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Abstract. In this note, we prove the global existence and the asymptotic behavior of solutions for
a thermoelastic plate with mass diffusion. By assuming certain conditions on the parameters of the
model which present sufficient conditions for the stability result, the stabilization under control of the
Lyapunov functional is obtained only for a localized initial conditions in the ball of radius R.
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1 Introduction

Stability is one of the most important characteristics around which theoretical and experimental
studies of different physical models revolve. It can be accommodated by PDEs or coupled systems of
PDEs. These systems often express change and development with respect to space and time, where
they can model many physical phenomena, for example, the vibration of beams, the flow and velocity
of fluids, diffusion of chemicals, etc. As for the previous models, we may find that stability is the
basis for the mathematical and physicist researcher to develop other models as well as obtain reliable
results in reality. In this paper, we study a nonlinear mechanical model of the van Karaman type
coupled with thermal effects and take the mass diffusion into account.

Menzala and Zuazua [12] have investigated the asymptotic behavior of solutions for the van
Karaman system and proved the exponential stability of the system during temperature coupling.
We can point out that the van Karamén system has been considered in many studies, among which
the noteworthy are the works [2,3]. More precisely, the researchers have shown that the presence of
thermal effects leads the system to stability, and this result is identical to the van Karamén equation.
With regard to heat transfer, several models have been developed, for example, the transfer according
to the Fourier law, Green—Naghdi law, Cattaneo law, Gurtin—Pipkin law, etc. These models have
proven their effectiveness in reality after being subjected to experimental studies that exist to this
day. Recently, the heat flow under different laws have attracted the interest of many researchers
whose main goal was to show the behavior of solutions for mechanical systems in the presence of
different thermal effects, as a special case of the van Kdraman system, we can refer to [5,7,8,10] and
the references therein.

Favini et al. [6], using the non-linear boundary dissipations, proved the global existence, uniqueness
and regularity of the van Kdraman system. As in most studies on the van Kdraman system, rotational
inertia was not taken into account and it was also taken into account that thermal coupling was partial,
i.e., with one equation of the mechanical system, it was a challenge for us to know the behavior of the
solutions in the opposite case to that. In [4], the thermodiffusion van Kdramén system with time delay
was taken into account, as the study proved the exponential stability of energy. The effects of thermal
diffusion were initially suggested by Aouadi et al. [1], where the authors studied the Timoshenko
beam, which expressed the linear transversal displacement and the shear angle of the beam, and they
have shown the existence, stability and numerical results. In our work, we considered the existence
of strong thermal diffusion and the aforementioned properties and show the global existence as well
as the exponential stability of the solutions. In the following section, we present the derivation of our
studied model based on the work of Lagnese and Leugering [9].

Derivation of the model

We suppose that the beam occupies the region

<uxz3 <

N>
po| >

{(x17x27x3): nglglﬂ *].<’JJ2§]., -

3

its centerline is defined by 0 < z; < L, 2 = 3 = 0, and the cross-sections are
h h
Axy) = {(9617552,96‘3) Dy =x1, —1 <39 <1, 3 <z3 < 5}

By r(x1,t) we denote the position vector at time ¢ of the particle which occupies position (z1,0,0) on
the centerline in the reference configuration r(z1,t) — (21,0, 0). The centerline is constrained to move
in the ejez-plane as follows:

r(zy1,t) = (u(z1,t) + x1)er + w(x, t)es,

where the functions v and w are, respectively, the longitudinal and the transversal displacements of
the point (21,0,0). Now, if the deformation is taken into account, the point z; on the centerline
is mapped onto a point p in the ejeg-plane whose abscissa is x1 + v and ordinate is w, then this
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deformation causes an axial stretching s(xy,t) given by

x1

s(ai,t) = / [(1+ tay (€,0)% + (wy, (€,1)] /7 de — a1 (1.1)

0

The body is subjected to an unknown heat distribution 7 and a chemical potential 7 that vanishes at
the boundary.

Any set of forces acting on the particular cross-section located at x; in the undeformed state can
be replaced by the torque T, the resultant force R, the thermal strain resultant @ and the chemical
strain resultant S such that

T =Tiey + Maey + Mses,
R = Pie; + Voey + Veg,
Q = 01e1 + O2e2 + O3e3,

S =d1e1 + Vze + V3e3,

(1.2)

where 7T; is an axial torque, M; is a bending moment about e;, V; are the shear components of R, 6;
are the heat dissipations and ¢; are the mass diffusion. Now, taking V5 = V3 =0and T3 = M5 =0 in
the previous equations (1.2), we can get

= EAs;, (x1,t), My=—FElwg, . (x1,t),

h/2 h/2
1 12
91 = E / Td.’173, 92 = ﬁ / l‘gle‘g,
—h/2 —h/2
h/2 h/2
1 - 12 ~
191 = E / Td$3, 192 = ﬁ / 33‘37'd.133,
—h/2 —h/2

where A is the area of the cross-section, I is its moment of inertia with respect to the xs-axis and
Young’s modulus E. EI is known as the flexural rigidity. Therefore, the strain energy is

