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Abstract. In this work, we study the non-existence of a solution to an eigenvalue problem for the
Gross—Pitaevskii equation for Bose-Einstein condensation with repulsive interaction and a trapping
potential given as Borel regular measure which vanishes at infinity in some sense. By differential
equation approach, we obtain various results on the nonexistence of the eigenvalue problem. Some
celebrated Hardy type inequalities are obtained.
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1 Introduction

One of the most promising discoveries of the 20*" century physics of matter is the Bose-Einstein
condensation (BEC) phenomenon: at a very low temperature, close to the absolute zero, the de-
Broglie wavelength of the bosons increases to the size comparable to the inter-particle spacing, so
that the bosons behave coherently, occupy the same quantum state and form a condensate. The first
mathematical model of BEC is of 1924, due to S. N. Bose [3] and A. Einstein [9]. However, the first
experimental observation of the phenomenon appeared as late as 1995 by three separate experiments:
due to M. H. Anderson et al. [1] on vapour of rubidium, K. B. Davis et al. [6] on vapour of sodium
and C. C. Bradley et al. [4] on vapour of lithium (see [27] for a detailed history).

The GPE model, introduced by E. P. Gross [15] and L. P. Pitaevskii [26], describes an ultra cold
dilute bosonic gases confined in an external trap, so that only binary interaction is important. The
model was ultimately justified by E. H. Lieb [18,19] and H. T. Yau et al. [10]. In describing the model,
we follow W. Bao [2].

We study this phenomenon using the GPE model. In Section 2, we have some results on Sobolev
spaces, auxiliary for the further works. Some approximation results might be of interest to specialist.
In Section 3, we consider Borel regular measures. In Section 4, we construct the energy space using
the methods of Dirichlet forms (see, e.g., [11] and [12]). In Section 5, Hardy type inequalities are
considered, where we obtain the celebrated Sobolevskii inequality (see Corollary 5.4) and Poincaré
inequality (see Corollary 5.3) as corollaries. In Section 6, we show that the energy space D (see
Definition 4.1) is isometrically isomorphic to a weighted Sobolev space. This isometrical isomorphism
is a key tool in the killing potential technique (see Section 7).

Throughout this work, by solution we mean a weak solution unless otherwise stated, and dV refers
to a measure (dV = V dx if V € L}, ). For brevity, we will omit the entire space RY when writing, so

loc
instead of W12(RY) we will write W12,

2 On Sobolev space

This section contains a toolbox related to Sobolev spaces and other auxiliary materials for the further
works. In this section, Q@ C R¥ is an open set unless otherwise stated.

2.1 A Sobolev space and its maps. Set capacity

Definition 2.1 (Cf. [28]) (Sobolev space). Let 2 C RY be an open set, p € L} (Q), p > 0 a.e. For

k =1,2,..., we define the Sobolev space W&’Q(Q,pdaj) as a completion of C2°(€) in the following
norm:

1
o 2
1 hwseoany = (3 1D 132 pan)) -

|| <k

Note that in general this completion is not a functional space, since it may contain the zero
‘function’ with non-zero derivative. This is known as the closability problem (see, e.g., [11, Section 1.3
and 3.1] for a discussion of the case £k = 1). In this work, we mostly consider the case p = 1 (no
weight), in such a case we suppress the measure when referring to a space. In Section 7, we have
to consider p = w? with w € Wllof(Q), w > 0 a.e. For this case, [11, Theorem 3.1.3] shows that
VVO1 -2 (Q, pdzx) is a well defined functional space. Later on, we consider only these two cases.

Lemma 2.1. Let Q C RY be an open set. There exists K > 0 such that for all ¢ € Lip(Q) and
w e Wy 2(Q, pdx), one has

[pwllwrz < K| |Lip[[w]lw.2.

Proof.

l6wliyse < Nll7=lwlzz + (1617 + [Vell7=) ol < 2([0l7 + [VElIEe) [0z O
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Proposition 2.1. Let (X, (ps)) be a gauge space (see [7, IX.10]), where (pa) is a separating family
of pseudometrics on X. Assume that a compact sequence x,, has a unique limit point x, that is, every
subsequence xj, contains a sub-subsequence x; such that x; — x as j — oco. Then

Tp, — T aS N — 00.

Proof. Assume to the contrary that x, — x. That is, there exists a pseudometric p, such that

lim sup po (@, ) > 0. Then there exist ¢ > 0 and a subsequence xj such that p,(xg,x) > o for
n—oo
all z,. However, x;, contains a sub-subsequence z; — x as j — co. Contradiction to assumption

palzj ) >0 > 0. O
Theorem 2.1. Let Q C RY be an open set, and let M > 0,

t? |t‘§M’
Ru(t) =
m(?) {0, It > M.

Let u, — u as n — oo in Wy 2(Q, pdx) with w > 0, w e W2(Q). Then

loc
Rar(un) = Rar(u) in W (pda) as n — .

Proof. Recall that we are proving that R, is a continuous mapping on the space WO1 ’2(p dx) and that
Uy, — U in W()l’g(pdx) as n — oo.
Since Rjs is a contraction,
|Rat(un) — Rar(u)] < |up — ul.

So, Rs(uyn) — Ra(u) in L%(pdz). Next,

VRM(un) — VRM(U) = Vun 1{|un|§M} —Vu 1{|u|SM}
= (Vun = Vu) L, <y + Vg, <y = ui<my)-

Thus
|V Ras () = VR (u)| < [V, — V| + [Vu| 15,
where
Ep={lul <M < |un|} U {|un| <M < |ul}.
Hence

Nl

limsup ||Ras(un) — Rar(w)||wr2 <limsup [|[Vulg, |2 = limsup(,u(En))% < (,u(limsup En)> ,
n— oo

n—oo n— oo n—00

where du = |Vul?pdz. Now, observe that

limsup E,, C {|u| <M< limsup|un\} U {liminf|un| <M< |u\}
n—00 n—00

n—o0

Hence, if uy is a subsequence such that up — w a.e., then

limsup u(Ey) < p({lul = M}) = 0.

n—oo

since
[Vulgu=n . =0

Hence, for every subsequence u,,, we can subtract a sub-subsequence wuj such that
Rar(ug) = Ras(u) in Wi (w? dx) as k — oo.

Hence the assertion follows by Proposition 2.1. O
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Corollary 2.1. For everyu € WOI’Q(Q, pdx), there exists a sequence 0,, € Lip,(92) such that 0<6, <1,

105 ]lw1z — 0 as n — oo, (2.1)
u(l—6,) € Co().

Proof. Due to [11, Theorem 2.1.3] (the Lusin type theorem), for n = 1,2,3, ..., there exists a growing
sequence F, of closed sets Fy C Fy C --- C Q such that cap, (2\ F),) — 0asn — oo. Let 6,, € Lip.(),
0<6,<1,6,=1o0nQ\ F,, be such that

cap; (Q\ F) +27" > H9n||%[,1,z > cap,(Q\ Fp).

Then (2.1) follows. Since (1 —6,,) =0 on Q\ F,,, one has u(1 — 6,) € Cyp(Q2), by [11, Theorem 2.1.3]
(the Lusin type theorem). For the definition of capacity, see, e.g., [23, Section 2.2.1]) and [20, Theo-
rem 11.16]. O

2.2 Approximation in Sobolev spaces

The next proposition shows that bounded functions are dense in Wy (pdx) N L4(p” dz).
Proposition 2.2. Let¢>1, 8> 0 and let u € Wol’Q(p dz) N Li(p? dz). Then
Ry (u) = u as M — oo in Wol’Z(pdsc) N LI(pP dz),
where Ryr(u) s as in Theorem 2.1.
Proof. For M > 0, ups = Rps(u). Then
lu —unr| = (lu] = M) Lgusny < [ul1jusmy — 0 as M — o0

in L2(pdx) N L(p? dz) by the Lebesgue dominated convergence theorem (LDCT).
Since Vupyr = Vu 1y, <ay, we have

|Vu — Vuy| = |[Vu|1ysmy — 0 as M — oo
in L?(pdz) by the LDCT. O
Proposition 2.3. Bounded continuous functions are dense in Wy *(Q, pdx) N LI(SY, pP da).

