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MULTIPLE POSITIVE SOLUTIONS
FOR FRACTIONAL BOUNDARY VALUE PROBLEMS
WITH INTEGRAL BOUNDARY CONDITIONS



Abstract. In this paper, we study the existence of two or three positive solutions of a class of boundary
value problems of nonlinear fractional differential equations with integral boundary conditions. To
state our results, we use the functional-type cone expansion-compression fixed point theorem and the
Leggett–Williams fixed point theorem, respectively. In addition, we show the effectiveness of the main
result by using some examples.
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რეზიუმე. ნაშრომში შესწავლილია არაწრფივი წილადური დიფერენციალური განტოლებების-
თვის დასმული სასაზღვრო ამოცანების ერთი კლასის ორი ან სამი დადებითი ამონახსნის
არსებობა ინტეგრალური სასაზღვრო პირობებით. შედეგების დასაფიქსირებლად, შესაბამისად,
გამოყენებულია ფუნქციური ტიპის კონუსის გაფართოება-შეკუმშვის უძრავი წერტილის თეო-
რემა და ლეგეტ-უილიამსის უძრავი წერტილის თეორემა. გარდა ამისა, რამდენიმე მაგალითის
მოყვანის საშუალებით ნაჩვენებია ძირითადი შედეგის ეფექტურობა.
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1 Introduction
Fractional calculus has been applied to many fields of sciences and engineering, physics, chemistry,
polymer rheology, electrical circuits, biology, control theory, etc. There are several books and mono-
graphs devoted to the development of fractional calculus (see, e.g.,e Kilbas et al. [13], Diethelm and
Freed [7], Podlubny [16], [17], Miller and Ross [15], Samko et al. [18]). Recently, many results were
obtained by proving the existence of solutions of different types of nonlinear fractional differential
equation (see [2, 6, 12,19–21]).

Integral boundary conditions have various applications in different real phenomena as blood flow
problems, chemical engineering, underground water flow, thermo-elasticity. For more details, we refer
the reader to [1, 3–5,8, 10,11,22].

Motivated by the above-mentioned works, in this paper we investigate the existence of multiple
solutions of the following nonlinear fractional differential equation with integral boundary conditions:

Dδ
0+u(t) + f(t, u(t)) = 0, 0 < t < 1, (1.1)

u(0) = 0, u(1) = λ

1∫
0

u(s) ds, (1.2)

where 1 < δ ≤ 2, λ > 0, λ ̸= δ, Dδ
0+ is the Riemann–Liouville fractional derivative and f is a continuous

function. Using some fixed point theorems on a cone, we will prove the existence of multiple positive
solutions for the fractional boundary value problem (1.1), (1.2) under certain sufficient conditions.

The paper is organized as follows. In Section 2, we recall some definitions concerning the fractional
integrals and the fractional derivatives. Our main results are given in Section 3. Some examples are
introduced in the last Section 4.

2 Preliminaries
In this section, we give some necessary definitions from the fractional calculus theory. These definitions
can be found in recent literature. For details see [13,16,18].

Definition 2.1. [16] The Riemann–Liouville fractional integral operator of order δ > 0 for a function
f : (0,+∞) → R is defined as

Iδ0+f(t) =
1

Γ(δ)

t∫
0

(t− s)δ−1f(s) ds,

provided that the right-hand side is pointwise defined on (0,+∞).

Definition 2.2 ( [16]). The Riemann–Liouville fractional derivative operator of order δ > 0 of a
continuous function f : (0,+∞) → R is given by

Dδ
0+f(t) =

1

Γ(n− δ)

( d

dt

)n
t∫

0

(t− s)n−δ−1f(s) ds,

where n = [δ] + 1, [δ] denotes the integral part of the number δ, provided the right-hand side is
pointwise defined on (0,+∞).

