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Abstract. In this paper, we use the concept of p-order to investigate under suitable conditions the
growth and the oscillation of solutions of higher order linear differential equations with meromorphic
coefficients on the complex plane. Many existing results due to Li—-Cao, Hu—Zheng, Kara—Belaidi will
be revisited and extended for the lower p-order and the p-convergence exponent.
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1 Introduction

Throughout this paper, the reader is assumed to be familiar with the fundamental notions and stan-
dard notations of Nevanlinna value distribution theory of meromorphic functions such as M(r, f),
T(r, ), m(r, f), N(r, f), 6(a, ) (see [11,19,25]). In addition, the term “meromorphic function” will
mean “meromorphic function in the whole complex plane C”. For all r € R, we define exp, r :=
expr = e’ and exp,, ;7 := exp(exp,r), p € N = {1,2,...}. Inductively, for all r € (0, +o0) suffi-
ciently large, we define log, r := logr and log, , r := 1og(logp r), p € N. By convention, we denote
expgyr =1 = logyr, exp_; r := log, r and log_; r := exp; . We define the linear measure of a set
E C (0,+00) by m(E) = [ dt and the logarithmic measure of a set F' C (1,400) by Im(F) = [ 4.
E F

Definition 1.1 ([20,21]). Let p > ¢ > 1 be integers. The [p, g]-order of a transcendental meromorphic

function f is defined by
log, T'(r, f)
:= limsup —2——"~ .
P (f) = limsup == 0

If f is a transcendental entire function, then

log, ., M(r, f)
= i oprl TP AT
Plp.a)(f) 1= lim sup —=° o

P11 (f) is called the iterated p-order and simply denoted by p,(f). Moreover, pp1 1)(f) = p1(f)
coincides with the usual order p(f) [11,19,25].

Historically, Juneja-Kapoor-Bajpai [15] introduced the concepts of [p, g]-order to study some prop-
erties of entire functions. In [21], Liu-Tu-Shi made a minor modification on the original definition
of [p, ¢l-order to investigate the growth of entire solutions of higher order complex linear differential
equations of the form

FE 4 A 1 (2)f* D 4 Ag(2)f =0, (1.1)
P+ A1 () fEY 4+ Ag(2)f = F(2), (12)
where k& > 2 and the coefficients Ao, ..., Ax_1, F' # 0 are entire functions of [p, g]-order. The case

when the coefficients of equations (1.1) and (1.2) are meromorphic of [p, g]-order have been discussed
by Li-Cao [20], Hu-Zheng [13], Belaidi [4] and many other authors. We also mention that Belaidi [3]
and Hu—Zheng [14] investigated the growth of solutions of equation (1.1) with analytic coefficients of
[p, g]-order and lower [p, g]-order in the unit disc D = {z € C: |z| < 1} and obtained similar results to
those in the complex plane. However, the iterated p-order and the [p, g]-order do not cover an arbitrary
growth as it is shown in [9, Example 1.4]. A general scale which does not have this disadvantage is
called the p-order (see [24]), and it is adopted recently by Chyzhykov—Semochko [9], Semochko [22],
Belaidi [5, 6], Kara—Belaidi [17] in order to study the fast growing of solutions of equations (1.1) and
(1.2) in the complex plane and in the unit disc which extend some previous results that considered
the iterated p-order [2,7,12,18].

Definition 1.2 ([9]). Let ¢ be an increasing unbounded function on [1,+00). The p-orders of a
meromorphic function f are defined by
(eT(r:1))

pg(f) := lim sup ’ p:a(f) := lim sup M )

r—-+o00 1Og7“ r—-+o0 IOgT

If f is an entire function, then the (p-orders are defined by

- . M(r, f - . log M (r, f
pg(f) := lim sup M , p;(f) := lim sup M .
r—+00 ogr r—+o00 logr
We denote by ® the class of positive unbounded increasing functions on [1,+00) such that ¢(e?)
grows slowly, i.e.,
p(e”)

Ve>0: tl}gloo (D) =1
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Example. Let f be a meromorphic function. It is clear that ¢(r) = log,r (p > 2) belongs to the
class ® and p(r) = logr ¢ ®. For ¢(r) =log,r (p € N), we have

pglo(f) - pllogp(f) = pp(f)

In particular, p?0g2 (f) = p1(f) = p(f) is the usual order of f and ,ollog2 (f) = p2(f) is the hyper-order
of f.

