the following two lemmas.

Lemma 3.5. Let p satisfy 1 < p < oo and let p' satisfy 1/p+ 1/p" = 1. Suppose that & and H are
such that Nya € LP(R™) and €F (tH) € LP (R™). Then

(G, H)gn1| < CIN Ll oo | €65 (D) | o -
Lemma 3.6. Suppose that 1 € LlOC(R’J_H). Let 1 <p<oo and let 1/p+1/p’ = 1.Then

. ‘<1L .[1> n+1|
[N12| e@ny < Cp =

HELZ’(?R’RH\{O} € (LH) | Lo gy
provided the right-hand side is finite. Here,

L2(RYT) = {H € L*(RYM) supp H C K for some compact set K C R:L_H}.
Proof of Lemma 3.5. Let F be an integrable function. Then

F(z,t) dedt = / F(y+sz,s+sr)(1+7)dyds

n+1 n+1
R R}
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for any z € R™ and any r > —1. Averaging over (z,r) € B(0,1/2), we have

S+ sr

/F(x,t)da:dt:/ ][ F(y+ sz,s+ sr) dzdr dyds,

R7+1 R B(0,1/2)
and a change of variables yields

/ F(z,t) dedt = / ][ F(a:,t)édxdtdyds.
s

n+1 n+1 2) o
RY R B((9:5),5/2)

Let K be a compact set in RT’l. Observe that @ and H are both in L?

b (RETY); thus F = 1 |a|H]
is integrable. Therefore,

/|a\|ﬁ1| - / ][ 1xa(z, t)| |LE (2, )| do dt dysds.
K

Ry B((y,5),5/2)

We define
1 ‘ 1/2 1/2
A =1( eGP wa) L vee=( 1R
B((y,5),5/2) B((y,s),5/2)
so that by the definitions (2.1) and (2.2) of Ny and €7,

N, U =N,a, €H(tH)=¢f(tH).

Juaiin < [ v
K

n+1
R+

By Holder’s inequality,

By the duality results discussed above (see [30, formula (2.6)]), we have that

/ UH < CINL Ul o I€F (EH) | 1o -

n41
RY

Thus,

J1l1E] < CIR o €7 CED e
K

provided the right-hand side is finite. Because K was arbitrary, this inequality is still true if we
integrate over Ri“ instead of K. Thus, (u, H >Ri+1 represents an absolutely convergent integral that

satisfies . _ ~ .
(@, H)grt| < CIINv & o @y |1 €7 (EH) || 17 (g

as desired. O
The following lemma will be used in the proof of Lemma 3.6.

Lemma 3.7. Let 1 be a nonnegative measure on R™. For each (z,r) € RT‘I, let I.{(w’r) be defined
in R supported in B((z,7),7/2), and satisfy

. 1/2
( ][ |H(M)2> <1.

B((z,r),r/2)
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Define
. 1 .
H(z,t) = / perEs H, .y (z,t)du(z,r).
Ry

Then _ .
& (LH)(3) < O} (1) (@)

for all x € R™ such that the right-hand side is finite.
Proof. Let W(y,s) = B((y,s),s/2) and let V(y,s) = {(z,r): W(y,s) "W (x,r) # @}. Then

. 1 2
][ |H (z,1)|]? dzdt = / rnHH(m(z t)dp(z,r)| dzdt.
W(y,s) W(y,s) V(y,s)

By Holder’s inequality,
. Vy
][ \EL(2,)? dzdt < ][ / % (o) (2, 0) 2 dpal, 7) dz .
r
W(y,s) W(y,s) V(y,s)
Changing the order of integration, we see that

][ |H (2, 8)|? dz dt < / % ][ |H(I’T)(z,t)‘2dzdtd,u(x,r).

W(y,s) V(y,s) W(y,s)
A straightforward computation yields that V(y, s) is the ellipsoid
4 5 \2 4 \2
V(y,s):{(x,r): §|x—y|2+(r—§s) < (gs) } (3.3)

In particular, if (z,7) € V(y, s), then 31 < s < 3r. Thus, |W(z,r)| = [W(y, s)| and so

][| (zt)|2dzdt<0” 2n+2 / ][ (@) (% 1) dzdtdp(z,r).

W(y,s) V(y,s) W(z,r)

Recalling the L? norm of I'I(z’r), we see that

) 1/2 c c
(H(z,t)? dzdt | < —— u(V(y,s) = o5 dp(z, ).
snt snt
V(y,s)

W (y,s)
Then
4(Q) 1/2
- . 1 . dsd
& (LH)(F) = sup — /< ][ It (2, 1)) dzdt> 54y
@>7 Q) 5
Q 0 W(y,s)
1 Z(Q)C’ dsd
s dy
§sup—/ / — du(x,r .
03z Q| s ulaT) s
Q 0 V(y,s)

By formula (3.3), if (y,s) € Q x (0,4(Q)), then V(y,s) C 4Q x (0,34(Q)). Recall that V(y,s) =
{(z,r) : W(x,r)NW(y,s) # @} and so (z,r) € V(y, s) if and only if (y,s) € V(z,r). Thus,

@ <o g | / e
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But [ f‘:f? is a constant. Renaming the variables (z,r) to (x,t), we see that

V(z,r)
) M(Q)t
@ < Csw o [ [ Gdutat) =arce ()@,
03z Q| t
iQ 0
as desired. 0

Proof of Lemma 3.6. Let w € L? (Riﬂ) be such that

loc

i, Bl 1]

sup =~
aerz®; (o} [|€] (CH) || o (o
Let K. = {(z,t): e <t <1/e, |x| <1/e}. Define 4. = 1x_1. By the monotone convergence theorem,

INL 2 L gy = Eli%l+||ﬁ+ﬁs||Lp(Rn) = §1>113||N+ﬁs||Lp(Rn)~
Thus we need only bound the quantity || N .|| L»(rn), uniformly in e > 0. We observe that if £ > 0,
then 1. € L? (Rfﬁ“), and Ny, is bounded and compactly supported.

We now construct a H. that will allow us to bound N .. Let W (z,r) = B((x,r),7/2), and let

Uc(z,7)> = £ || so that N, @. = N_U.. By [3, Theorem 5.1 and formula (2.12)], there is a
W (x,r)
(nonnegative) measure p with || € (tu)]| &n) < Cp and with

INLUe|| Lo gy = / Ue(y, s) du(y, ).
R
Let
1
U.(w,r)
(), Us(l'vr) =0,

]-W(:r,r)'aav UE<.'17,’/') > 07

o) =

so that
1/2 1
& 2 _ . Trre
( ][ |Hfz,r)\ ) <1, Uezr)= W<U7H(r,r)>]1§i+l'
W(z,r)
Observe that there is a constant ¢,, such that |W (x,r)| = r"*1/¢c, for all z € R™ and all r > 0. Then

Cn

1Fitlprg = [ Vo) duer) = [ ot B ) dute.n).
Ri+1 Ri+1
Changing the order of integration, we see that

Cp, .
m H?LE,T) (Z, t) d/j/(w, T).

¥t o ey = (@ H)goss, where HL(z.1) = /

R

We observe that H., is compactly supported. By Lemma 3.7 and the assumption on g,
1€ (tH )| o 2y < CIET (t0) | Lot 2y < CCy

and so
||N+716HLP(]R") = <"17H€>R1+1
C, . (2, H ) g1 |
< = P (U, H.)gn+1 < Cp sup ~ + ,
1€ (LH )| 1 ey * Eerz@®yh\(o} 1€ (CH) | L ey
as desired. 0
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We will use Lemma 3.6 to prove the nontangential bounds (1.26) and (1.27). In proving the bounds
(1.32) and (1.33), it will be convenient to introduce an additional derivative in the inner product on
the right-hand side. Thus, we now prove the following lemma.

Lemma 3.8. Let u € VV[:CZQ(RiH) satisfy Ny (V™ Lu) € L2(R™). Let p satisfy 1 < p < 2 and let
1/p+1/p' =1. Then

[ A -—
SUP =
v (1€ ()] Lo gy

1N (V™" )| o eny < Cp

where the supremum is taken over all compactly supported ¥ e LQ(RTFI) that are not identically zero
and have a weak vertical derivative also in L*>(R}).

Proof. By Lemma 3.6,

¥ (V7 ) oy < € (V™ g
+ wlLe@n <Cp  sup —— .
Berz@;\(o) 1€ (EH)| Ly @y

Choose some such H. Let H(x) = H(m,t) dt; since H is compactly supported, we have 0(3:) €
0
L2(R™). Let Gr(x,t) = é(x)%x(gT/475T/4) (t), where T' > 0 is a real number and X (s7/4,57/4) denotes
the characteristic function of the interval (37/4,5T/4). Let Hp be such that H = Gy + Hrp.
Then [ H(z,t) dt = 0 for almost every x € R™. Let
0

t
(Ur)a(e,t) = [ (Hr)y(o.s)ds, where a =7 +Eun,
0

with €,41 as the unit vector in the (n + 1)th direction, and let (¥r)q = 0 if a1 = 0. Then
U € L2(RH) is compactly supported. Furthermore, 0;(¥7)q(2,t) = (Hr),(2,t), and so

<ﬂT, Vm_1u>Ri+1 = —<\ilT, V"W)MH .