Lemma 2.1 ([16]). Assume that f ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of order δ > 0 that
belongs to C(0, 1) ∩ L(0, 1). Then

Iδ0+D
δ
0+f(t) = f(t) + c1t

δ−1 + c2t
δ−2 + · · ·+ cnt

δ−n,

where ci ∈ R; i = 1, 2, . . . , n with n− 1 < δ ≤ n.
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Lemma 2.2. The fractional boundary value problem

Dδ
0+u(t) + y(t) = 0, 0 < t < 1, (2.1)

u(0) = 0, u(1) = λ

1∫
0

u(s) ds, (2.2)

where λ ̸= δ and y ∈ C[0, 1], has a unique solution u ∈ C[0, 1] given by

u(t) =

1∫
0

G(t, s)y(s) ds,

where

G(t, s) =


tδ−1(1− s)δ−1(δ + λs− λ)− (δ − λ)(t− s)δ−1

(δ − λ)Γ(δ)
, 0 ≤ s ≤ t ≤ 1,

tδ−1(1− s)δ−1(δ + λs− λ)

(δ − λ)Γ(δ)
, 0 ≤ t ≤ s ≤ 1,

(2.3)

and G is called Green’s function of the fractional boundary value problem.

Proof. From Lemma 2.1, we have the solution of (2.1), (2.2) given by

u(t) = − 1

Γ(δ)

t∫
0

(t− s)δ−1y(s) ds+ c1t
δ−1 + c2t

δ−2.

From u(0) = 0, we have c2 = 0, then

u(t) = − 1

Γ(δ)

t∫
0

(t− s)δ−1y(s) ds+ c1t
δ−1.

In particular, we obtain

c1 = u(1) +
1

Γ(δ)

1∫
0

(1− s)δ−1y(s) ds.

Therefore, we have

u(t) = − 1

Γ(δ)

t∫
0

(t− s)δ−1y(s) ds+ u(1)tδ−1 +
tδ−1

Γ(δ)

1∫
0

(1− s)δ−1y(s) ds.

Let ξ =
1∫
0

u(t) dt. Then, from the previous equality, using that u(1) = λξ, we conclude that

ξ = −
1∫

0

t∫
0

(t− s)δ−1

Γ(δ)
y(s) ds dt+ λ

1∫
0

1∫
0

tδ−1u(s) ds dt+

1∫
0

1∫
0

tδ−1 (1− s)δ−1

Γ(δ)
y(s) ds dt

= −
1∫

0

(1− s)δ

δΓ(δ)
y(s) ds+

λ

δ
ξ +

1∫
0

(1− s)δ−1

δΓ(δ)
y(s) ds.

Thus we have

ξ =
δ

δ − λ

1∫
0

s(1− s)δ−1

δΓ(δ)
y(s) ds,
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which implies that

c1 =

1∫
0

(1− s)δ−1(δ + λs− λ)

(δ − λ)Γ(δ)
y(s) ds.

Finally,

u(t) = −
t∫

0

(t− s)δ−1

Γ(δ)
y(s) ds+ tδ−1

1∫
0

(1− s)δ−1(δ + λs− λ)

(δ − λ)Γ(δ)
y(s) ds =

1∫
0

G(t, s)y(s) ds.

Lemma 2.3. Let G be the Green’s function related to problem (1.1), (1.2), which is given by expression
(2.3). Let ω ∈ (0, 1) be fixed, then for all 1 < δ ≤ 2 and 0 < λ < δ, the following properties are
fulfilled:

(i) G(t, s) > 0 for all t, s ∈ (0, 1).

(ii) There exists a positive function L ∈ C((0, 1), (0,+∞)) such that

max
0≤t≤1

G(t, s) ≤ δ(1− s)δ−1

(δ − λ)Γ(δ)
= L(s) for all s ∈ (0, 1).

(iii)
ω
λ

δ
sL(s) ≤ min

ω≤t≤1
G(t, s) for all s ∈ (0, 1).

(iv)
G(t, s) ≤ δ

(δ − λ)Γ(δ)
for all t, s ∈ [0, 1].

(v)
1∫

0

sL(s) ds > 0.

(vi) G(t, s) is a continuous function for all t, s ∈ [0, 1].

Proof. If 0 ≤ s ≤ t ≤ 1, then we have t− s ≤ t(1− s). Thus

(t− s)δ−1 ≤ tδ−1(1− s)δ−1.

(i) We can easily verify that for 0 < s ≤ t < 1 the following inequalities hold:

G(t, s) =
tδ−1(1− s)δ−1(δ + λs− λ)− (δ − λ)(t− s)δ−1

(δ − λ)Γ(δ)
>

tδ−1(1− s)δ−1λs

(δ − λ)Γ(δ)
> 0.

