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Abstract. We consider the multiplicity of the singular radial solutions to the equation of the form
ρ−1 div(ρ∇u) + λu + up = 0 in RN \ {0}, where N ≥ 3, ρ ∈ C1[0,∞), ρ > 0, on [0,∞), λ ∈ C[0,∞)
and p > N/(N − 2).
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1 Introduction
We consider singular solutions of the the following ordinary differential equation:

u′′ +
(N − 1

r
+ h(r)

)
u′ + λ(r)u+ up = 0 for r > 0, (1.1)

where N ≥ 3, h, λ ∈ C[0,∞) and p > 1. By a singular solution u(r) of (1.1), we mean that u(r) is a
classical solution of (1.1) for r > 0 and it satisfies u(r) → ∞ as r → 0. This problem comes from the
study of radial singular solutions of the semilinear elliptic equation

ρ(|x|)−1 div
(
ρ(|x|)∇u

)
+ λ(|x|)u+ up = 0 in RN \ {0}, (1.2)

where ρ ∈ C1[0,∞) satisfies ρ(r) > 0 for r ≥ 0. Define h(r) = ρ′(r)/ρ(r). Then the equation is
reduced to (1.1). Eq. (1.2) was studied in [3, 10, 11]. Typical examples of the equation of form (1.1)
are

u′′ +
(N − 1

r
+

r

2

)
u′ +

1

p− 1
u+ up = 0 for r > 0 (1.3)

and
u′′ +

(N − 1

r
− r

2

)
u′ − 1

p− 1
u+ up = 0 for r > 0. (1.4)

Equations (1.3) and (1.4) appear in the study of self-similar solutions to the nonlinear heat equation

wt = ∆w + wp (1.5)

for x ∈ RN and t > 0. Let u(r) be a solution of (1.3) and put

w(x, t) = t−1/(p−1)u
( |x|√

t

)
.

Then w solves (1.5) for t > 0, and w is called a forward self-similar solution. Now, let u(r) be a
solution of (1.4) and put

w(x, t) = t−1/(p−1)u
( |x|√

T − t

)
with some T > 0. Then w solves (1.5) for t < T , and w is called a backward self-similar solution. It is
well known that self-similar solutions play an important role in the study of the behavior of solutions to
(1.5), and equations (1.3) and (1.4) have been widely studied by many authors (see, e.g., [1,2,4–9,11]
and the references therein).

Let us mention that, in the case p > N/(N − 2), both (1.3) and (1.4) possess the singular solution

UA(r) = Ar−2/(p−1), where A =
{ 2

p− 1

(
N − 2− 2

p− 1

)}1/(p−1)

. (1.6)

It was shown by Quittner [7] that if u is a singular solution of (1.3) or (1.4) for r > 0, then u(r) ≡ UA(r)
provided p > (N + 2)/(N − 2). See also the previous result in [4] for (1.4). It was also shown by [7]
that, in the case p = (N + 2)/(N − 2), if u is a positive singular solution of (1.3) or (1.4) such that
the number of sign changes of u(r) − UA(r) is finite, then u(r) ≡ UA(r). On the other hand, in the
case N/(N − 2) < p < (N + 2)/(N − 2), the non-uniqueness of singular solutions was shown in [8,9].

In this paper, we consider the multiplicity of singular solutions to the generalized equation (1.1)
in the case p > N/(N − 2). First, we show the uniqueness of the singular solution to (1.1) in the case
p > (N + 2)/(N − 2). We note that UA(r) in (1.6) solves

u′′ +
N − 1

r
u′ + up = 0 for r > 0.

Then (1.1) has the singular solution UA(r) provided

h(r) =
p− 1

2
λ(r)r for r ≥ 0, (1.7)

since UA(r) satisfies h(r)U ′
A(r) + λ(r)UA(r) = 0 if (1.7) holds.
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Theorem 1.1. Let p > (N +2)/(N − 2) and let r0 > 0. Then (1.1) has at most one singular solution
for 0 < r ≤ r0. In particular, if (1.7) holds, (1.1) has a unique singular solution UA(r) for r > 0.

