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Abstract. In the paper, we study a mixed type interaction dynamical problem with interior cracks
between thermo-elastic and thermo-piezoelastic bodies. The model under consideration is based on
the Green—Naghdi theory of thermo-piezoelectricity without energy dissipation. This theory allows
the thermal waves to propagate only with a finite speed. Using the Laplace transform, potential theory
and the method of boundary pseudodifferential equations, we prove the existence and uniqueness of
solutions and analyze their smoothness.
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1 Introduction

In this paper, we investigate the transmission dynamical problem, i.e., the mixed type interaction
dynamical problem with interior cracks between thermo-elastic and thermo-piezoelastic bodies. The
model under consideration is based on the Green—Naghdi theory of thermo-piezoelectricity without
energy dissipation. This theory allows the thermal waves to propagate only with a finite speed.

Other models of thermo-piezoelectricity, in particular, Foigt and Mindlin’s model are well known.
Our model is refined, it takes into account microrotation and microstretch of a particle.

Almost complete historical and bibliographical notes in this direction can be found in [23], where
the dynamical equations of the thermo-piezoelectricity without energy dissipation are derived on the
basis of the Green—Naghdi theory established in [21,22] and Eringen’s results obtained in [19,20]. In
the present paper, we consider the pseudo-oscillation equations obtained by the Laplace transform
from the dynamical equations derived by Iegan in [23] for homogeneous isotropic solids possessing
thermo-piezoelectricity properties without energy dissipation. In [5], it is studied the mixed and crack
type pseudo-oscillation problem of thermo-piezoelectricity without energy dissipation.

The basic dynamical problems of the classical elasticity and thermo-elasticity with either the
Dirichlet or Neumann type boundary conditions on the whole boundary were developed in [24]. The
mixed type dynamical problems of the classical elasticity for anisotropic bodies were studied in [25].
The mixed and crack type dynamical problems of the electro-magneto-elasticity were studied in [6]
and the mixed boundary-transmission dynamical problems of generalized thermo-electro-magneto-
elasticity theory for piecewise homogeneous composed structures were studied in [8].

In [16], a three-dimensional fluid-solid dynamical interaction problem is considered, when an ani-
sotropic elastic body occupying a bounded region is immersed into an inviscid fluid occupying an
unbounded domain. In the solid region, it is considered the generalized Green—Lindsay’s model of the
thermo-electro-magneto-elasticity theory. In this direction, see [9-15].

Using the Laplace transform, potential theory and the method of boundary pseudodifferential
equations, we prove the existence and uniqueness theorems of solutions in the appropriate function
spaces. Further, we the analyze regularity of solutions of a mixed type dynamical transmission problem
with interior cracks near the exceptional curve, where different type boundary conditions collide near
the crack edges. The regularity of solutions near the crack edges is C™([0,00),Cz) and for the
temperature of elasticity body is C™([0,00),C2), m > 2 (for the definition of these classes, see
Section 3 of this paper). The regularity of solutions near the curve, where different type boundary
conditions meet, depends on the material constants and does not depend on the geometry of the
exceptional curve. If these constants meet certain conditions, then the smoothness of solutions is
C™([0,00),C2), m > 2 (cf. [1-5,7,17]).

The Dirichlet, Neumann and mixed type transmission pseudo-oscillation problems of thermo-
piezoelectricity without energy dissipation are studied in [17], and the mixed type transmission pseudo-
oscillation problem with interior cracks of thermo-piezoelectricity without energy dissipation is studied
in [18].

2 Thermo-elastic field equations and thermo-piezoelastic
field equations without energy dissipation

The model under consideration is based on the Green-Naghdi theory of thermo-piezoelectricity with-
out energy dissipation.

Consider disjoint bounded domains €; and 5 in the Euclidean space R? with Coo-smooth bound-
aries 92, = Sy and 9 = S1 U Sy (SN 8 = 2). S = 5. sV, 5, = 5 A5V = g,
= 3S§D) = 8S§N) € C*°. We assume that the solids under consideration contain interior cracks. We
identify the crack surfaces as two-dimensional, two-sided manifolds X, k = 1,2, with the crack edges
égk) = 0%, k= 1,2. We assume that X, kK = 1,2, are the proper parts of closed surfaces Sék) C Qp,
k = 1,2, surrounding domains ﬁék) C Q and that ¥ and ng), k = 1,2, are C°°-smooth. Denote
sz = Qk \ Zk, k= 1,2.
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Throughout the paper, n = (ny, ng, n3) stands for the exterior unit normal vector to 9 = S

and S(()l) = 8981). A vector v = (v1,v9,v3) is exterior unit normal vector to 9Qy = S; U Sy and
S(()Q) = aQ((]Q)'

s¢v

So

Figure 1

Suppose the domain €2 is filled with a homogeneous thermo-elastic material, then the system
of governing differential equations of dynamics with respect to the sought vector function U1 =

(™, 9NT | where uV) = (ugl),ug),ugl))—r is the displacement vector and 9V is the temperature,
has the following form (see [24]):

(D 45N AL +(AD 41D grad div u™ — p 92t 7581) grad 9,0V = (Fl(l), F2(1)7 F3(1))T, (2.1)
EOAYD — aMa29™ — gV, divu® = £V (2.2)

where (Fl(l), F2(1)7 Fél))—r is a mass force density, Fil) is a heat source density, p; is the mass density,
) 5D \D), 5(()1), kM and a are the thermo-elastic constants satisfying the conditions

M >0, > 42,0 >0, W 42,0 4320 >0, kKD >0, pp >0, «V >0,
ﬁél) >0, T=0+iw, 0 >00>0, weR
The stress operator for a homogeneous isotropic system of equations is defined as follows:

T(l) = T(l)(amnvat) = [,Tz(jl)(ar; Tl,at)]4><4

P\(l)nzaj + u(l)nj(’)i + 5ij(u(1) + %(1))nk8k]3x3, [* él)n 8,5]3X1
[0]1x3 kM0,

4x4

We can write the above system of equations (2.1), (2.2) for pseudo-oscillations of the theory of
homogeneous isotropic thermo-elasticity in the following matrix form:

AN (@, UM = pO),
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where UM = (M 9T p1) = (Fl(l),FQ(D,Fél),Fil))T, and AW (dz,d,) is the 4-dimensional
matrix differential operator of the generalized thermo-elasticity:
1
AN (0,,0;) = [AF (02, 00)],..,
[0 (D 4+ 5N A + (AD + 100,80 — p16i; 07550 —B5 00351

_3M (a2 4 (1)
By 0[0j]1x3 aOp + kA 4x4

where d;; is the Kronecker delta.