Proof. By Proposition 2.2, it suffices to consider u € Wy (pdx) N LI(p® dz) N L®. Let a sequence
0., € Lip.(2) be as in Corollary 2.1. Then u(1 — 6,) € Cy(2). Now,

u = u(l = 6n)| = |ulfn,
[Vu— V(u(l = 6,))| = |V(uby)| < 0,Vul + [u| V0| < 0, Vu| + [[ul| Lo | VE,|.

In its turn, |ul@, — 0 in L?(pdz) N L(p? dz) and |Vu|f, — 0 in L?(pdz) as n — oo by LDCT and
(2.1).
Finally, |V0,| — 0 in L?(pdx) as n — oo by (2.1). O

Proposition 2.4. Lip,(Q) is dense in Wy (pdz) 0 Li(p? dx), that is, for every u € Wy *(pdx) N
Li(pP dz), there exists a sequence ¢; € Lip,(Q) such that

(Ej —u in Wy (pdx) N LY(pP dx) as j — .

Moreover, _
supp(¢;) C supp(u).

Proof. Let u € Co N W, % (pdx) N LI(p? dx).
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1. For n =1,2,..., denote &,(x) as

L Jul > —,
En(2) = ¢ (2nul(z) 1)+7 2i < |ul < 17
n n

1

0, Jul < o
Then

l{lu\>i} >&n > 1{|u|>%}, Vén = 1{%>‘u|>ﬁ}2nV\u|.

Hence

[VEn| = 201115 15 24| Vul.

Since &, — 1{jy|>0} Pointwise as n — oo, it follows that u&, — uin L*(pdx)N L9(p® dx) by the
LDCT. In its turn,

|V (u&,) — Vu| = |§nVu +uVE, — Vu| <& — 1] |Vu| + |u| | V&
=& — 1 |Vu[+2n 11y s 1y |ul[Vu| — 0 in L*(pdzx) as n — oo

by the LDCT, since
L <<ty S 2nful e cuety S 2100 cuetys
So, u&, — u in Wy (pdz) N LI(p° dzx) as n — co.

. Denote F,, = {|u| > £}, G, = {|u| > 3~}. Observe that F, is closed, G, is open and that
supp(ué,,) C F,. Let
dist(x, G¢)
nn(x) =T - - .
dist(x, G¢) + dist(z, F},)

Then n,, € LipC(Q) 1g, > 1y > 1p,. Denote M = ||u||Loo and let ¢,,; € Lip,.(2) be such that

Gnj — u&y, In Wo *(pdx) as j — oo for all n = 1,2,... . Let (;S,U = Ry (¢n;) and ¢n] = nnqﬁn]
Observe that ¢m — u&, in Wo *(pdx) as j — oo by Lemma 2.1 and Theorem 2.1. Now,
we prove that gbn] — ugp in L(pP dr) as j — oco. Indeed, for every n = =1,2,... and every

subsequence of sequence gbm, we can find a sub-subsequence gbnk such that (bnk — ué, a.e. as
k — oo. Note that

k] < M1g,, Y k=1,2,3,...,

which implies that supp(aj) C supp(u) and 1¢g, € L9(p” dx) by Markov—Chebyshev inequality.
Hence
Gt — uEy, in LY(pPda) as k — o0, Yn=1,2,...,

by the LDCT. Then for every n =1,2,..., anj is compact in L9(p? dx) with the only limit point
u&y,. Hence ¢p,; — u&, in L3(p® dx) as j — oo by Proposition 2.1. Summarizing

%nj — u&, in Wol’Q(pdx) NLI(pPdx)asj— o0, Yn=1,2...,
ut, — u in Wy 2 (pdz) N LI(pP dz) as n — oo,

so the assertion follows. O

Lemma 2.2 (Caccioppoli type identity). Let u € VVllocl7 ¢ € Lipy,.- Then

Vu - V(ug?) = [V (u)|* - [ul’| Ve
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Proof. Since u, &,£2 € wht ué,u€? € LI and éVu +uVE € L | 2Vu +2uEVE € L] it follows

loc? loc loc? loc?

that u&, ué? € Wbt and the product rule applies:

loc

Vu - V(ué?) = EVu - V(ué) + uEVu - VE
= V(u€) - V(u€) — uVE - V(u€) + uV(ug) - V&€ —u?VE - VE
= [V(u&)® — [uf*| V¢ O

Proposition 2.5. Let Q C RN be an open set and u € Wl{)f(ﬂ) Assume that there exist a sequence
&n € Lip.(Q) and M > 0 such that &, — la.e. and ||[uéy| 2 < M, [|[V(u&,)|L2 < M. Then

we Wy (Q) and u&, = u in Wy () as n — oo.

Proof. Tt follows from the assumption that the sequence (u&,) is weakly compact in VVO1 2(Q), by [14,
Theorem 5.12]. Let w be a weak limit point of this sequence. Then there exists a sub-sequence
& such that u&, = w as k — oo in W, *(Q). Since W,*(Q) is compactly embedded in L7, ()
(see [14, Theorem 7.22] (Rellich-Kondrachov Theorem)), it follows that ué, —» w as k — oo in
L? (). Hence there exists a sub-subsequence &; such that

lim ué; = w in We2(Q),  lim u&; = w in L2 (Q).
j—o0 j—o0

By [8, II1. 6, Corollary 3],

. a.e. .
lim u§; — w in Q.
j—o0

However, & =% 1. Hence u&; <=5 u as j — 0o in Q. So, u = w, a.e. and hence u € W,*(Q) is the

only weak limit point of the sequence. Then, by Proposition 2.1,

lim ué, — u in W, % (Q). O

n—oo
3 Regularity of weak solution to elliptic PDE and regular,
singular sets for a measure
At the beginning of this section we recall one important theorem (local elliptic regularity theorem),

the rest will be devoted to the Borel regular measures. For the definition of weak solution, we
follow [14, Section 8.3].

Theorem 3.1 (Cf. [14, Theorem 8.8], local elliptic regularity theorem). Let Q C RY be an open set.
Let A: Q — RY*N gnd By : Q — RY be locally Lipschitz continuous functions in Q, A > 0. Let
By,C € L°(Q), f e L2 (Q) and let u € WL2(Q) be a (local) weak solution to the equation

loc loc loc

—div(AVu + Biu) + BoVu + Cu = f.

Then u € W22 ().

loc

Lemma 3.1. Given an open set Q C RN for a Borel reqular measure V> 0 on Q, the reqular set of
points with respect to measure V' (Reg(V')) is open set and the singular set of points with respect to
measure V (Sing(V')) is closed.

Proof. Let zg € Reg(V), r > 0, be such that V(B,.(zg)) < oo. For every z € B,(xg), let s < r—|z—x|
(note that r — |z — x| > 0). Then

Bs(z) C By(xg) = V(Bs(z)) < V(Br(x0)) < 0o Yz € Reg(V).

Now, note that Sing(V') = Q \ Reg(V). So, Sing(V) is closed. O
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Lemma 3.2. Let Q C RY be an open set, V > 0 be a Borel regular measure on Q, and u € C(S2) be

such that
/|u| dV < o0.
Q

Then for all o > 0,
{Ju| > o} Nsing(V) = @,

or, equivalently, w =0 on Sing(V).

