Memoirs on Differential Equations and Mathematical Physics $Volume\ 92,\ 2023,\ 91\text{--}100$ M. Dehimi, A. Chaoui GALERKIN METHOD APPLIED TO $p(\,\cdot\,)$ -BI-LAPLACE EQUATION WITH VARIABLE EXPONENT **Abstract.** In this article, a Galerkin mixed finite element method is proposed to find the numerical solutions of high order $p(\cdot)$ -bi-Laplace equations. The well-posedness of the problem in suitable Lebesgue–Sobolev spaces with variable exponent owing to nonlinear monotone operator theory is investigated. Some a priori error estimates are shown by using the Galerkin orthogonality properties and variable exponent Lebesgue–Sobolev continues embedding. 2020 Mathematics Subject Classification. 35G30, 35G05, 65N30. **Key words and phrases.** $p(\cdot)$ -bi-Laplace equation, Galerkin method, weak solution, error estimate. **რეზიუმე.** სტატიაში შემოთავაზებულია გალიორკინის შერეული სასრული ელემენტების მეთოდი მაღალი რიგის $p(\cdot)$ -ბი-ლაპლასის განტოლებების რიცხვითი ამონახსნების საპოვნელად. არა- წრფივ მონოტონურ ოპერატორთა თეორიის გამოყენებით გამოკვლეულია დასმული ამოცანის კორექტულობა შესაფერის ცვლად მაჩვენებლიან ლებეგ-სობოლევის სივრცეებში. ცდომილების ზოგიერთი აპრიორული შეფასება ნაჩვენებია გალიორკინის ორთოგონალურობის თვისებებისა და ცვლადმაჩვენებლიანი ლებეგ-სობოლევის უწყვეტი ჩადგმის გამოყენებით. ## 1 Introduction We consider a bounded open domain Ω of \mathbb{R}^n with a Lipschitz-continuous boundary $\partial\Omega$. Our aim is to prove the existence and uniqueness of a weak solution u and some a priori error estimates to the differential p(x)-Bilaplace equation $$\begin{cases} \triangle(|\triangle u|^{p(x)-2}\triangle u) = f & \text{in } \Omega, \\ u = \Psi, \quad \nabla u = \nabla \Psi & \text{on } \partial \Omega, \end{cases}$$ (1.1) where f and Ψ are the given functions in $L^{q(\cdot)}(\Omega)$ and $W^{2,\infty}(\Omega)$, respectively. Here, $p(\cdot):\Omega\to\mathbb{R}$ denotes the variable exponent which is assumed to be in $L^{\infty}_{+}(\Omega)$ such that $1 < p^{-} \le p(x) \le p^{+} < \infty$, where $p^{-} = \inf_{x \in \overline{\Omega}} p(x)$ and $p^{+} = \sup_{x \in \overline{\Omega}} p(x)$ a.e. in Ω . During the last decades, the high-order PDEs with variable exponent has undergone rapid development. From a mathematical point of view, equation (1.1) can be considered as a natural generalization of $p(\cdot)$ -bi-Laplace equation $$\triangle (|\triangle u|^{p-2} \triangle u) = f,$$ which falls within the framework of nonlinear PDEs, where the exponent p is constant. One of our motivation for studying (1.1) comes from applications in the area of elasticity, more precisely, it can be used in modelling of travelling waves in suspension bridges (see [6,8]). Other interesting applications are related to improve the visual quality of damaged and noisy images if $1 < p^- \le p^+ < 2$ (see, e.g., [14] and the references therein). Note that in the case p(x) = 2, problem (1.1) becomes $\triangle^2 u = f$ which models the deformations of a thin homogeneous plate embedded along its beam and subjected to a distribution f of a load normal to the plate (cf. [1]). Among the most recent works concerning the p-Laplace equation, we can review Lazer et al. [8], where the authors tried to demonstrate the existence of