Proposition 1.1 ([9]). If ¢ € ®, then

-1 1 m
Vm>O,Vk20:%—>+oo,x—>+oo, (1.3)
—1
Vé>0: log » ((_1 +9)z) — 400, T — +00, (1.4)
log p=1(x)
Ve>0: plex) < p(zf) < (1+0(1))p(z), x— +oo. (1.5)

Proposition 1.2 ([9]). Let ¢ € ® and f be an entire function. Then for j = 0,1, we have
pu(f) = pL(f)-
Definition 1.3 ([6]). Let ¢ be an increasing unbounded function on [1,+00). The @-types of a
meromorphic function f with 0 < p/,(f) < 400 (j = 0,1) are defined by
() = limsup PP}y SRR )
L r—>+ocl? e () Tooel T r—>+o£ rPe(f) -

If f is an entire function with 0 < ﬁfo(f) < 400 (j =0,1), then the ¢-types are defined by

~ X M (r, _ . « log M(r,
7O(f) == limsup - p{i%g(ﬁf I 31y o tmsup© p{w(r%i(f)(r g

r—4o0 r—400

Definition 1.4 ([17]). Let ¢ be an increasing unbounded function on [1,+00). The ¢-convergence
exponents of the sequence of zeros of a meromorphic function f are defined by

N(r3)) P(N(r, $))
20 =1 (67 AL =1 LA iy
o(f) fﬁfgop logr ' o) iriligf logr

Similarly, the notations Xg( f) and X}O( f) can be used to denote the p-convergence exponents of the
sequence of distinct zeros of f
— (N7

A2 (f) := limsup

o(N(r, 1))
® ® :

=2 XL(f) :=limsup
r— 400 logr r— 400 logr

Now, we can introduce by analogous manner the following quantities.

Definition 1.5 ([5,6]). Let ¢ be an increasing unbounded function on [1,4+00). The lower g-orders
of a meromorphic function f are defined by

QO(BT(TJ)) Ml (f) .= liminf M
) © . ’

0 . T .
fiy(f) = lim inf lim fnf = e

r—+oo  logr

If f is an entire function, then the lower ¢-orders are defined by

. M(r, B C olles M(r,
ORI UE S

Proposition 1.3 ([5]). Let ¢ € ® and f be an entire function. Then for j = 0,1, we have
L (f) = mL(f)-
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Definition 1.6 ([6,17]). Let ¢ be an increasing unbounded function on [1,4+00). The lower -types
of a meromorphic function f with 0 < uZ,(f) < 400 (j =0,1) are defined by

0o 1. cexp{p(el )} 1o e cexp{e(T(r, f))}
() =liminf —"rm—=,  7,(f) = liminf =705

If f is an entire function with 0 < ﬁgo(f) < 400 (j =0,1), then the lower p-types are defined by

'7:0 (f) — liminf eXP{SD(M(Tv f))} 7 1 (f) — lim inf exp{go(logM(r, f))}
= ® .

r—-+oo rﬁﬁ?,(f) ’ - r——+00 Tﬁi;(f)

Definition 1.7. Let ¢ be an increasing unbounded function on [1,4+00). We define the lower -
convergence exponents of the sequence of zeros of a meromorphic function f by
eV (h%))

p(N(r, 7))
0 o 1 P f
Ao(f) = leﬁnfilogr s AL(f) = lrlmﬁnfilogr )

Similarly, the notations X&( f) and X}o( f) can be used to denote the p-convergence exponents of the
sequence of distinct zeros of f:

N 1
S0,y g Pl Tl e (N (r, $))
A@(f) _lrlgl_ﬁlgf IOgT ) ALp(f) _17_11_1;1_’}25 logr .

2 Main results

Before we state our main results, it is essential to recall some existing results. The first work that
considered the concept of p-order to study the growth of entire solutions of equation (1.1) was made
by Chyzhykov—Semochko in [9]. They gave the precise estimate of ﬁ}o( f) when Ay dominates the
growth of the other coefficients.

Theorem 2.1 ([9]). Let ¢ € ® and Ao, Az, ..., Ax_1 be entire functions such that
max {ﬁ?@(Aj) cj=1,...k=1} < ﬁ?o(Ao) < 400.
Then every solution f # 0 of (1.1) satisfies pL(f) = p(Ao).

After that, the second author [5,6] extended Theorem 2.1 by considering the lower ¢-order and
the lower ¢-type. He also obtained similar results when there is more than one dominant coefficient
in equation (1.1).

Theorem 2.2 ([6]). Let ¢ € ® and Ay, A1, ..., Ax_1 be entire functions. Assume that
max {FO(4;) 1 j=1,....k—1} < %(Ag) < 5U(Ay) < +00 (7%(4o) > ),
max {7 ((A4;) : pO(A;) =ho(Ao)} <T(Ag) =70 (0<To<+00).
Then every solution f £ 0 of (1.1) satisfies
() = 15(A0) < py(f) = pip(Ao).

Very recently, the authors in [17] investigated the growth of solutions of equations (1.1) and
(1.2) when the coefficients are meromorphic with ¢-order which improve and generalise under some
conditions on the poles of coefficients some results in [5,6,9,13,17].

