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Abstract. A new comparison theorem of the Hille–Wintner type is established for a pair of half-linear
differential equations of the second order. It is formulated in terms of solutions continuable to infinity
of the generalized Riccati equation associated with a known nonoscillatory second-order half-linear
equation.
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1 Introduction
We consider nonlinear differential equations of the form(

p(t)φα(y
′)
)′
+ q(t)φα(y) = 0, t ≥ a, (E)

where α > 0 is a given constant, p : [a,∞) → (0,∞) and q : [a,∞) → R are continuous functions and
φα denotes the signed α-power function defined by

φα(z) := |z|αsgn z if z ̸= 0 and φα(0) = 0,

which gives equations of the form (E) called “half-linear” because of its homogeneity (but not addi-
tivity) property.

Here, by a solution of (E) we understand a real-valued function y which is continuously differ-
entiable on [ty,∞) for some ty ≥ a together with pφα(y

′) and satisfies (E) on [ty,∞). As usual, a
solution of (E) which is not identically zero in any neighborhood of infinity is said to be oscillatory if
it has arbitrarily large zeros in [ty,∞); otherwise it is called nonoscillatory.

In the early stage of the development of the theory of half-linear differential equations, the authors
were motivated by the observation that the basic qualitative properties of solutions of equations of
the form (E) were very similar to those of the corresponding second order linear equations

(p(t)y′)′ + q(t)y = 0, (L)

where p : [a,∞) → (0,∞) and q : [a,∞) → R, and focused their efforts on the generalizations and
extensions of classical results known for (L) to equations of the form (E).

One of the important milestones in the history of half-linear ODEs of the second order was the
extension of Sturmian comparison and separation theorems to (E) (see [4] and [21]). In particular,
it has been shown that the zeros of two linearly independent solutions of (E) separate each other, so
that solutions of (E) are similarly as in the linear case either all oscillatory or all nonoscillatory. Thus
Eq. (E) itself may be called oscillatory (resp. nonoscillatory) if one (and so every) solution of (E) is
oscillatory (resp. nonoscillatory).

Another linear result that extends naturally from (L) to (E) is the Hille–Wintner comparison
theorem which in its simplest form says that if a continuous function q1 : [a,∞) → R is such that
∞∫
a

q1(t) dt < ∞ and ∣∣∣∣
∞∫
t

q(s) ds

∣∣∣∣ ≤
∞∫
t

q1(s) ds (1.1)

for all sufficiently large t, then nonoscillation of the equation

z′′ + q1(t)z = 0, t ≥ a, (1.2)

implies nonoscillation of
y′′ + q(t)y = 0, t ≥ a, (1.3)

or, equivalently, oscillation of (1.3) implies oscillation of (1.2) (see Hille [6] and Wintner [25,26]).
This result was extended to a pair of half-linear equations (E) and(

p1(t)φα(z
′)
)′
+ q1(t)φα(z) = 0, (E1)

where p(t) = p1(t) ≡ 1 and both coefficients q(t) and q1(t) were assumed to be positive on [a,∞)
with the help of a fixed point technique in Kusano et al. [17] and in the more general case, where
p1(t) ≡ p(t) was assumed to satisfy the condition

∞∫
a

p(t)−
1
α dt = ∞ (1.4)
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and no sign restriction was imposed on q(t) in [7] (see also Li and Yeh [19]).
Another significant result in this direction obtained by Kusano et al. [15] was the Hille–Wintner

type comparison criterion which deduced nonoscillation of Eq. (E) from that of the “integrally majo-
rant” Eq. (E1) in the case, where both q(t) and q1(t) were positive, p1(t) ≡ p(t) and

∞∫
a

p(t)−
1
α dt < ∞.