7 P2 7 M2 1 7 1 7

1 2 2

U:/QEA d;clJr/zEI dx, = i/EASm dz1+§/EIwrlm dzy.
0 0 0 0

We define the energy coming from the heat conduction by

L

L
0= /—7191%1 dry — /7392wz1w1 dxy,
0

where ; and 73 are the coefficients of thermal expansions. Then the energy coming from the mass

diffusion is
L L

Y= /—’72191Uzl dry — /’74192ww1w1 dry,
0 0
where 75 and -4 are the coefficients of mass diffusion expansions. From (1.1) we have

L s (21,1))2. (1.3)

5 (i (01,02 +

Sz, (-'L'lat) = Ug, ($17t) + 5

Taking into account the first two terms in (1.3), the strain energy takes the form

L
EA
_7/ ul1 u}xl)ﬂ dxl—i——/wzlzl dxq,
0
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and the kinetic energy is defined by

L L

I A

K = % /(wml)Q da?l —|— p? /(Ut)Q + (’U}t)Q dSCl,
0 0

where p is the mass density per unit volume of the beam.

Now, it is time to define the Lagrangian density as follows:

~

L(uml ) wxl ) w$1LE1 , Ut, W, wtm1)'

Following Hamilton’s principle for contituous systems, we have to introduce variations of the field
quantities v and w. As a necessary condition for the Lagrangian £ to be stationary at w, w, the
Gateaux derivative L of

T L
[,://L(uz“wzl,wmlml,ut,wt,wtm) dxq dt
0 0

with respect to these variations must be zero. Hence the result of calculations is the following system
with boundary conditions:

2

1
pAwy — plwity, 2, — EA[(uxl +3 (wxl)Q)wm]
z1

+ Ewalxla:lazl + 7392931931 + ’747-92x1x1 = 07
u(0,t) = w(0,t) = w4, (0,t) = 0.

1
pAuy = BA(uay + 5 (02,)?) =010, = Y2010, =0,
T

In order to simplify notation, we introduce the following changes: v* = I/A and t — t\/p/E and
x1 — x. In the next sections of the paper, the use will be made of the following notations:

1
(um + 3 (wI)Q) =U(u,w), ®,=(I- V2 O0a), (1.5)

System (1.4) takes the form

1
Ut — (Ugc +3 (ww)Q) — 71015 — 12012 = 0,
x
1
W + '72'wtt9c1: - {(UI + 5 (wm)2)wm} + ’)’QTUMM;I + 7392;6@ + ’)/41929“ =0, (16)
u(z, t) = w(x,t) = wy(z,t) = 0.
The temperature is governed by the following system of equations:

c1b + diV1 — MUe = —Qua,
202y + doVat — V3Wize = —Goz, (1.7)
01(I7t) = 02(:L',t) =0,

where ¢; is a parameter from the thermoelasticity theory, d; is a measure of the thermodiffusion effect
and ¢; is the heat flux that will be considered here under Fourier’s law, i.e.,

;i = —KiBiz, ki heat conductivity coefficient. (1.8)
The chemical potential is governed by the following system of equations:

di101¢ + V1 — VUt = —Nia,
d28 + 1202t — YaWiter = —N2a, (1.9)
191(.1‘, t) = 192(.13, t) = O,
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where r; is a measure of the diffusive effect and
—Niz = Cit

such that C'is the concentration of the diffusive material in the elastic body and 7, is the mass diffusion
flux that will be considered here under Fick’s law, i.e.,

1n; = —1;¥,, v;: mass diffusion conductivity coefficient. (1.10)

=

Along this paper, the index i takes the value 1 or 2, respectively. By using notations (1.5) and
rearranging systems (1.6)—(1.9) with laws (1.8) and (1.10) we obtain the following system:
3t2u — 0,V (u,w) — 710,01 — 120,91 =0,

07w — 0, (Y (u, w)0pw) + Y?Igw + 730205 + 120202 = 0,

10401 — 14318391 + d10y91 — "}/18,5@’& =0,

: (1.11)
d10:01 — lllﬁz’ﬁl +r10y91 — ’)/Qam»u =0,
o0y — @8%92 + do Oy — 738%8,510 =0,
do0i0o — I/g@ﬁ’ﬂz + 19009 — ")/48587511) =0.
For (z,t) € (0, L) x RT, the system is associated with the boundary conditions
ug(t,x) = w(t,r) = wy(t,x) = 01 (t,z), tcRY, 2 =0 or = L. (1.12)
O2(t,x) = 91 (t,x) = 9a(t,z) =0, teRT, 2 =0 or x =1, '
and with the initial conditions
u(z,0) = u®(x), ug(,0) = u' (),
0,(x,0) = 6%(x), V1 (x,0) = 9 (),
0 =), 01,0 = ) iy
w(z,0) = w”(x), wi(z,0) = w (z),
92(1’,0) *00(1')7 192(1'70) :19(2)(1')
1.1 Functional space and assumption
Initial conditions (1.13) are considered in the associated energy (phase) space:
H=H'(0,L)NL¥0,L) x (L*(0,L))* x HF(0,L) x Hy(0,L) x (L*(0, L))?, (1.14)
where
L
L3(0,L) = {f € L*(0,L): /f(sc) dx = 0}.
0
The symbols (-, -}, || - || and | - | denote the L2-inner product, L?-norm and L*-norm, respectively.