Also, for 0 < t ≤ s < 1,

G(t, s) =
tδ−1(1− s)δ−1(δ + λs− λ)

(δ − λ)Γ(δ)
> 0.

(ii) For all s ∈ (0, 1), we have

max
0≤t≤1

G(t, s) ≤ (1− s)δ−1(δ + λs− λ)

(δ − λ)Γ(δ)
≤ δ(1− s)δ−1

(δ − λ)Γ(δ)
= L(s).

(iii) First, assume that ω ≤ t ≤ s < 1, then we obtain

G(t, s)

L(s)
= tδ−1 λs+ δ − λ

δ
≥ tδ−1 λ

δ
s ≥ ωδ−1 λ

δ
s ≥ ω

λ

δ
s.
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Secondly, we have

G(t, s)

L(s)
=

tδ−1(1− s)δ−1(δ + λs− λ)− (δ − λ)(t− s)δ−1

δ(1− s)δ−1
≥ tδ−1(1− s)δ−1λs

δ(1− s)δ−1
= tδ−1 λ

δ
s.

As in the previous case, it is not difficult to verify that

G(t, s) ≥ ω
λ

δ
sL(s) ∀ t ∈ [ω, 1].

Then
ω
λ

δ
sL(s) ≤ min

ω≤t≤1
G(t, s) for all s ∈ (0, 1).

(iv) If t, s ∈ [0, 1], then we have

G(t, s) ≤ tδ−1L(s) ≤ tδ−1 δ

(δ − λ)Γ(δ)
≤ δ

(δ − λ)Γ(δ)
.

(v) It is clear that
1∫

0

sL(s) ds =
δ

(δ − λ)Γ(δ)

1∫
0

s(1− s)δ−1 ds > 0.

(vi) It is obvious from the definition of the function G.

We will rely on the following fixed point theorems to demonstrate the main results.
First, we define the concept of a cone.

Definition 2.3 ([9]). Let E be a real Banach space. A nonempty closed convex set P ⊂ E is called
a cone if it satisfies the following two conditions:

(1) u ∈ P , λ ≥ 0 implies λu ∈ P ;

(2) u ∈ P , −u ∈ P implies u = θ, where θ denotes the zero element of E.

Lemma 2.4 ([9]). Let E be an ordered Banach space and let P ⊂ E be a cone and suppose that
Ω1, Ω2 and Ω3 are bounded open subsets of E with θ ∈ Ω1, Ω1 ⊂ Ω2, Ω2 ⊂ Ω3. Moreover, let
T : P ∩ (Ω3 \ Ω1) → P be a completely continuous operator such that:

(A1) ∥Tu∥ ≥ ∥u∥ ∀u ∈ P ∩ ∂Ω1;

(A2) ∥Tu∥ ≤ ∥u∥ Tu ̸= u, ∀u ∈ P ∩ ∂Ω2;

(A3) ∥Tu∥ ≥ ∥u∥ ∀u ∈ P ∩ ∂Ω3.

Then T has at least two fixed points u∗ and u∗∗ in P ∩ (Ω3 \ Ω1); moreover, u∗ ∈ P ∩ (Ω2 \ Ω1) and
u∗∗ ∈ P ∩ (Ω3 \ Ω2).

Definition 2.4. We say that the map α is a nonnegative continuous concave functional on a cone P
of a real Banach space E provided that α : P → [0,+∞) is continuous and

α(tu+ (1− t)v) ≥ tα(u) + (1− t)α(v),

for all u, v ∈ P and 0 ≤ t ≤ 1.
Let

P (α, b, d) =
{
u ∈ P : b ≤ α(u), ∥u∥ ≤ d

}
.

Theorem 2.1 ((Leggett–Williams) [14]). Let P be a cone in a real Banach space E, P c = {u ∈
P : ∥u∥ ≤ c}, α be a nonnegative continuous concave positive functional on a cone P such that
α(u) ≤ ∥u∥ for all u ∈ P c. Suppose T : P c → P c is completely continuous and there exist the
constants 0 < a < b < d ≤ c such that:
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(B1) {u ∈ P (α, b, d) : α(u) > b} ̸= ∅ and α(Tu) > b for u ∈ P (α, b, d);

(B2) ∥Tu∥ < a for u ∈ P a;

(B3) α(Tu) > b for u ∈ P (α, b, c) with ∥Tu∥ > d.