The domain €2 is filled with a thermo-electro-elastic material. The corresponding system of
differential equations of pseudo-oscillations with respect to the sought vector function U has the
following form (see [23]):

(1® + %(2))3j6ju§-2) +(\@ 4 u(2))5¢8ju§2) - pz@fuz(?) + 3Pe;510; ](C )
2 0ip® — 820,000 = —pagl?, i =1,2,3, (2.3)
k(Z)ajaﬂg(Z) _ a(2)3t219(2) _ B(()?)@taju§2) _ 082)87580(2)

1
+170;0;0® — 1§ 0;0;4) = T p2Q", (24)
(2)ajaj¢gz) +(a® 4 5(2))@‘31'(/5;-2) _ Iéz)atz(bgz)
+%(2)sijka»u(2> — @D = _px® =123, (2.5)
(a$20,0;— 8@ — jP 020 — 22 9,0, 112 9,0,0? 1§ 0,9 - AP 9;ul? = —p, P, (2.6)
A52>ajaj<p<2> +x®0,;0,0® + 152 0,0,0? = —g?), (2.7)
where U®?) = (u} (2) ué ENCRIe) o @) 52),¢§2),<p(2),w(2))T, u® = (ug ),ug),ug)) is the displace-

ment vector, 2) is the temperature ¢(2) ((i)(Q) (2) ¢(2 ) is the vector of microrotation, ¢ is

the microstretch, 1)(2) is the electric field potential, and (g1 ,gg ), gg )) is the external body force per

unit mass, @ is the external rate of supply of heat per unit mass, Xi(z) is the external body couple
per unit mass, F(? is the microstretch body force, ¢(? is the density of free charge, Tp is the initial
reference temperature, ;1 is the Levi-Civita symbol and ps is the mass density.

Due to the positiveness of internal energy, the coefficients of system (2.3)—(2.7) have to satisfy the
following conditions:

7 >0, @ 4242 >0, %2 4243 323 >0,
&7 (2 + 24 130@) > 302, 4@ > |87, af kP — {P)? >0,
B 443 1302 >0, y® >0, a® >0, k@ >0, oY >0, aP(y® - ) > 202,
(38— FOEE — (7] + A 20l 02— 2D G0,
p2 >0, 1Y >0 ;¥ >0, P
Denote by
A®(0,,0;) = [AD (92, 01)] g,.q

the matrix differential operator generated by the left-hand side expressions in (2.3)—(2.7),

A2 (05,00) = 850 +32)910, + A + u®)9,0; — p2;;02,
AD (05,0)) = 8P 0:0;,  AL)1(02,0,) = —5Peidy, AR (0,,0) = N\ a,
A2 (0,,0) =0, AD(0,,0,) = —pP 0,05, AZ (s, 0) = kDO, — oD,
A} 4(00,01) = 0, AR (00,00) = (P 010; — 70y, A (00,01) = =7 D10,
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AZ, (00,00 = = Peiudn, A, 4(00,00) =0,
AR, 1(00,8) = 57D 80; + (P + 5@)8,9; — (25D + 1P 955,
A§?248<amat> =0, AR, (0:.0) =0, AD(0..0,) = -0,
AL (05,0 = P00+ D0, AL 1(00,0) =0, AR (0..8:) = ol 010, — (€ + 5§02,
AR (02, 00) = AV 00, A (0:,0) =0, AR (0.,0) = iV,
AL (02,00 =0, AR (9,,0:) = NP0, AR (0,,0:) = xPaar, i,j=1,2,3.

The stress differential operator of thermo-electro-elasticity is defined as follows:

T(z) — T(2) (axa I/, at) = [717/(]2) (317 v, at)]

9x9’
where
T2(9,,v,8,) = \Pv0; + uP;0; + 6 ( @ 4D dy, TP (0, 0:) = — B vi0y,
Tz(§)+4(az% 8t) = —%( )Eijkav is (8xa v, at) = )\(2)1/2', Ti(92) (axvlja 3t) =0,
T2 (00, 00) = 0, T,7 (s, 01) = kP11, T4 ;+4<am,u ) = —vi ey,
132 (05,0,0) = D00k, Tia (0,1,04) = —v5 O, Tioh (00,1, 0r) = 0,
T2, 4001, 00) = v ki, Tioh 14 (0us v, 0p) = P05 + BPv;0; + 657 D1,
Tl(i4 5 (00,1, 01) = b5 1110, 7}-(3,9(3@7% &) = AP ey, Tg(j')(axal/7 o) =0,
T 0, 00) = v, 184(00,1,0) = =06 ctnide, 1) (00,1.0) = ag” i,
(2) _ _\® (2) _ (2) _ @
Too' (O, v, 0r) Ay VO,  To; (0xz,v,0¢) =0, Toy" (On,v,0r) = v3” VO,
T3 400, v,00) = AP eijunid, T3 (9, v, 00) = AP 1y,
Tg(g)(axv’/aat):x Vkakv 17.7217273
The system of equations (2.3)—(2.7) can be written in a matrix form

@) (0,,0,)UP =

where
:
U@ = (uf ul? 0 9, 62, 62, 62, o, )
.
¢ = (Pzg§ )7/)295 )a ngé )7 TO pQQ(Q)’ ng{Q),p2X§2)7p2X§2)7p2F(2)’9(2)>

and A®)(9,,7) is the 9-dimensional matrix differential operator corresponding to system (2.3)(2.7).