Thus, . ) )
|(H, Vm*1u>R1+1 | (P, Vmu>Ri+1 — (G, Vm71u>R1+1 |

[[G((a - pl e €S (0¥ 7 + tGr)l| Lo gy

for any T > 0. _
By definition (2.2) of €], if 2 € R™, then

CH(tGr)(x) < OT/2||0| 12 @)

Suppose that 7" is large enough that there is a cube Q with £(Q) = 57'/4 and with supp 8 C 10Q. By
Lemma 3.4 with r = p/,

1S (G o) Lot oy < O IEF (EG) o 16y < Cor TP "2 6] 2 -
If p<2and 1/p+1/p" = 1, then p’ > 2 and so ||Ef(tC'1‘T)||L,,/(Rn) — 0 as T — oo. Since

(G1)y 4 Ont1(¥r)o = H,, this implies that ||€1+(t8t\i’T)||Lp/(R7L) — ||€f(tI-.I)HLp/(Rn) as T — oo;
by assumption, ||€1+(tI-'I)||L,,/(R") > 0, hence

|<H,vm*1u>w1| (¥, vwlumﬂ — <GT,vm*1u>Riﬂ|

— . im = .
€T (tH) || g gny — T° €1 (0¥ 7) | Lo ey
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We claim that (G’T, Vm_1u>Ri+1 — 0 as T — oo, as well. We compute that

5T 5T
(Gr, V™ tu)gn| < ][ /|é(x)||vm*1u(;c,t)| da dt < ||6]| p2(rn) ]l V™ (-, 1) 2 ey dt.
3T/4R" 3T/4
By Hoélder’s inequality,
5T 5T 1/2
][ V™ (- )] 2 ey dt < ( ][ /|vm*1u(x,t)|2 dx dt> :
3T/4 3T/4Rn
Introducing a term f dy and changing the order of integration, we see that
|lz—y|<T/4
5T 5T
][ /\Vm_lu(x7t)|2 dx dt §/ ][ ][ |V (2, t)|? da dt dy.
3T/4R™ R™ 3T /4 |w—y|<T /4

Observe that {(z,t): |z —y| <T/4, t —T| <T/4} C B((2,T),T/2), and that the two regions have
comparable volume. Recalling definition (1.5) of N, we see that

5T

2
][/\Vm_lu(amtﬂz d;vdt<Cn/< ][ K/'+(Vm_1u)(z)dz> dy.
3T/4R" R™  Jy—z|<T
Let
Fr = f N9 (e
ly—z|<T
so that

(G, V™ ugnss | < ColBl] 2z [ Fr 2 en)-

By Hoélder’s inequality, B
Fr(y) < CuT™"2|INL(V™ )| p2rn),

and so Fr(y) — 0 as T — oo pointwise for each y € R™. We also have
Fr(y) < M(N4(V™ ")) (y),
where M is the Hardy-Littlewood maximal function. By the boundedness of M on L?(R"™),
M(N (V™)) € L2 (R™),
and so, by the dominated convergence theorem, Fr — 0 in L?(R") as T' — oo. Thus,
: . m—1
TIEI;O (Gr,V u)Riﬂ’ =0.
Therefore,

|<H,vmflu>w1| . |<\i:T,vm*1u>R1+1 — <GT,VW1U>MH\

e~ B 11m = .
& ) |y T 1€5 (000 F ) e
|<¢,T7vm_1u>Ri+l| |<li’,vm_1U>Ri+1‘

= lim ~+ D = Sup == - .
T=oo He:l (t at‘IlT)HLp’(Rn) \Il ||Q:1 (t 3t\II)HLp/(Rn)

Recalling that Lemma 3.6 implies

¥ H, V™ gy
N+’l:L Lp(Rn) S Cp Sup —= <
A 1S (CH)| o gy

completes the proof. O
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4 The Newton potential

We will establish the bounds on the layer potentials of Theorem 1.2 by duality with the Newton
potential, as in [46] and [22, Section 9]. Thus, the present section is devoted to the duality results for
the Newton potential and its bounds.

Specifically, we will establish duality between the Newton potential and the double and single layer
potentials in Subsection 4.1. We will bound the Newton potential in Subsections 4.2—4.5. For ease
of reference, the main bounds on the Newton potential established in the present paper are all listed
in Corollary 4.1. In Section 5, we will apply the duality results of Subsection 4.1 and the bounds
of Subsections 4.3-4.5 to establish bounds on the double and single layer potentials; the bounds of
Subsection 4.2 will be used in Subsections 4.3—4.5.

4.1 Duality

In this section, we will prove the following lemma, that is, we will establish appropriate duality
relations between the Newton potential and the double and single layer potentials. In Subsection 4.2,
we will use these relations to establish the bounds on the Newton potential. In Section 5, we will
reverse the argument and use these duality relations to establish the bounds on the double and single
layer potentials.

Lemma 4.1. Let L be an operator of the form (2.7) of order 2m associated to bounded coefficients A
that satisfy the ellipticity condition (1.11).

If ¥ e LA(R™) and § € (WA;{%%(R”))*, then we have the duality relation

(T X ¥, g),, = (B, V"SEg)gar. (4.1)

IfW e L? (R and fe WA:,{E% (R™), then we have the duality relation
(ML I (1. 9), f),, = — (&, VDA f'>Rz+1. (4.2)

If A is t-independent in the sense of formula (1.2), ¥ € L2(R™*1) is zero in R™ x (—¢,¢) for some
>0, and if f € WA%E%(R”), gec (WAI/Q’Q(]R"))*, and h € L2(R™), then

m—1
(Tr,, TTX W, A)gn = (B, V" SER) gnss,
(Trm 1 Op W, g) = (¥, V7"0,118"9) g (4.4)
(My. 0y IX (1, %), f) . = (¥, V"0, 1 DAF)

n+1-
R+

Proof. By definition (2.9) of the Newton potential, if ¥ € L2(R"1), then II*" ¥ € W™2(R"+1). By
definition (2.14) of the single layer potential,
(Trp T2 W, g), i = (VIIE &, AV Shg)
+

Rn+1)

and by definition (2.9) of the Newton potential, we have that the relation (4.1) is valid.
If ¥ € L2(R}™) and f = Tr,,_; F for some F € W™2(R"™), then by definition of Neumann
boundary values,

(M. T (14%), £, = (AVTIE (14.8), V) o = (VY (1,9), 1AV F)
By [13, Lemma 42], we have

(VMY G, H)grr = (G, V™ TIE H ) gt (4.6)
for all G, H € L2(R™!). Thus,

(M T (1), £, = (&, VTP (1 AV F)) .
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By formula (2.13), the relation (4.2) is valid.
To prove the relations (4.4) and (4.5), we review some Sobolev space theory. If F' € L2(R"*!) and
h#0,let Fy(x,t) = +(F(x,t+h) — F(z,t)). Suppose that %in%) F), exists in the sense of L? functions,
—
that is,
lim[|Fh — Gl 2 @n+1) = 0

for some function G € L?(R"*!). Then, by the weak definition of a derivative, dp41F exists and
equals G. Conversely, if F € L2(R"*1) N W12(R"+1), then an argument similar to the proof of the
Lebesgue differentiation theorem shows that }llirr%)HFh — On1 F|| L2 @nt1y = 0.

—

By linearity and t-independence of A, IIX" (¥,,) = (IIX" &), If ¥ € L2(R"1)NWL2(R"H1), then
taking limits as h — 0 in L2(R"*!) shows that

V™M (041 W) = Oy yq (VTITED). (4.7)

If, in addition, ¥ is zero in R™ x (—¢,¢) for some & > 0, then formulas (4.4) and (4.5) follow from
formulas (4.1) and (4.2) by integrating by parts.

To establish formulas (4.4) and (4.5) for arbitrary ¥ € L2(R™ x (g, 00)), fixe > 0, f € WA},{E? (R™),
and g € (WA%E%(R"))* By formulas (2.13) and (2.14), we have that DAf Wm2(R%H) and
SLg e Wm™2(R"1), and so, by the Caccioppoli inequality, V"8, DAf € L2(R™ x (g,00)) and
V™0,118t§ € L2(R™ x (g,00)). Thus, the right-hand sides of formulas (4.4) and (4.5) (regarded as
functions of \Il) represent bounded linear operators on L#(R™ x (g,00)). Similarly, by the Caccioppoli
inequality, d,41II%" is a bounded linear operator from L2(R" x (g,00)) to W™2(R"*!), and so,
ifg e (WA;{E?(R"))* and f € WA%%%(R"), then the left-hand sides of formulas (4.4) and (4.5)
represent bounded linear operators on L?(R™ x (g, 00)). Thus, by density, formulas (4.4) and (4.5) are
valid for all ¥ € L2(R™ x (g,00)). A similar argument (or the relations of Subsection 3.1) establishes
formula (4.4) for ¥ € L2(R™ x (—o0,€)).

Formula (4.3) was established in [22, Section 9] under the additional assumption that ¥ is sup-
ported in RT‘l. In the general case, by assumption on supp ¥, Lemma 3.2, and the bound (1.20)
(with p = 2), we have that the norms of both sides of formula (4.3) is at most

C . .
NG W] L2mn+1y ||| L2 ()

and, in particular, both sides are meaningful if this quantity is finite. Thus, we need only establish
formula (4.3) for A in a dense subset of L?(R"). In particular, we only need to consider h such
that formulas (2.17), (2.16), (4.1), and (4.4) (with appropriate g) are valid, and formula (4.3) is a
straightforward consequence of the given formulas. O

4.2 The boundary values of the Newton potential

In this section, we begin to establish the bounds on the Newton potential by using Lemma 4.1 and the
known bounds (1.16)—(1.23). The argument is precisely dual to that of Section 5. Observe that it is the
boundary values Tr,,_ IT* ¥, Tr,, TI¥" ¥ and M, TI*" (1, ¥) that appear in the bounds (4.1)—(4.4);
thus, it is the boundary values of the Newton potential that will be bounded in the present section.
We remark that we will not establish all of the bounds on the Newton potential that follow from
formulas (4.1)—(4.4) and the bounds (1.16)—(1.23), but only those that we will need in Subsections
4.3-4.5.

Lemma 4.2. Let L be an operator of the form (2.7) of order 2m associated to bounded t-independent
coefficients A that satisfy the ellipticity condition (1.11).

Then there is some € with the following significance. Suppose that ¥el? (R™+1) is supported in
a compact subset of ]Rf'l UR™™ If1/p+1/p' =1 and p lies in the indicated ranges, then

[Tr, 17 @[ 0 < C(L L p) | ASE | Ly 2-2<p<piy, (4.8)

[V I (L) | g0 . < CLL)IATE 0, 2 <p <pfy (4.9)
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Suppose He L2(R™*Y) is supported in a compact subset of]Ri+1 UR™ . If we normalize V"1 H
as in formulas (2.11) and (2.12), then

Try 1 T H 0 < C0,L,p) € (tH) | 1y 2= <p <p. (4.10)

Proof. We use Lemmas 3.5 and 3.6 to establish the bound (4.10). We need a similar formula involving
the area integral to establish the bounds (4.8) and (4.9). Let T4 = {¢ : A3+ € LP(R")} with the
natural norm. By [30, p. 316], if 1 < p < oo, then under the inner product

(o) = [ faglen =T,
Ry

the dual space to T is T¢ . Thus,

Lot ‘<‘i”a>RT1| Fores
c A3 (t1)| Lr mny < su < Ol A3 (t4)|| e mny, (4.11)
p

P
¥ ”A;\I’”LP'(R”)

where the supremum is taken over all ¥ € L? (R such that AF ¥ e L (R") and such that the

loc
denominator is positive. A similar formula is valid for A5 and A3.

Remark 4.1. We may take the supremum only over all ¥ € L2(RYT) \ {0}, where L2 is as in
Lemma 3.6.