In the case p = (N+2)/(N−2), we obtain the following Liouville type result for singular solutions.

Theorem 1.2. Let p = (N + 2)/(N − 2) and let r0 > 0. Assume that h and λ satisfy (1.7). If u is a
singular solution of (1.1) for 0 < r ≤ r0 such that the number of sign changes of u(r)−UA(r) is finite
for 0 < r ≤ r0, then u(r) ≡ UA(r).

Finally, we consider the case where N/(N − 2) < p < (N + 2)/(N − 2).

Theorem 1.3. Let N/(N − 2) < p < (N +2)/(N − 2) and let r0 > 0. Then (1.1) has infinitely many
singular solutions of (1.1) for 0 < r ≤ r0. Furthermore, any singular solution u satisfies

u(r) = Ar−2/(p−1)(1 + o(1)) as r → 0, (1.8)

where A is the constant in (1.6).

The paper is organized as follows. In Section 2, we give some preliminary results, and in Section 3,
we investigate the asymptotic behavior of singular solutions. Finally, in Sction4, we give the proof of
Theorems 1.1, 1.2 and 1.3.

2 Preliminaries
2.1 Asymptotic estimates of singular solutions
In this subsection, we show the asymptotic estimates of singular solutions. Define f(r, u) by

f(r, u) = λ(r)u+ up for r ≥ 0, u ≥ 0. (2.1)

Take any r0 > 0 and fix it. Since λ(r) is bounded on [0, r0], there exist the constants u0 > 0,
Cf ≥ cf > 0 such that

0 < cfu
p ≤ f(r, u) ≤ Cfu

p for 0 ≤ r ≤ r0 and u ≥ u0. (2.2)

Define

H(r) =

r∫
0

h(s) ds for r ≥ 0.

Since h(r) is bounded on [0, r0], there exist the constants CH ≥ cH > 0 such that

cH ≤ H(r) ≤ CH for 0 ≤ r ≤ r0. (2.3)

We note here that (1.1) can be written as(
rN−1eH(r)u′)′ + rN−1eH(r)f(r, u) = 0 for r > 0. (2.4)

First, we show the following results.

Lemma 2.1. Let p > N/(N − 2) and let u be a singular solution of (1.1). Assume that

u(r) ≥ u0 for 0 < r ≤ r0, (2.5)

where u0 and r0 are the constants in (2.2). Then

u(r) ≤ C1r
−2/(p−1) and 0 < −u′(r) ≤ C2r

−(p+1)/(p−1) for 0 < r ≤ r0, (2.6)

where theconstants C1 and C2 are independent of u. Furthermore, u satisfies

−rN−1eH(r)u′(r) =

r∫
0

sN−1eH(s)f(s, u(s)) ds for 0 < r ≤ r0. (2.7)
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Proof. First, we show that u′(r) < 0 for 0 < r ≤ r0. From (2.2), (2.4) and (2.5), we have(
rN−1eH(r)u′(r)

)′
= −rN−1eH(r)f(r, u(r)) < 0 for 0 < r ≤ r0.

Then rN−1eH(r)u′(r) is decreasing in r ∈ (0, r0]. Assume by a contradiction that there exists r1 ∈
(0, r0] such that u′(r1) ≥ 0. Then we have rN−1eH(r)u′(r) > 0 for 0 < r < r1, and hence u′(r) > 0
for 0 < r < r1. This implies that u(r) < u(r1) for 0 < r < r1, which contradicts u(r) → ∞ as r → 0.
Thus we obtain u′(r) < 0 for 0 < r ≤ r0.

Take r1 ∈ (0, r0) arbitrarily. Integrating (2.4) on (r1, r) with r ≤ r0, we obtain

−rN−1eH(r)u′(r) = −rN−1
1 eH(r1)u′(r1) +

r∫
r1

sN−1eH(s)f(s, u(s)) ds >

r∫
r1

sN−1eH(s)f(s, u(s)) ds.

Since r1 > 0 is arbitrary, we obtain

−rN−1eH(r)u′(r) ≥
r∫

0

sN−1eH(s)f(s, u(s)) ds.

