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1 Introduction

A fractional order differential equation (FODE) is a generalized form of an integer order differential
equation. The FODE is useful in many areas, e.g., for the depiction of a physical model of various
phenomena in pure and applied science (see [1,4,18,23] and the references therein). The resulting
equations offer inconceivable thought for researchers and analysts. The first definition of the fractional
derivative was introduced at the end of nineteenth century by Liouville and Riemann, but the concept
of fractional derivative and integral was mentioned already in 1695 by Leibniz and L’Hospital. Ac-
tually, FODEs are considered as an alternative model to integer differential equation. The definition
of Riemann—Liouville derivative was established by Riemann in 1876. Since then, many applications
of the fractional derivatives and integrals of this Riemann—Liouville type have been demonstrated in
numerous fields of science and technology. The Hilfer fractional operators were suggested in 2000. The
fundamental theorems of fractional calculus for the Hilfer fractional derivatives are described in [1,6].
Then, these operators were generalized by Sousa and Oliveira [5,20]. The well-known Riemann—
Liouville and Caputo fractional derivatives are the special cases of the Hilfer fractional derivative.
In [3,7-9,15], the authors presented a new fractional derivative called W-Hilfer generalized propor-
tional fractional derivative (PFD), which generalizes most of the previous fractional derivative of a
function. For more details see [10-12].

The states of many evolutionary processes are often subject to instantaneous perturbations and
experience abrupt changes at certain moments of time. Usually, the duration of the changes is very
short and negligible in comparison with the duration of the process under consideration, so, as a
result, it is natural to study differential equations with instantaneous impulses. The mathematical
investigation of impulsive ordinary differential equations began with Milman and Myshkis [16], where
some general concepts of systems with an impulse effect were given and also the results for the
stability of solutions were presented. Inspired by them, a number of results on the qualitative analysis
for impulsive differential equations have appeared in the literature (see [13,22] and the references
therein).

In many practical problems, it is a great challenge to formulate an exact solution for certain
differential equation of a physical model. Powerful numerical or analytical principles with algorithms
and methods that can produce stable outcomes are necessary. In this case, stability analysis is
used, which forms an incredibly obvious part of differential equation. It is important to discuss the
approximate solution and determine whether it lies near the exact solution. In general, we confirm the
stability of a differential equation if, for each solution of a troubled equation, an approximate solution
nearby the exact solution exists. In the literature, there exist different types of stability, but recently
the concept of Hyers—Ulam stability is a central topic for researchers because it is very important
in approximation theory. The historical background of the Hyers—Ulam stability dates back to the
nineteenth century. Ulam detailed a class of stability with respect to a functional equation, which was
solved by Hyers for an additive function defined on the Banach space. There are many advantages
of Hyers—Ulam type stability in solving the problems related to optimization techniques, numerical
analysis, control theory and many more. Further advances in the Hyers—Ulam stability of differential
equations can be found in [5,21]. Therefore, our work may broaden some of the results on other topics
related to the existence theory and stability results.

The standard Ambartsumian equation (SAE) was derived by Ambartsumian [2,14,17] more than
two decades ago. This equation describes the absorption of light by the interstellar matter. Inspired
by the above results, in this paper, we aim to generalize the concepts above to the SAE with impulses
via a Hilfer type generalized fractional derivative of the form

= t
DPIE=A(t) = @(t,A(t),A%)), teJ—{t1,ta,t3,-- -, tm},
AT TPOFA(ty) = i €R, k=1,2,3,4,...,m, (1.1)
779 Ala) = § € R,

where J = [a,0],0<p<land 0<¢<1,0€(0,1],n>1,9=p+q—pq, Q: IXxRXxR >R
is a continuous function and = is a positive increasing function, a = tg < t1 < to < -+ < t,, = b,
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Dgf’g;g( -) is the E-Hilfer generalized PFD of order p and type ¢, Ii;ﬁ’g;a is the =Z-Hilfer generalized
proportional integral operator,

AT TS A(t) = T,0 7O S A — Tor TS Aty
TPOEA) = lim, Ii+ POE Aty + €) and T VOFA() = limn IV OE Aty + o).
€E—> e—0—

2 Basic concepts

Let 0 < a < b< oo, J=[a,b] be a finite interval and ¢ be a parameter such that n — 1 < ¢ < n.