Theorem 2.3 ([17]). Let ¢ € ® and Ao, A1, ..., Ak—1 be meromorphic functions such that

22 (5) < o),

max{pg(Aj) D j=1,...,k—1} < pl(Ag) < +oo,
max {7)(A;) : pL(A;) = p(Ag) >0, j=1,....k—1} <72(4o) =70 (0 < 7o < +00).

Then any non-zero meromorphic solution f whose poles are of uniformly bounded multiplicities of
(1.1) satisfies pl,(f) = p2(Ao)-
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Thus, the following questions may arise:

Question 1. How about the growth of solutions of equation (1.1) with meromorphic coefficients of
lower @-order?

Question 2. Which conditions can be added to extend Theorem 2.2 from entire coefficients to mero-
morphic coefficients?

Question 3. Can we replace the dominant coefficient Ag by an arbitrary coefficient A (s €
{0,1,...,k—1})?

In this paper, we are going to give answers to the above questions. We also obtain the results for
the ¢-convergence exponent and the lower -convergence exponent.

Theorem 2.4. Let ¢ € ® and Ag, A1, ..., Ar_1 be meromorphic functions satisfying

)\0 (A ) < M@(AO) Mo,
maX{Pg ) jil,..., 7]-} §N¢(AO)§P(;(AO)<+OO,
maX{Tg(Aj) : pw(A ) = Hg;(AO) ji=1,....k— 1} <18,(A0) =70 (0< 7o < +00).

N(r.f)
N ¢

Then for any non-zero meromorphic solution [ of (1.1) satisfying “Yalogr) such that

0 < a < g, we have
Ao(f—9) = pl(f) = nd(Ao) < p(Ao) = pp(f) = XL(f —9),
where g Z 0 is a meromorphic function satisfying p}a (9) < ug (Ap).

Remark 2.1. Theorem 2.4 is an improvement and an extension of Theorem 2.2 from entire solution
to meromorphic solution. Furthermore, by setting ¢(r) = log, 47 (p > 1) in Theorem 2.4, we obtain
Theorem 3 of Hu-Zheng [13] in the case where p > ¢ = 1.

Theorem 2.5. Let ¢ € ® and Ay, A1, ..., Ax—1 be meromorphic functions satisfying

§<>

1
0
A (Ao) < ,%;(Ao) = Ho, 132_?2})) m(r, Ag) <1

and

max {p)(A;): j=1,....k—1} < p(Ao) < pl(Ag) < +00.
Then for any non-zero meromorphic solution f of (1.1) satisfying ﬁ < ¢ Y alogr) such that
0 < a < po, we have

Ao(f —9) = ub(f) = pd(Ao) < pL(Ag) = pL(f) = AL(f —9),
where g # 0 is a meromorphic function satisfying pj,(g) < pd(Ao).

Remark 2.2. Theorem 2.5 is an improvement and an extension of Theorem 1.13 of Belaidi [5]
from entire solution to meromorphic solution. Furthermore, by setting ¢(r) = log, ;7 (p > 1) in
Theorem 2.5, we obtain Theorem 4 of Hu—Zheng [13] in the case where p > ¢ = 1.

Theorem 2.6. Let ¢ € ® and Ag, Ay, ..., Ax— 1 be meromorphic functions. Assume there exists one
coefficient As(z) (0<s<k—1) satzsfymg )\0( -) < 1 (As) and
ma {p)(4)) ¢ J# s} < p(AL) < p(AL) < +oo,
max {TS,(A]-) : pW(A )= ﬂw( s)s, JF 8} < I&(As) =740< 7, < 400).
Then for any transcendental meromorphic solution [ of (1.1) satisfying NET ;; < ¢ Y(alogr) such

that 0 < o < pQ(Ay), we have pl(f) < pd(As) < pd(f) and pL(f) < pO(As) < p%(f). Moreover,
every non-transcendental meromorphic solution f of (1.1) is a polynomial of degree deg(f) < s—1.
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Remark 2.3. Putting ¢(r) = log, ;7 (p > 1) in Theorem 2.6, we obtain Theorem 5 of Hu-Zheng [13]
in the case where p > ¢ = 1.

Remark 2.4. The condition )\g(i

Ao

) < /l?@(Ao) in the above theorems can be replaced by

N(r,Ag) = o(m(r, Ap)) as r — +oo
or ( A)
e em(r A
d(00, Ag) = lrlin—&gj T(r. Ao) > 0.
3 Preliminary lemmas

Lemma 3.1 ([8]). Let f be a meromorphic solution of equation (1.1). Suppose that not all coefficients
k=1

A; are constants. Given a real number v > 1 and denoting T'(r) = > T(r, A;), the inequalities
§=0

logm(r, f) < T(r){(logr) logT(T)}7 if s=0,

logm(r, f) < r**t771T(r){ logT(r)}7 if s>0
take place outside of an exceptional set Es with [ 571 dt < +00.