More precisely, if we denote π(t) :=
∞∫
t

p(s)−
1
α ds and assume integrability of π(t)α+1q(t) and

π(t)α+1q1(t) on [a,∞), then the comparison inequality which ensures the nonoscillation of (E) in this
case is

∞∫
t

π(s)α+1q(s) ds ≤
∞∫
t

π(s)α+1q1(s) ds,

on some half-line [t0,∞), t0 ≥ a.
In [19], this result was slightly generalized by removing the restriction p1(t) ≡ p(t) and replacing

it by p(t) ≥ p1(t) for t large enough.
For more recent results concerning the Hille–Wintner comparison theorem see [2,3,8,13,14,20,24,

27,28].
Our primary interest in this paper is to consider equations of the form (E) with coefficients q(t)

which may change sing in any neighborhhod of infinity and are conditionally integrable on [a,∞), i.e.,

lim
T→∞

T∫
a

q(t) dt exists as a finite number. (1.5)

For such a coefficient we define the function ρ(t) by

ρ(t) =

∞∫
t

q(s) ds, t ≥ a. (1.6)

In the case where condition (1.4) hol ds, we also introduce the function

P (t) =

t∫
a

p(s)−
1
α ds, t ≥ a.

Under the conditions (1.4) and (1.5), the above integral test (1.1) is adequate to provide some
basic nonoscillation criteria for (E) such as Hille’s condition

P (t)α
∣∣ρ(t)∣∣ ≤ 1

α+ 1

( α

α+ 1

)α

for all sufficiently large t, but it is not powerful enough to give some other known criteria for nonoscil-
lation of (E) such as the Hille–Nehari criterion

−2α+ 1

α+ 1

( α

α+ 1

)α

≤ P (t)αρ(t) ≤ 1

α+ 1

( α

α+ 1

)α

for all t sufficiently large, or the more general Moore type nonoscillation test

−k
α

α+1 − k ≤ P (t)αρ(t) ≤ k
α

α+1 − k,

where k > 0 is a constant, which is again assumed to hold for all t large enough, say, for t ≥ T ≥ a.
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Thus, our purpose here is to refine and extend the integral comparison criterion (1.1) so that the
refinement would not only cover special cases mentioned above, but also produce new nonoscillation
tests for (E).

Our result is formulated in terms of solutions v defined in some neighborhood of infinity of the
generalized Riccati equation

v′ + αp1(t)
− 1

α |v|1+ 1
α + q1(t) = 0 (R1)

associated with the (nonoscillatory) comparison equation (E1).

2 Main results
The key tool in establishing our extension of the Hille–Wintner theorem is the following auxiliary
result which characterizes nonoscillation of (E) through the solvability of certain Riccati-like inequality
associated with (E). It was proved in 1980 by Skhalyakho [23] and re-discovered fifteen years later by
Li and Yeh [18].

Lemma 2.1. Eq. (E) is nonoscillatory if and only if there exists a function u ∈ C1([t1,∞),R) for
some t1 ≥ a such that

u′(t) + αp(t)−
1
α |u(t)|1+ 1

α + q(t) ≤ 0

for t ≥ t1.

Our main result now follows.

Theorem 2.1. Let equation (E1) be nonoscillatory. Suppose furthermore that p1(t) ≤ p(t) on [a,∞)
and ∣∣∣∣v(t)−

∞∫
t

q1(s) ds+

∞∫
t

q(s) ds

∣∣∣∣ ≤ |v(t)| (2.1)

holds for all sufficiently large t, where v is a solution of the generalized Riccati equation

v′ + αp1(t)
− 1

α |v|1+ 1
α + q1(t) = 0 (R1)

defined in some neighborhood of infinity, say, for t ≥ T ≥ a. Then equation (E) is nonoscillatory,
too.

Proof. Define

u(t) = v(t)−
∞∫
t

q1(s) ds+

∞∫
t

q(s) ds, t ≥ T ≥ a.

Then

u′(t) + αp(t)−
1
α |u(t)|1+ 1

α + q(t)

= v′(t) + q1(t)− q(t) + αp(t)−
1
α

∣∣∣∣v(t)−
∞∫
t

q1(s) ds+

∞∫
t

q(s) ds

∣∣∣∣1+ 1
α

+ q(t)