Definition 2.1 ([15]). If o € (0,1] and p > 0, then the left-sided generalized proportional fractional
integral of order p of the function Q with respect to another function = is defined by

:~ ’

(z2=Q) :Q,,F / FEOEO)(E() ()P (5)Qs)ds, t>a. (2)

Definition 2.2 ([15]). If o € (0,1], p > 0 and E € Cla,b] where E (s) > 0, then the left-sided
generalized PFD of order p of the function Q with respect to another function = is defined by

Q) = e — [ EOEN @) - 2y ()Q(s) ds
at anp]_"(n _ p) ’

where I'(-) is the gamma function.

Theorem 2.1 ([15]). Suppose o € (0,1], p > 0 and ¢ > 0. Then, if Q is continuous and defined for
t > a, we have

THER(THEEQ) (1) = IO (TREEQ) () = (T2 4Q) (1),

Definition 2.3 ([15]). Let J = [a,b], where —oco < a < b < 00, be an interval and let Q,Z € C™[a, b]
be two functions such that = is positive strictly increasing and Z (t) # 0, V¢ € [a,b]. The Z-Hilfer
generalized PFDs of order p and type ¢ of Q with respect to another function = are defined by

(Dgf’g’a(@)(t) _ (Ig(in—p):gﬁ(Dn,g,E)Déli—q)(n—p%@,EQ) (1), (2.2)

where n — 1 <p<n,0<q<1withneNand p € (0,1]. Also, D2=Q(t :(1—9)Q(t)+gg,gg and

)
T is the generalized proportional fractional integral defined by equation (2.1).
.2) becomes

1
In particular, if n =1, then 0 < p < 1 and 0 < ¢ < 1, so equation (2.2) b
(DrEeRQ)(t) = (TA e (prhes)pll 00 P eEg) ),

Lemma 2.1 ([15]). Letn—1 <p<nwithn e N,0<q¢<1, p€ (0,1] and ¥ =p+q(n—p). If
QeC? ,la,b] and I{;ﬂr_qm_p)’g’:@ € Cl_y=la,b], then DVI=TO=Q eists in (a,b] and

DyPeEIe=Q(t) = Q(t), € (a,0]:

Lemma 2.2 ([15]). Let n —1 <p<n withn € N0 < qg<1,0¢€ (0,1 withd =p+ q(n —p) such
that n — 1 <9 <n. If Q € Cyla,b] and I:fﬁ’g’:(@ € Cj zla,b], then

@eEnieeEg)n a0 - | Y ©

k=0
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Let us consider the weighted spaces
Cr_9=(J) = {@ . JXxRxR = R:(E() — =) P At) € O(J)}, 0<9 < 1.
Define the weighted space of a piecewise continuous function as follows:
PCy_y=(J,R) = {Q D IXRXR—>R:Q € Cy_pz((trtii],R), k=0,1,2,... ,m}.

Clearly, PC1_g,=(J,R) is a Banach space with the norm

1Allpe, o z0rm) = SUR(E(E) = 2(a) T A(®).

Theorem 2.2 ([13]; The PCi_y =(J,R) type Arzela—Ascoli theorem). Let X be a Banach space and
Wi_g;z C PCi_y=(J,R). If the following conditions are satisfied:

o Wi_y.= is uniformly bounded subset of PC1_y=(J,R);
o Wi_y.z is equicontinuous in (tg,tx+1),k=0,1,2,...,m;

. Wlfﬁ;g = {A(t) A€ Wlfﬁ;gt e J— tl"'tm}, Wlfﬁ;g(t;) = A(t;) A € Wlfﬁ;g and
Wi_ez(ty) = At ) : A€ Wi_y= are relatively compact subset of X,

then Wi_y.= is a relatively compact subset of PC1_y=(J, X).

Theorem 2.3 ([23]) (Krasnoselskii’s fixed point theorem). Let B be a non-empty bounded closed
convex subset of a Banach space X. Let N M : B — X be two continuous operators satisfying the
conditions:

e Nz + My € B, whenever x,y € B;
e N is compact and continuous;
e M is a contraction mapping.