periodic solutions for models of nonlinear supported bending beams and periodic flexing in floating beam. In [5], the authors used discontinuous Galekin method to approximate a biharmonic problem. They also gave an a priori analysis of the error in norm L^2 . In [11], the author has studied a p-biharmonic problem using discontinuous Galerkin finite element Hessian. An imagery problem caused by a $p(\cdot)$ -Laplace operator with $1 \le p(\cdot) \le 2$ has been considered in [14]. To solve the problem, the authors regularized the proposed PDE to be able to use a fixed point iterative method. The paper is structured as follows. We present in Section 2 some basic notations and material needed for our work. Section 3 is devoted to the existence and uniqueness of a weak solution to the problem under investigation in suitable Lebesgue–Sobolev spaces with variable exponent using the nonlinear monotone operators theory. In Section 4, the Galerkin mixed finite element method and \inf – sup condition are given. Finally, we show some a priori error estimates with the help of Ritz projection operator and Galerkin orthogonality properties, which are presented in Section 5. # 2 Preliminaries We define the variable exponent Lebesgue space $L^{p(\cdot)}(\Omega)$ as follows: $$L^{p(\,\cdot\,)}(\Omega) = \left\{ u: \ \Omega \to \mathbb{R}, \ u \text{ measurable and } \int\limits_{\Omega} |u(x)|^{p(x)} \, dx < \infty \right\}.$$ Note that $L^{p(\cdot)}(\Omega)$ equipped with the Luxembourg norm $$||u||_{L^{p(\cdot)}(\Omega)} = \inf \left\{ \gamma > 0, \int_{\Omega} \left| \frac{u(x)}{\gamma} \right|^{p(x)} dx \le 1 \right\}$$ is a Banach space. Note that all definitions and properties of Lebesgue and Sobelev spaces with variable exponent given below are taken from references [2–4,7,12]. **Definition 2.1.** Let $u: \Omega \to \mathbb{R}$ be a measurable function, then the expression $$\rho_{p(\cdot)}(u) = \int_{\Omega} |u(x)|^{p(x)} dx$$ is called modular of u. **Definition 2.2.** For some $p \in L^{\infty}_{+}(\Omega)$ and $m \in \mathbb{N} - \{0\}$, we introduce the exponent variable Sobolev space $$W^{m,p(\,\cdot\,)}(\Omega) = \left\{u \in L^{p(\,\cdot\,)}(\Omega); \ D^{\alpha}u \in L^{p(\,\cdot\,)}(\Omega), \ \forall \, \alpha \in \mathbb{N}^n \ \text{and} \ |\alpha| \leq m \right\}$$ equipped with the norm $$||u||_{m,p(\cdot)} = \sum_{|\alpha| \le m} ||D^{\alpha}u||_{L^{p(\cdot)}(\Omega)}.$$ ### Remark 2.1. (1) Let p, q and $r \in L^{\infty}_{+}(\Omega), u \in L^{p(\cdot)}(\Omega), v \in L^{q(\cdot)}(\Omega)$ such that $$\frac{1}{p(x)} + \frac{1}{q(x)} = \frac{1}{r(x)}$$. Then $$||uv||_{L^{r(\cdot)}(\Omega)} \le \left(\frac{1}{(\frac{p}{r})^{-}} + \frac{1}{(\frac{q}{r})^{-}}\right) ||u||_{L^{p(\cdot)}(\Omega)} ||v||_{L^{q(\cdot)}(\Omega)}.$$ (2) Suppose that $p(x) \leq q(x)$ a.e. in Ω . Then $$L^{q(\,\cdot\,)}(\Omega) \hookrightarrow L^{p(\,\cdot\,)}(\Omega).$$ (3) $||u||_{L^{p(\cdot)}(\Omega)} = k \iff \rho_{p(\cdot)}\left(\frac{u}{k}\right) = 1.$ $$(4) \left(\|u_n - u\|_{L^{p(\cdot)}(\Omega)} \longrightarrow 0 \right) \Longleftrightarrow \left(\rho_{p(\cdot)}(u_n - u) \longrightarrow 0 \right).$$ (5) Let $p, q \in L^{\infty}_{+}(\Omega)$ and $m \in \mathbb{N}^{*}$ with $p(x) \leq q(x)$ a.e. in Ω . Then $$W^{m,q(\,\cdot\,)}(\Omega) \hookrightarrow W^{m,p(\,\cdot\,)}(\Omega).