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Abstract. The paper presents the study of the Cauchy problem for an evolutionary equation with
a self-adjoint positive definite operator. Using the perturbation algorithm, the purely implicit multi-
layer semi-discrete solution scheme is reduced to two-layer schemes. Solutions of the latter schemes
are used for constructing an approximate solution of the original problem. The estimate of the
approximate solution error is given.
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რეზიუმე. ნაშრომში განხილულია კოშის ამოცანა აბსტრაქტული ევოლუციური განტოლების-
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თვის, შეშფოთებათა ალგორითმის გამოყენებით, წმინდად არაცხადი მრავალშრიანი ნახევრად-
დისკრეტული სქემა დაყვანილია ორშრიან სქემებზე. ორშრიანი სქემების ამონახსნებით იგება
საწყისი ამოცანის მიახლოებითი ამონახსნი. მოყვანილია მიახლოებითი ამონახსნის ცდომილე-
ბის შეფასება.
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1 Introduction
The semi-discretization method (the method based on the discretization of a derivative with respect to
a time variable) is one of the methods used to solve the Cauchy problem for an abstract evolutionary
equation. The semi-discretization method for an evolutionary equation is also known as the Rothe
method [27]. The investigation and implementation of multilevel schemes for evolution problems is
an important issue. The main difficulty in the implementation of multilevel schemes (especially for
multi-dimensional problems) is the use of a large amount of memory, which increases proportionally
to the number of levels. One way to overcome this difficulty is to split the multilevel schemes.

The application of the perturbation algorithm to difference schemes for differential equations was
considered in [1]. Mention should also be made of the works [24], [11], where a purely implicit three-
layer semi-discrete scheme for an evolutionary equation is reduced to two two-layer schemes and the
explicit estimates for the approximate solution error are proved in the Banach space under rather
general assumptions about the problem data.

Note that in [25,26], a purely implicit four-layer semi-discrete scheme for an approximate solution
of the Cauchy problem for an evolutionary equation is reduced to three two-layer schemes. In that
case, the explicit estimates of the approximate solution error are proved in the Hilbert space.

In the present paper, we consider the purely implicit multi-layer semi-discrete scheme for an
approximate solution of the Cauchy problem for an evolutionary equation with a self-adjoint positive
definite operator in the Hilbert space. Using the perturbation algorithm, the scheme is reduced to
two-level schemes. An approximate solution of the original problem is constructed by solving these
two-level schemes.

The algorithm proposed in the above-mentioned works is close to the methods discussed in [16,18,
19].

The perturbation algorithm is widely used for the solution of problems in mathematical physics
(see, e.g., [15]). A notable discussion of questions concerning the investigation of semi-discrete
schemes for evolutionary equations in general Banach spaces can be found in the works by the au-
thors A. Ashyralyev and P. E. Sobolevskii [2, 3], N. Bakaev [4], S. Piskarev [20], S. Piskarev and
H. J. Zwart [21].

Important results on the construction and investigation of approximate solution algorithms of
evolutionary problems were in particular considered in the well-known books by S. K. Godunov and
V. S. Ryabenki [9], G. I. Marchuk [14], R. Richtmayer and K. Morton [22], A. A. Samarski [28],
N. N. Yanenko [12]. Mention should also be made of the works by M. Crouzeix [6], M. Crouzeix and
P.-A. Raviart [7].

2 Reduction of a purely implicit multi-layer scheme
for an evolutionary problem to two-layer schemes

Let us consider the following evolutionary problem in the Hilbert space H:

du(t)

dt
+Au(t) = f(t), t ∈ ]0, T ], (2.1)

u(0) = u0, (2.2)

where A is the self-adjoint positive definite operator in H with the domain of definition D(A); f(t)
is a continuously differentiable function with values in H; u0 is a given vector from H; u(t) is an
unknown function.

In [11], the realization of a purely implicit three-layer semi-discrete scheme is reduced by the
perturbation algorithm to the realization of two two-layer schemes.