3 Formulation of the mixed type dynamical transmission
problem
3.1 Formulation of the mixed type transmission dynamical problem
with interior cracks (TM).,

We are looking for a solution

U = @®,90)T = (@, )T,
U@ = (1@ 93 6@ @ p@)T = (u® 2 W@ uP)T

5 5.y Ug
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of the dynamical equations

AN (9,,0) UM = &, in Qg, x [0,00),
AP (9,,8,)UP = d, in Qx, x [0,0),

which satisfy on the surface S; the following transmission conditions:

{uf = {uf} = £ on Sy x [0,00), j=T.4,
{T(l (83?’” at } + {T(2 (83;,1/ at)U(Q }+ ] =) on Sl X [ ’OO)? J = 1a4a V=-—-n,
and the boundary conditions
{u§2)}+ = Q§»2) on Sy x [0,00), j=5,9,
while on the surface So, the mixed boundary conditions
{U@y+ :pgD) on SéD) x [0, 00),

(TP (8,,0,0)UP}" = ¢ on S5 x [0, 00),

the crack boundary conditions on 3
{TO0,,n,0)UD}T = FOF on 3y x [0,00), j=1,2,3,

{ufll)}Jr — {ufll)}Jr = Gfl ) on 31 x [0, 00),
{TD(0,,n,0)UDYT —{TD(,,1n,8,) UV} = FM on %, x [0, 00),

the crack boundary conditions on Yo

{T®(8,1,0)UD}E = FP* on 8y x [0,00), j=1,2,3,5,6,7,
{u(?)}'*' - {u(VQ)}'*' = (2) on Xy x [0,00), j=4,8,9,
{T?(0,,1,0)UD} T = {T2(0s,v,0)U P}, = F(Q) on ¥y x [0,00), j=4,8,9,

and the initial conditions

uél)(xao) =0, 0O u;'l)(xvo) =0, z€ Q, J=14,
uf)(x,()) =0, 8tu§-2)(:z:,0) =0, x€Qy, j=1,8.

where

Sy =SSP USSP AN =g, 4, = 98P = sV e o,

Remark 3.1. Taking into account the homogeneous initial conditions of the mixed type transmission
dynamical problem (MT);, from 9-th equation of the basic dynamical system of equations, when
t = 0 and the boundary conditions, we can find the function ¥ (z,0) for € Q5. Note that when
formulating the mixed type transmission dynamical problem (MT);, we can consider the homogeneous
initial conditions without loss of generality (see [3,16]).

By H*® with s € R we denote the Sobolev—Slobodetsky space. Let Mg be a smooth surface without
boundary. For a proper sub-manifold M C M, we denote by H®(M) the subspace of H*(M,),

H*(M) = {g: g€ H*(My), suppg C M},

while H*(M) stand for the space of restriction on M of the functions from H*(My).
Let B be some Banach space and let ¢ > 0 and m € NUO.
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Definition 3.1. By C7*(]0,00),B) we denote the set of all B valued functions which are m-times
continuously differentiable on [0, 00) and satisfy the conditions
d'u(0)
ot!

dlu(t)

—0, 1=0,...,m, H
mn ol

HBZO(eO‘t), Va>a>0, {=0,...,m.

Definition 3.2. By Cf’,([0,00),B) we denote the set of all B valued functions which are m-times
continuously differentiable on [0, 00) and the satisfy the conditions

Olu(t)
ot

=0, [=0,...,m—2, H HB:O(e‘”), [=0,...,m.

We study the solvability of the above formulated transmission dynamical problem in the spaces
C™([0,00), [H'(21)]*) x C™([0,00), [H'(22)]°) with m >2 and a > 0.
assuming that

Py € C)%([0,00), [L2(Q5,)]"), @1 € CJL([0,00), [La(25,)]%),
£V e CYr([0,00), H (S1)),  £iP € COLFA([0,00), HT2(S1)), j = 1.4,
QY € C)1r2(0,00), HZ(S1)), j =59,
p(”ecgi“uo,oon %<sl>19>, g¢® €)1 ((0,00), [H™2(51)]°),
s € CHLF([0, 00), [HE (S57)))9), qé € CoAF2([0,00), [H™3(SSM]),
FV* e C)Lr(10,00), H73(31)), j=1,2,3,
H™ ( 1)), 7=1,2,3,5,6,7,
G € 0,000 FEE1), FLY € G000, (1),
G € OO ([0,00), H2 (%)), P € CYLF2((0,00), H? (32)), j =4,8,9,

0, 00)
(2),£ M+2
F; € Cy ([0, 00)

)

and the compatibility conditions

N

FOF - O™ e 031+2((0,00), H™

FAF — FP ™ e 31+2((0,00), H™

(X1)), 7=1,2,3,
(22))7 .7: 17273a5a6777

<

N

are satisfied, where M is an appropriately chosen natural number. Further, note that the initial
conditions are satisfied automatically.

4 Boundary-transmission problem of pseudo-oscillations

Using the Laplace transform
f(r) Z/G_th(t)dt, T=0+4+iw, o =Rer>a>0, weR,
0

the mixed type transmission dynamical problem with interior cracks can be reduced to the following
boundary-transmission pseudo-oscillation (7'M ), problem depending on the complex parameter 7.
We are looking for a solution

oW = @0, M) = @V, @) e (1 (s,

0@ = (@@,9® @ 50 §@)7 = @ 7 a®, .. a®)" e [H'(x,)
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of the pseudo-oscillation equations

AN, ) UD = &y in Q,
A3, 1) U? =y in Qy,

which satisfy on the surface S; the following transmission conditions:

@ = @@y =Y on 81, j =174,
{T(l)(ﬁm,n,T)ﬁ(l)};r + {T(z)(az,z/, 7)0(2)}+ fJ@) onSi, j=1,4, v=—n,

i =

and the boundary conditions

@ =QP on sy, j=59,
while on the surface S;, the mixed boundary conditions
{[7(2)}+ :ﬁz(D) on SéD)’ {T(Q)ﬁ(z)}+ _ a2(N) on SéN)7
the crack boundary conditions on ¥
St m()E .
{T(l)(ag;,n,T)U(l)}j = Fj(l) onY, j=1,2,3,
@y — @ = nx,
{T(l)(aw,n,T)ﬁ(l)}: — {T(l)(&c,nm)ﬁ(l)}; = ﬁil) on X,

the crack boundary conditions on Yo

(T (0,0, TP} = FPF on %y, j=1,2,3,56,T,
@7 =@ =GP on D, j=4,8,9,
@

FP ony,, j=4,8,9,

J

(T80, 1) TP} = {TP (0,0, 1)U}
and the compatibility conditions
— ~_ 1 .
FOF V" e Ho3(ny), j=1,2,3
FOF —FP™ e H3(%,), j=1,2,3,56,7,

are satisfied, where ReT > a > 0,

FVenrt(s), [P eni(s), i=T4 QP eH (S). i=59,
PO e [HH(S)P, 7P eH ¥ (S)P, B e )P, @ e M),
FVF e H 3 (), j=1,23, FPF e H 3 (), j=1,2,356,7,
GV e ma (), FY e H 3(D),
G e Hi(D,), F\Y e Hi(Sy), j=4,8,9,
and

