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Abstract. In the first part of the work, we consider problems of the
field theory approach to the quantum Hall effect (QHE) and the anyon su-
perconductivity. In the remaining part, we study the convexity property
of the effective potential and some features of the high temperature be-
haviour of field theory models with two scalar fields. Describing the QHE,
we adapt the Chern—Simons gauge theory in the holomorphic gauge which
seems to incorporate Laughlin’s picture of the incompressible quantum fluid
and Jain’s composite fermion approach. Further, the 241 dimensional rel-
ativistic field theory is used to describe the Meissner effect in the planar
superconducting matter. Using Bogolubov’s concept of quasiaverages and
analyzing the boundary conditions in the path integral representation of the
Green functions generating funcitonal, a self-consistent calculation of the ef-
fective potential is proposed. Studying the effective potentials for the two
Higgs models, it is demonstrated that the symmetry can be spontaneously
broken in some high temperature interval, being exact at zero and very high
temperatures.
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Preface

The aim of the present monograph is to present a systematic review of
some problems concerning the quantum field description of systems with
non-trivial (ordered) ground states.

It is widely appreciated that in studying different dynamical systems, it
is important to know not only individual properties of the constituents and
their interactions, but also collective phenomena which provide an overall
ordering. The mutual balance between order and disorder, transitions from
one kind of ordering to another define finally the most profound properties
of matter. This is a deep and quite general principle, applicable not only in
physics or chemistry, but also in biology and even in social science.

The notion of order is intimately related to the symmetry properties: a
higher order corresponds to a lower symmetry and vice versa. This is clearly
seen for interacting high energy fundamental particles and condensed matter
systems. In both cases, the knowledge of the ground state (vacuum) and
its elementary excitations solves most important physical problems. This
unity of basic concepts formally can be expressed using the language of the
quantum field theory. As impressive examples of this assertion, one can
consider the modern theory of spontaneously broken gauge symmetries and
the theory of superconducting (or superfluid) matter.

The discovery of the quantum Hall effect (QHE) provoked a great the-
oretical interest to the studies of strongly correlated ground states with a
new type of ordering. A field theory model pretending to describe this
phenomenon must be able to reproduce the picture of an incompressible
quantum fluid, the ground state wave function and the spectrum of elemen-
tary excitations, and give room to hierarchical constructions.

As a most reliable candidate for such a theory, one can consider Chern—
Simons (topological) gauge theory in three space-time dimensions, which
is in a close connection with the conformal field theory, and at the same
time can play a significant role in the studies of planar condensed matter
systems.

The Chern—Simons theory was applied to another condensed matter phe-
nomenon: the anyon superconductivity. Here the role of statistical gauge
field is to organize a matter in such a way that there is a gap in the charged
particle spectrum and a massless pole in the electromagnetic response func-
tion, leading to the Meissner effect.

Chapters 14 of the present review account for applications of the Chern—
Simons field theory to studies of planar systems, the quantum Hall effect
and the anyon superconductivity.

In Chapter 1, after a general introduction, we calculate the correlation
functions and the effective action for a system of planar fermions interacting



with the Maxwell and the Chern—Simons gauge fields. In Chapter 2, we
consider the incompressible Hall fluid from the point of view of algebraic
classification. The accent is made on a similarity between integral and
fractional QHEs. This similarity can be expressed via non-unitary singular
transformation equivalent to the introduction of a complex statistical gauge
potential. This approach is helpful in order to reconstruct ground state
wave functions and incorporates the picture of composite electrons carrying
magnetic fluxes.

In Chapter 3, we develop a scheme of canonical quantization of the
Chern-Simons theory with non-compact (Abelian and non-Abelian) gauge
groups. The proposed framework of holomorphic gauge quantization clari-
fies the results of previous Chapter 2, and can be used both to determine
ground state wave functions and to develop a dynamical description.

In Chapter 4, we study a planar condensed matter system exhibiting the
Meissner effect: an anyon superconductor. Considering the problem, first
we apply the formalism of thermo field dynamics and then analyze high
temperature properties of a relativistic version of the model.

Field-theoretic description of systems with a non-invariant vacuum can
be devided into two parts. The first part concerns axiomatic problems, such
as a Hilbert space realization of commutation relations. The second part
deals with the practical quantization, calculations of Green functions, the
determination of the order parameter etc.

In Chapter 5, we try to give satisfactory answer to the apparent puzzle
which was noticed in computations of the functional generating Green func-
tions: general consideration has predicted a convex form of the effective
potential, while existing schemes of calculation were giving a non-convex
one. Here we discuss a self-consistent procedure based on Bogolubov’s con-
cept of quasiaverages and the analysis of the boundary conditions in the
path integral representation of the functional generating Green functions.

The mechanism of the spontaneous symmetry breaking depends in the
crucial way on the scalar sector of the theory. In simplest models, the
symmetry broken at zero temperature is restored after heating up the system
in the same way as ferromagnetics lost spontaneous magnetization above the
Curie temperature. In the final Chapter 6, we consider a different type of
symmetry temperature bahaviour, when the symmetry, being exact at low
and high temperatures, is spontaneously broken for some finite temperature
interval.
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discussion and a permanent support.
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discussions.
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CHAPTER 1
QUANTUM PARTICLES IN 2+1 DIMENSIONS

1. INTRODUCTION

The Pauli exclusion principle and the underlying spin-statistics theorem
[117] reflect one of the most profound properties of matter:

e Particles (or condensed matter quasiparticles) with integer spin sat-
isfy the Bose—Einstein statistics, and half-integer spin excitations
satisfy Fermi—Dirac statistics.

e The wave functions of N-identical particles are described by one-
dimensional representations of the permutation group Sy: symmet-
ric wave functions correspond to bosons and antisymmetric ones to
fermions.

Higher dimensional representations are known as corresponding to the
parastatistics and have been exploited in a quark model by Greenberg [66].

As it is known from the seminal papers by Bogolubov, Struminsky and
Tavkhelidze [17] and Han and Nambu [75], the use of these representations
is equivalent to the introduction of a new quantum number — color, which
is the starting point of a modern theory of hadron interactions — quantum
chromodynamics.

The situation with regard to spin and statistics is different when particles
move in the plane (241 dimensional space-time). In that case, the rotation
group associated with R? is Abelian SO(2), and the spin is not quantized.
An other observation is that now the statistics is determined by irreducible
representations of the braid group By (and not of the permutation group
Sn), which is the fundamental group of configuration space of a system of
identical particles moving in the two-dimensional physical space [104] (for
details see, e.g., [9], [565], [105]).

The braid group By is an infinite nonabelian group having one-dimen-
sional and higher dimensional representations. One-dimensional unitary
representations are given by

X(9) = etV (0 <9 < 2m).

The quantity ¢ is a real parameter which is identified with a statistics
provided the Hamiltonian does not contain long-range interaction between
particles: under the interchange of two particles, the wave function changes
according to

Y(rr,rs) = &' (r1,12) = V3 (ry 1),

Hence quantum excitations living in two spatial dimensions can obey the
fractional () statistics. Cases ¥ = 0,7 correspond to the Bose and Fermi
particles. Elementary excitations with interpolating statistics are called
anyons [137], [6].



The spin of the ¢ statistics anyon is S = %. One of the essential features
of anyons is the violation of the discrete symmetries of parity and time
reversal (unless ¥ = 0 or ¥ = 7). Remind that in d=2 dimensions. the
parity reverses the sign of only one of the coordinates.

A simple illustration of anyonic excitations are point particles having
both electric charge e and magnetic flux ¢ under the condition that there
exists only charge - flux interaction, but not charge - charge or flux - flux
interactions. If one slowly moves one particle around another by a full
positively oriented loop, the wave function acquires a Dirac [28] - Bohm-

Aharonov phase factor [2], from which one gets the statistical parameter

9= (%) m, where ¢g = hc/e is the elementary magnetic flux quantum.

This construction can be realized if one considers a system of particles
(fermions or bosons) moving in the effective non-local vector potential [6]

; _ hed 0 . yr —ys
ap(ry,...,ry) = ——= i ¢rs, $rs(rr —ry) = arctan ——=

.T]—QZJ,

where ¢rs is the winding angle of the particle J with respect to the par-
ticle I (note that a =0 when N =1). The magnetic field associated to
ar(ry,...,ry) is equal to

_ 90V 5@
By = - Z(S (r—r').

JAT

It means that each particle sees the (IV — 1) others as vortices carrying a
magnetic flux ¢ = %gbo.

Since statistics plays the key role in the organization of matter, it is
natural that in two-dimensional systems one must expect new phenomena
caused by anyonic excitations.

Quasiparticles with fractional statistics can exist in condensed matter
systems, such as the materials with a layered structure or interfaces where
the electrons are largely confined to move in the planes.

The first possibility is realized in the copper-oxid (Cu—O) crystals which
are known to be the high temperature superconductors. The second one is
related to planar electron systems moving in a strong perpendicular mag-
netic field and exhibiting the quantum Hall effect.

Below we will make some short comments on the properties of multi-
anyon systems and their possible relevance to two-dimensional condensed
matter systems (see [139]).

e Anyons occupy the so called Landau levels with finite energy spac-
ing between levels (gap); each level is highly degenerate. The exact
filling of this bands is especially favorable energetically and pro-
duces a particularly stable or rigid state.

e Anyons can be considered as fermions interacting with statistical
gauge field. Taking into account the field fluctuations, it can be



shown that there is a massless pole in some two-point functions
corresponding to the charged Golstone mode. This circumstance
together with the gap in the fermion spectrum can generate a new
mechanism of superconductivity [53].

e The third peculiarity is that the N-particle wave function is a mul-
tivalued quantity:

U(ry,...,tN) = H(Z[ —ZJ)ﬂ/’r - ®(ry,...,TN),
I<J

where ®(ry,...,ry) is a single-valued function. (z;y = x5 + iyr,
Zr = x5 — iyr are the complex coordinates of the I** particle.)
This type of wave functions is needed to describe the quantum Hall
states — an incompressible two dimensional quantum fluid with the
fractionally charged excitations obeying the fractional statistics (see
[99]).

The notions of anyons and of fractional statistics can be formulated in
the framework of the local quantum field theory in terms of a single-valued
matter field interacting with the Chern—-Simons (CS) gauge field. Remind
that the Chern—Simons action is a topological (the metric independent)
invariant in 2+1 dimensional space-time:

Scs = /d3a:%n5“”>‘a”6,,a>\.
The constant k determines the J-statistics of particles interacting with the
Chern—Simons field.

Our objective in this chapter is to develop the field-theoretic formalism
accommodate for studies of electrodynamical and thermal properties of pla-
nar fermions coupled to a statistical gauge field. In the subsequent parts,
we will use this formalism in order to describe some features of the Hall
fluid and two-dimensional superconductors.

In Section 2, we shortly review the transition from a quantum-mechanical
to a field-theoretic description of anyons and introduce the statistical gauge
field. Further, in Section 3, we consider a system of interacting Chern—
Simons, Maxwell and matter fields. In Section 4, we define the generating
functional. In Sections 5 and 6, we calculate the current-current correlation
functions for planar fermions in a magnetic field. Then, in Section 7, we
write down the relevant physical quantities, like the polarization operator
and the response function.

2. CHERN—SIMONS DESCRIPTION OF THE FREE ANYONS

The Hamiltonian describing the collection of IV anyons in 2+1 dimensions

is given by
1 e 2
B3 (o far)
ZQm Pr = p



Here

ai(ry,...,ry) = — ’mz i=1,2

= |r1 —I‘J|2

is a nonlocal gauge potential generating the Bohm—Aharonov phase inter-
action with a statistical parameter 9. Anyons carry the charge e and the
flux (¢/7)do.

It is easy to write down the second-quantized form of this many-particle
Hamiltonian. For this purpose, introduce a Shrédinger field ¢(r) and a
fictitious gauge field potential a(r) satisfying the conditions (in the units
c=h=1)

Biai(r) = 0,
%Gijaiaj(r) = ! (r)y(x). (1.1)

The solution to (1.1) is the field

=2 [t ),

|r —r'|?
Now the Hamiltonian reads as
1
H=—5- /dw*(r)D?w(r)
Dy, = 0y + ieay, (I‘)
This Hamiltonian naturally arises if one considers the Lagrangian density
1 1
L = ipt(r,t) (y + ieag) p(r,t) — %|Dk¢|2 + Ensuw‘au&,ax. (1.2)

Our metric for three-dimensional space-time is 7, = diag(l, -1, —1) and
Levy-Civita tensor €°'2 = +1. The Chern-Simons constant and the statis-
tical parameter are related by the equation k = —2 5+

Although L¢s is not invariant under the gauge transformation

ay = ay + OpA, v — e_ie/\z/), (1.3)

it changes by the divergence Los — Los — %/@5‘“’”8,, (a,0,A) and the equa-
tions of motion are gauge invariant.
The equations of motion for the Chern—Simons field

k" 0,0y = eJ0 = eszzp,
kM9 ay = eJ* = e [szD’%p (D*p)To)]
can be easily solved in the Coulomb gauge

€ —
at = =gt LT,
K
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Substituting this solutions into (1.2), we arrive to the Lagrangian

1 . 2 2
L= ——|Dup? + ipth — = Jpe™ 0, Ly — = Joe™ 0y L T, (1.4)
2m 2K 2K

where the gauge fields are totally excluded in favor of the matter field.
For further purposes, it is convenient to introduce the average density p
and define the currents

50 ¢T¢0 - P
it = 5=V = (Vi) e,

where the “shortened” covariant derivative operators refer to the back-
ground Chern—Simons field

e? k 1
Vi =0k —2;6 "8; p.

Substituting all this in (1.4), after some rearrangement we get

. : 1 e? . kna—17% A nka—1 -
L =il — %|Vk¢|2 ~ o [Jkek On tjo + Joe™ 0 ik | —
4

— 5 [P0 3005 o + G005 o0y Lo - (1.5)

This, generally speaking non-local, Lagrangian contains in addition to usual
two-particle interactions also a three-particle one, given by the last term in
(1.5).

Introduction of the average density p is equivalent to the separation of
the Chern—Simons gauge field into background and fluctuating parts:

e e .
= U —1 -1
ap = ay + ay, = _Efkmam p— Eekmam Jo,

and it is a starting point for the mean field approximation.
Consider now the corresponding generating functional

Zx / DDt Da’8[0ia:dle (61— p) — ke ndrmal i) Wi Y =5 [ Dry ]
which can be written in a more conventional form
7 / DDyt Da' Dagd(9;al)et S 4%,
where the Lagrangian £ is given by

Lo 1 . e?
L =il — %WM/JP + ejray, — %(Wiﬁ — p)agay, — ediag

e2p K

2

aray + =e"*al,0,a). (1.6)

2m
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3. INTERACTING SYSTEM

Consider a matter interacting with an external electromagnetic field Afft
and dynamical Maxwell and Chern-Simons gauge fields. The corresponding
Lagrangian is given by

L= ﬁGauge + EMatter-

The gauge Lagrangian contains kinetic terms for the Maxwell and Chern—
Simons fields and takes into account the interaction with a background
charge density n.:

1 1
ﬁGauge = _ZF[“/FI“/ + ene(AO + A(e)zt) + 5/%5””/\@”8,,@)‘.

The matter Lagrangian

. 1
ﬁMatter = “/JTDO"/} - %|Dkw|2

in the case of non-relativistic spinless particles, and

EMatter = 1/J(i7”Du - Um)dj

for the Dirac fermions (o = £1).
The covariant derivatives are defined by

Dy = 0p +ie(AS™ + A, +ay).
The equations of motion derived from this Lagrangian are given by

O F" =eJ" —enedpy,

ke" A, ay = e,

0 1
i—1 = ——DD AG™H 4 A, .
ing¥ 5.~ Dt kY + e(Ag" + Ao + ao)
Here J* are gauge invariant conserved currents,

€J‘u( ) — _6SMatter

A, (x)
JO = gty
Je = 5010 — 0] — (A5 + Ay + @)y

Decompose the Chern—Simons field into time-independent background
and fluctuating part a, = a, + aL such that, ap = 0, €;10;ar = <n.. The
external electromagnetic field is also the sum of a fixed background and

a small perturbation A%**(x) = A,(x) + Au(z). Introduce the shortened
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covariant derivatives, referred to the background gauge fields D, = 9, +
ie(A4, +a,). Using the equations

", (x)8,ax(z) = 0, ap =0,
£ al, (2)9,ax(x) = —“ah(a)
and
e, (2)9,a) () = TLal(z) + B[ a(x)ah (2)],

the Lagrangian can be written as
1 1
L= _ZF'WFW + ene (AF™ + Ag + ap) + 5&5’“’}‘ ' Oyal +
) 1
+ T Doyp — %|Dk¢|2 — e P(AF + Ao + ag) +

n % [ Db — hoc] (A + Ay + a}) —

2

_ ;—m (Ap + Ag + al)? phy. (1.7)

4. GENERATING FUNCTIONALS

Next introduce the Minkowsky space Green functions generating func-
tional

20 = ™ = Texp i [ dritayote)|) -

:N/D¢exp [i/daz (L+j(a:)¢(a:))]
= O exp [i [ ds (Lane-+ 2160 0 (18)

n (1.8), under ¢(x) we mean a dynamical field (gauge or matter), < --- >
means the average with respect to the Heisenberg representation vacuum
and < 0]---]0 > is the corresponding average in the interaction picture.

The effective action is defined by the Legendre transformation

= W[j] - / daj()d(x)

W) _
5j(x)

Up to the second order terms,

Wi =Wl f e (5555) e+ [ de favite) (s75005) 00

where
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where

:/@vwwww—m,%Z(mm>ﬂ

and

D(z,y) = ——(0[T¢(x)p(y)e’ | Aulint(W)|gy, (1.9)

i
Z[0]
is a corresponding propagator. In the same order, for the effective action
one has

Wil [d [dy(o(e) =) Dl5) " (000) = 6n) +
Introduce a free two-point function
Do(z,y) =i < 0[T¢(x)p(y)|0 >

and a polarization operator P(z,y) which is the sum of one-particle irre-
ducible two-point Green functions. These quantities satisfy the equation

D(z,y) = Dafag) + [ du [ doDa(e,w)P(u,v)Dlo,y),  (110)
and consequently
D_l(a:,y) = Dgl(a:,y) —P(z,y).

Using the last equality, the effective action can be written in the form of a
free action plus an interaction term

:__/dw/dy ~¢o){Dg " (z,y) = P(z,9) }((y) —po) +- - (1.11)

(we assume, that W[0] = 0).
Consider a gauge theory with the interaction Lagrangian

Lint = —e A" (2), (x| A).
In the Dirac theory,
Lu(z) = P(z)y"9(2),
and in the Schrédinger case,
Ih(z) = ¢! (2)y(2),
Iy(z) = ﬁ(@b*(w)vw(w) —h.c) - %W(w)@b(w)Ak (2).
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The gauge field propagator can be determined using (1.9) and is given by
the expression

Duu(xay) = DOuV(xay) +

+i26/dUdv<|TA”($)A”(y)Ak(U)AP(’UﬂO)c <0 01y (u)

54, (0)

|0 >4—0 —

—ie2/2/dudv(0|TA”(a:)A,,(y)A,\(u)Ap(v)|0)C(0|Tj>‘(u)jp(v)|0)c +
+0(e?). (1.12)
Using the expansion

1) = guo)+ [an (FED) A

one gets for the polarization operator

Puu(xay) = Ze2<0|3u($)3u(y)|0>c +

+ 2€%(0 <§jllt’((z))> 0Y =0 + O(e") (1.13)

(remind that (0|T - --|0) is average with respect to the free Lagrangian).
In the non-relativistic theory, the polarization operator is defined by the
current correlators:

Poo () = i€*(0|T jo (2)jo (4)|0)e + O(e*),

Po(2,y) = ie*(0|Tjo(x)jt (1)[0)e + O(e?),

Pu(x,y) = i€*(0|Tji ()i (1)]0)c — (1.14)
~ —oud(x — ) O 1E[0) + O(e?).

Plugging in this values for the polarization tensor, we find that up to the
O(e*) terms, the effective action (1.11) is expressed by

T[A,] = To[A" — AE] +
% / du / dy(A™(z) — ABY Py, y) (A” (y) — A5) + -,

where Al is the background value of the gauge field.
In the 2+1 dimensions, the current correlators

Loy (2, y) = (T (ju () (2)))e

have the following Fourier representation

dqdw —itw(zo— iq(x—
Lo () = / e (g, 0),
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In the momentum space, the correlators can be expressed in terms of in-
variant structure functions [120]:

Loo(w, @) = ¢’ Tlp(w, q),

Lio(w, q) = wqillo(w, q) + ie;jq;11 (w, q),

it (w, @) = 0w’ Tlo (w, @) +igipwlls (w, Q)+ (6ira” — qiqe ) T2 (w, @)+ i IT5.
The effective action reads as

1
SupslF) =S+ 5 [ dadyF(5) P (o,0)F 1),

where Sy is a free action, F, = A, +a, + AZ”” is a gauge field, and

2
e -
Puy(@,y) = Ty (2,y) — E‘Suktsulakl <Jo>. (1.15)

Consequently,

Seff[f] =S5y +

2
+ < / dz](B0Fr — O TFo) o (B0 Tk — o) + e F 11,0, Fx +

~ ~ < Jo >
+ €imOi F M a€pn O F™* + Fi (H3 — 'ZTOL

) Fil.
Here II, = II,, (100, —%FA) (a =0,1,2,3) are differential operators defined
by the corresponding momentum space structure functions (see also [120],
[116]).

The important physical quantity which describes the electromagnetic and
thermal properties of a bulk matter is the linear response function. The
standard derivation of Kubo’s formula for the linear response uses the adia-
batic switching on of an external perturbation and the approximate solution
of Schrédinger equation with a time dependent Hamilton operator (see, e.g.,
52)).

The formal expression for the linear response can be obtained using the

formula relating current operators in the Heisenberg and in-representations
[15]

Th(x|4) = S (TJ (] 4)S), (1.16)
where the S-operator is given by the chronological product

g = pe—ie [ drA,(z)" (z|A)

For the weak external classical electromagnetic field AY (), one gets a known
result:

Ti (x| A) = Tp, (2] A) — ie/dyﬁ(wo — o) [1*(2),5" (¥ Avly) (1.17)

(here j,(z) = Ju(2|]A =0) = I,(z|]A = 0)).
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Consider the case of matter interacting with the Chern—Simons and ex-
ternal electromagnetic fields, (i.e., there is no quantum Maxwell field). As
interaction Lagrangian, take

Ling = —eA*(2)I,(z|a + A).
The gauge invariant current is given by

6SMatter 6SMatter A
[ = — = — g 4
eJ(x) 54, (@) S () KkeM 0y an (x). (1.18)

The last equality is a result of the Euler-Lagrange equation for the Chern—
Simons field. Consider a small variation of the external field: 4, — A, +
0A,. The corresponding change in the current is given by:

o o (S22 000
:/dgy (Siyy ) 400

5JM(z) = SE“”’\B,,(SA)‘(:IJ). (1.19)

Using (1.18), we get:

The time component of this equation permits to express the density varia-
tion with the help of the magnetic field

5.J%(z) = —geikaiéAk(z) - —gaB(z). (1.20)

From the linear response formula, we have
Sao(z) = e [ dyDfy(a = 9)3Auw)

where DJ (z —y) is the retarded commutator of the current operators (see
(1.17)). In the momentum space, this quantity looks like

DE(9) = qoar I (q) — i€rmam T (g),

where I1%(¢) and II#*(¢) are some structure functions. Considering the limit
of the time-independent external field, one obtains

3
5o (z) :e/d3y(;i7r(§3e’lq(“” VIR (q)6B(y). (1.21)

Comparing (1.20) and (1.21), we get

B / &y / eI ()5 B (y).
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In the case of the uniform magnetic field § B = const, one can extract the
threshold value of the structure function

R K 1
IY0) = -5 =55 (1.22)
where ¢ is the statistics parameter. Note that this relation is obtained
without reference to perturbative approximation, and it is in fact a low
energy theorem. It must be noticed that the previous derivation of this
relation was based on the summation of certain diagrams [110], [111].