From (2.2) and (2.3) it follows that

−eCH rN−1u′(r) ≥ ecH cf

r∫
0

sN−1u(s)p ds ≥ ecH cfu(r)
p

r∫
0

sN−1 ds =
ecH cf
N

u(r)prN .

This implies that
− u′(r)

u(r)p
≥ C1r,

where C1 = ecH cf/(NeCH ) > 0. Integrating the above on [ρ, r] and letting ρ → 0, we obtain
u(r)1−p ≥ (p−1)

2 C1r
2, and hence

u(r) ≤ C2r
−2/(p−1), (2.8)

where C2 = ((p− 1)C1/2)
−1/(p−1). Next, we show that

lim inf
r→0

(−rN−1u′(r)) = 0. (2.9)

Assume to the contrary that lim inf
r→0

(−rN−1u′(r)) = c > 0. Then there exists r1 > 0 such that

−rN−1u′(r) ≥ c

2
for 0 < r ≤ r1.

Integrating the above on [r, r1], we obtain

u(r) ≥ u(r1) +
c

2(N − 2)
(r2−N − r2−N

1 ). (2.10)

Since p > N/(N − 2), we have 2/(p − 1) < N − 2. Hence (2.10) contradicts (2.8). Thus we obtain
(2.9).

By (2.9), there exists rk → 0 such that rN−1
k u′(rk) → 0 as k → ∞, Integrating (2.4) on [rk, r] and

letting k → ∞, we obtain (2.7). From (2.2), (2.3) and (2.8), we obtain

−ecH rN−1u′(r) ≤ eCHCf

r∫
0

sN−1u(s)p ds ≤ eCHCfC
p
2

r∫
0

sN−1−2p/(p−1) ds = C3r
N−2p/(p−1)

with C3 = eCHCfC
p
2/(N − 2p/(p− 1)). Thus we obtain (2.6).
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2.2 Change of variables
Let u be a positive solution of (1.1) for 0 < r ≤ r0 with some r0 > 0. Define

w(t) = r2/(p−1)u(r) with t = − log r. (2.11)

Then w satisfies
w′′ − a(t)w′ − b(t)w + wp = 0 for t ≥ t0, (2.12)

where t0 = − log r0,
a(t) = N − 2− 4

p− 1
− h(e−t)e−t (2.13)

and
b(t) =

2

p− 1

(
N − 2− 2

p− 1

)
− 2

p− 1
h(e−t)e−t + λ(r−t)e−2t. (2.14)

3 Asymptotic behavior of the singular solution
In this section, we show the following result.

Proposition 3.1. Let p > N/(N − 2) and let u be a singular solution of (1.1). Define w(t) by (2.11).

(i) If p ̸= (N + 2)/(N − 2), then w(t) satisfies

lim
t→∞

w(t) = A and lim
t→∞

w′(t) = 0, (3.1)

where A is the constant in (1.6).

(ii) Let p = (N + 2)/(N − 2). If w(t)−A has a finite number of zeros on [t0,∞), then (3.1) holds.

In the remaining part of this section we assume that p > N/(N − 2). To prove Proposition 3.1,
we need a series of lemmas.

Lemma 3.1. Let u be a singular solution of (1.1). Then

lim sup
r→0

r2/(p−1)u(r) > 0. (3.2)

Proof. Assume to the contrary that

lim
r→0

r2/(p−1)u(r) = 0. (3.3)

Define f(r, u) by (2.1) and take any r0 > 0. Then there exists u0 > 0 such that (2.2) holds. Since
u(r) → ∞ as r → 0, there exists r1 ≤ r0 such that u(r) ≥ u0 for 0 < r ≤ r1. Then we obtain

0 < cfu(r)
p ≤ f(r, u(r)) ≤ Cfu(r)

p for 0 < r ≤ r1.

First, we show that
(r2/(p−1)u(r))′ > 0 for 0 < r < r2 (3.4)

with some r2 ∈ (0, r1]. Define w(t) by (2.11). Then w satisfies (2.12), where a(t) and b(t) are defined
by (2.13) and (2.14), respectively. From (3.3) we have w(t) → 0 as t → ∞. Since h(r) and λ(r) are
bounded, we have b(t) → Ap−1 > 0 as t → ∞, where A is the constant in (1.6). Then there exists
t1 ≥ t0 such that

−b(t) + w(t)p−1 < 0 for t ≥ t1.