For z = (u,v,01,91,w,y,02,92)T and 7 = (4,7, 91751,@, 7, %,%)T, the Hilbert space (1.14) is
endowed with inner product as follows:

(2,2)yq = (v,0) + <<I>%y, @%f{ﬂ + (Oqu, 815) + 72<8§w, 8§E>

(e (0 (8) )+ (e (). (2))

with the matrix
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The Hilbert space (1.14) is equipped with the norm

1
1203 = lol® + losull® + |5 ylI* + 7|07 w]* + A(t) (1.15)

such that
A(t) = ¢]|05]1> + 2d;R(0;,9;) + 7|0 ]|

Assume that the matrices A; are positive definite, that is,
0; = det(A;) > 0= A(t) > 0. (1.16)

Let & be a number chosen such that d;/¢; < & < r;/d;, then by the Cauchy—Schwarz and Young
inequalities

d;
Qdi%<9iﬂgi>2 < Z ||92H2 + dzlel’ngHQ (1.17)
Using (1.15) and (1.17), we get

1
12113 < Jlol* + 193 911” + 19sull® + 2105w + all6s]|* + BlI9: 1%,

where

d;
Oé:Ci+Z and ,8:7'1+dl§1

The following remark is needed for the next sections of this paper.

Remark 1.1. Recalling (1.5), we have

(—02)~': L*(0,L) — H?*(0,L) N H}
o' L?(0,L) — H?*(0,L) N Hj
@210, : L*(0,L) — Hy

(Bys,5) = (5,025) = (5,5

is a Bounded operator,

(1.18)

(0.1)

(0,L) is a Bounded operator,

(0,L) is a Bounded operator,
)

is a Self-adjoint operator.

Continuous Energy

Set dyu = v, dyw = y. Multiplying equations of system (1.11) by the functions (v,y,01,%1, 62,92),
respectively, and integrating over (0, L), we obtain the following energy functional:

1 1 ’
£(t) = 5 [IWI? +22102w)? + 103y + 12 + A®)| = =rillos0,]® = villuvil®. (1.19)
On the one hand, from (1.15) we have

1 1 2 1
12l = 0l + [Da+ 5 (@aw)? = 5 @uw)?||” + 22 020)2 + |3y + Ae)

1 22 1
< ol + 2102wl + 2| (5 ww) |+ lody) + 212 + A)
<2/E() E®). (1.20)

In contrast, we have
E@t) < =13 N1zl

Hence there exist the constants &3 and &4 such that

&lzl3 < E(t) < &ll=ll3. (1.21)
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Discret Energy

Multiplying (1.11) by the test functions y, € H}(0,L) for j =1,...,6, we obtain the following weak
form:

(O, x,) + (U (u,w), 0o x, ) +71(01,00X,) + 72(91,02x,) =0,

(@101, X) + (U (u, w)Dyw), Duxy) + ¥ (Fgw, X,) + 73(0202, X,) + 72(0202, X,) = 0,

01<5t91aX3> + £1(0201, 02 x;5) + d1(0101, X;5) — 11(020, X5) = 0, (1.22)
d1{0:01, x,) + 1(0z01, 0 x,) + m1{0c01, X,) — V2(0zv, x,) =0,

2(0t02, X;5) + k2(0ub2, 0 X5) + d2(0t02, X5) + V3(02y, OuX5) = 0,

d2(0¢02, X ) + 12(0202, 0xXs) + 72(0102, Xs) + ¥2(02 Y, zX6> 0.

Let us partition the interval (0, L) into subintervals Z; = (x;_1, ;) of length h = 1/s with 0 = ¢ <
- < xz = L and define

Sh = {ne H}0,L): necC(o,L)), nlz, is a linear polynomial}.

For a given final time T and a positive integer N, let AT = T/N be the time step and ¢, =
nAt, n = 0,...,N. The finite element method for (1.22) with the boundary conditions is to find
vy, 00, U1, 05, 9%, such that, for all x,,...,x, € Sk,

1 n n— n n
Kt <Uh — Uy, 1’X1h> + <\P(uhawh)vaxX1h>

+ 71(91‘;” 02X 1,) + 7207, 0xX,,) =0,
—— (®2yp <I> yp ¢7X2> + (¥ (up, wy) 0wy ), Ox X,y )

+ <84w2’ th> + 73 <8203h7 th> +7a <6§193ha th) = 07

%< U= 00 X))+ F1(0207, 02X
05— I ) — (00l ) = O,
ilt (03 — 015" Xan) + 110007, D X)) (1.23)
+ % (O = 0T Xan) = 72(0207 Xan) = 0,
T (8, — 05 X))+ 2 (02851, 02X,
2 05— O o)+ 5 Ot D) = 0,
05— O3 ) 1200, )
o (05— O Xen) + 74 (0uyis D) = O,

with u! = u ™' + Atv and w} = w'™' + Aty?. Here, z)) is an adequate approximation to 2°. Let
us introduce the discrete energy given by