5. CURRENT CORRELATORS

In this section, we will calculate the current correlation function for a
system of planar electrons in a perpendicular magnetic field B. This mag-
netic field can be, as the external one (B), generated by a given external
current distribution, or the Chern—Simons magnetic field produced by the
average fermion density (b = —(e/k)p). Introduce first the fermion Green
function (see, e.g., [52]). At zero temperature, it is defined as a ground state
average:

G(z,a") = i(@o| T () (2) ¥ (a"))|Ro) = (r|G(t — ')|r')

= _/d—Ee—iE<t—t’><r|g(E)|r'>. (1.23)
27
In the magnetic field, fermions fill from the bottom to up the Landau levels
with finite energy gap between them (see Appendix A). One-particle states
with a given energy can be represented as |n) ® |£). The integer index n
labels the Landau level with the energy E, ~ (n + 1/2), a and & labels
the eigenvalue of some observable commuting with Hamiltonian (e.g., one
of the momentum components or the orbital angular momentum). The
choice of the basis is dictated by physical conditions. In what follows, we
consider the rectangular geometry, and as a good quantum number, select
the p-momentum along the z-axis.
Each Landau level is highly degenerate with the state density

_|eB|
oo
Supposing that there are N levels exactly filled, the kernel G(F) is given by

np

P e () TR = S (YT Lo
9(E) ;E—En—ié+7§E—En+ié' (1.24)

The states |n) are generated by the oscillator rising and lowering operators
a and a® ([a,a™] = 1):
1
— +\n
) = 7 (a*)"10).
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The corresponding one-particle Hamiltonian is given by
1
Hlp = W(a+a —+ 1/2)

The energy of each Landau level is proportional to the background magnetic
field

1 We 1
E,=— 1/2) = — =,
e+ 1/2= (0 +3)

where the magnetic length 2 = 1/|eB|, and w, is the cyclotron frequency.
(Below we consider the case eB > 0).
The current correlators are defined by the average value of the T-product

Luv(,y) = i Po|T (ju(2)jv (y))|®0) =
1 ) )
- —iw(zo—yo)+iqx—y ) 1.2
@) /dwdqe ar (W, q) (1.25)
The current operators are given by
jo(x) = ¢1 ()¢ ()

(@) = 5= (¥ @) Vv (@) - Vil (@)(a)

The covariant derivative operator is Vi = 9y + ieAy. The vector-potential
Ay, generates the static and homogeneous magnetic field B = €,,,0 A™.
The current correlators had been calculated several times, using various
methods and different approximations [53], [120], [24], [76], [110], [111],
[134], [78]. Below we will follow the presentation described in the papers
[40], [41].
Introduce the bilocal objects

Ju(z,2") = =[Au(@) + ALET @ ()9 (@),

where the operators A, are defined by

Ag = 1/2, Ak(a:) = %Dk(r)

Redefine the currents by the limiting procedure

. : . ,
Ju = (t’,r’)hﬁm(tJr,r) Iu(@, ).

Using the fermion Green function, we can write down
(ju) =i im[A,(z) + AL(z')]G(x,x').
For the Fourier representation, one obtains

i

(o)) = 5z [ d00(@) Tr [{A, Z(@}G(O0)]
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The Troperation is taken over the basis of one particle states [np >= |n >
®|p >. It is not difficult to show that the anticommutator can be expressed
as

{Au, Z(a} = Yu(@)Z(a), (1.26)
where ) 5
)
Y()Zl, Yn:—mﬁnka—qk

In (1.26), Z(q) is the coherent state operator

Z(q) = e~ Hara’ —g-a) (1.27)

1 1
= — w:t' = ~02q? .

The matrix elements of this operator can be easily calculated and are given
by

(n|Z(q@)ln + a) = $ (g )Ly (w)e ™" /2,

(n+a)!

(n+alZ(qln) = ] (—Lq:)* Ly (k)e ™2,

(n + «)
(nlZ(aln) = L%, (x)e /2.

In the above equations, L% (k) are the adjoint Laguerre polynomials defined
by

1 —o d" —z_n
Ly(z) = = {ezz T (e %2 )] =

n

1
=(n+a) Z(_l)kk!(a +k)(n — k)!zk'

k=0

The operator Z(q) is useful in order to calculate the Fourier transforma-
tions

/dre_ikr(r|A(aT,a)|r> = i—;rtr[Z(k)A],

/dr/dr'e—ikreik’f’<r|A(aT,a)|r'><r'|B(aT,a)|r> =
= 3_7;5(1( —X)tr[Z(k)AZ(K')B],

where A and B are some ladder operator depending quantities.
Consequently,

(5(2)) = 55 (V@) TrIZ (@GO} a0 = 55500 TrIG(O0T)]
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In (1.25), ju(z) is a divergenceless current. At the same time, due to the
anomaly, the correlator is not conserved: the 3-divergence of this object is
given by

)

T (2, y) = i6(xo0 — yo)(ljo(2), jv (y)]) = 5uk%5($ —y)(jo)-

m
In the momentum space, the correlators can be expressed in terms of in-
variant structure functions:

FOO(wa q) = q2H0 (wa q)a
Lio(w, q) = wqllp(w, q) + ieiiq;1T (w, q), (1.28)
Lt (w, q) = 6w To(w, @) + iepwIl (w, q) + -

+ (0i19® — ¢iqe) Mo (w, q) + 6ix IT5.

From the current conservation, it follows that II3 is in fact a Schwinger
term:

1 .
quruu(waq) = quS(Slu = qu<.70>6lw
ie.,
{Jo)

I = 297
m

Performing the Fourier transformation, one obtains [120]

T (z,y) = m / dk; / dkye™ e Y §(k + k') x
x Tr[{Z(k), Au}G(zo — yo){Z(K'), Av}G(yo — o).

Here G(xo—yo) is the kernel of the fermion Green function. Applying (1.26),
we get the representation

_ 7
o2

F,UJ/ ((1, w) [Yu (q)YVT (q,)F(qa qla w)]q:q/ *

Introduce the variables
2 2 .
H=5q2, (=5la-d' +igng)

and the notation
e dE Jo
a5 (w) = / S 0+ lG(E)ln + a)(nIG(E - w)ln) = d5(~w). (1.29)
We see that the kernel

Ma.d'w) = [ 5 TZ@IE)Z (@)(E - )]
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can be written as a sum

© o 5o I ’
F(q,q',w):izz (1_70> n e~ (ntr )/2Lg(H)Lz(Hl) %

|
n=0 a+0 (n + Oé).

X (C“dz(w)-l-éadg(w)) EZ (1—%) (nj_i!a)!gna(qa qlaw)'

The action of the operators Y, (q) on 0,4(q, q’,w) is given by the expres-
sions
1 a— a o4 (o Jo
Dfi(q)gna]q:q’ = QmQZ I:Clhl 1(I>n(h3)q>n(h:)] (dn(w) - dn (w))
d®% (k)
(e n @CM
5 0 () +

)
+ %eijqj |:K,

+ %ama_lq)z(m)@g(m)} (dg(w) + Jg(w)) , (1.30)

1 _
V@Y, (@)0na] =5 b0k O (R) 5 (0)] () +30) +
1
o d%7 (k)
dk

1
e e HOL R

<n><1>z<n>] (d2(w) — &2 (@) +

1 do® do®
+ — (6ir9” — qiqr) [771(&) 4 () +
m

+ ak

dk dk
d®% (k)

+ analwég(n)] (d (W) +d2 (w)) - (1.31)

Here &2 (k) = e */2L% (k). In deriving this relations, we have used

9 i L L im 'm
aizaqi =q +8H+§q (8¢+8§)+§e q™(0¢ = 9),
o 0 i 1i iimm

and the identity
eikq2 + qzekmqm _ qkezmqm =0.
Straightforward calculations show that the spectral functions (1.29) sat-
isfy the relations
aw.(dy, (w) = dy (w)) = w(dy (W) + djy (W), (1.32)
(awc)2/dwe*i“’t [d (w) + d (w)] =

= (aw,)? / dwe™ ™" [d(0) + d2(0)] +
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+/dwe_i”tw2 [d2(w) + d2 (w)] - (1.33)

Indeed, the Green function has the following structure

am bm

z—Em—i6+z—Em+i5'

(m|G(2)|m) =

Integrating, one obtains

— %%, : 1.34
20 (Wea + 16)? — w? (1.34)
B dE | . )
Dralw) = [ G2 (#1() - d3w) =
= i dntabn = anbuia (1.35)

(wear +16)2 — w?”’

and hence (1.32). Further, in order to obtain the correlator, one encounters
the integral over the frequencies w:

/d_w —iwt w2 _ /d_we—iwt w2 +/d_we—iwt
o7 © (W2 — (aw.)?) ) 2n (w2 _ (awc)Z) o7

which gives (1.33).
Integrating, we use the limiting procedure

/d_E 1 1 _
2mi (E — E,, —i0) (E — E,, +1i6)

[ dEeP0" 1 1 B
_/ 21 (E — B —i0) (E—Ep +1i0)
B 1

" E,, —E,+id’

and

dE 1 1 -
/Q_M(E—Em:tié) E-Bpzi) "

Equations (1.32) and (1.33) permit to write (1.30) and (1.31) in the following
form:
1w
=51
o 495 (k)

dk

[Yi(@)onalq—q i [k @0 (k)87 (5)] DL (w) +

.
+—m6ij(Ij [N

a 1 a—1ga a
) (bn(li)'i'—ali 1(I>n(’€)q>n(’€) D;LLa(w)a

2
1 5 w?
q=q’ o 2m2€2 ik wg

V(@Y (@)ona] (62705 (k) @5 ()] Do () +
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i w 1 a—1Fa a d(}a() a

e |G BB + kT g )

dey (k) doy (k) am1 d®5 (k)
dk dk dk

+

Dy (w) +

+ # (6:ixa” — qiqr) [ 4’%(*6)] D (w) +

1 o — o o
+ W&ka2 [n 1<I>n(f<;)<1>n(f<;)] D} (0).

Introduce the function

S(Ha’ilaw) = 271'[2 Z Z <]- - _> #!a)!sna(ﬁanlaw)D;:a(w) =

n=0 a=0
j n!
= W;)ZO(“—) o
X %(na +K “)@g(n)tﬁg(n')D;ﬁa(w). (1.36)

Direct calculations show that the structure functions Iy, II; and II; can be
expressed as

oo,
H()(W,q) = 5 K S(H,I{,,W),

1 0
Hl(w,q):E&S(n,n',w) ,
1 0 0
Iy (w,q) = W&%S(H K',w)

For the structure function I3, we get

i 1 n! _ o
I3 (w,q)= yr—ry7 Z (1—55(10) ma%a L@ (5)]” Dyl (0).

As we see, the three different structure functions entering into the correla-
tor can be expressed as derivatives of the same scalar function (1.36) [41],
[40]. This function is expressed in terms of infinite series, from which one
can extract physical results with a needed accuracy. Remind that in the
principal papers on the calculation of current correlators (e.g., [120], [110],
[111], [24], [76]), this objects are obtained in the lowest orders and for spe-
cial configurations of the gauge field after rather lengthy and complicated
calculations.

As a further step, let us find the frequency-dependent part of the function
(1.36).

Using the explicit form of the Laguerre polynomials, one finds that zero-
momentum values of structure functions are given by

oo

Ip(w,0) = L > (n+1)Df;(w),
47
n=0
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1, (w, 0) %mpz[ (n+1)D, (w)— %(m%)pgo

)

100 =g 5 [ 1903003 ]

Suppose that the levels n = 0,1,..., N —1 are filled up and the higher levels
with n > N are empty. This corresponds to the Green function with

am =0(N—-1-m), b, =60m—-N), (6(0)=1).
From (1.34), we get

2w,
+ _ - (&

Dna = —Z(Sn,Nfltsalm. (137)
It is not difficult to extract the zero momentum values of the structure

functions:

Ty (w, 0) = ;fjﬁ (1.38)
I (w,0) = ;szffiﬂ (1.39)
Iy (w,0) = —%%w;"fiﬂ (1.40)
I3 (w, 0) = le?% (1.41)

The threshold values (w ~ 0,q ~ 0) of the structure functions are given by

me?N
HO(O) = o
N
) = o, (L.42)
N2
M>(0) = 2mr

6. CURRENT CORRELATORS AT T # 0

At a non-zero temperature, one can use the methods of grand canonical
ensembles and the imaginary time (Matsubara) technics [52], [89].

The corresponding expressions in the Matsubara formalism can be ob-
tained performing Wick’s rotation and the well known substitutions

j d
E—)i{s:%(s—ké), —/2—’5%%2,

i 2w /dw —iw(t— t) —iwny (t— t)
W = W, = —T, e eminl
=3 Z
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The thermal Green function is defined as a quantum statistical average
1
GB (I‘, T rla TI) = _ETT{pTT [1/}(1’, T)/‘/}T (rla TI)]}'

where p = exp[—(B(H — puN)] is the grand canonical distribution and Z =
Trp. Matsubara fields are defined as follows

CREDY [ apeE by
(r,7) Z/dpe "Tz/)T

Here E), = E, —
Due to the antiperiodicity, this thermal Green function can be Fourier-
expanded over the half-integer frequencies:

Gp(r, 7', 7) Z e =) (x]Gy (i€ '),

§=—00

b=Z(s+1/2).

B
The kernel
, o n){n]
Gs(i&s) = ; m
can be obtained from the zero temperature kernel by the formal substitution
E — i&,E, = E!, = E, — u. The current correlators are defined by the
statistical averages

1 . .
—ETT [ (r1,71) 0 (r2, T2)]

and can be calculated in the same way as the zero-temperature correlators.
It is not difficult to see that the main changes concern the frequency de-
pendent parts D¥ . (w), which are changed to the temperature dependent
quantities

Afa(wr) = —%Z [(n+a|g5(igs)|n+a>(n|gﬁ(ifs —iw,)|n) £ (w, — —wr)] .

S

Fgu(l‘hﬁ;l‘mﬁ) =

The typical sum in these expressions is given by

1 X1 1
s =5 X & —m #F

s=—o0 % n n+ta

This sum can be converted to the contour integral
15} dz 1 1

4n? | cotmz 8 ' 8 )
T ( - 27\'7,E41) (Z - %E;hLa ﬁwr)

I3 (wp) = —
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The complex integration path passes below and above the real axis and is
closed at Foo’s. Deforming this contour into two paths in the upper and
lower half-planes, one gets:

Ly(wr) 1 1 1
wyp) = —— : .
o E;H-a —E, tiw, [1+ ePEn 1+ e%Fnta

If & = 0, there is a double pole at w, = 0 in the contour integral, and

1) = 2 (1=

AT T on \ 1+ ePFn |-
As in the zero temperature case, one can show that the following relations
are valid:

aw Al (W) = iw A (wy)
and
2

2,2
1 —iweT Wy _ 1 —iweT —aTW, 1 —iwpT
3 € 2 2,2 79 € 2 5217 € :
B wy+aotw; B4 wi+atw; B4

The last term here is the periodic delta-function dg(7).
Further steps repeat the zero-temperature case, where

2w 1 1
+ - < —

must be used instead of D} (w). Now the zero-momentum structure func-
tions are given by the sums

1

00
15 _ = We
Ho(wmo) = 271'(4)34-(4}% Z 1—|—65EL’
n=0

1% (. 0) 1 w2 i 1
Wp, = R
! 2m Wl +wp A= 1+ efPn

1 w? 2n + 1
1 (w,,0) = — c _.
2 (w’l"7 ) 27I'm wg + UJ% T;) 1 + eﬁE"

7. EFFECTIVE ACTION AND RESPONSE FUNCTION

Consider the action
St.6] = [ dedy |3 A@K @) AW + LA 0)].

In this action, by A(z) we denote the set of gauge fields, such as the dy-
namical Maxwell field A,,(z), or the Chern—Simons field a,, and the external
electromagnetic potential A, (z). The block-diagonal matrix K (z,y) repre-
sents the kernel of the kinetic term and can include the gauge fixing terms
for dynamical gauge fields. The kinetic terms corresponding to the external



27

fields formally are assumed to be infinitely large. By ¢(z) we denote matter
fields.

Construct the Schwinger’s functional and the effective action for the
gauge fields, integrating out the matter. In the Heisenberg representation,
the Green functions generating functional is given by

Z[J] Out|€7'fdxj A(a:)(a:)|m> — eZW[J]

The corresponding effective action up to the second order is given by

Sepf[Ac=—2 / drdy (As(z) - Ao(z) D (2, y) (Ae(y) — Ao(y)) +O(4?).

Here
Diz,y) = i{out |T (A@)AW) |in).
is a full propagator and Ag(z) = (out|A(z)|in) is the field vacuum average.
In what follows, we assume that Ag(z) = 0. Those components of the
classical field A.(z) which correspond to external electromagnetic fields are
fixed, and are equal to A, ().
In the interaction representation, the free propagator is defined by

d .
D) = {07 (A@) A1) 10) = [ 5™ 9@ = Dy(o)

where

d.. .
D.(q) = / (gﬂa;de'qu[(—l(z,O) = K—l(q)

and the interacting Green function is given by

D(w,y) = i(OT (A@)A)e'] ) o).

For further needs, we give some expressions illustrating the above discus-
sions.

In the Coulomb gauge, the propagators must be extracted from the free
Maxwell end Chern—Simons Lagrangians

1
Lem = ——F”,,(a:)F“"(a:) +

: 2040,

2¢
1 1
Lcs = 5/%“")‘%(93)3:/%(33) + %(6kak(a:))2.

The Maxwell field propagator D, (g) is given by the matrix

2 1

1+ ¢% -4

1 2 2
? _é:w_z]ll [5ik _ qiqk(]l+ fqiqk
q q’ q”
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The Chern—Simons propagator A, (q) is given by the matrix

N .eimqm w 7
. 1 aw Laas R o v
Kcl(Q) = im i 1 i k(q )

kg? | Mg, W

kg’ (a®)°

In some cases, it is more convenient to take as a free Chern—Simons
Lagrangian the expression (see the Lagrangian (1.6)))

—Q
h)2q2

2
Log = gzs“”}‘a”&,a,\ — %akak + %(alal) (].44)

The corresponding propagator in the limit @ — oo looks like

Auu(w):/ = TN, (g) = iT{au(2)an(0)}),  (1.45)

(2m)3
where
2
11 —gm,% iqy  —iqy
Aw@==-=1-ig, 0 0 |- (1.46)
K q .
i 0 0

The relativistic free action is
1 Y 1
Lem = /dl“ {—ZFWF“ + % (B“Au)2}
for the Maxwell field and
1
Log = /da: {gg’“”\a“&,a,\ + %(a“auf} A3z

for the Chern—-Simons field.
The bare propagators of the Maxwell and the Chern—Simons fields in
that cases are given by

1 q"q” q"q”
D;w — pv - -
Qe gy a"q"
koq? (¢%)?

The full propagator satisfies the Dyson-Schwinger equation

A (q) = -

D(z,y) = D.(z,y) +/dudch(x,u)’P(u,v)D(v,y),

where P(z,y) is a polarization operator. The corresponding expression in
the momentum space is

D(q) = D(q) + Dc(q)P(q)D(q).
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The equivalent form of this equation is given by
D_l(xay) = Dc_l(xay) - P(xay)
and
D~ q) = D; (@) = P(q)-
The lowest order perturbative calculations show that

OL 0L
P(x,y) = (0T (aA(z) 8A—(y)>,40 et
62L —
e ) ML
EP(CE,:U)+"' )

4amw<

Taking into account the above consideration, the effective action is ex-
pressed as

SusslAd = = [ dedyAc(e)D z,)Acly) =
:_%/M@m@m;@wMAw+

+ % /da:dyAc(ar)P(l“,y)Ac(y)'

For the case of the external field A..;(z) and a dynamical one denoted by
A(z), the effective action looks like

SefflA, Aeat] = —% /da:dyA(a:)K(a:,y)A(y) +

45 [ 0y (A0) + Aer(0)) Pl 0) () + Aur).

As a next step, we can integrate out the dynamical fields, i.e. substitute
the solution of the extremal equation

A(x) = / dudyTL(z, u)P(, 3) Acsr (),

where the operator II(z,y) = K(z,y) — P(z,y). In that way, one gets the
action

1
Seff[Aext] = 5/dwdyAemt(x)E(way)Aext(y)'

The Fourier representation of the response function ¥ is given by

d
Se.9) = [ e 1),

where

2(q) = P(q) + P9I (q)P(q).
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The operators under consideration satisfy the equations (A(q) = K~1(q))
~"(q) = Alg) + T (9)P(0)A(9),

and, as a consequence,

¥(g) = P(g) + P(9)A(9) ().

Let us now apply this formalism to the case of matter interacting with
a Chern—Simons gauge field in the presence of an external electromagnetic
field.

Suppose that the external field consists of background and small fluctu-
ating parts and that the background generates a uniform magnetic field B.
In its own turn, represent the Chern—Simons field as a,(z) + a,(x), where
b=epak = —<p is a Chern—Simons magnetic field. As a nonperturbed sys-
tem, take matter interacting with the effective magnetic field Beyy = B + b.

In order to calculate ¥, we need the polarization operator. In the lowest
order approximation it is given by eq.(1.15)

2
Pus(@,y) = €Ly = — < 0ljo(@)]0 > 3(@ = y)3,udid.

We see that the last term is exactly cancelled by the Schwinger term pre-
sented in the current correlator. As a result for the Fourier-transformed
polarization operator, we can use (1.28) with II3 = 0. The diagrammatic
representation of ¥(q) is given by

G =B+ BB+ (BB -

The final result looks as follows
DXqo = q°Iy,
i . k 1 1
DYy = —q'wllp +ieipq” (II ( 1+ =1L | — =Tl M|,
K K
DYy, = 6w’ To +

2 Ne 2
+ [ira® — @] [H2 + oy (Mo M — Hl)] +

1
-Hmwhl@+—m>+lnﬂd.
K N

Here
M = W2H0 + (121_[2,

and

1 2 g2
M®=¥G+;m>—pﬂuﬁm+¥my (1.47)
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CHAPTER 2

SIMILARITY TRANSFORMATION AND INTERPLAY
BETWEEN INTEGRAL AND FRACTIONAL
QUANTUM HALL EFFECTS

1. INTRODUCTION

Experimentally the Quantum Hall Effect (QHE) is observed in two-
dimensional electron systems at low temperatures and in strong magnetic
fields. The low temperature is needed to freeze (quantum mechanically)
the degree of freedom for motion in the perpendicular direction, and strong
magnetic field forces the electrons to fill, from bottom to up, the Landau
levels (for a review, see [118], [126]).

The Ohm’s law for a free electron gas confined on a plane in the presence
of a perpendicular magnetic field B is given by

i k
JZ = O'ikE 5

where J is the electric current density, E is the electric field, and oy is the
conductivity matrix.
Classically, the Hall conductivity

nece
B )
Here n, is the electron density. The resistance matrix p; is the inverse of
the conductivity matrix p;, = U;kl, and its components are
B

nece

Opy = —Oyp = — Ogz = Oyy = 0.

Prx = Pyy = 0, Pxy =

The last expression indicates that for an ideal electron gas, the transverse
resistance linearly depends on the ratio B/n..

Elementary quantum mechanical consideration of a gas of free electrons
moving in perpendicular magnetic and electric fields gives for the Hall con-
ductivity the following result

. e
OH = Ogzy = Fl/,
where the filling fraction
#of electrons  n,

~ #of Landau sites ng

(np = ££ is the density of quantum states per level). In physical terms, v

represents the number of filled Landau levels, and v~ ! is the magnetic flux
per particle.

In the experimental setup, the charge density or the external magnetic
field can be varied. A striking feature of experimental data was that at very
low temperatures (T < 1°K) and very strong magnetic field (B > 10 Tesla),
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the Hall conductivity, plotted as a function of the filling fraction develops a
series of plateaux at the values

e2 1,2,3,...(£10°8) IQHE
ag = —]j, vV = _ .
w 1,2 12°2° (£107°) FQHE

More generally v = p/q, p and ¢ being relatively prime integers with ¢ odd.
The purer the sample, the greater is the number of observed fractions, and
there is more or less a definite order in which new fractions appear as the
sample quality is improved.

The effect is not actually restricted to the lowest Landau level (v <
1) and the cases v = 4/3,7/3,7/5,8/5, and so on, have been observed.
Moreover, plateaux with an even denominator have been observed for v =
5/2. However, this is exceptional, and is attributed to a spin-unpolarized
state in distinction to the ordinary spin-polarized fractionally quantized
states.

At the same time, the longitudinal conductivity o,,, appeared to be
essentially zero when o,, was nearly constant, and conversely when o,
varies, 0, iS non zero.