If 1 < p < oo, then by formula (4.3) and by density of LP N L? in LP,

. * . i’,vaLil n+1
| Tr,, T Y| Lo gy = sup I - Jrnst] .
heLrnL2\{0} 1Rl L @)

By the bound (4.11), if 1 < p < oo, then

IASE || Lo o) A5 (EV " SER) | o e

heLrnL2\{0} Al Lo @y

)

[y, T | ey < C

and by the bound (1.20),if2—e <p < pIL, then the bound (4.8) is valid.
Similarly, by formula (4.2) and the bounds (4.11) and (1.21),if2 <p < pIL and f € WAY? | (R™)N
WA;{%? (R™), then
(V3. T (1L 8), Fome | < COL L p)AFE o | F s o
By density of WA%P , (R") 0 WALY22(R") in WAL/%2(R"), the bound (4.9) is valid.
We now turn to the bound (4.10). Let 4 € B;UQ’Q(R”) NLP(R™) for some p with 2—e < p < pg',L.

Then by formula (4.1), Lemma 3.5, and the bound (1.16), we have

’ <']':‘rm,1 HL*H—, ’$’>Rn,

< C(0, L, p) 13| 1o @) 1€ (CH) | o ey
By density of B;1/2,2 (R™) N LP(R™) in LP(R™), there is an f € L¥' (R™) with
1F 1o 2y < €O, L, p) 1€ (EH) | Lot ey

such that (f,4)gn = (Trpy_1 X" H, 4)gn for all 4 € 351/2’2(R") N LP(R™). We need only establish
that f = Trm_1 " H.

We normalize 1" H as in formulas (2.11) and (2.12). Then there is some ¢ < oo such that
AVALRE L - = L4(R™*1). By Lemma 3.2 and because H is supported away from GR;IH, we have

that Tr,,_, 1" H € LY(R") (and is, in particular, locally integrable).
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If o € CP(R™) and [ ¢ =0, then ¢ € 351/2’2(}1%") N LP(R™), and so
Rn
(p,Trp 1 IF H — f),, =0.

Thus, Trm,l L H — f is a constant. ) L )

We have seen that f € LP (R™), Tr,—1 X" H € LY(R™), for p/, ¢ < oo, and f — Tr,,_ I H is
constant; therefore, f = Tr,,,_1 II*" H, as desired. O
4.3 Inputs satisfying area integral estimates

In this section, we will continue to establish the bounds on the Newton potential. The two main
results of this section are Lemma 4.3, in which we establish the L? bound

[NV B o ey < CLASE 1220,

and Lemma 4.5, in which we establish the L? bound
||N*(Vm7jagHL*‘il)HLp’ (R™) S C(]7 L*vpl)”-A;\il”LP’ (R™)>» p;L* <p S 2.

The proof of Lemma 4.3 involves the bound (4.8) and some techniques from the proof of [46, Lem-
ma 4.1], while the proof of Lemma 4.5 involves Lemma 4.3 and some techniques from [15].

Lemma 4.3. Let L be an operator of the form (2.7) of order 2m associated to bounded t-independent
coefficients A that satisfy the ellipticity condition (1.11).
Let ¥ € L2(R™*1Y) be supported in a compact subset of Rﬁ"’l UR™L. Then

[NV B oy < ClAZE 12 n).

Proof. Let z € R™ and let (xo,to) satisfy |z — x| < |to|. Let B = B((xo,%0), |to]/2). We wish to

bound
][|va“¢1|2
B

by a quantity depending only on z and ¥, and not on z¢ or to.
Let A(z,7) = {y € R" : |z — y| < r} denote a disk in R (not R"*1). Let Ey = A(xg, 2" 2[to]) x
(—2F2|to|, 28 2]¢0]) be a cylinder in R"*!. We define

by=15¥, ¥=1p.p5 ,1+F, k>1,

and let .
wp =0 ¥, k> 0.

Then IIX" ¥ = wq, + > wg.
k=1
We begin with bounding V™wg. By the L? boundedness of V"IIX

C .
m 2 2
][W wo|® < Tl [ ¥oll72(@nsr)-
B
By Lemma 3.3 with r =2 and x =0, if f—fl < 0 <2, then

: : Cy L
[Pollz2@n+1) = 1Woll L2 (Rn x (—afto] alto])) < o/ 1272 [AZ®oll Lo (rn).-
But A5%) = 0 outside of A(zo,8|to]) C A(z,9]to]), and A3¥o(z) < A5 (x) for all 2 € A(z,9|to]).

Thus,
2/6
[Vl < ot i)
wo = Jto|2n/0 2 :
B

A(z,9]to])
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Let M denote the Hardy-Littlewood maximal operator (in R™) given by

M (z) = sup ][ F)dy.
T>0|y—z|<r

We then have
][ V™2 < CoM((A)?) ()" (4.12)

whenever = < 0 <2.

We now turn to \Ilk, kE>1. Let w= ) wg. Observe that L*w = 0 in Ey.
k=1
The following lemma may be proven by using the same argument as [24, Lemma 3.19], in which

the case of cubes (rather than cylinders) was considered.

Lemma 4.4. Let L be an operator of the form (2.7) of order 2m associated to bounded t-independent
coefficients A that satisfy the ellipticity condition (1.11).

Let zo € R™ and let r > 0, ¢ >0, and 0 > 1. Let E = A(wg,r) X (—cr,cr) and E = A(xg, o1) %
(—cor,cor). Suppose that u € W™2(E) and Lu =0 in E. Let 0 < j < m. Then there is a constant
C..» depending only on ¢, o and the standard parameters (in particular, independent of xo and r)
such that

2

2
][|Vju(;v,t)\2 dtde < C., (rf|8£+1u(x,t) dt dac) + CC’J< ][ |Tr; u(x)| dm) .
E E

A(zg,0m)

Observe that B = B((xo,t0), |to]/2) C A(zo, |to]/2) x (—=3|to|/2, 3|to|/2). Thus, by Lemma 4.4,

1/2 2ltol
<][|V%2) <C 7[ / o w| ][ Tr,, @|. (4.13)
B A(zo,to]) —2[to| A(zo,ltol)

Recall that 0 is a number with == <6 < 2. If n > 1, then 6 > 1. Thus, by Holder’s inequality,

1/6
|Tr,, w| < CM(Tr,, w)(z) + ][ |Tr,, w0|9> .

A(=o,|tol) A(=o,|tol)

By the bound (1.15), py ;, < max(1, 2%) < ;2% and so, if ;2% < @ < 2, then the bound (4.8) is valid

= n+1)

for p’ = 6. Furthermore, the constant c(l L,0',2) of the bound (1.13) may be bounded by a constant
depending only on 6 and the standard parameters. Thus,

. 1 . 1 .
Trmw0<7/Trmw9<07/A*\I’ o
om0l = T8 o/ 117 = T o / 2%

As before, A3¥, < A5¥ and A5¥, = 0 outside of A(z,9]tg|), and so

A(zo,|tol)

ITr,, @] < CM(Tr, w)(z) + CoM((A38)%)(2)/°. (4.14)
A(zosltol)
We are left with the term involving (‘37’?_:31
Choose some k > 1. Let (x,t) € A(xo,2|t0|) x (=2|to|,2]to]) = EF—1 € Ei_s. Observe that
since A (and thus A*) is t-independent, we have that L*(97"'wy) = 0 in Ej_; for each k > 1.
By [13, formula (29)], if 2m > n + 1, then

1/2
a?“wk(x,twc( f |a;”+1wk<y,s>2dyds) .

Er_3/2
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Recall that wy, = - ¥, By the Caccioppoli inequality and the boundedness of the Newton potential
LQ (Rn+l) - Wm,Q (Rn+1),

C

m+1 T
|8t U)k(:C,t)| < WH\P’C”L?‘(R"JrI)'

Observe that A3¥;, < A3¥ and that A3¥, = 0 outside of A(zq, 2873|t0]) € A(z, 284|tg|). As before,
by Lemma 3.3 with » =2 and k = 0,

Ch
(2% [to|)n/0—1/2—n/2

15 L2 mntr) < IAGE k]| o ny < Co(28[to) "HD2M((AE)%) (2) 17

Thus,
2to|

i Gy
o 27 #)%)(2)'/".

A(zo,tol) —2[tol B

Summing and applying the bounds (4.12)—(4.14), we see that if 2m > n + 1 and f—fl < 0 <2, then

. 1/2 1/2 1/2
(frrmesn) s (fet) " (fs)
B B B

< CoM((A38)") ()10 + CM(Tr,,, TH T)(2).
The right-hand side depends only on z, not on zq or tg, and so
N, (V™I W) (2) < CoM((A58))(2)Y? + CM(Tr,, TF W) (2).
By the bound (4.8), we have that ||Tr,, TT*" \Il||Lz(Rn) < C”AQ‘I’”LQ(RW. Choose 0 = (2n+1)/(n+
1) < 2. By boundedness of M on L?(R") and on L?/%(R"), we have
[N (VI W) 2y < ClLAZE 1.

This completes the proof in the case 2m > n + 1.
Suppose now that 2m < n+1. Let L = AMLAM for some large integer M. As shown in the
proof of [13, Theorem 62|, there are the constants a¢ such that

HL\il:AMHZ\’IVJ, where ¥ = Z Z ag Wpépye,
|€|=2M |B|=m

where é3.¢ is given by formula (2.15). Thus,
N (VMIE ) (2) = Ny (VPAMTIE @) (2)
and if we choose M such that 2m +4M > n + 1, then

[N (VM @) < C| A | o) < C2|A3E | L2 rr),

|2 en)
as desired. 0
We now extend to the bounds for A5®¥ € L¥' (R™), p < 2.

Lemma 4.5. Let L be an operator of the form (2.7) of order 2m associated to bounded t-independent
coefficients A that satisfy the ellipticity condition (1.11).
Let j be an integer with 0 < j < m. Let p satisfy p; . < p < 2 and 1/p+1/p = 1. Let

¥ e L2(R™) be supported in a compact subset of Rf_‘“ UR™L. Then
[N(Vm ol &)

HLp’(Rn) S C(j7L*vpl)HA;‘IIHLP'(Rn)a p;L* <p S 2.
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Proof. The p = 2 case is Lemma 4.3. Let
u=0lI" ¥, ug =0 (Logu-uq.uen¥). @1 =49,

where @) is any cube in R™. Hereafter, the proof closely parallels that of [15, Theorem 4.12] and, in
fact, will use many results of [15]. Choose some p with Pip- <p <2 By standard self-improvement

s

properties of reverse Holder estimates (see, for example, [42, Chapter V, Theorem 1.2]), there is a
p2 > p’ such that the bound (1.13) is valid for solutions v to L*u = 0 and for p = ps. That is, there
is po > p’ such that py < pj:L* with pe and ¢(j, L*, p2, 2) depending only on p and ¢(j, L*, p’, 2).