Then there exists u € B such that u = Nu + Mu.

3 Main results

The following Lemma helps us to construct an equivalent fractional integral equation of our proposed
problem (1.1).

Lemma 3.1. Let 0<p<1land0<¢q<1,9=p+q—pqg and Q: J xR xR — R be continuous.
Then for any b € J, a function A € C1_y=(J,R) defined by

Alt) =027 (1, a) {27702 A0) — T2 (1, A, A(%)) | b meEa(s Aw), A(%)) (3.1)

is the solution of the following differential equation:

PP A() = Q(t,A(t),A(%)), ted,

where
o—1 /—

T EOE) (5(1) ~ S(w)” !
T () |

he(t,a) =
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Proof. Applying Dgf’gﬁ to both sides of equation (3.1), we obtain

DPIO= A(t) = {I;;MEA(b) —I;;M@EQ(t,A(t) A(%)) ]t:b}pgf’@ﬂégﬂ(t,a)
+ Dgfv@%ﬁzgfﬁ@(t,ft(t),A(f)), teJ
For 0 < ¥ < 1, we get

DPPOR(E() —E(a)’ 1 =0, 0<9 <1,
and by Lemma 2.1, we get

PP A() = @(t,A(t),A(E)), ted.

n
This completes the proof.

O
Now, we will obtain the equivalent fractional integral equation of the proposed problem (1.1) by
using Lemma 3.1.

Lemma 3.2. Let Q: J x R x R — R be a continuous function. Then a function A € PCi_y=(J,R)
is a solution of the impulsive type Ambartsumian equation with the =-Hilfer generalized PFD,

= t
Dsfﬁg’_‘A(t) = @(ta A(t)aA(7)>a te J - {tl,t2>t37 . ;tm}; (33)
n
AT TVORAt) =k €R, k=1,2,3,4,...,m,

3.4)
I}770F A(a) = 6 € R,
if and only if A is a solution of the following fractional integral equation:

027 (1,0)6 + T2 (1, A(1), A(%))

t e [a,tl],
At k (3.6)
= t
02%(t,a) (6 + )+ IPEEQ(t AW), A(=)), teE (trtig], k=1,2,...,m.
27 (t,a)( ;u) 2= A A( ) € itia]
Proof. Let us assume that A € PC1_y =(J, R) satisfies (3.3)—(3.5).
If ¢t € [a,t1], then

= t

DIIETA(L) = Q(t,A t ,A(f ;

PEeS A(t) ®-A(,)) .
I770% Aa) = 6.

Thus problem (3.7) is equivalent to the fractional integral equation

Alt) =087 (1, )0 + 7220 (1, A(), A(L)), € la,ti].
For any t € (t1,t2], we have

(3.8)
= t
P,q,0;= — —
DLEAM) = Q6 AW A( ), 1€ (8]
with B _
TS A - TR A = .
By Lemma 3.1, we have
At) = 08" (t, a){ 7,75 A

-2l (D), o7l 0. 4(1)
= 0271, 0) {2 2 AT + 1 — T 020 (1 A, A( L)

7
+ Ifjfﬁ@(t, A, A(%)) te (t,ta).
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From (3.8), we get

Hence

TR Ar) = 5+ 0= (1 A, AL

W)

=J.

TI0eE A — Ii;“mﬁ(@(t, Alt), A(f)) . (3.10)

n
From (3.9) and (3.10), we get

Alt) = 02" (t,a) (5 + ) + 2250 (1. AW, A( L)), te ().
Ift e (tg,tg], then

(3.11)

PP A(L) = Q(t,A(t),A(%)), t € (b, 5]
with

I EA) ~ I MR A) = e
Again, by Lemma 3.1, we have

A(t) 6%ﬂ(t7 a) {Ii:'&yg;EA(t;) _ Il_ﬁ—"—p’g;E

at Q(t,A(t),A(%))thz} +I§;@§EQ(t’A(L‘)’A(t>)