The high precision (up to 10~8) of the observed quantization of Hall con-
ductance is deeply related to the fundamental principle of gauge invariance
[101]. The arguments used are based on the idea of spectral flow: the adi-
abatic change of the Hamiltonian by its gauge equivalent does not change
the spectrum as a whole, but can produce a charge transfer of an integer
number of the charge carriers from one edge to the other. If, during this
process, N elementary charge carriers of the charge fe move from one to
another edge, the Hall conductivity will be

Jx I, e?
T _— = = N [}
=, TV, TR
ie.,
v=Nf

and the charge carrier carry the charge te. In the case of IQHE, N = v
and f =1, i.e., one electron is transferred from one edge to another for each
fully occupied Landau level. In the case of FQHE, for the most exploited
Laughlin series v = m, N =1, and elementary charged excitations are
vortices with a fractional charge e/(2p + 1).

As it will be discussed below, FQHE can be interpreted as IQHE for the
system of so called composite fermions, consisting of electrons carrying an
even number of elementary magnetic flux quanta. This picture, proposed
by Jain [86], can be realized in the framework of the Chern-Simons gauge
theory, where the additional magnetic flux is produced by a statistical gauge
field.
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In the present chapter, we will consider an alternative version of Jain’s
approach, which exhibits an algebraic similarity between integral and frac-
tional QHE’s.

In Section 2, we get the conductivity tensor for a system of electrons
interacting with the Maxwell and Chern—-Simons fields. In Section 3, we
review the properties of the Hall fluid. In Section 4, we formulate the simi-
larity criterion and introduce the corresponding transformation. In Section
5, we develop the picture and discuss the composite fermion approach and
FQHE wave functions. In our presentation, we follow the papers [42], [43],
[44].

2. HALL CONDUCTIVITY AND RESPONSE FUNCTION

In the preceding chapter, we have obtained the expression for the effective
action for the electromagnetic field interacting with matter. In its own turn,
matter is supposed to interact with the Chern—-Simons gauge field. In the
mean field approximation, the initial Hamiltonian corresponds to particles
moving in an effective magnetic field created by external currents as well as
by the Chern—Simons background magnetic field.

The effective action is given by

Sealdy] = 5 / & wdy A () S (2, ) Ay (3).

The electromagnetic current

JH(x) = Wilie(f;) T / dy=H (z,y) Av (y)-

In the momentum space, one has
JH(q) = =2 (=) A (9)-
The electromagnetic response is defined by
20(—q) =wg'So(~w, q%) — i€ T (~w, @),
S (—q) =0%w o (—w, @*) —ie* W (-w, @) + [0 q” — ¢'¢"] Ta(—w, ).
The Fourier representation of the electric field is
E*(q) =i (g™ Ao(g) — wA™(q)) .
As a result,
T'(q) = iwSo(—q)E*(q) + ¢*T1(~q) E*(q) —
— B3(=q) [6"a” — ¢'¢"] Ar(a).
The conductivity tensor is given by (see, e.g., [94])

Oz = ul;lg%) (iwXo(—w, 0)),
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Ozy = ilg}) ¥ (—w,0).

From the previous chapter, we know that in the low energy limit (see (7)),
211, (0 211, (0
610() , 21(0): € 11() .
(14 ~11,(0))? 1+ =11, (0)
In the mean field approximation, when the ground state corresponds to N

totally filled Landau levels, the threshold values of the structure functions
is given by

2o(0) =

N
II,(0) = —.
1(0) = o~
In the sequel, it will be shown that & = — (p is an integer). As a result,
e? N

7er =00 0w = Ny 1

Consequently, for the filling fraction one gets (in units, where h = 1)

N
V= ———.
2Np+1

These fractions correspond to the generalized Laughlin series.

3. NONCOMPRESSIBLE FLUID AND YW SYMMETRY

The IQHE can be understood using the picture of noninteracting elec-
trons filling from bottom to up exactly v Landau levels. In the picture of
free electrons exactly filling up the Landau levels, there must exist an en-
ergy gap in the charged particle spectrum. Indeed, the energy to create a
separated particle-hole pair should be just the energy to excite a fermion
into the lowest empty Landau level, viz.Epq;r = eB/m. This predicts that
the many-body ground state at the plateaux have a uniform density and
gap for a density waves.

The FQHE ground state cannot be obtained from non-interacting elec-
trons by continuously turning on interaction and must be a new type of
many body condensate. The most important common feature of FQH and
IQH states turns out to be that both of them are incompressible fluid states.
In the case of IQHE, incompressibility can be understood in terms of com-
pletely filled Landau levels and Fermi statistics.

However, at fractional values of v, which corresponds to only partially
filled Landau levels, the incompressibility is a non-trivial property that orig-
inates from the interelectron interactions.

To the many-body system corresponds energy operator, which takes into
account the inter-electron Coulomb interactions as well as the presence of
a perpendicular strong magnetic field:

2
H(r17r27"'7rN) = %12: (P[— %A(rl))Q —52672
=1
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In this expression, A(r) is a two - dimensional electromagnetic potential cre-
ating the magnetic field B = €;,0, A*. The second term is the static inter-
action. In two dimensions, the Coulomb potential is logarithmic. However,
in the above two-dimensional systems, the ordinary 3D Coulomb potential
can be used because 2D electron systems have a small but finite thickness.
Only their motion at low energies is two-dimensional.

When the fraction is ¥ = 52—, the ground state can be described very

2p+1>
accurately by the variational wave function proposed by Laughlin [99]
Ve = N, [ (ar = zp)? e 2 1o, (2.1)
1<J

where z; is the complex coordinate for the i-th electron and A, is a nor-
malization factor. Mathematical features and physical meaning of LWF are
the following;:

e The prefactor f(21,...,2n) = [[;;(2i — 2;)***" is purely analytic,
which means that all particles are in the lowest Landau level.

e The prefactor of Jastrow form: it has a zero of order 2p + 1 at
coincident points, showing that electrons tend very strongly to repel
each other. Each electron sees 2p 4+ 1 zeros bound to the positions
of other electrons, as if each particle carries 2p + 1 flux quanta.

e The total angular momentum

N
. 1
J=> jr=0p+ 5NN -1)
k=1
is a good quantum number, which is proportional to the area occu-
pied by the system.

The interpretation of the Laughlin wave function as a FQHE ground state
is based on the plasma analogy and is justified by the very high accuracy
overlap with the numerically calculated wave functions.

Despite the above mentioned differences between integral and fractional
QHE, they can be viewed from unified position. As it will be argued in the
present, chapter, IQHE and FQHE can be considered as non-unitary equiv-
alent realizations of the same underlying symmetry — infinite dimensional
Witoo.

The main idea permitting to treat IQHE and FQHE at the same footing
is related to the physical picture of incompressible quantum Hall fluid. In an
incompressible fluid, the fluctuations in the bulk induce fluctuations at the
boundary. The relevant degrees of freedom are given by small fluctuations
which are localized at the edge — the so called edge density waves [72],
propagating around the edges of the sample. Furthermore, it was shown
that the spectrum of edge excitations converges towards the one of the
theory of relativistic chiral fermions in 141 dimensions. (Wen has shown
[133] that the spectrum of edge states is determined by level-one U(1) Kac-
Moody algebra).
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At the same time, all possible configurations of a droplet of uniform
density can be obtained by deformation which preserves the area, and the
mathematical description of the deformations of an incompressible liquid
droplet can be given in terms of a group of area preserving diffeomorphisms
[20], [23], [81]. The corresponding algebraic structures are generalizations
of the well-known Virasoro algebra, with additional generators induced by
extended conformal symmetries. Wy is a conformal algebra which contains
the generators of integral conformal spins 2,3,...N. (Wy = V is the Vi-
rasoro algebra). W, can be viewed as the N — oo limits of finite-N Wy
algebras, and contains an infinite number of generating currents of confor-
mal spin 3,4,...00, in addition to the spin-2 stress tensor of Virasoro [8],
[124].

In what follows, we exploit the following particular limit known as weg

i, vi] = [+ 1)m — (i + DnJvi,.

This algebra can be enlarged to w14 With conformal spins s =i +2 > 1,
simply by allowing the indices ¢ and j to take the value —1 as well as the
non negative integers.

The resulting algebra admits a geometrical interpretation as the algebra
of area-preserving diffeomorphisms.

The quantum version of w4, is known as Wi . It reads

Vi, Vil = (jn —im)V,ii + q(ig,m,n) Vi o ¢ ()89 84 m -

Here i + 1 = h > 1 represents the conformal spin of the generator V!,
while —co < n < +o0 is the angular momentum. The first term on the
right hand side reproduces the classical wo, algebra by the correspondence
vi_, — V! and identifies W} as the algebra of “quantum area-preserving
diffeomorphisms”. The additional terms are quantum operator corrections
with polynomial coefficients ¢(7, j, n,m) due to the algebra of higher deriva-

tives. The c-number term c'(n) is the quantum anomaly.

4. INFINITE SYMMETRY AND SIMILARITY TRANSFORMATION

The current understanding of the quantum Hall effect is essentially based
on the Laughlin’s picture of the incompressible two-dimensional quantum
fluid which exhibits an energy gap [99], [14], [56], [57].

As we have already noted, the notion of incompressibility can be related
to an infinite symmetry, which on the classical level is represented by the
group of area preserving diffeomorphisms [20], [21], [81].

As an outcome, a two-dimensional quantum fluid can be characterized by
the unitary irreducible highest weight representations of the Wi, algebra
[22].

The derivation of this basic conclusion is straightforward for the IQHE,
when liquid is formed by the non-interacting planar electrons in the lowest
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Landau level (v = 1). For the clarity and to fix the notations, we will
reproduce some essential points.

In the appropriately chosen system of units (c=h=m =1,e =2,B =
1), and symmetric gauge A = %(—y,a:), the quantum-mechanical Hamil-
tonian and angular momentum of N electrons in the orthogonal uniform
magnetic field B = €;0;A* (i, k = 1,2) can be written in terms of har-
monic oscillator operators

. 1 N N
H:_mz I—eArI Zam'}'+a}'a1),
=1 I=1
N N
J Z Zla] z18 Z (bjb[ — a?aj) .
I=1 I=1

In the complex notations
. 1 .
z =+ 1y, 6:5(81—26?!),

these operators are given by

27 = + Zr
a =%+ o =5 =0
271 1 5
b= 40 b= _5
I 2+ 7 T ) I,

[aI,aJ] [b[,b+] = 5 IJ-

The W14 is generated by the operators

N
vh ==Y ()" br)’, 20, n+i>0,
I=1

which commute with the Hamiltonian and satisfy the commutation relations

AR T

[Una Uin] = (]n - 7:Tn)’un—i-m (22)

)

where ellipses correspond to the quantum deformations [20].
The v = 1 ground state is given by the wave function

Uo(a,.on) =[] ar—ez)e” PESHE (23)
1<I<K<N
HUq = EyUy = N,
N(N —1)

JUy = 5

Ty,

The action of generators v, on this state can be easily calculated (especially
if one uses the second quantization formalism). The basic results are as
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follows [22]:

a) v ¥ =0
for —1<n<0,0>1
b) vy = const- ¥, (2.4)
c) v, ¥ =&, (21,...,2n) - ¥y for n>0,i>1.
Here &/ (zy,...,2y) is some symmetric polynomial.

The equality a) in (2.4) is the highest weight condition which is a math-
ematical transcription of the incompressibility. b) and c¢) characterize the
excitation spectrum.

The situation is drastically changed in the case of fractional fillings. Now

the ground state (for v = ﬁ, p-integer) is given by the Laughlin wave
function
Uz, onz) = [ G-z e/ 2y il (2.5)
1<K<L<N

and is believed to describe the incompressible state of interacting electrons.

Now if one wants to construct an algebraic classification of a quantum
fluid, the ground state (2.5) must be subjected to the action of the symme-
try generators. In order to carry out these calculations, in the paper [54]
the authors have changed the definition of operators by by introducing an
interaction term

b =bg — — .
k = Bk = bk QPZZK_ZI (2.6)
I#£K
Note that b; is not changed
bl = B =bj. (2.7)

The infinite symmetry is generated by the operators

N
Vi=— > (B{)"(Bk)

K=1

which satisfy the same algebra as v in (2.2) up to the terms involving
delta-functions. These terms can be ignored, because the wave functions
vanish as zx — z7. As a result, it can be shown that V! acts on ¥, as on
the highest weight state.

The operators Bx and B} are not Hermitian conjugate. This will be
improved if one introduces a new integration measure in the configuration
space, i.e.,

dzy ---dzy => dzy -+ -dzyu(z, 2),
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where [130]
p(z, 2) = H |21 — 25|,
1<J
and simultaneously changes the definition of operators ax and a} in the
following way:
ag = Ag = arg,
1

L#K

Note that the newly introduced operators Bg act on the ground state of
interacting electrons ¥, in a way analogous to the action of bx’s on ¥;:

bV, = Z #‘I’o,

Ky PK T2
1
BV, =Y ——0,
iy PK — 2

It seems that this circumstance has initiated the Ansatz-type substitutions
(2.6)—(2.7), which in turn leads to the introduction of the measure u(z, z)
and operators Ax and A};.

Now we can make a simple observation, which perhaps clarifies the mean-
ing of this procedure [42]: wave functions and algebra generating operators
for the fractional (v = 52=) and integer (v = 1) filling fractions are related

by the following simila@ transformation
Up(z1,...,28) = Sp(z1, ..., 2n)¥o(21, . - -5 2N), (2.8)
Op = Sp(z1,...,28)00S, (21, .., 2n), (2.9)
where
Splz1,. - 2n) = [ 2k — 20" (2.10)
k<l

(2.8) is evident (S, is a mapping operator T,_,, between the ground states
corresponding to different filling fractions [3]), and (2.9) can be easily veri-
fied by the direct calculations, letting Oy = {bx, b}, ax,aj,vi} and O, =
{Bk, B}, Ak, A, Vi}, respectively.

Following the scheme of algebraic classification [22] all the essential infor-
mation about a Hall fluid for the fractional filling is encoded in the action
of symmetry generators V,! on the highest weight state ¥,,, which due to
(2.8) - (2.10) can be simply deduced from (2.4):

Viw, =S, vl W,.
In particular, one automatically obtains the highest weight condition

Viw,=0, for —i<n<0,i>1.
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Transformation (2.10) becomes singular as zx — 21, but it acts in the
space of functions which vanish in that limit. What seems to be more
important, is that it is not an unitary transformation:

S48y = [ lexc — 22l = (2, 27"
K<L
The last equality is not accidental. In the Hilbert space where the operators
Op and 03 act. the Hermitian conjugation is defined by the scalar product

(W|0f|8) = (2|00 T). (2.11)

It is evident, that the operators O, and O;f) = (S;l)TOEE S;E are not Hermitian
conjugate in the sense of (2.11). Introduce a metric operator 7 and define
a new scalar product

(PO ) = (2[7O0,|¥).
This operator is given by
0= (S, S =z, 2).

The transformations (2.8)—(2.10) interconnect the ground state vectors and
spectrum generating quantum operators corresponding to two different phys-
ical phenomena: IQHE can be understood using a picture of non-interacting
electrons, while FQHE is essentially a manifestation of inter-electron inter-
actions. On the other hand, one can say that from the point of view of
algebraic classification in the sense of [22], the IQHE and FQHE are non-
unitary equivalent realizations of the same underlying symmetry.
Evidently ¥, is an eigenfunction of the transformed Hamiltonian

. . 1
Hp:H+4pZ ma1+2p7rz 0(zr — zK)
T#£K T#K

which must be considered as a Hamiltonian of an interacting electron sys-
tem.

Similar consideration relates the v = m states and operators to the rep-
resentation of Wi, at v = ﬁ. The corresponding similarity transfor-
mation is given by

Spon = T1 TLet = 5y en TLTL G = 25y,
A<BI<J A I<J

where the m x m matrix K 4p is defined by [57]

2p+1 2p 2p

K= 2p 2p+1 .. 2p

2p 2p 2p+1
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It is interesting to note that non-unitary similarity transformations recently
have been considered in the context of the quantum gravity, where they are
related to the temporal evolution between unstable quantum backgrounds,
indicating a deep connection between the string quantum gravity and in-
compressible Hall fluid [48].

Note that the non-unitary transformations (2.9) induce non-canonical,
complex transformations of the phase space variables — complex coordinates
ZKk = i +1yx and conjugated momenta pxg = %(pKz — iPry):

1
)
Rk — 2l

2 = Sp2rSyt =2k, P = SpPrS,t =Pe +i2p)
1%k
EK—)Sprsgl =ZK, PK —)SppKS;1 = pK-

The substitutions p — p— 5f, p = p — %f can be interpreted as the
introduction of complex, non-local vector potentials

fK(rla---;rN)Eme"‘iny:O: (212)

fk(rla"'arN)Esz_ifky:_iQPZ L ) (213)

Zk — 2
iZk kT A

which depend on the positions of all N particles.
The magnetic field associated to these potentials which acts on the k -
th particle, is given by the curl

Bk =i (0k fx — Ok fx) = 2pm Z d(zx — 21),
K%L

i.e., each particle sees the N — 1 others as vortices carrying 2p elementary
flux quanta.

In the chosen system of units, flux quantum ¢y = «, and the density of
Landau states ng = % = 1/m. Hence the filling fraction

N 1
(®/d0)  2p+1’

where the total flux ® = 7N (2p + 1).

Using mean-field arguments, one can say that electrons move in the aver-
age magnetic field 2p+1, in accordance with Jain’s hierarchical construction
[86]. However, the additional magnetic field B = 2p is generated now by
complex gauge potentials, in contrast to the composite fermion approach
[87], where magnetic fluxes attached to point particles are produced by the
real singular vector potentials

vV =

Ax =pVi Y ki, kL = —iarg(zk — 21),
LK
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or, in complex notation,

) 1 - . 1
AK =1p Z ﬁ, AK = —ip Z _. (214)

L#K L#K

2 —21)%P
(IDP: H M\IIO(ZD"',ZN)E

= Up(rla"'7rN)‘I,1(Zla"'7ZN)

which contains one particle states from the higher Landau orbitals and its
energy is higher than the FQHE ground state energy.

Note that the gauge potentials (2.14) can be introduced as a singular
unitary transformation

e
Uppr U} = pr — §AK,

e -
Uppk U} = px — 5«41(-

The last remark can be related to the equivalence between a system of
electrons bounded to the even number of magnetic flux quanta and the
same system without these fluxes [108]. From our consideration it follows
that these two theories can be related by a unitary operator U, as well as by
a similarity transformation Sp. In the former case, the equivalence assertion
given in [108] is in fact a quantum-mechanical unitary equivalence. At the
same time, the non-unitary character of S, is a loophole which enables
to evade the consequences of the equivalence statement, and reduces the
study of FQHE of the mutually interacting electrons to the IQHE of non-
interacting composite particles.

The potentials (2.12), (2.13) and (2.14) have a form typical for a statis-
tical interaction with a parameter § = 4pm (see, e.g., [105]) and naturally
can be incorporated into the framework of the Chern—Simons theories.

Introduce the particle density at the point r:

N
or) = > 8(r — 1),
=1

and vector potentials satisfying

Gikaifk(r) = 2pmo(r) (2.15)

and

Oifi(r) = —i2mpo(r). (2.16)



43
The solutions to (2.15)-(2.16) can be easily found:

fi(r) = —ipai/dr' In(z — 2")o(r"). (2.17)
Here G.(r) = 5= Inr is a Green’s function, and ¢(z) = —iargz.
Substituting the particle density into (2.17) and letting r = ry, we im-

mediately recover (2.12) and (2.13).
Note that the potential (2.14) can be written in an analogous form

Ai(r):—2p7reik8k/dr'Gc(r—r')g(r'):pai/dr'go(z—z')g(r'). (2.18)

At the same time, (2.15) is a field equation for the Chern-Simons La-
grangian

2
L=} + iean) — (D) (Dut) — a0,
™

Ditp = (8; + ieA; +iea;)y, Dppt = (8; — ieA; —iea;))!.

(2.19)

The solutions given by (2.17) and (2.18), produce a magnetic field

N
b(r) = 2p7r25(r —r1;),
1=1
and are related by the complex gauge transformation
fE(r) = A*(r) — ipdy / dr'In |z — 2| o(r").

In conclusion, we can say the following. According to [22] the quantum
states of an incompressible fluid can be exhaustively classified by unitary
irreducible highest weight representations of the algebra Wi.,. Applying
to the representation at v =integer the similarity transformation (2.8) or
(2.10), one automatically (at least in principle) obtains the corresponding
classification for the fractional values of filling fraction. This transformation
seems to be equivalent to the introduction of a complex abelian C-S gauge
potentials in terms of which a field-theoretic description of FQHE can be
given.

5. ON THE COMPOSITE FERMION APPROACH IN THE FQHE

Practically all the essential information about the quantum Hall effect
can be encoded analytically in the form of the Laughlin wave function (2.1),
which describes the incompressible ground state of N, spin-polarized pla-
nar electrons moving in the orthogonal magnetic field B. At the same time,
two-dimensional Hall fluid can be classified by the unitary irreducible repre-
sentations of the infinite dimensional algebra Wi, ., where Lauglin state is
a highest weight vector [22]. The analytic and algebraic aspects of QHE are
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supplemented in the physically transparent way by Jain’s composite elec-
tron picture [86], [87], [88]. In this picture, FQHE is related to a system of
non-interacting composite particles consisting from electrons bound to the
magnetic fluxes 2pdy (o = % = 27“)

These fictitious magnetic fluxes can be associated with the singular gauge

potential a(r) such that the magnetic field

b(r) = exdia” (r) = 2pgool(r), (2.20)

where o(r) is the particle density.
The statistical gauge field

a'(r) = —1@8 /dr' arg(z — 2')p(x") (2.21)

provides the required amount of magnetic flux [137], but the corresponding
ground state turns out to be compressible and can not be related to FQHE
[100].

As an alternative, there exists another gauge potential satisfying (2.20),
the Knizhnik-Zamolodchikov connection [96]:

a‘(r) :—1%8 /dr In(z — 2")o(r"). (2.22)
The first-quantized form of covariant derivatives with this connection
Dr=—-2p Z Dr= 9 (2.23)
82[ JZ1 21 — ZJ 0zr

has been used in [130] to study the scattering problem for particles obeying
braid statistics, and in [54] to construct the Hamiltonian and W14 algebra
generators for the Laughlin function as a highest weight state.

It is not difficult to notice that these covariant derivatives can be pre-
sented in the form of the similarity transformation [42], [43],

0
DI :Sp(21,"' ) 2 )8 IS (217.-. 72Ne)’
_ 0
DI:SP(Zla" )a— S (z1,--- :ZNe)v

where

Sp(z1,++y2n) = [ (2 — 20)
K<L
is a singular non-unitary operator. This observation is helpful in expressing
the wave function and quantum operators for the fractional value of the
filling factor as a similarity transformation of the corresponding quantities
for the non-interacting quasi-particle system.
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Note that analogous transformations earlier have been introduced as a
mapping operator between ground states with different filling factors [3],
[91].

In this section, we will consider the second-quantized version of this trans-
formation. Introduce the fermion Hamiltonian

1 . .
H= 5 / dr (O), — ieAy(r)) X' (r) (O), + iey(r)) x(r) (2.24)
and define the transformed fields
U(r) = Syx(0)S, = S D ),
’g[}*(l‘) — SpXT(r)Sp—l — XT(r)672pfdr' 1n(zfz’)g(r,).
GP

The operator S, can be represented as S, = e“», where the generator G),
is a singular quadratic functional of the density operator (see Appendix B)

ola) = 0" (2)() = X' (@)x(a)
It is not difficult to show that the transformed fields obey the normal
Fermi statistics
X(r1)x(r2) = (=1)e =272y (ry)x (1) = (= 1) *PTx(x2)x(r1),
X(r)x (rs) = 8(r1 —1rp) — e (3172072203 (0 )y (),
= (1 —1r2) — P (r2) X (1)

Here
w(z1 — 22) = —2pln(z; — 22).

Following [86], we will interprete 1 (r) as an electron field, and associate
x(r) with composite particles carrying an even (2p) number of magnetic
flux quanta. In terms of the electron field, the Hamiltonian (2.24) reads as

H= % /dr (O™ —ie™ Ay — iet™ay) (Oky + ieAry + ieagt))

where
_ % ’ o /
ap(r) =i—0 [ dr'ln(z — 2")o(r").
2

In the Fock space where the operators x(r) and x'(r) act, the Hermitian
conjugation is defined by the scalar product

<‘}1|OT|‘}2) = (‘}2|O|‘I’1>- (2.25)

It is evident that the operators ¢ (r) and ¢*(r) are not Hermitian conjugate
in the sense of (2.25). Introduce the metric operator 7 and define a new
scalar product

(@1 79" (r)| @) = (Ba|it)(r)|D1).
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This operator will be given by
77 = (Sp_l)T 'Sp_la

and its matrix element in the N-particle subspace coincides with the integra-
tion measure (4) introduced in [130], [54]. (These aspects will be discussed
in the next chapter.)

