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SOME ESTIMATES FOR HARDY-STEKLOV TYPE OPERATORS



Abstract. The aim of this work is to establish some new integral inequalities for 0 < p < 1 under
weaker condition than monotonicity via Hardy—Steklov-type operators.
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1 Introduction

It is well-known that for Lebesgue spaces L, with 0 < p < 1, the Hardy inequality is not satisfied for
arbitrary non-negative measurable functions, but is satisfied for monotone functions (see [2]). In 2007,
the Hardy type inequality was obtained under a still weaker condition than monotonicity (see [3]).
Namely, the following statements were proved.

Lemma 1.1. Let 0 <p <1, ¢; >0 and f be a non-negative measurable function on (0,00) such that
for all x > 0,

flx) < 2</If”(y)y”‘1dy>;- (L.1)
0

Then
p
(/f(y) dy) < Cz/f”(y)y”‘ldy, (1.2)
0 0
where
cy = czf(lfp).

The classical Hardy operators are defined as follows:

o0

()@ =5 [ f@)dy Hh@ =3 [ f6)ds
0

x

Theorem 1.1 ([3]). Let 0<p <1, a<1— % and ¢y > 0. If f is non-negative measurable function
on (0,00) and satisfies (1.1) for all x > 0, then

2% (H1f)(@)| £, (0,00) < esllz® f ()|, 0,00) (1.3)

where

3 =

1 _1
0320%7’)(1—04—7) "pT.
The constant cs is sharp (the best possible).

Remark 1.1. If f is a non-increasing function on (0, 00), then (1.1) is satisfied with ¢; = p%. For
such functions inequality (1.3) takes the form

o (D000 < (77(1 == 1))l F @) 00 (1.4

The factor (p(1 — a — %))7% is sharp. Inequality (1.4) was proved earlier (for more details, see [2]).

The well-known Hardy—Steklov operator is defined as

b(x)
@ =+ [ fw)dy

a(z)
with the boundary functions a(x), b(z) satisfying the following conditions:

(1) a(x), b(x) are differentiable and strictly increasing functions on [0, oo],

(2) 0 <a(z) <blx) <oofor 0 <z < 00, al0)=>0(0)=0and a(co) = b(oo) = o0,
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where f is a non-negative Lebesgue measurable function on (0, c0).
The objective of this work is to extend the results of [3] to Hardy—Steklov type operators T, T
and T3 defined as follows:
b(x)
1

@ine = [ fw)ay
0
with boundary function b(x) satisfying the following conditions:

(1) b(x) is differentiable and strictly increasing function on (0, 0o},

(2) 0 <b(z) < oo for 0 <z < oo and b(oo0) = o0;

(Taf)(z / fly

with boundary function a(x) satisfying the following conditions:
(1) a(x) is differentiable and strictly increasing function on [0, 00),
(2) 0 <a(z) <oofor 0 <z < oo and a(0) =0;

b(x)

@) = [ 1w

a(r
where
(1) a(x), b(x) are differentiable and strictly increasing functions on (0, 00),

(2) 0<a(z) <b(r) <oofor 0 <z < oco.

2 Main results

Throughout the paper, we assume that the function f is a non-negative Lebesgue measurable function
n (0, 00).

Theorem 2.1. Let0<p<1l,a<1-— % and % + i = 1. If f is a non-negative measurable function
on (0,00) and satisfies (1.1) for all x > 0, then

[2* (L) @)1y 0,00) < ealle? 7@ F@)]| 000y

where .
cy = c%fp((l —a)p — 1)75.