A (9, 7) = [AD(9,,7)]

4x4

[0 A + D) A+ (AD 560,072 018351y 78 [0l

L —Tﬁél)[aj]lxs —72aM + kWA ’
T® =T0@,,n,7) = [T (0m.7)]

_ -P\(l)niaj‘ + u(l)nj& + 61’]’ (,LL(l) + %(1))nk3k]3><3 [—Tﬁél)n]gxl‘|
4x4

[0]1><3 k(l)nlal
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the matrix differential pseudo-oscillation operator of thermo-electro-elasticity is defined as follows:
A®(0,,7) = [A(Q)(a )]9><97

A (Da,7) = 85 (0 + )10+ A+ 1*),0; = 7203,

A 0em) = =870 AL (007) = —Peindr, AD(0n) = AP0 AR (0n.7) =0,
AD@,,7) = —7820;, AL (04,7) = KD, — 7%, Aff])+4(6 =0,
AR Be,7) = 7000; = 7667, AL (0r,7) = w0100,
Az(i)4,j(ax’7') = —5® €100, Az('+)4,4(a$77-) =0,
AP, 4(00.7) = 857000+ () + 52)0,0; — (27 + 721155,

AFi5@0m) =0, A, 9(00,7) = 0, A (00.7) = =19, éi)(am ™) =000+ 7ep”,

A2} 400, ) =0, AZ (00.7) = 0670101 — (&7 + 7557,

AR (0s,m) = AP 00, AT (0s,7) =0, AR (8,7) = V0,0,
A a0 =0 AR @n7) = NV00, AR 0n7) =X P00, 05 =123,
the corresponding stress differential operator of thermo-electro-elasticity is defined as follows:
T® =17 (8,,v,7) = [Ti(f)(ﬁx,u, )] oo

where

T (0,1, 7) = XP030; + 1 Pw0; + 6,5 (1 + 60y, T (D0, 7) = =765 wi,
Tz(g+4(8x,v 7) = = Peiun, TZ.8 (0p,v,7) = )\82 v, Ti(;)(amu =0,
44’ 1 On v =0, TP (0 v7) = KP 010, ngj)ﬂ(azw T) = _VéZ)Eljleaky
TS (O v,7) = vk, T (00,0, 7) = 15 10, Tz(+21](3z71/ ) =0,
T2 4O vi7) = e, T3) ;1 4(0n,v,7) = P05 + BP0, + 617 vy,
jﬁi,s(axwv 7) = b5V erin Ok, Ti+4,9(3w,u, 7) = AP ennion, Ts(j)(gxﬂjﬁ) -0,
T8, v,7) = v\ P v0y, TB(?j)+4(a$7 1) = b exndn, T2 0y, v,7) = P vidy,
Té?(@aj, v, T) = —,\§2>ukak, Ts)(?)(aac,u, T)=0, Tg(z) (Oz, v, T) = u§2)ukak,
T3, 4 (0n,v,7) = AP eumde,  Tog) (8a,v,7) = A i,
TS (0, v,7) = XD vk, 1,5 =1,2,3.

Now, let us formulate the existence and uniqueness and regularity theorems of the mixed type
boundary-transmission pseudo-oscillation problem (T'M). ,, which were proved in [18].

Theorem 4.1. Let 51,52 € C®°, 1 =0+ iw, 0 > 09 >0, w € R, and
By € [La()]Y, @2 € [La(02:)]°,
fenrs(s), [P eH (S, j=T14
QP eH (S, j=59, By elHH SN, @™ e H (NP,
FVF e H75(ny), j=1,2,3, FPF e H (D), j=1,2,3,56,7,
G\Verixy), FYeH (%), G<2> € Hi (%), F e Hi(Sy), j=4,8,9,

and let the compatibility conditions

jad = — ~_ 1 .
FOF —FD™ e Ho3(ny), j=1,2,3
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FOF —FP ™ e H3(%,), j=1,2,3,56,7,
be satisfied. Then the mized boundary-transmission problem (IT'M). » has a unique solution
(T, TP) € [H (Qs,)]* x [H(25,)]°.
Let us introduce the notation

B cbéQ) + p)\§2) + quég)

d: 2,2 ’
where
ci= % (béz)bn + AP by, + V§2)b31), pi= % (bég)blz + AP 0o + Vg(g)b32)v
aE,Q) 7/\§2) u§2) -1
q:= % (b(()Q)bls + AP bos + V§2)b33)7 birlaxs == | A2 @ D

V§2) —1/§2) k2

Denote by C§°(3k), k = 1,2, the space of functions vanishing along with all tangential (to %)

derivatives at Egk) =0, k=1,2.
The following regularity theorem holds.

Theorem 4.2. Suppose S1,S> € C*, and
Oy € [C(@)]!, s € [C=(R)]°,
fWec=s), fPec>(s), j=11
A %) . ~ oo @ (D ~ oo @V
QP ec(s), j=59, p”elc=@Ee, @M ele=@EM),
FV*ec=®y), j=1,23, FFeC™D), j=1,2,3,56,7,
G ec=(®), FVec*(3), G eC®(D), FYeC®(5), j=4.8,09,
FOT —FEY " e C(R1), j=1.23, FP% - FP7 € 02(,), j=1,2,3,56,T.