Proof. Assume that there exists « € {|u| > o} Nsing(V). Since u is continuous, {|u| > o} is an open
set, so there exists r > 0 such that B,(z) C {|u| > o}. Then

/|u| v > / odV =oV(B,(x)) = o0,

Q B, (x)
since x € sing(V'). Since {|u| > o} N Sing(V) = @ for all o > 0, it follows that

|u|(z) <o, Yz e Sing(V), Vo> 0.
So,
0 < |u|(z) < inf o = 0. O
>0

Corollary 3.1. Let G C Q) be an open set. Assume that V1g € D'(G). Then G N Sing(V) = &.

Recall that D'(2) is the dual space of D(Q2), where D(2) denotes C°(£2) with the topology of
uniform convergence of all derivatives on compact subsets of ) (i.e. the space of test functions).

Proof of Corollary 3.1. Consider xy € G N Sing(V'). Then there exists ¢ € D(G), ¢ > 0, ¢(zg) = 1.
Since V' 1¢ € D'(G),

(V1g)(@) = | ¢dV < oc.
/

Hence, by Lemma 3.2, ¢ = 0 on Sing(V'). This contradicts the fact that ¢(zp) = 1. O

Theorem 3.2. Let G C Q C RN be an open set such that V 1¢ is a Radon measure on G. Then
G C Reg (V). Moreover, V 1geg(v) is a Radon measure on Reg (V).

Proof. Recall that Reg(V) is open by Lemma 3.1. If V 14 is a Radon measure on G, then V1g €
D'(G).
By Corollary 3.1, it follows that G N Sing(V) = @. Hence G C Reg(V) as follows:

GNReg(V) =GN (Q\Sing(V)) = (GNQ)\ (GNSing(V)) =G\ & =G,

that is, G C Reg(V'). Now, we prove the second assertion. Let K C Reg(V') be a compact. For every
x € K, let r; > 0 be such that V(B,_(x)) < co. Then the collection { B, ()}scx is an open covering
of K. Hence there are finitely many x1, x2, ..., 2y such that

M
K< | B, (&m).

m=1
So,

M
V(K) <> V(B,,, (2m)) < . O

m=1
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4 Energy space

One of our fundamental tools in this work is the construction of an energy space which is carried our
in this section.

Definition 4.1. Let Q C RY be an open set, V > 0 be a Borel regular measure on §).

(1) We define a Hilbert space E(Q) = E(Q V') as a completion of the set

D(Q) = {¢ € Lip,(Q) : /¢2 dV < oo} = Lip,(Q) N L*(Q,dV)
Q

in the norm || - || p,

162 = [6]3n + / &2 dv.

(2) Let J denote an extension to E(Q) of the identity operator
id: D(Q) C D(Q) — W2(Q).
So, J : D(2) — Wi2().
Note that J is a contraction, since ||¢||y.2 < ||¢||p for all ¢ € D.

(3) In general, Ker(J) # {0} is a closed subspace in the Hilbert space D(€2). Then

D(Q) := D(Q) © Ker(J) = (Ker(J))*.

Proposition 4.1. Let Q C RY be an open set, V be a Borel reqular measure on Q. Then:

(1) D(Q) = D(Reg(V)) = Lip(Reg(V)).
(?) = D(Reg(V)).
() = D(Reg(V)).
Proof. 1t follows from Lemma 3.2 that every ¢ € D(€2) satisfies ¢ = 0 on Sing(V). Hence
D(©) = D(Reg(V)).
Now observe that, by Theorem 3.2, V 1geg(v) is @ Radon measure on Reg(V'). Hence
Lip,(Reg(V)) € L*(Reg(V),dV).

So,
D(Reg(V)) = Lip,(Reg(V)).

Assertions (2) and (3) follow from the first assertion. O

Theorem 4.1 (See [11, Theorem 2.2.4] and [12, Lemma 2.1]). Let G C RY be an open set, V be
a Radon measure on G. Then there exist a Borel set R C G, cap;(R,G) = 0, and an increasing
sequence K, of compacts K1 C Ko C -+ C G such that

W v(e\ (RuJ K.)) =0,

(2) capy(K\ K,) — 0 as n — oo for all compact K C G.
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(3) For everyn =1,2,3,..., there exists Cy,, > 0 such that

/ 61V < Culldllwray, V6 € Lip.(G).
K\R
Definition 4.2.

(1) Let Q C RY be an open set. A Radon measure p on § is called smooth if it charges no set of
zero capacity, that is, for every Borel set F C €2,

w(E) =0 whenever cap,(F,Q) =0.

(2) For a Borel regular measure V on €2, define Vi as V; = V 1gee(v)\®, Wwhere R is as in Theorem 4.1.
It follows from Theorem 4.1 (3) that V; is a smooth measure. V; is called the smooth part of
measure V.

Theorem 4.2. Let Q C RN be an open set, V be a Borel reqular measure on RN . Let J be as in
Definition 4.1, and let R be as in Theorem 4.1 with Q = Reg(V'). Then

Ker(J) = L3(R,dV) = {u € L2(Reg(V),dV) : u=0 on Reg(V)\ R, V-a.e.}.

Proof. Since cap, (R, ) = 0, it follows that L?(R,dV) C Ker(J). Hence we are left to prove that
Ker(J) C L*(R,dV).

Let u € Ker(J), u # 0. Note that D(€, V) = Lip,(€2), since V is Radon measure. Then there
exists ¢; € Lip.(Reg(V)) such that

¢; =0 in W, *(Reg(V)) as j — oo
and
¢; > u in L*(Reg(V),dV) as j — ooc.

Forn=1,2,3,...,
¢; = u in L*(K, \R,dV) as j — oo,

since K, \ R C Reg(V). Then, by Theorem 4.1 (3),

/ ¢]dVSCnH¢jHW12 — 0 as J — o0.
K,\R

(oo}

So, u = 0on K, \R, V-a.e. for every n = 1,2,3,.... Hence u = 0on |J K, \ R, V-a.e. By
n=1

Theorem 4.1 (1),

V(Reg(V)\ (Ru fj Kn)> —0.

n=1

We conclude that v = 0 on Reg(V) \ R, V-a.e. O

Corollary 4.1.
D(S) = Wy *(Reg(V)) N L (Reg(V), dV5).

Moreover, if V(R) = 0, then D = D.
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5 Hardy type inequality

This section demonstrates some recently developed Hardy type inequalities, as they will become an
important tool in the following sections.

Definition 5.1. Let @ C RY be an open set, V be a (signed) Borel regular measure on Q. By a
positive local weak solution w to the equation

—Aw+Vw=0 (5.1)

*(Reg(|V])) and L2

we consider a function w € Dy,e(€, |V]) such that w_ = 0 in W 7o(Reg(V),d|V|s),

loc
and

/Vwader/fde:O, V¢ € Lip, (Reg(|V])).