We have that v —ug € WZ?C’Q(IOQ x (—0(Q),4(Q))) and L*(u — ug) = 0in 10Q x (—4(Q),4(Q)).
By [15, Lemma 4.11] with v = u — ug, we obtain

N 4 1/ps - | 1/2
(f 7w u-ugr) <o £ FE I 0-u)?)
8Q 10Q
where ¢ = ¢(Q)/4 and N’ is as given in [15, Section 4]. In particular, N3¢(V™Ju) < N, (V™ ).

By Lemma 4.3, we have B _ -
[N« (V" u)|| L2 mny < C| 1| L2 @) < 00

Observe that A;(llon(—Z(Q),e(Q))‘i’)(x) < A5W(x) = @, (z) and is zero if z ¢ 12Q); thus, again by
Lemma 4.3, we have that _ .
||N*(vm_JUQ>||L2(Rn) < CH(I)1||L2(16Q)~

These bounds imply that

~ m—j C(ij*ap ) N m—j
1N (v ﬂ(ufum)HmQ)SW(|@1||L2(16@+HN*<V T0)llz210) ).

The conditions of [15, Lemma 4.3] with & = V™ 7y and g = V™ Jug are thus satisfied, and so,

||N+(Vm_ju)||Lp/(Rn < C(]7 L*ap/)”q>1 ||LP,(R")’

as desired. 0

4.4 Inputs satisfying Carleson estimates

In this section, we will continue to establish the bounds on the Newton potential. In Lemma 4.6, we
will establish the area integral bound

A5 (V™ I H) | 0 ey < CO, L p)| € (EH) | 1ot s 2 < < 1
and in Lemmas 4.7 and 4.8, we will establish the nontangential bound

HN*(vmilﬂL*ﬂ)”Lfl’(R") < Cp||¢T(tH)HLp’(Rn)a Prr- <P<pgr

for an appropriate constant ép.

Lemma 4.6 will be proven by a simple duality argument. The proof of Lemma 4.7 will use some
techniques similar to those of Lemma 4.3. Most of the proof of Lemma 4.8 will be omitted, since
once some notation has been established it can be proved in the same fashion as [15, Theorem 4.12]
or Lemma 4.5.

Lemma 4.6. Let L be an operator of the form (2.7) of order 2m associated to bounded t-independent
coefficients A that satisfy the ellipticity condition (1.11).
Let H € L*(R"*1) be supported in a compact subset of R:ﬁ“ UR™?, Let p(J{’L be as in the bound

(1.13). If2<p<pg, and 1/p+1/p' =1, then

[ A5tV I H)|| oy < CO, Lp) € (EH) | o s 29 < 91
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Proof. By the bound (4.11),

(&, VPIIE H ) |

VI CA VAL 1 = 5 1 I .
45t e s [ As @l g

) A sup

We may take the supremum over ¥ supported in a compact subset of RiH UR™! such that the

denominator is positive and finite. Thus, we may assume that ¥ € L?(R"*!). By [13, Lemma 42
(reproduced as formula (4.6) above),

(VLA W, H g |
[ AS® || Lo ()

)

H.A;(fvaL*I—.I)HLp, (&™) ~ s1¢1,p

and by Lemma 3.5,

[N (V) | o e ET(tlr'{)||1:p'(Rn)

A5 (VT H)| ey < Cpsup '
45 o gy < Co u A3 @ | o )

Using Lemma 4.5 with j = 0 and permuting p, p’ and L, L* we complete the proof. O
We now establish nontangential estimates.

Lemma 4.7. Let L be an operator of the form (2.7) of order 2m associated to bounded t-independent
coefficients A that satisfy the ellipticity condition (1.11).
Let H € L*(R""1) be supported in a compact subset of Rﬁ“ UR™L. Let par,L be as in the bound

(1.13). If2<p <p3'7L and 1/p+1/p' =1, then
|8 B0 oy < OO L) [EGEED] s 2 < < 1.

Proof. As in the proof of Lemma 4.3, let A(z,r) = {y € R" : |[x —y| < r}, let z € R”, and let
B = B((xo,t0), |to]/2) be a Whitney ball with |xo — 2| < |to|. Let

H = Hn + Hf, where Hn = lA(x0,4|t0\)><(—4\t0\74\t0|)H-

Our goal is thus to show that

. 1/2 . 1/2
(][Ivm—lnL H’n,|2> 4 <][|vm—1HL Hf|2)
B B

may be bounded by a quantity depending only on z and H , not on xg and tg.

Fix some p with 2 < p < pai ;- As in the proof of Lemma 4.5, by standard self-improvement
properties of the reverse Holder estimates (see, for example, [42, Chapter V, Theorem 1.2]), there is
a 6 > p such that the bound (1.13) is valid for solutions u to Lu = 0 and for p = 6. That is, there is
0 such that p < 0 < pE{L with 6 and ¢(0, L, 8, 2) depending only on p and ¢(0, L, p, 2).

Iftn+1>3letr=2;if n+1 =2, let r satisfy 6/ < r < 2 and be close enough to 2 that the
bound (2.10) is valid. Let ¢ be as in the bound (2.11) or (2.12). Observe that r > 1 and so ¢ > 2.

We begin with - H,,. By Hoélder’s inequality,

1/2
<][|vm1HL Hn2> S0|t0|*(n+1)/fI“vmflnL HnHLq(Ran(to))’
B

where I(to) = (to/2,00) if to > 0, and where I(t9) = (—00,t0/2) = (—00, —|to|/2) if to < 0.
Recall that H € L*(R"*!) and r < 2, and so H,, € L"(R""!). By the bound (2.10), we have
V™IY H, € L' (R™ x I(ty)). By the Gagliardo-Nirenberg-Sobolev inequality and standard extension

theorems of Sobolev spaces on a half-space, we find that there is a constant ¢ such that

(A i & ¢l Larn x1(t0)) < Cr||VmHL*ﬂn||LT(Ran(to))~
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By the bound (2.11) or (2.12), ||Vm_1HL*I'In||Lq(Rn+1) is finite, and so ¢ = 0.
Recall that 1 < ¢’ <r <2 and so 6'(n+1)/(n+6") <r. By Lemma 3.3 with x = 1,

O@,r

/0’—1/r—n/r ||’A;(tvaL*H

L
V™I H”HLT(R"XI(to)) < |to| 17 ")HL"'(R")'

By Lemma 4.6, if 2 < 0 < pS:L, then
||A§(thHL*Hn)||L9,(Rn) < C(0,L, )| €5 (tH W) | Lor n)-

Thus,

1/2
e C(0,L,0) ~. -
(][’V B (Hn)| ) < |(t0n/9/|¢1(tHn>”L9’(R”)'
B

By Lemma 3.4 with r = 6/, we have
€5 (EH ) | por ey < Colto[™” M((€5(tH))" ) ()7

where M is the Hardy—Littlewood maximal function. Thus,

1/2
(FIvm = @)P) < co.Lom@ ). (1.15)
B

We now turn to IIY" H ;. Recall that H ; = 0 in A(xo, 4]to|) x (—4|to|, 4lto]). By Lemma 4.4,
1/2 2ltol
m—11L* 75 |12 . L* 1 m L* 1
<][|v I Hy| ) <C ][ |Tr,,—1 1" H¢|+C / ][ |on 11" H ).
B A(zo,[tol) —2[to| A(zo,|tol)

We begin by bounding the trace. We have

| Trp 1 I H | < CM(Try,—y T H)(2) + ][ T,y 11X H,|.
A(zo,[tol) A(zo,[tol)
By the bound (4.10), we have that Tr,,_; [IX" H e L% (R™), and

[T T Ho | o gy < C0, Ly O)|€ (LEL) | o gy -

(R™)
Thus, by Holder’s inequality and Lemma 3.4,
][ | Trpy 17 H | < C0,L,0)tg™ " € (HHL) | por gy < C(0, L, O)M((E5 (HE)) ) ()7
A(zo,[tol)

Therefore,

1/2
<][|vm—1HL*Hf2> < CM(Try, 1 IF H)(2)
B

2[to|
HCOLOMEGEEN )V +C [ jom i,
—2|to| A(zo,|tol)

We are left with the term involving 8TT+1HL*I;[f. Let w = 8;”+1HL*I;[f. By the bound (1.13), if

0 < pu < 0o, then
20| 3tol

[ fwmea(f f w)"

—2[to| A(zo,|tol) —3|to| A(=o,2[to])
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Choose pn = 1/2. By Lemma 3.3 with § = r =1/2 and k = 1, it follows that

3to] 9
)< Ctp™ AL
=3|to] A(wo,2[to|)

where E is the region of integration on the left-hand side. Observe that Aj(t1gw) = 0 outside of
A(xo, 5lto]) C A(z,6[to]). By Holder’s inequality, if ' > 1/2, then

2to] ) 1/0’
|w|30( F Ao dy) .
—2[to| A(zo,|tol) A(z,6]to])

Recalling the definitions of w and H 1, we see that if 6’ > 1, then

) 1/6' . , 1/6 L 1/6'
A;(m)") < ][ A (VT TTE Hn)9> 4 ( ][ Ay (tvmITE H)9> .
A(z,6[tol) A(z,6]tol) A(z,6(t0])

By Lemma 4.6, if 2 < 0 < pa'L, then

C(0,L,0)

o IR oy + MAZ (VI H)T) ()17
0

) 1/6’
Al (tw)? ) <
A(z,6]to])
and by Lemma 3.4 with r = 6,

1

n/6’
tO

€5 (LEL) || or gy < CM((E5 (L)) ()17

Thus,
. 1/2 . .
(fivm = aP ) < eMin, o n En )
B

+ CM(A3 (VT H)”) ()7 + C(0, L, 0) M((& (tH))” ) ()"
Combining this estimate with the bound (4.15) yields
N.(V7IE (1, H)) ()
< OM(Trp T H)(2) + CM(AS (V™I ) (2)Y + C(0, L, O)M((CE(tH ) ) ()7
Recall that p < 0 < p{{L, so that p’/0" > 1, and that ¢(0, L, 6,2) depends only on p and ¢(0, L, p, 2).

By the bound (4.10), Lemma 4.6, and the L?" and L*'/? -boundedness of M, we find that the lemma
follows from the above bound. O

The techniques of [15] allow us to extend the range of p in our nontangential bound.