Let (UM, U®) be a unique solution to the boundary-transmission problem (TM)e,r.
Then @ and U® have the Cz -Hélder smoothness in one-sided interior and exterior neighborhoods
of the surfaces Sél) and 582), respectively, and 9V has the C'2 -smoothness in one-sided interior and

exterior neighborhoods of the surface S(()l). While

(1) If d < 0, then the vector u® belongs to the C7-Holder class in a neighborhood of the line
= aSéD) = GSQN), where y; = % - %arctg 2v/—d, v1 depends on the material constants, does
not depend on the geometry of the exceptional line ¢ = 8S§D) = aSéN) and may take any values

from the interval (0, %),
(2) If d > 0, then the vector U® belongs to the Cz-Hélder class in a neighborhood of the line £.

In order to perform the inverse Laplace transform of solution ([7 M), U (2)) of boundary-transmission
problem (T'M).,,, i.e.,

1 a+i00
U(q)(-,t):ﬂ / ethj(Q)(',T)dT, qg=12 o>a,
T

we need the estimates in 7 of ||[T®)(- T E (Q0))4 U@ Tl (@2))2, When |7 — 0o (ReT > a).
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Using the integration by parts formula for the data of the boundary-transmission pseudo-oscillation
problem (T'M), ., we deduce for Re T > a > 0 the following inequalities:

120, Pz, e < Clrl ™, 182 Dllizagas, 0 < Clrl ™,
1 2 . T
157G Dl s s,y < O3 17l < Clr™M72, =174,

(2 .
||Qj><-m>|| s < Clr[ M2, j =579,

H3(8y) =

~(D) M—2 ~(N) —M-2
155 (- r>||[H2<S<D>)]Q <Cl™M g >||[H_%(Sém)]9 <SCRME g
IEF Syt iy S CIITM 2 5=1,2,3,
=(2),+ M- .
IE 54,y S CIMT2 5 =1,2.3,5,6.7,
1G] <Clr™72, |FP) gy <CIT7M72
HE(Z 2 (3
~(2) —M-2 ~(2) M-2
1G5 N 8 5y < Ol 20 E g, < Ol 72 5 =4,8,9,

where C' is a constant independent on 7. L
To obtain the similar estimates (see (4.1)) for the corresponding solution (UM, U®)) of the
boundary-transmission problem (T'M). , we use the representation

7O =vH 4y, Vi = (v W INT = ( W IHT, g=1,2,

Vq,1s- Vg "5 Vg,

q,
0@ =wf® W, W = ... @))T (P wi ) =12

where (Vl(l)7 Wl(z)) and (‘/'2(1), W2(2)) are solutions of the following boundary-transmission Problem 4.1
and Problem 4.2, respectively.

Problem 4.1. Find a vector function (V") W{?) e [H' (QZ1])]* x [H(Qx,)]? satisfying the pseudo-
oscillation differential equations

(835,7’0)‘/1( ) @1 in Qzl,
A(Q)(a TO)W( ) ©2 in QEQ?

the boundary-transmission conditions on the surface Sy

(o —fwt = on sy, j =114,

{100, 7)) +{TP (00,0, 10)WP} T = [ on 1, j=T,4, v="—n,

and the boundary conditions

{wl,J}+ @§2) on Sla ]: 5a95
while on the surface S5, the mixed boundary conditions
(Wt =52 on §{P, {T®(0y, v, 70) W 2)} =™ on st
the crack boundary conditions on X
{TO@,,n, )V} = FVF on 3y, j=1,2,3,
1 - &~
i} = =G on 3,
{T(l) (ax,n,To)Vl(l)}z - {T(l) (ax;n,'ro)vl(l)}; = ﬁil) on El;
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the crack boundary conditions on Yo

where 7j is a fixed complex number such that Re g > 0.

Problem 4.2. Find a vector function (V\", W{?) ¢

(r

2Dy, v, )W}

{w1 }+

oscillation differential equations

the boundary-transmission conditions on the surface Sy

- {T2 8;5, v, 7-O)V[/l(2) }J

{T® 0, v, )WP}

(WP}~ =GP on%y, j=4,809,
=F? on ¥y, j=4,8,9,

[H(Qs,)]* x [H

AN (4, T)V(l) D in Qg
A0, W = 5@ in Qy,,
{oiy —{w)}y" =0 on 8y, j=11,

{T(l)(am,n,T)VQ(l)}j + {T(2)(3x,u, 7')W2(2)};r =G; onSy, j=1,4, v=-—n,

and the boundary conditions

Wiyt

{w)}* =0 on S5y, j =509,

while on the surface Sy, the mixed boundary conditions

=0 on SéD)

the crack boundary conditions on ¥

{T(l) (8587 na T)‘/Q(l) }1_

{T(l)(al.,n 7')‘/2(1)}i

{Uz }+

the crack boundary conditions on X

where

ie.,

{1

VASDIPSS

&5,1/7'

gl —

g2 —

[A(l)(az’m) _
G = {[T(l)(ax,n,m)—

(T 0, v, WP} = F;D=

{wg }+
(2)} {T(2 (Op, v, T)

A(l)(am

DY, w® =

(TP, v, 7)WP}

i =5
{vé)li}_ =0 on Xy,

(T, m VY =

[A®
TW (0, n, 7)] Vl(l) }++{ [T(Q) (O, vy T0) —
j

T = q;(N) on SéN),

(1),+

on 21,

)(a:m TO)

pr(7? =)ol + (1 - TO)ﬁél)[ai]axwﬂ
| (= 70)85" 0y + (72 = )aug )
[ pa(r? = Bywi? + (1 — 70) 857 [Oi)3x1wl’)
(7 = 7086 0w?] + (72 = )a@w + (r — 7o)l
1(2)(7' — 75 )[wﬁ)_i_dgxl
(r = ro)el wi) + (72 — 73)56 D wi?)