=02 (1, ) {22702 At ) + o — 72201, A, A

n
5))} t € (ta, t3]. (3.12)
From (3.11) and (3.12), we get

1-9,0;2 _ 1—9+p,0;E E
T A(t) = (0 +m) +Z,5 Q(t,A(t),A(n))
Hence

19,02 —\ _ 7l=94p,0;= f
TR Aty ) — T Q(t,A(t),A(n»
From (3.12) and (3.13), we get

(3.13)

= t
A() = 82" (1, ) (6 + i + p2) + TEZQ (1, A1), A(g)), t € (2, 3].
Continuing the above process, we obtain

At) =082°(t, a) (6 + zk:u) +I§f£@(t,A(t),A(%)), te (tetor], k=1,2,3,....m.
=1

Conversely, let A € PC1_y=(J,R) satisfy the fractional integral equation (3.6). Then for ¢ € [a, t4],
we have

Alt) = 027 (¢, )5 + 72201, A(t),A(;)).
Now, applying the Z— Hilfer generalized PFD to both sides of the above equation, we get
DS A() = 6DLI=0L" (1, a) + DLOETRERQ(1 AQ), A(%)) .

By using equation (3.2),

DPIEE A(t) = Q(t,A(t),A(%)) t € [a,t1].

For any t € (tg,tgt1], k = 1,2,...,m, we have

A() _6§’ﬂ(t,a)<6+§:ui) +I§f£@(t,A(t),A(;)), te (te tora], k=1,2,3,....m.
=1
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Now, applying the Z— Hilfer generalized PFD to both sides of the above equation, we get

DR A(L) = (04 gui)pgfv@%ﬁagvﬂ<t, a) + DLEOETIO=Q(1 A, A(%))

:Q(t,A(t),A(%)).

We have proved that A satisfies equation (3.3). Now, we have to prove that A satisfies (3.4) and (3.5).
Applying the integral operator Ii: V2= t6 both sides of equation (3.8), we get

TR A(r) = T2 E0L (1, a) + 11 0E TR0 1, Alr), A( L))
n

— 5+ 2= A, A(L).

from which we obtain

1199 .A()

Hence we have proved equation (3.5).
Now, from equation (3.6), for t € (¢, tp4+1], we get

002 A) (5+Zuz) 10502 () + T ST A, A( 1)),

k
_ = t
=64+ 3w+ T 0E0(n AW, A(S)), (3.14)
i=1 K
and for ¢ € (tg—1,tx],
~ k—1 ~ o ¢
TRA) = (54 3 )T R0L  (ta) + TR TEERQ(1 AQ), A(;)),
i=1
= 1-9+p,0;= t
=5+ i+ Q(t,A(t),A<7)). (3.15)
i=1 K
Hence from (3.14) and (3.15), we obtain
TR A — TR Aty Z i — Z pi =
which is condition (3.4). Hence A satisfies problem (3.3)—(3.5). O

4 Existence theory
Let us consider the following hypotheses:
(Hy) Let Q: (a,b] x R xR — R be a function such that Q € PC;I(_lﬂ_,g) [a, b] for any A € PC’ffﬂ’E[a, b].

(Hs) There exists a constant 0 < L < % satisfying

‘Q(t,m,u)—@(t,m,ﬂﬂSk(|m—m|+\u—ﬂ|), w,u,mmeR, teJ

Theorem 4.1. Let 0 <p<1,0<¢<1 and ¥ =p+ q(1 —p). Suppose that the assumptions (H;)
and (Hs) hold. Then the impulsive problem (1.1) has at least one solution in the space PC1_gla,b].
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Proof. In view of Lemma 3.2, the fractional integral equation corresponding to the impulsive =-Hilfer
fractional differential equation (E-HFDE) is given by

A(t):ég(t,a)(6+ Z uk)+I§f*5 (t,A(t)7A(f)>7 teld

a<tp<t
Also, consider the set

(4.1)

= {AePCyz(IR): T % A() =5, IAllpe, yum <7}
with

r22( o+ Z juf} + HED WY
where

M = sup |Q(s,0,0)|.
oeJ
For all ¢ € J, consider the operators G and ‘H defined on B, by