Lemma 4.8. Let L be an operator of the form (2.7) of order 2m associated to bounded t-independent
coefficients A that satisfy the ellipticity condition (1.11).
Let H € L*(R™*Y) be supported in a compact subset of RT‘l UR™ . Let p;'L be as in the bound

(1.13). If py ;- <p<2and1l/p+1/p' =1, then
IN(V" I H)l| o oy < CL LY p) € (EH) | o oy, Prpe <P <2
Proof. Let
w=T" (1L H), ug =1 (Logu (- uanH), &1 =Ci(tH), j=1.
The proof is similar to that of [15, Theorem 4.12] or Lemma 4.5 and will be omitted. O
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4.5 Area integral estimates on the Newton potential

In this section, we will establish area integral estimates on the Newton potential beyond Lemma 4.6.
We recall that the Fatou-type estimates on the Neumann boundary values established in [23] involve
area integral estimates but not nontangential estimates; thus, in light of formulas (4.2) and (4.5), area
integral estimates are necessary to bound the double layer potential. We will also expand the range
of p in the nontangential bound of Lemma 4.5. For ease of reference, all our nontangential and area
integral bounds on the Newton potential are listed in Corollary 4.1.

Lemma 4.9. Let L be an operator of the form (2.7) of order 2m associated to bounded t-independent
coefficients A that satisfy the ellipticity condition (1.11).
Let ¥ € L2(Ri+1) be compactly supported. Then

| Az (thBtHL*(lpil))HLQ(Rn) < C|lAF ¥ L2 (rny-

Proof. By the boundedness of the Newton potential (see Subsection 2.4), Y (1,%) € Wm2(RH),
By definition (2.9) of IIX", L*(ITY" (1, %)) = 0 in R™™. By [14, Lemma 5.2] or [20, formula (2.26)],
we have the Green formula

1.V™IE (1, %) = VDA (T, TIF (1, %)) + VSE (M. T (1, %))

away from OR’T!. This formula can also be derived from formula (2.13) for the double layer potential
(with F =I5 (1, %)), and from the definitions (2.8), (2.9) and (2.14) of M., IT*", and S*".
Thus,

Az @V (1 8))]| o
< [[Ay ¢V 0D (T T (Lo @) o gy + [[AZ (V708" (M4 T (Lo @) | 1o -
By the bound (1.19) with p = 2,
145 (V70D (T, T (L0 8))) | ) < ClTry T (L) a1 -
and by definition of WAL? | (R™) and the bound (4.8),
e 10 (L) gy < [ T (L) ) < CAS e

as desired.
We apply a similar argument to the second term. By the bound (4.9) with p = 2,

(N T (L), F)sn| < CJAS 2 | F s -

By the boundedness of the Newton potential L2(R"*1) — W™ 2(R"*1), and by definition (2.8) of the
Neumann boundary data, we also have that

[(My. ITF (1, %), f)rn

< Ol oy 1 F llyirar 22 gy

Thus, M. IT*" (1, %) extends to a bounded linear operator on WA%2 (R™) + WA}T{EIQ(R”), and by
the Hahn—Banach theorem, extends to a bounded linear operator on Lz(R”)—kB;/ »2(R"). By standard
duality arguments, there is a § € L*(R™) N B;l/z’Q(R") such that (g, @)rn = (M. ITE" (1, ), p)gn
for all ¢ € WA;{E%(R”) We may ensure that [|g||z2@n) < CHA;@HLz(Rn) by carefully choosing the
norm in L*(R") + 35/2’2(R").

By definition (2.14) of the single layer potential, we have that S¥" g = S*” (M;v 1% (1, ¥)). Thus,

[Ay ¢V 7O (1 8))| 2 gy < CIAS |20y + Ay (V™ 0:S™ G) 220,

and the given bound on ||g||z>®») and the bound (1.18) complete the proof. O
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We now establish area integral estimates for a wider range of p.

Lemma 4.10. Let L be an operator of the form (2.7) of order 2m associated to bounded t-independent
coefficients A that satisfy the ellipticity condition (1.11).
Let H and ¥ be elements of L? (R"+1) that are supported in compact subsets of R"'H UR™ ! and

R"H, respectively. Let p; ; be as in formula (1.14). If1/p+1/p' =1 and P <p <2, then we
have the bounds
[ A5V T H) | Lo ey < C(L L pO|€E(EH )| L nys Prpe <P <2

| A7 (tvmatHL*(1+¢1))|1Lp,(R,,L) <CL L p)IAT ¥l Lo gy, Pr- <P <2

Proof. We will use [15, Lemma 6.2].
For ease of notation, we consider only A5 in both cases; a similar argument or Subsection 3.1
establishes the bound on AJ (tV™I1%" H). We make one of the following two choices of notation:

w=TFH, ug=I"Hg, & = CH(tH),
or
u=0,1F (1, W), wug=20aI ¥y, & =AJP,
where
Hg = Liogx(-u@uun . ¥o = (Ligxo.a@) ®)-
Observe that AfWo(z) < A;\Il(g) and A W (z) = 0 whenever x ¢ 15Q, while by Lemma 3.4, we
have that | €5 (tHg) ny < C| €5 (tH)|
By definition of II*" and the Caccioppoli inequality, we have
u—ug € W™(10Q x (—£(Q), £(Q)));

L (u—ug) = 0 in 10Q x (—((Q),((Q)).

By Lemmas 4.6 and 4.9, we get

Lr(16¢) for any 1 <7 < oo.

A5 (tV™u) € L*(R™),
I AS (tV™ug)| 2@y < C|| @1l 12(160)-
By Lemmas 4.5 and 4.8, if p ;. < p < 2, then
INA (V" )| o iy < C (L L)1 @1]] o ey
IN. (V" ug) | 210g) < Cll®1llz2(160)-
By [15, Lemma 6.2], the conclusion is valid. O

For the sake of completeness, we establish a few final bounds on the Newton potential; for ease
of reference, we list all our nontangential and area integral bounds on the Newton potential in the
following corollary.

Corollary 4.1. Let L be an operator of the form (2.7) of order 2m associated to bounded t-independent
coefficients A that satisfy the ellipticity condition (1.11).

Let ¥ € L2(R™Y) and H € L*(R™"*1) be supported in compact subsets of R™T UR™ . Let j be
an integer with 0 < j <m. Let 1/p+ 1/p’ = 1. If p lies in the given ranges, then

IN. (VmilHL*-H)”LP’(R") < Cll€T(HH) | 1 gy Prpe <P <P, (4.16)
A5 (V™ T HD| ot oy < Cpll€5 EED | ot )y Prpe <P <P (4.17)

IN. (V" ol it U)o @ny < ép”A;‘il”Lp’(R”), Pjpe <P < p1+,L’ (4.18)
1A ¢V 0T (1) Lo ey < CpllAS | gy, PL e <P < Prs (4.19)

where 6,, depends only on the standard parameters, p, and the constants c(k,L,p,2) (if p > 2) or
c(k,L*,p',2) (if p < 2) in the bound (1.13), for appropriate values of k.
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Proof. The bounds (4.16) and (4.17) were established in Lemmas 4.7 and 4.8 and in Lemmas 4.6 and
4.10, respectively.

The p < 2 case of the bound (4.18) was established in Lemma 4.5. To establish the p > 2 case, we
may take j = 0. The bound then follows from Lemma 3.6, formula (4.6), and the bounds (4.11) and
(4.17), as in the proof of Lemma 4.6.

The p < 2 case of the bound (4.19) was established in Lemmas 4.9, 4.10. As in the proof of the
bound (4.18), we will establish the p > 2 case by duality. By formulas (4.6) and (4.7), if G and H
are in L2(R"+1) 0 WH2(R* 1), then

(O 1 VY G, H)pnir = —(G, 8 1 VTP H ) s (4.20)

If G is supported in .J and H is supported in K, where J and K are disjoint compact sets, then by the
Caccioppoli inequality, both the left-hand and right-hand sides are at most C Paiedl L2(J) | || . (K);
thus, by density, formula (4.20) is valid whenever G € L*(R"*!) and H € L*(R™*!) have disjoint
compact support.

We may now see that the p > 2 case of the bound (4.19) follows from the bound (4.11), formula
(4.20), and the p < 2 case of the bound (4.19) (that is, Lemma 4.10). O

Remark 4.2. The nontangential bounds (4.16) and (4.18) and the area integral estimate (4.17) involve
the two-sided operators N, and A3, while the bound (4.19) involves one-sided operators A7 and A .

This restriction cannot be removed. Let F' be a function that is smooth and supported in the
Whitney ball B((0,1),1/4). Let ¥ = AV™F. It follows from the definition of II* in Subection 2.4
that F = II*(AV™F) = I*®. Thus,

AT (V™ 0TI ) | Lo () = AT (EV O F) || o -
By the ellipticity condition (1.11) and the definition (1.6) of AJ, if 0 < p < oo, then
IAZ (V7 F)l| o ey 2 IV | 2(8((0,1),1/2)) % A3 @ | o (seny,

where the constants of approximation depend on p. Thus, || A3 (V™F)|| s @) < C’p||A§"i’HLp(Rn).
But for any fixed number C', we may choose F' so that

m C m
A (tV ™0 F)|| oy £ ron [AS (V™ F) || Lo ey
p

and so N
| AS (tV O W) Lo (rey £ Cl AT || 1oy

Thus, no two-sided analogue to the bound (4.19) is possible.

5 The double and single layer potentials

In this section, we will prove Theorem 1.2.

We will establish estimates on the double and single layer potentials using the duality results
of Lemma 4.1 and the bounds on the Newton potential of Corollary 4.1. Recall that Lemma 4.1
involves the Dirichlet and Neumann boundary values of the Newton potential along R" = 8R1H,
while Corollary 4.1 yields the nontangential and area integral bounds, that is, the bounds in the
interior of R’f“l. Thus, we will need Fatou type theorems to pass from Corollary 4.1 to the useful
estimates on boundary values.

We will list three Fatou type theorems from [15,23] in Subsection 5.1. These theorems suffice to
prove the bounds (1.26)—(1.31); the arguments will be given in Subsection 5.2. The bounds (1.28) and
(1.30) allow us to eliminate a technical assumption in certain results of [23]; these simplified theorems
will be stated in Subsection 5.3, after the bounds (1.28) and (1.30) have been established, and will be
used in Subsection 5.4 to establish the bounds (1.32) and (1.33).
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5.1 Fatou type theorems

In this section, we list some known results concerning the boundary values of functions that satisfy
nontangential or area integral estimates.
We begin with the following theorem concerning the Dirichlet boundary values.