1 I
(10712 + 2210202+ @3 i1 + W51 + A (1) = —rill0a0 12 = villdu i 2, (1.24)

l\’)\r—t

(&R)'(t) =

where

AR () = el O3, 117 + 2diR(0%,, 07) + il 01
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2 Semigroup approach

Problem (1.11)—(1.13) can be viewed as a Cauchy problem in the Hilbert space H,

{Az’ = Bz + F(z), @.1)
2(0) = 2% = (u®,0°,69, 99, w®, 4°,09,95)T € H.
We define the linear operator A as follows:

Az = (u,v,01,91,w, .y, 0, 92) 7.
The linear operator B and the nonlinear term F(z) are defined by

v
02u + 710,01 + 120,91

751_1 [(dl’}/g —7171) 0,0 — 11 K10%0; + dlulagﬁl] =14
751_1 [(dl'yl — 172)0,0 + d1£10201 — 011/18%191] =1

Bz = , (2.2)
)

—y20%w — 730205 — 74029
—65 " [(days — 1273) 02y — 12620202 + do12020) = T3
752_1 [(dg’y;g — 6274)33y + dgl‘iz@%@g — nggagﬁg] = F4
0

%&c(@w)Z

The operator B is associated with the domain
02u € L?(0,L), ve HL0,L),
DA 'B)={zeH: weH0,L)NH*0,L),
Yy € H&(O,L), 0;,9; € H&(O,L).

3 Main results

Theorem 3.1. For all 2° € H, there exists a unique weak solution z € C(R*;H) of problem (2.1) if
and only if the operator A~'B is a generator of a semigroup of contractions in H, and the function
A=YF(2) is locally Lipschitz continuous in H.
Theorem 3.2. For §;, R > 0 and 2° € B(0, R), the energy (1.19) approaches zero exponentially when
time approaches infinity if
d d

172 >0 and @y =3 — 274

1 T2
where B(0, R) is the ball of radius R and §; is derived from assumption (1.16).
Theorem 3.3. Let the assumptions of Theorem 3.2 hold. Then the discrete energy (1.24) approaches
zero exponentially when time approaches infinity, i.e.,

gr—ept
At

> 0,

w1 =7 —

<0, n=1,...,N. (3.1)
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4 Proof

4.1 Proof of Theorem 3.1

The proof is based on the semigroup method illustrated in the book [11]. First of all, it is clear that
D(A~!B) is dense in H, i.e.,

D(A"B) = H. (4.1)
Secondly, A8 is formed by the diagonal matrix of the thermoelasticity with diffusion mass operator
By and the thermoplates with mass diffusion operator Bs which are given by

0 I 0 0
B, — 02 0 Y1 0% Y20z
0 =67 diya — )0z 07 'rik102 =67 d11n 02
0 —5;1(d1’yl — 172) 0y —5f1dm183 6flclu18§
0 I 0 0
B, = S B 0 —_73<I>;18§ —Z4<I>;18§
0 —85 (days — 1273)02 4, 17’2/{25'9% —05 1d21/23§
0 —05  (days — coya)02  —05 daka0? 5y teprn?

For any z; = (u,v,01,91), 22 = (w,y,02,92) € D(A™1B), we have
<Blz’1, Zl>7—l = <61U, 8Iﬂ> + (8314,6) +7 <8Z91,§> + Y2 ((%191,5) + <A1 (g;) , (gl> >, (42)
1

(21, Biz1)u = (Dau, 0:0) + (v, 050) + 71 (v, 0301) + 72 (v, D h) + <A1 (zll) : (Fl) > (4.3)

Adding the previous scalar products (4.2) and (4.3), we get
2§R<B12’1,2’1>H = —2H1||(9w01||2 — 2V1||6w191||2 S 0. (44)

On the other hand, we have

e(Baza, za)n = v {02y, 020) — v* (0w, ) — 73(0202,7) — 74(0202,7) + <A2 (F;l

—
w
N——
R
|
NN
N————
\/
—
i
(@3
~

(o2 Bz =2(020,029) =770 950) ~ 10 0280) — 201, 027) + (A (3

o
(V)
"
TN
el
W
N~
\./
—~
=~
=)
N~—

Adding the previous scalar products (4.5) and (4.6), we get
2R(Bazo, 22) 1 = —2ka|0u02||> — 2v2]0,92]|* < 0. (4.7)
So, from (4.7) and (4.4), we conclude that
(A71Bz, 2) = —k;]|0.0:]* — vi]|029:* < 0. (4.8)

Finally, we conclude that the operator from (4.8) and (4.1) is dissipative.
Now, we prove that I — By is onto. For any o := (01,09, 03,04) € H, we have