Lemma 3.2 ([1,10]).

Es
functions. If

Let g : (0,400) — R and h : (0,400) — R be monotone non-decreasing
or

(i) g(r) < h(r) outside of an exceptional set E1 C (0,+00) of finite linear measure

(i) g(r) < h(r) for all T ¢ E5U|0,1], where Es C (1,400) is a set of finite logarithmic measure,
then for any o > 1, there exists ro = ro(a) > 0 such that g(r) < h(ar) for all v > rq.
large r, we have

m(r L) -

Lemma 3.3 ([11,25]). Let f be a non-constant meromorphic function and k € N. Then for sufficiently
f

O(logr +logT'(r, f))
order (i.e. p(f) < +o0), then

possibly outside of an exceptional set E3 C (0,400) of finite linear measure. Moreover, if f is of finite

m(r 22

have

7 ):O(logr)7 T — +00.

Lemma 3.4 ([9,16]). Let p € ® and f1, fo be two meromorphic functions. Then for j = 0,1, we

pL(fi + f2) < max {pL(f1),pL(f2)},

pL(f1f2) < max {pl(f1), pl(f2)}
Moreover, if pl,(f1) < pl(f2), then pl,(fi + f2) = pL(fif2) = pL(f2).

Lemma 3.5. Let ¢ € ® and f1, fo be two meromorphic functions. Then for j = 0,1, we have

wl,(f1 + f2) < max {p,(f1),

1(f2)},
1l (fi f2) < max {pl,(f1), pl,(f2)}-
Moreowver, z'pr;,(fl) < ufa(fz), then /AZ;(f1 + f2) = /’[/zp(flfQ) = /JZ;(f2)-
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Proof. We prove the lemma only for j = 0, the proof for j = 1 is similar. Without loss of generality,
we assume that p0(f1) < 400 and p(f2) < +oo. From the definition of the lower p—order, there
exists a sequence 1, — +00 (n — 400) such that

T(""nan)
lim wle )

—_— 0 .
i IOg Tn :u<p (f?)

Then for any given € > 0, there exists a positive integer N; such that

T(7n, f2) < log (@‘1{(/@(]“2) +¢)log rn})

holds for n > N;. From the definition of the p—order, for any given € > 0, there exists a positive
number R such that

T(r, 1) < log (¢~ {(P% (1) + &) logr})

holds for > R. Since r, — 400 (n — +00), there exists a positive integer N such that r, > R, and
thus

T(ra, f1) < log (¢~ {(pl(f2) + &) Tog s} )
holds for n > N,. Note that
T(Ta fl + f2) < T(T7 fl) + T(T7 f2) + 1Og2

and
T(r, f1f2) <T(r, f1) +T(r, f2).

Then for any given ¢ > 0, for n > max{Ny, No} we have
T(rn, f1 + f2) < T(rp, f1) + T(rn, f2) + log2
< log (¢~ {(p(f1) + &) logrn }) +log (¢ {(u3(f2) + &) logra} ) + log2
< 2log ((p_l{(max{pg(fl)7u?0(f2)} +e) logrn}) +log2 (3.1)
and

T(rns f102) < T(rms f1) + Tlra, £2) < 2log (07 {(max{Q(f1), 1)} +©)logra}). (3:2)

Since € > 0 is arbitrary, from (3.1) and (3.2) we easily obtain

pp(fr+ f2) < max {pl(f1), u3(f2) } (3.3)
and
Hg(f1f2) Smax{pil(fl),ug(fz)}. (3.4)
Suppose now that ug( f2) > pg (f1). Considering that
T(r, f2) =T(r, fr+ f2 = f1) <T(r, f1 + f2) + T(r, f1) + log 2 (3.5)
and )
I(r, f2) = T(ﬁ %) <T(r,fif) + T(ﬁ E) =T(r, fif2) + T(r, f1) + O(1), (3.6)
by (3.5), (3.6) and the same method as above, we obtain
1 (f2) < max {pd (f1 + f2), p0(f1)} = o (f1 + fa), (3.7)
/i?o(fz) SmaX{Ng(flfﬂan(fl)} =u3(f1f2). 3.8)

By using (3.3) and (3.7), we obtain u,(f1+ f2) = pd(f2), and by (3.4) and (3.8), we obtain u (f1f2) =
0
/'[/SD(f2)' D
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Lemma 3.6 ([9,16]). Let f be a meromorphic function and ¢ € ®. Then for j = 0,1, we have
. ,
pL(f") = pL(f)-

Lemma 3.7. Let ¢ € ® and f be a meromorphic function with 0 < pg(f) < 400. Then there exists
a set By C (1,400) of infinite logarithmic measure such that

T (I )
Tw(f) o TBTOO Tp?o(f) ’
reky

Therefore, for any given € > 0 and sufficiently large r € E4, we have
T(r, f) > log o™ (log [(72(f) - E)TP?D(f)]).