$$ **Definition 2.3** (see [2, Definition 4.1.1, p. 98]). A function $\beta: \Omega \to \mathbb{R}$ is locally log-Hölder continuous on Ω if $\exists C > 0$ such that $$|\beta(x) - \beta(y)| \le \frac{C}{\log(e + \frac{1}{|x-y|})}, \ \forall x, y \in \Omega.$$ If $$|\beta(x) - \beta_{\infty}| \le \frac{C}{\log(e + |x|)}$$ for some $\beta_{\infty} \geq 1$, c > 0 and all $x \in \Omega$, then we say that β satisfies the log-Hölder decay condition (at infinity). We denote by $P^{\log}(\Omega)$ the class of variable exponents which are log-Hölder continuous, i.e., which satisfy the local log-Hölder continuity condition and the log-Hölder decay condition. **Definition 2.4** (see [2, Definition 11.2.1]). Let $p \in P^{\log}(\Omega)$. We also define $$W_0^{2,p(\,\cdot\,)}(\Omega):=\overline{C_0^\infty(\Omega)}^{W^{2,p(\,\cdot\,)}(\Omega)}$$ Similarly, we define $$W^{2,p(\,\cdot\,)}_{\Psi}(\Omega)=\Psi+W^{2,p(\,\cdot\,)}_{0}(\Omega)=\Big\{\varphi\in W^{2,p(\,\cdot\,)}(\Omega); \varphi_{\backslash\partial\Omega}=\Psi\ \ \text{and}\ \ \nabla\varphi_{\backslash\partial\Omega}=\nabla\Psi\Big\}.$$ #### Remark 2.2. - (i) Note that if $p^- > 1$, then the spaces $W^{2,p(\,\cdot\,)}(\Omega)$ and $W^{2,p(\,\cdot\,)}_0(\Omega)$ are separable and reflexive Banach spaces. - (ii) (Poincaré inequality) Let $p \in L^{\infty}(\Omega)$ with $p^- \geq 1$, there exists $C(\Omega, p(\cdot))$ such that $$||u||_{p(\cdot)} \le C||\nabla u||_{p(\cdot)}, \ \forall u \in W_0^{1,p(\cdot)}(\Omega)$$ # 3 Existence and uniqueness of the weak solution to $p(\cdot)$ -Bi-Laplacien with variable exponent **Definition 3.1.** A function u is a weak solution of problem (1.1) if it satisfies $$\int\limits_{\Omega} \left(|\triangle u|^{p(x)-2} \triangle u \right) \triangle v \, dx = \int\limits_{\Omega} fv \, dx, \ \forall \, v \in W_0^{2,p(\,\cdot\,)}(\Omega).$$ **Theorem 3.1.** For $f \in L^{q(\cdot)}(\Omega)$, problem (1.1) admits a unique weak solution u in $W_{\Psi}^{2,p(\cdot)}(\Omega)$. *Proof.* We prove the theorem in $W_0^{2,p(\,\cdot\,)}(\Omega)$ because if $u\in W_\Psi^{2,p(\,\cdot\,)}(\Omega)$, then $u-\Psi\in W_0^{2,p(\,\cdot\,)}(\Omega)$ and we can take $u-\Psi$ instead of u. We apply the monotone operators theory and prove that $$\Delta_{p(x)}^{2} := \Delta(|\Delta u|^{p(x)-2}\Delta u) : W_{0}^{2,p(\cdot)}(\Omega) \to (W_{0}^{2,p(\cdot)}(\Omega))^{*}$$ (3.1) is a hemicontinuous, coercive and monotone operator. Let us define the functional A on $W_0^{2,p(\cdot)}(\Omega)$ by $$A(u) = \int_{\Omega} \frac{1}{p(x)} |\triangle u|^{p(x)} dx.$$ We have $$(A'(u),v) = \frac{d}{dt} \{A(u+tv)\}_{t=0} = \frac{d}{dt} \left\{ \int_{\Omega} \frac{1}{p(x)} |\Delta(u+tv)|^{p(x)} dx \right\}_{t=0}$$ $$= \left\{ \int_{\Omega} \frac{1}{p(x)} |\Delta(u+tv)|^{p(x)-1} dx \right\}_{t=0} = \int_{\Omega} \left(|\Delta u|^{p(x)-2} |\Delta u| \Delta v \right) dx$$ $$= \int_{\Omega} |\Delta(u)|^{p(x)-2} |\Delta u| dx = \left(|\Delta_{p(x)}^2 u, v| \right), \quad \forall v \in W_0^{2,p(\cdot)}(\Omega) \quad (3.2)$$ which implies that $A(\cdot)$ is differentiable in Gateau sense and $A' = \triangle_{p(x)}^2$. Therefore, $\triangle_{p(x)}^2$ is a hemicontinuous operator. On the other hand, using Hölder's inequality, we