Then T has at least three fixed points u1, u2 and u3 such that ∥u1∥ < a, b < α(u2), ∥u3∥ > a with
α(u3) < b.

3 Existence of two or three positive solutions
This section is devoted to proving the existence results for our problem (1.1), (1.2).

For the convenience, we introduce the following notations:

K =
1

Γ(δ)
+

1

(δ − λ)Γ(δ − 1)
,

G =

( 1∫
0

L(s) ds

)−1

, (3.1)

H =

(
ω
λ

δ

1∫
ω

sL(s) ds

)−1

. (3.2)

Let E = (C[0, 1], ∥ · ∥) be the Banach space, where ∥u∥ = max
0≤t≤1

|u(t)|. Define the cone P ⊂ E by

P =
{
u ∈ E : u(t) ≥ 0, t ∈ [0, 1]

}
.

Define now the operator T : E → E as

Tu(t) =

1∫
0

G(t, s)f(s, u(s)) ds, (3.3)

with G defined in (2.3).
Note that the fixed points of the operator T are the solutions of problem (1.1), (1.2).

Lemma 3.1. Assume that f ∈ C([0, 1]× [0,+∞), [0,+∞)). The operator T : P → P defined by (3.3)
is completely continuous.

Proof. Since G(t, s) ≥ 0, we haven Tu(t) ≥ 0 for all u ∈ P .
The operator T : P → P is continuous in view of the continuity of G(t, s) and f(s, u(s)). There

exists a positive R > 0 such that M = {u ∈ P : ∥u∥ ≤ R}. Let

N = max
0≤t≤1, 0≤u≤R

|f(t, u)|+ 1.

Then for u ∈ M, using Lemma 2.3 part (iv), the following inequality holds:

|Tu(t)| =
∣∣∣∣

1∫
0

G(t, s)f(s, u(s)) ds

∣∣∣∣ ≤ N

1∫
0

G(t, s) ds ≤ Nδ

(δ − λ)Γ(δ)
for all t ∈ [0, 1].

Hence T (M) is bounded in E.
On the other hand, given ϵ > 0, set

η =
1

2

( (δ − 1)ϵ

NK

)1/(δ−1)

.
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For any u ∈ M, we have

|(Tu)′(t)| =
∣∣∣∣−

t∫
0

(t− s)δ−2

Γ(δ − 1)
f(s, u(s)) ds+ tδ−2

1∫
0

(1− s)δ−1(δ + λs− λ)

(δ − λ)Γ(δ − 1)
f(s, u(s)) ds

∣∣∣∣
<

N

Γ(δ − 1)

t∫
0

(t− s)δ−2 ds+
Ntδ−2

(δ − λ)Γ(δ − 1)

1∫
0

(1− s)δ−1(δ + λs− λ) ds

≤ N

Γ(δ − 1)

t∫
0

(t− s)δ−2 ds+
Nδtδ−2

(δ − λ)Γ(δ − 1)

1∫
0

(1− s)δ−1 ds

≤ Ntδ−1

Γ(δ)
+

Ntδ−2

(δ − λ)Γ(δ − 1)
≤ N

( 1

Γ(δ)
+

1

(δ − λ)Γ(δ − 1)

)
tδ−2 ≤ NKtδ−2.

Now we prove that whenever t1, t2 ∈ [0, 1] and 0 < t2 − t1 < η, then

|Tu(t2)− Tu(t1) < ϵ.

In fact,

|Tu(t2)− Tu(t1)| ≤
t2∫

t1

|(Tu)′(s)| ds < NK

t2∫
t1

sδ−2 ds ≤ NK

δ − 1
(tδ−1

2 − tδ−1
1 ).

In order to estimate tδ−1
2 − tδ−1

1 , we can use a method applied in [2]. We have two cases.

Case 1. η ≤ t1 < t2 < 1. Then

|Tu(t2)− Tu(t1)| <
NK

δ − 1
(tδ−1

2 − tδ−1
1 ) ≤ NK

δ − 1

δ − 1

η2−δ
(t2 − t1) ≤ NKηδ−1 < ϵ.