Proof. The definition of 70 (f) implies that there exists a sequence {r,,n > 1} tending to +oo satisfying
(14 £)ry < rpq1 and
0 p o expfpe )
Tw(f) B T'nl—lfﬂoo rp?,,(f) :
n

Then for any given € > 0, there exists an integer number ny such that for all n > ny and r €
[rn, (1+ £)ry], we have

ST} (L NAD_ eple(e )

P20 1+1 rPe(f)
Set
+o0 1
E, = U {7‘”, (1 + E)Tn}
n=mniy

By the fact that
1 NS
( ) — 1 as n — 400,

1+4
we get
O L) SR L)) SO
r—-+o0 Tﬂg(f) T rp—+oo P&(f) ¥
reEF, T'n

and the logarithmic measure of E, satisfies

d 400 (1+%)T"d +o00 1

T t

lm(E4):/7: E / ?: E 1og(1+g):+oo.
E4 n=mniy T n=mni

It is obvious that

T(r,f) T(r.f)
i Splele “P)} expio(e ")} o

e T el < limsup ——Zer—— = 7,(f)-
Therefore,
o g explp(e™ "))
T<p (f) - TEEIOO Tp(:;(f)

rek,

and for any given € > 0 and sufficiently large r € F,, we have

T(r, f) > log (p*l(log [(Tg(f) — 5)#’&@)]). B
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Using analogous arguments as in [5, Lemma 2.4, p. 31] and the above proof, we can easily obtain
the following lemma.

Lemma 3.8. Let ¢ € ® and f be a meromorphic function with ,u?a (f) < 4+o0. Then there exists a set

E5 C (1,400) of infinite logarithmic measure such that

T(r,f)

0 _ (e )

Mw(f) _TEI-‘POO IOgT‘ .
reks

Therefore, for any given € > 0 and sufficiently large r € E5, we have

T(r, f) <loge ' ((ul(f) +¢)logr).

Lemma 3.9 ([17]). Let ¢ € ® and let Ag, As,...,Ak—1, F # 0 be meromorphic functions. If f is a
meromorphic solution of equation (1.2) such that

max{p;(F),p;(Aj) :j=0,1,...,k-1} < p}o(f) < 400,

then we have X}D(f) =AL(f) = pL(f).

Lemma 3.10. Let ¢ € ® and let Ag, Ay,...,Ax—1,F # 0 be meromorphic functions. If f is a
meromorphic solution of equation (1.2) such that

max {p,(F), py(4;) 5 =0,1,....k =1} < ug(f),

then we have AL(f) = AL(f) = ui(f).

Proof. Equation (1.2) can be written as

1 1/ f® fE=1 f

?_F(T+AH ; +~-+A17+Ao). (3.9)
If f has a zero at zy of order [ > k and if the coefficients Ay, ..., Ax_1 are all analytic at zp, then F
should have a zero at zg of order at least [ — k. Hence

N(r3) <KN(r. ) +N(r ) YN Ay, (3.10)

f f F —

By Lemma 3.3 and (3.9), we find that

1 1 k—1

)< — . .

m(r, f) < m(r, F) + jzom(r, Aj)+ O(logr + logT(r, f)) (3.11)

holds for all |z| = r & E5, where Ej is a set of finite linear measure. It follows from (3.10) and (3.11)
that

T(r, ) =1(r,

)+ T F) + > T(r, A7) + O(logr +10gT(r, f)). (3.12)
j=0

We denote p = max{p}(F),p,(A;) : j = 0,1,....k =1} < p,(f) = p. Then for any given ¢
(0 < 2¢ < p — p) and sufficiently large r, we get

T(r,f) > ¢~ ((n—e) logr). (3.13)
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We have

omax {T(r,F),T(r,Aj))} <o " ((p+¢)logr), (3.14)

O(logr +1ogT(r, f)) = o(T(r, f))- (3.15)
Since ¢ satisfies 0 < 2e < p — p, by (3.13), (3.14) and Proposition 1.1, we obtain

o {7 e

- exp{logw "(((p+e))logr)}
~ exp{logp~((n—¢) 10g7")}

1
:exp{ 1-—

=exp {logp " ((p+¢)logr) —logo ' ((n—e)logr)}

loggo (u—e¢) logr)) 1

logp=1((p+¢)logr)

Then, by substituting (3.15) and (3.16) into (3.12), it follows that
Yy g

og~ ((p+2)logr)} =0 as 1 — +oo. (3.16)

(I —o()T(r, f) < kﬁ(n %), r¢& E3, r— +o0.

