
Memoirs on Differential Equations and Mathematical Physics
Volume 89, 2023, 139–151

M. R. Heidari Tavani, A. Nazari, P. Lo′lo′

VARIATIONAL APPROACH FOR A FOURTH-ORDER EQUATION
ON A NONLINEAR ELASTIC FOUNDATION



Abstract. In this paper, we investigate the existence of positive weak solutions for a fourth-order
differential equation with perturbed nonlinear term. This equation depends on two real parameters.
The approach is based on variational methods and critical point theory.
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1 Introduction
The aim of the present paper is to establish the existence of positive solutions for the following
fourth-order problem: 

u(iυ)(x) = λα(x)f(x, u(x)) + h(x, u(x)), x ∈ [0, 1],

u(0) = u′(0) = 0,

u′′(1) = 0, u′′′(1) = µ g(u(1)),

(1.1)

where λ and µ are positive parameters, f : [0, 1]×R → R is a non-negative L1-Carathéodory function,
g : R → R is a non-positive continuous function, α ∈ L∞([0, 1]), α(x) ≥ 0 for a.e. x ∈ R, α ̸≡ 0, and
h : [0, 1] × R → R is a non-negative Carathéodory function, and there exists 0 < L < 1 such that
h(x, t) ≤ L|t| for each x ∈ [0, 1] and t ∈ R.

Problem (1.1) is related to the deflections of elastic beams based on nonlinear elasticity. In relation
to problem (1.1), there is an interesting physical description.

Suppose an elastic beam of length d = 1, which is clamped at its left side x = 0 and resting on
a kind of elastic bearing at its right side x = 1, is given by µg. Along its length, a load λαf + h is
added to cause deformations. If u = u(x) denotes the configuration of the deformed beam, then since
u′′′(1) represents the shear force at x = 1, the condition u′′′(1) = µg(u(1)) means that the vertical
force is equal to µg(u(1)) which denotes a relation, possibly nonlinear, between the vertical force and
the displacement u(1). In addition, since u′′(1) = 0 indicates that there is no bending moment at
x = 1, the beam is resting on the bearing µg.

Different models and their applications for problems such as (1.1) can be derived from [12]. We refer
the reader to references [5] and [11] for a physical justification of this model. There is an increasing
interest in studying the fourth-order boundary value problems, because the change of the static form
beam or the support of a rigid body can be described by a fourth-order equation. Also, a model to
study travelling waves in suspension bridges can be furnished by nonlinear fourth-order equations (for
instance, see [7]). So the study of classical bending theory of elastic beams and especially fourth-order
differential equations is very important in engineering sciences. Hence, several results concerning the
existence of multiple solutions for the fourth-order boundary value problems are known. For example,
using a variational methods, the existence of three solutions for special cases of problem (1.1) has been
established in [4] and [13]. In [9], the author obtained the existence of at least two positive solutions
for the problem 

u(iυ)(x) = f(x, u(x)), x ∈ [0, 1],

u(0) = u′(0) = 0,

u′′(1) = 0, u′′′(1) = g(u(1)),

(1.2)

based on the variational methods and maximum principle. It should be noted that the function f is
assumed to be continuous. By assuming appropriate conditions on f and g, the author guarantees
positive solutions to problem (1.2). Also, the existence and multiplicity results for this kind of problems
were considered in [2, 6, 8]. In all these works, the critical point theory is applied.

Moreover, in [10], the authors considered numerical solutions for problem (1.2) with nonlinear
boundary conditions.

In particular, using a variational methods, the existence of non-zero solutions for problem
u(iυ)(x) = f(x, u(x)), x ∈ [0, 1],

u(0) = u′(0) = 0,

u′′(1) = 0, u′′′(1) = µg(u(1))

has been established in [2].
In the present paper, using a three critical points theorem obtained in [1], we establish the existence

of at least three weak solutions for problem (1.1).
The paper is organized as follows. In Section 2, we establish all the preliminary results that we

need, and in Section 3, we present our main results.
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2 Preliminaries
In this section, we recall some basic facts and introduce the necessary notation.

Definition 2.1. A function f : [0, 1]× R → R is said to be a Carathéodory function if:

(C1) the function x → f(x, t) is measurable for every t ∈ R;

(C2) the function t → f(x, t) is continuous for a.e. x ∈ [0, 1].

And f : [0, 1] × R → R is said to be an L1-Carathéodory function if, in addition to conditions (C1)
and (C2), the following condition is also satisfied:

(C3) for every ρ > 0, there is a function lρ ∈ L1([0, 1]) such that sup
|t|≤ρ

|f(x, t)| ≤ lρ(x) for almost every

x ∈ [0, 1].

