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WITH VARIABLE EXPONENT



Abstract. In this article, a Galerkin mixed finite element method is proposed to find the numerical
solutions of high order p(-)-bi-Laplace equations. The well-posedness of the problem in suitable
Lebesgue—Sobolev spaces with variable exponent owing to nonlinear monotone operator theory is
investigated. Some a priori error estimates are shown by using the Galerkin orthogonality properties
and variable exponent Lebesgue—Sobolev continues embedding.
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1 Introduction

We consider a bounded open domain € of R™ with a Lipschitz-continuous boundary 9. Our aim is
to prove the existence and uniqueness of a weak solution u and some a priori error estimates to the
differential p(x)-Bilaplace equation
A(|LuP@=2Au) = f in Q, (1)
u=V¥, Vu=VU on 0, '

where f and ¥ are the given functions in L9()(Q) and W?2°°(9), respectively. Here, p(-) : Q@ — R
denotes the variable exponent which is assumed to be in L3°(Q) such that 1 < p~ < p(z) < p* < o0,

where p~ = inf p(z) and p™ = sup p(x) a.e. in Q. During the last decades, the high-order PDEs with
e z€Q
variable exponent has undergone rapid development. From a mathematical point of view, equation

(1.1) can be considered as a natural generalization of p(-)-bi-Laplace equation
A(|LuP~?Au) = f,

which falls within the framework of nonlinear PDEs, where the exponent p is constant. One of our
motivation for studying (1.1) comes from applications in the area of elasticity, more precisely, it can be
used in modelling of travelling waves in suspension bridges (see [6,8]). Other interesting applications
are related to improve the visual quality of damaged and noisy images if 1 < p~ < pT < 2 (see,
e.g., [14] and the references therein). Note that in the case p(x) = 2, problem (1.1) becomes A%u = f
which models the deformations of a thin homogeneous plate embedded along its beam and subjected
to a distribution f of a load normal to the plate (cf. [1]). Among the most recent works concerning
the p-Laplace equation, we can review Lazer et al. [8], where the authors tried to demonstrate the
existence of periodic solutions for models of nonlinear supported bending beams and periodic flexing
in floating beam. In [5], the authors used discontinuous Galekin method to approximate a biharmonic
problem. They also gave an a priori analysis of the error in norm L?. In [11], the author has studied
a p-biharmonic problem using discontinuous Galerkin finite element Hessian. An imagery problem
caused by a p( - )-Laplace operator with 1 < p(-) <2 has been considered in [14]. To solve the problem,
the authors regularized the proposed PDE to be able to use a fixed point iterative method.

The paper is structured as follows. We present in Section 2 some basic notations and material
needed for our work. Section 3 is devoted to the existence and uniqueness of a weak solution to the
problem under investigation in suitable Lebesgue—Sobolev spaces with variable exponent using the
nonlinear monotone operators theory. In Section 4, the Galerkin mixed finite element method and
inf — sup condition are given. Finally, we show some a priori error estimates with the help of Ritz
projection operator and Galerkin orthogonality properties, which are presented in Section 5.

2 Preliminaries

We define the variable exponent Lebesgue space LP(*) () as follows:

Q) = {u : Q@ — R, u measurable and /|u(:z:)|p(m) dx < oo}.
Q

Note that LP()(Q) equipped with the Luxembourg norm
. u(z) |p(@)
||U||Lp<~>(Q):1Hf{’Y>0, /‘2)‘ d:vgl}
Q

is a Banach space. Note that all definitions and properties of Lebesgue and Sobelev spaces with
variable exponent given below are taken from references [2—4,7,12].
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Definition 2.1. Let u : 2 — R be a measurable function, then the expression
oy (1) = [ lu@) P do
Q

is called modular of wu.

Definition 2.2. For some p € L3°(2) and m € N — {0}, we introduce the exponent variable Sobolev
space
wmrt)(Q) = {u e P0)(Q); D e LPC)(Q), Ya e N" and |a| < m}

equipped with the norm
H“Hm,p(-) = Z HDau||LP(')(Q)~

lo] <m
Remark 2.1.
(1) Let p, g and r € L(Q), u € LP()(Q), v € L9)(Q) such that
LR S
p(x)  qlx)  r(z)
Then
1 1

uv| ey < (W + W) 1wl Lecr @1Vl Lac) ()
(2) Suppose that p(z) < ¢(z) a.e. in Q. Then
L1C)(Q) — LPO)(Q).
(3) llullzocr i) =k <= pp () = 1.
(4) (||Un - UHLP(')(Q) n:; 0) Aaad (pp(<)(u’ﬂ —u) n_>_0>o 0)-
(5) Let p,q € L3(Q2) and m € N* with p(z) < ¢(x) a.e. in Q. Then
wma()(Q) — wmr)(Q).