Case 2. 0 ≤ t1 < η, t2 < 2η. Then

|Tu(t2)− Tu(t1)| <
NK

δ − 1
(tδ−1

2 − tδ−1
1 ) ≤ NK

δ − 1
tδ−1
2 ≤ NK

δ − 1
(2η)δ−1 ≤ ϵ.

Thus the set T (M) is equicontinuous in E.
Now from the Arzelà–Ascoli Theorem we conclude that T (M) is compact, so the operator T :

P → P is completely continuous.

In the first result, we will show the existence of at least two positive solutions of problem (1.1), (1.2).

Theorem 3.1. Assume that f ∈ C([0, 1] × [0,+∞), [0,+∞)). There exist three positive constants
0 < σ1 < σ2 < σ3 such that:

(C1) f(t, u) ≥ Hσ1 for (t, u) ∈ [0, 1]× [0, σ1];

(C2) f(t, u) ≤ Gσ2 for (t, u) ∈ [0, 1]× [0, σ2];

(C3) f(t, u) ≥ Hσ3 for (t, u) ∈ [0, 1]× [0, σ3].

Then problem (1.1), (1.2) has at least two positive solutions u∗, u∗∗ ∈ P with

σ1 ≤ ∥u∗∥ < σ2 and σ2 < ∥u∗∗∥ ≤ σ3.
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Proof. We know that T : P → P is completely continuous by Lemma 3.1.
Now, we divide the proof into three steps.

Step 1. Let Ω1 = {u ∈ P : ∥u∥ < σ1}. For any u ∈ P ∩ ∂Ω1, we have ∥u∥ = σ1 and 0 ≤ u(t) ≤ σ1

for all t ∈ [0, 1]. It follows from condition (C1) and Lemma 2.3 part (iii) that

∥Tu∥ = max
0≤t≤1

∣∣∣∣
1∫

0

G(t, s)f(s, u(s)) ds

∣∣∣∣
≥ max

ω≤t≤1

∣∣∣∣
1∫

0

G(t, s)f(s, u(s)) ds

∣∣∣∣ ≥ Hσ1

[
ω
λ

δ

1∫
ω

sL(s) ds

]
= σ1 = ∥u∥,

which implies that ∥Tu∥ ≥ ∥u∥ ∀u ∈ P ∩ ∂Ω1.
Step 2. Let Ω2 = {u ∈ P : ∥u∥ < σ2}. For any u ∈ P ∩ ∂Ω2, we have 0 ≤ u(t) ≤ σ2 for all t ∈ [0, 1].
It follows from condition (C2) and Lemma 2.3 part (ii) that for t ∈ [0, 1],

∥Tu∥ = max
0≤t≤1

∣∣∣∣
1∫

0

G(t, s)f(s, u(s)) ds

∣∣∣∣ ≤
1∫

0

L(s)f(s, u(s)) ds ≤ Gσ2

[ 1∫
0

L(s) ds

]
= σ2 = ∥u∥,

so, ∥Tu∥ ≤ ∥u∥ ∀u ∈ P ∩ ∂Ω2.
Step 3. Let Ω3 = {u ∈ P : ∥u∥ < σ3}. For any u ∈ P ∩ ∂Ω3, we have ∥u∥ = σ3, then 0 ≤ u(t) ≤ σ3

for all t ∈ [0, 1]. By condition (C3), we have

∥Tu∥ = max
0≤t≤1

∣∣∣∣
1∫

0

G(t, s)f(s, u(s)) ds

∣∣∣∣
≥ max

ω≤t≤1

∣∣∣∣
1∫

0

G(t, s)f(s, u(s)) ds

∣∣∣∣ ≥ Hσ3

[
ω
λ

δ

1∫
ω

sL(s) ds

]
= σ3 = ∥u∥,

which implies that ∥Tu∥ ≥ ∥u∥ ∀u ∈ P ∩ ∂Ω3.
By Lemma 2.4, T has at least two fixed points u∗ and u∗∗ in P ∩(Ω3\Ω1), then problem (1.1), (1.2)

has at least two positive solutions u∗, u∗∗ ∈ P such that

σ1 ≤ ∥u∗∥ < σ2 and σ2 < ∥u∗∗∥ ≤ σ3.