= −αp1(t)
− 1

α |v(t)|1+ 1
α + αp(t)−

1
α

∣∣∣∣v(t)−
∞∫
t

q1(s) ds+

∞∫
t

q(s) ds

∣∣∣∣1+ 1
α

≤ αp1(t)
− 1

α

[∣∣∣∣v(t)−
∞∫
t

q1(s) ds+

∞∫
t

q(s) ds

∣∣∣∣1+ 1
α

− |v(t)|1+ 1
α

]
≤ 0

for all large t because of (2.1) and the assertion follows from Lemma 2.1.
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As the first application of Theorem 2.1, we obtain the following sufficient condition for nonoscil-
lation of (E). Under the additional restriction q(t) > 0 on [a,∞), this was proved in [7] by applying
the Lebesgue monotone convergence theorem to the sequence of functions {vn(t)}, t ≥ T , defined by

v0(t) = P (t)αρ(t)

and

vn(t) = P (t)αρ(t) + αP (t)α
∞∫
t

p(s)−
1
αP (s)−α−1|vn−1(s)|1+

1
α ds

for n = 1, 2, . . . and t ≥ T .

Corollary 2.1. Equation (E) is nonoscillatory if

P (t)α|ρ(t)| ≤ αα

(α+ 1)α+1

for all sufficiently large t.

Compare with Corollary 2.3 below. Needless to emphasize that the scope of application of Corol-
lary 2.1 is wider than that of Theorem 2.2 in [7] as we allow q(t) to oscillate (with the lower bound for
P (t)αρ(t) given by −αα/(α+1)α+1), but, on other hand, it could be obtained also from the “classical”
half-linear version of the Hille–Wintner criterion without the use of the improved condition (2.1) from
Theorem 2.1.

Corollary 2.2. Let (1.4) hold. If
−2 ≤ P (t)αρ(t) ≤ 0

for all large t, then Eq. (E) is nonoscillatory.

Proof. In Theorem 2.1, it suffices to compare (E) with the equation(
p(t)φα(z

′)
)′

= 0

for which the Riccati equation (R1) is a solvable equation

v′ + αp(t)−
1
α |v|1+ 1

α = 0

with the solution
v(t) = P (t)−α, t > a.

The next application in which we compare (E) with the (nonoscillatory) generalized Euler equation(
p(t)φα(z

′)
)′
+
( α

α+ 1

)α+1

p(t)−
1
αP (t)−α−1φα(z) = 0

for which the known solution of the corresponding Riccati equation is

v(t) =
( α

α+ 1

)α

P (t)−α, t ≥ T > a,

shows that our extension of the Hille–Wintner theorem significantly widens the class of equations
(with oscillatory coefficients q) which can be treated by means of comparison with other half-linear
equations whose nonoscillatory character is known.

Corollary 2.3 (Hille–Nehari). If

−2α+ 1

α+ 1

( α

α+ 1

)α

≤ P (t)α
∞∫
t

q(s) ds ≤ 1

α+ 1

( α

α+ 1

)α

for all large t, then Eq. (E) is nonoscillatory.
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In the case of linear Euler equation with the “critical” constant 1/4, i.e., for the equation

(p(t)z′)′ +
1

4
p(t)−1P (t)−2z = 0, t ≥ t0 > 0,

as a particular solution of the associated Riccati equation we can take

v(t) =
1

2P (t)
+

1

p(t) logP (t)
, t ≥ t0,

and get the following slight improvement of the classical linear Hille–Nehari theorem (see Kamenev
[9, 11]).

Corollary 2.4. Suppose that
∞∫
a

1

p(t)
dt = ∞,

∞∫
a

q(t) dt < ∞

and the condition
−3

4
− 2

logP (t)
≤ P (t)ρ(t) ≤ 1

4

holds for all sufficiently large t. Then the equation

(p(t)y′)′ + q(t)y = 0 (L)

is nonoscillatory.

To obtain our next result, we need the following lemma. For the proof see [17].

Lemma 2.2. Let (1.4) hold. Equation (E) is nonoscillatory if and only if there exists a continuous
solution of the integral equation

u(t) =

∞∫
t

q(s) ds+ α

∞∫
t

p(s)−
1
α |u(s)|1+ 1

α ds

defined in some neighborhood of infinity.

Substituting the integral expression for the solution v of the Riccati equation into (2.1) leads to
the following result.