By Lemma 3.2, the monotonicity of ¢ and (1.5), we get u}a(f) < X}a(f) Since u}o(f) > A}o(f) >
AL(f), we deduce that AL(f) = AL(f) = pL(f). O

Lemma 3.11. Let ¢ € ® and let A, ..., Ax_1 be meromorphic functions such that

max{pl(4;) : § # 5} < p(A,) < +oo.
If f £ 0 is a solution of (1.1) satisfying ~ o ;; < ¢ YHalogr), where 0 < a < ,ug(AS), then we have
1 (f) < p(As).

Proof. From equation (1.1), we see that the poles of f can only occur at the poles of the coefficients
Ag, Ay, ..., Ap_y. Since 2D < o=V logr) (o < 1 (As)), we get

N(r,f)
k-1 k—1
N(r, f) < ¢ Halogr)N(r, f) < ¢~ H(alogr) Y N(r,A;) <¢~'(alogr) Y T(r,A)),
j=0 j=0
and therefore o
T(r, f) <m(r, f) + o alogr) ZT(T, Aj). (3.17)
=0

Since max{p?a(Aj) D j#£ s u?o(AS) < +00, for any given £ > 0 and sufficiently large r, we have
T(r, Aj) <log™((Hg(As) +¢)logr), j#s. (3.18)
By applying Lemma 3.8 to the coefficient As and for the above €, we have
T(r,A,) <logp™! ((u?o(As) +¢e)logr), € Es, r— 400, (3.19)

where Fs is a set of infinite logarithmic measure. By Lemma 3.1, (3.18) and (3.19), there exists a set
Ey of finite logarithmic measure such that for sufficiently large r € E5 \ Ep, we have

m(r, f) < exp {(ZT r, Aj) ) (logr log <kle(r, Aj)>)7} < 9071((“(;(‘45) +2¢)logr).  (3.20)
7=0

It follows from (3.17)—(3.20) that

T(r, ) < @ " ((n)(As) + 26)logr) + ke~ (alogr) log " (1) (As) + €) log )
< @ ((u)(As) + 3e)logr), € Es\ Eg, 1 — +00.

Thus, by Lemma 3.2, arbitrariness of € > 0 and the monotonicity of ¢, we obtain ui,(f) < ,uS,(AS). O
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Lemma 3.12. Let ¢ € ® and Ag, A1, ..., Ax_1 be meromorphic functions satisfying

A (A ) < #(p(AO) = o,
max{pg) i j=1...,k—-1} Suw (Ap) < 400,
maX{TO Aj): pw(A ) = Mw(AO) j=1,....k— 1} <IO (Ap) =70 (0<To < +00).
Then, for any non-zero meromorphic solution f of (1.1) we have pj(f) > p%(Ao).

Proof. Assume that f is a non-zero meromorphic solution of equation (1.1). By (1.1), we have

k k—1 !
—Ap = f;,)—i—Ak 1f(f )+ +A1J;
Then, by Lemma 3.3, we find that
k— k—
m(r, Ag) < Z m(r,A;) + Z ( > Z i)+ O@ogr +1logT(r, f)) (3.21)

i=1
holds possibly outside of an exceptional set E3 C (0,+00) of finite linear measure. Since A\’ (Ai) <

113, (Ao), we get
N(r, Ag) = o(T'(r, Ag)), ™ — +o0. (3.22)

Since T'(r, Ag) = m(r, Ag) + N(r, Ap), then by (3.21) and (3.22), we obtain
(1 —-0(1))T(r, Ap) §Z i)+ OQogr +1ogT(r, f)), r¢& Es, r— +oo. (3.23)

Set

a = max {PS;(AJ) : pg(AJ) < :U’g(AO) =po, j=1,.., k — 1}
If pg (4)) < ,u?o (Ao) = o, then for any given € (0 < 22 < po — a) and sufficiently large r, we have

m(r, A;) < T(r, A;) <logy *(logr®™®) < log ™ *(logro—*=), j # 0. (3.24)

Set

T = max {Tg(Aj) : pg(Aj) = N?D(AO) =po, j=1,....k—1}.
Then 7 < 7o = 7%(Ao). If pO(A;) = pd(Ao) = po, 72(4;) < 7 < To, then for any given e
(0 < 2¢ < 79 — 7) and sufficiently large r, we have

m(r, A;) < T(r,A;) <log gofl(log (T + s)r“o]), Jj#0. (3.25)

The definition of the lower p-type T ?o(AO) = 7 implies that for any given € > 0 and sufficiently large
r, we have

T(r, Ag) > logp™* (log [(To— E)r“o]). (3.26)
Substituting (3.24)—(3.26) into (3.23), for any given € (0 < 2e < min{uo — a;7 ¢ — 7}) we obtain
(1—o(1))log ™' (log [(To — &)r*]) < O(logr +logT(r, f)), r & E3, 7 — +o0. (3.27)

From Lemma 3.2, (3.27), the monotonicity of ¢! and (1.5), we deduce that jig = pul(Ao) < pl(f). O
Lemma 3.13 ([17]). Let f be a meromorphic function. If pO(f) < +oo, then pl(f) = 0.
Lemma 3.14. Let f be a rational function, then pg(f) =0.