Proposition 5.1. Let w € Dy,.(Q) be a positive solution of equation (5.1). Then the following
inequality for self-adjoint operators holds:
1[Vul* _
4 w2

1
A+§V.

That is, one has

Vw|? 1
1 [ ar < [1vopar+ 5 [av. ve e WiERes(V) 0 PRes(VD. VL. (52)

Proof. Without loss of generality, we assume that = Reg(|V]) and |V| 1{reg(v)} is @ smooth measure
on Q. It suffices to prove the assertion for ¢ € Lip,(Q) N L3(,d|V|]). For € > 0, let § = 0, = \/%ﬂ be
weak differentiable, so ¢ = 6y/w + € and

V8" = (w+ )| VO + 5 L w2 i (5.3)
Now, we show that 6% € D.(£2). Hence it is a test function for (5.1),
62 = ¢’ < 1(;52 € L2(Q diV|) N L (Q)
w+te € ’ e
20V \Y
ver| = 2278 2 Y| < L (2]ove + 6| Vul) € L2(0),
Thus
/V92dex+ /92wdv =0,
o
L o2 1 2
-V0° - Vwdzr = —- [ 07wdV.
2 2
It follows from integrating (5.3) that
2 2 1 2 1 02 2
Vo|“de = [ (w+€)|VO|* dx — 3 wh* dV + 1] ws |Vw| dz. (5.4)

Note that

1 2 o, 1 2 1 2
2/w9dV—2/w9dV, 2/w9dV+.

1 1 1 2
/\v¢|2dgc+§/w¢9ZdV+ = /(w+e)\ve|2dx+§/w92dv, - Z/we |Vwl|? da.

So, from (5.4) we have
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Therefore,

1 1 1 02
2 L 2 S 2 2 1 2
/Wqﬂ d:r:+2/w9 dV+_2/w9 dV,+4/w |[Vw|® dz.

Now, observe that
w

9211} _ ¢2

w + €

1 1
5/w@?dm < §/¢2dV+.

On the other hand, 6?w = ¢?-%— 1 ¢ and

< @2

So,

w+e
[Vl _ 2 \Vw\ 2
w+e =9 (w+e)? TQS‘ ‘ 8 €40.

Hence, by the Beppo Levi Lemma, we have

1[5 1 62
1 2
/|V¢>|2d:c+ /¢>2dv+ /¢2dv_+1/¢21%] dx

which is equivalent to (5.2). O

1 1 2
de7/¢2dV_+f/¢2‘@‘ dz as €1 0.
2 4 w

Finally,

Corollary 5.1. Let Q C RN be an open set.
(1) Let w € WL2(Q) be such that w > 0 a.e. on Q and Aw € L}, .(Q). Then

loc

1 A 1 Vuw|? 1 Aw)_ _
/|V¢\2dx+§/¢2%dxz Z/qb2 | 1:2]' dx+§/¢2(%)dm, Vo € Lip,(Q). (5.5)
Q Q Q Q

(2) Let u € WL2(Q) be such that u > 0 a.e. on Q and there exists X > 0 such that —Au = Au.
Then
/|V¢|2dac > )\/QSQ dz, V¢ € Lip. ().
9)

Q

Proof.

(1) For all € > 0, one has ﬁﬂ € L>(Q), since w > 0 a.e. Hence V, = Aw

loc( ) and

—A(w+€)+ Ve(w+e€) =0.

So, it follows from Proposition 5.1 that

\V4 2
/\vwd ‘ /¢>2 2 _4/¢ e o Y6 € Lip ().

Hence

|Vw|2 1 (Aw)_ ,
/|v¢|2d + = /¢ +e _4/¢ +§/¢2T+de7 V¢ € Lip.(Q).
Q

Then (5.5) follows by the Beppo Levi monotone convergence theorem.

(2) Set first w = u. Then Aw = —Xu € L}, (Q) and (Aw); =0, (Bw)- _ \. So, by (5.5),

1 2
/|V¢\2dm > Z/¢2 |VUZ‘ dx + g/czﬁ dx, Y ¢ € Lip,(Q).
Q Q Q
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In particular,

2
/¢2 |Vu i dx < oo, Y ¢ € Lip,(Q). (5.6)
Q
Now, set w = u2. Then

Aw = 2ulu + 2|Vul? = -2 u? + 2|Vul?.

So Aw € L} (), since u € W,>

loc

(). Hence (5.5) holds. Note that % <2 'Vu—z'z. Hence, by (5.6),

/¢ (AZ’)+ dz < 00, V¢ € Lip,(Q).
Q

It follows from (5.5) that ¢? &2 € L1(Q) for all ¢ € Lip, () and

—Aw) 1 YVwl|? .
/\V¢\2dx>/¢>2 +3 | w2| )dr, %6 € Lip, ().

Since
1 Aw 1 |Vuw? |Vul?2  |[Vul?
—s— = =X +
2 w 4 w2 u? u?

the assertion is follows. O

=\

Remark 5.1. Inequality (5.5) holds true if —Aw > 0 is a positive Radon measure. The only change in

the proof is a demonstration that — f_’;’e is a positive Radon measure for all € > 0. This follows from

the following proposition and corollary with 2 and p as in Definition 2.1, I/Vol’2 = VVol’2 (Q,pdz), ECQ
is a Borel set, defining cap,(E, ) in the same way as cap, (£, 2) is defined in, e.g., [23, Section 2.2.1])
and, e.g., [20, Theorem 11.16]) with the only difference being ||V||3. instead of [|0]|Z....

Proposition 5.2 (Cf. [11, Lemma 2.2.3]). Let w € WH2(Q), —Aw = pu > 0. Then, for every compact
KcQ

16l Lr (@) < IV L2 Vw2, V¢ € Lip (), (5.7)

K) < Veapo(K.9) [V 12(a)-

and

Proof. Let ¢ € Lip,(€2). Then

01l (ap :/|¢\du = /V|¢| Vwdz < [|V[¢]|| 2| Vw2 = [V 2| V][ 2.
If in addition 0 < ¢ <1 and ¢ =1 on K, then

(K) <@l rapy < IVOllL2|Vwllr2 -
The result follows by applying infimum over ¢. O
Corollary 5.2. Letw € Wh2(Q), —Aw = p > 0. Then Wy *(Q) continuously embedded in L' (2, dp).
Proof. Tn addition to (5.7), it suffices to observe that Lip,.(Q) is dense in W, *(Q). O

To obtain Poincaré inequality, we need the following proposition.

Proposition 5.3. Let Ni,No,...,N; € N and Q, C R™ be a bounded domain. Let X\, > 0,
o1 € Wol‘Q(Qk) be the first eigenvalue and ez'genfunction for the Dirichlet Laplacian on . Let

d
N = E Ni, Q= H Q. CRYN. Then A\ = Z A and ¢(x) = [] ér(xzk) are the first eigenvalue and
k=1
the ezgenfunctwn for the Dirichlet Laplaczan on Q.



14 Khalid A. Abdul-Zahra, Zeev Sobol

Proof. Let u € WOI’Q(Q). Then
IVullZ. = Z IVl 2. (5.8)

For k=1,2,...,d, let Sy = ] Q. For x € Q, we write x = (x, ') with 2’ € Sk, xx € Qp,
m#k

|V iu||3e z//|Vku|2(xk,x’) dxy, dz’ > /)\k/|u|2(xk,x’) dxy, dz'.

Sk Qe Sk Qp

So,
MellullZe < | Veul3s, k=1,2,....d.

Summing up, by (5.8), we get

s

d

(D) lullfe < 3 IVeula = [Vula:

k=1 k=1

Let ¢ = [T éx(ax)- Then 6 € WEA([T @) = WE2(@),
k=1 k=1

IVl = /' H Pm(Tm ‘ dx’ /|Vk¢k (zk | dxy,

S, m#k Qp,

/ T omon| s’ [ M) doe = -

S, m#k Qp,

Thus

d d

IV6l3e = 2 I9kel3e = (D ) I6113: = Al
k=1 k=1

Finally,

V 22

n{ | u!L DU € W(}’Q(Q), u%O} =

|72

and u = ¢ is a minimiser. Hence the assertion follows. O

Corollary 5.3.