get $$\sup_{\|v\|_{W_0^{2,p(\,\cdot\,)}(\Omega)} \le 1} \left| (\triangle_{p(x)}^2 u, v) \right| = \sup_{\|v\|_{W_0^{2,p(\,\cdot\,)}(\Omega)} \le 1} \left| \int_{\Omega} \triangle \left(|\triangle u|^{p(x)-2} \triangle u \right) v \, dx \right| \\ \le \sup_{\|v\|_{W_0^{2,p(\,\cdot\,)}(\Omega)} \le 1} \int_{\Omega} |\triangle u|^{p(x)-1} |\triangle v| \, dx \le C^{\frac{p(x)}{q(x)}} \le C^{\frac{p^+}{q^-}}. \quad (3.3)$$ This proves that $\triangle_{p(\cdot)}^2$ is bounded on $W_0^{2,p(\cdot)}(\Omega)$. Next, from the inequality (see [10]) $$|b|^{p(\cdot)} \ge |a|^{p(\cdot)} + p|a|^{p(\cdot)-2}a(b-a) + \frac{|b-a|^{p(\cdot)}}{2^{p(\cdot)-1}-1}$$ for $p \ge 2$ and $a, b \in \mathbb{R}^n$ it follows that $$\left(\triangle_{p(x)}^{2}(u) - \triangle_{p(x)}^{2}(v), u - v\right) = \int_{\Omega} \left(|\triangle u|^{p(x) - 2} \triangle u - |\triangle v|^{p(x) - 2} \triangle v\right) \triangle (u - v) dx$$ $$= \int_{\Omega} |\triangle u|^{p(x) - 2} \triangle u(\triangle u - \triangle v) dx - \int_{\Omega} |\triangle v|^{p(x) - 2} \triangle v(\triangle u - \triangle v) dx$$ $$\geq \frac{2}{p(x)(2^{p(x)-1}-1)} \int_{\Omega} |\triangle u - \triangle v|^{p(x)} dx \geq \frac{2}{p^{+}(2^{p^{+}-1}-1)} \int_{\Omega} |\triangle u - \triangle v|^{p(x)} dx. \quad (3.4)$$ Now, using Calderon–Zygmund and Poincaré inequalities, we find that the norm $\|\cdot\|_{W_0^{2,p(\cdot)}(\Omega)}$ is equivalent to the semi-norm $\|\triangle(\cdot)\|_{L^{p(\cdot)}(\Omega)}$ over the space $W_0^{2,p(\cdot)}(\Omega)$. This allows us to write $$\left(\triangle_{p(x)}^{2}(u) - \triangle_{p(x)}^{2}(v), u - v\right) \ge C(p^{+}) \|u - v\|_{W_{0}^{2,p(+)}(\Omega)}^{p(x)},$$ from which we conclude the monotonicity of $\triangle_{p(x)}^2$. Similarly, $$(\triangle_{p(x)}^2(u), u) \ge C(p^+) \|u\|_{W_0^{2, p(+)}(\Omega)}^{p(x)}.$$ This proves the coercivity of $\triangle_{p(x)}^2$. Finally, by Hölder's inequality, we have $$|(f,v)| = \left| \int_{\Omega} fv \, dx \right| \le C ||f||_{q(x)} ||v||_{p(x)}.$$ Taking into account that $L^{q^+}(\Omega) \hookrightarrow L^{q(x)}(\Omega)$ and $W_0^{2,p(\cdot)}(\Omega) \hookrightarrow L^{q(x)}(\Omega)$, we arrive at $$|(f,v)| \le C ||f||_{L^{q^+}(\Omega)} ||v||_{W_0^{2,p(\cdot)}(\Omega)}.$$ Hence $f \in (W_0^{2,p(\cdot)}(\Omega))^*$. This achieves the proof. ## 4 Galerkin mixed formulation Set $X := W_{\Psi}^{2,p(\,\cdot\,)}(\Omega)$ and $M := W_0^{2,p(\,\cdot\,)}(\Omega)$. Let us introduce a new variable $$\varphi = |\triangle u|^{p(x)-2} \triangle u.$$ This allows us to write problem (1.1) as follows: $$\begin{cases} -\Delta u = |\varphi|^{q(x)-2}\varphi, \\ -\Delta \varphi = f. \end{cases} \tag{4.1}$$ The weak formulation associated to (4.1) is: Find $(u, \varphi) \in X \times L^{q(\cdot)}$ satisfying $$\begin{cases} a(\varphi, v) + c(u, v) = 0 & \forall v \in X, \\ c(\varphi, \mu) = l_M(\mu) & \forall \mu \in M, \end{cases}$$ (4.2) where $$a(\varphi,v):=\int\limits_{\Omega}|\varphi|^{q(x)-2}\varphi v\,dx,\quad c(\varphi,\mu):=\int\limits_{\Omega}-\triangle\varphi\mu\,dx,\quad l_M(\mu):=\int\limits_{\Omega}f\mu\,dx.$$ **Proposition 4.1** (inf-sup condition). There exists $\gamma > 0$ such that $$\inf_{\mu \in M} \sup_{u \in W_{0}^{2,p(+)}(\Omega)} \frac{c(u,\mu)}{\|u\|_{X} \|\mu\|_{M}} \geq \gamma.$$ *Proof.