Definition 2.3 (see [2, Definition 4.1.1, p. 98]). A function 8 :  — R is locally log-Holder continuous
on  if 3C' > 0 such that

() = B0 < oy Yo R
If o

for some fBoo > 1, ¢ > 0 and all z € Q, then we say that (3 satisfies the log-Ho6lder decay condition (at
infinity). We denote by P°8(Q) the class of variable exponents which are log-Holder continuous, i.e.,
which satisfy the local log-Hélder continuity condition and the log-Holder decay condition.

Definition 2.4 (see [2, Definition 11.2.1]). Let p € P°8(Q2). We also define

2,p( )
W) =cr

Similarly, we define
werO(Q) = v+ W) = {p e W) 0100 = ¥ and Vg = VI .
Remark 2.2.

(i) Note that if p~ > 1, then the spaces W2P(*)(Q) and Wg’p(')(Q) are separable and reflexive
Banach spaces.
(ii) (Poincaré inequality) Let p € L*>(Q2) with p~ > 1, there exists C(2,p(-)) such that
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3 Existence and uniqueness of the weak solution
to p(-)-Bi-Laplacien with variable exponent

Definition 3.1. A function u is a weak solution of problem (1.1) if it satisfies

/(|Au|p($)_2Au)Avdaj:/fvdx, VUEWOQ’M')(Q).
Q Q

Theorem 3.1. For f € LiC)(Q), problem (1.1) admits a unique weak solution u in Wi’p(')(ﬂ).

Proof. We prove the theorem in Woz’p( )(Q) because if u € W‘i’p( ' )(Q), then u — U € WOQ’p( )(Q) and
we can take u — U instead of u. We apply the monotone operators theory and prove that

A2 = A AP Au) - WP (@) — (W) () (3.1)

is a hemicontinuous, coercive and monotone operator.
Let us define the functional A on W02’p( )(Q) by

W= [ Aur® de
Afw) Q/p(x)m d.

We have

(A'(u),v) = %{A(U +tv) }—o = jt{ / L [A(u+ tv)|p(m) dx}
Q

p(z) t=0

L A p@)| A+ ) PO
—{/ Bo-pa)| -+ )P o}

@ :/(|Au|p(w)_2Au)Avdaj
p(x

t=0

- /A(|Au|p(‘”)_2Au)vdx = (A2 uv), Yoe WP Q) (3.2)
Q

which implies that A(-) is differentiable in Gateau sense and A’ = AZ . Therefore, A2 ) is a
hemicontinuous operator.
On the other hand, using Holder’s inequality, we get

sup ‘(Ai(m)u, v)‘ = sup

ol 2,00 () <1 el
0

/ A(|Au|p(”’)_2Au)v dx
Q

w2l )y =t

T

< sup /|Au|p(m)71|Av|dx < ch <Ca . (3.3)
<1

v .
ol 2,00 6y 1)

This proves that Af)( .y is bounded on WOQ’p( )(Q) Next, from the inequality (see [10])

|b—alP()

() () p(-)—2 _
P > fal?) 4 plap ) 2a(b— a) + ot

for p>2 and a,b € R"

it follows that

(Ai(z)(u) - Ai(m)(v), u—v) = / (|Au|p(I)_2Au - |Av|p(w)_2Av)A(u —v)dx
Q

= / |AuP@ =2 Au(Au — Av) da — / | Av|P@ =2 Av(Au — Av) da
Q Q
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2
>
= pla) (@1

— p(z) -
_1)/|Au Av| dw2p+(2p+717
Q

2
0 /|Au — AP de. (3.4)
Q

Now, using Calderon—Zygmund and Poincaré inequalities, we find that the norm || - sz.p(‘) @ is
0
equivalent to the semi-norm [[A(+)|1s(.)(q) over the space Wg’p( )(Q)
This allows us to write

(D5 (1) = A5y (0)u =) 2 COMlu = vlZc

from which we conclude the monotonicity of Az(z). Similarly,

(D3 (0) 1) = OOl g, -

This proves the coercivity of Afj( ) Finally, by Hoélder’s inequality, we have

< Ol fllgyllvllpe)-

(f0)] = ‘/fvdw
Q

Taking into account that L9' (Q) < L4®)(Q) and WOZ’p( )(Q) < L) (Q), we arrive at
|(f7 U)‘ S C||f||Lq+ (Q)”’UHWOZJD( : )(Q)

