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INFINITE ORDER OF GROWTH OF SOLUTIONS TO LINEAR
FRACTIONAL DIFFERENTIAL EQUATIONS
WITH ENTIRE COEFFICIENTS



Abstract. In this paper, we investigate the growth of solutions of certain class of linear fractional
differential equations with entire coefficients by using the Caputo fractional derivative operator. Under
some conditions, we prove that every non-trivial solution is of infinite order.
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1 Introduction

The order of growth of an entire function f(z) is defined by

1 +
o(f) = limsup 28 F)
r—+o00 logr
where
1 21
mir )= 5 [0 5(ret)
0

and we have

b

log™ log™ M
o(f) = limsup og" log” M(r, f)
r—+4o00 10g7'
where M (r, f) = max{|f(z)| : |z| = r} (for more details, see [9,12,20]). Also, the order of an entire

+oo
function given by f(z) = > a,z" is equal to (see [2])
n=0

o(f) = limsup _nlogn .
n—+oo — log ‘an‘

Fractional order differential equations have become a very important tool for modeling phenom-
ena in many diverse fields of science and engineering which traditional differential modeling cannot
accomplish (see, e.g., Kilbas et al. [11]). Three kinds of fractional derivatives are often used, the
Griinwald Letnikov derivative, the Riemann Liouville derivative and the Caputo derivative. There
are many discussions for properties of these derivatives (see [13,14]). All these studies are limited in
real line. In this paper, we use the Caputo derivative which is defined as follows.

Definition ([11,14,15]). Suppose that a > 0, r > 0. The fractional operator

r (n)
L )/( ) dt, n—1<a<n,

DOf(r) = I'n—« r—t)atl-n
o) a=neN\ {0},

is called the Caputo derivative. It is clear that f should be n times continuously differentiable.

too . )
Consider the function f(z) = Y a;2/, where z = re?’. By using the properties of the Caputo
§=0
operator derivative, for n — 1 < a < n, we have
.7 + ]- j—a j10
EZFJ_Q+1an e, (1.1
+oo .
T 1 ,
O"Daf(r ) — (.] + ) Z]-
= 'j—a+1)
For o =n € N\ {0},
mn 0 dﬂ
DUf() = o [re) £ 5 f(2),

while

+oo .

Proposition. The two functions f(z) = Y a;j27 and r*D® f(z) have the same radius of convergence.
§=0

Consequently, if f(z) is an entire function, then r*D* f(z) is equally an entire function.
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Proof. To prove that the two power series

+oo
z):szj, r*Df Z LG+1) a2’
LV F]—a+1

have the same radius of convergence, we have just to show that

PG+1) TG—a+2) _

lim O
joto I(j—a+1) T(+2)
In the study of the growth of solutions of the classical linear differential equation
O+ A1 (2) fO7D bk A (2) f 4 Ao(2) f =0, (1.2)

where the coefficients are entire functions, many authors are interested in the following question: what
conditions on the coefficients will guarantee that every solution f(z) # 0 of (1.2) has infinite order?
In the literature, there are many papers concerning this question (see, e.g., [1,4,6,7,16]). The main
tool used is this investigation is the logarithmic derivative estimates (see [5]). Unfortunately, up to
now, there is no similar estimates given in [5] for the fractional derivatives except the Wiman—Valiron
theorem in the fractional calculus that is valid only on a neighborhood of the points z, where the
function reaches its maximum (see [3]). Despite this obstruction, we will investigate the growth of
solutions of certain class of linear fractional differential equations by using the Caputo fractional
derivative operator as the following.

Theorem 1.1. Let Ag(z), A1(2),..., An_1(2) be entire functions and p > 0, § > 0 be constants such
that max{c(A;): j=1,...,n—1} < p and Ao(0) = 0; let 0 < ¢1 < g2 < --- < qn. Suppose that for
any 0 € [0,2m),

|Ag(re?®)| > exp{dr*} (1.3)

as r — +00. Then every solution f(z) Z 0 of the linear fractional differential equation

TQH TQn 1

D f(z) + An-1(2)

DIt f(2) + o+ A2)

zlan—1] [ql]

D‘hf(z) +2zA0(2)f(z) =0 (1.4)

2lan]
is an entire function of infinite order and, further, if 0(Ap) < 00, then oa3(f) < o(Ap).

Corollary. Let Pi(z),...,P,_1(z) be polynomials and 0 < q1 < qa < -+ < qn. Then every solution
f(2) £ 0 of the linear fractional differential equation

rdn—1

rin
~ag P f(2) + P (2)

Z[Qn]

D=1 f(z) + - + Py(2) D‘Ilf( )+ (sinz +sinh 2) f(2) =0

2lan—1] [q1]
is an entire function of infinite order with oo(f) < 1.