(1) Let I C R be an interval. Then the Poincaré inequality

/'¢/'2dS>W/¢ ds, ¥ € WEA(D)

2

holds. Moreover, \j = ﬁ is the first eigenvalue for the Dirichlet Laplacian on I with the
eigenfunction u(s) = sin(mw 2 IIIITH) (Cf. [5, Section 8.1]).

(2) Let Q=11 x Iy X --- x Iy. Then

N
Q/quzdx > (Y g /¢2 dr, Yo € W32(Q).

k=1

1
[Tk ]2

M=z

Moreover, A\qg = 772( ) is the first eigenvalue for the Dirichlet Laplacian on @ with the

k

I
-

=

eigenfunction u(s) = sin(m Z5=2£) where ay, = inf I}.

A [k

>
Il
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Proof. The first assertion follows from Corollary 5.1 (2). Proposition 5.3 implies the second asserti-
on. 0

Corollary 5.4. For I C R, the Sobolevskii inequality [22]

2 J—- ¢2dx 1,2
J10P@an = 0P [ e YO WD (59)
I I

N
holds. For I, CR, k=1,2,....N, Q = [] I,
k=1

/|V¢| Ydo > = /Z i [*¢” dz, Yo e Wi2(Q)
(zg —inf I;)2(sup Iy — xp)2 0 '

Proof. First, let I = (0,1). Let w(z) = 2(1 — ). Then

—w"

+1
2w 4

(%)27 (1 (1—-2x)2 1

z(l—2) + 422(1 —2)2  4a2(1—x2)2’

So, by Corollary 5.1

Now, let I = (a,b), a < b,

Jrtin ot e

0

b b
11 (b—a)ie? 1 ) ¢?
_Z(b—a)2/(x—a)2(b—x)2d“’_1(b_a) /(x—a)z(b—x)'zdx'

a a

Next, for the cuboid @, by (5.9), we have
N
0o |2
2 e PRI — k
/|V¢| dm-Z/ //‘ﬁxk dzy, dz
5 k=17 17 g
m#k
S ¢
> L2 k
- kz_:/ / k] / (xg —inf1})2 — (sup Iy — xi)? dey dv

N
I 2
/ Z IAR )dlﬂ' 0
(2 — inf1y)? — (sup Iy — x1)?

k=1

»MH

The following lemma is a particular case of the inequality proved in [21, Lemma A.1].

Lemma 5.1.

(N + 2a — 2)?
4

62 N -2
/T r?dr, Y0 € WH(r**dz), a>-————.

/|V¢9|2r2°‘daz > 5
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Proof. First, let 6 € Lip,, ¢ = 0r®, a > —% , 7 =|z|. Then

[Vol* = r?*|VO|? + 20722 720V0 - x + a?6°r°* 2,
2
r2|\Vo12de = | Vo> dx — 20 | VO - (212~ 2) dz — o o r2® d.
2

r
Note that, by the Hardy inequality,

/|v¢|2d$ZW/idx=M/wr2adx,

4 r2

Now, since

_ QO[/QVQ . ($T2a_2) d.l? — _Of/VGQ . (xr2a—2) dl‘
62
= a/92 div(CL‘TQG—Q) dx = a(N + 2 — 2)/92r20‘_2 dr = a(N +2a — 2) / 72,',,204 dr
T
we have , 2
N —2
/7“2(1|V9|2 dx > ((T) —a? +a(N+2a— 2)) / o 2 de.

r2

So, we have demonstrated the assertion for § € Lip.. The general case follows by approximation. [

6 Energy space isometry

Given an open set Q C RY and a Borel regular measure V on £, in this section we construct an
isometrical isomorphism of the energy space D(Q2) (constructed in Section 4) with a weighted Sobolev
space on Reg(V'). So, without loss of generality, we assume that V' is a smooth Radon measure on €,
so that D(Q) = W 3(Q) N L3(Q,dV) and D(Q) = Lip,(Q) (see Corollary 4.1 and Proposition 4.1).

Theorem 6.1. Let Q C RY be an open set, V be a smooth Radon measure on Q and let w be a positive
local solution to equation —Aw—+Vw = 0 in sense of Definition 5.1. Consider a multiplication operator
S0 = wb. Then

S Wy (Q,w? dx) — Wy 2(Q) N L2(Q,dV) = D(Q)

is an isometric bijection. In particular,
|lwh]|%, E/|V(0w)|2dx+/02w2 dv :/|V0|2w2 dz = ||V0)| 12 (w2 a) (6.1)

for all 8 € VVOLQ(Q,w2 dx). We delegate the proof to several propositions.
Lemma 6.1. With w € Dj,c(R2), equation (6.1) holds for 6 € Lip,(Q).
Proof.

/|V(9w)\2dz+/02w2 dV:/|6Vw+wV0|2dz+/(02w)de

= / (0%|Vw|® + 20wVOVw + w?|VO|?) dx + /(92w)w dv.

Note that
02| Vw|? + 20wVOVw = (0*°Vw + 20wV0) - Vw = (0*°Vw + wVe?) - Vw = V(0?w) - Vw.
So,

/|V(0w)\2da:+/02w2 v
:/w2|v9|2dx+/vw?w).vwd:c+/(92w)wdvz/|vo\2w2 dz,

since 02w € D.(Q) is a test function for (5.1). O
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Corollary 6.1. The map S as in Theorem 6.1 is an isometry.

Proof. By Lemma 6.1, we have
15015 = 1011%1.2 (w2 dwy» VO € Lipg ().

Since Lip,(Q) is dense in Wy ?(Q,w?dz), it follow that the same identity holds for all § e
W2 (€, w? dx). O
Proposition 6.1. The range of the map S as in Theorem 6.1 is dense in D(Q).

Proof. Tt suffices to show that Lip,(©2) C Range S, since Lip,(€?) is dense in D(€2). That is, a function
¢ € Lip.(Q) can be approximated by ¢. = f.w for some 0, € VVOLQ(Q,w2 dz). Let ¢ € Lip,.(€2). For
€ >0, let

Let 0, = q;il, 0. € L C L2(Q,w? dx). Then

\Y Vw
V. = (157(;5 - (b 1{w>6} cL? (Q w dl‘)
Indeed,
H o1 L2 w? dz) /l (b‘g dac = /|V¢|2 dz < oo,
since ¢ € Lip,(f2), and
Vw 2 9 |Vw|2
H¢> 22 Hw>e L2 (w? dx) /¢ Liwsey dz < oo,

since w € I/VlloCQ(Q), ¢ € Lip.(©2) and 1y>q ﬁ < 6% So, 0. € VVOLQ(Q,w2 dz). Hence ¢ = O.w €
Range S. We show that ¢. = ¢ ﬁ — ¢ ase— 0in D(Q).

Note that p
w —w
o(x) = ¢(a) ;-(x) = & 1¢1 (@) < plyee — 0 a €—0
and
¢1—w 07 wZQ € —
S )Y w<e e Lweey < Hwee-

€

for a.a. * € Q. So, ¢ — ¢ a.e., since w(x) > 0 a.e. Hence ¢. — ¢ in L3(Q2) N L3(,dV) by the
LDCT. Consider now the gradient

wy w ¢1Vw —w 1{w>5}vw
e A e

w WliysagVw+elpycaqVw —w sV
=Vo(l——) —
o(1-5) ¢ (61)?

1
_ v¢(1 - %) — 6~ Liuey Vuw € LX(Q).

Indeed, (1 —3%) — 0ase— 0a.e. So, Vo(1 — — 01in L?(Q,dz) as e — 0 by the LDCT. We have

2)
uf
vy = | P L do <

Here, we use the fact that ¢? Wwif € L'(2) by Proposition 5.1. Since 1{, <y — 0 a.e. as € — 0 (since
w > 0), we conclude that the proposition is valid by the LDCT. O

2|V

H¢ 1{w<e}Vw‘
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The following folklore result completes preparations for the proof of Theorem 6.1.