(I —By)z =o. (4.9)
Equation (4.9) gives the following system:
u—v=o1,
v — 2u — 119,01 — 120,91 = 02,
6101 + (d1y2 — r171) 000 — 71610201 + d111 0291 = S103,
0191 + (d171 - 0172)83511 + d1f<«'13§91 - 01V16§191 = 0104,

(4.10)
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Substituting the first equation of system (4.10) we arrive at

(I — 92 u — 10,61 — 120,01 = 03 + 01,
(61 — 11£102)01 + (d1v2 — r171) 05 + d1119291 = 6103 + (d17y2 — r171) 001, (4.11)
((51 — ClVlai)ﬂl + (dl'}/l — 6172)81;’114 + d1l€15§91 = 0104 + (d1'71 - 01'72)610—1‘

For z1 = (u, 51, 51) € H, we can extract the bilinear form 81 € H x H

Bi(z1,21) = (u,ﬁ) + <3xu + 7101 + 728x19136x§>
+ <5191 + (diy2 — r171)0pu + di11 0201, §1> + 7’1'€1<3z9175151>

+c1r <81191, 8I§1> -+ <(51’l91 + (dl’yl — cl'yg)abu + d1H18301,§1>, (412)
and the linear form £, € ‘H

£1(51) = <0’2 + 0'1,5> + <510’3 + (dl’YQ — Tl’}/l)aza'l, §1> + <510’4 + (dl’)/l — 0172)8m01,1§1>. (413)

The bilinear form (4.12) is continuous and coercive and the linear form (4.13) is continuous. Using
the Lax—Milgram theorem, we conclude that there exists only one solution satisfying

%1(217’51) = Sl(El), Vgl S H,
such that
21 € HY(0,L) x H}(0,L) x Hy(0,L).

Now, from (4.10), we have v € H}(0,L). Then, from (4.11), we have d?u € L?*(0,L). Thus z; €
D(A~1B) such that I — By is onto.
Similarly to the previous procedure, we shall prove that I — By is onto. For any ¢ := (¢1,$2,63,54) €
H we have
(I—B3)z =5,
ie.,
w—Y =<1,
y+ 72<I>;18§w + 734);16292 + 74‘13;15’5192 = G2,
8202 + (doya — 1273) 02y — T2k20202 + dav20202 = dass,
6202 + (days — €274) 02y + dakad202 — o122 = G2y,

(4.14)

Substitution of the first equation of system (4.14) gives

(I +72®; 100w + 738519205 + 14D 9202 = & + <1,
(82 — 72K202)05 + (doya — r273) 02w + dav20202 = 0263 + (daya — T27v3) Opst, (4.15)
(82 — ca100%)09 + (days — c27a)0%w + dakod20s = das + (days — c274) st

For z5 = (w, 52, 52) € H, the bilinear form Bs € H x H and the linear form £5 € H are:
Ba(22,%2) = (10,0) + (1207 0hw + 75 10265 + 71010205, )
+ <(5292 + (doys — 7273)0%w + d2V28§’l92,52>
+ <52192 + (doys — cov4) 02w + d2528§92,§2>
+ Cova (D02, 0y D) + Pk (D02, 0,62), (4.16)
£9(%2) = (2 + 1, W) + (263 + (dovs — T273)3z§1,§2>
+ (0264 + (dorys — 0274)5z<1752>- (4.17)
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By using Remark (1.18), we conclude that the bilinear form (4.16) is continuous and coercive and the
linear form (4.17) is continuous. Using the Lax—Milgram theorem, we conclude that there exists only
one solution satisfying

%2(22,52) = 22(’52), VZzy € H,

such that
29 € H3(0,L) x H3(0,L) x Hy(0,L).

Now, from (4.14) we have y € HZ(0, L) then from (4.15) we have w € H*(0, L). Thus 2z, € D(A™'B)
such that I — By is onto.

At this stage, we prove that A~1F(z) is locally Lipshitz continuous in H. Using the operator (2.2),
we get

A= (F(2) = FED,, = 110, £1,0,0,0,85" £,0,0)]|,, = I /11| + @5 % fall,
where

fl = %am [(a:rw)z - (8x@)2]

and
fa=0, [(\I/(u,w)(‘)zw) — (U (u, @)&Cqﬂ)].

The following estimate is obtained by applying Minkowsky inequality:
211l = |

- H (92w — O2@)(Oyw + 0y ) + (Opw — D, @) (92w + O2W) H
< ||(D2w — 02w) (Opw + Oy @) || + || (B — Dpw) (2w + O3)-

0z [(0pw — 0, W) (Opw + 0,W)] H

Thanks to the Cauchy—Schwarz inequality, we get

2]l £l < 1103 (w — @) || 10z (w + @) || + 02 (w — @)|| 07 (w + @)|
< 0y (w — @) (|0xw]| + 10:@]) + 102 (w — @) (|07 w] + [07@]])-

We use the embeddings L? < L™ and H' < L™ to get

20l < 102w — )| (10| + 10,]) + 102 (w — @) (|02w] + [923])
< const. ||z — Zll (|2l + [Z]0). (4.18)