(HA)() = Igfﬁ@(t,A(t),A(%)), te
(@A) =2ta)(6+ D mi), te

a<ltp<t
By virtue of the operators GA(t) and H.A(t), the fractional integral equation (4.1) can be rewritten as

A(t) = GA(t) + HA(t), AePCY 4(J,R).
Step 1. We prove that GA + HA € B, for any A, A€ B

[((E(6) ~ Z(a)) ~"GA(t) + HA())
= | =) - =(a)) " {02

s ¥ ) emema(uwnA())
T(9) (Il + D2 liml) + (E(t)ﬁprg((pa)))“9 /Eg’g(t’a)‘@(”’z(“)’“z(%))‘d"
gy (01 32 )+ S [z fa(e a0, 4(%)) - 0t 0.0[dr

= : 1 9
+(“(t)19p; /cwt 0)|Q(a,0,0)|

= : 1 9
o (81 3 ) + HEG 220 / £29(1,0)A(0)| do

z < w5 (14 3 Im)

a<ltp<t
L(=Z(t) — =(a

= < (1 Y )

a<tp<t
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+ L(E(t) = 2(@) [ Allpe,_y (1m IR (E(E) — E()? ! +

T (p+1)
1 L) _ DU M(E(t) — E(a))—?+P
< gy (101+ nl) + £ g7 B0~ Z@P I Alpe,_yom + T me
1 Lr@) _ . M(E(T) — E(a) 0t
<t (161 + ag,;« uxl) + gy (BT =Sy + TS =
Since —_
p
L= orwEm - 2@y
and
! M(E(T) - Z(a)) "+
<19{|5+Z””} T+ 1) >
we have
[(E() — E(@)'"GA®) + HA®)| <7, te
Therefore,

IGA(t) +HAWM) I pey_ye(ir) <7
We have proved that GA + HA € By,.
Step 2. Clearly, G is a contraction with the contraction constant zero.

Step 3. H is compact and continuous.

The continuity of H follows from the continuity of Q. Next, we prove that # is uniformly bounded
on B,.

Let A € B,.. Then by (Hj), for any ¢ € J, we have

g

< ST /cgg(t, o)|a(e A(J),A(ED - Q(0,0,0)| do

t
/ LE(t,0)|Q(0,0,0)|do

T

= _:al—ﬁt = —Eal_ﬁt

< L(H(%pré))) / 221, 0)| A()| do + 24 (izpr(pg ) / £24(t,0) do
T2 N — M(E(t) — E(a))' 77
< 97T (p + 0) (E@) = Z(a)?IAllpc,y 1Ry + IPT(p + 1)
IPW) oo = v, MET) — (@)~
< m (E(T) — E(a)r + 9T (p + 1)
Therefore,
LT () M(E(T) - E(a)' "7

1Al sm) < G (E(T) = E(a))"r +

(p+9)

This proves that H is uniformly bounded on B,. Next, we show that H B, is equicontinuous.

T (p+1)
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Let A € B, and t1,t2 € (tg,tg41] for some k, k =0,1,2,...,m with ¢; < t5. Then,

)~ (@R (e 40,4 (D))

|(HA(t2)) — (HA(L))| = ’(Iglg;EQ(t,A(t),A(t»

t:tl)

n
< ﬁp;(p)/L’E”Q(tz,cr)‘(@(o’,A(a),A(Z))‘daﬁp;(p)/E’E”g(tl,a)‘(@(o’,A(o),A(Z))‘do

g

(E(t) - E(a))l-ﬁ@(a, A(a),A(;)) ‘ do

<{(Zr=En -=@)| ) - (@eE0 -2@) | ) ilre =0

Hence
|(HA(t2)) — (HA(tl))| — 0 as to — 1.

This shows that H is equicontinuous on (tg,tg4+1]. Therefore, H is relatively compact on B,.. By
the PC1_y,= type Arzela—Ascoli theorem, H is compact on Bjy. Since all the assumptions of Kras-
noselskii’s fixed point theorem are satisfied, the operator equation A = GA + HA has a fixed point
A € PCi_y.=(J,R), which is the the solution of our proposed problem. O

Theorem 4.2. Let 0 < p < 1,0 < ¢qg <1 and 9 = p+q(l —p). Suppose that the assumptions
(Hy) and (H3) hold for Q: (a,T] x R x R — R, then the problem has a unique solution in the space
PCi_y=(J,R).