From (2.12) we obtain w′′(t)− a(t)w′(t) > 0 for t ≥ t1. This implies that

(
e
−

t∫
0

a(s) ds
w′(t)

)′
> 0 for t ≥ t1.
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Hence e
−

t∫
0

a(s) ds
w′(t) is increasing for t ≥ t1. Thus we see that either w′(t) < 0 for all t ≥ t1 or

w′(t) > 0 for t ≥ t2 with some t2 ≥ t1. Since w(t) > 0 and w(t) → 0 as t → ∞, the former case has
to hold. Then w′(t) < 0 for t ≥ t1, which implies that (3.4) holds.

From (2.2) and (3.3) we have

r2f(r, u(r))

u(r)
≤ Cfr

2u(r)p−1 = Cf

(
r2/(p−1)u(r)

)p−1 → 0 as r → 0.

Then, for ε > 0 to be determined later, there exists r1 ∈ (0, r0] such that

r2f(r, u(r)) < εu(r) for 0 < r ≤ r1.

From (2.2), (2.3) and (3.4) we have
r∫

0

sN−1eH(s)f(s, u(s)) ds ≤ eCHε

r∫
0

sN−3u(s) ds

≤ eCHεr2/(p−1)u(r)

r∫
0

sN−3−2/(p−1) ds ≤ eCHε

N − 2− 2
p−1

rN−2u(r)

for 0 < r ≤ r1. From (2.3) and (2.7) it follows that

−rN−1ecHu′(r) ≤
r∫

0

sN−1eH(s)f(s, u(s)) ds ≤ eCHε

N − 2− 2
p−1

rN−2u(r) (3.5)

for 0 < r ≤ r1. Put
σ =

eCHε

ecH (N − 2− 2
p−1 )

and take ε > 0 so small that σ < 1/p. From (3.5) it follows that

−ru′(r) ≤ σu(r) for 0 < r ≤ r1.

This implies that (rσu(r))′ ≥ 0 for 0 < r ≤ r1, and hence rσu(r) ≤ rσ1u(r1) for 0 < r ≤ r1. Then we
obtain u(r) = O(r−σ) as r → 0. From (2.2), (2.3) and (2.7) we obtain

−ecH rN−1u′(r) ≤ eCHCf

r∫
0

sN−1u(s)p ds ≤ eCHCf

r∫
0

sN−1−pσ ds = CrN−pσ

with some constants C > 0. Thus u′(r) = O(r1−pσ) as r → 0. Since σ < 1/p, we have u′(r) → 0 as
r → 0, and hence lim

r→0
u(r) < ∞. This is a contradiction. Thus we obtain (3.2).

Define
a0 = N − 2− 4

p− 1
, η(t) = h(e−t)e−t and µ(t) = λ(e−t)e−2t.

Then a(t) and b(t) in (2.13) and (2.14) can be written as

a(t) = a0 − η(t) and b(t) = Ap−1 − 2

p− 1
η(t) + µ(t),

where A is the constant in (1.6).
For a solution w of (2.12), define

E(w)(t) =
1

2
w′(t)2 +Φ(w(t)) for t ≥ t0, (3.6)
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where
Φ(v) = −Ap−1

2
v2 +

1

p+ 1
vp+1 (3.7)

for v ≥ 0. We note that

Φ(v) ≥ Φ(A) = −
(1
2
− 1

p+ 1

)
Ap+1 for v ≥ 0. (3.8)

Observe that E(w)′(t) = (w′′(t) − Ap−1w + wp)w′(t) for t > t0. We note here that (2.12) can be
written in the form

w′′ − a(t)w′ −
(
Ap−1 − 2

p− 1
η(t) + µ(t)

)
w + wp = 0.

Then we have

E(w)′(t) = a(t)w′(t)2 +
(
− 2

p− 1
η(t) + µ(t)

)
w(t)w′(t) for t > t0. (3.9)

We obtain the following results.