In [25], the realization of a purely implicit four-layer semi-discrete scheme is reduced by the pertur-
bation algorithm to the realization of three two-layer schemes. On the interval [0, T ], let us introduce
the grid tk = kτ , k = 0, 1, . . . , n, with the step τ = T/n. Using the approximation of the first
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derivative

du

dt

∣∣∣∣
t=tk

=
11
6 u(tk)− 3u(tk−1) +

3
2 u(tk−2)− 1

3 u(tk−3)

τ
+ τ3Rk(τ, u), Rk(τ, u) ∈ H,

equation (2.1) can be represented at the point t = tk as
11
6 u(tk)− 3u(tk−1) +

3
2u(tk−2)− 1

3u(tk−3)

τ
+Au(tk) = f(tk)− τ3Rk(τ, u), k = 3, . . . , n. (2.3)

We rewrite system (2.3) in the form

u(tk)− u(tk−1)

τ
+Au(tk)

+
τ

2

(u(tk)− 2u(tk−1) + u(tk−2)

τ2

)
+

τ2

3

(u(tk)− 3u(tk−1) + 3u(tk−2)− u(tk−3)

τ3

)
= f(tk)− τ3Rk(τ, u). (2.4)

It is obvious that the expression in brackets in case τ
2 is u′′(tk−1) + τ2R1,k−1, and the expression in

brackets in case τ2

3 is u′′′(tk) + τR2,k, R1,k, R2,k ∈ H.
By analogy with the above system, let us consider, in the space H, the one-parametric family of

equations

uk − uk−1

τ
+Auk +

ε

2

(uk − 2uk−1 + uk−2

τ2

)
+

ε2

3

(uk − 3uk−1 + 3uk−2 − uk−3

τ3

)
= fk + ε3Rk, Rk ∈ H, (2.5)

where fk = f(tk).
Assume that for uk in H, the expansion in series

uk =

∞∑
j=0

εju
(j)
k (2.6)

is true. Substituting (2.6) into (2.5) and equating the members of identical powers ε, we obtain the
following system of equations:

u
(0)
k − u

(0)
k−1

τ
+Au

(0)
k = fk, u

(0)
0 = u0, k = 1, . . . , n, (2.7)

u
(1)
k − u

(1)
k−1

τ
+Au

(1)
k = −1

2

∆2u
(0)
k−2

τ2
, k = 2, . . . , n, (2.8)

u
(2)
k − u

(2)
k−1

τ
+Au

(2)
k = −1

2

∆2u
(1)
k−2

τ2
− 1

3

∆3u
(0)
k−3

τ3
, k = 3, . . . , n, (2.9)

u
(3)
k − u

(3)
k−1

τ
+Au

(3)
k = −1

2

∆2u
(2)
k−2

τ2
− 1

3

∆3u
(1)
k−3

τ3
+Rk,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where ∆uk−1 = uk − uk−1.
We introduce the notation

vk = u
(0)
k + τu

(1)
k + τ2u

(2)
k , k = 3, . . . , n. (2.10)

Let the vector vk be an approximate value of the exact solution of problem (2.1), (2.2) for t = tk,
u(tk) ≈ vk.

Note that in scheme (2.8) the starting vector u
(1)
1 is defined from the equality v1 = u

(0)
1 + τu

(1)
1 ,

where u
(0)
1 is found by scheme (2.7), and v1 is an approximate value of u(t1) with accuracy of O(τ3).
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In a similar way, the starting vector u(2)
2 is defined from the equality v2 = u

(0)
2 + τu

(1)
2 + τ2u

(2)
2 , where

u
(0)
2 and u

(1)
2 are found by schemes (2.7), (2.8), respectively, and v2 is an approximate value u(t2) with

accuracy of O(τ3).
The following theorem is proved in [25].

Theorem 2.1. Let A be a self-adjoint positive definite operator in H and let the solution of problem
(2.1), (2.2) be a smooth enough function. Then, if ∥u(tk)− vk∥ = O(τ3), k = 1, 2, then the estimate

∥u(tk)− vk∥ = O(τ3), k = 3, . . . , n, (2.11)

is true.