Theorem 1.2. Let Ai(z), B(z),Ao(z) # 0, be entire functions and let p > 0, 6 >0, 0 < a < 1
be constants such that max{co(Ap),o(B)} < p. Suppose that there exists a set E C [0,2m) of linear
measure zero such that for any 0 € [0,27) \ E,

| Ay (re'?)| > exp{dr*} (1.5)
as r — +o0o. Then every solution f(z) #Z 0 of the differential equation
e 29D f(2) + Ai(2)e D f(2) + B(2)rDf(2) + Ao(2) f(2) = 0 (1.6)
is an entire function of infinite order and, further, if 0(A;1) < oo then oa(f) < o(A1).
Example. By Theorem 1.2, every solution f(z) # 0 of the differential equation
e 29D f(2) 4+ sin(22)e 0D f(2) + FrODYf(2) + 2f(2) =

is an entire function of infinite order with oo(f) < 2.



Infinite Order of Growth of Solutions to Linear Fractional Differential Equations with Entire Coefficients 119

Theorem 1.3. Let Ay(z),B(2),Ao(z) £ 0, F(2) be entire functions and let p >0, >0,0 < a <1
be constants such that max{o(Ao),o(B),0(F)} < p. Suppose that there exists a set E C [0,2m) of
linear measure zero such that for any 6 € [0,27) \ E,

|A1(re?)| > exp{dr*} (1.7)
as r — +o00. Then every solution f(z) Z 0 of the differential equation
e D2 f(2) + Ai(2)e "D f(2) + B(2) ZTTZ] Df(2) + Ao(2) f(2) = F(2) (1.8)

is an entire function of infinite order.

2 Preliminary lemmas

To prove these results we need the following lemmas.

Lemma 2.1. Let f be a non-constant entire function and suppose that |D* f(z)| is unbounded on some
ray argz = 0 € [0,27) \ E, where E is of linear measure zero. Then there exists an infinite sequence
of points vy, (m > 1), 7,y — 400, such that | D' f(r,,e?)| — +oo and

Daf(rmeig) ‘ Trlnia
| < 0 1 2.1
D f(rme®) | “T2-a)’ ~ - *Sh (2.1)
T'me
‘791 Flrmei® ’ < Tm +o(1) (2.2)

as m — +00.

Proof. By definition, we have

1 [ Df(tei?)

i N ) (=1 a 23

Daf(rew

Since |D* (rmet?)]| is unbounded, we can construct a sequence 7y, (m > 1), rp, — 400, such that
|DY(rme’?)| — +o0o and |D(r,e'?)| = max{|D!(te?)| : t € [0,7,,]}. By (2.3), we have

e 1 D)
D f(rme9)|§r(1_a)o/ e

and then

1
D% (7] < 2 /

1—a

S0, we obtain

Daf(rmew) < rloe
D f(rme?) ‘ “T2-a)

On the other hand, we have
f(re') = / f(te®)d
0

[ (rme™®)| < 1FO)] + D f (rme’®) rm,

and then

which implies 4
/ (Tmelg)

DLf(rme?®)| = < o(1) + 1, m — +oo. O
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Lemma 2.2. Let f(z) be an entire function and suppose that

) 1 + Dl 0
G(reze) = 0g | f(re )|
rP
is unbounded on some ray argz =0 € [0,2m), where a >0 and p>0. Then there exists an infinite
sequence of points v, (Mm>1), 7y — 400, such that G(r,e'?) — +o0o and inequalities (2.1), (2.2) hold.
Proof. If G(re') is unbounded on some ray argz = 6 € [0,27), then we can immediately see that
|D! f(re'?)| is unbounded on the ray argz = 6. So, by Lemma 2.1, (2.1), (2.2) hold. O
By [5] and by taking into account that e~™D" f(z) = jz—nnf(z), we obtain the following

Lemma 2.3. Let f be a non-constant entire function of finite order o(f) = 0 < 0o; let € > 0 be a
given constant. Then the following two statements hold.

(i) There exists a set F C (1,400) of a finite logarithmic measure such that for all r € (1,400) \ F
and for integers k, j (0 < k < j), we have

Djf j—k)(oc—1+¢
B e a0

(ii) There exists a set E C [0,2m) of a linear measure zero such that for all 6 € [0,2m)\ E, there exists
a constant ro = ro(0) > 0 such that for all z satisfying arg(z) € [0,27) \ E and r = |z| > o,
inequality (2.4) holds.