Denote
X :=

{
u ∈ H2([0, 1])|u(0) = u′(0) = 0, u(1) ≥ 0

}
, (2.1)

where H2([0, 1]) is the Sobolev space of all functions u : [0, 1] → R such that u and its distributional
derivative u′ are absolutely continuous and u′′ belongs to L2([0, 1]). X is a Hilbert space with the
usual norm

∥u∥X =

( 1∫
0

(
|u′′(x)|2 + |u′(x)|2 + |u(x)|2

)
dx

)1/2

,

which is equivalent to the norm

∥u∥ =

( 1∫
0

|u′′(x)|2 dx
)1/2

.

Also, according to [13], the embedding X ↪→ C1([0, 1]) is compact and we have

∥u∥C1([0,1]) = max
{
∥u∥∞, ∥u′∥∞

}
≤ ∥u∥ for each u ∈ X. (2.2)

Remark 2.1. If {un}n∈N is a bounded sequence in X, then from the compact embedding X ↪→
C([0, 1]), it has a subsequence that pointwise converges to some u ∈ X (this follows from the definition
of compact embedding). Also, since X is reflexive space, then there exists a subsequence that weakly
converges in X (see [3, Theorem 3.18]) and so, according to continuous embedding X → L∞([0, 1]),
weakly converges in L∞([0, 1]).

Put

F (x, t) =

t∫
0

f(x, ξ) dξ for all (x, t) ∈ [0, 1]× R,

F θ =

1∫
0

sup
|ξ|≤θ

F (x, ξ) dx for all θ > 0,

G(t) =

t∫
0

g(ξ) dξ for all t ∈ R,

Gη = min
|t|≤η

G(t) = inf
|t|≤η

G(t) for all η > 0

and

H(x, t) =

t∫
0

h(x, ξ) dξ for all (x, t) ∈ [0, 1]× R.
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Let Φ, Ψ : X → R be defined by

Φ(u) =
1

2

1∫
0

|u′′(x)|2 dx−
1∫

0

H(x, u(x)) dx =
1

2
∥u∥2 −

1∫
0

H(x, u(x)) dx (2.3)

and

Ψ(u) =

1∫
0

α(x)F (x, u(x)) dx− µ

λ
G(u(1)) (2.4)

for every u ∈ X.
Now, according to (2.2), we observe that

(1− L)

2
∥u∥2 ≤ Φ(u) ≤ (1 + L)

2
∥u∥2 (2.5)

for every u ∈ X. Similar to [2, p. 3], Ψ is a differentiable functional whose differential at the point
u ∈ X is

Ψ′(u)(v) =

1∫
0

α(x)f(x, u(x))v(x) dx− µ

λ
g(u(1))v(1),

and Φ is continuously Gâteaux differentiable functional whose differential at the point u ∈ X is

Φ′(u)(v) =

1∫
0

u′′(x)v′′(x) dx−
1∫

0

h(x, u(x))v(x) dx for every v ∈ X.

Definition 2.2. Let Φ and Ψ be defined as above and put Iλ = Φ − λΨ. We say that u ∈ X is a
critical point of Iλ if I ′λ(u) = 0{X∗}, that is,

I ′λ(u)(v) = Φ′(u)(v)− λΨ′(u)(v) = 0 for all v ∈ X.

Definition 2.3. A function u ∈ X is a weak solution to problem (1.1) if
1∫

0

u′′(x)v′′(x) dx− λ

1∫
0

α(x)f(x, u(x))v(x) dx+ µg(u(1))v(1)−
1∫

0

h(x, u(x))v(x) dx = 0

for every v ∈ X.

Remark 2.2. We observe that the weak solutions of problem (1.1) are exactly the solutions of the
equation I ′λ(u)(v) = 0. Also, if α, f and h are, in addition, continuous functions, then each weak
solution of (1.1) is a classical solution.

Lemma 2.1. If u0 ̸≡ 0 is a weak solution for problem (1.1), then u0 is non-negative a.e. in [0, 1].