Let us proceed to deriving the algorithm of an approximate solution of problem (2.1), (2.2) for
the general case, namely, when for the approximation of the first derivative we use the (m+ 1)-layer
scheme.

Assume u(t) to be a scalar function. Using the method of undetermined coefficients (see, e.g., [17]),
it can be shown that

u′(tk) = c0u(tk) + c1u(tk−1) + c2u(tk−2) + · · ·+ cmu(tk−m) +Rk(τ, u), (2.12)

where Rk(τ, u) = O(τm),

c0 = τ−1
m∑

k=1

(−1)k+1 1

k
Ck

m, (2.13)

ck−1 = (−1)k+1 m!

(k − 1)(m− k + 1)!(k − 1)!
τ−1, k = 2, . . . ,m+ 1. (2.14)

We will prove formula (2.12).
The coefficients ck are to be determined from the assumption that formula (2.12) is exact when

u(t) is a polynomial of not higher than m-th degree, and it is this formula that must be exact in each
of the following cases:

u(t) = 1, u(t) = (t− tk), u(t) = (t− tk)
2, u(t) = (t− tk)

3, . . . , u(t) = (t− tk)
m.

After inserting these values of u(t) in equation (2.12), we obtain a system of m + 1 linear equations
with respect to ck (k = 0, . . . ,m):

1 · c0 + 1 · c1 + 1 · c2 + · · ·+ 1 · cm = 0

0 · c0 + τ · c1 + 2τ · c2 + · · ·+mτ · cm = −1

0 · c0 + τ2 · c1 + (2τ)2 · c2 + · · ·+ (mτ)2 · cm = 0

0 · c0 + τ3 · c1 + (2τ)3 · c2 + · · ·+ (mτ)3 · cm = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 · c0 + τm · c1 + (2τ)m · c2 + · · ·+ (mτ)m · cm = 0,

where τ is the grid step (τ = tk − tk−1).
Rewrite the obtained system in the matrix form

Ac = b, (2.15)

where

A =


1 1 1 . . . 1
0 τ 2τ . . . mτ
0 τ2 (2τ)2 . . . (mτ)2

...
...

...
...

...
0 τm (2τ)m . . . (mτ)m

 , c =


c0
c1
c2
...
cm

 , b =


0
−1
0
...
0

 .
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Let us calculate the determinant of the matrix A.
It is easy to prove that

|A| = τ
m(m+1)

2 F (m), (2.16)
where F (m) = m! (m− 1)! · · · 3! 2! 1! .

Indeed, we have that the following equality is valid:

|A| =

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1
0 τ 2τ . . . mτ
0 τ2 (2τ)2 . . . (mτ)2

...
...

...
...

...
0 τm (2τ)m . . . (mτ)m

∣∣∣∣∣∣∣∣∣∣∣
= τ

m(m+1)
2 m! ·

∣∣∣∣∣∣∣∣∣
1 1 . . . 1
1 2 . . . m
...

...
...

...
1 2m−1 . . . mm−1

∣∣∣∣∣∣∣∣∣ .

From this equality follows formula (2.16), since the last determinant is the Vandermonde determinant
(see, e.g., [13]).

From (2.15), we have c = A−1b. In view of the structure of the vector b, the formula

ck−1 = −A2k

|A|
, k = 1, . . . ,m+ 1, (2.17)

is valid, where A2k are algebraic complements of the matrix A.
Thus for determining elements of the vector c, there is no need to determine all the elements of

the adjoint matrix A∗, it is enough to determine the values of elements of its second column, i.e., it is
enough to calculate the values of the algebraic complements A2k, k = 1, . . . ,m+ 1.

Let us determine A2k, k = 1, . . . ,m. It is easy to prove the formula

A21 = −
m+1∑
k=2

A2k. (2.18)

By virtue of formula (2.18), the calculation of the algebraic complement A21 reduces to the calcu-
lation of the algebraic complements A2k, k = 2, . . . ,m+ 1.