Hence f € (W02"p( )(Q))* This achieves the proof. O

4 Galerkin mixed formulation

Set X := Wi’p( )(Q) and M := Woz’p( ' )(Q) Let us introduce a new variable
© = |AuP® 2 A,

This allows us to write problem (1.1) as follows:

{—Au = |ple® =2, (41)
—Ap = .
The weak formulation associated to (4.1) is: Find (u,¢) € X x L") satisfying
{a(@,v)—&—c(u,v)zo Vo e X, (4.2)
(i, ) =l (1) Ve M,

where

a(p,v) :=/\s0|q(’c)’2sovdrﬂ, c(p. ) ::/—Awdx, I (p) :=/fud:v~
Q Q Q
Proposition 4.1 (inf-sup condition). There exists v > 0 such that

inf sup M > .

WEM ot Tl Tl

Proof. We apply Proposition 2.4 from [11, p. 60]. Our aim is to show that Vu € M, there exists
u, € X such that

. 1
el ) =l and L < = s
It suffices to find a mapping p — u, from WOZ’p( ' )(Q) to Wi’p( )(Q) such that

. 1
(Vs V1) = [ B[ and L < 2 il

We can see that with a choice of u, = [Au|P@®~2Ap we arrive at the desired result. O
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5 Discretization

We consider a triangulation Y} made of triangles 7" whose edges are denoted by e. We assume that
the intersection of two different elements is either empty, or a vertex, or a whole edge e, and we also
assume that this triangulation is regular in Ciarlet sense, i.e.,

h
Jo>0, L <o, VT €Ty,
pT
where hp is the diameter of T and pr is the diameter of its largest inscribed bull. We define h =

max hr. The jump operator for function v across an edge/face at the point z is given by
c€lp

lim v(z + ane) —v(x+ an.) if e € ¢,

= { a—0
@l {v(x) if e€ ¢, — ¢,

where Cmt is the set of interior edges/faces. Let us define the broken Laplace operator
(Apohr i= A(onr), VT € Th.
For h > 0, we introduce the following spaces:
={¢p e C'Q); ¢\r € PHT), VT €Ty},
X ={pe X" poq =1V}

and the Ritz projection operator II defined as follows:

/V(Hv)ngd:v = /Vqude, Vo e XhnHLHQ).

Q Q
Lemma 5.1. Let u € W+14C)(Q), then for m > 2, we have

i = Tl oty + 15(V = V(T a0

1

x a(z) m
+ (0 2w = A9, )T < ORH g
TeY

Proof. See [10]. O

The discrete formulation of (4.2) is to seek a solution (us,¢n) € X x X" such that

a(n, v) + cn(un,v) =0,
cn(n, 1) = /fu, V(v,pu) € X" x XP, (5.1)
where ¢y, is given by
ch(pn, 1) = /Vg@hVudx—/V\I/ Uﬂdﬂf—/V@hV,udx—/V\I/ nudx. (5.2)
TEThT 90 50

Substituting (5.2) into (5.1), the discrete problem consists in finding (up, ¢p) € X2 x X" satisfying
for (v,p) € X" x X}

/|<ph|q(””)_2<phvdx+/Vuthdx: /V\Iﬁnvdaj/V@hVudx: /f,udx.
Q Q Q Q

Denote e, = ¢ — ), and e, = u — uy,. Now, we are able to announce the following error estimate
theorem.
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Theorem 5.1. There exists a constant C such that for m > 2, we have

WZ ()
q(T)

HewHLq () +||eu||

< C( (m+1)|s0|

mor, q( )+ B gy + A" ulmgap( ) +hm*1|u\m+177,(,)),

where (u, ) € W\T;H’p(')(ﬂ) x WmHLa()(Q) s the exact solution of (4.2) and (un,¢n) € X8 x XP
is the approximate solution of (5.1).