Using Remark (1.18) we obtain the following estimate:
1057 fol| = Hcpﬁax (0w, w)Dpw) — (U(T, @), @) H < const. || (u, w)Oyw — W (i, @)D, .
By Minkowsky’s inequality, we get
1957 fy]| < const. H‘Il(u W)y — U (T, By + (T, @) dpw — V(T w)awwH
< const. || (¥(u, w) — (@, 0))dwl|| + ||V (&, 0) (0w — ,w)|. (4.19)
We use the embeddings L? < L, H! < L*° and the estimate (1.21) to get
||<I>A7%f2|| < const.H\I/(u,w) — U (a, @)H |0, w| + ||V (w, W) |Orw — Oy

< const. E(z — 2)(|0yw| + || ¥ (u, w)]|)

< const. ||z = Zlla (2]l + 1Z]12)-
For z,z € B(0,R), R > 0, from (4.18) and (4.19) we have

IATH(F(2) = F(Z))llw < const. ||z = Z].
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This the local solution is proven.
For 2° € D(A~'B), the local solution of (2.1) z € D(A™1B), i.e.,

ALY F(D(A™'B)NB(0,R)) C D(A'B);
and satisfies (1.19) or (4.8). Then we have
E(t) < £(0), t>0.
Using inequalities (1.20) and (4.20), we get
12|12, < 262(0), t > 0.

Inequality (4.21) shows the boundedness in the H-norm. So, the global existence is proven.

4.2 Proof of Theorem 3.2

Our argument of proof is based on the following Lyapunov functional:
j=3
L(t) = NE®) + Y N;I;(t) + elu(t),
j=1

with N, N; > 0 and ¢ sufficiently small.
Lemma 4.1. The functionals I;, j =1,...,4, defined by

02

L(t) = T (02, (=02) "' ®,y),
I(t) == (®yy, w) + (u,v),

Ig(t) = %<913¢>7

I4(t) = %<¢7y7@837w>7

where
xr

2x 2
= < 2: _— = <
1) /v(k,t)dk and 0 < ¢ (L 1) <1,
0

for allt > 0 satisfy estimates (4.29), (4.34), (4.38) and (4.44).
Under the assumptions of Theorem (3.2), there exists a constant a > 0 such that

(N —a)é(t) < L(t) < (N +a)k(t)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

with N > a being sufficiently large constant. It follows from the Young, Poincaré, Cauchy—Schwarz

inequalities that

This proves the validity of the equivalence (4.25).
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4.2.1 Functionals estimates
Functional I;. Taking the derivative of (4.23);, we get

1) = =22 (04, (-08) ) — 2 (0, (-00) oyl = i) + Falt),

o

Using the equations of system (1.11), we obtain
Fi(t) = —((-02)7'®

d 1 1
+ *2<(*3§)’1‘I>§ [V233ﬂ92 — 10 + 103y], 3 y>

1

y> do (=@, D2 y).

For the functional F5, we have

) )
) = —T—Q <92, (—6%)_18Z(\Il(u,w)6xw)> + T—Q <92,723§w + 7383392 + 746%?92>
2 2
1) 5272 1) 1
= =22 (02, (=02) 7 O (W, w) D)) + 2 (0, (<02 T D) + 22 (107 + =2 [
2 T2 T2 T2

By Young inequality, we get

(dizz—’f2)’< 3 (0 + 92), 3y >’

ds
= sing (222 = k) |82 + 02, @)] < |03yl + o) 10,62/ + O 02]?)  (4.26)

such that p; > 0, which will be chosen later, and ¢(u;) = ﬁ . Using integration by parts, boundary
conditions (1.12) and Young’s inequality, we obtain

= 2 (02, (-02) 0. (W w)0,0)|

= 2 [0(-3) " ((u,w)0p)]

2

J _ 9 _
< 2 [0, (~02)7 e WOrw] < 2 [j0n(=0D) 0] | U] 100l < e} ] + (o) 0,00 (4.27)

z=L
=0

+ 7% <8I92, (=%)"Y (¥ (u, w)@mw)>

such that ¢ > 0 and c(¢) = . Using integration by parts, from the boundary conditions (1.12) and
Young’s inequality, it follows that

da7? - %0 %0 -
o (02 (=00 0pw) | = <= [ (-05)” 10,7~ (000, (9:)(=00)7"02)
2 2
Y d — =L Y é
= T; [02w(0,)(—02)02) T + T; (02w, 02)
25
7 9 =L
< ellGwll® + c(e)0:0 ] + 52 Y (@R n) (429)

such that € > 0 and c(e) = <. Note that

_ 7252
2T2€

=L

[((0,)(=02)"62)7]7=E.

From (1.18), we obtain
7 (t)] < c(e, R)||0z02]|?
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such that e, R > 0 and c(¢, R) = %- . The boundary conditions (1.12) are used to obtain
_ _ =L
[62(=07) (¥ (u, w)dw)] .~y = [B3w(=87)"02],—) = 0.
By virtue of the above estimates (4.26), (4.27) and (4.28)7 we get

I{(t) < — (w2 — ) [ B3yl + (02wl + [ ¥]?)
+ e, i) (10:82]1* + [10292117) + c(e, R)[10:02]1*.