0

w

(W)}~ =0 on %y, j=4,8,9,
Wi} =@ on =489,

(2)
1,8

— 14(2)(8307

on Xy, j=1,23,

7O (0,0, 7)) WP}

J

)

= FP* on%y, j=1,2,3,56,7,

on 227 .7: 1727375763 77

T)] W1(2)7

J

L,

4

b

1(922 )]9 Satisfying the pseudo_
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Gj = (1t — ) (l)njvgli + (7t —

*(N)

: { (8, v, 70) —
*(1) +._ { ) (0, 70) —
O = { (0, m,70) —

B {[T(l)(ﬁx,nﬁo)
F?@)i:::{[T@)Q%,Vﬂb)

2) (8ma v, TO)

- {[T<2> (D, v, 70)

where
0
T(l)(ar,n,T) —T(l)(am,mm) _ l[ lax3
[O]lxs
0
2)(395,7%7) — T(2)(0z,z/, o) = l[ l3x3
[O]6x3

By Theorem 4.1 Problem 4.1 is uniquely solvable in [H!(Qg,)]?

estimates hold:

1 2
IVl s, 1+ IWE2 i s, e

(||<1>1| Lat@o gt -+ 182l o e,

2 ~(D) ~(N)
+ZIIQ“HH2(S)+II Mg sy 188

Jj=5

r(1),£
+Z”Fj HH—é(z

+ ~(2) m(2)
I3 T > (”Gi|hf%<&>+”F} ”Hé@ﬂ)>’

7
py
j=1, j#4
where the constant C’ does not depend on 7.
Taking into account estimates (4.1), we obtain

1 2
IVl s, e + W12

where the constant C; does not depend on 7.

)60 Vijwy 4,

TO@,.n, V)
T (9, n,7)] V1<1>}+
— 100,07V}
~T®(3,,v, T)]wf?)}i
~ T @, v W)

_ T(2)(5x’ v, T)] W1(2)}f

(21 (s, )00 < Cy|r|™M,

(2)

j:17273a G4:Oa

T, v )W},

’ j:172737
J

4
4
] j:17273a556777
J
J
J

[—ﬂé”nv—ro)]gxl]
0 4x4

[7 (()2)1/(7‘77'0)]?»(1 [0]3X5] .
9x9

[0l6x1, [0]6x5

j=4,8,9

Rer >a > 0.

) j:478797

x [HY(Qs,)]?, then the following

4
1) 7(2)
Z( Lt sy + 15201 s)
R
~(1) (1)
UGy ) + I 1

(4.2)

It is clear that estimate (4.2) implies the estimates for the data of Problem 4.2 with respect to 7:

9 g, e < Clr 72

||\I](2)H [L2(95,)]° < C‘T|7M+2v

(4.3)

||G ||H7§(S) —C|T| M+1) j_l 4
N *(1),£ — .
105 gy 3 gy < CIITMHL BTy g < O =123,
*(1) M+1 *(2),+ M4+1 .
1T 3y S O D2y ) S Ol 5=1,2,3,5,6.7,
*(2),% .
17 b oy < ClITMFE G =4.8,9.
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Now let us consider Problem 4.2. Suppose (‘/2(1)7W2(2)) is a solution to the Problem 4.2. Let

us write Green’s formulas for the vector functions V2(1 and W(Q) in the domains Qy, and Qs,,
respectively:

(1) +
/ AW @, )V vy da / EOWN V) de = ({TOVVY 040)) @
QZI QZI 0
2
/A<2><am,r>wf’-w2<2> da+ / ED WD W, de = ({TOWPY pwPy) L (45)
1 2 0

Qs, Qs,

where
1 1 1 1 1 1 1 1 1
VY = 5o = 5" o) s = (e el )T
2 2 2 2 2 2
Wy = (i, w53>T=(wé>,w§i, 2wl wsg)

9 2 2 2 2
w® = (W&, wB, W), 6P = @, wd), wd)T,
EOVD, V5" = el 5") + prr ol 2 — w5l dive!

+ kW | grad vl +Tﬂ Y divew + r2aMef] 2,
£, 50) = () 4+ )] grad P -+ (A + 0] div P

Here and in what follows, a - b denotes the scalar product of two, in general, complex-valued vectors

N
a-b:Zakgk, a,beCV;

k=1
(-, -)g denotes the duality between the spaces [H~2(S)]Y and [H=(S)]N, which extends the usual

L inner product for complex-valued vector functions

(f,q S—/f x)dz for f,ge[Lg(S)] ,

where S is a closed surface in R3. If S is an open surface, then (-, -)s denotes the duality between
the spaces [H2 ()] and [Hz(S)]N
Obviously, S(vél),@(l)) > 0,

EQwWP W) = B(v<2>:<2>) +2iAP e Im(aka 20, w2(2])+4)

+ 22/\(2) Im(0; w2 3 )9, *(2)) + 211/32) Im(9; w 8 Wy )) + 217',6’02) Im(0; wzjwéi))
+ 2irely) Im(wiRwy?) + (m\wQ 2+ 1871087 + 5§ w12 + a@ wi));

here, we assume that B(v(2),ﬁ(2)) is a positive definite with respect to the vector
0(2) = (eij7 Hij, Cj7 ®, T7 19’% El)7 B(U(2)76(2)) >0 VU(Q) 7& 07

where

_ (2) (2) _ (2)
€ij = 0wy ; + €jikWy pyay  Hij = w4y,

¢ =0 w22) = w§2§, T = ngzi, 19§2) = aiwéa, E;, = —@wé?g

(for the definition of this form see [5, formula (2.19)]).

Adding Green’s formulas (4.4) and (4.5) and taking into account the fact that (V2(1),W2(2)) €
[H'(Qx,)]* x [HY(Qs,)]? is a solution to the boundary transmission Problem 4.2, we get
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/\1/<1>-V2<1> d + / v W@ dr / EQOWY V) dx + / EA WP, W) da

=, Qs, Qs, Qs,

4
= <Z {T(l)Vz(l)};r, {Vz(l)};>s + <Z {117(2)[/1/2(2)};7 {W2(2)}j+>s + <q;‘(N), {WQ(Q)}+>S£N)
. 1 :1 1

W~

3
S (EOT = FONWN), + FEO,,

=

7
+ ) < KOF ) W 2)}f>g + 3 (EO W)y,

—

j=1, j#4 ?j=489
4
z; <({T 1)‘/2(1)};r " {T(z)W2(2)};r>7{W2(2)};r>Sl n <q;(N)7 {W2(2)}+>S£N)
=
2 (EOT E O ) (YY),
1

j=

7
+ Z < *(2),+ ;(2)74")7{W2(2)}j+>2 + Z <F;(2)7{W2(2)}j>22

j=1, j#4 2 j=4,89

3
=3 (G W), + (0™ AWPY) S(N)+Z< RO~ R0, )
j=1

7
FEOEO Y (EO B ) Y (5P ),

Jj=1, j#4 j=4,8,9
where , ) o ) . -
(WP =@y, =19, (VY =)y, j=T4
Therefore, we obtain