Proof. Choose t = b(x), hence z = b=1(t), where b=1(t) is the reciprocal function of b(t). Applying
(1.2) and Fubini’s Theorem, we get

1

2T ) (@) 2y 0,00) = (O/Oo(b‘l(t))("‘”p(o/tf(y) dy>p(b_1(t))’dt>p
)@= 1:(0/fp Y~ 1dy>(b (t))’dt)
= (02)’1’( TPy (/ 0 i 1)pdt) d )

D=

=
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Since av < 1 — % and b~1(00) = oo, we have

o

/ (071 (0) (b (1) P dr =

Y

consequently,

2 (T3 ) @) 0.0) < (ﬂfp;);_l) [ffp<y>ypl<bl<y>><“>p+l dy];
0

3=

3=

- c%*p((l —a)p — 1)7 {/ (f(y)yl_’l’(b1(y))a_1+;1a)pdy]
0

We get the desired inequality. O
Remark 2.1. If f is a non-increasing function on (0, 00), we obtain the following inequality:

1

1-p 1 1
12%(T1f) (@) 1, (0,00) < (aivﬁ) a7 @) F @), ey

Choosing b(x) = Sz in Theorem 2.1, where 8 > 0, we have the following
Corollary 1. Let f satisfy the assumptions of Theorem 2.1 and

Bz
S0 = [ f)dy for o> 0

0

then

1

1\a—57 o
Iz S D@ 000 < (5) 7 esla® F@)le, 000

Remark 2.2. Taking g =1 in the above corollary, we get Theorem 1.1.
For the next results we need the following

Lemma 2.1. Let 0 < p < 1. Suppose that a non-negative function f satisfies the condition: there is
a positive constant cs such that for all x > 0,

o0 1

1@< 2( [ rowa) (2.1)
then - -
(/f(y) dy)p < %/f”(y)y”‘ldy, (2.2)
where

ce = 6157(1717).

Proof. Note that .
fa) = (7 (@)a?) " 7 ()a? .
Using (2.1), we have

al fP(x) < cf ( 7f”(y)y”‘1 dy>,
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therefore,

(e f7(2))7 L < el p(/fp - 1dy> _1.

Multiplying by fP(z)zP~! and putting 0 < t < x, we get

1y
7)<l (/f pldy) f7()e

consequently,

Theorem 2.2. Let0<p<1l, a>1-— % and c1 > 0. If f is a non-negative measurable function on
(0,00) and satisfies (2.1) for all x > 0, then

[2 (T ) @)y 0,00 < ezlle? (@ @) F@) 1 000y

where .
Cr = Cé_p((a — 1)p+ 1)75.

Proof. Put t = a(x), then z = a~1(t), where a=1(t) is the reciprocal function of a(t). Applying

inequality (2.2) and Fubini’s Theorem, we get

[2*(T2 ) (@) 2, (0,00) = <7(a‘1(t))<“‘1”’ ( 7f(y) dy)p(a_l(t))’ dt) '

s =

Since @ > 1 — % and a~1(0) = 0, we have

@ @yt - m [a™ @),
0

consequently,

S =

2 (TP @) 2,000 < (5 C_g(lfp) )’ ( / PP (@ ()@ r! dy>
0

p+1

= erlla¥ (@1 @)V F @) o
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Choosing a(x) = Az in Theorem 2.2, where A > 0, we obtain the following

Corollary 2. Let f satisfy the assumptions of Theorem 2.2 and
1 [ee]
(S20)@) = [ Fw)dy for 2 >0,
Az

Then the inequality

1

@ 1yo~ v’ [e%
12 (S2f) @) ,000) < (5) 7 erlaf @), 000
holds.

Remark 2.3. Taking A = 1, we get

||33a(H2f)($)||Lp(o,oo) < C7H33af(x)HLp(o,oo)~

Now, we have obtained the analogue of Theorem 1.1 for Hs which is the dual of Hardy averaging

operator H;.

For the next theorem we need the following lemmas.

Lemma 2.2. Let 0 < p <1, cg > 0 and a(z), b(x) be under the conditions of operator Ts such that

for almost all x > 0,
b(x)

far < ([ o)
a(x)

=

P

Then
b(z) b(z)

</f(y)dy) <0 / fP(y)yP " dy.
a(z)

a(x)

Proof. The proof is similar to that of Lemma 2.1.
Lemma 2.3. Let 0 <p <1 and 0 < B < A, then
AP — B? < (A - B)".
Proof. Tt is well known that for 0 < B< Aand 0 < p < 1,
(A+ B)? < AP + BP.

Replacing A by A — B, we get
AP < (A— B)? + BP.

For more details, see [1].