Proof. From Remark 2.2 one has I ′λ(u0)(v) = 0 for all v ∈ X. Choosing v(x) = max{−u0(x), 0} and
setting E = {x ∈ [0, 1] : u0(x) < 0}, we have

∫
E∪Ec

u′′
0(x)v

′′(x) dx = λ

1∫
0

α(x)f(x, u0(x))v(x) dx− µg(u0(1))v(1) +

1∫
0

h(x, u0(x))v(x) dx ≥ 0,

that is,
−
∫
E

v′′(x)v′′(x) dx ≥ 0,

which means that −∥v∥2 ≥ 0, and we have v = 0. Hence −u0 ≤ 0 a.e. in [0, 1], that is, u0 ≥ 0 a.e. in
[0, 1] and the proof is complete.
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Below, we will present a non-standard state of the Palais–Smale condition introduced in [1].

Definition 2.4 (see [1]). Fix r ∈ ]−∞,+∞]. A Gâteaux differentiable function I : X → R satisfies
the Palais–Smale condition cut off upper at r (in short, (PS)[r]-condition) if any sequence {un} ⊆ X
such that

(a) {I(un)} is bounded,

(b) lim
n→+∞

∥I ′(un)∥X∗ = 0,

(c) Φ(un) < r ∀n ∈ N,

has a convergent subsequence.

Our main tool is the following critical point theorem.

Theorem 2.1 ([1, Theorem 7.3]). Let X be a real Banach space and let Φ,Ψ : X −→ R be two
continuously Gâteaux differentiable functions with Φ bounded from below and convex such that

inf
X

Φ = Φ(0) = Ψ(0) = 0.

Assume that there are two positive constants r1, r2 and u ∈ X with 2r1 < Φ(u) < r2
2 such that

(b1)

sup
u∈Φ−1(]−∞,r1[)

Ψ(u)

r1
<

2

3

Ψ(u)

Φ(u)
;

(b2)

sup
u∈Φ−1(]−∞,r2[)

Ψ(u)

r2
<

1

3

Ψ(u)

Φ(u)
.

Assume also that for each

λ ∈ Λ =

]
3

2

Φ(u)

Ψ(u)
,min

{
r1

sup
u∈Φ−1(]−∞,r1[)

Ψ(u)
,

r2/2

sup
u∈Φ−1(]−∞,r2[)

Ψ(u)

}[
,

the functional Φ− λΨ satisfies the (PS)[r2]-condition and

inf
t∈[0,1]

Ψ(tu1 + (1− t)u2) ≥ 0

for each u1, u2 ∈ X which are local minima for the functional Φ − λΨ and such that Ψ(u1) ≥ 0 and
Ψ(u2) ≥ 0.

Then for each λ ∈ Λ, the functional Φ − λΨ admits at least three critical points which lie in
Φ−1(]−∞, r2[).

Now, we present one proposition that will be needed to prove the main Theorem of this paper.

Proposition 2.1. Take Iλ = Φ−λΨ as in Definition 2.2. Then Iλ satisfies the (PS)[r]-condition for
any r > 0.

Proof. Consider the sequence {un} ⊆ X such that {Iλ(un)} is bounded,

lim
n→+∞

∥I ′λ(un)∥X∗ = 0 and Φ(un) < r for all n ∈ N.

Since Φ(un) < r, from (2.5) we see that {un} is bounded in X. Therefore, without loss of generality,
it can be assumed that un(x) → u(x), and there is s > 0 such that |un(x)| ≤ s for all x ∈ [0, 1] and
for all n ∈ N, and also {un} weakly converges to u in L∞([0, 1]) (see Remark 2.1). Now, according to
Hölder’s inequality and Lebesque’s Dominated Convergence Theorem, since

α(x)f(x, un(x)) ≤ α(x) · max
|ξ|≤s

f(x, ξ) ∈ L1([0, 1]) for all n ∈ N
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and
f(x, un(x)) → f(x, u(x)) for a.e. x ∈ [0, 1]

(f is L1-Carathéodory function), one has that αf(x, un) strongly converges to αf(x, u) in L1([0, 1]).
Now, since un ⇀ u in L∞([0, 1]) and αf(x, un) → αf(x, u) in L1([0, 1]) ⊆ (L∞([0, 1]))∗, from [3,
Proposition 3.5(iv)], we have

lim
n→+∞

1∫
0

α(x)f(x, un(x))(un(x)− u(x)) dx = 0. (2.6)

Similarly, we have

lim
n→+∞

1∫
0

h(x, un(x))(un(x)− u(x)) dx = 0. (2.7)

From
lim

n→+∞
∥I ′λ(un)∥X = 0,

there exists a sequence {εn} with εn → 0+ such that

∣∣∣∣
1∫

0

u′′
n(x)v

′′(x) dx− λ

1∫
0

α(x)f(x, un(x))v(x) dx

+ µg(un(1))v(1)−
1∫

0

h(x, un(x))v(x) dx

∣∣∣∣ ≤ εn (2.8)

for all n ∈ N and for all v ∈ X with ∥v∥ ≤ 1. Taking into account

v(x) =
un(x)− u(x)