* We apply Proposition 2.4 from [11, p. 60]. Our aim is to show that $\forall \mu \in M$, there exists $u_{\mu} \in X$ such that $$c(u_{\mu}, \mu) = \|\mu\|_{M}^{p(\cdot)}$$ and $\|u_{\mu}\|_{X} \le \frac{1}{\gamma} \|\mu\|_{M}$. It suffices to find a mapping $\mu \longrightarrow u_{\mu}$ from $W_0^{2,p(\,\cdot\,)}(\Omega)$ to $W_{\Psi}^{2,p(\,\cdot\,)}(\Omega)$ such that $$(\nabla u_{\mu}, \nabla \mu) = \|\triangle u_{\mu}\|_{p(\cdot)}^{p(\cdot)} \text{ and } \|u_{\mu}\|_{X} \leq \frac{1}{\gamma} \|\mu\|_{M}.$$ We can see that with a choice of $u_{\mu} = |\triangle \mu|^{p(x)-2} \triangle \mu$ we arrive at the desired result. # 5 Discretization We consider a triangulation Υ_h made of triangles T whose edges are denoted by e. We assume that the intersection of two different elements is either empty, or a vertex, or a whole edge e, and we also assume that this triangulation is regular in Ciarlet sense, i.e., $$\exists \sigma > 0; \ \frac{h_T}{\rho_T} \le \sigma, \ \forall T \in \Upsilon_h,$$ where h_T is the diameter of T and ρ_T is the diameter of its largest inscribed bull. We define $h = \max_{T \in \Upsilon_h} h_T$. The jump operator for function v across an edge/face at the point x is given by $$[v(x)]_e = \begin{cases} \lim_{\alpha \to 0^+} v(x + \alpha \eta_e) - v(x + \alpha \eta_e) & \text{if } e \in \zeta_h^{int}, \\ v(x) & \text{if } e \in \zeta_h - \zeta_h^{int}, \end{cases}$$ where ζ_h^{int} is the set of interior edges/faces. Let us define the broken Laplace operator $$(\triangle_h v)_{\backslash T} := \triangle(v_{\backslash T}), \ \forall T \in \Upsilon_h.$$ For h > 0, we introduce the following spaces: $$\begin{split} X^h &= \big\{ \phi \in C^0(\overline{\Omega}); \ \phi_{\backslash T} \in P^k(T), \ \forall \, T \in \Upsilon_h \big\}, \\ X^h_{\Psi} &= \big\{ \phi \in X^h; \ \phi_{\backslash \partial \Omega} = \Pi \Psi \big\} \end{split}$$ and the Ritz projection operator Π defined as follows: $$\int_{\Omega} \nabla(\Pi v) \nabla \phi \, dx = \int_{\Omega} \nabla v \nabla \phi \, dx, \ \forall \phi \in X^h \cap H_0^1(\Omega).$$ **Lemma 5.1.** Let $u \in W^{m+1,q(\cdot)}(\Omega)$, then for $m \geq 2$, we have $$||u - \Pi u||_{L^{q(\cdot)}(\Omega)} + ||h(\nabla u - \nabla(\Pi u))||_{L^{q(\cdot)}(\Omega)} + \left(\sum_{T \in \Upsilon} ||h^{2}(\Delta u - \Delta(\Pi u))||_{L^{q(\cdot)}(T)}^{q(x)}\right)^{\frac{1}{q(x)}} \le Ch^{m+1}|u|_{m+1,q(\cdot)}.$$ Proof. See [10]. \Box The discrete formulation of (4.2) is to seek a solution $(u_h, \varphi_h) \in X_{\Psi}^h \times X^h$ such that $$\begin{cases} a(\varphi_h, v) + c_h(u_h, v) = 0, \\ c_h(\varphi_h, \mu) = \int_{\Omega} f\mu, \ \forall (v, \mu) \in X^h \times X_0^h, \end{cases}$$ (5.1) where c_h is given by $$c_h(\varphi_h, \mu) = \sum_{T \in \Upsilon_h} \int_T \nabla \varphi_h \nabla \mu \, dx - \int_{\partial \Omega} \nabla \Psi \cdot \eta \mu \, dx = \int_{\Omega} \nabla \varphi_h \nabla \mu \, dx - \int_{\partial \Omega} \nabla \Psi \cdot \eta \mu \, dx. \tag{5.2}$$ Substituting (5.2) into (5.1), the discrete problem consists in finding $(u_h, \varphi_h) \in X_{\Psi}^h \times X^h$ satisfying for $(v, \mu) \in X^h \times X_0^h$ $$\int\limits_{\Omega} |\varphi_h|^{q(x)-2} \varphi_h v \, dx + \int\limits_{\Omega} \nabla u_h \nabla v \, dx = \int\limits_{\partial \Omega} \nabla \Psi \cdot \eta v \, dx \int\limits_{\Omega} \nabla \varphi_h \nabla \mu \, dx = \int\limits_{\Omega} f \mu \, dx.