Note that the structure of the algebraic complements A2k, k = 2, . . . ,m, is the same.
The following formula is valid:

A2k = (−1)kτ
(m+2)(m−1)

2
m!F (m)

(k − 1)(m− k + 1)!(k − 1)!
, k = 2, . . . ,m+ 1. (2.19)

Indeed, we have

A2k = (−1)k

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1 1 1 . . . 1
0 τ2 (2τ)2 . . . ((k − 2)τ)2 (kτ)2 ((k + 1)τ)2 . . . (mτ)2

0 τ3 (2τ)3 . . . ((k − 2)τ)3 (kτ)3 ((k + 1)τ)3 . . . (mτ)3

...
...

...
...

...
...

...
...

...
0 τm (2τ)m . . . ((k − 2)τ)m (kτ)m ((k + 1)τ)m . . . (mτ)m

∣∣∣∣∣∣∣∣∣∣∣
= (−1)k

∣∣∣∣∣∣∣∣∣
τ2 (2τ)2 . . . ((k − 2)τ)2 (kτ)2 ((k + 1)τ)2 . . . (mτ)2

τ3 (2τ)3 . . . ((k − 2)τ)3 (kτ)3 ((k + 1)τ)3 . . . (mτ)3

...
...

...
...

...
...

...
...

τm (2τ)m . . . ((k − 2)τ)m (kτ)m ((k + 1)τ)m . . . (mτ)m

∣∣∣∣∣∣∣∣∣

= (−1)kτ
(m+2)(m−1)

2

( m!

k − 1

)2

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1 1 1 . . . 1
1 2 . . . k − 2 k k + 1 . . . m
1 22 . . . (k − 2)2 k2 (k + 1)2 . . . m2

...
...

...
...

...
...

...
...

1 2m−2 . . . (k − 2)m−2 km−2 (k + 1)m−2 . . . mm−2

∣∣∣∣∣∣∣∣∣∣∣
.
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The last determinant we have obtained is the Vantermonde determinant. Therefore, we finally obtain
formula (2.19).

From (2.18) and (2.19), we get

A21 = −τ
(m+2)(m−1)

2 m!

× F (m)
( 1

(m− 1)!
− 1

22
· 1

1! (m− 2)!
+

1

32
· 1

2! (m− 3)!
+ · · ·+ (−1)m+1 1

m2
· 1

(m− 1)!

)
. (2.20)

Formulas (2.20), (2.17), (2.18) and (2.19) yield (2.13), (2.14).
It can be shown that if u(t) is an abstract function and we expand u(t−τ), u(t−2τ), . . . , u(t−mτ)

by the Taylor formula, then, applying the method of undetermined coefficients, we obtain a system
whose solutions enable us to obtain the same values of coefficients that are given by formulas (2.13),
(2.14).

As a result, equation (2.1) takes at the point t = tk the following form:

a0uk + a1uk−1 + a2uk−2 + · · ·+ amuk−m

τ
+Au(tk) = f(tk)− τmRk(τ, u), (2.21)

where k = m, . . . , n, ai = τci, i = 0, 1, . . . ,m, Rk(τ, u) ∈ H.
From (2.12), applying Newton’s second interpolation formula, we obtain

u′(tk) =
∆uk−1

τ
+
τ

2

∆2uk−2

τ2
+
τ2

3

∆3uk−3

τ3
+· · ·+ τm−1

m

∆muk−m

τm
+τmRk(τ, u), Rk(τ, u) ∈ H. (2.22)

By virtue of (2.22), equality (2.21) can be rewritten as follows:

uk − uk−1

τ
+Auk +

m∑
i=2

τ i−1

i

∆iuk−i

τ i
= fk − τmRk(τ, u). (2.23)