∥un − u∥
,

from (2.8) we get

∣∣∣∣
1∫

0

u′′
n(x)(u

′′
n(x)− u′′(x)) dx− λ

1∫
0

α(x)f(x, un(x))(un(x)− u(x)) dx

+ µg(un(1))(un(1)− u(1))−
1∫

0

h(x, un(x))(un(x)− u(x)) dx

∣∣∣∣ ≤ εn∥un − u∥ (2.9)

for all n ∈ N. Now, according to the inequality

|a| |b| ≤ 1

2
|a|2 + 1

2
|b|2,

we have

1∫
0

u′′
n(x)(u

′′
n(x)− u′′(x)) dx =

1∫
0

|u′′
n(x)|2 dx−

1∫
0

u′′
n(x)u

′′(x) dx

≥ ∥un∥2 −
1∫

0

(1
2
|u′′

n(x)|2 +
1

2
|u′′(x)|2

)
dx = ∥un∥2 −

1

2
∥un∥2 −

1

2
∥u∥2 =

1

2
∥un∥2 −

1

2
∥u∥2.
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Hence from (2.9), we get

1

2
∥un∥2 −

1

2
∥u∥2 ≤ λ

1∫
0

α(x)f(x, un(x))(un(x)− u(x)) dx

− µg(un(1))(un(1)− u(1)) +

1∫
0

h(x, un(x))(un(x)− u(x)) dx+ εn∥un − u∥,

that is,

1

2
∥un∥2 ≤ 1

2
∥u∥2 + λ

1∫
0

α(x)f(x, un(x))(un(x)− u(x)) dx

− µg(un(1))(un(1)− u(1)) +

1∫
0

h(x, un(x))(un(x)− u(x)) dx+ εn∥un − u∥. (2.10)

Now, according to (2.6), (2.7) and (2.10), as εn → 0+, we have

lim sup
n→+∞

∥un∥ ≤ ∥u∥.

Thus [3, Proposition 3.32] ensures that un → u strongly converges in X and the proof is complete.

3 Main results
Fix three positive constants θ1, θ2 and δ such that

12(1 + L)( 23 )
3π4δ2

1∫
3/4

α(x)F (x, δ) dx

< (1− L)min
{ θ1

2

∥α∥∞F θ1
,

θ2
2

2∥α∥∞F θ2

}
,

where ∥α∥∞ = ∥α∥L∞ , and take

λ ∈ Λ :=

]
6(1 + L)( 23 )

3π4δ2

1∫
3/4

α(x)F (x, δ) dx

,min
{
(1− L)θ1

2

2∥α∥∞F θ1
,
(1− L)θ2

2

4∥α∥∞F θ2

}[
.

Set
ηλ,g := min

{
2λ∥α∥∞F θ1 − (1− L)θ1

2

2Gθ1

,
4λ∥α∥∞F θ2 − (1− L)θ2

2

4Gθ2

}
, (3.1)

where Gθ1 and Gθ2 are assumed to be negative.
It is easy to show that ηλ,g > 0. Now, we formulate the main results.

Theorem 3.1. Assume that there exist three positive constants δ, θ1 and θ2 with

3

4π2

√
3

2
θ1 < δ <

3

8π2

√
3(1− L)

2(1 + L)
θ2

such that

(i) F θ1

θ12
<

(1− L)
1∫

3/4

α(x)F (x, δ) dx

12( 23 )
3
(1 + L)∥α∥∞π4δ2

,
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(ii) F θ2

θ22
<

(1− L)
1∫

3/4

α(x)F (x, δ) dx

24( 23 )
3
(1 + L)∥α∥∞π4δ2

.

Then for each λ ∈ Λ and for every non-positive continuous function g : R → R, there exists ηλ,g > 0
given by (3.1) such that for each µ ∈ ]0, ηλ,g[ , problem (1.1) admits at least three positive weak solutions
ui, i = 1, 2, 3, in X such that 0 ≤ ui(x) < θ2 ∀x ∈ [0, 1], i = 1, 2, 3.

Proof. Our aim is to apply Theorem 2.1 to problem (1.1). Fix λ, as in the conclusion. Let X, Φ and
Ψ be defined by (2.1), (2.3) and (2.4), respectively.