Lemma 3.2. The function w defined in Proposition 3.1 satisfies the following statements:

(i) w(t), w′(t) and w′′(t) are bounded on [t0,∞).

(ii) One has
∞∫

t0

a(s)w′(s)2 ds < ∞. (3.10)

In particular, w′ ∈ L2[t0,∞) if p ̸= (N + 2)/(N − 2).

(iii) lim
t→∞

E(w)(t) = ζ for some ζ ≥ Φ(A).

Proof. From (2.11) we have

d

dt
w(t) = − 2

p− 1
r2/(p−1)u(r)− r(p+1)/(p−1) d

dr
u(r).

Then by Lemma 2.1 w(t) and w′(t) are bounded on [t0,∞). Note that a(t) and b(t) are bounded on
[t0,∞), since η, λ ∈ C[0, r0]. From (2.12), w′′(t) is also bounded on [t0,∞). Thus (i) holds. Integrating
(3.9) on [t0, t], we have

E(w)(t)− E(w)(t0) =

t∫
t0

a(s)w′(s)2 ds− 2

p− 1

t∫
t0

η(s)w(s)w′(s) ds+

t∫
t0

µ(s)w′(s)w(s) ds. (3.11)

Since w(t) and w′(t) are bounded on [t0,∞), E(w)(t) is bounded for t ≥ t0. By the definitions of η
and µ, we have η, µ ∈ L1[t0,∞). Then

∞∫
t0

η(s)w(s)w′(s) ds < ∞ and
∞∫

t0

µ(s)w′(s)w(s) ds < ∞. (3.12)

Letting t → ∞ in (3.11), we obtain (3.10). In the case p ̸= (N + 2)/(N − 2), since a(t) → a0 ̸= 0 as
t → ∞, we obtain w′ ∈ L2[t0,∞). Thus (ii) holds.

Letting t → ∞ in (3.11) again, from (3.10) and (3.12) we see that the limit of E(w)(t) as t → ∞
exists and is finite. Put ζ = lim

t→∞
E(w)(t). From (3.6) and (3.8) we have

E(w)(t) ≥ Φ(w(t)) ≥ Φ(A) for t ≥ t0.

Letting t → ∞, we obtain ζ ≥ Φ(A). Thus (iii) holds.
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Lemma 3.3. Let w be the function defined in Proposition 3.1. If w satisfies

lim
t→∞

w(t) = γ (3.13)

for some γ > 0, then (3.1) holds.

Proof. First, we show that
lim
t→∞

w′(t) = 0. (3.14)

From (3.13) and Lemma 3.2 (iii) it follows that

lim
t→∞

w′(t)2

2
= lim

t→∞

(
E(w)(t)− Φ(w(t))

)
= ζ − Φ(γ). (3.15)

Then it suffices to show that ζ = Φ(γ). Since E(w) ≥ Φ(w), we have ζ ≥ Φ(γ). Assume that ζ > Φ(γ).
Then from (3.15) we obtain

|w′(t)| >
√
2(ζ − Φ(γ))

2
for t ≥ t1

with some t1 ≥ t0, which implies that lim
t→∞

|w(t)| = ∞. This is a contradiction. Thus we obtain
ζ = Φ(γ), and hence (3.14) holds.

Next we show that γ = A. Assume to the contrary that γ ̸= A. Letting t → ∞ in (2.12), from
(3.13) and (3.14) we obtain

lim
t→∞

w′′(t) = −Ap−1γ + γp ̸= 0.

Thus we obtain
|w′′(t)| > 1

2
| −Ap−1γ + γp| for t ≥ t2

with some t2 ≥ t0, which implies that |w′(t)| → ∞ as t → ∞. This is a contradiction. Thus we obtain
γ = A in (3.13).

Lemma 3.4. Let w be the function defined in Proposition 3.1. Assume that the limit of w(t) as
t → ∞ does not exist. Then the following statements hold:

(i) One has ζ > Φ(A), where ζ is the constant in Lemma 3.2 (iii).

(ii) There exists an infinite sequence τn → ∞ such that w(τn) = A for n = 1, 2, . . . .