Now, applying the perturbation method, from (2.23) we obtain the following algorithm for an
approximate solution of problem (2.1), (2.2):

u
(0)
k − u

(0)
k−1

τ
+Au

(0)
k = fk, u

(0)
0 = u0, k = 1, . . . , n, (2.24)

u
(1)
k − u

(1)
k−1

τ
+Au

(1)
k = −1

2

∆2u
(0)
k−2

τ2
, k = 2, . . . , n, (2.25)

u
(2)
k − u

(2)
k−1

τ
+Au

(2)
k = −

3∑
i=2

1

i

∆iu
(3−i)
k−i

τ i
, k = 3, . . . , n, (2.26)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

u
(p)
k − u

(p)
k−1

τ
+Au

(p)
k = −

p+1∑
i=2

1

i

∆iu
(p+1−i)
k−i

τ i
, k = p+ 1 . . . , n, (2.27)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

u
(m−1)
k − u

(m−1)
k−1

τ
+Au

(m−1)
k = −

m∑
i=2

1

i

∆iu
(m−i)
k−i

τ i
, k = m, . . . , n, (2.28)

u
(m)
k − u

(m)
k−1

τ
+Au

(m)
k = −1

2

∆2u
(m−1)
k−2

τ2
− 1

3

∆3u
(m−2)
k−3

τ3
− · · · − 1

m

∆mu
(1)
k−m

τm
+Rk.

An approximate solution of problem (2.1), (2.2) is defined by the formula

vk =

m−1∑
i=0

τ iu
(i)
k , k = m, . . . , n. (2.29)
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Note that in scheme (2.25), the starting vector u
(1)
1 is defined from the equality v1 = u

(0)
1 + τu

(1)
1 ,

where u
(0)
1 is found by scheme (2.24), and v1 is an approximate value of u(t1) with an accuracy of

O(τm). In a similar way, the starting vector u(2)
2 is defined from the equality v2 = u

(0)
2 +τu

(1)
2 +τ2u

(2)
2 ,

where u
(0)
2 and u

(1)
2 are found, respectively, by schemes (2.24), (2.25), while v2 is an approximate value

of u(t2) with an accuracy of O(τm). Continuing this process of defining the starting vectors for
schemes (2.25)–(2.28), the starting vector u

(m−1)
m−1 is defined in a similar way from the equality

vm−1 = u
(0)
m−1 + τu

(1)
m−1 + τ2u

(2)
m−1 + · · ·+ τm−1u

(m−1)
m−1 ,

where u
(0)
m−1, u

(1)
m−1, . . . , u

(m−2)
m−1 are found, respectively, by schemes (2.24)–(2.27), while vm−1 is an

approximate value of u(tm−1) with an accuracy of O(τm).

3 A priori estimate for the approximate solution error
Let us first estimate the residual of the purely implicit (m+ 1)-layer scheme for solutions of schemes
(2.24)–(2.29).

Equations (2.25), (2.26), . . . , (2.27), . . . , (2.28) are multiplied, respectively, by τ, τ2, . . . , τp, . . . , τm−1

and the results are added to (2.24). So, we get that vk is a solution of the following system of equations:

vk − vk−1

τ
+Avk = fk − τ

2

∆2u
(0)
k−2

τ2
− τ2

3∑
i=2

1

i

∆iu
(3−i)
k−i

τ i
− τ3

4∑
i=2

1

i

∆iu
(4−i)
k−i

τ i
− · · ·

− τp
p+1∑
i=2

1

i

∆iu
(p+1−i)
k−i

τ i
− · · · −τm−1

m∑
i=2

1

i

∆iu
(m−i)
k−i

τ i
, k=m, . . . , n. (3.1)

This system can be rewritten as follows:

vk − vk−1

τ
+Avk +

m∑
i=2

τ i−1

i

∆ivk−i

τ i
= fk + R̃k(τ), (3.2)

where

R̃k(τ) =

m∑
i=2

τ i−1

i

∆ivk−i

τ i
− τ

2

∆2u
(0)
k−2

τ2
− τ2

3∑
i=2

1

i

∆iu
(3−i)
k−i

τ i

− τ3
4∑

i=2

1

i

∆iu
(4−i)
k−i

τ i
− · · · − τp

p+1∑
i=2

1

i

∆iu
(p+1−i)
k−i

τ i
− · · · − τm−1

m∑
i=2

1

i

∆iu
(m−i)
k−i

τ i
.