Theorem 6.2. Let X, Y be Banach spaces and S : X — Y be linear isometric. Then Range S is
closed in'Y .

Proof. Let u, € Range(S), u, — u. Then there exists a sequence v, € X such that u, = Suv,,
n=123,.... Formn=123,...,

[vn = vmllx = [|S(vn — v )lly = [[Svn — Svmlly = lun — umlly,

since § is an isometry. Hence {v,} is a Cauchy sequence, since {u,} is a Cauchy sequence. So,
v, — v € X. Since S is continuous, Sv,, — Sv € Y. However, Sv,, = u,, > u € Y. So, Sv = u and
u € Range(S). O

Proof Theorem 6.1. By Corollary 6.1, S is an isometry. Hence S is an injection and Range S is closed
in D(€2) by Theorem 6.2. By Proposition 6.1, Range S is also dense in D(2), so Range(S) = D(Q).
Thus, S is a bijection. O

7 NLS equation eigenvalue problem. PDE approach

In this section, we consider non-existence of a global weak solution for the eigenvalue problem to the
nonlinear Schrodinger (NLS) equation with singular potential V' of the form

—Au+Vu+uulP~ =, ueDRY), (7.1)

where u is the solution of the eigenvalue problem. If u > 0, then u presents the amplitude of the wave
and A presents the frequency of the wave. This A (the eigenvalue of problem (7.1)) retains the name
of chemical potential for the BEC (see, e.g., [25, Section 6.1]). D(RY) = D(RY) N LPHL(RY) with
p > 1 and some A € R,

D(RY) = Wy ?(Reg(V)) N L*(Rev(V), dV5),

where Reg(V) is the maximal open set, where V is a Radon measure (see Theorem 3.2), V; is the
smooth component of V 1geg(y) (see Corollary 4.1). We prove that u is a global weak solution (see
Definition 7.1) of (7.1) if it is a local weak solution and belongs to L2(R™). The a priori boundedness
of global weak solution u is also shown in Section 7.1. The problem with equation (7.1) is that V
is a non-smooth function and may not be a function (measure). In this section, we demonstrate the
killing potential technique to transfer equation (7.1) into an equivalent equation without potential V:

— div(w?Vv) + wPT Pt = Aw?o, (7.2)

where v =  is a global (local) weak solution of (7.2) if and only if u is a global (local) weak solution
of (7.1) and w is as in Definition 5.1. We have to mention that the killing potential technique changes
the nature of the unknown function (solution) from a standard Sobolev space to a weighted Sobolev
space, all this is discussed in Section 7.2. In Section 7.3, we frequently use the Pokhozhaev type test
function technique. For detailed information on this technique, see, e.g., [24] and [13].

7.1 Global, local solution and a priori boundedness

Definition 7.1. A measurable function u : RN — R is called a global (local) solution of equation
(7.1)in RN if u e D = DN LPH (4 € Dige = Dype N LPT), where D is as in Definition 4.1 and

loc

/Vu-Vnd:c—i—/undV+/u|u|p_1ndx:/)\undx, Vneb (neb,). (7.3)

Remark 7.1. Following the arguments of Propositions 2.2-2.4, one can show that Lip, is dense in D.

Theorem 7.1. Let u be a local solution of equation (7.1) in RY. Assume in addition that u € L?.
Then u € D and u is a global solution of equation (7.1).
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Proof. For £ € C}, one has u¢? € D, and by Definition 7.1,
/VuV(ugZ)d:c+/u252 dv+/§2|u|1’+1 de = A/g%ﬁ dz.
So, by Lemma 2.2,
/|V(u§)|2daz+/u2§2 dv+/§2\u|f°+1dz = /u2|V§|2daz+)\/§2u2 dz. (7.4)
Let & € Cl 15, > & > 13% and we construct a sequence &,(x) € C! such that

&le) =& (>).

Thus 15, > &, > 1p,, also &,(z) T 1 asn T oo, ||V&u |l 4 0 as n 1 oco. That is,
2

Veulw) = - |ve (5|

By the Beppo Levi Lemma and the LDCT, passing to the limit in (7.4), we get

lim [/|V(u§n)|2dx+/u2gﬁdv+/§§|U|P+1dz] = lim [/u2vgn|2dx+/\/§;iu2 da:}
n—oo n—oo
= lim /\V(ufn)\gdx—&-/u2dV+/|u|p+1 da::)\/quw.

So, u € L*(dV), u € LP*!. By Proposition 2.5, we conclude that u¢,, — u in W12, Hence u € .
The second assertion follows trivially as —Au+u dV + u|u[P~! 4+ Au is a bounded linear functional
on D. Indeed, let

l(w) = /Vu~dea:+/ude+/wu|u|p71dazf/\/wudz (7.5)

be a bounded linear functional on D, we have [(w) = 0 for all w € D, (local solution). Since D, is a
dense set in D, it follows that [(w) = 0 for all w € D (u is a global solution). O

In the rest of this section, we show the a priori boundedness of a global solution w for (7.1). First,
we need the following lemma.

Lemma 7.1. Let u be a global solution of equation (7.1). For s > 0, let us = |u| As. Then, for q > 2,

/|u|p+1ug_2 dx < /\/u2ug_2 dx.

Proof. Let ¢ > 2, n = u? 2u. We are going to use 7 as a test function in (7.3). Hence, we show that
n € D. Since v € D and u, € L™, it suffices to show that Vi € L2. However,

Vn = V(ul?u) = u(q — 2)u?™3 L{juj<s) ﬁ Vu 4+ ul2Vu
u
=(qg— 2)11,272 1{|u‘<s}Vu + ug’2Vu = ((q -2) 1{|u\<s} + 1)ug*2Vu eL?
noting that us = |u| 1{jyj<s} + 5 1{ju>s}. Now, we will apply 1 to (7.3) as follows:
/Vu -V (ul™?u) dx + /uuZﬁQu dv + / JulP~ tuud?u dr = )\/uug%u dz. (7.6)

Note that
/VU -V (ud™?u) de = / ((q = 2) L{juj<sy + Dud™?|Vu[* >0, ¢>2.
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Then (7.6) becomes

/ (g = 2) Lqjuj<sy + 1) ul | Vul* + /u2u372 av + / lulPHud=? dx = A/u2u372 dx.

Note that the first and the second parts are positive, so we can drop them and get the required
result. O

Theorem 7.2. Let u be a global solution of equation (7.1). Then u € L*> and |lul|p~ < AT

Proof. Let qo =2, ¢n = gn—1+ (p—1), so that ¢, =2+ n(p —1). By Lemma 7.1, we have (since
lul > us)

/’ug"“ dx < )\/u2ug"*2 dx. (7.7)

By induction, we prove that v € LI forn =0,1,2,3,... and
/|u\q"+1 dx < >\/ |u|® dz, n=0,1,2,3,....

Indeed, for n = 0, we have ¢, = 2, so u € L%, since u is a global solution to (7.1). Now, given
n=0,1,2,3,..., assume that u € L9". Then it follows from (7.7) that

lim [ wf+ dz <\ lim [ w?ul 2 dr.
S— 00 S5— 00

Thus, by the Beppo Levi Lemma,

/|u\q”+1 dx < )\/ [ul? dz < .

So, u € Lt+! and therefore u € L, since ¢, =2+ n(p — 1) — oo as n — oo. By induction, it also
follows that
Jr

ullpe = lim |Jul|pen < lim Aan
n—oo n—

In dx < /\”/u2 dx,

2 , 2
5 = Jim AT T = A7 =

Corollary 7.1. Let u be a global solution to equation (7.1). Then equation (7.3) holds for any n € D.