The coordinate representation bra- and ket vectors are generated by
the action of the physical electron field ¢(r) on the vacuum (which is not
changed under the action of S,), and are defined by the expressions

(21,5 2n| = (0[P (1)(2) - - - (N) =

= (0]¢* Lnems J At elr) TT 2pina =200y (1)x(2) - x(N) =
J<L

= [I (zx = 2)*(0Ix(1) - - x(N)

K<L

and

|21, 2n) = 95 (N) - 9%(2) - 7 (1)]0) =

N ’
= XT(N) e XT(Q)XT(l) H 672PIH(ZJ*ZL)672PIdT[ZKZI In(z—zx)]e(r )|0> —
J<L

= I Gx = z)7>x (V)X ()]0).
K<L

The quasi-particle field satisfy the Schréodinger equation for the fermion
in the uniform magnetic field. Expand x(r) into modes

x(r) = xo(r) + X(r),

where
NB —1

Xo(r) = Y fu;(r)
=0

contains only the lowest Landau level wave functions. For the disk geome-
try and the symmetric gauge A = %(—x,y), they are angular momentum
eigenfunctions

uj(r) ~ Ze= Tl (2.26)
The Fock space operators satisfy usual fermionic anticommutation relations
{fjafl+} = 5jl-
The modes corresponding to the lowest Landau level satisfy

(% + %Z)Xo(r) =0,
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and the similarity transformation does not cause the level mixing

0 eB _
(£ + Tz)prg(r)Sp L=o.

The ground state of the Hamiltonian H is extremely degenerate. All the
N-particle states of the form

IN) = £ 05 10

have the same energy. One can select a particular ground state applying
Bogolubov’s concept of quasi-averages [16]. Following this method, modify
the Hamiltonian by the infinitesimal perturbation which lifts the degener-
acy, and find the unique ground state. After performing necessary calcula-
tions and taking the thermodynamic limit, the perturbation is switched off,
leaving the results marked by this particular ground state.

In the case under consideration, such a degeneracy lifting naturally arises
due to an external confining potential which keeps particles together. This
circumstance selects the ground state as the state with a minimal angular
momentum. It has been shown that the transition to the states with a
higher angular momentum costs energy [21], promoting the incompressible
state of non-interacting quasi-particles as a unique candidate for the ground
state.

Consider the Hamiltonian eigenstate

N-1

1 N) =[] £;10)-

Jj=0

Case N = Np corresponds to the complete filling of the lowest Landau
level. The Laughlin ground state is given by

(zla ~+ 32N, Q; Ne> = H (ZK - ZL)2P<O|X(1) T X(Ne)|Q; Ne)a
K<L
where the last factor
Op(D) - XN S f a0y = [ (e —zn)e™ 5 2l

1<K<L<N.

is the Slater determinant of one-particle states (2.26).

Consequently, the Laughlin function can be defined as a similarity trans-
formation of an incompressible state of N, non-interacting composite par-
ticles.

The spectrum generating quantum operators are related by the S, trans-
formation to the corresponding quantities of the non-interacting quasi-par-
ticle theory. In particular, Wi, is generated by the operators

Va=- / drx! (r)(B})™+ (Bo)ix(x) = - / dry* () (B])"(By) " (r),
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where
_ 0 , o(r')
Bp—a+—z—2p/drz_zl,
0 eB
o _ 2 4=
B 82+ 4

Unlike the conformal field theory, the generators V,¢ are bounded from
below (n +1i > 0), i.e., they form so called “wedge” Wx = {V;i,|n| > i},
plus the positive modes n > i [21].

At the same time, the operators

- / drip* (x) exp{nB1}(B,) 1 (x)

satisfy the W-algebra commutation relations for any integer n € Z, i > 0,
i.e., they correspond to the full Wi, .

When p # 0, only N, = ﬁgp states in the lowest Landau level are

occupied. The remaining N, = Ng — N, = Ng(1 — 1+2 )
i.e., they are described by the hole wave function [64]

states are empty,

UH(Ne +1,...,Ne + Np)=(Q; Np|S; " ¢*(Ne + Np)- - p* (Ne+1)|Q; Ne) =

Np,
= [+ T Nals, 0 (V. + N+ (Ve D (V)5 ()]0}
K=1
x(0[¢p(1) - - -9 (Ne) €4 Ne) =

/ /H [dri]Pg(1,-- , Np) x ¥(1,-+ , N).

The same wave function reappears while considering a particle-hole con-
jugate system or, equivalently, a system of electrons in a magnetic field
—B < 0. Consider a Hamiltonian

1
H,. = o /dr (O + ieAg) XI (r)(Or —ieAr)x.(r),

where Y. is a composite hole field.
The physical holes are introduced by the transformations

1/)0(1') — prc(r)‘gfl — e2pf dr’ ln(fff')gc(r')xc(r),
PE() = SyxE (03, = xir)e 20 ) nt o),
00(2) = V3 (@)e(@) = Xh(2)xe(0).

Express the quasi-hole Hamiltonian in terms of physical fields

H,. = % /dr (Orr +ier Ag +ielay) (Optpe — ie gt —iedgi).) ,
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where

ay(r) = —i%ak/dr' In(z — 2" o.(r")

(&

is charge-conjugate to the connection (2.22).

Charge-conjugate operators can be used to construct the state vectors
for filling factors others then v =1/(2p + 1).

Expand x.(r) into the modes

Np—1

Xc(r) = Z fcjucj(r) + Xc(r)a (ucj(r) = ﬂj(l‘))

and define the vacuum |0.) (completely filled Fermi-Dirac sea):

Xe(r)[0:) = 0.

Introduce an incompressible quasi-hole state
N-1
125 N) = [ £5100),
=0

and the state representing Np holes in the lowest Landau level
5,102 Ni). (2.27)
Note that (2.27) is not an eigenvector of the Hamiltonian H.. Then
(Qe; Nl 8, 102 (1) - - 2 (Ne)[Qe; Na) =
Ngp
= [ [ D el Nals, 02) - (w0 x

K=N_.+1
X<Oc|¢c(NB) " '¢C(Ne + 1)|Qc§Nh> =

Ngp
:/ H [drK]\I!;(Ne +1,--- ,Np) x ¥§(1,--- ,Np) (2.28)
K=N.+1
will be the electron wave function for the filling factor
1
1+2p

v=1-
So the “chiral” partners of (2.23)

0 - 0 1
Di=gp Dimgm WA
I I JAI I J

are engaged in the charge conjugate sector of the theory.

Concluding this chapter, note that the similarity transformation relating
the integral and fractional QHE represents an isometric transformation.
Such isometries can be used to study physically equivalent theories or to
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reduce the problem to a more tractable form. Naturally, this transformation
needs the introduction of a special measure in the Hilbert space [4].
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CHAPTER 3
ON THE HOLOMORPHIC GAUGE QUANTIZATION

1. INTRODUCTION

In chapter 2 we have described some aspects of the FQHE in terms of
similarity transformation and complex Chern—Simons gauge potentials. In
this chapter, we consider the problem from the point of view of canonical
quantization.

One of the characteristic features of two-dimensional systems is that the
Green functions (correlators) can be factorized into the product of holomor-
phic and antiholomorphic parts, and corresponding gauge connections can
take complex values.

A known example of a non-real gauge potential is provided by an inte-
grable connection over the configuration space arising from the Yang-Baxter
equations. This connection is represented by the one-form [95]

w = const - Z TP @ TydIn(zr — z5), (3.1)
I#£J

where z;r = 7 + iyr are the complex coordinates and 7} are the genera-
tors of the symmetry group for the I** particle. This connection governs
the monodromy behavior of conformal blocks in (14+1) dimensional current
algebra and enters into the Knizhnik - Zamolodchikov (KZ) [96] equation

0 1 TP @ TF
— - > U(z,...,2n5) =0, (3.2)
0zr k+cl¢J Zr — 2J

0

—U =0.

62[ (Zla 7ZN)

The KZ connection plays an essential role in the physics of particles
obeying the braid statistics and in the theory of the quantum Hall effect (see,
e.g., [126]). In the latter case, the holomorphic part of the Laughlin wave
function satisfies (3.2) and could be expressed as an N-point correlation
function in a certain conformal field theory [114].

The gauge potential (3.1) can be incorporated into the framework of the
Chern-Simons (CS) gauge theory in 2+1 dimensions. Formally, the problem
reduces to the quantization of the theory describing the matter interacting
with the CS fields in the holomorphic gauge, where the corresponding gauge
condition is expressed by a complex matrix equation

Ay +id, =0 (3.3)

(A, is a Lie-algebra-valued gauge connection).

Remind that this type of gauge has been presented as a solution of a
GauB law constraint in discussions of quantum holonomies [68], and BRST
quantization of non-abelian CS gauge theories [103].
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Note that the holomorphic gauge quantization as considered in, e.g.,
[103] leads to a non-Hermitean Hamilton operator, and for consistency one
has to introduce in the Hilbert space a compensating integration measure,
respectively to which the Hamiltonian is self-adjoint [130].

It must be emphasized that as well as the complex gauge condition is
imposed in the CS theory with a compact gauge group and real gauge
fields, equation (3.3) must be understood in the sense of some analytic
continuation.

It is worth pointing out at this point that in the paper [140], Witten had
considered the theory with a non-compact (complex) gauge transformation
group and complex CS gauge fields.

It was shown in this paper that the quantization of self-interacting CS
gauge fields can be performed as precisely as for compact groups, using
standard tools and without any specific difficulties (see also [18], [47]).

In the present item we consider the same scheme as in [140], enlarging the
system by the matter fields. The point of departure is the observation that
in a holomorphic gauge, in order to have a real Lagrangian (i.e., a unitary
theory), the matter fields as well as the gauge degrees of freedom must be
accompanied by their complex conjugate counterparts. In the quantization
procedure, we follow Dirac’s classical method [29].

As a physical application, we will try to give some convincing arguments,
that the models with complex gauge groups can provide a consistent descrip-
tion of a variety of QHE wave functions.

In Section 2, we consider holomorphic polarization and corresponding
wave functionals for the Chern-Simons field interacting with matter. In
Section 3, we define the action and Euler-Lagrange equations for complex
non-Abelian CS gauge fields interacting with non-relativistic fermions. Im-
posing the holomorphic gauge we perform the Dirac quantization.

In Section 4, we introduce the non-unitary similarity transformation and
reduce the Hamiltonian to a (quasi)free form. Diagonalization is complete
in the Abelian case. In Section 5, we consider a system of planar electrons
in an external magnetic field. As an output, we give the construction of
the relevant wave functions for a quantum Hall fluid with both Abelian and
non-Abelian CS gauge interactions.

Together with the conventional cartesian coordinates r = z* = (z,y), it
is convenient to use the complex notation

0 1
= 0 1

for particle coordinates and the corresponding Cauchy-Riemann operators.
The vector fields A(r) = (As, Ay) will be represented by their holomorphic
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and antiholomorphic components

A(r) = A, +iA,, Ar) = A, —iA,.

A non-Abelian matrix-valued vector potential can be decomposed with re-
spect to a basis of the real Lie algebra of a compact gauge group G:

Au(z) =) Al(x) -1, a=1,2,...,r =dimG. (3.4)

The group generators are anti-Hermitean, traceless matrices ¢* obeying the
Lie algebra

th =~ [t 18] = Fapet® (3.5)

with f%¢ totally antisymmetric, real structure constants. In the case of an
abelian group, (3.4) is replaced by A,(z) = id,(z).

We will abbreviate the spatial coordinates of I*" particle r; to I, when
this will not be ambiguous.

2. CoMPLEX CHERN—SIMONS GAUGE FIELDS AND WAVE FUNCTIONALS

The Lagrangian describing a Chern—Simons field coupled to matter can
be written in the Hamiltonian form

L =i — %Dk'&l)k@b - %f%ikfifk — fo(2)[P) — Ke™; ).

Canonical momenta are defined as usual

w(z) = i)(x), * () = %nekmam(a:),

and the canonical Hamiltonian density is given by
Hc:mﬁ—l-ﬂkfk—ﬁz
= 5 Deb(@)Dit + fo()I(@)b(a) — we0,fu ()]
The system is singular. The primary constraint
¢1(x) =T°(z) ~ 0

reflects the absence of canonical momentum conjugate to time component
of the gauge field, and the secondary constraint

$2(x) = P(x)Y(x) — Ke™D; fi(x)

is the Gauf law.
Canonical Poisson brackets are given by

v o} _ =-isx—y)
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and 5
{fi(z), fk(y)}zozyo = ;Gikfs(x —-y)-

Following Dirac’s [29] treatment of constraint systems, the dynamics is gov-
erned by the extended Hamiltonian

H' = H,+ \i¢1 + \ago,

where A; > are the Lagrange multipliers which must be determined by the
gauge choice.
First consider the Coulomb gauge [60] determined by the conditions

1
x1(z) =ag =0, x2(z) = §A713mam(33)-
In this gauge, one gets
€ ika—
fi(z) = Eﬁlkak 1¢T($)¢($)-

Here the non-local operator 9, !is defined with the help of the Green func-
tion

0,1 1(1) =0 [ G =) 1),
where .

Gfr—r)=A"1= % In|r—r'|
is the Green function in the Coulomb gauge.

Another reasonable gauge choice is the axial one [7]:

x1(z) = ao(x) =0 x2(7) = ay(z) = 0.
The Gauf} law can be solved in an explicit way:
€,
fo=—=0,M, £, =0.

The formal solution for 9, ! is given by the Green function

o f(r) = / dr'Go(x — ) (),

where )

Gor —r') = 56z —2')e(y —y/).
For the needs of the Chern—Simons description of the quantum Hall effect,
in what follows we will use the called holomorphic gauge. In this gauge, the
gauge fixing conditions are expressed by the complex equations [68], [103],
[42], [46]

X1 =ap =0, X2:az+iay:07

and the solution for the gauge field is given by

0,(2) = ~3-0, [ 'S In )0l )0,
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To get P better insight into the problem, consider first the complex gauge
determined by the conditions

X1 () = a0 =0, xa2(x) = O fm(x) — ne.
Here 7 is a complex number.
The Lagrange multipliers are determined from the self-consistency con-
ditions
Aa(z) = {\(z),H'} = 0.
In this gauge, one gets Ay = 0, and A» is determined from the equation

1 _
Aa(a) = 510 (Bla)b (@)
which is reduced to
1. i /- _
Ada(e) = == 0ie™ Ju(2) — 15— (D(@)DDi(w) — DDy (@) (@) =
1 -
= 5001 (b(@)v(@))
The Chern—Simons field can be determined from the constraint equation
keiwd; fi(w) = (@)Y ().
Define the holomorphic Green function
1
—r')==In(z - 2.

G(r—r') - n(z — 2"

The Green functions in different gauges are related by the equation
G(r —1') =2G.(r —1') + iarg(z —2').
T
The main properties of the introduced functions are summarized below:
AG.(r) =4(r), AG(r) =4(r), Aarg(z—2)=0
and
€*9;0,G.(r) = 0, e 9;0,G(r) = 2id(r),
€*9,0 arg(z — 2') = 214 (r), e*0,G.(r) = —QL& arg z.
m

We see that as a solution, one can take

fk(il',‘) = ap + ibk(a:),

where
ap(z) = _%eknan/drlac(r —r)(r'),

be(x) = —ind / ' G (r — 1) () r').
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Consider the particular case

Then

o) = =20 [ [Gutr =)+ - ang(e =) G0
or .
fule) = =500 [ ax'Glr = X)),
These gauge fields satisfy the equation
o) 41 fy @) = 0

which in fact is the holomorphic gauge condition.
The corresponding Lagrange multiplier

Xa(0) = folo) = ~5-01 [ d'Gle — XD )0,

Dynamics is governed by the Hamiltonian

1= L D) Dub(e) + ol (@)0(e) - ke*Oufu o)

m

After calculating all the commutators, the constraint ¢- is set to zero and
for the gauge field, we take the solution

fulo) = =50 [ d'Glr — X)),

Above we have quantized the system after solving the constraints. There
is an alternative way: first quantize and afterwards implement the con-
straints as relations for the quantum states.

The Chern—Simons Lagrangian written in the Hamiltonian form

Los = ke fi(x) fu ()

determines a symplectic structure of the theory, and establishes the canon-
ical commutation relations

09, fuly)] = Zeo(x — ).

As a further step, one must choose a polarization [83], [84], or declare which
one of the phase space variables is a canonical coordinate and momentum.
One possible choice is the Cartesian polarization

)= hil),  we) = 2 h).



57

Another choice is the so called holomorphic polarization which reflects the
complex structure of the underlying two-dimensional manifold. In the com-
plex notation canonical commutation relations look like

[Fe 1), F',0)] = 26 — 1. (3.6)

K

Introduce the holomorphic variables

@*(@) = Y1), ax) = Y f)
e £),0* (0 1)) = ofr 1), 3.7)

In the functional space, these operators are realized by

5
“(*) = Somy

The quantum states |¥ > are represented by the wave functionals ¥[a*].
The physical states must satisfy the constraint equation

(p(z) + 2iv/k [0a*(z) — Da(z)]) |T) = 0.

In terms of the wave functionals, this equation reads

<p(a:) +i2vk {8(1*(1:) - aﬁ‘(mb ¥[a*] = 0. (3.8)

a*(z) = a*(x).

The solution to (3.8) can be easily found:
o] = eMIF Y, 4,

where

0la’] = [ dv [—2\—[@ ()97 p(r) + 50’ (x) (07" Ba*) (r)] . (39)

and F[¢] depends only on the matter field variables. (Here we use the
symbolic notation for integro-differential operators).

One can now fix the gauge. In the holomorphic gauge, the physical states
satisfy the functional equation

)
a(z)|¥) =0 or 50+ (@) Ula*] =0
The solution to this equation is
a*(z) = —=8"p() (3.10)

2Vk

and the corresponding wave functional is given by

p]—exp{ /dra p(r)d tp(r)| F
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= exp {—i/dr/dr'p(r)G(z —2")p(r")| F,

where the holomorphic Green function is used.

3. ACTION AND QUANTIZATION

Let G be a compact r-dimensional Lie group. The group elements are
parametrized by the set of real parameters g = g(wy,ws,...,w,). The ir-
reducible unitary representations of G' are denoted by D(4)(g9) = D(4)(wWa)-
Matrices T(‘ir) are the corresponding group generators. They satisfy the
commutation relations

[T(U;r)aT(b-r)] = 6a'rfabcT(cg), 1<a,b,ec<r.

The matter fields and quantum states in the representation D, are labeled
by the weight vectors w, = w” (m =1,..., R =rankQG) .

Consider the non-compact group G. ( the complex extension of G), re-
garding the group parameters w, as complex quantities and with a group
multiplication law given by a holomorphic function.

Recall some facts about representations of complex groups.

e Associated with any irreducible representation D(, of a Lie group
G one, can define its analytic and antianalytic continuations, A4 (g)

= D(4)(wa) and Al (9) = D(o)(w}), respectively.
e For any two representations D(;y and D(y), the tensor product
Aq2)(g) = Ap)(g) ® A (g) is an irreducible representation of

c-
The other irreducible representations of interest are contragradient 5(172) ,
and complex conjugate representations A7 ,, and A’(*l 5)- Introduce the
matter fields. It is convenient to define the doublet field

U(z) = < g*((xx)) ) ) (3.11)

transforming under reducible representation R(g) = A7) @ A?L?)' (The
complex conjugation * for fermions is defined as an involution operation for
Grassmann variables [12].)

The corresponding contravariantly transforming fields

() = (D), 0" (=)

are unified in the representation R(g) = A( o ®~Af172). It means that

there exists a non-degenerate real bilinear form < ¥, ¥ > invariant under
the group transformations.
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Gauging the rigid group G., we consider the group parameters as com-

plex functions of the space-time coordinates. The Lie-algebra valued gauge
potential F,(z) = F,f‘ (z) - T4 transforms as follows

Fulz) = Fi(z) =

R(9)Fu(2)R(9) " + 9,R(g) - R(g) *.

(3.12)
The matrices T4 (A = 1,,

rr 4+ 1,...2r) are anti-Hermitean Lie-
algebra generators in the representation of the matter field :

T _ T(al) X I(Q) 0
0 [(1) & T(a2)

) (3.13)
Tr+a — I(l) ® T(Q) 0 )
0 T(al) ® I(2)

These generators are associated with the group parameters w, and wy4q =
w} . The defining commutation relations are

[TA,TB] = fapcTC, A B=1,...,2r.
With the help of the gauge fields Fji(x), F;T%(x) = (Ff(z))*, define the
covariant derivatives:
D, ¥(2)=8,% ()~ Fu(2)¥(z), D,¥(x)=0,¥(x)+¥(z)F,(x)

(3.14)
These ingredients permit to construct a real Lagrangian invariant under

the involution and the group of complex gauge transformations G.:
K 1
L= S (@)0,F (v) + 5 fapoF FUFU] +

. 1 .
+i < ¥(x), Do¥(x) >—% < DV (z), Dy ¥ (x) >

(3.15)
The Euler-Lagrange equations for the matter and gauge fields are given by
the set
1 _
EJA = —2i0F' —i0yF* —ifapcFBF{,
1- _ _
JA = —2i0F +i0oF* +ifapcFPFY,
K
. ; (3.16)
EPA — 5FA _ 6FA _ ZfABC(FBFC _ FBFC),
1 L
Here
1 . 1-
D =_(D, —iD,) =0+ =F,
2 2
-1 = 1
D = §(Dx +1iD,) :8+§}'
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are covariant derivative operators.
The gauge invariant currents

Jz) = pMa) =i < 0, TAT >,
JA@) = JA@) +iJAz) = —[< &, TADT > — < D¥, T4 >,
m

JA=Jf —iJ)} = -

—[< U, TAD¥ > — < DU, T4V >]
m

are covariantly conserved:
- 1 - _
ipt + 0T + 0T — fapc|FEpC — 5(FBJC +FBJ9=0. (3.17)

Note that the gauge coupling constant is set to 1. Its actual value can
be restored by rescaling the gauge fields and the statistical parameter

K
All—>gA;U«’ Ii-}g—2.

For the canonical quantization, we will use Dirac’s method, and try to
adapt it for the case of the complex gauge group.

To begin with, consider the classical theory and discuss the setup of
holomorphic gauge quantization. The canonical Hamiltonian is given by
the expression

Hc:/dr [% (< D¥(r), D¥(r>+ < D¥(r), DU(r) >) +FA ()t (r)] (3.18)

The system is constrained by the first class constraints
oL
O

~ U,

I
and
__ 1 _ _
o' = p" +in|9F" = OF* — S fanc(FPFC - FBFC)] ~0. (3.19)

The canonical variables satisfy the Poisson brackets relations
= . p 10
{U(r,t),¥(r',t)}pp = —id(r — 1) < 0 1 > ) (3.20)

{FA(r,t), FB(r' t)}pp = —i%&AB(S(r —r). (3.21)

Due to the presence of quadratic terms, the constraint equations (3.19)
are not easy to solve. The obvious way out is to impose the gauge conditions
which linearize them. This possibility is realized in the axial type gauge,
e.g., FyA =0 [7].