Lemma 5.1 ([15, Lemma 5.1]). Let @ be defined and locally square integrable in RT’l. Suppose that

]\~f+1'1, € LP(R™) for some p with 1 < p < co. Suppose also that TrT 4 exists in the sense of formula
(2.4); that is, there is an array of functions Tr™ 4 such that

t—0t+

lim / |@(z,t) — Tr' a(z)| dz =0
K

for any compact set K C R™. Then Tr" 4 satisfies
ITe atl| o @ny < N4l 2o gy

We will also need the following Fatou type theorems for the Neumann boundary values. Note that
in [23], these theorems are stated for the solutions v, w to Lv = Lw = 0 in R with AJ (tV™v),
AF (tV™Ow) € LP(R™). We will usually apply these theorems to the solutions v, w to L*v =
L*w = 0 in R" ™ with A5 (tV™v), Ay (tV™d,w) € LP (R™); we have modified the theorem statements
accordingly.

Theorem 5.1 ([23, Theorem 6.1]). Let L be an operator of order 2m of the form (2.7) associated to
bounded t-independent coefficients A that satisfy the ellipticity condition (1.11).

Let 1 <p < oo and 1/p+1/p' = 1. Let v satisfy Ay (tV™v) € LV (R") and L*v = 0 in R™L. If
p < 2, suppose further that v € Wm’2(]R” X (=00, —0)) for all o > 0, albeit possibly with norms that

approach oo as o — 0.
Then for all p € C§°(R™1), we have

(s .M )| < CollErmo @lhiars o 47 (V70
where I\'/I:“ v is as in [23, Section 2.3.2]. In particular, if v € W™2(R™1), then, by [23, Lemma 2.4],
M. v is as in formula (2.8).

The theorem as stated in [23] requires that v € W™2(R" x (—o0, —0)) for all p; however, if p > 2,
then this condition follows from Lemma 3.3 or its predecessor [23, Remark 5.3].

Theorem 5.2 ([23, Theorem 6.2]). Let L be an operator of order 2m of the form (2.7) associated to
bounded t-independent coefficients A that satisfy the ellipticity condition (1.11).

Let 1 <p<ooand 1/p+1/p = 1. Let w satisfy A7 (tV™0w) € L (R™), N_(V™w) € L? (R™),
and L*w = 0 in R™*L. If p < 2, we impose the additional condition 8,4 1w € W™2(R™ x (—oc0, —0)
for all o > 0.

Then for all p € C§°(R™1), we have

|<T1‘m71 P MZ* w>R"’ < Cp||’I"rm,1 ‘PHWA?,;&(W) (||A5 (tvmatw)HLP'(]R") + ”N*(vmw)HLP'(R"))

where M. w is as in formula (1.7).

5.2 The bounds (1.26)—(1.31)

In this section, we will prove most of Theorem 1.2; specifically, we will establish the estimates (1.26)—
(1.31). Throughout this section, we will let L and A be as in Theorem 1.2; that is, L is an operator
of the form (2.7) of order 2m associated to bounded ¢-independent coefficients A that satisfy the
ellipticity condition (1.11).
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The estimate (1.26)

By Lemma 3.6, if 1 < p < oo, then

3

< rom ol s H, VS §)pn
[N (TP SE ) oy < Cpsup LS G
H ||¢1(tH)||Lp’(R")

where the supremum is taken over all H € L2 (R"*1) supported in a compact subset of Ri“ UR"t!
such that the denominator is positive. By formula (4.1), if g € 351/2’2(]1%”), then

~ . Tr,,_1 X H, §)gn
INV™SEG) | Lo@ny < Cp sup ( i 1! g)rn | .
i IG ) | e

Since IV H € Wm’2(R"+1), we find that Tr,,,_; II" H exists in the sense of Sobolev spaces, and
thus in the sense of formulas (2.4) and (2.5). By Lemma 5.1,

[T I H | o ey <IN (VI HD| e,
and so, by Lemmas 4.7 and 4.8, if p; . <p < pSCL and g € B;l/z’z(R”) N LP(R™), then
INA(V"SEg) | Lr @y < Cplldllr@ny,

where 6’,, is as in Corollary 4.1. By density, the bound (1.26) is valid.

The estimate (1.27)

By Lemma 3.6 and formula (4.2), if ¢ € WA},{%? (R™), then

_ (V™" DAG) v N, TTE° (1, H), @)e
HNJF(VmDAgé)”LP(Rn) < Cp qu ~— + _ Cp qu ‘< A~+ .( + )790>R ‘ )
(1€ (EH)| L gy g (1T EH)| gy
By Theorem 5.1, if ¢ = Tr,,,_1 ® for some ® € C°(R" '), then
||¢’||WA,},;{1(RTL)||A2_ (tvaL* (1+H))||Lp’(Rn)
[[((a  pl e

| (V™ DAG) | o) < Cpsup
H

By Lemmas 4.6 and 4.10, if p; ;. <p < pS:L, then
IN+ (V" DAG) | Lo@n) < Coll@llyiare ny-

We establish a bound on N_(V™DA¢) using Subsection 3.1 and extend to all ¢ € WALP (R™) by
density. This completes the proof of the bound (1.27).

The estimate (1.28)

By the bound (4.11) and formula (4.4),if 1 <p < oo and g € 351/2’2(]1%"), then

W V™0, 18§ gni Tr,, 1 Oy 11 W. §)pn
||A;(tvmatSLg)||Lp<Rn) < Cpsup (&, v *8. 157 g)rrn o] = Cpsup [(Trm 1 ? + 9)= .
& A L gy \4 A3 Lo (g

We may take ¥ to be supported away from 8Rﬁj1. By Lemma 3.2, Tr,, [IX" W exists in the sense of
formula (2.5), and so, by Lemma 5.1,

[N (V718,11 (1+¢’))”LP’(]R") 191l Lo )
1AZ | ey

[|A3 (tvmatSLg) HLp(]Rn) <G, sup
¥
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By the bound (4.18) with j =1, if p; ;. <p < pIL and g € B;l/Q’Q(R") N LP(R™), we have
145tV 0:S )l o iny < Cplldllinqnys pre <p <Pl (5.1)
By density, the bound (1.28) is valid.

The estimate (1.29)

By the bound (4.11) and formula (4.5), if ¢ € WA%?E(R"), then

T m A . . « . .
(&, VO D7) | (M3 O T2 (14 ), @n|

A3 V™0, D¢ - = .
A Lo oy & A3 @] o 2

M o (ny < Cpsup
¥

By Theorem 5.1 and the bound (4.19), if p ;. <p < pIL and ¢ = 'I"r;_1 ® for some ® € C5°(R"T1),
it follows that

IA; (EV™OITE (1, 9)]| Lo g [llare &
HA;‘P”LI”(R")

HA2+ (thatDAgb) H Lp (R

) <G, sup
&
< OpHSb”WAj,;’:l(Rn) :

As before, we may use density arguments and Subsection 3.1 to complete the proof of the bound
(1.29).

The estimate (1.30)
By the bound (4.11), formula (4.3), and Lemma 5.1, if 1 < p < oo and h € L2(R™) N LP(R™), then

: W, V"SLh)gn Tr,, 12" )
HA;(tvaéh)HLP(Rn) < Cpsup |< — \Y4 >R +1| _ Cp u < T — >R
W ||A2‘I’||Lp/(Rn) & HA2\I;HLP,(RH)
< C,sup HN*(VmHL*\i;)HLp,(Rn)||hHLp(Rn) |

¥ [AS | Lo (gen

By density and the bound (4.18) with j = 0, if Por <p< pIL, then
A5 (V" SER) || Lo @) < CollPllo@ny, Pop- <P <Dip- (5.2)
Thus, the bound (1.30) is valid.

The estimate (1.31)

By the bound (4.11) and formula (4.2), if 1 < p < oo and f € WA,ln/zf(R"), then

. (&, VDA )| M. I (1, 9), an
A5 (197 DA ) gy & sup e g (M T Q) Sl
o AT L ¥ [ A ¥l 1 (g

By Theorem 5.2, if f = Tr,,_1 F for some F € C5°(R™1), we get

(M. T (14 9), Flrn | < G| N-(VPTIY (14:9)) + Ay (VO (L ®)| e

Fllyaor | @y
provided the right-hand side is finite. Thus, by the bounds (4.18) and (4.19), if p; ;. <p < pf’L, then
A5 9™ DA ) s ey < ClFlaos o

By density and due to Subsection 3.1, we conclude that the bound (1.31) is valid.
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5.3 Further Fatou type theorems

In order to establish the bounds (1.32) and (1.33), we will need further Fatou type theorems.

The Fatou theorems [23, Theorems 5.1 and 5.2] contain a technical assumption involving the
single layer potential. As observed in [23, Remark 5.3], this technical assumption is true if p > 2;
given that the bounds (1.28) and (1.30) are established (see the bounds (5.1) and (5.2) above), we
find that this technical assumption is true for a wider range of p. Thus, we will now restate the parts
of [23, Theorems 5.1, 5.2 and 6.2] necessary for the proofs of the bounds (1.32) and (1.33). As in
Subsection 5.1, we have interchanged the roles of L and L*, p and p’, and Riﬂ and R™*! relative to
their roles in [23].

In [23], pj is defined as pj = min(p;-'f I p;f 1« ); however, a careful examination of the proofs in [23]
yields that the results are valid for pji’L and pr*, as indicated below.

Theorem 5.3 ([23, Theorem 5.1]). Let L be an operator of order 2m of the form (2.7) associated to
bounded t-independent coefficients A that satisfy the ellipticity condition (1.11).

Let py ;. <p<ooand1/p+1/p'=1. Letv satisfy Ay (tV™v) € LP (R™) and L*v =0 in R™™1,
Ifp < 2, suppose further that v € W™2(R" x (—o0, —0a)) for all ¢ > 0, albeit possibly with norms that
approach oo as o — 0T,

Then Tr;, | v exists in the sense of formula (2.4), and there is some constant array é such that

ITr 1 v = éll o ey < CL LY P IAZ (V0] o (o)

Theorem 5.4 ([23, Theorems 5.2 and 6.2]). Let L be an operator of order 2m of the form (2.7)
associated to bounded t-independent coefficients A that satisfy the ellipticity condition (1.11).