Functional ;. Taking the derivative of (4.23)2, we obtain

T4(t) = (@' w) + [ B3yl + [[o]> + (u, ) = Fy(t) + Fa(1).

Using the equations of system (1.11) and the boundary conditions (1.12), we get

Fa(t) = [ @2y + (w, 0 (¥ (u,0)050)) — 72 (w0, Ow) — 43(026, w) — 74(0302, w)
= 183yl — ((Dow), U, w)) + [w(u, w)dpw] —y
— VN02w||* + 73(0402, Opw) — 3 [89602117]36:0 + 72(0:9, Opw) — 72 [Or2w]
For the functional Fy, we have

F4(t) = ||”U||2 - <arua \Il(uvw» + [u\I/(u, w)} iié + <ua 718191 + 7281791)>

Summing up (4.30) and (4.31), we obtain
() < — 22 — 7202wl + [Jo]* + |93
+ <u,7189591 + ’}/281;191 > + <’738x92 + ’74895192, 8zw>
By Young inequality, we get

(U, 110201 +7120:91)| < i (19117 + 107w][?) + c(paa) (102011 + [|0:91]1%),
(130202 + 7140502, Oaw) | < pa]|O7w|* + e(u3) (1020217 + [10:02]1%)

such that yi, pu3 are the positive constants that will be chosen later and c(u2) = -5, c(ps) =

boundary conditions (1.12) were used to obtain

=L
=0

= [uq/(u,w)]:zé =0.

[w@(u,w)@zw] iig = [8;80211)] o [6 19211)]
The estimates (4.32) and (4.33) give

1(t) < ~(1 = )| W[~ (42 — o2 — )| B0 + lo]” + |23y
+ ez, ) (1020211 + 1920211 + 19,01 + 1001 ).

Functional I3. Taking the derivative of (4.23)3, we get

01 01

I3(t) = r<9'1,¢>+*<91,¢> Fy(t) + Fo ().

From the equations of system (1.11), we arrive at

Fa(t) = (= 220 (020,6) — da(9,0) + 21 (000.6) + s (0}, 0)
=~ o] + = [0]2=f + @1 (0(0, 1), v) + dulsoT + (1 —
~ oy + (22

dyvy

— k1) (0:01,0,9).

z=L
=0 "

) [0:00];7

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

< . The
M3

(4.34)
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Using the boundary conditions (1.12) and taking into account that v € L2(0, L), we have

=L
[v¢]w —0 T w1< (O?t)av> = [aw91¢} i:O =0.
For the functional Fg, we have

o 0 o
Fo(t) = - (01, W w)) + = 60|+ 2 (6,00,

Applying Young’ inequality we obtain the following estimates:

(d1l/1 — 1) [{0:01.0,6) | = sing (d;T”l — 2) (@01,0) + 100,00 (L) ~ 01(0))

1
< o]l + e(ua) 96112, (4.35)
also, we have
(01, U (u, w))| < e[ ¥ + c(e)[|0:61 ]| (4.36)
and
[(61,01)] < e[| 0ub1]* + c(e) 02911 (4.37)

such that € > 0, 14 > 0 to be chosen later and ¢(u4) = 7 . The boundary conditions (1.12) are used
to obtain
k1v(0,8)(01(L) — 61(0)) = 0.

By virtue of inequalities (4.35)—(4.37), I} can be expressed as follows:

() < = (w1 — pa)lo]® + el )* + c(pa, €) (102011 + [|0a91 %) (4.38)

Functional I;. Taking the derivative of (4.23), and using the equations of system (1.11), we get

o )
Lll(t) = rl <(I)'yy/a Oz wep) + = <(I)'yy7 0 yp)
2 T2
2
= 2 (0, (W, w)0,0). 0,08) — 2 (3, 5,p)
2 2

0. o P
= B2 (0302, 0.wp) — 1 (1, D) + 2 (B, 0uy).

By integration by parts, using the boundary conditions (1.12), (4.24) and (1.18), we obtain

}(5‘ (u, w)Opw), Ox wcp)} =—-— <\If u, w)Opw, O wg0> 2522 <\Il(u,w),(8zw)2>
< const. 1| |02w]| |0pw + (Opw)?|
< const. (|| V|| + [|0Zw|?). (4.39)

Similarly, we use the integration by parts, the boundary conditions (1.12) and (4.24) to get

7 02 25, 26 a=L 3’Y 52
Ok, Q)| = 5= [(020)*0] 7y — = 07wl (4.40)
For the next estimates, we use the integration by parts, the boundary conditions (1.12),(4.24) and
Young’s inequality to obtain

B0 | (020, 00p)| = L2 (010, 02usp) +

T2

(D2, Opw) < e]|O2w|)? + c(e)]|0uba]>  (4.41)