$$ Denote $e_{\varphi} = \varphi - \varphi_h$ and $e_u = u - u_h$. Now, we are able to announce the following error estimate theorem. **Theorem 5.1.** There exists a constant C such that for $m \geq 2$, we have $$\begin{split} \|e_{\varphi}\|_{L^{q^{-}}(\Omega)} + \|e_{u}\|_{W_{h}^{2,p^{-}}(\Omega)}^{p^{-}-1} \\ &\leq C \Big(h^{\frac{q(x)}{2}(m+1)} |\varphi|_{m+1,q(\cdot)}^{\frac{q(\cdot)}{2}} + h^{m+1} |\varphi|_{m+1,q(\cdot)} + h^{m-1} |u|_{m+1,p(\cdot)} + h^{m-1} |u|_{m+1,p(\cdot)} \Big), \end{split}$$ where $(u,\varphi) \in W_{\Psi}^{m+1,p(\,\cdot\,)}(\Omega) \times W^{m+1,q(\,\cdot\,)}(\Omega)$ is the exact solution of (4.2) and $(u_h,\varphi_h) \in X_{\Psi}^h \times X^h$ is the approximate solution of (5.1). Proof. It is clear that $$||u - u_h||_{W_h^{2,p(\cdot)}(\Omega)} \le ||u_h - \Pi u||_{W_h^{2,p(\cdot)}(\Omega)} + ||\Pi u - u||_{W_h^{2,p(\cdot)}(\Omega)}.$$ $$(5.3)$$ Using the discrete form of inf-sup condition and Galerkin orthogonality properties, we get $$||u_h - \Pi u||_{W_h^{2,p(\cdot)}(\Omega)} \le \sup_{\mu \in X_0^h(\Omega), \mu \ne 0} \frac{c_h(u - \Pi u_h, \mu)}{||\mu||_{L_h^{q(\cdot)}(\Omega)}} = \sup_{\mu \in X_0^h(\Omega), \mu \ne 0} \frac{a(\varphi_h, \mu) - a(\varphi_h, \mu)}{||\mu||_{L_h^{q(\cdot)}(\Omega)}}.$$ In view of the properties of $a(\,\cdot\,,\,\cdot\,)$ (see [1, Proposition 3.1]) we can write $$\sup_{\mu \in X_0^h(\Omega), \mu \neq 0} \frac{a(\varphi_h, \mu) - a(\varphi_h, \mu)}{\|\mu\|_{L_h^{q(\cdot)}(\Omega)}} \leq C \frac{\left(\int\limits_{\Omega} \left| |\varphi|^{p(x) - 2} \varphi - |\varphi_h|^{p(x) - 2} \varphi_h| \, |\varphi - \varphi_h| \, dx\right)^{\frac{1}{p(x)}} \|\mu\|_{L^{q(\cdot)}(\Omega)}}{\|\mu\|_{L_h^{q(\cdot)}(\Omega)}}$$ $$\leq C \left(\int\limits_{\Omega} \left| |\varphi|^{p(x) - 2} \varphi - |\varphi_h|^{p(x) - 2} \varphi_h| \, |\varphi - \varphi_h| \, dx\right)^{\frac{1}{p(x)}}$$ and $$\int_{\Omega} \left| |\varphi|^{p(x)-2} \varphi - |\varphi_h|^{p(x)-2} \varphi_h \right| |\varphi - \varphi_h| \, dx$$ $$\leq C \left(\int_{\Omega} \left| |\varphi|^{p(x)-2} \varphi - |\varphi_h|^{p(x)-2} \varphi_h \right| |\varphi - \varphi_h| \, dx \right)^{\frac{1}{p(x)}} \|\varphi - \varphi_h\|_{L^{q(\cdot)}(\Omega)}. \quad (5.4)$$ By the ϵ -Young inequality, we obtain that the right-hand side of (5.4) is estimated by $$\frac{C^{q(x)}}{q(x)\epsilon^{q(x)}} \|\varphi - \varphi_h\|_{L^{q(\cdot)}(\Omega)}^{q(x)} + \frac{\epsilon^{p(x)}}{p(x)} \int\limits_{\Omega} \left| |\varphi|^{p(x)-2} \varphi - |\varphi_h|^{p(x)-2} \varphi_h \right| dx. \tag{5.5}$$ Choosing ϵ such that $\frac{\epsilon^{p(x)}}{p(x)} \prec 1$ (for example, we can choose $\epsilon = (\frac{p(x)}{3})^{\frac{1}{p(x)}}$), we find that $$\int_{\Omega} \left| |\varphi|^{p(x)-2} \varphi - |\varphi_h|^{p(x)-2} \varphi_h \right| |\varphi - \varphi_h| \, dx \le C \|\varphi - \varphi_h\|_{L^{q(\cdot)}(\Omega)}^{q(x)}.$$ So, we get $$||u_h - \Pi u||_{W_h^{2,p(\cdot)}(\Omega)} \le C||\varphi - \varphi_h||_{L^{q(\cdot)}(\Omega)}^{\frac{q(x)}{p(x)}} \le C||\varphi - \varphi_h||_{L^{q(\cdot)}(\Omega)}^{2\frac{q(x)-1}{2}}.