Let py . < p < oo and 1/p + 1/p = 1. Let w € VVZ?C’Q(RﬁH) satisfy L*w = 0 in R™™ and
A5 (tV9w) € LV (R™). If p < 2, we impose the additional condition dy, 41w € W™2(R™ x (—o00,0))
for all 0 > 0.

If there is some t < 0 such that V™w(-,t) € LP (R™), then Tr;, w exists in the sense of formula
(2.4) and satisfies

||Trr_anLP'(R") < C(O,L*7p’)||A5(tvm8tw)\|Lp/(Rn).

We also have the uniform bound

Supl[ V7 (1) gy < CO. L0 A7 (67 000)

and the limits

i 9700y = Jim 970, 0) = T wl ey = 0.

Finally, we have that 1\'/[:4* w exists in the sense of formula (1.7) and

|<T1‘m_1 2 M:&* w>R" < C(Ov L*ap/)”ri‘rm—l SOHWA%EI(R”) H‘A2_ (tvmatw)HLp/(]R")

for every ¢ € CS°(R™H1).

5.4 The bounds (1.32) and (1.33)

In this section, we will complete the proof of Theorem 1.2 by establishing the bounds (1.32) and
(1.33). As in Subsection 5.2, throughout this section, we will let L and A be as in Theorem 1.2.
We begin with the bound (1.32). Let h € L*(R™) N LP(R") for some p with Por+ <p <2 Bythe

bound (1.22) with p = 2, we may apply Lemma 3.8 with u = Séfz; by Lemma 3.8 and formula (4.3),
(@, V" SGh)gei| |(Tr TV (1, %), B)gn

|V (VA SER) Loy < Cpsup — — Gy sup TEm I (
& [|€7 (£ 0 )| 1o (gny 1€ (0 ) Lo gy

)
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where the supremum is taken over all ¥ e 12 (Rﬁlfl) that are supported in a compact subset of Ri“
and have a weak vertical derivative in L2(R’1).
By the definition of the Newton potential and the Caccioppoli inequality, we have

O I (1, ) € Wm2(R™H).

By Lemma 3.2 and the bound (4.18), we have that V"LHL*(1+.¢I)(~7t) e LY (R") for any (hence
some) t < 0. Thus, we can apply Theorem 5.4 with w = IT*" (1, ¥) and see that

’ <TI‘T_n HL* (1+‘i’)7 il>]Rn

< €0, 1)l A5 (V0T (148 | o -
By formula (4.7) and the bound (4.17),

| A5 ¢V, (1, )= A v (1.0, 9 < C(L L p)IET (£ 08 Lo gy -

))HLp’(Rn ))||Lp'(Rn)

Thus, if Do <P <2 then
NG (V" SER) | Lorny < CO, L7, )| Bo]| oy

By density and Subsection 3.1, the bound (1.32) is valid.
Similarly, let f = Tr,,_1 F for some F € C$°(R"*1). By the bound (1.23) with p = 2, Lemma 3.8,
and formula (4.2), if 1 < p < 2, then

I mTA £ .- * . .
|<‘I’, V™D f>Ri+l| _ C sup |<MA* HL (1+‘Il)7 f>R"|
P .

HNJr(vm_IDAJE)HLP(Rn)<Cpsup — . - A 3
R ] ey i & 08 o)

By Theorem 5.4, formula (4.7) and the bound (4.17), if Po.+ <p <2, then

[(M. T (1, 9), f)gn

< (0,10 || A5 (17O (Le))| o | Fll e
< OO0, 2, )& (£ 08) | o o 1 o .

By density and due to Subsection 3.1, the bound (1.33) is valid. This completes the proof of Theo-
rem 1.2.

6 The Green formula

A useful tool in the theory of higher order equations, and one of the reasons layer potentials are of
interest, is the Green formula

1, V"™ = —V™DA(Tr) | u) + V™S ). (6.1)

This formula is valid for all u € W™ 2 (R'*) that satisfy Lu = 0 in R, See [14, Lemma 5.2] or [20,
formula (2.26)]. It is also valid if Lu = 0 in RTT, AF ((V™0u) € L2(R™) and V™u( -, t) € L*(R") for
some t > 0; see [21, Theorem 4.3]. This Green’s formula was used in [21] to establish the uniqueness
of solutions to the L? Neumann problem (1.4); the corresponding formula in the lower half-space was
used to prove Lemma 4.9 above.

In this section, we will show that the Green formula is still valid if Lu = 0 in R}, A (tV™0u) €
LP(R™) and §1>118||Vmu( )| zr(rn) < 0o for some p with p; ;. < p < 2. The Green formula for such

solutions will be used in Section 7 to establish the uniqueness of solutions to the Neumann problem
(1.9).

We begin with some useful auxiliary lemmas. Specifically, recall from Theorem 5.4 that V™w( -, t)
— Trp,wast — 07 and V™w(-,t) — 0 as t — oco. We wish to prove a similar result for the Neumann
boundary values. Our argument will follow the proof of [21, Lemma 4.2].
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Lemma 6.1. Let L be an operator of the form (2.7) of order 2m associated to bounded coefficients A
that satisfy the ellipticity condition (1.11).

Let p satisfy 0 < p <2 and let j be an integer with 0 < j < m. Let u € W/l?C’Q(Ri+1) be such that
Lu=0in R and Af (tV7u) € LP(R™). Define u(z,t) = u(z,t +¢). If e > 0, then

A3 ¢V ue) || oy < CIIAZ (EV7 )| Lo (em)

and
; + (400 — 1 +(pd _
i [ AF @9 (1= )| gy = S (AT (907 oy = 0,
Proof. We define
[ee]
dydi\ '/
agr = ([ [ imwor )
L z—y|<t
l dy dt\/*
_ 2
- (/ / |H(y,t)‘ tn+1) ’
0 |z—y|<t

so that
AFH(z)? = AYH(2)? + AL H(2)?.

Let ¢ > 1 be a constant to be chosen later. We start with analyzing Af/c(tvjus). Let G be a grid
of pairwise-disjoint open cubes in R™ of side length £/c¢ whose union is almost all of R™. Then

”Af/c(tvjus)”ip(]gn) = /As/c tVJ ()P d.
QEQQ
By Holder’s inequality,
p/2
AL T 0 ey < 210172 / ALV @)
Qeg

By definition of u. and A?,
e/c

LT ey < D01 (. / / [ o

0 |o—y|<t

yd )P/2

Changing the order of integration and evaluating the integral dz, we have

e/c

, »/2
AT ) [ oy < 022 37 (Q12 ( / / HVu(y,t + )2 dy dt) ,
Qeg
where «,, is the area of the unit disk in R™.
Making a change of variables, we see that
ete/c /2
AL T 0 ey < a8 Tl 2( [ / (t — &)V uly, ) dy dt)
Qeg e

Let c=2y/n=+V4n. If x € Q, y € 3Q, and t € (g, + ¢/c), then |z — y| < 2¢/nl(Q) = & < t. Thus,
if x € @, then

E+E/\/R e’:‘JrE/\/H

/ /(t—e)\V%(ynﬁ)l2 dydt)p/2 < ((e+ \/%Tn)” / / [tV u(y, 1) ffff)p/Q.

€ 3Q € lz—y|<t
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The right-hand side is at most
(Cul@DP"? min (A=Y (1V) (), A5 (V7 u) ()
For ease of notation, we replace € + ¢€/v4n by 2e. Thus,

AV ()2 ey < C22 S / min (A2 (¢ u) (), A5 (tV70) ()" da.

QGQQ
Summing over @, we have
A/ YA (19 u.) | o ey < Crp min (A2 (EV90) || 1o s [|AG (EVI0) || Lo en)) - (6.2)

e/V4n
f

We now turn to A . By definition of u,,

dy dt\*/*
tn—l

AL @) = ([ [ 9 - utt )P
e/Vin lz—y|<t

:<7 / ’75Vj85u(y,s)d8

e/Vanlz—y|<t 1t

tnfl

2 dydt>1/2

Applying Hoélder’s inequality and changing the order of integration, we obtain

t+e

eIV i [ ’ o, dydt\'?
Ay (V7 (u—u.))(z) < e | |V?0suly,s)|”ds pro|
e/Vanlz—yl<t t

7 ) dy ds 12
<C, <€2 / / |Vjasu(ya 5)|2 gn—1 ) :

e/Van lz—y|<s

By the Caccioppoli inequality,

oo

e/VAN [y g2 j 5 dyds 12
AY T (u = u))(@) < € - Vouly, )2 )
e/V1ibn  |lz—y|<2s

s = ([ [ e )

0 |z—y|<rt

Now, define

for any r > 0, so that A H = AYH. It is well known (see [30, Proposition 4] or [26, Theorem 3.4])
that if 0 < p < oo, then || AZH || Lo gn) < CpllA3H | Lr(zn). Thus,

A5 (7 (1 = ) oy < Coll A7 €V 70) e, (6.3)
The bound [|A3 (tViu.)||prrn) < Cpll A3 (tVIU)|| 1o (gn) follows from the bounds (6.2) and (6.3).
We now use these bounds to bound AJ (tV7ur) as T — oo and AJ (tV7 (u — u.)) as e — 07F.

First, by definition of A’ and A%,

AT (V7 ur) | oy < ALY (EV9ur) | pony + AT Y (099 uz) || 1o -
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Next, by the bounds (6.2) and (6.3),
A3 (677 ur) [ oy < Coll A" (697 0) | .

If AJ (tViu)(z) < oo, then A?/ 16”(75Vju)(ac) — 0 as T — oo, and so, by the dominated conver-
gence theorem, if AJ (tV7u) € LP(R"), then A?/ 10 (4viy) — 0 in LP(R") as T — oo. Thus,
A3 (tViur)| Logny — 0 as T — oo, as desired.

We now turn to u — u.. By definition of A’ and A,

||A§"(tvj (u— us))HLp(Rn)
< ALY (099 )| o ) + ALY (V0 o oy + A7 YF (099 (1 = 12)) | o -
By the bounds (6.2) and (6.3),

1A (6V7 (1 = ue)) || 1oy < ClAZE(EVI0)|| oy + Cpll AT €V 0) | Lo (ny -

Both terms converge to zero by the dominated convergence theorem and hence the proof is complete.
O

Combining Lemma 6.1 with Theorem 5.4 (or, for more notational convenience, [23, Theorem 6.2])
yields the following corollary.

Corollary 6.1. Let L be an operator of the form (2.7) of order 2m associated to bounded t-independent
coefficients A that satisfy the ellipticity condition (1.11).

Suppose that w € WlTC’Q(RiH) satisfies Lw = 0 in R AT (tV™0,w) € LP(R™) for some p with
1<p<2, and V"w(-,t) € LP(R™) for some t > 0.