(2.3)

Theorem 2.3. Let0<p<1l,a>1-— % and c¢; > 0. If f is a non-negative measurable function on

(0,00) and satisfies (2.3) for all x > 0, then

12 (Ts £) ()12, (0,00 < €0 (uxi/<a—1<x>>“—5’f<x>HLp<o,m> - Hxif<b-1<x>>a—if(x)HLp(O,oo)),

where

B =

co=cg P((a—1)p+1) 7.
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Proof. Taking into account (2.4), we get

[ @@L, o o) = / e / e y) de < G0 / e / Pl dy) de

a(x) a(x)
Since a(z) <y < b(x), we have b~1(y) < z < a=*(y). Apply Fubini’s Theorem, we get
a™! ()
/ (a— 1)p< / ()Pt dy> dr — /fp yP 1< / z@=1p dx) dy.
a(x) b=1(y)

In combination with a@ > 1 — ; and 0 < a(z) < b(z) < oo, this yields

a'(y)
1
(e=1)p o — -1 (a=Dp+1 _ (=1 (a=D)p+1 |
R a7 W) b)) )
—
Consequently,
(T F) @I, 0,00
P(l ) r 1 1 1 1 1
< 2 ([ P e - prgy et }dy)
0
p(1—p) FI _L , N
et (||:w'<a @D 1@ g0y ~ 67 670D P O oy )

Using (2.5), we deduce

Hxa(Tsf)(x)”ip(O,OO)

C’P(l—P) n 1 a_ L L1 a—2 '
a1 (7 @ £l g~ 7 @ @] 0m))

hence
[z*(T3.£) (@) L, (0,00)
<Pl 0+ )7 ([l @ @) @] 7 670D P SO0y ) D

Setting a(xz) = Az and b(x) = Bz, where 0 < A < 8 < oo, in Theorem 2.3 above, leads to the
following

Corollary 3. Let f satisfies the assumptions of Theorem 2.3 and

(S3.f)(x /f Ydy for x >0,

then

[2%(S5.0)(@) |1, (0,00) < Cs((i)a;’ - (%) )Hxaf Mz, 0,00

Remark 2.4. Taking A\ = % and 8 = 1, we obtain the analogous result for the Pachepatte type
operator P:

12 (PF) (@) L,y (0,00) < €8(2°77 = 1)l f(2)| 2, 0,009
where

(Pf)(z /f )dy for x> 0.



Some Estimates for Hardy—Steklov Type Operators 107

Acknowledgements

The authors are very grateful to the referees for helpful comments and valuable suggestions.
This work was supported by the Directorate-General for Scientific Research and Technological
Development (DGRSDT) Algeria.

References

[1] B. Benaissa, Some inequalities on time scales similar to reverse Hardy’s inequality. Rad Hrvat.
Akad. Znan. Umjet. Mat. Znan. 26(551) (2022), 113-126.

[2] V.I. Burenkov, On the exact constant in the Hardy inequality with 0 < p < 1 for monotone func-
tions. (Russian) Trudy Mat. Inst. Steklov. 194 (1992), Issled. po Teor. Differ. Funktsii Mnogikh
Peremen. i ee Prilozh. 14, 58-62; translation in Proc. Steklov Inst. Math. 1993, no. 4(194), 59-63.

[3] A. Senouci and T. V. Tararykova, Hardy type inequality for 0 < p < 1. Evraziiskii Matematich-
eskii Zhurnal 2 (2007), 112-116.

(Received 02.03.2023; revised 07.04.2023; accepted 11.04.2023)

Authors’ addresses:

Abdelaziz Gherdaoui

Department of Mathematics, Laboratory of Informatics and Mathematics, University of Tiaret,
Algeria

E-mail: gherdaouiabdelazize20220@gmail.com

Abdelkader Senouci

Department of Mathematics, Laboratory of Informatics and Mathematics, University of Tiaret,
Algeria

E-mail: kamer295@yahoo.fr

Bouharket Benaissa

Faculty of Material Science, Laboratory of Informatics and Mathematics, University of Tiaret,
Algeria

E-mail: bouharket.benaissa@univ-tiaret.dz



	Introduction
	Main results