Theorem 2.2. Suppose that (1.4) holds and Eq. (E1) is nonoscillatory. If q is integrable on [a,∞)
(possibly only conditionally), p1(t) ≤ p(t) and

∣∣∣∣α
∞∫
t

p1(s)
− 1

α |v(s)|1+ 1
α ds+

∞∫
a

q(s) ds

∣∣∣∣ ≤ ∣∣∣∣α
∞∫
t

p1(s)
− 1

α |v(s)|1+ 1
α ds+

∞∫
t

q1(s) ds

∣∣∣∣ (2.2)

for t ≥ T ≥ a, where v is the solution of (R1) on [T,∞), then Eq. (E) is also nonoscillatory.

Proof. Since condition (1.4) holds, by Lemma 2.2, we can express the solution v of (R1) as

v(t) = α

∞∫
t

p1(s)
− 1

α |v(s)|1+ 1
α ds+

∞∫
t

q1(s) ds, t ≥ T ≥ a. (2.3)

Inserting (2.3) into the left-hand side of (2.1) and using (2.2), we conclude that the conditions of
Theorem 2.1 are satisfied and so, equation (E) is nonoscillatory, as claimed.
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Theorem 2.3. Suppose that q is (conditionally) integrable on [a,∞) and there exists a function
f ∈ C1([a,∞), R) such that

lim
t→∞

f(t) = 0,

∞∫
a

p(t)−
1
α |f(t)|1+ 1

α dt < ∞

and ∣∣∣∣α
∞∫
t

p(s)−
1
α |f(s)|1+ 1

α ds+

∞∫
t

q(s) ds

∣∣∣∣ ≤ f(t)

for all large t. Then Eq. (E) is nonoscillatory.

Proof. In Theorem 2.2, we use(
p(t)φα(z

′)
)′
+
(
− αp(t)−

1
α |f(t)|1+ 1

α − f ′(t)
)
φα(z) = 0 (2.4)

as the comparison equation and observe that v = f is a particular solution of the Riccati equation
associated with (2.4).

Remark 2.1. In Theorem 2.2, we do not assume a priori that the coefficient p satisfies condition
(1.4). But if we do so, then the existence of a function f with the properties stated in the theorem is
also a necessary condition for the nonoscillation of (E).

Corollary 2.5. Suppose that (1.5) holds and define ρ(t) by (1.6). If
∞∫
a

p(t)−
1
α |ρ(t)|

α+1
α dt < ∞

and for all sufficiently large t the inequality
∞∫
t

p(s)−
1
α |ρ(s)|1+ 1

α ds ≤ (α+ 1)−
α+1
α

α

[
(α+ 1)|ρ(t)| − ρ(t)

]
(2.5)

holds, then Eq. (E) is nonoscillatory.

Proof. Follows from Theorem 2.3, where f(t) = (α+ 1)|ρ(t)|.

Remark 2.2. Compare with Corollary 8 in Yang and Lo [28].

By using an iterative technique, we can further improve the sufficient condition (2.5) for nonoscil-
lation of (E) as follows. Let ρ(t) :=

∞∫
t

q(s) ds and define the sequence {ωk(t)} by

ω0(t) = q(t), ωk(t) =

∣∣∣∣ρ(t) + α

∞∫
t

p(s)−
1
αωk−1(s) ds

∣∣∣∣1+ 1
α

,

k = 1, 2, . . . and t ≥ T .

Corollary 2.6. Suppose that there exists a nonnegative integer n such that the functions
ω0(t), . . . , ωn(t) are well defined, the integral

∞∫
a

p(t)−
1
αωn(t) dt converges and the inequality

∣∣∣∣ρ(t) + α

∞∫
t

p(s)−
1
αωn(s) ds

∣∣∣∣ ≤ |ωn(t)|
α

α+1 (2.6)

holds for all sufficiently large t. Then Eq. (E) is nonoscillatory.
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Proof. Follows from Theorem 2.3, where we choose f(t) = |ωn(t)|
α

α+1 .

Remark 2.3. If n = 0 and p(t)−
1
α q(t) is integrable on [a,∞)], then (2.6) reduces to∣∣∣∣ρ(t) + α

∞∫
t

p(s)−
1
α q(s) ds

∣∣∣∣ ≤ |q(t)|
α

α+1 ,

which is a half-linear generalization of the linear Wintner’s criterion (with α = 1, p(t) ≡ 1 and
nonnegative q(t))

[ρ(t)]2 ≤ 1

4
q(t)

(see [25]).