We observe that the regularity assumptions of Theorem 2.1 on Φ and Ψ are satisfied. Also,
according to Proposition 2.1, the functional Iλ satisfies the (PS)[r]-condition for all r > 0.

Put
r1 :=

(1− L)

2
θ21, r2 :=

(1− L)

2
θ22

and

w(x) :=


0 if x ∈

[
0, 3

8

]
,

δ cos2
(4π x

3

)
if x ∈

]
3
8 ,

3
4

[
,

δ if x ∈
[
3
4 , 1

]
.

We observe that w ∈ X and
∥w∥2 = 8π4δ2

(2
3

)3

.

In particular, from (2.5) we have

4(1− L)π4δ2
(2
3

)3

≤ Φ(w) ≤ 4(1 + L)π4δ2
(2
3

)3

. (3.2)

Therefore, using the condition

3

4π2

√
3

2
θ1 < δ <

3

8π2

√
3(1− L)

2(1 + L)
θ2,

we find that
2r1 < Φ(w) <

r2
2
.

Now, for each u ∈ X and bearing (2.2) in mind, we see that

Φ−1(]−∞, ri]) =
{
u ∈ X; Φ(u) ≤ ri

}
=

{
u ∈ X;

(1− L)

2
∥u∥2 ≤ ri

}
⊆

{
u ∈ X; |u(x)| ≤ θi for each x ∈ [0, 1]

}
,

and it follows that

sup
u∈Φ−1(]−∞,ri[)

Ψ(u) = sup
u∈Φ−1(]−∞,ri[)

( 1∫
0

α(x)F (x, u(x)) dx− µ

λ
G(u(1))

)

≤
1∫

0

α(x) sup
|ξ|≤θi

F (x, ξ) dx− µ

λ
Gθi ≤ ∥α∥∞F θi − µ

λ
Gθi .

Hence, since µ < ηλ,g, from (3.1) we have

sup
u∈Φ−1(]−∞,r1[)

Ψ(u)

r1
≤

∥α∥∞F θ1 − µ
λGθ1

(1−L)
2 θ21

<
1

λ
. (3.3)
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On the other hand, from (3.2), since λ ∈ Λ, we get

2

3

Ψ(w)

Φ(w)
≥ 2

3

1∫
0

α(x)F (x,w(x)) dx− µ
λ G(w(1))

4(1 + L)π4δ2( 23 )
3

≥ 2

3

1∫
3/4

α(x)F (x, δ) dx− µ
λ G(δ)

4(1 + L)π4δ2( 23 )
3

≥ 2

3

1∫
3/4

α(x)F (x, δ) dx

4(1 + L)π4δ2( 23 )
3
>

1

λ
. (3.4)

Now, from (3.3) and (3.4) we have

sup
u∈Φ−1(]−∞,r1[)

Ψ(u)

r1
<

2

3

Ψ(w)

Φ(w)
.

Analogously, from (3.4) we get

2 sup
u∈Φ−1(]−∞,r2[)

Ψ(u)

r2
≤ 2

∥α∥θ2∞ − µ
λ Gθ2

(1−L)
2 θ22

<
1

λ
<

2

3

Ψ(w)

Φ(w)

which means that
sup

u∈Φ−1(]−∞,r2[)

Ψ(u)

r2
<

1

3

Ψ(w)

Φ(w)
.

Hence (b1) and (b2) of Theorem 2.1 are established.
Now, if u1, u2 ∈ X are two local minima of the functional Iλ = Φ − λΨ, with Ψ(u1) ≥ 0 and

Ψ(u2) ≥ 0, then according to Lemma 2.1, u1 and u2 are nonnegative, and we get

inf
t∈[0,1]

Ψ(tu1 + (1− t)u2) ≥ 0.

Finally, for every

λ ∈ Λ ⊆

]
3

2

Φ(w)

Ψ(w)
, min

{
r1

sup
u∈Φ−1(]−∞,r1[)

Ψ(u)
,

r2/2

sup
u∈Φ−1(]−∞,r2[)

Ψ(u)

}[
,

since the weak solutions of problem (1.1) are exactly the solutions of the equation I ′λ(u) = 0, Theo-
rem 2.1 (with u = w) and Lemma 2.1 guarantee the conclusion.

Remark 3.1. In Theorem 3.1, if f(x, 0) ̸= 0 or h(x, 0) ̸= 0, then problem (1.1) has at least three
non-trivial and non-negative weak solutions.

As an example, we give the following consequence of Theorem 3.1.