As an alternative solution, one can use a holomorphic gauge, with the
gauge fixing conditions

' =F =0, X% =F*=0, x'te=Frte=0. (3.22)
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In conformity with Dirac’s procedure, introduce the total Hamiltonian
[ﬁ~:7g+:/di%ﬂ¢A@L (3.23)

where A“(r) are the Lagrange multipliers. These functions must be sub-
jected to the self-consistency conditions

O (r) = {n*(x,Hr} =0 and 9x"(r) = {x"(x), Hr} =0,

and are given by

A%(r) = QLH /dr'g(r —r') - Jx"), (3.24)
A" (r) = —i / de'G(r —r') - J"Ho(x). (3.25)

Here we have formally introduced the operator 9! which defines the Green
function

o=ty (r) = /dr'g(r —r')J(x"). (3.26)

The Green function ~' = G(r) can be represented as a derivative of the
holomorphic Green function
G(r) = 9G(2) = — =911 (3.27)
r) = z)=— =0—Inz. .
TZ T
We see that (3.27) is an ill-defined multivalued function. In the non-
relativistic case when the particle density is a sum of d-functions, using
appropriate regularization one may ignore this point and consider G(z) as
a normal function vanishing at the origin [85], [105].
In an analogous way, one can define the antiholomorphic Green functions

— Lomz (3.28)

In the holomorphic gauge, the Gauf} law constraints (3.19) look like
P = p +ikOF* =0, ¢"T%=pT" —ikQF T =0,
and can be easily solved

F(r) = L /dr'g(r —r') - p*(r"), (3.29)

Frto(r) = —% / de'G(r —r') - p" T (r'). (3.30)

K
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In the chosen gauge, J* = 0, J'*% = 0. Using the continuity equation
(3.17), one can express the Lagrange multipliers (3.24) and (3.25) as time
derivatives:

A%(r) = _%at / dr'G(r — ') (r', 1), (3.31)
A" (r) = %aﬁ /dr'G’(r —r")p" (' t). (3.32)

The last expressions may be unified with (3.29) and (3.30) composing 3-
vectors

aj,(z) = (A, F) = —iaﬂ /dr'G(r —rp*(r',t), (3.33)

az+a(x) = (Ar+a,FI:+a) — ;_Ha”/drl(;(r _ Tl)pr—i-a(r/,t) (334)

which is the solution for the CS gauge fields in the holomorphic gauge.
Up to now, we have been considering the classical canonical formalism.
The corresponding second quantized Hamiltonian operator is given by

1 - _ .
HT:/dr[E (< D¥(r), D¥(r) >+< D¥(r), DU(r) >) +AA(r) - ¢A(r)] .
Dynamical equations are defined by the commutator
i0,0(r,t) = [O(r,t), Hr|. (3.35)
The Heisenberg equation of motion for the matter field is given by

i0;¥(r,t) = Hs¥(r,t) = —%(DD + DD)¥(r,t) +iay TA¥(r). (3.36)

Here the operator Hg contains the solutions (3.29)—(3.30) for the statistical
gauge fields.
It is not difficult to notice that the many-particle wave function

D(ry,...,rN;t) =< 0| (ry,t) - U(rn, t)|® >

satisfies the Shrodinger equation

N
1L _
i0B(rs, .. Thit) = —— ) j[D,D, + DD} ®(ry,...,vait)  (3.37)
I=1

with the derivative operators given by

1 TP RTY _ =
DIZBI_Q— &, D; =0y,
ﬂ-K'I;éJ Z[] —2]J

_ 1 Tr+a®Tr+a
D* =0 D* =0 I J
I b I I+27Th3[;] Zr— 2y

(the matrices T/ act on the group variables of I** particle).
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As the first application of the framework described above, consider the
case where the fermions are in the fundamental (“chiral”) representation
T(al) =t* and T(“2) = 0. The Hamiltonian takes the form

1 _ 10 = (00
H:_E;[DIDI' ( 0 0>+DI f'(o 1 >]
where the covariant derivative operators are given by the KZ connections

1 1@ 1o

D1261—2— —, Dy =9y,
ﬂ-HI;éJZI zZJ

_ = 1 t? ® te

Dy=0;, Df=01+-—) ULy

27TI€I¢JZ]—ZJ

Another case of interest is a “symmetric” representation T(al) = T(“2) = t°.

Now
t* 0
a _ qr+a __
reree (400,

The corresponding Hamiltonian is given by
1 = 1 0 e 100
H__EZI:[D’D" < 0 1 > +PiD; ( 0 1 )]

Note that in the case of “chiral” representation the Hamiltonian is not
Hermitean [130], [103], and conjugation causes the interchange between up-
per and lower components of the matter field doublet (3.11). At the same
time, in the “symmetric” representation, H' = H.

4. SIMILARITY TRANSFORMATION AND HAMILTONIAN DIAGONALIZATION

The matter Hamiltonian
Huatter = / dr’% < Dy¥(r), Dy ¥(r) > (3.38)
contains the gauge connection in the form of a gradient
Fr(r) = i@k [/ dr'G(r —r")p*(x") - T* — /dr'G’(r —rp"te(xe!) - T

The situation is simplified when G = U(1): the generators commute and
CS fields can be eliminated by means of a suitably chosen complex gauge
transformation, reducing the Hamiltonian to the free (diagonal) form.

Formally the gauge fields can be removed by going to the new field vari-
ables

g ) and  X(2) = (¢(2), *(2))
defined by
U(r) =U(r;y)X(r), ¥(r)=X@)U ' (r;7), (3.39)
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where U(r; ) is a holonomy operator (or monodromy matrix) associated to
an oriented open path 7 in R? connecting the points ry and r:

U(r;y) = Pexp (/ da:k]:k(x)). (3.40)

(In (3.40), P is a path ordering operation and ry is some fixed point.)
Note that due to the non-commutativity of density operators

[0"(x), p" (c)] = fapcp® (x)d(r — '),

the path-ordering is a non-trivial operation. Below we describe a much
simpler procedure which in principle permits to get some information on
non-Abelian wave functions.

Introduce the operator

i

Q(r):_2/§

/dr'G(r —1r')p™(r') - Hm+2l—,i / de'G(r —r")p" " (¢') - H™™,
where .
pM (x) = i (r) HM W (r)
are mutually commuting charge densities. The matrices
H™ 0 HT 0
H™ = Q) , H"tm = (2) , m=1,...,R,
( 0 HpE, 0 HF

are the Cartan generators in the representation R(g). Consider the trans-
formations

U(r) =X (r), ¥(r) = X(r)e 20, (3.41)
The action of the diagonal Cartan generators on the W-fields
HMY, =1Y .9, (3.42)

defines a 2R dimensional weight vector YM (M =1,...,R,7+1,...,7+R)
mo_ w{n 0 r+m _ wgn 0
Tw= ( 0 wi ) o T = < 0 w* )’

(Remind that w,’s are the weight vectors of the representation D ,).)
The transformation (3.41) can be written in the component form

Ty (r) = Z(e%)) X (r) = 20 X (1), (3.43)

w,w'

where the operators
Qw(r) = —QL/dr'G(r —r)p™ () - Yo+
K

i s _ I rEmry r+m
+2H/er(r r)p T (') - YTy
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are labeled by the corresponding weight vectors.
In order to find the (anti)commutation rules obeyed by matter fields, we
use the relations

[ (1), By (2)] = _iaa ) <wu > < - )xpw@). (3.44)

Suppose that both matter fields X (z) and ¥(z) correspond to fermions.
Straightforward calculations show that the requirement of the fermionic
commutation relations together with (3.43) and (3.44) leads to the condi-
tions imposed on the weight vectors of the representations D(;) and D(y):

i ' o '
e2r SWLW 1> _ o5.<W2,W2> _ | (3'45)

Note that in certain circumstances, it is more suitable to consider X (x) as
bosonic fields (e.g., in the Ginzburg—Landau description of QHE). In these
cases, instead of (3.45) we have to choose a weight lattice which satisfies the
condition

i ’ i ’
eK<W1,W 1> 62,€<W2,W 2> _ —1. (346)

Let |® > be the eigenstate of the Hamiltonian H,,g¢ter. The correspond-
ing N-particle wave function is given by the matrix elements

< 0|\I’w(1) (I’l) e \IJW(N) (I'N)|(I> >=

= H U(Z],W(I);ZJ,W(J)) < 0|629w(1)(”)Xw(1)(1‘1) o -XW(N)(I‘N)|<I> > .
I<K

Here
Uiz w) 2)=6ter—aa) (T e )=
— wgr (1) - w (K) 0
—Gler - 2x) ( 0 Wl (1) - w () ) '

Following (3.45), the weight vectors must belong to a lattice defined by
the equations

1
— < Wl(I),Wl(K) >= :|:2p]K,
2K

1
— < wy(I),wa(K) >= +2qrx
2K

with prr and gri integers. (In the bosonized theory, r.h.s. of these relations
are changed by +1 giving odd numbers)

As we see, the wave function is factorized into a “kinematical” prefactor
and some dynamical part. The typical term in the prefactor is of the form

(Z[—ZK):I:2PIK (EI_ZK)q:mHK
0 (21— 25 ) F24T5 (27 — 5 ) F2PTE , (3.47)
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and depends on representations and quantum numbers carried by particles
under consideration.

As a practical application of the proposed scheme, one can indicate the
theory of the quantum Hall effect (see, e.g., [126]), where the expressions
like (3.47) are used as building blocks for many-particle wave functions.

This and other developments will be considered in the subsequent section.

5. THE QUANTUM HALL EFFECT AND THE LAUGHLIN STATES

In the Abelian case which is obtained by the formal substitutions H A
i, p* = —p = =Y, ay — i, the gauge fields can be removed by the non-
unitary similarity transformations [91], [42]

U(r) = Sx(®)§~ = e [ WOy (3.48)
9(r) = SEE)S ™ = x(r)ese / WETIRENED - (5.49)

(Here and hereafter we abandon the doublet notation.) The x fields will
satisfy the Fermi—Dirac commutation relations, i.e.,

1
5 = +27p (3.50)
with a positive integer p.

Note that in the Abelian case, the holomorphic (A4 = 0) and axial (4, =
0) gauges are related by the complex gauge transformation

1 1
Ay = Al =100 = = [ 'Sz = ey =)o), (351)
where

1
A(r) = %/dr' In|z — 2'|o(r") +
!

i _
+or /dr' tan~! |i — ?;, le(z — x")e(y — y')o(r').

The Hamiltonian
1 ~ -
Hmatter = /drl%[Dk'ﬁkazp + Dziﬁ*DMf*]

can be represented in a free form:

1
Hratter = [ '3 0500+ 00 DX’ (352

Remind that in the theory there are two pairs of canonically conjugate
variables: (x,X) and (x*,Xx*). It can be shown (see Appendix C) that
in the Abelian case tilde -operation can be identified with the Hermitean

conjugation, i.e.,

v=x", x*=x". (3.53)
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(This fact will be useful in order to study completeness relations in the
corresponding Hilbert space.)

For further needs, it is convenient to use a charge conjugate field x. = x*.
In terms of newly introduced fields, the Hamiltonian is expressed as follows

1
Hmatter = /drl%akXT(rl)akX(rl) -

— /dr'%akxl(r')akxc(r') + Ay, (3.54)

i.e., it corresponds to the two types of free fermions. A; is a reordering
constant which will be specified below. The basic anticommutators are
given by the relations

{X(r)a XT (rl)} = (S(I' - Tl)a {Xc(r)a XI-(IJ)} = 6(1' - TI)-

The quantum Hall effect is a condensed matter phenomenon, taking place
at low temperatures when the planar system is exposed to a strong perpen-
dicular magnetic field B = ¢;,0; A*. Below we consider the standard case
of external homogeneous magnetic field generated by the symmetric gauge
potential A, = —%By, A, = %Ba:. The corresponding Hamiltonian will be
now

1
Hratter = [ '3 {1 () Vix(') = Vird () Vie(e')) + v, (3.55)
where the covariant derivatives are defined by

Vix = (Or —iedr)X, Vixe= (Or +ieAp)xec.

For simplicity assume that the system is spin polarized and treat electrons
as scalar fermions. The fermion fields can be decomposed into the normal
modes

o0 NB—l

X(r,t) =" 3 FyUy(x)e™ P, (3.56)
n=0 j=0
o0 NBfl

Xe(r,t) =Y > FgUn (r)et, (3.57)

n=0 j=0

where U, ;(r) are solutions of the one-particle Schrodinger equation

1
—%ViUnj(r) = EnUnj(r),

and E, = %(n + 3) are the energy eigenvalues. The quantity

_ Bl

N
B 2w

(Area)
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is the number of quantum states per Landau level. F;,; and F;{ ; are the Fock
space lowering and rising Fermi operators and satisfy the usual relations

{ nj» 71;1[} = 5nm5jl-

The same is valid for the charge conjugate operators Fy; and Ffrj
The Hamilton and angular momentum operators are given by

Hpatter = Z EnFrzLanj - Z EnFTijri] + Ay, (358)
T = [JF5Fn — jFST ]+ As. (3.59)

In (3.58)—(3.59), we abbreviate

= i E,, (3.60)

NB ) Z 1 (3.61)

are the energy and the angular momentum of a state with totally occupied
one-particle excitations.
The eigenstates of the Hamiltonian H,, are represented by the direct
products
IN > ®|M, >~ F . 0> ®Ft - F°F 0. >, (3.62)

niji nNJN maly marlae

where the vacuum states are annihilated by the lowering operators

Fol0 >=F&,)0, >=0, n,m=0,1,...; j,l=0,1,...,Npg— 1 (3.63)
The state vector (3.62) corresponds to the energy eigenvalue
N M
leB| 1 1
— ng+ =) — my + 7))+ Ar.
o (ol 5) = S+ I+

The angular momentum of this state is

N M
T=) di =) I+ Ao
i=1 k=1
Represent the matter Hamiltonian as the sum

Hyatter = H + Hc: (364)
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where

H=Y E,FF,;, H.=-Y E,F;IF +A. (3.65)
nj nj

The first term here corresponds to the particle degrees of freedom while
the second one to the holes in the charge conjugate sector. In order to
justify this assertion, define the states

[o o] NB—l
>=1] [ Eilo> (3.66)
n=0 j=0
and
o0 NBfl
2. >= [ TI Falfloe>. (3.67)
m=0 [=0

Together with the vacua |0 > and |0, >, they satisfy the following relations
H|0 >= H Q. >=0, H|Q>=A|Q>, H.|0,>=A]0,>.

The elementary charged excitations with the energy F, and angular mo-
mentum j can be identified with the states

+
FL0> or FpifQe>.

In the same time, the states
F.jlQ> or Fgflo. >

can be interpreted as opposite charge hole excitations with the energy —FE,,
and the angular momentum —j.
The corresponding wave functions are determined by the matrix elements

< Olx(r, ) F510 >=< Qe|xl(r,8) F5;10 >= Uypj(r)e 1,
< Oc|Xe (T, ) FF 100 >=< QX (r, 1) Fj|Q >= Uyj(r)e’ "

As basic sets in the Hilbert space, one can use the coordinate represen-
tation vectors which satisfy the completeness relations

0><0/+ 3 5 [UIT deid@-xd@po >

N>1 1<I<N
<O[x(N)---x(1) =1, (3.68)
2s<o/+ Y %/[ [T dedx@--xaje>
N>1" 1<I<N
<QIxT(N)--xT(1) =1. (3.69)

Similar relations hold in the conjugate sector. Note that the validity of
these completeness relations is guaranteed by (3.53).
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So the multi-particle states can be represented by the wave functions
<OPx(D) - x(Ne)|@e > o <QF(1) - x (V)@ > (3.70)
and multi-hole state by the wave functions
< Oclxe(1) -+ Xe(Na)| @1 > or < Qefxd(1) -+ xE(Ne)|®p > . (3.71)

In the theory of QHE, a distinguished role is played by the states where
all the particles are in the lowest Landau level (LLL). For the LLL (n = 0)
operators and wave functions, we will use the simplified notation

F()j = fj, Uoj(r) = ’LL]'(I').
Decompose
x(r) = xo(r) + X' (x),

where
Np—1

o) = 3 frus)

is the lowest level field operator and LLL states are built up by the appli-
cation of lowering and rising operators satisfying the oscillator algebra:

{fjvflT} = 0j1-
Totally filled LLL state is presented by the vector
lw >= H f]T|O > .
0<j<Np-1
The analogous state in the conjugate sector will be given by
lwe >= H f]-cT|Oc > .
0<j<Np-—1

Instead of the identity resolution (3.69) for the LLL states, one can use
the LLL projection operator

II=|w><w,|+ (3.72)
1
+ 3 JUIL dnle - xle ><whd ()11
1<N<Ng 1<I<N
and its conjugate partner
II. = |we, Np >< we, Np| + (3.73)
1
+ 3 g [UIT derdeta) e xeW)lee ><weld (V) (D).

1<N<Ngp 1<I<KN

The eigenstates of the Hamiltonian (3.58) are expressed in terms of x
quanta excitations. At the same time, the physical observables and wave
functions must be expressed in terms of the fields ). As we have already
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noted, these operators are related by the similarity transformations (3.48)—
(3.49). In terms of ¢ fields, the completeness relations and the projection
operators are given by

S0 ><0]S™ + (3.74)
+Z%ﬁ II drild@)--- d(N)S0>< 0[S p(N) - -¢b(1) =1,
N>1" "7 1<i<N
S)0. >< 0:|S™" + (3.75)
+Z%ﬁ H dr;]p*(1) - - *(N)S|0.>< 0| S p*(N) - - p* (1) =1,
N>1" ™ 1<i<N
I =Sjw><wlS™" + (3.76)
+ Y i T o) s So><als TG0 - o),
I<N<Np ™ 1<I<N
M, = S|lwe >< we|S™' + (3.77)
>y %ﬁ [T dere* () (V) Slwe><wel STH* (V) - (1),
I<KN<Ng 7 1<IKN

Equations (3.74)—(3.77) together with the properties of the similarity
transformation can be used in order to make a reasonable choice of the
Hilbert space basis. Below we list these sets indicating the corresponding
coordinate representation bra-vectors.

1. Vacua are invariant under the similarity transformation

SI0>=10>,<0[S ' =<0 —= <O0Jy(1)---9(N), (3.78)
S0, >=10. >, <0.S7" =<0, — <O0|p*(1)---p*(N). (3.79)
2. The operator S does not lead to the Landau level mixing
SIS =1 — <wlS 1) --4(N), (3.80)
ST.S™' =T, — <wl|ST'*(1)---9*(N). (3.81)

The LLL projected Hamiltonian is

Hy =H + H., (3.82)
where
Np—1
H=FE, > ft
=0
and

NB—l
H.=—Eo Y fi*fj + NpEo.

=0
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The corresponding angular momentum operator is given by

Np—1

, . Np(Np—1
o= dleit - g+ o@D
7j=0
Consider the state
Ne—1
|®;N. >= ] £10>. (3.83)
7j=0

This state corresponds to a system of N, electrons in LLL with the energy
N, FEy and the minimal total angular momentum J = %Ne (N, —1).
The supplementary state in the conjugate sector

Nh—l
|®e; Nu >= [ f710. > (3.84)

7=0
describes a system of N, = Np — N, holes with the same total energy and
the angular momentum
Je = 5Ni(Ni — 1) = ZNu(Ny, ~1).

Consequently,

|L; Ne >= |®; N, > ®|w, > (3.85)
and

|G; Ne >=10 > ®|®.; Np, > (3.86)

are degenerate eigenstates of Hy with the energy N, Ej.
Now it is easy to show that (3.85) describes the Laughlin state [99] with
filling fraction
1
vV = .
2p+1
The corresponding wave function is obtained by applying the projection
operator II:

1®IL;N. > — ¥0(1,,,,,N.) =< 0|pp(1) - - -(N.)|®, N. >=

= [I G — 2)*(Olx(1) - - x(NVe)|®; Ne). (3.87)
K<L
The last factor
_eB Ne 21)?
O - XNy = [ (e —zn)e T2l bl
1<K<L<N.

is the Slater determinant of one-particle LLL states.
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As an alternative, one can use the bosonized version of a similarity trans-
formation, take as y(x) the Bose fields and fix the statistical parameter by

1
—— =2p+1.
21K P+
As a ground state, consider
Ne
|@o; Ne >= (fg') “10>. (3.88)

The wave function is given by the matrix element
\I’i(la 1999 Ne) =< OWJ(]-) te 'w(Ne)|@baNe >=
= TL(ex —22) 1 (0]x (1) - X (Ne) | ®y; N (3.89)
K<L

The factor

N. _eB §Ne 2
(OIx(1) -+ x(Ve) ()™ 10y = 7% 21 ]
is a symmetric wave function describing N, lowest Landau level bosons
condensed in the state with the zero angular momentum.
Another state of interest is the Girvin state (3.86). The corresponding
wave function is extracted acting by the projection operator Il,:

1®IL|G; N, >— U¢ (1,...,N,) = (we|[S 1" (1) - - *(N.)| @) =

Np
:// H [dr g | (we|S ™ 0% (1) - - - 4* (Np)|00) X
K=N.

(0| (Ng) - - p* (N, + 1)|®, >=
Ne.

:// [ ldex] @1, Ng) x w1, No),  (3.90)
K=1

where the relation < w.|S™! =< w,| is assumed to be valid. This wave
function describes the state with filling fraction v, = 1 —v = 2p/2p+1 [64]
(P& corresponds to the totally filled lowest level).

Another representation of the same state will be given by the matrix
element

(]S (N, + Niu) - (N, +1)|@) =
:/“'/,ﬁl[d”(““'s“/7(N6+Nh>“-¢7<Ne+1>z/?<Ne>---z/3<1>|o> y
x{0]yp(1) - - - p(Ne)|w) =
/"'/Iﬁl[dr’(]mx Wyl N (3.91)
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The holomorphic factor [J(zr — 27)?? is usually associated to the 2p
magnetic flux quanta attached to electrons forming what is called Jain’s
composite particles [86]. In the present discussion, it is a matrix element of a
complex gauge transformation relating two different, non-unitary equivalent
bases.

In the same way, one can consider wave functions for noncompressible
states of fractionally charged quasiparticles.

Although in the non-Abelian case we do not know the exact wave func-
tion, one can nevertheless get some sort of kinematical information con-
tained in the form of similarity transformations (3.43). In order to find the
N-particle wave function, we need some basis vectors, e.g.,

< Ofhw(n) (1) - Pw(ny (V) =

=< 0] exp[ Y Qu(r)(I)] exp [i > Glar — zx) < w(I), w(K) >]
I>K
< Olxw(1) (1) Xw(w) (V) =

= IJ (er - i) T <WIOWE> 01y (1) X (V). (3.92)
I<K
(deriving (3.92) we have used the fact that vacuum is annihilated by the
operators Qw(r)(I)).
Apply this formula to the case of SU(2) non-Abelian theory. For the ¢’s
in the fundamental representation, the weight vectors

w® = +i

correspond to the isospin up 1 an down | components. The corresponding
basis vector is given by the expression

TG = 2x0)*? [[ 2Ry — 251" %
< [[(zr+ = 2r0) ™" < Olxw(n) (1) - - Xw(v) (V). (3.93)

So we see that the wave function of any Hamiltonian eigenstate in this
basis contains an holomorphic prefactor indicating the attraction between
different isospins and repulsion between the same ones. It was conjectured
that this type of wave functions may be related to the multilayered QHE
states [71], [50].
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CHAPTER 4
ANYON SUPERCONDUCTIVITY

1. INTRODUCTION

The BCS theory of superconductivity contains two essential points: the
first one is a temperature dependent gap in the spectrum of charged parti-
cles, and the second one is the spontaneous breaking of U(1) gauge symme-
try.

The gap provides the rigidity of the wave function. It is given in terms
of the order parameter which is a characteristic of a spontaneous symme-
try breaking and can be calculated using microscopical equations or the
Ginzburg-Landau effective theory.

The Nambu-Goldstone particle associated with the broken symmetry is
combined with an electromagnetic potential resulting a massive photon and
hence the Meissner effect. The gauge group U(1) is broken to the Z> and
according to general assertions about the spontaneously broken symmetries
a massless excitation is described by a field that transforms under U(1) like
the coordinates of the coset space U(1)/Z;. In other words, under a gauge
transformation with a parameter x, the electron field transforms as

() = e X (2)

and the Nambu-Goldstone field undergoes the transformation

d(z) >+ —x.

(z) + X

Remind the essence of the Anderson-Higgs-Kibble mechanism in the U(1)
gauge theory (see, e.g., [1], [70]).The exact photon propagator can be rep-
resented as

Nuv 1

@ T )

Here the II(g?) is the invariant structure function determined from the
current-current correlator:

(@1 — ")) ~ / dze™® < O[T (J, ()1, (0))]0 >

Dpuv(q) ~

A photon becomes massive if ¢>II(¢*) does not vanish as g, — 0, i.e., if there
is a pole in the structure function. This pole at ¢ = 0 must be associated
with the zero mass particles which interact with the electromagnetic current.
In order to make our discussion more transparent, recall some facts about
the Meissner effect and London’s equation [52]. London’s equation for the
supercurrent describes a linear response of a superconductive matter to an

external electromagnetic field. The supercurrent is defined by
he 2e

's:_s ¢ — )
i ns (Ve — 2 A)

o (4.1)
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where e = —le| is the electron charge, m is its mass and ny is the den-
sity of the superconducting electrons. ®(x) is the phase of the condensate
wave function and is defined by the phase of the abnormal electron Green
function.

This definition is invariant under the gauge transformation

A - A+ Vy(r),
2e

he

Equation (4.1) leads to London’s equation

®— &+ —y.

V’B = \B (4.2)

for the magnetic field inside the superconductor.
The quantity

2
2 me

AL = 4mnge?
is known as the London penetration depth. The superconducting density
and the penetration depth are temperature dependant quantities.

The solution of (4.2)

B = Boe /"

explains the Meissner effect.