If n = 1 and p(t) ≡ 1, then (2.6) becomes the Opial type nonoscillation criterion (2.5).

3 Further generalizations and extensions
An inspection of the proof of Theorem 2.1 indicates that instead of a (known) solution v of the Riccati
equation (R1) associated with the nonoscillatory majorant equation (E1) we can take any continuously
differentiable function g from [a,∞) to R such that

g′(t) ≤ −q1(t) (3.1)

for all sufficiently large t. We reflect this fact in the following theorem.

Theorem 3.1. Let condition (1.4) be satisfied. Assume that equation (E1) with p1(t) ≤ p(t) on [a,∞)
is nonoscillatory and there exists a function g ∈ C1([a,∞),R) such that (3.1) is satisfied for t ≥ T ≥ a
and ∣∣∣∣g(t)−

∞∫
t

q1(s) ds+

∞∫
t

q(s) ds

∣∣∣∣ ≤ (α−αp(t))
1

α+1
[
− g′(t)− q1(t)

] α
α+1 (3.2)

or, equivalently,

− (α−αp(t))
1

α+1
[
− g′(t)− q1(t)

] α
α+1 − g(t) +

∞∫
t

q1(s) ds

≤
∞∫
t

q(s) ds ≤ (α−αp(t))
1

α+1
[
− g′(t)− q1(t)

] α
α+1 − g(t) +

∞∫
t

q1(s) ds

on [T,∞). Then equation (E) is nonoscillatory, too.

Proof. As in the proof of Theorem 2.1, we define

u(t) = g(t)−
∞∫
t

q1(s) ds+

∞∫
t

q(s) ds, t ≥ T ≥ a,

and verify that

u′(t) + αp(t)−
1
α |u(t)|1+ 1

α + q(t) = g′(t) + q1(t) + αp(t)−
1
α

∣∣∣∣g(t)−
∞∫
t

q1(s) ds+

∞∫
t

q(s) ds

∣∣∣∣1+ 1
α

,

which is nonnegative on [T,∞) because of (3.2). Thus, by Lemma 2.1, equation (E) is nonoscillatory
and the proof is complete.
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Corollary 3.1. If there exists a continuously differentiable function g : [a,∞) → R such that g′(t) ≤ 0
on [T,∞) for some T ≥ a and

−
( 1

α
|g′(t)|

) α
α+1

+ p(t)−
1

α+1 g(t) ≤ p(t)−
1

α+1

∞∫
t

q(s) ds ≤
( 1

α
|g′(t)|

) α
α+1

+ p(t)−
1

α+1 g(t)

holds for all t ≥ T , then Eq. (E) is nonoscillatory.

The special choice

g(t) = k

( t∫
a

p(s)−
1
α ds

)−α

in Corollary 3.1, where k > 0 is constant, leads to the Moore type criterion

−k
α

α+1 − k ≤
( t∫

a

p(s)−
1
α ds

)α
∞∫
t

q(s) ds ≤ k
α

α+1 − k for t ≥ T (3.3)

mentioned in the introduction (cf. with (1.19)). (See also [20].)
If in the above result we take k = (α/(α+1))α+1, then we again obtain the half-linear generalization

of the classical linear Hille–Nehari nonoscillation criterion −3/4 ≤ t
∞∫
t

q(s) ds ≤ 1/4, namely,

−2α+ 1

α+ 1

( α

α+ 1

)α

≤
( t∫

a

p(s)−
1
α ds

)α
∞∫
t

q(s) ds ≤ 1

α+ 1

( α

α+ 1

)α

for sufficiently large t, given in [1] (see also [23]).

Remark 3.1. The left-hand side of (3.3) as the function of k tends to −∞ as t → ∞, and so the
lower bound for P (t)αρ(t) is allowed to be arbitrarily small negative number. However, the right-hand
side reaches its maximum αα/(α + 1)α+1 for k = (α/(α + 1))α+1 and becomes negative for k > 1.
Because of this “interplay” between the LHS and RHS of (3.3), the reasonable choice of k > 0 in the
Moore type criterion (3.3) for an equation with sign-changing q(t) is a delicate question.
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