Proof. Since f is a rational function, we have T'(r, f) = O(logr). By Karamata’s theorem (see [23]),
it follows that p(e?) = t°) as t — +o0. Hence

T log r))°()
pp(f) = Timsup P limsup (BT

=0. O
r—+oo logr r—+4oo logr
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4 Proofs of the main results
Proof of Theorem 2.4. First, we prove that pl(f) = p%(Ao) and pul(f) = p%(Ao). Since

max {p) (4;) = j # 0} < pd(Ao) < pl(Ag) < +o0,
by Lemma 3.1 and (3.17), we have that

T(r, ) < ¢ " ((p)(Ao) + 3¢) logr) (4.1)

holds for any given € > 0 and r ¢ Ey, r — 400, where Ej is a set of finite logarithmic measure. From
Lemma 3.2, the monotonicity of ¢ and (4.1), we obtain that pl(f) < pJ(Ao). Set

b = max {pg(Aj) : pg(Aj) < p?a(Ao) =po, j=1,....k—1}.

If pO(A;) < pl(Ao) < pl(Ao) = po or pd(A;) < pd(Ao) < p%(Ao) = po, then for any given e
(0 < 2e < po — b) and sufficiently large r, we have

T(r,Aj) < loggp_l(logrb”) <logyp~'(logrro=e), j #0. (4.2)

Set
T = max {Tg(Aj) : pg(Aj) = M?g(AO) =po, j=1,....k—1}.

Then 7 < 7o = 73(Ao). If p(A;) = pd(Ao) = p%(Ao) = po, T < To < 7o = 72(Ap), then for any
given € (0 < 2¢e < 79 — 7) and sufficiently large r, we have

T(r,A;) < loggo*l(log [(T + s)rpo]), j#0. (4.3)

Applying Lemma 3.7 to the coefficient Ag, we find that
T(r,Ag) > loge ™" (log [(10 — )r*°]) (4.4)

holds for any given € > 0 and r € E4, 7 — 400, where Fy is a set of infinite logarithmic measure.
Substituting (4.2)—(4.4) into (3.23), it follows for any given £(0 < 2e < min{pg—b;790—7}), r € E4\ F3
(r — +00) that

(1 —o(1))log o~ (log [(To — €)r™]) < O(logr + log T'(r, f)), (4.5)
where Ej is a set of finite linear measure. By Lemma 3.2, the monotonicity of ¢ =1 and (1.5), from

(4.5) we obtain py = p%(Ao) < pL(f). Therefore, p,(f) = p)(Ao). On the other hand, by Lemma
3.11 and Lemma 3.12, we deduce that p),(f) = ul(Ao).

Secondly, we prove that AL(f —g) = pl(f) and AL(f —g) = pL(f). Let h = f —g. Since pL(g) <

1 (Ao) = i (f) < pL(f), it follows from Lemma 3.4 and Lemma 3.5 that pl(h) = pL(f) = p%(Ao)

and /L:O(h) = p}a(f) = ,ug(Ao). By substituting f = g+ h, f' =¢ +1,...,f%) = ¢® + pk*) into
(1.1), we obtain

B 4 A ()R o Ag(2)h = — (g + A1 (2)g% Y 4 Ag(2)g). (4.6)

If g% + Ap_1(2)g®* =V + -+ Ap(2)g = G = 0, then by Lemma 3.12, we have pi(9) = pl(Ao) which
contradicts the assumption p}a (9) < u?a (Ap). Hence G # 0. By Lemma 3.6 and Lemma 3.13, we get

po(G) <max {p,(9), pu(A;) (j=0,1,....,k—1)}
= pu(g) < pd(Ao) = n,(f) = ny(h) < ph(h) = plL(f) = p(Ao).