Proof. Since u is a global solution, we have u € L?, [u[P~* € L® by Theorem 7.2, and |u|P~'u € L2.
Let [ be as in (7.5),

ly = —Au+uV + [ulP~ u — du € W™H2 4+ L2(dV) + L2

Hence [, is a bounded linear functional on D, using the same arguments as in Theorem 7.1. O

7.2 Killing Potential technique
In this section, we transfer (7.1) to (7.2) by the following theorem.

Theorem 7.3. Let V' be a Borel regular measure and let w be a positive solution to —Aw + Vw =0
in the sense of Definition 5.1.

(1) A function u € D(Reg(V)) is a global solution to equation (7.1) if and only if the function

v =2 € WH(Reg(V), w? dz) N [P+ (Reg(V), wP*+! da)

w

is a global solution to equation (7.2).
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(2) A function u € Dyo.(Reg(V)) is a local solution to equation (7.1) if and only if the function

v = g € WE2(Reg(V), w? dz) N L2H (Reg(V), w? ™™ da)

loc

is a local solution to equation (7.2).

The following lemma is more general than Lemma 3.4 in [17] because we remove all the restrictions
on the solution w besides the positivity and consider more general potential as a measure.

Lemma 7.2 (See [17, Lemma 3.4.]). Suppose that there exists a solution w € Dj,. to the equation
—Aw + Vw = 0 in the sense of Definition 5.1. Then u € Dy,.(Reg(V)) satisfies

—Au+Vu+ |ulPlu — =0 in D' (Reg(V))
if and only if v =2 € WL2(Reg(V), w? dx) N LIF (Reg(V), wPt! dx) satisfies

— div(w?Vv) + wP T P — Mw?v = 0 in D' (Reg(V)).

Proof. It follows from Theorem 6.1 that u € Dj,.(Reg(V)) if and only if v= 2 € WL2(Reg(V), w? dz)N

loc

LT (Reg(V), wPt! dz). Let n € Lip,(Reg(V)). If we multiply (7.1) by nw and (5.1) by nu, then

loc
integrating and subtracting, them we obtain

/ (Vu - V(nw) — Vw - V(un)) dz + /(Vunw — Vwun) dz + /T]wu|u|pf1 dx = /\/unw dx. (7.8)

Now, for the first part in the left-hand side of (7.8), we have

/ (Vu - V(nw) — Vw - V(un)) dx
= / (n(Vu- V) + wVu - Vi —n(Vw - Vu) — uVw - V) da
= /Vno (wVu — uVw)dx = /Vn~ (wQV %) dzx = /Vn - Vow? de.
Thus (7.8) becomes
/ VoVnw? dz + / nulo[PtwP Tt dr = A / vnw? dz, Vn € Lip,(Reg(V)). (7.9)

Hence, (7.9) implies that v is a solution of (7.2) (in the distribution sense). O

Proof of Theorem 7.3. Assume that u is a global solution to (7.1). Then

m(n) = /VT]Vuder/nudV+/n|u|p71ud1’—/\/nudx =0, Vn € D(Reg(V)).

In particular, m(n) = 0 for all n € Lip.(Reg(V)) C D(Reg(V)).
Hence

I(n) = /Vanw2 dr + /77|v|p_1va+1 dr — )\/nva dx =0, n € Lip,(Reg(V))

by Lemma 7.2. Note that v € LPT!(Reg(V), w*! dz) by the definition and v € W, *(Reg(V), w? dx)
by Theorem 6.1. Hence [ is bounded linear functional on W, (Reg(V),w? dz)NLP* (Reg(V),wPt! dz).
Since Lip,(Reg(V)) is dense in W, (Reg(V), w? dz) N LP+1 (Reg(V), wP*! dz), by Proposition 2.4, we
conclude that I(n) = 0 for all n € Wy *(Reg(V), w? dz) N LP+! (Reg(V), wPt! dz). That is, v is a global
solution for (7.2). The reverse and the ‘local’ statements follow by similar arguments. O
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7.3 Pokhozhaev’s type test function

As an application, in this section, we obtain some result on the non-existence of a global weak solution
to equation (7.1) (see Theorem 7.4) by using a Pokhozhaev type test function.

Theorem 7.4. Let V = % 3 with N > 2, ¢ > —1. Then there is no non-trivial global solution
to equation (7.1) for any X € R.

In proving this result, we demonstrate the killing potential method. The next lemma shows that
in this case a local solution w to (5.1) satisfies w(z) = |z|* with o € R. Before we begin, we need the
following lemmas.

Lemma 7.3. f(r) =r* € L _ if and only if up > —N.
Proof.

1
/|f\pd:c — |Sn| /r”prN_l dr < 00 <= pp+ N >0,
B 0

ie, up > —N. O
Corollary 7.2. f(r)=rt e W2 if and only if 2(p—1)>—N.

loc

Proof. By Lemma 7.3,
|Vrt| = |plr*t € L}, <= 2(u—1) > —N.

loc

Or p > —% . O
Lemma 7.4. Let
V= M %
4 T
with N > 2, ¢> —1. Then w=r® is a local solution to equation (5.1) with
(N —2)

o= 5 (mfl)

Proof. Note that in this case, dV = (Nf)z Sdx. So, L*(dV) = L*(r~%dx), r* € L} (r~2?dzx) for

20— 2+ N > 0 <= a > —¥>2 Thus, by Corollary 7.2, r® € W,5> N L? (dV) if and only if

a>-—N=2
Now, consider (5.1) for a radial w and V' = (Nf)z 5. Then
N-1 (N -2)? ¢
—w" — ! —w =0. 7.10
w — + 1 2 W ( )

This second order ordinary differential equation has two linearly independent solutions (see, e.g., [16,
Chapter 4 Section 1, Theorem 1.1 and Section 8.]). We will look for them in the form w(r) = 7%, then
(7.10) implies

—afa—1)r*"2 — (N = Dar* 2 + %mﬂ” =0,
oz(oafl)Jr(Nfl)ozf%c:O,
a2+(N—2)a—Mc:o,

(o+ (N;Z))2 _ (NZQ)Q (1+0).

So,
_ (V-2
2

(N —2)
2

(\/m— 1) and ag =
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By Corollary 7.2, w =r*2 ¢ Wli’f, and on the contrary w = r*t € Wli’f, since

N—-2 N-2 N -2
ap=———4+—V1l+ec>——, Ve> —1.
2 2 2
For simplicity, from now we will denote a; by a. O
Corollary 7.3. Let u € Dy, be a local solution to equation (7.1) with V = (NZQ)Q Z,c>—1, N>2

Then v = % is a local solution to equation (7.2) with w = r® and «, as in Lemma 7./.
Proof. The proof is straightforward from Lemma 7.2 and Lemma 7.4. O

Proposition 7.1. Let Q C RN be an open set, p > 0, pTt € L2 (). Then

loc
WP(Q) = WP(Q, pdx), Vm >0, p>1.
Proof. To prove the statement it suffices to show that
Wi H(G) = W (G, pda)

for all open G such that G C G C Q. To this end, one observes that C2°(G) is dense in both spaces.
Sos it suffices to prove that the norms are equivalent, that is, for every G, there are the constants
cq > ¢p > 0 such that

calltllwre ) = 9llwrr(cpdn) = coll@llwrray, Yo € CZ(G).