Secondly, we prove the existence of at least three positive solutions of problem (1.1), (1.2).
Let the nonnegative continuous concave positive functional α on the cone P be defined by

α(u) = min
ω≤t≤1

|u(t)|.

It is obvious that, ∀u ∈ P α(u) ≤ ∥u∥.

Theorem 3.2. Assume that f ∈ C([0, 1] × [0,+∞), [0,+∞)). Let ω ∈ (0, 1) and there exist the
constants 0 < a < b < c such that:

(H1) f(t, u) < Ga for (t, u) ∈ [0, 1]× [0, a];

(H2) f(t, u) ≥ Hb for (t, u) ∈ [ω, 1]× [b, c];

(H3) f(t, u) ≤ Gc for (t, u) ∈ [0, 1]× [0, c].

Then problem (1.1), (1.2) has at least three positive solutions u1, u2 and u3 with

max
0≤t≤1

|u1(t)| < a, b < min
ω≤t≤1

|u2(t)| < max
0≤t≤1

|u2(t)| ≤ c,

a < max
0≤t≤1

|u3(t)| ≤ c, min
ω≤t≤1

|u3(t)| < b.
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Proof. We show that all conditions of Theorem 2.1 are satisfied. Let u ∈ P c then ∥u∥ ≤ c and by
(H3) with Eq. (3.1), we have

∥Tu∥ = max
0≤t≤1

∣∣∣∣
1∫

0

G(t, s)f(s, u(s)) ds

∣∣∣∣ ≤
1∫

0

L(s)f(s, u(s)) ds ≤
1∫

0

L(s)Gcds = c.

Hence T : P c → P c and, by Lemma 3.1, it is completely continuous.
Let d be a fixed constant such that b < d ≤ c. We can easily see that u(t) = d ∈ P (α, b, d),

α(u) = α(d) > b, consequently, {u ∈ P (α, b, d) : α(u) > b} ̸= ∅. Let u ∈ P (α, b, c), then b ≤ u(t) ≤ c
for t ∈ [ω, 1]. With assumption (H2) and Eq. (3.2), we obtain

α(Tu) = min
ω≤t≤1

1∫
0

G(t, s)f(s, u(s)) ds ≥ ω
λ

δ

1∫
0

sL(s)f(s, u(s)) ds > ω
λ

δ

1∫
ω

sL(s)Hbds.

Therefore, we have α(Tu) > b ∀u ∈ P (α, b, c). Hence, condition (B1) from Theorem 2.1 holds.
Now, we show that condition (B2) of Theorem 2.1 is satisfied. If u ∈ P a =⇒ ∥u∥ ≤ a, assumption

(H1) implies that f(t, u) < Ga for t ∈ [0, 1]. Thus

∥Tu∥ = max
0≤t≤1

∣∣∣∣
1∫

0

G(t, s)f(s, u(s)) ds

∣∣∣∣ ≤
1∫

0

L(s)f(s, u(s)) ds <

1∫
0

L(s)Gads = a.

This implies that condition (B2) from Theorem 2.1 is satisfied.
Finally, we prove that condition (B3) of Theorem 2.1 is satisfied. If u ∈ P (α, b, c) with ∥Tu∥ > d,

then b ≤ u(t) ≤ c for ω ≤ t ≤ 1. From assumption (H2), we have

α(Tu) = min
ω≤t≤1

1∫
0

G(t, s)f(s, u(s)) ds ≥ ω
λ

δ

1∫
0

sL(s)f(s, u(s)) ds > ω
λ

δ

1∫
ω

sL(s)Hbds = b.

Thus condition (B3) from Theorem 2.1 is also satisfied.
By Theorem 2.1, problem (1.1), (1.2) has at least three positive solutions u1, u2 and u3 with

max
0≤t≤1

|u1(t)| < a, b < min
ω≤t≤1

|u2(t)| < max
0≤t≤1

|u2(t)| ≤ c,

a < max
0≤t≤1

|u3(t)| ≤ c, min
ω≤t≤1

|u3(t)| < b.

4 Examples
In this section, we present some examples to illustrate the previous results.

Example 4.1. Let δ = 3
2 and λ = 1. Consider the following fractional boundary value problem:

D
3/2
0+ u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) =

1∫
0

u(s)ds,
(4.1)

where
f(t, u) =

u3

9
+

et

10
.