By virtue of (2.23), equality (3.2) can be represented as
a0vk + a1vk−1 + a2vk−2 + · · ·+ amvk−m

τ
+Avk = fk + R̃k(τ), k = m+ 2, . . . , n. (3.3)

Therefore, R̃k(τ) is the residual of the purely implicit (m+1) -layer scheme for solutions of schemes
(2.24)–(2.29) (see (2.21)).

Taking (2.29) into account, the following is obvious:

R̃k(τ) =

m−1∑
i=0

τ i+1

2

∆2u
(i)
k−2

τ2
+

m−1∑
i=0

τ i+2

3

∆3u
(i)
k−3

τ3
+ · · ·

+

m−1∑
i=0

τ i+m−1

m

∆mu
(i)
k−m

τm
− τ

2

∆2u
(0)
k−2

τ2
−

3∑
i=2

τ2

i

∆iu
(3−i)
k−i

τ i
−

4∑
i=2

τ3

i

∆iu
(4−i)
k−i

τ i
− · · ·

−
p+1∑
i=2

τp

i

∆iu
(p+1−i)
k−i

τ i
− · · · −

m∑
i=2

τm−1

i

∆iu
(m−i)
k−i

τ i
,
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=

m−1∑
i=0

τ i+1

2

∆2u
(i)
k−2

τ2
+

m−1∑
i=0

τ i+2

3

∆3u
(i)
k−3

τ3
+ · · ·+

m−1∑
i=0

τ i+m−1

m

∆mu
(i)
k−m

τm

−
m−1∑
j=1

τ j

2

∆2u
(j−1)
k−2

τ2
−

m−1∑
j=2

τ j

3

∆3u
(j−2)
k−3

τ3
−

m−1∑
j=3

τ j

4

∆4u
(j−3)
k−4

τ4
− · · · − τm−1

m

∆mu0
k−m

τm

=
( m∑

j=1

τ j

2

∆2u
(j−1)
k−2

τ2
−

m−1∑
j=1

τ j

2

∆2u
(j−1)
k−2

τ2

)
+
(m+1∑

j=2

τ j

3

∆3u
(j−2)
k−3

τ3
−

m−1∑
j=2

τ j

3

∆3u
(j−2)
k−3

τ3

)

+
(m+2∑

j=3

τ j

4

∆4u
(j−3)
k−4

τ4
−

m−1∑
j=3

τ j

4

∆4u
(j−3)
k−4

τ4

)
+ · · ·

+
( 2m−2∑

j=m−1

τ j

m

∆mu
(j−(m−1))
k−m

τm
− τm−1

m

∆mu
(0)
k−m

τm

)

= τm
(1
2

∆2u
(m−1)
k−2

τ2
+

1

3

∆3u
(m−2)
k−3

τ3
+

τ

3

∆3u
(m−1)
k−3

τ3
+

1

4

∆4u
(m−3)
k−4

τ4

+
τ

4

∆4u
(m−2)
k−4

τ4
+

τ2

4

∆4u
(m−1)
k−4

τ4
+ · · ·+

2m−2∑
j=m

τ j−m

m

∆mu
(j−(m−1))
k−m

τm

)
. (3.4)

Analogously to the proof given in [25], we prove the validity of the estimate

∥R̃k(τ)∥ ≤ cτm, c = const > 0, k = m+ 2, . . . , n. (3.5)

Furthermore, for the error zk = u(tk)− vk, from (2.21) and (3.3) we obtain

a0zk + a1zk−1 + a2zk−2 + · · ·+ amzk−m

τ
+Azk = rk(τ), k = m+ 2, . . . , n, (3.6)

where
rk(τ) = −(τmRk(τ, u) + R̃k(τ)).

Remark 3.1. With (3.5) taken into account, we conclude that if the solution of problem (2.1), (2.2)
is smooth enough, then ∥rk(τ)∥ = O(τm).

Since A is a self-adjoint positive-definite operator and a0 > 0, we have that the operator a0I + τA
is continuously invertible and (3.6) implies

zk = −a1Lzk−1 − a2Lzk−2 − · · · − amLzk−m + τLrk(τ), k = m+ 2, . . . , n, (3.7)

where L = (a0I + τA)−1.
Let us consider the characteristic equation associated with the differential equation (3.7)

λm − 1(s)λ
m−1 − · · · − m−1(s)λ− m(s) = 0, (3.8)

where s ∈ [0,+∞),
i(s) = ai(a0 + s)−1, i = 1, . . . ,m.