1 =1
Now, let ¢a = [|pll7 () € = 07 | /(- Then
k
161y v(cpawy = 2 NP N oy
k=0

m m
=Y [iDMorpde <y [ Do do = ol

k=0 ¢ k=0 ¢

Similarly we get the estimate from below:

k
16l omnpary = S NP Bt
k=0

=Y [10opdn = Y- [ 1056l do = 61y 0
k=0gG

k=0 ¢y =0

Lemma 7.5. Let w=1r%, a > %2 Let v =% be a global solution of (7.2). Then

v e W22 RN\ (0), w? dz).
Proof. We apply Theorem 3.1 with A = w?Id, where Id is the identity matrix, By = By = 0,
C = wPt P! — Mw?, f =0 on Q = RV \ {0}. Note that w? = r2* € C>(Q), so A is locally
Lipschitz on Q. Note that C = w?(|ulP~! — \) € L2.(Q), since |u[P~! < A, by Theorem 7.2, and

w? € C°(Q). Finally, by Proposition 7.1, VVl{)CZ(Q) = I/Vllo’f(ﬂ,w2 dz), since w? € C*°(Q) and w? > 0.

So, v € Wllocz(Q) is a local weak solution to

— div(w?Vv) + Cv = 0.

Hence v € W22(Q) = W22(Q, w? dz) by Theorem 3.1 and Proposition 7.1. O

loc loc

Now in (7.2) we will use a Pokhozhaev type test function 7 described below. It will eliminate the
right-hand side of (7.2) leaving a non-negative term in the left-hand side.
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Definition 7.2. Define a Pokhozhaev type test function n by
n=_¢&(2Vv z+ (N +2a)v),
where v is a global solution to (7.2), the cut-off function £ € D is constructed as follows:

(o) = G0 (@), €nle) =o(1]). g0 = (1),

where ¢, p € C°°([0,00)), such that 1jg1) < ¢ < 1jg,2), 1j2,00) < @ < 1(1,00) (see Figure 1).

| 9 : P(s) —

(s)

(a) Function ¢(s) (b) Function ¢(s)

Figure 1: Functions ¢(s) and ¢(s)

Lemma 7.6. Let & be as in Definition 7.2, £ -1 as P — oo, p — 0. Then

2| [VE| < 2max {{|¢'|| Lo, [l L } (1{p<je|<2P} + L{p<ial<2p})-

In particular,

[ 12 1VE] || oo < 2max {[|¢[| <, [1¢[| L= } (7.11)
and
lz| [VE|(z) = 0, Yz eRY as P — o0, p— 0, pointwise. (7.12)
Proof.
|\ 1 n(lzly 1
I(5) 5. P<ldl<2P, WI(Z) =, p<iel <2,
IVép(x)| = P/ P v V& ()] = prp
0, othewise, 0, othewise.
Now,
|| |z|
ol 196l < 19 20 1y it caye ol 1VE0] < 10 ' Lpcthcap
0 <&p(x) < Lygps>pp, 0 <Ep(x) < 1yjgi<2py,
2| [VE] < |2 1§, VER| + [2] [€pVEp|
<6/ D1 1 e 2 11 camy 1
< [1¢'ll= 5 Lp<iai<apy Ljai>py + 1972 5 Liel<2P) Lp<lal<zp)
Since p < P,

Lip<iai<2py L{jz|>p} = L{P<jai<2P}y  L{jz|<2P} L{p<|ol<2p} = L{p<|o|<2p}

|| ||
2] [VE] < [|¢[| B Lip<ial<2p) + ll0"[| o " 1gp<ial<2p}

< 2max {[|¢'[| <, 1€l } (L{p<jaj<2p} + Lip<|al<2py) < 2max {[|¢[| L=, [|¢ ]|z }-

Note that (7.11) follows by the maximum norm, and (7.12) also follows pointwise as P — oo and
p— 0. O
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Lemma 7.7. Let v be a global solution to equation (7.2) and let n be as in Definition 7.2. Then
/\/r20‘vndx—>0 as P — oo and p— 0.
Proof.
A / r?**vg* (2Vv -z + (N + 2a)v) dz
= )\/ (2r2aU£2Vv cx+ 2% (N + QQ)) dx

= A/ (roVIoPe? @ + 1202 (N + 20)) de

)\/ ( — o2 div(r?*€? - z) + r2*v?e3(N + 2a)) dx
0 [ (= 10l (2696 - 2 4+ (V + 2008700 ) 2PN + 200 do
= —2)\/ |v26(VE - 2)r?* dz — 0

by Lemma 7.6 and the LDCT. O

Lemma 7.8. Let v be a global solution to equation (7.2) and let n be as in Definition 7.2. Then
Np-1
/T(p"rl)a‘vv)—lvn dm — % / |,U|p+1£2,r(P+1)a dl‘ > O7 vp >1
p

as P — oo and p — 0.

Proof.
/ rPHD |y P12 (2V0 - o + (N + 2a)v) dz
_ /QT(p+1)a|’U|p711}£2V’U cxdr + /(N 4 2a)|v|P+1€2T(P+1)a dx

/7 V|v|p+1§2 rPta g 4 /(N+ 2a)|v|p+152r(p+1)a dx

2
/ 11 [P div(¢? - 2r®T) do + /(N+ 2a) [P 2PV dg

[ 2(N+(p+1)a) p+1e2 (p+1)a / 2 P+, (p+1)a
- [ gy ote g - [ 2 jupriserieeeve o) do

+ /(N+ 2a)|v|PTLe2r Pt gy

_ / (72(N+ (p+ ].)OZ) +N+2a)|v|p+1€2r(p+1)a dx
p+1

_/p+1 |v|p+1r(p+1)0‘(£V§ z)dzx
N(p-1)
—>/ P = 1) | 1yt )a g
p+1
by Lemma 7.6 and the LDCT. O

Lemma 7.9. Let v be a global solution to equation (7.2) and let n be as in Definition 7.2. Then

/rQO‘VUVndx — 2/\Vv|2r2a as P— oo and p — 0.
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Proof. Note that v € W2*(RN \ {0}) by Lemma 7.5. Then
/ r22VoV (£2(2Vo - o + (N + 2a)v)) da
= /rmg? (2% -D*v-x+2Vv-I-Vu+ (N +2a)Vo- Vv) dx
+ /r2a2(vu -VEE(2VY -z + (N + 2a)v) da
_ / r20¢2 (VIVof &+ 2|Vl + (N +20)|VoP?) da

+ /r2a2(Vv -VEE(2Vv -z + (N + 2a)v) d
= Il +-[2;

where
I = /r2a§2 (V|Vv|2 24N+ 2a)|w|2) dz
=- / |Vo|? div(r2©€? - ) dx + (2 + N + 2@)/r2a£2|Vv|2 dx
= - / |Vol? (2§(vg z)r? 4+ (N + 2a)§2r2a) dz+ (2+ N +2a) / r22¢2|\Vol? dx
= —2/ |Vo2E(VE - 2)r® da + 2/r2a§2|Vv|2dx — -0+ 2/ |Vo|?r?® dx

by Lemma 7.6 and the LDCT, and

|Io| = ’/rmz(w -VEE(2Vr -z + (N + 2a)v) dx

< 4/T2O‘|VU\2(§|$| VE|) da

+2/(N+2a)r2a|Vv\ Ll (&lz||VE]) do — 0 as P — o0, p—0

T
by Lemma 7.6 and the LDCT. Observe that \VU|@ € L' due to the Hardy inequality (see Lem-
ma 5.1). O
Proof of Theorem 7.4. Tt follows from (7.2) and Lemmas 7.7-7.9 that for a global solution v of (7.2),

N(p - 1) /',U‘p—i-lr(p-‘,-l)a dr = 0.
1

2/ |Vo2r2® dx +
p+

So, v =0. O
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