Proof. 1t is clear that
lu = unlly2rc g < lun = Hullyonc g + e = ully2ec) g)- (5.3)
Using the discrete form of inf-sup condition and Galerkin orthogonality properties, we get

~1II _
lun = Tull 2y o) < sup onlu—Tup, ) o Wlenp) = alpn, 1)
h

HEX{ (Q),u7#0 ”“”Lg(‘)(m _uexg(ﬂ),wéo ||N||LZ<»>(Q)

In view of the properties of a(-, -) (see [1, Proposition 3.1]) we can write

1
[ lelP@ =20 — |on [P =204 | o — @n| da) " ||l ac g
a(en, 1) = alen, 1) _ (Q| | ) ©

sup
HEXH (), u#0 ”MHLZ(')(Q)

||/“L||L;1L(')(Q)

1

p(z)
C( J 1P = o2, - soh|dx)
Q

/ P20 — |u [P 20| | — on] da

1

p(a)—2 p(a)—2 =
<C |l © — |oonl onl e — n|dz o —enllLacr)- (5.4)
)

By the e-Young inequality, we obtain that the right-hand side of (5.4) is estimated by

ca@) o(@) eP(2)
T = - p(z)—2, _ p(z)—2
q(x)er(®) lle ‘ph||Lq<~>(Q) + (@) ! |l © — |l on| de. (5.5)
Choosing € such that ;p(i)) < 1 (for example, we can choose € = (5 ))le) ), we find that

/ [lelP =20 — |on "™ 24| |0 = pnl dz < Clip — @nlfuc ) -

So, we get

) 1
= Tl < Cllo = ol 560 0 < Clle = @l Sy (5.6)

On the other hand, a simple calculation gives
a(, o = pn) — alen, ¢ — on) = alp, o —v) —alpn, ¢ —v) + ale,v — on) — alpn,v — ¢n).  (5.7)
Subtracting (5.1) from (4.2), we get

CL((,O,U)7a(g0h,U)+Ch(Uf’U,h7U):O, VUGX}L’
cn(e — on,p) =0, Ve XJ.
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This allows us to rewrite (5.7) as follows:

a(p, = on) — alpn, » — pn) = alp, o —v) — alpn, ¢ —v) + cu(u — up, pp —v) = J1 + Ja,

where
Ji=alp, ¢ —v) —alen, o —v) and Jy = cp(u — up, pp — ).

Now, using the properties of a(-, -) (see [1, Proposition 3.1]) once more, the e-Young inequality
shows that

o e = enllZac)q Cs . o
5 TG D+ 2 [ [lel9 2 — |on 12, | | — on| da
q(z) q(z) 2
||90||Lq<->(g) + H‘PhHLq(-)(Q) Q

a(p, 0 —n) —alen, o —on) =1 +Jo (5.8)

and

_1
g(2)—2 g(x)—2 re
J1 <03 |l © — |l onl o — onldx e = vl pacr
Q

C‘I(I)

N 6p(ﬂ@) ) N
< 76(1(3(1(@ le =155, ) @ /Hqu( 1720 — lonl"® 20 | — onl da,
Q

where C1, Co and Cj are the same constants as in Proposition 3.1 of [13]. If we choose € such that

Epp((;)) = (’;2 we arrive at
_ xT C ) — x)—
Ji < ClaqM)lle =015 g + §/|\</JIQ( 1720 = lon| " 2o lp — onl da. (5.9)
Q
Moreover,
Jo = cp(u— up, on —v) = cp(u — Hu, o, — v), (5.10)

in view of
Ch(ﬂ,ﬁph - U) = 07 V/L € X(]}

The continuity of ¢;, implies that

Jo = ep(u—1lu, o —v) < Cllu =Tl 2 ) lon = vllLac ()

CE C
< = llen = vllZac toa2 Ju— HUHiV}f,p(w)(Q)
C C 2
< 2e2 [Ju HUH 20 (@) + > (llen = @llpacr () + 1l = vllpac ()
c 2
< gallu— HUHW:,p(z)(Q)

Ce?
T (len = @lZacr (@) + 1o = vllZac @) + 2len = @llLacr@lle = vllLac @)

C
22 llu— HUH?,V:,p(m)(Q) + O (llon — @llTac () + llv — U||2er<-)(Q))- (5.11)

IN

Gathering estimates (5.9)—(5.11), substituting in (5.8) and taking e sufficiently small, we obtain
lon = @lzacr iy < Clie = lFa g + Cllu =Tl ) + Clle = 0l e - (5.12)

Using the properties of II, we obtain the estimate of e,. Now, substituting (5.12) into (5.6), taking

into account (5.3), Lemma 5.1 and the continuous embedding of L()(Q) into L (Q), we arrive at
the desired estimate for e,. Thus the proof is completed. O
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