Let ω = 1
2 . We have

G ≈ 0.4431 and H ≈ 5.3713.

Choosing σ1 = 1
70 , σ2 = 1 and σ3 = 8, we get
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(C1)
′ f(t, u) =

u3

9
+

et

10
> 0.1 ≥ Hσ1 ≈ 0.076 for t ∈ [0, 1] and ∥u∥ =

1

70
;

(C2)
′ f(t, u) =

u3

9
+

et

10
≤ 0.383 ≤ Gσ2 ≈ 0.4431 for t ∈ [0, 1] and ∥u∥ = 1;

(C3)
′ f(t, u) =

u3

9
+

et

10
≥ 56.9 ≥ Hσ3 ≈ 42.97 for t ∈ [0, 1] and ∥u∥ = 8.

With the use of Theorem 3.1, problem (4.1) has at least two positive solutions u∗ and u∗∗ such that

1

70
≤ ∥u∗∥ < 1 and 1 < ∥u∗∗∥ ≤ 8.

Example 4.2. Let δ = 3
2 and λ = 1. Now, we consider the following problem:

D
3/2
0+ u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) =

1∫
0

u(s) ds,
(4.2)

where

f(t, u) =


1

15
t2 + 6u4, u < 1,

47

8
+

1

15
t2 +

u

8
, u ≥ 1.

Let ω = 1
2 . We have

G ≈ 0.4431 and H ≈ 5.3713.

Choosing a = 1
4 , b = 1 and c = 20, we have:

(H1)
′ f(t, u) =

1

15
t2 + 6u4 ≤ 0.091 < Ga ≈ 0.1107 for (t, u) ∈ [0, 1]× [0, 1/4];

(H2)
′ f(t, u) =

47

8
+

1

15
t2 +

u

8
≥ 6.016 > Hb ≈ 5.3713 for (t, u) ∈ [1/2, 1]× [1, 20];

(H3)
′ f(t, u) =

47

8
+

1

15
t2 +

u

8
≤ 8.4417 < Gc ≈ 8.8622 for (t, u) ∈ [0, 1]× [0, 20].

With the use of Theorem 3.2, problem (4.2) has at least three positive solutions u1, u2 and u3 with

max
0≤t≤1

|u1(t)| <
1

4
, 1 < min

1/2≤t≤1
|u2(t)| < max

0≤t≤1
|u2(t)| ≤ 20,

1

4
< max

0≤t≤1
|u3(t)| ≤ 20, min

1/2≤t≤1
|u3(t)| < 1.

Example 4.3. Let δ = 3
2 and λ = 1

2 . Now, we have the boundary value problem:
D

3/2
0+ u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) =
1

2

1∫
0

u(s) ds,
(4.3)

where

f(t, u) =


1

20
t+ 25u3, u < 1,

99

4
+

1

20
t+

u

4
, u ≥ 1.
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Let ω = 1
3 . By a simple calculation, we obtain

G ≈ 0.8862 and H ≈ 24.4215.

Choosing a = 1
10 , b = 1 and c = 40, we have:

(H1)
′′ f(t, u) =

1

20
t+ 25u3 ≤ 0.075 < Ga ≈ 0.088 for (t, u) ∈ [0, 1]× [0, 1/10];

(H2)
′′ f(t, u) =

99

4
+

1

20
t+

u

4
≥ 25.0166 > Hb ≈ 24.4215 for (t, u) ∈ [1/3, 1]× [1, 40];

(H3)
′′ f(t, u) =

99

4
+

1

20
t+

u

4
≤ 34.8 < Gc ≈ 35.448 for (t, u) ∈ [0, 1]× [0, 40].

Then all conditions of Theorem 3.2 hold.
Thus by Theorem 3.2, problem (4.3) has at least three positive solutions u1, u2 and u3 with

max
0≤t≤1

|u1(t)| <
1

10
, 1 < min

1/3≤t≤1
|u2(t)| < max

0≤t≤1
|u2(t)| ≤ 40,

1

10
< max

0≤t≤1
|u3(t)| ≤ 40, min

1/3≤t≤1
|u3(t)| < 1.
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