Proof. Since w(t) is positive and bounded for t ≥ t0, there exist 0 ≤ γ1 < γ2 such that

lim inf
t→∞

w(t) = γ1 and lim sup
t→∞

w(t) = γ2.

Then there exist the sequences tn → ∞ and sn → ∞ such that

w′(tn) = w′(sn) = 0, lim
n→∞

w(tn) = γ1 and lim
n→∞

w(sn) = γ2.

Thus we obtain

E(w)(tn) = Φ(w(tn)) → Φ(γ1) and E(w)(sn) = Φ(w(sn)) → Φ(γ2) as n → ∞.

By Lemma 3.2 (iii), we have Φ(γ1) = Φ(γ2) = ζ = lim
t→∞

E(w)(t). Since Φ is given by (3.7) and
0 ≤ γ1 < γ2, we conclude that

γ1 < A < γ2 and Φ(A) < ζ = Φ(γ1) = Φ(γ2).

Hence there exists an infinite sequence τn → ∞ such that w(τn) = A for n = 1, 2, . . . . Thus (i) and
(ii) hold.

We are now in a position to prove Proposition 3.1.
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Proof of Proposition 3.1.
(i) By Lemma 3.1, we have lim sup

t→∞
w(t) > 0. We show that (3.13) holds with some γ > 0. Assume

to the contrary that the limit of w(t) as t → ∞ does not exist. Then by Lemma 3.4, ζ > Φ(A) and
there exists a sequence τn → ∞ such that w(τn) = A for n = 1, 2, . . . . Observe that

lim
n→∞

E(w)(τn) = lim
n→∞

(w′(τn)
2

2
+ Φ(A)

)
= ζ.

Then it follows that
lim
n→∞

w′(τn)
2

2
= ζ − Φ(A) > 0.

Hence there exists an integer n0 such that

|w′(τn)|2 ≥ ζ − Φ(A) for n ≥ n0.

Since w′′(t) is bounded for t ≥ t0 by Lemma 3.2 (i), there exists ρ > 0 such that

|w′(t)|2 ≥ ζ − Φ(A)

2
for τn − ρ ≤ t ≤ τn + ρ with n ≥ n0.

This implies that
∞∫

t0

w′(t)2 dt = ∞,

which contradicts Lemma 3.2(ii). Thus (3.13) holds with some γ > 0. By Lemma 3.3, we obtain (3.1).
(ii) By Lemma 3.1, we have lim sup

t→∞
w(t) > 0. We show that (3.13) holds for some γ > 0. Assume

to the contrary that the limit of w(t) as t → ∞ does not exist. Then by Lemma 3.4 (ii) there exists
an infinite sequence τn → ∞ such that w(τn) = A for n = 1, 2, . . . . This is a contradiction. Thus
(3.13) holds for some γ > 0. By Lemma 3.3, we obtain (3.1).

4 Proof of Theorems 1.1, 1.2 and 1.3
4.1 Uniqueness of the singular solution
First, we show the following

Lemma 4.1. Let z(t) be a solution of

z′′ − p(t)z′ + q(t)z = 0 for t ≥ t0, (4.1)

where p, q ∈ C[t0,∞) satisfy
lim
t→∞

p(t) = P and lim
t→∞

q(t) = Q (4.2)

with the positive constants P and Q. If z(t) is bounded for t ≥ t0, then z(t) ≡ 0.

Proof. Assume by contradiction that z(t) ̸≡ 0. Define

G(t) =
1

2
z′(t)2 +

Q

2
z(t)2 for t ≥ t0.

Then, by the uniqueness of the initial value problem to (4.1), we have z′(t)2 + z(t)2 ̸= 0 for t ≥ t0,
and hence G(t) > 0 for all t ≥ t0. From (4.1) we see that

G′(t) = (z′′(t) +Qz(t))z′ = p(t)z′(t)2 − (q(t)−Q)z(t)z′(t) for t ≥ t0. (4.3)

Then, by (4.2), there exists t1 ≥ t0 such that

p(t) ≥ P

2
and |q(t)−Q| ≤ P

2
for t ≥ t1.
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From (4.3) it follows that

G′(t) ≥ P

2

(
z′(t)2 − |z(t)| |z′(t)|

)
for t ≥ t1.