1

Lemma 2.4 ([3]). Let f(z) be an entire function, v > 0, 0 < 0 < 3 and z be such that |z| = r

and |f(2)] > M(r, f)v(r)~5+% holds, where v(r) is the central index of f. Then there exists a set

E C (0,400) of finite logarithmic measure, that is, % < 400 such that
E

DY f(z)

———=(v(r))"(1+0(1
72 (v(r))"(1+o(1))

holds for r — 400 and r ¢ E.

Remark. We signal here that the fractional derivative used in the proof of Lemma 2.4 is the Riemann-

+oo .
Liouville operator and for an entire function f(z) = > a;27, we have

7=0
i) = D gy 25)

=0

By (1.1) and (2.5), we immediately conclude that the proof of Lemma 2.1 is valid also for the Caputo
fractional derivative operator.

Lemma 2.5 ([12]). Let f(z) be an entire function of finite order o(f) < +o00. Then

1 +
T— A
r—+oo  logrT
log™ log™
lim sup 26 98 Vi) v(r) = 02(f),
r—+oo logr

where v(r) is the central index of f.

Lemma 2.6. Let Ag(2), A1(2), ..., An_1(2) be entire functions such that max {O‘(Aj) :7=0,1,...,n—
1} =p< 4oo;let 0 < 1 < g2 < -+ < qn. Then every solution f(z) £ 0 of the linear fractional

differential equation
/r-Qn ern71 qu
7 D f(2) + Ap1(2) - DT f(2) + -+ Ar(z) 5 DT f(2) + 240(2) f(2) =0 (2.6)

Z[Qn] Z[Qn—l] Z[‘Il]

is an entire function satisfying oa2(f) < p.
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Proof. By definition and the assumption that max{c(A4,) : 7 =0,1,...,n — 1} = p, for any given
€ > 0, there exists ro > 0 such that for all r > ry, we have

|4;(2)] < exp{r’™}, j=0,1,...,n—1. (2.7)

From (2.6), we can write

pn Din f(2) lanl—lgn—a)| T DT R) )L
| < @l
1 1A, (2)frlan] (o] ?()f”\ ] Ay (2)]. (28)

By Lemma 2.4, (2.7) and (2.8), we obtain
()™ (1 -+ o(1) < ernIlonal o 7)) exp(r ),
where ¢ > 0 is some constant; and then
(v(r)) = In=1(1 + o(1)) < erlan]=lanal expfprtey,
From (2.7) and by Lemma 2.5, we obtain o3(f) < p. O

Lemma 2.7 ([18]). Let f be an entire function of finite order o(f). Suppose that there exists a set
E C [0,27) of a linear measure zero such that

log* |f(re™)| < My

for any 6 € [0,27) \ E, where M is a positive constant depending on 0, while p is a positive constant
independent of 8. Then o(f) < p.

Lemma 2.8 ([8]). Let Ag(z) £ 0, A1(2),...,An_1(2) be entire functions such that Ay(0) = 0; let
0<q1 < g2 <---<qy be real constants. Then all solutions of (1.4) are entire functions.

3 Proof of theorems

Proof of Theorem 1.1. First, by Lemma 2.8, all solutions of (1.4) are entire functions. If we suppose
that f(z) £ 0 is a solution of (1.4) with o(f) < p, then by the assumptions of Theorem 1.1 and by
taking into account that o(r#D% f) = o(f) < p, we can immediately see that the term zAg(z)f(z)
is the only dominant term in (1.4) which leads to a contradiction. So, o(f) > p. Now, suppose that
o(f) = 0 < co. By Lemma 2.5, for any given ¢ > 0, there exists rg > 0 such that for all » > ro, we
have v(r) < r°*¢; and by Lemma 2.4, for r ¢ E and argz = 6, we have

WD”f(Z))
—— < et 3.1
e o
Set max{o(A;): j=1,...,n—1} = p;. For any given ¢ such that 0 < & < p — p1, we have

|A;(2)| <exp{r”T}, j=1,...,n—1. (3.2)

From (1.4), we have

n—lan]— D f(2)
e
i—lana]—1| P (R) ), —[a]-1| PP f(2)
F Ay (2)|ron 1l 1\7&) o Ay (2) |l 1]7“2) . (3.3)
Combining (3.1), (3.2)), (1.3) with (3.3), we obtain
exp{dr"} < r70F) exp{rrtel. (3.4)