Proof. Consider the set B, and define the operator 7 on B, by

(TAW =02"(a)(5+ Y uk)+Iff£@(t,¢4(t),¢4(%>), ted.

a<ltp<t

To prove that A = T A has a fixed point, we show that 7B, C B,.. To do this, we take any A € B,.
Then, by (Hz) for any t € J, we have

ITA)] =

oz’ a5+ D m) ”54‘”5@(“““)’““(;))‘

a<ltp<t

<o2'(ta)(i6+ 3 ) + oy [ L2 o)[Q(en Al A(%) ) o

a<tp<t

<og’(ta) (101 + Y lul) + ﬁpr /ﬁp’gto‘@<a,4 A(;))—@(mQO)‘da

a<tp<t
t

+ 191’1}(19) /Eé’ (t,0)|Q(0,0,0)| do
_ =(g))1—+p
<)o+ X ) + 1o (50— E@P Al o+ XD
= = 1-9+p
<)o+ X ) + gy gy (B0 - S@)r+ M=
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= — Z(a))-9+p
< L(|5|-i- > ‘Nk‘)“" LT) (E(T)—E(a))pr—FM(H(T) S(a) T

oS L'(p+9) ¥PT(p+ 1)

By the choice of the constants r and L, it can be easily verified that
||TA||PC1—19:E(‘]7R) S r.

This proves that 7B, C B,.
Now, we prove that the operator T is a contraction on B,.. Then, by the assumption (Hs), for any
teld,

|(E(t) = Z(a)' " ((TA() — (TA) ()]
E) - 2@) (02 (L) (5+ Y ) + 100 (t,Al(tLAl(%))

a<ltp<t

—og(ta) (54 Y ) +I§’+Q;E@(t’“42(t)’“42(7t7)))’

- (z(t)—E(a))l—ﬂ(Iffﬁ@(t,Al(t),Al(%)) — Ty (t’A2(t)’A2<;>))’
=(t) — S(a))? | d g
< COTRN [ ezteolafn a4 (5)) - (o dato) Ao 5))

= 9P (p) /E’é’g(t, o)|Ai(o) — Az(o)| do

' LT ()

SF(p+19)

(E(T) = E(a)? A1 = Azllpey,_y=(r)-
From the choice of constant L, it follows that
1
ITAL — T Azllpe,_yz(r) < 3 AL — Asllpey_y =)

Thus 7T is a contraction and, by the Banach contraction principle, it has a unique fixed point in
B, CPCy_y=(J,R), which is the unique solution of our proposed problem. O

5 Stability theory
Now, we consider the Ulam-Hyers(U-H) stability for the problem. Let A € PCi_y =(J,R),e > 0,7 >

0 and v : (a,b] — [0,00) be a continuous function.
We consider the following inequality:

Do Ar) - Q(t,A(t),A(%))‘ <ealt), te,

’AI;Iﬂ’Q;EA(tk) — k| =er, k=1,2,3,4,...,m.

(5.1)

Definition 5.1 ([19]). Our proposed problem is U-H-R stable with respect to (v, 7) if there exists a
real number ag > 0 such that for each € > 0 and for each solution A € PCi_y=(J,R) of inequality
(5.1) there exists a solution A € PCy_y =(J,R) of our proposed problem with

|A(t) — A(t)] < eag,,(v(t) +7), t€ (a,b].
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Remark 5.1. A function A € PCi_y =(J, R) is a solution of inequality (5.1) if and only if there exists
a function A\ € PCi_y =(J,R) such that

o A®)| <ev(t) and |Ag| <er,t € J.
o DPOOEA(L) = Q(t, A(t),A(E)) + A(t), t € J.
¢ n

o ATPOOSAt) = p + My b =1,2,3,4,...,m.
Theorem 5.1. Let us assume that (Hy) and (Hs) and the following hypotheses hold:
(Hs) There exist an increasing function v € PCi_g.=(J,R) and {, > 0 such that for each t € (a,b],

we have _
(T7250) < Cult).
(Hy) There exists a continuous function 1 : [a,b] — [0,00) such that for eacht € J, k =0,1,2,...,m.
we have

p(t) < (B)v(t).
Then our proposed problem (1.1) is U-H-R stable with respect to (v,T).