The following theorem is valid (see [23]).

Theorem 3.1. Let for any s ∈ [0,+∞), the roots of equation (3.8), with the exception perhaps of
one, belong to the same circle which lies inside the unit circle, and the excepted root belong to the unit
circle. Then the estimate

∥zk+2∥ ≤ c
(m+1∑

i=2

∥zi∥+ τ

k∑
i=m

∥ri+2(τ)∥
)
, c = const > 0, (3.9)

is valid, where k = m, . . . , n− 2.
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Based on the a priori estimate (3.9), the following theorem is formulated.

Theorem 3.2. Let A be a self-adjoint positive-definite operator in the space H and let the solution of
problem (2.1), (2.2) be a smooth enough function. Then, if ∥u(tk) − vk∥ = O(τm), k = 1, . . . ,m + 1,
the estimate

∥u(tk)− vk∥ = O(τm), k = m+ 2, . . . , n, (3.10)

is true.

4 Realization of the perturbation algorithm
in the parallel mode

From the standpoint of realization, one of the positive properties of the perturbation algorithm is
that it allows us to execute computations in the parallel mode. We mean a possibility to organize
the computation process in such a way that in order to obtain the outcome of algorithm realization,
certain computations might be performed in the parallel mode, which essentially saves the processing
time and speeds up to the output delivery.

In the scientific literature, topics of parallel processing were discussed long before the appearance of
appropriate computational technologies. Today, when the existence of cluster computers has become
the reality, the simultaneous execution of different parts of the algorithm has become quite a topical
issue [5, 8, 10,29].

Let us consider algorithm (2.24)–(2.29).
Note that to define u

(1)
2 from (2.25), together with the initial value of u(1)

1 , we must have the values
of u(0)

0 , u(0)
1 , u(0)

2 (but not the values of all u(0)
k , k = 1, . . . , n). Analogously, to define u

(1)
3 , we must

have the values of u(0)
1 , u(0)

2 , u(0)
3 (but not the values of all u(0)

k , k = 1, . . . , n), and so on. To define
u
(1)
n , we must have the values of u(0)

n−2, u(0)
n−1, u(0)

n (but not the values of all u(0)
k , k = 1, . . . , n).

Hence we conclude that after having calculated the value of u(0)
2 from (2.24), we can, in a parallel

mode with (2.24), start the realization of formula (2.25).
Further, note that to define u

(2)
3 from (2.26), together with the initial value of u(2)

2 , we must have
the values of u(1)

1 , u(1)
2 , u(1)

3 and u
(0)
0 , u(0)

1 , u(0)
2 , u(0)

3 (but not the values of all u(1)
k , k = 2, . . . , n or

u
(0)
k , k = 1, . . . , n). Analogously, to define u

(2)
4 , we need to have the values of u(1)

2 , u(1)
3 , u(1)

4 and u
(0)
1 ,

u
(0)
2 , u(0)

3 , u(0)
4 (but not the values of all u(1)

k , k = 2, . . . , n or u
(0)
k , k = 1, . . . , n), and so on. To define

u
(2)
n , we need to have the values of u(1)

n−2, u(1)
n−1, u(1)

n and u
(0)
n−3, u(0)

n−2, u(0)
n−1, u(0)

n (but not the values of
all u(1)

k , k = 2, . . . , n or u
(0)
k , k = 1, . . . , n).

Hence we conclude that after calculating the value of u(1)
3 from (2.25), we can, in the parallel mode

with (2.25), start the realization of formula (2.26).
Continuing an analogous reasoning, we conclude that formulas (2.24)–(2.28) can be realized in the

parallel mode (with a delay). Also, note that formula (2.29) is likewise involved in the process of
parallelization.

An easy analysis shows that the parallel execution of the perturbation algorithm (2.24)–(2.29)
essentially reduces the time of realization of the entire algorithm.
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