$$ (5.6) On the other hand, a simple calculation gives $$a(\varphi, \varphi - \varphi_h) - a(\varphi_h, \varphi - \varphi_h) = a(\varphi, \varphi - v) - a(\varphi_h, \varphi - v) + a(\varphi, v - \varphi_h) - a(\varphi_h, v - \varphi_h). \tag{5.7}$$ Subtracting (5.1) from (4.2), we get $$\begin{cases} a(\varphi, v) - a(\varphi_h, v) + c_h(u - u_h, v) = 0, & \forall v \in X^h, \\ c_h(\varphi - \varphi_h, \mu) = 0, & \forall \mu \in X_0^h. \end{cases}$$ This allows us to rewrite (5.7) as follows: $$a(\varphi, \varphi - \varphi_h) - a(\varphi_h, \varphi - \varphi_h) = a(\varphi, \varphi - v) - a(\varphi_h, \varphi - v) + c_h(u - u_h, \varphi_h - v) = J_1 + J_2,$$ where $$J_1 = a(\varphi, \varphi - v) - a(\varphi_h, \varphi - v)$$ and $J_2 = c_h(u - u_h, \varphi_h - v)$. Now, using the properties of $a(\cdot, \cdot)$ (see [1, Proposition 3.1]) once more, the ϵ -Young inequality shows that $$\frac{C_{1}}{2} \frac{\|\varphi - \varphi_{h}\|_{L^{q(\cdot)}(\Omega)}^{2}}{\|\varphi\|_{L^{q(\cdot)}(\Omega)}^{2-q(x)} + \|\varphi_{h}\|_{L^{q(\cdot)}(\Omega)}^{2-q(x)}} + \frac{C_{2}}{2} \int_{\Omega} \left| |\varphi|^{q(x)-2} \varphi - |\varphi_{h}|^{q(x)-2} \varphi_{h}| |\varphi - \varphi_{h}| dx \right| \\ \leq a(\varphi, \varphi - \varphi_{h}) - a(\varphi_{h}, \varphi - \varphi_{h}) = J_{1} + J_{2} \quad (5.8)$$ and $$J_{1} \leq C_{3} \left(\int_{\Omega} \left| |\varphi|^{q(x)-2} \varphi - |\varphi_{h}|^{q(x)-2} \varphi_{h} \right| |\varphi - \varphi_{h}| \, dx \right)^{\frac{1}{p(x)}} \|\varphi - v\|_{L^{q(\cdot)}(\Omega)}$$ $$\leq \frac{C_{3}^{q(x)}}{\epsilon^{q(x)} q(x)} \|\varphi - v\|_{L^{q(\cdot)}(\Omega)}^{q(x)} + \frac{\epsilon^{p(x)}}{p(x)} \int_{\Omega} \left| |\varphi|^{q(x)-2} \varphi - |\varphi_{h}|^{q(x)-2} \varphi_{h}| \, |\varphi - \varphi_{h}| \, dx,$$ where C_1 , C_2 and C_3 are the same constants as in Proposition 3.1 of [13]. If we choose ϵ such that $\frac{\epsilon^{p(x)}}{p(x)} = \frac{C_2}{2}$, we arrive at $$J_{1} \leq C(q^{-}, q^{+}) \|\varphi - v\|_{L^{q(+)}(\Omega)}^{q(x)} + \frac{C}{2} \int_{\Omega} \left| |\varphi|^{q(x) - 2} \varphi - |\varphi_{h}|^{q(x) - 2} \varphi_{h} \right| |\varphi - \varphi_{h}| dx.$$ (5.9) Moreover, $$J_2 = c_h(u - u_h, \varphi_h - v) = c_h(u - \Pi u, \varphi_h - v), \tag{5.10}$$ in view of $$c_h(\mu, \varphi_h - v) = 0, \ \forall \, \mu \in X_0^h$$ The continuity of c_h implies that $$J_{2} = c_{h}(u - \Pi u, \varphi_{h} - v) \leq C \|u - \Pi u\|_{W_{h}^{2,p(x)}(\Omega)} \|\varphi_{h} - v\|_{L^{q(\cdot)}(\Omega)}$$ $$\leq \frac{C\varepsilon^{2}}{2} \|\varphi_{h} - v\|_{L^{q(\cdot)}(\Omega)}^{2} + \frac{C}{2\epsilon^{2}} \|u - \Pi u\|_{W_{h}^{2,p(x)}(\Omega)}^{2}$$ $$\leq \frac{C}{2\epsilon^{2}} \|u - \Pi u\|_{W_{h}^{2,p(x)}(\Omega)}^{2} + \frac{C\varepsilon^{2}}{2} (\|\varphi_{h} - \varphi\|_{L^{q(\cdot)}(\Omega)} + \|\varphi - v\|_{L^{q(\cdot)}(\Omega)})^{2}$$ $$\leq \frac{C}{2\epsilon^{2}} \|u - \Pi u\|_{W_{h}^{2,p(x)}(\Omega)}^{2}$$ $$+ \frac{C\varepsilon^{2}}{2} (\|\varphi_{h} - \varphi\|_{L^{q(\cdot)}(\Omega)}^{2} + \|\varphi - v\|_{L^{q(\cdot)}(\Omega)}^{2} + 2\|\varphi_{h} - \varphi\|_{L^{q(\cdot)}(\Omega)} \|\varphi - v\|_{L^{q(\cdot)}(\Omega)})$$ $$\leq \frac{C}{2\epsilon^{2}} \|u - \Pi u\|_{W_{h}^{2,p(x)}(\Omega)}^{2} + C\varepsilon^{2} (\|\varphi_{h} - \varphi\|_{L^{q(\cdot)}(\Omega)}^{2} + \|\varphi - v\|_{L^{q(\cdot)}(\Omega)}^{2}). \tag{5.11}$$ Gathering estimates (5.9)–(5.11), substituting in (5.8) and taking ϵ sufficiently small, we obtain $$\|\varphi_h - \varphi\|_{L^{q(\cdot)}(\Omega)}^2 \le C\|\varphi - v\|_{L^{q(\cdot)}(\Omega)}^{q(x)} + C\|u - \Pi u\|_{W_h^{2,p(x)}(\Omega)}^2 + C\|\varphi - v\|_{L^{q(\cdot)}(\Omega)}^2.