Proof. Let A € PCi_y=(J,R) be a function which satisfies inequality (5.1) and let A € PCy_y =(J,R)
be the unique solution of the problem

= t
D,q,0,= — —
D2 AM) = Q5 AW A(, )
ATSVOFAM) = ik € R, k=1,2,3,...,m,
77 0F Ala) = § € R,

where 0 < p<land 0 < ¢ < 1.
By Theorem 2.3, we get

- = — =/ .=
Ay = 02(ta) (5+ D2 ) +Z0E=Q(L AW, A ) ) + T2EEAW), te .
a<ltp <t n
Since A is the solution of inequality (5.1), by Remark 5.1, we have

DrEe Ay < Q(t,A(t),A(%)) FA®), ted, (5.2)

AT TVOF At = p + My k=1,2,3,4,...,m.
Clearly, the solution of (5.2) is given by
= t =
A(t) = 08(0) (54 32 m) + TS0 (1 AW, A()) +THEEND), 1,

a<ltp<t

where ¢ : (a,b] — E is a function satisfying the functional equation

g(t) = @(t, g9(t), g(%))

We have i
AL TVOSAfte) = e+ > Ak, k=1,2,3,....m.

a<ltp<t

Hence for each ¢ € (a, b],

I7e= (Q(S,Z(s),z(%)) - Q(s,A(s),A(%)))’ IPE= |\ (5)]
2

€

|A(t) — A(t)] <

< Gut) + 26 TRV < (e + 207060 < (14 ) Goelr + v() < ague(r + v(D),
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where ¢* = sup () and

teJ
2 *
aQ,y = (]- + /f >CV
This completes the proof of the theorem. O
6 Examples

Example 6.1. Consider the following impulsive type Ambartsumian equation of the Z-Hilfer gener-
alized PFD:

80 " \80
9.1 =
7,0 S A®0) =0, (6.1)
1-9,1= /1 2
8" A() =5 o R
Now comparing equation (6.1) and our proposed problem (1.1), we get
1 1 1 3
p 8 9 q 5 ) Q 3 ) 10 ) a ) )

Also, Q:[0,1] x R x R — R is a function defined by

Q(t,A(t),A(%)) - %A(%) CA®), te o).

Clearly, Q is continuous and

@t A1), A (%)) = Q(t,AQ(t),AQ(%))’ < 8—10 (Ju— | + v —7]),

where u, W, v, 7 € R. Hence the hypotheses (H1), (Hz) hold with k = % <1
Thus by Theorem 4.1 and Theorem 4.2, the considered problem has at least one solution which is
unique on J.

An existing solution of (6.1) satisfies all the conditions of Theorem 5.1. Hence the solution is
U-H-R Stable.

Example 6.2. Let us consider the impulsive type Ambartsumian equation with the =-Hilfer gener-
alized PFD:

112 = 1 t+3
DT A(H) = — (7)— t+3), t 0, 1],

SHEERA = 2 A(SE) - A +3), te 1]

_9.2=
Iy "R A0) =0, (62)
1-9,2 2 1 2
80" F7A(7) =5 €&
Now, comparing equation (6.2) and our proposed problem (1.1), we get
1 1 2 3
p=3, 4=7, =3, = a=0, €[0,1]

Also, Q:[0,1] x R x R — R is a function defined by

@(t,A(t),A(%)) _ %A(%) _A(t+3), te0,1].
Clearly, Q is continuous and

ot Aut), A (%)) _ Q(t,Az(t),Ag(%»’ < 710 (ju - + v —31),
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where u, @, v,7 € R. Hence the hypotheses (H;), (Hz) hold with k = %.

We have k < 1, which means that the assumption (Hy) is also satisfied. Hence, by Theorem 4.1

and Theorem 4.2, the considered problem has at least one solution which is unique on J.

An existing solution of (6.2) satisfies all the conditions of Theorem 5.1. Hence the solution is

U-H-R stable.
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