Then it follows from Lemma 3.10, Lemma 3.9 and (4.6) that A} (h) = AL(h) = pL(h) = pL(f) and
1
%)

by 1
- - o\ @
AL(h) = AL(h) = pb(h) = pl(f). Therefore, AL(f —g) = pl(f) and AL(f —g) = pL(f) which
completes the proof of Theorem 2.4. O
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Proof of Theorem 2.5. Since

k—1
> m(r, 4;)
hmsup =1 <1
r—otoo  m(r,Ao) 7
there exists (0 <7 < 1) such that
k—1
m(r,A;) <nm(r,Ag), r— +o0. (4.7)
j=1
By (4.7) and (3.23), for r & E3, r — 400 we have
(1 —o(1) =n)T(r, Ag) < O(logr +log T'(r, f)), (4.8)

where Fs is a set of ﬁnlte linear measure. By Lemma 3.2, (4.8), the monotonicity of ¢ and (1.5)
we obtain pw(f) > Py Y(Ap) and /’[/cp(f) > ,u@(Ao) From the first part of the proof of Theorem 2.4,
we have p‘ﬁ( ) < pg,(AO) and by applying Lemma 3.11, we have puj(f) < u$(Ag). Then we deduce
pg(f) = pd(Ao) < pi(f) = p(Ag). The second part of the proof of Theorem 2.4 completes the proof
of Theorem 2.5. O

Proof of Theorem 2.6. First, we suppose that f is a rational function. If the function f is either
rational with a pole at z, of multiplicity k& > 1 or polynomial of degree deg(f) > s, then f(*)(z) # 0. If

max {p(,(4;) : j# s} < pQ(As) = ps,
then by Lemma 3.5, Lemma 3.6, Lemma 3.14 and (1.1), we get
0= u2(0) = kO(F™) + Ag 1 ()% 4o+ Ap(2)f) = u2(As) = s > 0,
which is a contradiction. Set
e = max {p(47) : (A7) < 1O(A,) = iy, J 7 5}
If pg(Aj) < ,u?o (As) = ps, then for any given €(0 < 2¢ < ps — ¢) and sufficiently large r, we have
m(r,A;) < T(r, Aj) <logp *(logrete), j#s. (4.9)

Set 7 = max{7(4;) : pl(A;) = u¢( s), J # s}. Then there exist two constants 51 and Sz such that
T<b1<Ba<Ts= T¢( s). If pw( i) = MW(A ), Tg(A ) < 7T < T, then for sufficiently large r, we
have

O

m(r,A;) < T(r, A;) <loge " (log [Bir"]), j#s. (4.10)
) < 1) (As), we have

Since AJ(
N(r,As) = o(T(r, As)), r— +o0. (4.11)

By the definition of the lower p-type T (A ) =15, we have
T(r,As) > logapfl(log [Bgr“ﬂ), r — 400. (4.12)

Equation (1.1) can be written as

B f f(lc f(kfl) f(s+1) f(sfl)
- Sff(s)( 7 + Ag1 7 +~-+As+1T+A5_1 7 + ~~+A0>. (4.13)
By Lemma 3.3 and (4.13), for sufficiently large r, we get
T(r,As) = N(r, As) + m(r, A;) < N(r, A;) + > m(r, A;) + O(logr). (4.14)

j#s
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Substituting (4.9)—(4.12) into (4.14) and using (1.3), we obtain

(1 —o(1))log ™" (log[Bar*])
< O(log ¢ ' (log [Bﬂ""ﬂ)) + O(logr) = O(log ¢ ' (log [Bﬂ“’“])), r — 400.

By Lemma 3.2, the monotonicity of ¢ and (1.5), we obtain 83 < #; which is a contradiction. Hence
we deduce that f should be a polynomial of degree deg(f) < s — 1 if f is a non-transcendental
meromorphic solution of (1.1).

Secondly, we suppose that f is a transcendental meromorphic solution of (1.1). From Lemma 3.3,
(4.13) and the fact that

1
m(r ) ST +T(r 55) =T ) + T 1)+ 0(1) = O (r, 1),
it follows that
T(r, As) < N(r, A) + > m(r,A;) + O(T(r, f)) (4.15)
i

holds for sufficiently large r, r ¢ E3, where F3 is a set of finite linear measure. By substituting
(4.9)-(4.12) into (4.15), we obtain

(1—o(1))log o' (log(Bar*)) < O(T(r, f)), r & Es, r— +oc. (4.16)

By Lemma 3.2, the monotonicity of ¢, (1.5) and (4.16), we can deduce that u (A,) < pd(f) and also,
by using the same arguments as in the proof of the first part of Theorem 2.4 and (4.15), we can obtain
pY(As) < pd(f). Since max{p)(A;) : j # s} < pd(As) < p(As) < +00, by Lemma 3.1 and (3.17),
for any given ¢ > 0, we have

T(r, f) < <p*1((pg(As) + 3¢) logr)7 r — 400, r ¢ Fy, (4.17)

where Ej is a set of finite logarithmic measure. From Lemma 3.2, the monotonicity of ¢ and (4.17),
we obtain that pl(f) < pO(As). By Lemma 3.11, we have ul(f) < pd(As). Therefore, pl(f) <
P2 (As) < p2(f) and pl(f) < pd(As) < pd(f) which completes the proof of Theorem 2.6. O
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