By the Hölder inequality, we obtain

G′(t) ≥ P

2

(1
2
z′(t)2 − 1

2
z(t)2

)
=

P

2
G(t)− P (Q+ 1)

4
z(t)2 for t ≥ t1.

Since z(t) is bounded, there exists C0 > 0 such that

G′(t) ≥ P

2
G(t)− C0 for t ≥ t1.

Multiplying both sides by e−
P
2 t, we get (e−

P
2 tG(t))′ ≥ −e−

P
2 tC0 for t ≥ t1. Integrating both sides on

[t1, t], we obtain
e−

P
2 tG(t) ≥ C1 − C2e

−P
2 t for t ≥ t1,

where C1 = e−
P
2 t1G(t1) > 0 and C2 = 2C0

P > 0. Thus we obtain G(t) ≥ C1e
P
2 t − C2 → ∞ as t → ∞.

Since z(t) is bounded, we have |z′(t)| → ∞ as t → ∞, and hence |z(t)| → ∞ as t → ∞. This is a
contradiction. Thus we obtain z(t) ≡ 0.

Proof of Theorem 1.1. Let u1(r) and u2(r) be singular solutions of (1.1) for 0 < r ≤ r0. Define
wi(t) = r2/(p−1)ui(r) with t = − log r for i = 1, 2. Then w = wi(t) satisfies (2.12) with t0 = − log s0
for i = 1, 2. By Proposition 3.1, we obtain

lim
t→∞

w1(t) = lim
t→∞

w2(t) = A. (4.4)

Put z(t) = w1(t)− w2(t). Then z satisfies lim
t→∞

z(t) = 0 and

z′′ − a(t)z′ +B(t)z = 0 for t ≥ t0,

where a(t) is given by (2.13) and

B(t) = −Ap−1 +
2

p− 1
η(t)− µ(t) +

w1(t)
p − w2(t)

p

w1(t)− w2(t)
.

From (4.4) we have

lim
t→∞

w1(t)
p − w2(t)

p

w1(t)− w2(t)
= pAp−1.

Then we obtain
lim
t→∞

B(t) = (p− 1)Ap−1 > 0.

Lemma 4.1 implies that z(t) ≡ 0, and hence the singular solution of (1.1) is unique.

4.2 Liouville property
Proof of Theorem 1.2. Let p = (N+2)/(N−2) and let h(r) and λ(r) satisfy (1.7). In this case, (2.12)
can be written as

w′′ + η(t)w′ −Ap−1w + wp = 0 for t ≥ t0.

Define E(w) by (3.6). Then we have

E(w)′(t) = −η(t)w′(t)2 for t > t0. (4.5)

Assume that w(t) − A has a finite number of zeros on [t0,∞). Then, by Proposition 3.1, we obtain
w(t) → A and w′(t) → 0 as t → ∞. Integrating (4.5) on [t, τ ] and letting τ → ∞, we obtain

1

2
w′(t)2 ≤ E(w)(t)− Φ(A) =

∞∫
t

η(s)w′(s)2 ds.



108 Yūki Naito

Put

U(t) =

∞∫
t

η(s)w′(s)2 ds.

Then U ′(t) = −η(t)w′(t)2 ≥ −2η(t)U(t) for t ≥ 0. This implies that

d

dt

(
e
2

t∫
t0

η(s) ds

U(t)
)
≥ 0 for t ≥ t0.

Integrating the above on [t, τ ] and letting τ → ∞, we obtain U(t) ≤ 0 for t ≥ 0. This implies that
U(t) ≡ 0, and hence w′(t) ≡ 0. It follows that w(t) ≡ A. Thus we obtain u ≡ UA.

4.3 Infinitely many existences of singular solutions
In order to prove Theorem 1.3, we consider the initial value problem{

w′′ − a(t)w′ − b(t)w + wp = 0 for t ≥ t0, t ≥ t0,

w(t0) = α, w′(t0) = β,
(4.6)

where α, β ∈ R and a(t) and b(t) are defined by (2.13) and (2.14), respectively.
Define Φ by (3.7), and define a constant B by

B =
( (p+ 1)Ap−1

2

)1/(p−1)

.