The phase function @ is associated with a scalar massless mode — a phason
or a Goldstone particle, which couples to the Maxwell field. This coupling
is provided by the term

2e
he
In 3+ 1 dimensions, the presence of zero mass particles is guaranteed by the
Goldstone theorem [65], and is a consequence of a spontaneous symmetry
breaking. However, in the lower dimensions, there is no spontaneous sym-
metry breaking (see, e.g., [70]) and the origin of the zero mass pole must
be founded somewhere else. Such a mechanism was proposed by the Fetter,
Hanna and Laughlin in their paper on the Chern—Simons superconductivity
[53].

In 2 + 1 dimensions, a conserved current can couple not only the elec-
tromagnetic potentials, also the Chern-Simons gauge field. The gauge in-
variance tells us that the corresponding interaction is described by the La-
grangian

L~ (0,®——A,)°

Lint ~ j* () (Au(z) = ne"*dyax(z))

where j* is a gauge invariant current and n-is a constant.
The needed massless field is associated with the three dimensional curl

0,® ~ e"d,a,
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and hence with the gauge field a,(z) (in 2+ 1 dimensions, a massless gauge
field has one degree of freedom).

The kinematical part for this field can be constructed from the Chern-
Simons term e#**a,, 8, ay which is gauge invariant up to the total divergence.
The Maxwell-like term

1 (Ou0u(2) — Dy, (2))?
contains higher derivatives and seems to be less important in the static
limit.

In the absence of electromagnetic interactions, the massless pole must be
presented in the current-current correlators. Besides the massless pole, there
must be a gap in the fermion spectrum. This gap stabilizes the Goldstone
mode against decay into fermion-hole pairs.

In summary, a reasonable criterion for superconductivity is the presence
of a massless pole in the current-current correlation function combined with
a gap in the fermion spectrum.

These conditions can be realized in a model describing a matter interact-
ing with the Chern—Simons field and the external electromagnetic potential.
The magnetic part of the Chern—Simons field can provide a homogeneous
background which organizes the electrons into Landau bands with a finite
gap. Integrating out the matter fields, one gets an effective Lagrangian of
the following form [10]

A[fu] = ee? + ee; — xb* + Bb+ k" A,,0,a,.
Here
b= eir0iar, e; = 0pa; — Oiag

are the Chern—Simons magnetic and electric fields. The corresponding
strength tensor is f,, = 0,a, — Oya,. Quantities ¢,¢;,x do not depend
on the Chern—Simons fields.

Consider the partition function

Z= / Dayet S @eAlon], (4.3)
Performing the change of variables, this integral can be rewritten as [110],
[31]

Z = /Dcpeide“LeffM’

where
2

1 1 1 v
Lesslel = —4—66? + &ﬂQ — 500 — q40)” — - (Ot — g Ax)” -

1
—\ sesenei@p — 4e) + = B30 — a) (44)
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is expressed in terms of a scalar field ¢. This field represents the sound
wave with characteristic speed of propagation v. The parameters are given
by

K 5 _ X

= U

The effective Lagrangian (4.4) is invariant under the gauge transformation
p=p+aqr A, — AL+ 0N

(¢ transforms as the phase of the complex field carrying the charge gq).

In the present chapter, we study the application of the Chern—Simons
theory to the description of the anyon superconductor. In Section 2, we
consider the problem using the formalism of thermo field dynamics. In
Sections 3, we introduce a relativistic model and in Section 4, we calculate
the thermodynamical potential. In Section 5, this model is applied to the
analysis of the Meissner effect.

2. ANYON SUPERCONDUCTIVITY IN THERMO FIELD DYNAMICS

In 1989, Fetter, Hanna and Laughlin [53] showed, that a free gas of
anyons, has a massless pole in the electromagnetic linear response function.
This result was confirmed by different authors [24], [120], [10], [110], [77],
[61], [76], [40] with a hope to realize the anyonic mechanism of the high
temperature superconductivity. The central objects of this calculations are
current-current correlation functions, in terms of which one can express both
the linear response and the effective action or the free energy.

The assertion that the Chern—Simons theory provides an adequate frame-
work for the description of planar superconductors can be easily justified.
Consider a matter interacting with a statistical gauge field with a statistical
parameter k. A common approach is based on the expansion around a sys-
tem of planar fermions in the homogeneous Chern—-Simons magnetic field
which is generated by the net particle density

- e
b= emnOma™ = —— p.
K

The filling fraction
p

v=—
nr

is expressed in terms of the electron density p and the density of states np,.

eb 2K .
ny,=—, v=-——— for spin 0,
27 e>
eb K . 1
np=—, v=-— for spin <.
™ e 2
For spinless particles the statistical parameter § = T (k = —e;—;’) and for
fermion doublet § = - (k = —<X).
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Consider the situation when the ground state |®g) corresponds to the N
totally filled Landau levels, i.e., v = N.

The threshold behavior of the linear response can be studied using the
corresponding formulae of the preceding chapter. The pole in correlator
corresponds to the zero of the function (1.47)

D) = (1+ 11 - 27 (Ta(a) + ¢°Ti(a)

For the spinless particles, the threshold values of structure functions are
given by (1.42)
1N 1N 1 N2
Mo(0) = z—mf*, M;(0)=-= and I(0)=-—-—.
0(0) 27rm ’ 1(0) 2w an 2(0) 21m

(For spin 1/2 fermions, the same quantities are to be taken with factor 2.)

As we have seen, II; (0) = —k, and the dispersion law for the zero mass
excitation is given by

2 _ 27p

w”=—>-q" for spin O,
m

1

w? = W—qu2 for spin =.

m 2

The linear response function for the system under consideration was calcu-
lated several times. We will utilize the abbreviations of the paper [24], and
quote the result for the kernel

e .
Ky (a) = — p (uv = 0uoduo) —iehy(a), " = (w, @),
(2 -1
Awola) = = (25D S0
4 ’/T2p -1 : i €2p _
Moa) == | 35D | [ deme(@) +eud’ TEEW)],
" 7r2p -1 7r2p2
ANir(q) = — WD] {W [2(q) — Z1(q) + Za(q)]0ir +
ik 2.2
q'q mp*
+ 1 [0 — 3 (B(0) — Ba(0) + Ba(0) + Zs(9)D)] -

The functions ¥,, = and D are the following combinations of the structure
functions
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(q) = — = [w?To(q) + s (g) + ¢TI (g)],

D(q) = [1+ Z1(9))* — Zo(g) [1 + S2(q)],
E(q) = =Z1(@)[1 + Z1(q)] + Bo(q)[1 + B2(q)]-

Note that the existent calculations of this functions are rather tedious and
the results are usually given in the form of the low momentum expansion
53], [24], [61], [77].

In the preceding chapter, we have demonstrated a more transparent way
to calculate the correlators. It was shown that all invariant functions actu-
ally can be expressed with the help of a single function, both for the zero and
finite temperatures. At the same time, we do not use the low-momentum
expansion.

All the above consideration is valid for the case of the non-zero temper-
ature. The crucial moment is to get information on the finite temperature
behavior of the response function and the correlators. This can be done
using the Matsubara formalism or some real time statistical field theory.
As a first step, we consider the problem in the framework of a real time
thermal field theory.

Here we present a brief account of the evaluation of the thermodynamic
potential of a non-relativistic fermion matter ¢ in 24+1 dimensions, cou-
pled to Chern—-Simons and Maxwell fields [41] (for other finite temperature
calculations see [120], [76], [77], [61], [90]). The basic Lagrangian is given
by

1 uw ev U
L= _ZF'“’F - %5 a,0yay +encAg +

1
+ipti Doy — s—|Dyy” + U,
2m
Here
D, =0, +i(eA, + ga,),

and n. is a background neutralizing charge density.
Maxwell and Chern-Simons electric and magnetic fields are defined by
the equalities

Ei = Fio, B = 5mnamAnv
et = [0, b= emnoma”.

In the present discussion, we will use the mean-field approximation (MFA):
gauge fields are replaced by the average values which are divided into given
backgrounds and small fluctuations

A, o< A, >=A,+ A, a,—<a,>=a,+a,.
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Background fields are chosen to correspond to homogeneous magnetic fields
B and b. The matter part of the Hamiltonian is given by

H. = [ {519t + o + guayuto par +
+ /{FOIO — FyI,}dr = Hy + Hy. (4.5)
Here
Vi = 0 + i(edy, + gay),
Fy =eAy + gao + %(eﬁk +gay)?, Fy, = eAy + gay,
=4, Th= 5 [91Ve — (VH)1Y).
The dynamical equations for the gauge fields in MFA are given by

O, < FF(z) >=< J'(z) > —en0"?,
2
e’v .
— % 81“/)\ < fy,\ >=< ]ll > .

Here < J* > and < j* > are the thermal averages

cghs 0H, _ 50
C\bAu(z) /) d< Au(x) >
. 0H, 50
<jt>=<

da, () ; < au(z) >

The thermodynamic potential Q{< A, >,< a, >,3} is defined with the
help of the grand canonical partition function

89 = Tre B(H.—uN)

where 8 = 1/T is the inverse temperature, u is the chemical potential, and
N is the particle number operator.

In order to calculate this quantity, we adopt the real-time formalism
known as Thermo Field Dynamics (TFD) [129], [102]. TFD was constructed
by the requirement to express thermal averages of quantum operators in the
form of vacuum expectation values. This idea was achieved by introducing
fictitious “tilde” operators A corresponding to each of the operators A de-
scribing the system under consideration, and of a thermal vacuum |0, 5 >,
which is required to satisfy

TrAe H

< 0,ﬂ|A|0,ﬂ >= W
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For the hamiltonian H = Hy + Hy, the free energy is given by [113]

e—is fj—: dtf{[

1
Q, = + / ds < 0, BIT{H(to) 10,8 >,
0

where |0, 3 > is the thermal vacuum in the interaction representation with
respect to Hy. The thermal interaction Hamiltonian is

Hi(t) = Hi(t) — Hi(t).

In our case, Hy and Hj are given by (4.5) (the term with a chemical potential
must be added to Hy), and for the free energy, we obtain

Q= Qo-i—/F,,(a:) < 0,8|I*(x)|0,8 > dr —

=5 [ Fu@Pu(en)[< 0,811 @)1 @1)}0.5 > -
— <O BIT{I*() (22)} 10, >Jdrdesdty +O(e?)
where
Qo = - UnTr{e P}

does not depend on the gauge field fluctuations.

For our purposes, it is sufficient to consider time independent fluctua-
tions. In that case, the final expression for the free energy up to the desired
order in gauge coupling constants will be given by

0= QO + /FOCI)()(I‘)CII‘ + (46)

i

t e / B(r1)[S(—(2A1 /2, —£2A2/2)8(x1 — 12)]®(r)dridrs —

_ ig(h)
2mmi?

+ 47rn112€2 /H(rl)[S”(_FAl/Qa —0?A5/2)6(r; — 12)]H (ry)dr drs,.

/Q(rl)[S'(—£2A1/2, —€2A2/2)5(r1 - r2)]H(r2)dr1dr2 +

Here h = eB + gb is determined by the background (¢ = 1/|h|), and
&y =eAy +gag, H =eB+ gb.
The differential operator S(—¢?A; /2, —¢*>A5/2) is determined as follows

S(a,y) = e @025 % - Z!a)! r ;’ya Lo(2) Lo ()N (B),  (4.7)

n=0 a=0

where L% (z) is an adjoint Laguerre polynomial, and the temperature de-
pendence is determined by the functions

A (B) =i B(1 — sin?6,) sin® B,



sin? 6, — sin? 0,4 o

An(B) =2i

En+a - En
Here
sin?6,, = #
"1+ efBn

is the Fermi distribution, and E,, is the Landau level energy
1
The quantities S’ and S” are given by

0
S,(xay) = %S(%’,y),

2

0
§"(@,1) = 5,5-5(9)

and
Ty = m Z sin? 6,,.
2m ~
Corresponding currents are given by

0 Y
<J(r)>_6A0(r)

o0

<Jk(r)>:m:

- ﬁﬁklal{[elsﬂ + ec(h)S"|®o(r) —
_ %[e's' /2 +es(h)S"JH ()},

o _ o0
= Sao(r)

. _
)
- mskl&{[g'Sﬂ + ge(h)S")®o (r) —

~ Wi/ 4 ge(mys ) ).

_ies(h)
2mrml?

e
= EF[) + WS(PO(I.) SIH(I'),

_ ige(h)
2mmi?

ig
:gF0+ WS@Q(I’) SIH(I'),
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As a practical application of obtained results, we will reconsider the simplest
model already studied in [120], [77], [76].Now, ¢ will be a two-component
spinor, the Chern-Simons gauge coupling g = e. The background B = 0,

e2vb = men., Ag = dg = 0.

Note that our main result — formulas (4.6) and (4.8)- (4.9) must be
slightly modified, taking into account the doubling of fermion degrees of

freedom.
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It can be shown that at zero temperature,
S = —iml*(v?A + 3V°1*A?/8),
S' = iml* (v + V22 A/4),
S" = —iml(V? + V32N )2),

Fo = Ne.

Hence the fermionic contribution to the free energy is given by

0= /dr{ene(Ao +ag) + e ()2 (A + a0) (B + D) +
4o (P B e + 5 (P (B 407+
+e2[136(%)4”?az(m o) Op(B* + k) —
—i(%f T0/B +1)- (B +1) - %s(h)(%

From the gauge field equations,

—AAg =< J° > —en,,
AB = —£,,,0m < J" >,
e2vAay = TEmnOm < j" >,

e?vAb = 1A < j° >,

and from the equations (4.8)—(4.9) it follows

2,,2 2
{62-1-36’/ PN L A2]B+

47N, Ne 8mn?2
N e2myA N 3ermu? AZ_ 3V 2 Ay =0,
TNe 8m2n?2 4n,
LN
m 4dn, 2mman,
2 2
+lea+ 3 A2 _ A2 4y =0,
41N,

Adopting numerical estimates used in [76],

e2 me> TN,

— =11-107°, —— =24,

™ 21,

m?
the dominant terms of (4.10) and (4.11) are given by

e?mv

{62—ﬁ4 B+ Ady =0,

Ne TNe

=4.7-107"

(4.10)

(4.11)
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2 2,,2
[QA_QN]M[EZMTV

A? — A2 4, = 0.
m 4dn,

TN
The superconducting solution of this coupled system is given by the config-
urations

Ap =AEe ™", B=Be ™", n’= 1/)22.
The relevant equations are now given by

~ 2 ~
1-B+“IE =0,
™

1% 3 1 - ™me 322 -
—(1—-v) =B 1-— — E=0
7r< 47>A +[ <m2 47rm>] ’

where v = A2 /A2 and A1, = (m/e?n,)"/? is the London penetration depth.

For v we obtain
2.2\ 1 2.2
e’v e’v
7 < + 47rm> 4mm

in a good agreement with a result cited in [76].

It can be shown that at high temperatures y remains positive, so in this
model there is no phase transition to the normal phase. (The temperature
dependence will be considered in the subsequent section).

In conclusion, note that the proposed scheme of calculations permits one
to analyse in principle a large variety of models for arbitrary static gauge
field configurations up to any desired order in the derivative expansion.

3. RELATIVISTIC ANYON SUPERCONDUCTORS

The zero-temperature Meissner effect presented in the 2+1 dimensional
anyon matter provoked considerable efforts in order to promote the Chern-
Simons gauge theory as a hypothetical candidate for the high T, supercon-
ductivity.

The most important points in that development are the existence of the
massless (Goldstone) pole in the current correlators [53], the cancelation of
bare and induced C-S terms [10], and detailed calculations of the effective
action and the thermodynamical potential for the fermions interacting with
the C-S and Maxwell fields [24], [120], [76], 110].

Among the others, it was shown that the Meissner effect is partial, i.e.,
the magnetic field starts to penetrate into the sample at any non-zero tem-
perature [76].

In the present section, we try to give some complementary insights into
these intriguing question.

It will be demonstrated that the Meissner effect exists only if a matter
consists of two types of fermions with opposite signs of the magnetic moment
interaction. Such a system can be naturally realized considering planar
relativistic fermions. Note that different versions of the relativistic anyon
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superconductivity have been considered in [110], [31], [128]. Below we follow
[45].

The model under consideration describes 2+1 dimensional Dirac fermions
coupled to the Maxwell electromagnetic (A4,) and the Chern-Simons (a,)
gauge fields.

Metric n*¥ and Levi- Civita tensors ¢#** in 241 dimensions are defined
by

" = diag(+1,-1,—1) M2 = 41, M=% (4.12)

The space-time coordinates and the vector fields are defined by

g =(ct,r), A= (Aoa A) = (0_1507 A), a'= (GO, a), (4.13)
where ¢ is the Maxwell scalar potential, and the magnetic field is

B = 0,4, — 0,A, = —cM A,

For the Dirac matrices in 241 dimensional space - time we use the represen-
tation

1 0 0 -1 0 i
Yo = 0 —1 ) "= 1 0 ) Y2 = i 0 )
{97} = 20", [y, 7] = 20" (4.14)
The fermionic Lagrangian, including the interaction with gauge fields, is
given by
L.= /z/_){z hiey" D, — ome? Jyhdr,
Dy =0, +i(e/R)(Ay + ay),

where m > 0 and ¢ = £1. In order to clarify the meaning of the parameter
o, consider translation and Lorentz rotation generators, which in the spinor
representation are given by

(4.15)

) 1
PH = —z’h&“, L = % ['y”,'yy] = 56”1/)")/,\.

Introducing the Pauli- Lubanski scalar W = (1/2)e** L, P, we get
1
W = - 5 zﬁ’y“@u
Obviously, W coincides (up to a constant factor) with the kinetic part of
the Dirac operator. Further, taking m > 0, we have
E2
PP, = = - P2 = m?¢ = me=(P"P,)Y?* >0,
and rewrite the 241 dimensional free Dirac equation as

{w+s (Prp)}y =0
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We see that ¢ = £1 corresponds to the particles with opposite helicities.
In the non-relativistic limit, the corresponding one- particle Hamiltonian
takes the form 2 "
N e
HNR - — % D —0o %
As we see, different values of o in 241 dimensions give rise to different signs
of the magnetic moment interaction, which (as we will see later) leads to
non-trivial effects in the magnetic and thermal properties of the system.
As it follows from (4.15), spinors carry the dimensionality [¢/] = length™!
and consequently, J# = ecipy*1) turns out to be the planar density describ-
ing the current distribution over the layer of a sample. On the other hand,
we consider A, as the p = 0,1,2 part of the real 3+1 dimensional elec-
tromagnetic field. The latter should satisfy the Maxwell equations where
the sources are spatial densities of fermion current. Spatial densities in
a multilayered system can be introduced using the planar ones, averaging
them along the interplanar distance, i.e., as § 1J# (§ ~ 10 %cm). In this
consideration, the Maxwell equations take the form

B + ep.

1 1 -
— O, F* = = ecypyHe,
Mo ]
where pg is the universal magnetic constant.

These equations can be derived from (4.15) and the Maxwell Lagrangian
which, being adapted to 2+1 dimensions, reads as

)
LMazwell = - TM/FNVF”Vdr7

where the field strengths F,, F, and B = B, are usual in 341 dimensional
quantities.
The total Lagrangian for this system is a sum of matter and gauge field
Lagrangians
0 ¢ vy
L=——F, F" — — —
A " hoom -
+p{ihey" D, — ome* b,
D, =0,+i(e/h)(A, +a,), m>0, o==1,

"")‘au&,m\ + ecn.Ag +

(4.16)

where en, is the planar density of the background neutralizing charges.
The Euler-Lagrange equations derived from (4.16) are given by

ecneg"’ + (8/10)0y F** = ecipytap,

2
c e‘vy N .
T e 0,ay = ecpytp,

they!" Dy — omcip = 0.

In what follows, we consider the case of an external (non dynamical)
Maxwell field. The Chern—Simons field will be considered in the mean
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field approximation (MFA), operating with its quantum average. In this
consideration, we take classical values for the gauge fields, while the Dirac
field will be quantized.

In order to study static properties of this relativistic system, we can
take into account only the time-independent configurations of gauge fields
(OoA, = Ooa, = 0). Analysis will be performed in a self-consistent field
approximation developed in [76]. It means that fermionic currents in the
classical equations of motion will be replaced by the corresponding thermal
averages which are defined in terms of the grand canonical ensemble

(- ) Tre~ (Hempme*N) ke T _ y { . ef(HefumCQN)/kBT} .
Here H. is the quantized fermionic hamiltonian
He:/@ZJT(r){ihc'yOyka(r)—l—ecAO(r) + ecap(r) +omc®y°}ih(r)dr, (4.17)
and N is the particle number operator
N = [l
while kg, T and p are the Boltzmann constant, the temperature and the

dimensionless chemical potential, respectively.
The resulting set of dynamical equations is given by

- Ni Ad + eene = (7°(r)), (4.18)
_NigknanB = (J*(r)), (4.19)
= b= (1)), (4.20)

= 2 9, B = (J*(r)). (4.21)

Introduce the thermodynamic potential

_ 2
Qe(T, pt, A, a) = —kpT'In Trexp {_ He(A, a) — pme N} .

kgT
The current operators can be expressed in terms of functional derivatives

_ 6H, _ 6H,
T 54  dau(r)

JH(r)

Using the cyclic property of the trace operation, one gets

D 1)
(J(x)) = 3A,(r)  da,(r)

(4.22)
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Present the gauge fields as sums of fixed background and fluctuating parts

_ gb f _ b f
A, =A+A, a,=a,+a,.

Background corresponds to the uniform Maxwell and Chern—-Simons mag-
netic fields B® = const, b® = const.

Separate the fermionic Hamiltonian into the free and interacting parts
H. = mc*(Hy + H;pnt), where

Ho = / 1 (0){i €707, DY (x) + 07 Jib(r)dr,
DR(r) = 9, +i(e/h) (AR + ab), (4.23)

Hint = o [ {AL(6) + af (1)) dr

(o = h/mc is the Compton wave length for the fermions).

Applying the perturbation theory formalism, we get for the thermody-
namic potential
mc?

kpT"

¢
Q. =Qy — kgTlIn <Texp —/Hmt(r)dr > , B = (4.24)
0

0

Qo is the thermodynamical potential for the system in the uniform mag-
netic background

Qo(T, p, A, a®) = —kpTInTrexp {— B(Ho(A", a”) — uN)}  (4.25)
and (--+), is defined as
(Yo Tr {e—B(Ho—uN)} — Ty { .. e—ﬁ(Ho—uN)} _

In (4.24), H;nt(7) is the interaction Hamiltonian in the Matsubara repre-
sentation

Hint(7) = =5 [ (0 077007, £ AL (1) + ()},
and T denotes a 7-ordering. Matsubara fields are given by
Y(r, r) = e HomrN) gy (p) e (Ho—1N) | (4.26)
B(r, 1) = e"HomnN)yj(p)e " (HomiN) = yf (7 p)40. (4.27)

One-particle Hamiltonian describing a fermion in the uniform magnetic
background is given by

HP = iéoyo'ysz + 070,
Dy = 8), +i(e/h) (A} + ay),

Q) + ab(r) = 5 el (B +°) — B,€(r),
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where £(r) is the gauge fixing term.
Solving the Schrédinger equation for P (o, ¢), one gets the following set
of the positive and the negative energy eigenvectors (see Appendix A)

b =+ wpun(o
’Hb(a, €)un(0, €) = + wpuy(o, ), (4.28)
H (o, €)vp(o, €) = — wyvn(o, €),

where the eigenvalues, being independent of o and ¢, are given by

_4

wp =vV1+2hn, h= 2

Note that except the lowest energy eigenvalues, the solutions of the Dirac
equation are always paired. For the lowest energy, there is an asymmetry,
i.e., there is no vg mode for o = 1 and no Uy mode for g = —1.

As a complete set of commuting operators, we take the Hamiltonian P
and operator

p=—ilD} — el ly. (4.29)

The fermion field operators are presented as follows

Y= Z{anp“np + b;rzpvnp}:
np

b= {al,lnp + boplny }-

np

Fermion creation-annihilation operators satisfy the standard relations

{anp’ a:rz’p’} = {bnp’ bIL’p’} = Onnr 6(p — '),
unp:Un'|p>a nnp:vn'|p>-

The quantized Hamiltonian Hy and the particle number operator N are
defined in the normal ordered form

Hy = anaiwanp + anbiwbnp, (4.30)
np np

N =Y al,a,, — > bhb,, (4.31)
np np

avoiding the problems with the negative energy states.
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4. THERMODYNAMIC POTENTIAL

In this section we will find an analytic expression for the thermodynamic
potential in the second order approximation with respect to the gauge field
fluctuations. All the operator expressions like Hamiltonian, currents, etc.,
are assumed to be normal ordered.