$$ (5.12) Using the properties of Π , we obtain the estimate of e_{φ} . Now, substituting (5.12) into (5.6), taking into account (5.3), Lemma 5.1 and the continuous embedding of $L^{q(\cdot)}(\Omega)$ into $L^{q^-}(\Omega)$, we arrive at the desired estimate for e_u . Thus the proof is completed. # References [1] E. Bécache, P. Ciarlet, C. Hazard and E. Lunéville, *La Méthode des Éléments Finis*, Tome II. ENSTA press, November 18, 2010. - [2] L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, 2017. Springer, Heidelberg, 2011. - [3] X. Fan, S. Wang and D. Zhao, Density of $C^{\infty}(\Omega)$ in $W^{1,p(x)}(\Omega)$ with discontinuous exponent p(x). Math. Nachr. 279 (2006), no. 1-2, 142–149. - [4] X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$. J. Math. Anal. Appl. **263** (2001), no. 2, 424–446. - [5] E. H. Georgoulis and P. Houston, Discontinuous Galerkin methods for the biharmonic problem. *IMA J. Numer. Anal.* **29** (2009), no. 3, 573–594. - [6] T. Gyulov and G. Moroşanu, On a class of boundary value problems involving the *p*-biharmonic operator. *J. Math. Anal. Appl.* **367** (2010), no. 1, 43–57. - [7] O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czechoslovak Math. J. **41(116)** (1991), no. 4, 592–618. - [8] A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis. SIAM Rev. 32 (1990), no. 4, 537–578. - [9] H. Li, The W_p^1 stability of the Ritz projection on graded meshes. *Math. Comp.* **86** (2017), no. 303, 49–74. - [10] P. Lindqvist, Notes on the p-Laplace Equation. Report. University of Jyväskylä Department of Mathematics and Statistics, 102. University of Jyväskylä, Jyväskylä, 2006. - [11] T. Pryer, Discontinuous Galerkin methods for the p-biharmonic equation from a discrete variational perspective. *Electron. Trans. Numer. Anal.* **41** (2014), 328–349. - [12] S. G. Samko, Convolution type operators in $L^{p(x)}$. Integral Transform. Spec. Funct. 7 (1998), no. 1-2, 123–144. - [13] D. Sandri, Sur l'approximation numérique des écoulements quasi-newtoniens dont la viscosité suit la loi puissance ou la loi de Carreau. (French) [On the numerical approximation of quasi-Newtonian flows whose viscosity obeys a power law or the Carreau law] RAIRO Modél. Math. Anal. Numér. 27 (1993), no. 2, 131–155. - [14] A. Theljani, Z. Belhachmi M. Moakher, High-order anisotropic diffusion operators in spaces of variable exponents and application to image inpainting and restoration problems. *Nonlinear Anal. Real World Appl.* 47 (2019), 251–271. (Received 29.08.2022; revised 26.01.2023; accepted 31.01.2023) #### Authors' addresses: ## M. Dehimi Department of Mathematics, Faculty of Sciences, University 20 August 1955 – Skikda, BP 26. Road El Hadaiek, Skikda 21000, Algeria E-mail: dehimi23@yahoo.fr ### A. Chaoui Department of Mathematics, Faculty of Sciences, University 08 May 1945 – Guelma, BP 401 Guelma 24000, Algeria E-mails: chaoui_math@yahoo.fr, ablazek2007@yahoo.com