Then we see that Φ(v) ≤ 0 if and only if 0 ≤ v ≤ B. Recall that Φ(A) < 0 and Φ(v) ≥ Φ(A) for v ≥ 0.
For any δ ∈ (0,−Φ(A)), there exist the constants Γδ > γδ > 0 such that γδ ≤ v ≤ Γδ if Φ(v) ≤ −δ.

Lemma 4.2. Define E(w) by (3.6). Let w be a solution of (4.6) for t0 ≤ t ≤ t1 such that

E(w)(t) ≤ 0 for t0 ≤ t ≤ t1.

Then w(t) ≤ B and |w′(t)| ≤
√
−2Φ(A) for t0 ≤ t ≤ t1.

Proof. Since
E(w)(t) =

1

2
w′(t)2 +Φ(w(t)) ≤ 0 for t0 ≤ t ≤ t1,

we have Φ(w(t)) ≤ 0 for t0 ≤ t ≤ t1. This implies that w(t) ≤ B for t0 ≤ t ≤ t1. We also have

1

2
w′(t)2 +Φ(A) ≤ E(w)(t) ≤ 0 for t0 ≤ t ≤ t1.

Then w′(t)2 ≤ −2Φ(A) for t0 ≤ t ≤ t1, which implies that |w′(t)| ≤
√

−2Φ(A) for t0 ≤ t ≤ t1,

Lemma 4.3. Take any δ > 0 such that 2δ < −Φ(A). Then there exists t0 > 0 such that if E(w)(t0) <
−2δ, then the solution w(t) of (4.6) exists for all t ≥ t0 and satisfies E(w)(t) < −δ for all t > t0.

Proof. We note that if p < (N + 2)/(N − 2), then N − 2 − 4/(p − 1) < 0 and lim
t→∞

a(t) < 0. Take
t0 > 0 such that a(t) < 0 for t ≥ t0 and

B
√

−2Φ(A)

∞∫
t0

( 2

p− 1
|η(s)|+ |µ(s)|

)
ds < δ.

Assume by contradiction that there exists t1 > t0 such that

E(w)(t) < −δ for t0 ≤ t < t1 and E(w)(t1) = −δ.
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Then, by Lemma 4.2, we have w(t) ≤ B and |w′(t)| ≤
√

−2Φ(A) for t0 ≤ t ≤ t1. From (3.9) we have

E′(w)(t) < B
√
−2Φ(A)

( 2

p− 1
|η(t)|+ |µ(t)|

)
for t0 ≤ t ≤ t1. Integrating the above on [t0, t1], we get

E(w)(t1)− E(w)(t0) < B
√
−2Φ(A)

t1∫
t0

( 2

p− 1
|η(s)|+ |µ(s)|

)
ds < δ.

This implies that −δ = E(w)(t1) < E(w)(t0) + δ < −δ. This is a contradiction. Thus we obtain
E(w)(t) < −δ for all t ≥ t0. Lemma 4.2 implies that w(t) and w′(t) are bounded for t ≥ t0, and hence
the solution w(t) of (4.6) exists for all t ≥ t0.

Proof of Theorem 1.3. Take any δ > 0 such that 2δ < −Φ(A). Since Φ(A) < −2δ, we can take
α, β ∈ R in (4.6) such that

1

2
β2 +Φ(α) < −2δ. (4.7)

Then, by Lemma 4.3, the solution w(t) of (4.6) exists for all t ≥ t0 and satisfies E(w)(t) < −δ
for t ≥ t0. This implies that Φ(w(t)) < −δ for all t ≥ t0. Note here that there exists a constant
γδ > 0 such that v > γδ if Φ(v) < −δ. Then we obtain w(t) > γδ for all t ≥ t0. This implies that
u(r) > γδr

−2/(p−1) for 0 < r ≤ r0, and hence u is a singular solution of (1.1). By Proposition 3.1,
u(r) satisfies (1.8). Since there are infinitely many α, β ∈ R satisfying (4.7), we have infinitely many
singular solutions of (1.1).
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