Substituting Hy into (4.25), we get

0o(A°, a®) = kpT > In(1—pt) + kT Y In(l-py),
np np

where p} and p,, are the Fermi distribution functions for the particles and
antiparticles

pr = {1 +exp[Blwn FW]} ', wn=V1+2hn,

while n and p are the quantum numbers labeling the one-particle states.
Due to the degeneracy of the Landau levels, summation over p gives the
factor V/2ml?, where V is the area occupied by the sample. We get

Qo(Ab, ab) o kBT + kBT _
v - 271_[2 Zn:ln(]' - pn) + 271_[2 Xn:ln(l - pn)7 (432)

where £ is a magnetic length.

Calculating the linear and second order correction to (g, one needs an
explicit form of the averages (J"(r, r)), and (J* (71, r1)J" (T2, r2))g-

The thermal fields are given by

¢(T I‘ =e M Z{a’np np wnT_'_bnp np( ) —wnr}_

The non-vanishing thermal averages are

(al‘lpa/n p! >0 - 671,77/ 6pp/ pj;, (bilpbn’p’ >0 - 6nn’ 6ppr p; 5

where d,, stands for 6(p —p'). Using normal ordered current operators, we
get

(J#(7, r))o = (J*(0, 7))o = (J*(r))g = ecll”(r), (4.33)
= Z{pzanp(r)’y”unp(r) - pr:ﬁnp(r),yuvnp(r)}' (434)

Wick’s theorem for non vanishing quartic combinations yields

<aizpan 'p’ a;rnqam q’ >0 - 5nn’ 6mm’5pp 5qq’ PZP; + 5nm’ 5mn’ 5pq 5qp’ Pn ( P;)a

(bnpbn 'p’ bmqu q' >0 - 6nn’ 6mm’ 6pp 6qq’ pn pr_n + 6nm’6mn’ 6pq 6qp’ pn ( :0;1)
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As a result, the current-current correlators are expressed by
(J*(11,20) T (12, 12) 0 = (J* (11))o (J” (x2))g +€7¢* T (11 — 72, 11, 12) . (4.35)

The second term in the last expression is the contribution of the connected
part

JH (7, 11, 1) =
=3 {0 = )y (1070 (1114 (12)7 0 ()07 |
> P g (F0) 0, (1) (2207t () 207 |
3 = )L = )y (F)7 1 (1) (2207, (1) )7 4
3 = D)0 (170 (£1)0, (0270, (r2)e = 7007 L

where the summation over n and m should be performed, taking into account
the spectral asymmetry of the one-particle Hamiltonian.
Using (4.35) and performing the 7-integrations, we get
d’l'l d’l'2

) <T{J“(ﬁ,Pl)JV(Tz,1'2)})0:H"(rl)H”(m)—%H’“’(rl,m), (4.36)

+_ ot
I (ry, r2) = Z Z % Uinp (T1)Y" Uimq (T1) Timg (T2) 7" tnp(r2) +
nm pg M m

+ Z Z Pn = Pm @np(rl)'y”vmq (I‘l)’ljmq (1'2)’)/U'Unp(r2) +

Wn — Wm
nm pq
+ —_
Pn + Pm - 12 3 v
+ %n: %: o o U (T1)Y* Vg (1) Omg (£2) 7" Unp (r2) +

Pn + P - _ v
+ %n: %}: ﬁ Onp (£1) 7 Uing (1) Bimg (r2) 7" Vnp (r2). (4.37)

Terms with n = m in the first two lines of the last expression are defined

as
+ + + +
Pn — P Pnta ~ Pn + +
—— = lim = —pn (1 —py)B.
Wn — Wm |pmen @70 Wnia — Wn

In (4.37), we made the zero temperature subtraction at zero chemical po-
tential.

Expanding (4.24) with respect to gauge fluctuations and substituting
(4.33) and (4.36), we get the thermodynamic potential in the second order
approximation

Q.(A, a) = Q(A°, a®) + ec/H“(r){Ai (r) + aft(r)}dr +
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b [ T ma) (AL (02) () AL () + o (1) by,

Expressions for II#(r) and II#¥(r;, ry) can be presented in the translation
invariant form

1 ~ 1 o
I#(r) = 52 Zp;un'yﬂun—m an 3,7y, =const,
) dk , ! (4.38)
m
Py = P
TI#v (k) = Z Z H ﬂn’)/‘U'ZT (k)umﬂmvl’Z(k)un +
P =P o 7 Gy 20k
+ Z Z O — W Un?Y (K)vm Omy” Z (k)v, +
n + m _ v
+ Z Z Z +Z Uy 71 (K)o 0m” Z(K)un, +
+ 7 14
+ Z Z Z’ﬂ — Zm 'Un'y“ZT(k)umum'y Z(k)vn’ (439)

where u,, and v,, are the one-particle states in the occupation number rep-
resentation, while Z = Z(k) is the coherent state operator.
Due to the spectral asymmetry, summations in the different terms of
(4.38) and (4.39) are performed either from 0 to oo or from 1 to co.
Operator TT#¥(k) can be represented in a planar-transverse form. In
particular, consider the following identity

VhE™ ™ Z(k) = iVhe™ k™" Z(k) = [H°, Z(k)],  (4.40)

where P is the relativistic Hamiltonian.
Using equations (4.39), (4.40) and (4.28), we get

KT (k ZZ pt — pyul Zt(K)u, ul Z(K)u,, —
- Z Z — P 2T (K)0, 0] Z (K)o, +
+ ZZ P+ P ol 7 (K)uul Z (K)o, -
=3 (on + o ub 2T (K)v, 0l Z (k).

This expression and analogous ones for e™"k"k'TI™! (k) and k™ k"TT™" (k)
together with {7°, #P} = 20 lead to the identities

KO () = ek KT (k) = K™K (k) = 0. (4.41)
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Since the vectors k™ = (kg, k) and e™"k"™ = (k,, —k,) define a local
orthogonal basis, one can rewrite the polarization operator as

m0) = 27 T (k2/2), (1.42)
m°* (k) = % ief kM os (K2 /2), (4.43)
M* (k) = 2rekmel kM En Ty (K2 /2), (4.44)

where Iy, Tlcs and Iy are the structure functions (the explicit expressions
for these functions are given in the Appendix E). These structure functions
for the non-relativistic case have been evaluated in [41].

Explicit calculations show that

1 1
IIy, = +_ —, I =0. 4.45
0 2m (2 zn:'on 2m (2 zn: P> k ( )

The corresponding expression for the thermodynamic potential is given by

Q.(A, a) = Qy(A°, a®) + ecTl, /{Ag(r) + ab(r)}dr +

ez m2c?
2m  h?
e? 2mce
2m h?

+ % / {B'(r) + b'(r) My { B (r) + b (r) }dr, (4.46)

[ 45 + ab @) T A5w) + aho))ar +

/M&m+%mﬁhdﬁw+#@mh+

where IT stands for the differential operators II(—£2A/2) (A is the Laplace
operator).

Now, using (4.22), we get the desired expressions for the current averages.
They are represented as linear functions of the gauge field fluctuations

2 2 2
(J°(r)) = eclly + % Ty (Af +af) + e—hc flos (B'+ ),  (447)
k kn e’c - £ £ e - £, gf
(J*(r)) = —¢€*" 0o, THCS(AO+a0)+EHM(B +0b') ¢, (4.48)

5. UNIFORM MAGNETIC FIELD AND THE MEISSNER EFFECT

As a starting point, consider the system in the zeroth order approxima-
tion, i.e., Af, = af, = 0. Equations of motion (4.18) and (4.19) are reduced
to

ne = o, (4.49)
wh

b= —
erp

Ne, (4.50)
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where IIj is given by (4.45).

Note that n. is the free fermion density in the sample and (4.49) serves
to define the chemical potential u = (7T, B®, ", n.).

We will study a compound system consisting of two sorts of fermions
with equal gauge couplings e; = ez = e and different helicities oy = — 09
corresponding to different signs of the magnetic moment interaction, which
on its turn can be associated with spin up and spin down fermions. In
that case, the r.h.s. of the equation (4.49) gets the contributions, defined
by (4.45) from both sorts of particles. Remark that, since the different
sorts have the equal charges, corresponding magnetic lengths are also equal.
Moreover, as it follows from (4.50),realistic values of B are small compared
with those of b” and can be neglected:

e =sgn(eB® + eb®) = sgn(ebP).

In other words, € can be considered as independent of B, and without
loss of generality we can set o161 = —o2¢2 = 1. Taking into account the
contributions of both types, the equation of motion (4.49) can be rewritten
as

(1/1 + 1/2), (451)

e = 2ml2

where v; and vs are the corresponding filling fractions
=Y pi(n) =Y pn (), (4.52)
n=0 n=1
va = ph(i2) = Y pr (i2), (4.53)
n=1 n=0

and p; and po are the chemical potentials for the particle types 1 and
2, respectively. In (4.52) and (4.53), we took into the consideration the
spectral asymmetry of the one-particle Hamiltonian, which is reflected in
the absence of n = 0 modes in certain terms.
Introduce the partial contributions to the particle density
h
nglﬂ) = (2 V1,2

(4.54)

By means of (4.51), we can express h in terms of the average filling
fraction
™nel? v + 13
h=—22 = —=. 4.
s v 5 (4.55)
Using (4.54) and (4.55), we express the partial filling fractions in terms of
the average one

2 nS}’?)

2 (4.56)
MO

Vi =
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Substituting b and vy » from (4.55) and (4.54) into (4.52) and (4.53), we see
that the chemical potentials depend on the temperature and the average
filling fraction v.

At the same time, the expression for the magnetic length (4.32) together
with equations (4.50) and (4.55) yields

= - 4 = (4.57)

which reflects the one-to-one correspondence between v and BP. Conse-
quently, any quantity depending on B can be also viewed as a function of
v, and vice versa.

The value of the background magnetic field is determined by the external
magnetic field B®*' and the magnetization M

o dF(B)
5 dBd ’

B = B™' + M(B®), M(B’) = (4.58)

where F = F; + F» is the Helmholtz free energy density of the composite
system. The individual contributions are

1

TFi2(B") = Tren {Qo(p1,2) + p12me®(Nia)},

where (N o) are the thermal averages of the fermion numbers defined by

(Ni) _ b + h N (1)
= QM%;)%(M) QM%;pn(ul)—ne :

(Na)  h n h - _ @
o = m;pn(uz)— m;pn(uz)—ne :

Here the quantities h, gy and po are functions of v. In order to exhibit
the global behaviour of F(v), we have used numerical methods. Consider
the case of the equal concentrations ngl) = ng) = ne/2. As one can see,
the free energy density of the composite system has local minima at integer

values of the average filling fraction. However, the individual contributions



97

of each type of particles exhibit no minima (see Fig.1).

..... Fi
................................................ (}_1+]:2)/2
.................. Fo
TS N T T - T S T U

Figure 1. Helmholtz free energy densities versus v for @ = 0 and
T =50°K.

The cusp-like structure of the free energy is the manifestation of the
Meissner effect, when the system tries to expel the magnetic field from
inside the sample [76].

As we see, in contrast with the previous calculations, the Meissner effect
does not exist in the single fermion system, but only in the composite one,
where the diversity in the magnetic moment interaction plays a decisive
role.

Magnetization is expressed with a help of the free energy. The lateer
contains additive contributions from the one-particle state energies. One-
particle Hamiltonian considered in [76] takes into account the magnetic mo-
ment interaction only with Maxwell magnetic field. Further simplification
is achieved by taking

h? 1
assuming that the magnetic moment interaction vanishes.

In our approximation, the magnetic interaction term contains contri-
butions from both Maxwell and Chern-Simons magnetic fields. The non-
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relativistic limit of eru one-particle energy spectrum is given by

h? 1—o¢

Note that (4.59) is in fact the half sum of E,,(+) and E, (—). Separate use
of E,(+) or E,(—) does not lead to the free energy with localized minima
and only their simultaneous contribution has a cusp-like structure.

Equations for the chemical potentials cannot be solved in general. How-
ever, one can find an analytic form of p; »(v) nearby integer values of v,
where the free energy achieves local minima. This enables to analyze the
system in more details near these minima, where the Meissner effect just
takes place. Below we present these calculations for asymmetric concentra-
tions, i.e., when ngl) # n£32).

Here we will deal with the minimum corresponding to v = 1, and for
concreteness we will set e > 0 and ¢ = 1. In that case, we have vy = 1 and

_ 9 _eB
h = mn 51 + ), a = p— (4.60)

Note that for the characteristic values of the internal magnetic field (B <
200 Gauss)b we have a < 107, (14 a)~! =1 — « and represent (4.56) as

_ n
a =
n

Here & measures the asymmetry in the concentrations of different types of
fermions.

Further simplifications are due to the fact that in the considered range
of temperaturesb we have 3 > 3 - 107, and consequently for p; 2 > 0

_ 1 _107
pn(p12) = 30— <e™ ',

T 1 4 eBlwntniz)
meaning that main contributions to (4.52) and (4.53) come from p; (u1 2),
forcing 142 to be positive. With this assumption, we take 1 > 0 and
represent it as
1 - w1
2

where w; is to be found. Due to (4.60), one has h ~ 5-10~7. Consequently,
for the Landau levels with 2hn << 1b we can use w, = 1 + hn and write
down

p =1+

h,

Blwn — ) Zﬁh<n— 1y ﬂ>.
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The characteristic values of 8 and h are such that gh > 15, allowing to
neglect the contributions coming from higher Landau levels. This permits
to write (4.52) as v; = pi (1) + pi (p1) or in the equivalent form

1 1

- = 1+ e~nenw1 T3 + efenwr’

where n = mn.(33(1 + «)/2. From this equation, we easily find a solution
for wq:

1 /
6:|:77’LlJl — < 1 + a%ShQW :l: alchn> y A = o — [o% + aQ. (461)
1 F o

At the same time, taking

3—11)2
2

and performing the same manipulations, we obtain

1
eTnwe — <\/1 + adsh’n + a2chn> , a2 = a+ a-— aa. (4.62)
1 F &y

So, the leading contributions in the different physical quantities come
from the following Fermi distribution functions

pe = 1+ h

1 1
+ _ + _
po () = T o ML) = oo
X ) X . (4.63)
P1 (//’2) = 1+ e Nenws’ Pa (H2) = 1+ enenws’

where e"! and "2 are defined by (4.61) and (4.62). In this approximation,
the system magnetization is M = M; + M, where

2whd 1) Wn

N eepgneh e
R fa - aN) + 1},

b epome® o [ 1 + hn
Mi(B?) = — Z {1 —pp ()] + = py () ¢ ~
n=0

2

I
=

2

b 2 hn
Ma(B%) = - B S Sl g+ 2 o) |

eepigneh
4mé

while the basic function f(z) which defines all magnetic and thermal prop-
erties of the system is given by

1 | V22 +4e € — 2 1 mwn.h?

= —1n 5 = — .
§ V22 +4de € + 2 ¢ N mkgT

Its typical form is depicted in figure 2.

—— (wa +1) = {f(a + aN) — 1},

f(2)
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Figure 2. Typical behaviour of the function f(z).

In the case of equal concentrations (& = 0), the system magnetization
becomes independent of € and of the electric charge sign. It reads as
etioh 1. /B%2 + 4e ¢ — B 2
M(T, Bb) — |€|n Ho Zln + de , B = VO|6|
2mé € VB2 +4e € + B mneh
Consider the values of B satisfying B> << 4e~¢. Then the magnetiza-
tion takes the simple form

oM N2e2pg et/?

M = —yBP E— =
B X oBb 2rmd £’

where x is the magnetic susceptibility of the system.
Now the equation (4.58) can be easily solved, and we get

Bb — (1 + X)_lBeXt.

The magnetic susceptibility of the system becomes exponentially large
in the low temperature (large values of £) regime. Consequently, the mag-
netic field is expelled from the sample, what is just the manifestation of
the Meissner effect. However, B® does not vanish exactly, but only with
exponential precision, i.e., the Meissner effect is not complete. Originally
such an observation was made in [76]. Note that the complete Meissner ef-
fect is achieved at absolute zero, when the magnetic susceptibility becomes
infinite.

Consider now the case B2 >> 4e~¢. The corresponding expression for
M is given by

M = —sgn(BP) kZlT‘:;h (1 + §1n|3|>,
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and for large values of £, one can drop the logarithmic term. In that case,
one gets
e|nepoh
Bb — _ Bb | e Bext
sgn(B) UL 4 pex

and for sufficiently large values of B!, the first term on the r.h.s. of the
last equation can be neglected, meaning that the external magnetic field
practically penetrates inside the sample.

Bb:

Figure 3. Typical behaviour of function B®(B*).

The region of this curve which is almost horizontal corresponds to B? <<
4e~¢, while those with greater slope correspond to B2 >> 4e~¢. As one can
see, the magnitude of B is quite small until B®** reaches some critical
value B*. Above this value, the external magnetic field begins a notable
penetration in the sample. The critical value of the external magnetic field
is evidently related to a small interval at B axis, where the magnetization
curve drastically changes its direction, i.e., where the curve passes the point
of maximal curvature (PMC). The lower is temperature (greater is &), more
narrow is the interval and it is easier to establish the corresponding critical
magnetic field. In order to find the approximated value of B, we can use
the derivative

oM _ Vgpoe” 1 (a2 +4e*§)71/2
oBP mmd &
and consider its behaviour in the low temperature regime.

Until the curve M (BP) reaches the PMC, its slope can be considered to
be constant and therefore can be determined by its value at the origin which
is exponentially large. On the other hand, the curve becomes practically
horizontal after passing the PMC. Obviously, somewhere in the vicinity of
the PMC one has M /OB" = —1, and using this relation as the definition
of the location of PMC, one gets the corresponding value of the internal
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magnetic field to be

enuh12 2mn.h\ v
Bo(T) = Sle0 2} e 3 )
= {7 ) - () )

Substituting Bo(T') into B = By — M(By) and keeping the leading
terms, one gets

elnepoh leluoNksT | €*uoN3kpT
+ In

|
BCI‘ T —
() 2md whd m2h2n.0

We observe that starting from the absolute zero and rising the temper-
ature, the value of the critical magnetic field decreases. The area of the
maximal curvature becomes smeared for high temperatures and the critical
magnetic field becomes ill-defined. On the contrary, the PMC is well local-
ized for T'= 0°K and the corresponding value of the critical magnetic field
is given by

' le[nepoh

As a practical realization, we present results for concrete values of the
parameters m, e, n. and d. In particular, the mass and the electric charge
are identified with those of an electron. For the neutralizing background
density we take n, = 10'®m~? used in [76] while the value of the interplanar
distance in the high T, superconductors is of order of § = 10~?m, and
we consider the case N = |p| = 1. In the range |B®| < 200 Gauss and
T < 200°K, we have

€VoBb

mneh

‘ <5-107° ety < 4.7-1077 e=Fmnels < g=30,

As we see, the given values satisfy the conditions (2.52)—(2.54). Figures 4-8
represent the corresponding results for symmetric concentrations of fermion
types.
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Figure 4. M [Gauss] versus B® [Gauss] for a = 0.
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Figure 5. B® [Gauss] versus B™' [Gauss] for a = 0.
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B
120+
80

404

Figure 6. Critical magnetic field [ Gauss] versus temperature [°K] for

a =

— 600

Figure 7. M [Gauss] versus B® [Gauss] for (mn.h/e) - @ = 30 Gauss and
T =0°K.
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X
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Figure 8. M [Gauss] versus B® [Gauss] for (mn.h/e) - @ = 30 Gauss and
T =40°K.

6. PENETRATION DEPTH

Consider now non-vanishing gauge fluctuations. In particular, we study
the equations of motion (4.18)—(4.21) for a compound system in the second
order approximation, i.e., with the current averages (4.47) and (4.48), where
the structure functions take the contributions from both types of fermions.

The equations of motion lead to the following solution for the Chern-
Simons field

n, Ly \? n, Ly \?
a(f):_WeOLBf, bf:_”reOLAAg,
o o
where Ay, is the London penetration depth given by
5 md
e et

=
Now, the equations of motion get the following effective form
{ﬂgt +n 0202 (1 - %HE%) A} Al 4+ {ng)g —n A\ %Hg’t} (,Bf=0, (4.64)
{ﬂg}g —neegAiyloﬂggtA} Af 4 {f[f\jl’t+ne/\i (1—%112;);)} 6B =0, (4.65)

where the superscript “tot” means that both sorts of fermions contribute.

Consider a sample with the geometry of a semi-plane, where the boundary
is located at = 0 and the sample occupies the region > 0. The magnetic
field inside the sample is B(r) = B+ Bf(r) and we look for the fluctuations
of the form

Bf(r) = (B™* - B") e */*  Al(r) e */* (4.66)
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which agree with B(z — 0) = B®* and B(z — oo) = BP. Here \ de-
notes the bare penetration depth which differs from the effective one [76].
Substituting (4.66) into (4.64) and (4.65), we obtain a uniform system of al-
gebraic equations which has a non-trivial solution only if the corresponding
determinant vanishes. This condition can be written as

/\2
ot {8 () TR (=) — T () T (2) — m AR T (2) ) =
e*0'L

1 72 T 2
- - S e {1- Tme)
and if solved for z = —¢%/2)?, sets the bare penetration depth as a function
of B*** and the temperature. In figs. 9 and 10, we present the results
obtained by numerical methods. (We use the power series expansion of
I'°t(2) given in Appendix D).

NN B®t =10 Gauss CN/N2 Bt = 50 Gauss

IS T
40 80 12 T : 40 8 120 T

Figure 9. A?/\? versus temperature [°K] for a = 0.
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A2/N3 T=0°K A2/ T =50°K

40 80 120 Bet .40 80 120 B
Figure 10. A2/ versus B*** [Gauss] for a = 0.

The effective penetration depth is defined as a gradient of the magnetic
field inside the sample

1 e
Aei(d)

= —1In

Or B(z) d" B(d)

S

/d 0B(z) dx 1. B(0)
0

Obviously, Aer(d) measures how fast the magnetic field changes over the
distance d from the boundary towards the bulk of the sample.

In BCS theory, the magnetic field inside the sample is given by B(z) =
Bete~ /X causing the effective penetration depth to be coincident with the
bare one and to be independent of d. Here this is not the case since the
Meissner effect is incomplete, i.e., the magnetic field inside the sample is
given by

B(CIZ, BEXt’ T) = Bb(Bext’ T) + {Bext _ Bb(Bext’ T)} o z/\ (BeXt,T)’
and the effective penetration depth takes the form

1 B lln Bext
Aer(d, Bext, T) T d Bb4 (Bext — Bb) e~ d/x*

It is reduced to A when the complete Meissner effect (B® = 0) takes place.
The effective penetration depth as a function of the temperature is repre-
sented in figure 11.
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Figure 11. A? /\2; versus temperature [°K] for @ = 0 and d = Ar..
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CHAPTER 5
ON THE EFFECTIVE POTENTIAL
IN THE QUANTUM THEORY

1. INTRODUCTION

It is well realized that practically all the physical information contained
in the quantum field theory can be encoded in the Green function generating
functional (see, e.g., [15]).

ZL0] = W) =< O[T expli / Ao d()6@)|0 >, (5.1)

where the Schwinger functional W[.J] generates the connected Green func-
tions:

W[J=—=iln Z[J]= % /da:1 cdrnJ (1) - J(20)GE (21, w). (5.2)

Closely related objects are the effective action and effective potential,
which in principle permit to formulate quantum problems in terms of c-
number quantities and variational equations.

Remind that one of the central problems in the quantum field theory is
the determination of the ground state (vacuum) which, in its own turn, is
characterized by the vacuum expectation value of the quantum field ¢(z).
This expectation value should be determined in terms of parameters ap-
pearing in the Lagrangian. The classical meaning of this vacuum average
is the lowest energy configuration which can be found by minimizing the
classical potential. Consider the Lagrangian

£ = 30up(0)0"pla) ~ U(6). 63

The energy of the system is given by the functional
1. 1
Bl = [ s (560 + 5967 +U@)
Q

(Q is the volume). U(¢) is the potential energy density and its minimum
corresponds to the minimal energy field configuration. In the quantum case,
U(¢) contains the interaction terms and the vacuum expectation values
are altered by perturbative corrections and the renormalization procedure
must be applied. In any case, it is natural to expect that there must be
some quantum object which includes the classical potential and its quantum
corrections.
The functional derivative of W[.J] gives the expectation value of ¢ in the
presence of varying source:
oW [J]

57 =< vac|o(z)|vac > 5= ¢.(z). (5.4)



110

The efective action is defined as a functional Legendre transformation of
the Schwinger functional

Dio = W) - [ d'yI)6.w). (55)
If the external source is set to zero, the effective action satisfies the equation
)
——7T[¢:] = 0.
TRORG

The solutions of this equation are the values of < ¢(x) > in stable quan-
tum states of the theory. For a translation-invariant vacuum state, ¢. is
independent of z. Sometimes this equation has additional solutions corre-
sponding to localized lumps of field held together by their self-interaction.
In this states, called solitons, the solution ¢.(x) depends on z.