27302
Lry

and

27452

) 1)
7402 (192,8w<p>| 742(8192,82 >

(0,02, 0z w) < 5H82w||2 5)||8$192||2 (4.42)
] 2
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such that € > 0 and c(e) = <. Using (1.18) and (4.24), we get
%21 3.y, ayo)]| < Byl 14
oy (@9, 0ayo)| < const. [ @5y, (4.43)
From (4.39)—(4.42) and (4.43), it follows that

22 [(02w)%e] 1y + () (1.0 + 10:95]1%). (4.44)

1
I(6) < const. (| ¥]* + 102wl + [#3y]12) + 3> ;

Now, using the derivative of (4.22) and gathering all the above calculations (4.29), (4.34), (4.38) and
(4.44), we obtain

1
L'(t) < —p1| @3 ylI* — p2l|WI* — psl|OZw]* — palvll?
= 25 ([10002]1% + 110:9211?) = p6 (100111 + [10:91]1*) — pr 19202,

where
I:Nl(w2 — ul N2 — 6]
= [Na(1 = o) — e(Ny + N3 +1)],
= [N2(+? —Mz ps) — (N1 + 1)],
= [N3(w1 — pa) — N2,
[N Nlc 6 ,ul) NQC(’uQ, ,UJ3) — C(E)E],
= [N — Nac(pa, p3) — Nac(pa, €)],
[N Nlc )]
We set

() 1 w1
0 =—=_0 =-. 0 -1
< M1 9 5 < H2 9 5 < Ha 2 )
and choose N; large enough such that
Ny % — N, >0,
then we choose N3 large enough such that
Ny 22— N, > 0.
2
Next, we choose € and ps small enough such that

1
Nl%—N2—5>O, Ny 5 —e(Ny+ Ny +1) >0

and

N2<72—%—M3)—5(N1+1> >0,

then we take N such that (4.25) remains valid and

N — N1C(5,/141) - NZC(:U’Qa /1'3) - 0(6)8 > 0;
N — Nac(pz, pi3) — Nac(pa, €) > 0,
N — N1C(E,R) > 0.
Finally,
L'(t) < —c(R)E(?)

such that ¢(R) is a constant related to the radius R of the ball centered at 0. At this point, the proof
is complete.
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4.3 Proof of Theorem 3.3

Choosing X, = Vi, Xan = Wi Xan = O1h> Xan = V1n> Xon = 05y, and x;, = 93, in (1.23), we obtain

s (I = o 2 4 g 2 = e 1) + (W ), Do)
+ 71074, Ozvp) + y2(07y, Opvyy) =0,
o (1935 — @3y 12 4 1@d P — 13y 12) + (g, wh)Dh), o)
— 74(0:03,, Ouyit) + 7> (OFwit, O2yi) — 73(0:0%,, Ouyit) = 0,
oL (108 — O I 150 — 10 1) + 0265
d;

t A (0%, — 07, 01h) — 1 (Owvy, 07) = 0,
d . . o 4.45
5o, O ) £ IO i ) (4:49)

+ 57 (195 = 95 12 + 19312 = 19317) =

o (16— 03512 + 101 = 11635 1%) + a0, 05,

d n
Agt (O3, — V3, 1, 05,) + v3(0zypr, 0205,) = 0,

d n— n n n n
AQt <02h azh 15 19 > + V2||6$192h“2 + 74<axyhaax192h>

+ g (195 = 9512 + 95,0 — 193 1) =,

Note that

1 o
(W (ugy, wh), Opvh )+ (P (uft, wh)Dowh), Ouyy ) = 17 (W (i, ), Wy, wpt) =W (u ™" w) )

1 n— n—
zﬂmwuz,wmn%nwuh L hIR),

2 2 2 2 2 2 n—12 (4'46)
dywy,, Ogwy — Dywy™ >>—(Ha a7 = 103w %),

2792
0 3)
Y < zwhv a:yh> At< = 9At
(i —01, ' 01n) + (0 — 07 1719?h>:<197fhv )= O3 1 O )+ (O — O 0 — O
(95 =05 " 03) + (05 — O3 950) = (W3, O) — (03, 05 ) (0 — 05", 05 — 03, ")-
Using (4.45) and (4.46), together with (1.16), we obtain

1 n n— n n—
57 (e = o2+ thu2 ~lle P
1 n— n n— n—
oy (1930 = @3y 12+ 123 gp? — 193937 17) + 5a (16312 = 1055 12)
o 51|00 17 + v 00T 7 + ol 0205117 + vl 0,05, 1
C2 n n— n— d2 n— n—
+2—At(||92h||2—||92h1||2) S (1932 = ||ﬂ1hluz)§(< B O3) — (O3 05
sz (19312 = 195 1%)

n n— n— d n n n— n—
2At (||‘I’( h)||2 — [P (uy 17“’h 1)H ) + Klt (< 1hy 07R) — (07, 1,91;1 1>) <0.

+ 2 (l2up) — 2w ?) +

So, using (1.24), we get (3.1). Thus the proof is completed.
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