/ D, vy do + / EQ WP, W,”) do

Q):l 922

=G WD + (™ Py S<”>+Z< PO+ _ ), {‘/2(1)}+>

]
j=1

7
(EO VY + S <(F;<2>, _ @ ){W22>}+>

J
=1, j#4

+ 3 (EE W, - /\Il(l)-VQ(l)dm—/W(Q)-Wg(z)dm. (4.6)
7=4,8,9 QEl 922

Similarly, we get (see [5])

[ B0 ) o+ [ B ) do

Qs 2,

3 9 -
2) #(N 2
=3 (G W s+ Y @ A Y gom + (@5 1wl ) gom
J=1 J=1,j7#4

3
+ Z < *(1),+ _ ;(1)7+)7 {‘/2(1)};r>21 + <F:(1)’ {‘/'2(1)}1>21

Jj=1
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7
b ST EON) ) Y (5 iy,

Jj=1, j#4 Jj=8,9

STERTE N R NI / Vi@ [ VP i @i @)

Qs Jj=1, 3754 Qs

1 2

where

*(N *(N *(IN 2 2
o™ =@, a5, \y<2>=(qf§),...,qf§,>),

1 1 . 2 .
(Vayr = (i, =14, (W) = (W, =105,
EQWP W) = B, 5C) 4+ 2ir5 m(0;u) w)

+2irel® (%) + 72 (el + 12 6P + 57 W + a® ).

Now, let us take first the real part of equality (4.7), and then the imaginary part, where

T=0+4iw, 7%= (0%—-w?)+2iow, 0>09>0 weR.

Thus we obtain the following integral equalities:

[ g0 o)+ @~ wtymluf

Q)jl

— Qﬂél)wlm(UQQ div v(l)) + k(1)| grad vé’li|2 + a(l)(02 - w2)|v§’1i 2] dx

+ / [B(U(Z),ﬁ(z)) - 2w,8(()2) Im(wéi) div wé )) - 2wc(()2) Im(wgg*éi))

Qx,

+ (02 = ) (palwf” 2 + 1P 16D + P R + o)) | da

4
Z GJ’{WQ >5'1 + Re <q;(N)v{W2(2)}+>S;N)

+Rez< FOF BN ) Re (B ),

7

tRe Y ((EOT-EOT) WPy wRe Yo (HO ),
j=1, j#4 j=4,8,9
—Re / vy 4z — Re / @ w,® dz, (4.8)

Qs Qx

1 2

and

/ {20wp1|v§1) %+ 2a(1)aw|v§2 R 2561)01111(52(2 divvél))} dzx
O,
+ / (206 () div wf?) + 20¢f? ({3
1935}

2

+20w(p2|w52)|2+I(2)|¢g2)‘2+j(()2>‘w<2) +a2)|w 2” di

3
2 *(N (2 *(N 2
=Im E GJ,{W2( )}+ + E Im q2(j ) 7‘7)-}+>S§N) +Im <q2(4 ) {wé7i}+>sgm
j:
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+ Imz < #(1),+ _ 1) +) { }+>E <F4 1) {V2(1)}+>

b (O - EON ) e Y O 0,

Jj=1, j#4 j=8,9

+Im <FZ(2)’ {W2(2)}I>22 — Im / ON Vz(l) dx

Multiplying (4.9) by # and adding equality (4.8), we get

/ £, 57) + (02 + Wi el + kD] grad )P + oD (0 + W)l ?] de
QEl

+ [ [Be® @)+ (0 +2) (paluf? + V16D + 5P + 0O de

QEQ
3
N * s 1)
=Red (G, {WaP}) g +Re (g™, {WP}) <N>+Rez< e A R }+>
- pt
7
* 1 1 *(2), * 2 2
+Re< (){‘/2()}+>21+Re Z <(Fj()+_Fj( ) {Wz( )}+>
j=1, j#4
+Re > (F/® (wP}), —Re / \1/<1>-V2(1)dsze/\p<2>.w2<2>
j=4,8,9 Ox, s,
3 9
w w x(N) 2 *(IN)
+ 2y (G P )g 4= D I el g + = (g5 () g
Jj=1 j=1,j#4
3
W x(1), x(1),— 1 w *(1 1
+;Imz<(Fj( H _Fj( ) )7{‘/2( )}j>z - Im<F4( vy )}Z>21
j=1 !
7
w “(2)4 _ p(2),- @) w “(2) @yt
+Zm Y (BP0 }j>22 +Zm Y (O ),
J=1, j#4 7=8,9
+ %Imwj(?),{Wz@)}Dm - % Im / vy gy
Qzl
_ ¢ Im/\I/(2) 2 dy — = Im/\Il(g) cwp g @ dz. (4.10)
0'

9)32

From equality (4.10), when |7| — oo, we obtain following estimates:

1
( / .7 o + 108 Bryam e+ 10520 )

_ 2 2 2 2
m( / B(®,5®) det[[w |7, (0, s + 1052113 10, + 1165 >||%L2<szns+|w§,§||%2<922>)
Qs,
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3
S Z||GJ‘|H7%(S1)H{W2(2)}j>”H%(S HQQ(N)H[H 3 S(N))}gH{WQ(Q)}-i_H[H%(SéN))]g
j=1

3
ENEDT  EO oy K |ty

+||F4(1)||H*§2)||{V2(1)} HH2 + Z HF*(2)+ *(2)7_HH’§(E)H{ (2)}+||H%(22)
Jj=1, j#4
+ 3 IE Dl e [V 1 s

Jj=4,8,9

1T 2o 1 IV P za@s 1 + 1P za@s, 10 W2 | 2o (05, 10

|w\ |wl| | (@)
ZHG -3 s }{Wz(Q)}fHH%(SI) el - () ]QH{W2(2)}+H (50

|| (1), - le
+?Z"Fj W _ HH*é(zl H{V2(1 }JrHHz (1) +— ||F4 1)HH*§(2 H{ 2(1)}1‘{112(21)

Ll i IF O E O o )

o ; J H™ 2(22 H2(22)
Jj=1,j#4
| *
D N [t IO 1117l o1l O
7=4,8,9

|w| 1 ||
+— 1TD]| Ly s, 41 Va )||[L2(Qz:1)]4 + 1T Loy 0 W2 (Lo (2, o5 (4:11)

where ¢; := min{p;, kM, a™ 1} and ¢y := min{pg,1'(52),]'(()2),a(2)7 1}.