Corollary 3.1. Let
1∫

3/4

α(x) dx ̸= 0 and f : R → [0,+∞[ be a continuous and nonzero function such

that
lim

ξ→0+

f(ξ)

ξ
= lim

ξ→+∞

f(ξ)

ξ
= 0.

Then for each λ > λ∗, where

λ∗ = inf
{
6(1 + L)( 23 )

3
π4

1∫
3/4

α(x) dx

δ2

δ∫
0

f(ξ) dξ

: δ > 0,

δ∫
0

f(ξ) dξ > 0

}
,
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and for every non-positive continuous function g : R → R, there exists ηλ,g > 0 such that, for each
µ ∈ ]0, ηλ,g[ , the problem

u(iυ)(x) = λα(x)f(u(x)) + h(x, u(x)), x ∈ [0, 1],

u(0) = u′(0) = 0,

u′′(1) = 0, u′′′(1) = µ g(u(1))

admits at least three distinct non-negative weak solutions.

Proof. Since
1∫

3/4

α(x) dx ̸= 0 and f ̸≡ 0, we see that

6(1 + L)( 23 )
3
π4

1∫
3/4

α(x) dx

δ2

δ∫
0

f(ξ) dξ

< +∞.

Suppose that λ > λ∗ is fixed. Let δ > 0 such that
δ∫
0

f(ξ) dξ > 0 and

λ >
6(1 + L)( 23 )

3
π4

1∫
3/4

α(x) dx

δ2

δ∫
0

f(ξ) dξ

.

According to F (x, t) =
t∫
0

f(x, ξ) dξ for all (x, t) ∈ [0, 1] × R, we can consider F (t) =
t∫
0

f(ξ) dξ for all

t ∈ R. Our hypotheses on f guarantee that F ∈ C1(R), and since F ′(t) = f(t) ≥ 0 for all t ∈ R, F (t)
is non-decreasing and so

F θ =

1∫
0

sup
|ξ|≤θ

F (ξ) dx = sup
|ξ|≤θ

F (ξ) = F (θ) for all θ > 0.

Now, from lim
ξ→0+

f(ξ)

ξ
= 0 we have

lim
ξ→0+

ξ∫
0

f(t) dt

ξ2
= lim

ξ→0+

F (ξ)

ξ2
= 0,

and according to the definition of the right-side limit as ξ tends to 0, there is θ1 > 0 such that
3

4π2

√
3
2 θ1 < δ and

θ1∫
0

f(t) dt

θ1
2 =

F (θ1)

θ1
2 =

F θ1

θ1
2 <

1− L

2λ∥α∥∞

(
an arbitrary positive upper bound for F θ1

θ1
2

)
.

Also, from lim
ξ→+∞

f(ξ)
ξ = 0 we have

lim
ξ→+∞

ξ∫
0

f(t) dt

ξ2
= lim

ξ→+∞

F (ξ)

ξ2
= 0,
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and according to the definition of the limit at infinity, there is θ2 > 0 such that

δ <
3

8π2

√
3(1− L)

2(1 + L)
θ2

and
θ2∫
0

f(t) dt

θ2
2 =

F (θ2)

θ2
2 =

F θ2

θ2
2 <

1− L

4λ∥α∥∞

(
an arbitrary positive upper bound for F θ2

θ2
2

)
.

Now, we can apply Theorem 3.1 and the conclusion follows.

Next, we will present an example to illustrate Corollary 3.1.

Example. Let f(t) = t2e−t3 and hence

δ∫
0

f(ξ) dξ =
1

3
(1− e−δ3) for all δ > 0.

Also, suppose that

α(x) :=

4 if x ∈
[3
4
, 1
]
,

1 otherwise.

Hence
1∫

3/4

α(x) dx = 1. Now if, for example, we consider h(x, t) = 1
2x|t| for each x ∈ [0, 1] and t ∈ R

with L = 1
2 , then according to Corollary 3.1 for each

λ > inf
{ 8π4δ2

1− e−δ3
, δ > 0

}
and for every non-positive continuous function g : R → R, there exists ηλ,g > 0 such that for each
µ ∈]0, ηλ,g[, the problem

u(iυ)(x) =


4λu(x)2e−u(x)3 +

1

2
x|u(x)| if x ∈

[
3
4 , 1

]
,

λu(x)2e−u(x)3 +
1

2
x|u(x)| if x ∈

[
0, 3

4

)
,

u(0) = u′(0) = 0,

u′′(1) = 0, u′′′(1) = µ g(u(1))

admits at least three non-negative weak solutions.
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