Let we(x,t) = w(x,t +¢). Then

=0.

. v + _ . ° +
A IMA Tl goyy- =0 lim IMAGw —we)

. /
lsvacys, @eny)-
We are now in a position to prove the Green formula.

Theorem 6.1. Let L be an operator of the form (2.7) of order 2m associated to bounded t-independent
coefficients A that satisfy the ellipticity condition (1.11).

Let p satisfy py ;. <p <2, where py . is as in formula (1.14). Suppose that w € WZTC’Q(RTA)
satisfies Lw = 0 in R"*1 AT (tV™0,w) € LP(R™), and V™w(-,t) € LP(R™) for some t > 0.

Then we have the Green formula

1, V"w = —V™DA(Tr}_, w) + VS (M w).
Proof. Let we(z,t) = w(z,t + ¢) and let we r = we — wyp. If A is t-independent, then Lw, 7 = 0 in
R for any 7' > ¢ > 0. By Lemma 3.3 or [23, Remark 5.3], if T > € > 0, then w. 7 € W™2(R} ™).
Recall that formula (6.1) is valid for all solutions in Wm’Q(RTrl). Thus, we have
1, V™. = —V"DA(Tr) | w. 1)+ V"SEM} w.r).

m

Let B = B((zo, to), |to|/2) be a Whitney ball in R%*!. By Theorem 5.4, we find that Tr; | w. r —
Tr,) ,w in WAL? (R") as ¢ — 07 and T — oo, and by Corollary 6.1, Mjw.r — Mjw in
(WA?,’f_/l(R”))* ase — 07 and T — oo. By the bounds (1.27) and (1.26) established in Subsection 5.2,
we have

—VmDA(Tr), | wer) + VSEM, w. 1) — —V™DA(Tr),_, w) + VSE(M w)

m

in L?(B) as T — oo and € — 0.

Since AJ (tV™d,w) € LP(R™), we have that w. — w as € — 0% in W™™2(B). By Theorem 5.4,
V™wr(-,t) — 0 in LP(R™) for any fixed ¢ > 0, uniformly for ¢ in (—3Jto|/2,3|to|/2). Therefore,
wy — 0 in WP (B); by the bound (1.13), wy — 0 in W™2(B) as T — oco.

Thus, taking appropriate limits we obtain the Green formula, as desired. O
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7 The Neumann problem

In this section, we prove Theorem 1.1, that is, establish the well posedness of the Neumann problem
with boundary data in LP(R™) for the operators with bounded elliptic t-independent self-adjoint
coefficients.

Our proof of Theorem 1.1 is based on a duality argument. That is, we show that the well posedness
of the Neumann problem with the boundary data in W—Lp' (R™) implies the well posedness with the
boundary data in LP(R™) for adjoint coefficients; as well posedness of the subregular Neumann problem
was established in [15], this implies the well posedness of the LP Neumann problem.

We begin with precisely stating the well posedness result of [15].

Theorem 7.1 ( [15]). Let L and A satisfy the conditions given in Theorem 1.1.
Then there is some €1 > 0, depending only on the standard parameters n, m, A, and ||A||L00(Rn),
with the following significance. If

(0 L1 ) <11 (7.1)
max (0, - — — —¢ — < = .
) n 1 p, =9
then for every b in W-12(R™) N W-Le (R™), there is a solution v, unique up to adding polynomials
of degree m — 2, to the subregular Neumann problem

L*v =0 in RT‘l,

M. v 3 h,

143 (V™) | 2 @n) + ||N~+(Vm_lv)||L2(Rﬂ) < Collhllyi 1.2 gy
||A§(tvmv)||m«(w) N4 (VP 0) | Lo ey < Cp/Hh”Wﬂ,p’(RH)-

The numbers Cy and Cp depend only on n, m, A, ||Allpe®ny, and p'.

We note that the p’ = 2 case, like the L? Neumann problem (1.4), is from [21,24]. Here, Mjg v is
as given in [23, Section 2.3.2].

If A is self-adjoint, then A = A* and L = L*; however, we have phrased the problem (7.2) in
terms of A* and L* for ease of notation for duality arguments. We now state our duality theorem;
Theorem 1.1 will follow easily from Theorem 7.2.

Theorem 7.2. Suppose that L is an elliptic operator of the form (2.7) of order 2m associated to the
coefficients A that are bounded, t-independent in the sense of formula (1.2), and satisfy the ellipticity
condition (1.11).

Let p and p' satisfy pr- <p<2and 1/p+1/p =1, where pi.p- is as in formulas (1.14) and

(1.13). Suppose that for every h € W=L2(R™) N W12 (R™), there is a unique solution v to the
Neumann problem (7.2) for L*.

Then for every g € LP(R™), there is a solution w, unique up to adding polynomials of degree at
most m — 1, to the L?-Neumann problem

Lv=0 in Rﬁ+17
Miv3g, - (7.3)
AT (EV™0sw) | Lo ey + [N+ (VW) | Lo @y < ColldllLe@ny,

where C, depends only on p, n, m, X, ||Al[pe®ny, the number c(1,L*,p',2) in formula (1.13), and
the constants Cy and Cp in the problem (7.2).

Proof. Fix some such p and p’. We use the method of layer potentials of [17,19,69], specifically as
formulated in [14].

Let %;t and .’%;t, be the spaces of all equivalence classes of functions such that the appropriate
norms

lwll ez = [N (V™w)l| o ey + (AT (EV ™ 0pw) | o (),
ol = IN£(V™ 0l gy + A5 (V™ 0) | o (g
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are finite.
We define the following function spaces:

@i:{wp‘f'U}QZ U}pef;:7 U}QE%%‘Z’ pr:Lw2:0 ian+1}’
VE={veX;nXi: Lv=0 nRL"},

D= WA}ﬁp—l(Rn) + WAi'f_l(Rn),

D = WA (R™) N WA%2 | (R™),
M= (WAL (R™)* + (WA%Z (R™)",
N = (WALP | (R™)* N (WALZ | (R™)*.

We are interested in a family of norms on these function spaces. For each number § > 0, let

) 1

s = inf {lwpll s + 5 lwalles : w=w, +ws, Lup = Luz =0},

1llos = inf {I18ylliary gy + 5 1@elliare @y €= 8+ P

|G, = lnf{HGp||(WA?YLIi’1(Rn))* + 5 ||G2H(WA2;L31(W))* P G=Gp+ G2}’

Wiy = llvllzz +dllvlizs,

115, = 10 gony + 0l F a0 ey

1E g, = 1B oars oy + O1E lgiase o

Then N5 = (355)* and Mg = (Ds)*. See [54, formula (1.3) and Theorem 1.7].
By Theorems 5.1, 5.2, 5.3 and 5.4, the operators

'I"ri_1 : ngt — D5, 'I"rfri_1 : éj? — 557 Mj : @gt — Ns, Mi* : f:Zv](;i — gt(;

are bounded with bounds depending only on p and the standard parameters, and in particular, not on
d provided ¢ > 0. By Theorem 1.2 and the bounds (1.20)—(1.23) we have that the double and single
layer potentials are bounded

DA:D; 5D, DA D5 -, SN - 9F, SE 0 - 9F

with bounds independent of §. _
By [21, Theorem 4.3], and by Theorem 6.1 and Subsection 3.1, we find that if v € 2)5i and w € @Ji,
then the Green formulas

1. V™ = FVMDA (Tr_ v) + VSE (M. v),
1.V"w = TVDA (TrE | w) 4+ V"SY (M. w)

are valid.
Finally, the jump relations
Tr)

m—1

DAf —Tr,,_, DAf=—f, Tr}_,S"g—Tr, 8"g=0, (74)
MyDAf+ M, DAf >0, MiSlg+M, Slg=g
of [14, Conditions 6.19-6.22] are valid for all f € WA;{EE(R”) and all g € (WA;{E%(R”))*, see [14,
Lemma 5.4]. By density, the relations (7.4) and (7.5) are true for all f in D5 or Ds and all ¢ in N,
or Ns. L _

Thus, [14, Conditions 6.14-6.22] are valid for the spaces 2)?7 D5 and N, and so, by [14, Theo-
rems 6.23 and 6.24] and the well posedness of the Neumann problem (7.2), we get that M. DA is in-
vertible D5 — M5 and ||(My. DA")~!|| is independent, of §. By duality (see [14, Lemma 5.3]), M DA
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is invertible ®5 — Ms. Furthermore, the norm is independent of § and the value of (M; DAY LG is
independent of §.
Let w = DA((M§ DA)~'@), G € LP(R™) C N;.
Then w € 9y and so w = wf, +w§ for some wg €xt, wd € X5 with ng = Lw) =01in Riﬂ and
with )
lwpll s + 5 [wSll s < ClGlg, < ClIG|Lo@n).

Taking the limit as § — 0T, we see that w$ — 0 in W,"2*(R%™). Thus w = 6lim+ w? and so
—0

INL (V™ w) + A3 (V" 0pw)l| o gy < CI G| en),

as desired.

Thus, the solutions to the Neumann problem (7.3) exist. We have seen that M, D4 is one-to-one
on ® = WALP (R™) + WAL? | (R"), and so it is also one-to-one on the subspace WAL? | (R"). The
Green formula of Theorem 6.1 allows us to apply [14, Theorem 6.13] to see that the solutions to the
problem (7.3) are unique, as desired. O

We conclude the paper by proving Theorem 1.1.

Proof of Theorem 1.1. The ellipticity condition (1.3) in Theorem 1.1 implies that the condition (1.11)
in Theorem 7.2 is valid. Thus, if L and A satisfy the conditions of Theorem 1.1, then they satisfy the
conditions of Theorems 7.1 and 7.2, as well.

There is an € > 0, depending only on n and the number 7 in formula (7.1), such that if p satisfies
the bound (1.8), then p’ satisfies the bound (7.1). Thus, if ¢ > 0 is small enough and the conditions
of Theorem 1.1 are satisfied, then the subregular Neumann problem (7.2) is well posed.

Recall from formula (1.15) that there is some £ > 0 depending on the standard parameters such
that

_ 2n n
D11 < max (1, p—— —E).

By Remark 1.1, if max (1, HQIQ — 5) < p < 2, then ¢(1,L*,p,2) depends only on p and the standard
parameters.

Thus, if € is small enough and p satisfies the condition (1.8) of Theorem 1.1, then p and L also
satisfy the conditions of Theorem 7.2. Thus, the Neumann problem (7.3) (or (1.9)) is well posed. O
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