Now, in the left part of inequality (4.11) we use Korn’s inequality, the positive-definiteness of the
form B(v®, v(?)) and the Poincare inequality, and in the right part of the same inequality we use the
trace theorem and estimates (4.3), then we get

1 2 2 — 1 2
(VA2 s @, s + IS s e ) < elr =02 (VG sy o + IS Niars s e )
Therefore, we obtain

1 2 _
VA Iz s, gt + WS e, e < cl7|M+2 for |7] — oo, (4.12)

where c is a positive number, which does not depend on the complex parameter 7.
Thus, in view of (4.2) and (4.12), we conclude

1T s, e < el 2, N0 s, o < elr 7 for |rf o0 (413)

In its turn, from estimates (4.13) with M > m + 4 and inverse Laplace transform

a+100
1 ~
U(l)(-,t)z% / e”U(l)(-,T)dT, a>a,
a—100
1 a+100
U(2)(-,t):2—m. / et (. r)dr, a>a

of solution ([7 M), U (2)) of the boundary transmission pseudo-oscillation problem, we find that

UM e ¢™([0,+00), [H (Qg,)]Y),
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U® e c™((0,+00), [H (25,)]°)

with m > 2.

Therefore, we arrive at the following existence and uniqueness results for the original transmission
dynamical problem (TM).;.

Theorem 4.3. Let S1,S5, € C*°, and

®) € CFL([0,+00), [La(2s,)]Y), @2 € CFL((0,+00), [L2(25,)]%),
£V e CptT(0,+00), H2(S1)),  f7 € CaT(10,+00), HZ(S1)), j =14,
QY e CrtT([0,+00), H3(S1)), j =59,
ps? € CrT((0, +00), [HE (SS)]%), a8 € CpaT((0,00), [H# (Sn))°):
FV™* e 0r([0, +o0), H™5 (1)), j=1,2,3,
FP% e 0t ([0,+00), H5(2)), j=1,2,3,5,6,7,
G e Ot ([0, +00), H3(31),  Fy¥ € CIT([0,+00), H3 (S1)),
(

G e ([0, +00), H3(S2)), F* € OuT(10,+00), H (%)), j=4,8,9,

and let the compatibility conditions

FO — FO™ e 0t ([0, +00), H™

FPF — FP™ e 0yt ((0, +00), H™

N

(X1)), 1=12,3,
(X2)), j=1,2,3,5,6,7, m >2,

N|=

be satisfied.
Then the transmission dynamical problem (TM).; has a unique solution (UM U®)) in the space

G ([0, +00), [H (s,)]*) x C3 ([0, +00), [H' (25,)]°).

Let us introduce the notation

Ci, (10, 400), C=(Qg)) := () Co, ([0, +00), C*(Qy)), ¢=1,2,

>
Il
—

[
D)

5 ([0, +00),C%(8y)) := (] G ([0, +00),C*(Sy)), ¢=1,2,

>
Il
_

Cia ([0, +00),C=(3y)) :=

DL

Cérfa([o’ +OO), Ck(iq))’ q= 13 27

=
Il
—

and denote by - -
C(;tla([ov +OO)7 Cgo(zq)) = C(Ta([()’ +OO)’ COO(EQ))’ q=12,

the class of functions vanishing with all tangential (to £,) derivatives at €£Q) =0%,,q=1,2.

Using the approach developed in [6] and [8], we can obtain the estimates similar to [6] of the first
coefficient and reminder terms of the asymptotic expansion of solutions with respect to the complex
parameter 7. Then by using the inverse Laplace transform in the asymptotic expansion of solution
we can obtain the following optimal regularity result for the transmission dynamical problem (T'M).,
near the lines £ = 95" = 95" and €19 = 9%, ¢ = 1,2.

Theorem 4.4. Suppose that S1, 52 € C* and

@1 € Cg2 ([0, +00), [C=(Q)]Y), @2 € G5 ([0, +00), [C(22)]°)
);

F9 € CrET(0,400),C%(81)),  fiP) € CyET([0, +00), € C(S1)), j =14,



Mixed Type Transmission Dynamical Problems 89

Q¥ € CyF ([0, +00),C(S1)), j=5,9,
Py € CT([0, +00), [C(Sy ))°), a5 € G ([0, +00), [C(S,
FV* e opT([0, +00), C=(21)), j =1,2,3,
F% € CpT([0,+00), C%(5s)), j=1,2,3,5,6,7,
G € ([0, +00), (%)), FyV € C5T(0, +00), C<(T1)),
G e OpT([0, +00), C%(2)),  F* € O™ ([0, +00), C®(2)), j =4,8,9,
FOF - FO™ e ([0, +00), C5°(51)), j=1,2,3,
FEF — FP™ e 050, +00), C5°(52)), j=1,2,3,5,6,7, m > 2.

),

Let (UM, U®@)) be the unique solution to the transmission dynamical problem (TM)..,.

Then u) and U@ have C™([0, +00), [C'2]3)-smoothness and C™ ([0, +00), [C'Z]?)-smoothness, re-
spectively, in one-sided interior and exterior neighborhoods of the surfaces S(()l) and Séz), respectively,
and 9 has the C™([0,400), C'2)-smoothness in one-sided interior and exterior neighborhoods of the

surface Sél) . While

(1) Ifd < 0, then the vector U?) belongs to the class CT([0, +oc), [C7]°) in the neighborhood of the
line £ = E?SSD) = aSéN) where v, = % — %arctg 2v/—d, v1 depends on the material constants,
does not depend on the geometry of the exceptional line ¢, and may take any values from the
interval (0, 3);

(2) If d > 0, then the vector U® belongs to the class CT([0, +00), [C2]°) in the a neighborhood of
the line .
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