Since € < p — p1, (3.4) leads to a contradiction as r — 4o00. So, o(f) = +o00. Now, if 0(A4p) < oo,
then by the assumptions, we have max{c(A4;): j=1,...,n—1} = 0(Ap) and by Lemma 2.6, we get
o2(f) < o(Ao). O
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Proof of Theorem 1.2. By the same method of proof of Lemma 2.8, we can prove that all solutions of
(1.6) are entire functions. If we suppose that f(z) # 0 is a solution of (1.6) with o(f) = ¢ < p, then
by the assumptions, we can immediately see that the term A;(z)e~D(z) is the only dominant term
in (1.6) which leads to a contradiction. So, o(f) > p. Now, we suppose that o(f) < co. From (1.6),
we can write

M) = [ | 18 ||+ 1a(a)l | ] (35)
Set max{o(Ayp),c(B)} = p1. For any given € (0 < e < p — p1), we have
max {|A0(2)|, |B(z)’} < exp{rf1te}. (3.6)

By Lemma 2.3, there exists a set F C [0, 27) of a linear measure zero such that for all § € [0,27) \ E,
there exists a constant g = 79(6) > 0 such that for all z satisfying arg(z) € [0,27)\ F and r = |z| > ro,

we have )
D f(Z)‘ < TU—I-&-E'
Dif(z)1

We will prove that |D!f(z)| is bounded in [0,27) \ E; toward this end, we suppose to the contrary

that D! f(z) is unbounded on some ray argz = 6 € [0,27) \ E. Then there exists an infinite sequence
of points r,, (m > 1), r,, — +o00, such that |D! f(r,,,e?)| — 400 and

(3.7)

D f(rmet?) ri-e
< .
Dvmmw‘—r@f@’o<a<L 38)
frme™)
— | < . .
’le(rme“’) ‘ <rmto(1) (3.9)
Using (3.6)—(3.9) and (1.5) in (3.5), we get
exp{or?,} < crd exp{rfite}, (3.10)

where ¢ > 0, d > 0. Since € < p — p1, (3.10) leads to a contradiction as m — +o0o. So, [e??D! f(z)]
is bounded in [0,27) \ E. By the Phragmen-Lindel6f theorem, e?D! f(z) has to be constant in the
whole complex plane which implies that f(z) is a polynomial of degree one; but this is impossible. So,
o(f) = 4o0. Now, if 0(A;) < oo, then by the assumptions, we have max{o(4y),0(A1),0(B)} = o(A1)
and by Lemma 2.6, we have o2(f) < o(A4;). O

Proof of Theorem 1.3. As above, all solutions of (1.8) are entire functions. Suppose first that f(z) # 0
is a solution of (1.8) with o(f) = o < p. From (1.8), we can write

A1(2)e” D (2) = F(2) — e D% f(2) — B(2) % Df(z) — Ao(2)f, (3.11)
z «
then by the assumptions, the left-hand side of (3.11) is of order greather than or equal to p, while
the right-hand side of (3.11) is of order, strictly smaller than p, which is a contradiction. So,
o(f) > p. Now, to prove that o(f) = oo, we suppose to the contrary that o(f) = ¢ < oo. Set
max{c(Ag),o(B),0(F)} = p1. For any given € (0 < & < p — p1), we have

max{|Ao(z)|7 |B(z)], |F(z)\} < exp{rrite}. (3.12)

log™ [D' f(re’®)|
rp1te

We will prove that is bounded in [0,27) \ F; to this end, we suppose to the contrary

6
that % is unbounded on some ray argz = 6 € [0,27) \ E. Then by Lemma 2.2, there

exists an infinite sequence of points r,, (m > 1), r,, — 400, such that

10g+ |D1f(rmei9)‘

orte — +00, (3.13)
Daf(rmeia) rl-a

. < m 3.14

Dlf(rme?)| — T(2—a)’ (3:.14)
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and Fme®
m < rm+o(1). (3.15)
From (3.13), for any sufficiently large number ¢ > 1 and for m > my, we have
D f(rme?)| > exp{crfi e} (3.16)
From (3.12) and (3.16), we get
‘%‘<exp{ (1= )it} =0, m — +oc. (3.17)
(rme
From (1.8), we can write
1 B2 a2 o | [ s

Substituting (3.7), (3.12), (3.14), (3.15), (3.17) and (1.7) into (3.18), we obtain

exp{drt, } < c’rfl,; exp{rrite}
0
where ¢ > 0, d’ > 0. Since € < p — p1, (3.18) leads to a contradiction as m — +o00. So, %
is bounded in [0,27) \ E; so |D'f(re'®)| < exp{MrL:*s} where M > 0 is a constant and by the

inequality
T

F(re®) < |£0)] + / DY (te)] dt,
0

we get _
|f(re®)| < exp{r~**};

and by Lemma 2.7, we get o(f) < p1 + 2¢ for any € > 0; so, o(f) < p; which is a contradiction with
a(f) > p > p1- So, we conclude that o(f) = +o0. O
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