The effective action I'[¢.] is an extensive quantity, and for the constant
classical fields is proportional to the volume of the space-time region over
which the functional integral is taken:

F[‘bc] = _(VT) ' ‘/;ff(¢c)'

The function Vs r(¢.) is called the effective potential [26], [1], [125].
The equilibrium condition reduces to the simple equation

5o Verr(6) =0, (5.6

Each solution of the last equation corresponds to a translation-invariant
state with J = 0, and V,f; evaluated at that solution is just the energy
density of this quantum state.

The local maxima or saddle points of V.¢s are unstable configurations.
The local minimum corresponds to the metastable vacuum state which can
decay to the true vacuum by quantum-mechanical tunneling. The absolute
minimum of the effective potential is the state of lowest energy, i.e., the true
stable vacuum. A system with a spontaneously broken symmetry will have
several minima of V¢, all with the same energy by virtue of the symmetry.
The choice of one among these vacua is the spontaneous symmetry breaking.
(A spontaneously broken symmetry corresponds to the non-zero values of
solutions of (5.6).)

Consequently, the central objects are the vacuum expectation value

< 0]p(2)|0 >,
Pe(z) = <0[0 >y

and a functional I'[¢.] such that ¢.(z) is a solution of the classical variational
equation
oL [¢c]
()

= —J(z).



111

In order to compute the effective action , one must first find W[.J] and
then invert (5.4) to obtain J as a functional of ¢. and replace J in (5.5).

At the tree level, effective action is just the classical action and the full
effective action includes all the quantum corrections: the effective action
generates proper (connected, truncated, one particle irreducible ) n-point
functions T (z1,...,x,) via a functional Taylor expansion [19], [82]

o] =% %/dzl oo dea T (21, . 2o (1) - ().

The effective action can be expanded in another way, this time in powers of
the momentum, i.e., space-time derivatives of ¢.(z) [79]

Tléc] = /dﬂf(—‘/éff[ﬁﬁc] - %Z[¢c](au¢c)2 +-0).

In this expansion, the lowest order term which can be separated out by
setting ¢.(z) = const is the effective potential Ve sz (o).

The effective potential can be computed using operator or path integral
representations.

In the operator approach, the Schwinger functional W{J] is defined from
(5.1). The formal series expansion of the exponential leads to the Taylor ex-
pansion of the generating functional, where the coefficients of the expansion
are time-ordered products of the field in the vacuum or Green functions.
A perturbative expansion of this coefficients leads to the series represented
by diagrams, and the Feynman rules are used to evaluate each diagram. If
the effective action is expressed as an expansion in powers of momentum,
then the lowest order term independent of p is the effective potential. If
we expand in powers of A, then the term in the expansion of order £ is the
collection of all 1-loop proper diagrams with vanishing external momenta.

Below we give a well-known expression for the one-loop effective poten-
tial for the case of a self-interacting scalar field with a Lagrangian (5.3).
Rotating to the Euclidean space, one finds [25], [26]

Verr(de) = U(oe) + % / (d%]:)i In (1 + U';(?;bC)) . (5.7)

Integrating the last expression over k4, one gets

Virs(6) =UG0) + [ %W T,

The second term is a quantum correction to the classical potential and
corresponds to fluctuations about a classical field value. In other words,
the effective potential is the sum of the classical potential and all zero-point
energy fluctuations about ¢..

As it stands, the expression (5.7) is divergent. In a renormalizable the-
ory, it must be possible to absorb the divergence by redefining the theory
parameters.
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Consider the case of the scalar field with a quartic interaction. The
Lagrangian is given by

£ = 36()(0,0" — md)o(e) - o' (0).

The effective potential to one loop is

: 4 2
Vige) = et + ot -5 | (;lﬁ’; In (1 - M) . (63)

p? —mi +ie

The renormalized mass and coupling can be defined as follows

,
$.=0 =m-, dTS‘L%V[%]

d2
g2
Since we are only dealing with the effective potential, we can put the wave
function renormalization equal to one. The substraction points are arbitrary

and we are free to change them using the finite renormalization.
Application of eq.(5.9) yields

1 d*p i
2 2
= =5\
M=oty 0/(27r)4p2—mg+ie

N (5.9)

Vel

and

_ 3 2 d4p 1 2
/\_/\0+§l/\0/(27r)4 p?—m3+ie)

Solving these equations for bare mass and coupling (in the one-loop ap-
proximation), we can rewrite the effective potential in terms of finite renor-
malized quantities

1 A i [ dt P2 /2
Vige] = §m2¢3 + EQﬁ - %/ (2754 In <1 - p? (—fﬂ/-i-)ze)> o

1 2 4 4 i
-t [ dtpemt

—m?2 + e

A2, [ dp 1 2
— i . 1
116(15C / (2m)* <p2 -—m?+ ie> (5.10)

An alternative but equivalent definition of the effective potential can be
given using the Schrodinger representation. Here the appropriate method
to find the static effective action is by solving the appropriate functional
Schrodinger equation, or by variational procedure. Both methods arise
because the effective potential is the minimum expected energy per unit
volume in the set of states where the expected value of the field is ¢.. The
vacuum state will minimize this energy density, hence we solve the appro-
priate Schridinger equation or use the variational calculation.
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In the classical case, the potential for a given constant field configuration
¢ = ¢.=const coincides with the energy density

1
Va = 5 Elod.
The quantum version of this formula will be
1.
V(6.) = 5 min < Y|H(@GmY > (5.11)

Minimization must be carried out under the conditions

<YPlp() | >= ¢, <Yl >=1.

The static effective action I'gtqic[@c] is defined as minus the minimum of
energy

Fstatic =—-< 1/}0|H|1/}0 > (512)

in a state |1)p > subject to the constraints

< Yol >=1, < olo(x) [0 >= ¢c(x).

In order to solve this problem we have to introduce the Lagrange multipliers
E and J(z) and find the unconstrained minimum of

< 4ol / Pa(H — J(2)p(x)) — Elgo >; (5.13)

J(x) here is a time independent external source and ¢.(z) is the field vac-
uum average in the presence of the source. Thus minimizing eq.(5.12) is
equivalent to solving the functional Schrodinger equation for the vacuum
state functional |¢)9 > of the Hamiltonian H’

(- [ @s3@)@) b0 >= Eolin >
The energy eigenvalue Fy[J] is a source-dependent functional. The appli-
cation of the Feynmann-Hellmann theorem yields

0Eq )

37 =< ¢0|—6J(x) H'|po >= — < tholp(z) 1o >= —¢c().

The last equation implies that the static effective action is the Legendre
transform of the vacuum energy

Fstatic[¢c] - _EO[J] - /d3x.](a:)¢c(a:),

where J(x) is solved in terms of ¢..
In the path integral representation, the generating functional is given by

Z[J] =N / D exp(iS[é, J)). (5.14)
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It is well known that the loop expansion is equivalent to the stationary
phase approximation. In order to develop this approximation, we Taylor
expand the classical action

ﬂ@ﬂz/faam+mem>

about the solution of the Euler-Lagrange equation

08
—— =0, o) = ¢.(x).
50 () = 6e(2)
This results in a Gaussian approximation to the path integral (5.14) which
we can compute exactly.

Using this approximation, Z[.J] becomes

i 628

22| 0-60).

200% lg=0.

After shifting integration variables, ¢ — ¢ — ¢, the Gaussian integration
yields

Z[J] ~ N/D¢exp <i5[¢c,J] +

Z[J] ~ N exp(iS[é., J])det "2 (52—5‘ )
- pliotee 6¢% lo=p. )

Here
3*S[¢, J]

=— (0 2 ﬁ2> a0
06(2)0¢(y) lo. (a +my + ¢ ) 85 (z —y).

In the absence of the spontaneously broken symmetry, the classical field
¢, = 0 when J = 0. Consequently the normalization factor

N = det? ((0% + m2)6*(z — y)).

Therefore
) _1 A
Z1J] % exp(iS[ge, T)det ™ (1+ 36 (@ = )62 (),
where Ggo) is the free-field Green function. Using the formula
det M = exp(trin M),
one can extract the functional W[.J]
i A
W] & Slee T+ gtrin (14 368 (@ — )62 ()
and the effective potential
i A
Flge] & Slge, 0] + shtrin(1+ 268 (@ = )62 (y) ) + O().

Setting ¢. = const, the matrix becomes diagonal in the momentum space,
and one obtains theexpression identical to (5.8).

After this lengthy introduction, we can turn to the problem which will
be discussed below.
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The effective potential (5.8) can be written in the Euclidean variables

4
dpe | <1—M>. (5.15)

1 Ao i
v . == 2,2 720 4 - /
(6] = gmade + 310+ 3 [ Gra B\~ 2 1 m2
The last expression can be obtained directly if one considers the Fuclidean,
or Wick rotated Green functions generating functional

ZgplJ] = J\//D¢E exp(—Sg[ép, J)) = Vel =

= / du(pp)e) ©rEl@osE), (5.16)

Here ¢p(r,x) = ¢(—it,x) is the Wick rotated field variable and Sg is the
corresponding Euclidean action:

Se[ér, J] = /d4zE[ﬁE — J(xp)dE(rE)]-

The functional Lg has the form of energy: it is bounded from below and
becomes a large when the field ¢ has large amplitude.

With the positively defined integration measure dyu, the Schwinger func-
tional W.J] satisfies the Holder inequality [127], [79]

eWE[aJ1+(1—C¥)J2] S eaWE[Jl]e(l—a)WE[Jg]’

which is equivalent to say that Wg[J] is a convex functional. The Euclidean
effective action is a Legendre transformation of Wg[J]. It is well known, that
Legendre transform of a convex function is also convex. Now, the effective
potential is a value of the effective action for a constant field multiplied by
a 4-volume. Consequently, the effective potential given by (5.15 ) must be
a convex function of the classical constant field variable.

Our main objective will be the study of the effective potential for theo-
ries with degenerate ground states. As it will be discussed in Section 2, in
such cases there is some contradiction between the definition of the effective
potential and actual computations: as we have seen, the effective potential
must be a convex function while in the theories with vacuum degeneracy,
the potential is a non-convex. In the subsequent Section 3, we propose a
procedure which permits to redefine generating functionals in such a way
that the resulting effective potential is a convex function. In Section 4, we
study the same problem from the point of view of path integral represen-
tation and show how convexity is related to the correct definition of the
boundary conditions.
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2. SPONTANEOUS SYMMETRY BREAKING AND CONVEX EFFECTIVE
POTENTIAL

Up to now, in our discussion we have tacitly assumed that the system
possesses unique vacuum state. At the same time, practically all the physi-
cally significant theories are built up using the ideology of degenerate ground
states and spontaneous symmetry breaking.

Consider the theory, where the classical potential corresponds to a spon-
taneously broken symmetry, i.e., there are different minima with equal en-
ergy. The simplest example is given by the potential

Valg] = —gm3 + 50, (5.17)
For this potential, ¢, = 0 is an unstable local extremum. There are now
two stable minima occurring at

The potential (5.17) is symmetric under the transformation ¢. - —¢., and
the symmetry operation takes us from one vacuum to the other, thus the
particular vacuum does not respect or reflect the symmetry present in the
action.

The corresponding loop expansion for the effective potential can be ob-
tained if one naively performs the analytic continuation term by term in m?2
from m2 > 0 to m < 0 in (5.10).

Introducing the cutoff and integrating over the momentum variables, one

obtains (see, e.g., [125])

1
6472

MG (m? + SA62),

M2(g)
m?2

A
VIbd = gm’¢2 + 36t + g () In
1

12872

+

where \
M?(¢c) =m” + §¢3-

In the case of spontaneously broken symmetry, we have m? < 0. From the
two last expressions it follows that the one-loop effective potential is complex
within the points of inflexion of the classical potential, i.e., those ¢, for
which M2(¢.) < 0. This complexity is genuinely disturbing, because from
the functional integral representation of the Euclidean generating functional
(5.16) it follows that both Wg[J] and its Legendre transform must be real
functionals. Furthermore, the resulting effective potential is not convex in
the same domain of field variable.

The same conclusion must be valid if one uses the definition of the effec-
tive potential given by (5.11). This definition becomes problematic if one
allows states |¥) which are not localized in ¢. If one includes nonlocalized
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states, the set of |¥y >’s is too general and the effective potential so defined
is always convex. If, however, we restrict ourselves to localized |¥g >’s, Ver s
can be nonconvex, and even complex in the region where it is nonconvex
(the complex part is related to an instability for the localized state to decay
into a superposition of states [132]).

So one can conclude, that in the theories where the classical potential
possesses several minima, the corresponding effective potential in general is
neither real nor convex.

3. QUASIAVERAGES AND INTERPOLATED LOOP EXPANSION

As we have seen in the previous section, there is some kind of discrep-
ancy in the definition of the effective potential. Namely, in the cases of the
theories with spontaneously broken symmetries, the naively applied loop
expansion leads to the expression which contradicts the requirement of con-
vexity and reality.

Since the most interesting field theory models are essentially based on
the ideas of broken symmetries (for a review, see [70]), the aforementioned
contradiction created a definite interest to clarify the situation (see, e.g.,
[11], [59], [119]).

Below we follow the presentation given in the papers [33], [34], [35], [36].

A general approach to the discussion of the systems with degenerate
ground states was proposed by N.Bogolubov and is known as the method
of quasiaverages [16].

The essence of this method is to add a small symmetry-breaking pertur-
bation vH; to the symmetric Hamiltonian H which removes degeneracy. At
first one must calculate the expectation values for the volume :

trQOe—B(TH-VHl)
trQefﬁ(H+VH1) ’

<O >,0=

where tro denotes the trace over the Hilbert space of the system in volume
Q. Then one must take the limit of infinite volume, and finally let v — 0,
obtaining

<0 == 313}) Qh—rgo <A>,0. (5.18)
It is characteristic of the broken symmetry that the order of these limits
is not reversible and actually the condition < @ =% 0 may be taken as a
definition of a broken symmetry.

In the case of zero temperatures, the interaction v H; breaks the degener-
acy of the ground states and in the limiting case of infinite volume, a single
member of the set of degenerate states is selected.

The role played by the correct limiting procedure can be illustrated by
condensed matter system exhibiting these phenomenon in a physically trans-
parent way — quantum ferromagnetics.
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Ferromagnetic systems have a spontaneous magnetization at low temper-
atures, i.e., below the Curie temperature. When a spontaneous magnetiza-
tion is present, the Hamiltonian of the system is invariant under transfor-
mations that change the sign of the magnetization; however, the state of the
system, i.e., probability distribution, is not invariant under this transforma-
tion. This possibility can be realized only in the infinite volume limiting
case and when this happens, we say that the symmetry is spontaneously
broken.

Consider the magnetization density and the free energy as a function of
H in the infinite volume limiting case. The symmetry arguments tells us
that f(H) = f(—H) and

0f(H)

mH) ="

= _m(_H)7
ie., f(H) and m(H) are even and odd functions of H, respectively. We
have two possibilities: either m(h) is continuous at H = 0 and m(0) is
consequently zero, or m(H) is discontinuous at H = 0 and m(0) is not well
defined; this second case corresponds to a spontaneous symmetry breaking.
More precisely, these two possibilities correspond to

2) F(0) + O(H®) a>1,
) f(H) = f(0) —m,|H| + O(H").

=
=
]

In the second case, we have

my = lim m(H)=m m— = lim m(H) = —ms.
+ H—0*t ( ) g # H—0— ( ) g
The symmetry relation implies only m4y = —m_ = m.

The non-differentiability of the free energy with respect to a parame-
ter and the existence of two or more equilibrium states is the distinctive
feature of a phase transitions. The nonanalytic nature of the free energy
in the infinite volume limiting case can be demonstrated by the following
toy model. Consider a system of the volume (2 which can stay in only two
states (of equal energy at zero magnetic field) having total magnetization
+Q, respectively. The statistical sum as a function of the magnetic field is
given by

Z(H) = "M 4 e = 2 cosh(BQH).
The corresponding free energy and magnetization are
1
f(H)= —ﬂ—an[Q cosh(BNH), m(H) = tanh(BQH).

Spontaneous magnetization in the limit 2 — oo will be

my = lim lim = +1, m_ = lim lim = —1.
H—0t Q—00 H—0- Q—o0
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It means that in order to have a mathematical discontinuity, we must first
go to the infinite volume limit and only afterwards switch off the external
field.

Let us apply the quasiaverages approach to the calculations of the gen-
erating functional and the effective potential. In other words, we will take
into account the effect of the limiting procedure 2 — oo.

The generating functional in D-dimensions can be written in the following
form

Z[Ja) = N/HD‘bae_dew[ﬁE(d))_J“%] = W,

Here 1 < a < n, where n is a number of scalar fields, Lg — the invariant
Euclidean Lagrangian, .J, — external currents, and N is a normalization
constant. Integration is performed over the infinite D-dimensional volume.

Following the ideology of quasiaverages, preliminary the system must be
considered in the finite D-dimensional volume 2 and under a small external
perturbation J,¢,, which breaks the symmetry. Define the Green functions
generating functional

ZalJd] = NQ/H’D(bae—% fﬁ dPz[LE(¢)—Tada] _ €W0[Ja],

where we introduced the parameter of quasiclassical expansion h.
The object of our interest is the functional Wq[J,] for small values of
currents and large volumes. The quasiaverages are defined as follows

. OWqlJ]
<o == lim I 05

Remind that the order of the limiting procedure is essential: initially one
has to go to the infinite volume limit, and afterwards put J, = 0. The
last limit must be taken in the definite way, i.e., the result depends on the
direction how the perturbation vanishes.

In the limiting case of the infinite volume, the functional Wq[J] coincides
with the generating functional W[J]. In what follows, we will consider the
domain of small external sources since this region determines the convexity
property of the effective potential.

The functional integral can be calculated using the interpolated loop
expansion [11], [119], i.e., by the Laplace method. In the one-loop approxi-
mation, we have

[N

ZalJd] = NZ [#{Z/‘Q)] exp {—I/E(AQ[‘E] - /deJaq_Sa)} )

3 50,0007 15, o
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Here the summation is performed over the set of all the minima, of the action
functional

SolJ] = [ dPz[Lr — Juba] = Acld] — | dPzJ,da.
/ /

The fields ¢, are solutions of the extremal equations

0Aq
T 9 = T
a
They correspond to the minimum, i.e.,
82 Aq
5 > 0.
56,001 1%

Consequently,
b by 2
Zoll| =N Vorhe Y MAlGl= [ dPadabal o —1/200 (558 6,
é
g el/hWQ{Ja]-

The effective potential is determined as a functional Legendre transforma-
tion of Wq[J], when the sources J, are z-independent constants:

oWa

Vo (o)l / 4P 2] = [WalJ,] - / Prlidl, =S,
Q Q

i.e., it is an ordinary Legendre transformation

0
Vo = [Ja(ba - wQ(Ja)]a $a = %7

where
WolJu] = wo(Ja) /d%.
Q

It is important to note that such a definition of the Legendre transformation
is valid only for smooth one-side convex functions. In that case,

02V Pw
Opa0¢y 01,00,
In what follows, we will use a more general definition of the Legendre trans-

formation, which is valid for arbitrary (non-convex or non-differentiable)
functions [5]

daec-

Ja’w(‘]a) - ¢a7 V(¢a)7
V(ga) = sup, [Jatba — w(Ja)]-
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As an illustrating model, consider D = 0 dimensional case, when the gen-
erating functional is given by the ordinary integral

2a(Ja) ZN/---/Hd¢ael/hﬂ[Ja¢a —v(¢a)l.

In order to maximally maintain the resemblance with the realistic theory
here we formally have introduced the “volume” Q2. The one-loop integration
gives
ZQ(Ja) — ZN\/Qﬂ-heg/h[Jaéa - v(&a)]e_% str In 'U”((ga)_
ba
The summation is performed over the maxima of the function
5(¢)7 J) = Juba — U((ba)a
i.e., ¢, satisfies the equation

v
Oba

T (5.19)

under the conditions
V() > 0.

Equation (5.19) constitute a system of nonlinear (as usually cubic) equa-
tions, which can be solved using the perturbation theory, expanding the
currents J, into series over the small quantities. As we know, the domain
in the vicinity of vanishing currents is essential for the convexity and spon-
taneous symmetry breaking.

After this formal introduction, let us go to the concrete case and consider
the simplest two-minima potential

o= Lyt

For small values of J,(J < 5-g%a?), the maxima of the function
S(¢,J) = Jop —v(9)

are determined by solutions of the cubic equation

81}_ 3 2,
6—¢—g¢ ga ¢ = J.

These solutions are given by

1 J 3 J? 1 J3 105 J*
—4a4-— oL 4o 0 7
¢=(J) at 2 ga? ¥ 8 g2ab + 2 g3a8 ¥ 128 g*al!

Here

1 1 1
_ 4 . _2__.3 _4 .
S(¢4) =a"glj + T AR ARV s s
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1 1 1
_ 4 s _2 _.3 _4 .
S(¢L)—ag[3+4y +git gl l,

where
In the tree approximation, one gets
ehuald) — ok0atelj + 357 — 5% + 53+
e R VR VAR VRE
For large 2 >> 1 and small positive j > 0, the main contribution is due to
the first term, and for negative values of the current j < 0, it dominates the

second one. Consequently, for small external sources, one can construct the
interpolating expression

exQua(h) _ ohatollil + 35% — 57210l + 53 + -],
In this way, we get the first term of the quasiclassical expansion
1J2 1% 1 J*

w(J) = allJ]+ 4a2g 8 aP¢® ' Radg?

The quasiaverage

. ow\ .. 17
<¢>—}1§h<w>—}5‘5“[6“”5@79*“]

depends on the current vanishing procedure
< (b >‘J:0:!:: :i:a.

It must be noted that the function w(j) is non-analytic: the terms like
|.7], |7|J? etc. make the function non differentiable at the origin. Here the
first derivative is discontinues.

The effective potential will be calculated using the generalized Legendre
transformation

V(¢) = sup,[¢J — W(J)].

The simple graphical construction shows that the formula above defines a
convex function. The convexity is not strict: in the interval —a < ¢ < +a
there is a plateau — a region where the potential achieves its minimal value.

It is not difficult to get the desired expression for the effective potential:

4 7 - . 1 .2 1. .2 1 -4
V(9) = a’gsup;[oj — (] + 757 — glili” + 57"+,

1,
avg

~ 1 i
¢) = _¢)7 J
a
The source function is given by

J(¢) = a’gb(|g] — a)e(d)[2(|6 — 1) +3(|¢ — 1)* +
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105
4
The final result looks as [33]

+ (16— 1)° (1 —1)* +---].

V(9) = 86| ~ a)[(19] — a)? + (6] ~ )" + 75 (18] —)* ++--].

The potential V(#) and its derivative remain everywhere continuous but
the second derivative

V' (¢) = 2a°g8(|¢| — a) + -+
changes discontinuously at the points of inflexion of the classical potential.
Concluding this item, let us briefly discuss the loop corrections. It is not
difficult to see that the one-loop result is given by

e Wall) _ Z e%[S((ﬁ) - %ln ﬁv”(@] _
o=0¢+

= exp [QLEQ(CLL +@Q-) +1In2cosh %(Q+ — Q,)] =

Q o
= exp 2 [3(@ +Q )13 1Q4 +Q |+ In(1emR9-9-D)].

Here we have introduced the notation

h ]_ mn
Qx = [S(¢x) — 5o In —angv (P)] =
1 1 1
= 4 :i: —.2 _.3 _.4"' -
agl j+4j ¢83 +Sy ]
h 3 1 5
— [+ (i — s £ =5 =4
2Q[ +2( JogitEgi =i ]

Consequently, for small values of the currents 7, for the generating functional
we get

i)|‘|+1(1+ﬂ‘2_
Q4datg Ty Q4a4g)]

1 h51 1 h393
] 52 4 2(] 4 272 a4

g( +Q4a4g)lylj +5( +Ql6a4g)] P+

h Qatg h3 L1 mol . o
+§ln[1+exp{— 7 [(1—Q4a4g)ljl—§(1+94a4glyly 13-

Wo(J) = a'g{(1 -

It is evident that the factors
h1

Qatyg
correspond to the one-loop contributions which in their turn also exhibit a
non-analytic 