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Abstract. In the paper, we study mixed type interaction problem of pseudo-oscillations between
thermo-elastic and thermo-piezo-elastic bodies with interior cracks. The model under consideration
is based on the Green—Naghdi theory of thermo-piezo-electricity without energy dissipation. This
theory permits propagation of thermal waves only with a finite speed. Using the potential theory and
boundary pseudodifferential equations method, we prove the existence and uniqueness of solutions
and analyze their smoothness.
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1 Introduction

In this paper, we investigate boundary-transmission problem, i.e., mixed type interaction problem of
pseudo-oscillations between thermo-elastic and thermo-piezo-elastic bodies. The model under consid-
eration is based on the Green—Naghdi theory of thermo-piezo-electricity without energy dissipation.
This theory permits propagation of thermal waves only with a finite speed.

Other models of thermo-piezo-electricity, in particular, Foigt’s and Mindlin’s model, are well
known. The model under consideration is refined taking into account microrotation and microstraght
of the particle.

Almost complete historical and bibliographical notes in this direction can be found in [15], where
the dynamical equations of the thermopiezo-electricity without energy dissipation are derived on the
basis of the Green—Naghdi theory established in [11,12] and Eringen’s results obtained in [8,9]. In
the present paper, we consider the pseudo-oscillation equations obtained by the Laplace transform
from the dynamical equations derived by Iesan in [15] for homogeneous isotropic solids possessing
thermo-piezo-electricity properties without energy dissipation.

Using the potential theory and the method of boundary pseudodifferential equations, we prove the
existence and uniqueness theorems of solutions in appropriate function spaces. We prove regularity
results of the mixed type boundary-transmission problem with interior cracks. Further, we analyze
regularity of solutions of the mixed type boundary-transmission problem near the exceptional curves,
where different type boundary conditions collide, and near the crack edges. The regularity of solutions
near the crack edges is C %, whereas for the temperature of elasticity body is C 2. The regularity of
solutions near the curve, where different type boundary conditions meet, depends on the material
constants and does not depend on the geometry of the exceptional curve. If these constants meet
certain conditions, then the smoothness of solutions is Cz (cf. [2-6]).

2 Thermo-elastic field equations and thermo-piezo-elastic
field equations without energy dissipation

The model under consideration is based on the Green-Naghdi theory of thermo-piezo-electricity with-
out energy dissipation.

Consider disjoint bounded domains ; and €5 in the Euclidean space R? with C*-smooth bound-
aries 001 = S; and 90y = S, U S, (S1NSy = @). S = S us™, 5P n 5N = g,
by = 8S§D) = 8S£N) € C*. We assume that the solids under consideration contain interior cracks.
We identify the crack surfaces as two-dimensional, two-sided manifolds ¥, &k = 1,2, with the crack
edges 12&’“) = 0Xk, k= 1,2. We assume that Xy, k = 1, 2, are proper parts of closed surfaces S(()k) C Q,
k = 1,2, surrounding domains ﬁék) C Qp and that Xy, S(()k) and Egk), k =1,2, are C*°-smooth. Denote
ng = Qk \ Ek, k’ = 1,2.

Throughout the paper, n = (ny,ng,ng) stands for the exterior unit normal vector to 9Q; = S
and S(gl) = 8(2(()1). A vector v = (v1,19,v3) is an exterior unit normal vector to 9Qs = S; U Sy and
S& =00,

Suppose the domain €2, is filled with a homogeneous thermo-elastic material, then the system of
governing differential equations of pseudo-oscillations with respect to the sought vector function U =
(u™,9NT | where uV) = (ugl),uél),ugl))—r is the displacement vector and ¥(!) is the temperature,
has the following form (see [16]):

(u(l) + %(1))Au(1)+()\(1)+u(1)) grad divu® —szlu(l)—rﬂél) grad 9™ = (]:1(1),]72(1),]:3(1))T, (2.1)
EV A9 — 726090 — 780 diy oM = 7Y, (2.2)

where (.7-'1(1), ]:2(1), .7:351))—'— is a mass force density, ]-'il) is a heat source density, p; is the mass density,
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o) AW Bél), EM and a( are the thermo-elastic constants and satisfy the conditions

7D >0, W 425 >0, 5 42, 433D >0, kW >0, p >0, oP >0,

Bél)>0, T=0+1iw, 0d>09>0, weR.

Figure 1

The stress operator for a homogeneous isotropic system of equations is defined as follows:

7 :T(l)(aﬂwn’T) = [Ti(jl)(awvn’ 7_)]4><4

AOn;0; + pOnjd; + 5 (pD + DY)y =78 nlsa
[0]1x3 kMn, 8,

4x4

We can write the above system (2.1),(2.2) of equations for pseudo-oscillations of the theory of
homogeneous isotropic thermo-elasticity in the following matrix form:

A(l)((“)x, T)U(l) =FM

where UM = () 9T FO) = (fl(l),fél),fél),ff))—r, and A1 (9,,7) is the 4-dimensional
matrix differential operator of generalized thermo-elasticity:

AD(@,,7) = [AD (0s,7)],..,

[0 (D + 56DV A + AD + u0,0; — 72p185], 00 —7B" 0131
—Tﬂél)[aj‘]lxg —7'2(1(1) + k(l)A 4x4

where d;; is the Kronecker delta.
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The domain €2 is filled with a thermo-electro-elastic material. The corresponding system of
differential equations of pseudo-oscillations with respect to the sought vector function U has the
following form (see [15]):

(1 + ) 0;0,u + (0@ + u@)9,0;u — por?ul® + 3 Peij10;07

+)\(2)5¢cp(2) — 82093 = —pofs, i=1,2,3, (2.3)

29;0,0 — 72429 — 7620, — 7e26® 1 120,0,0 — 1 0,0,4® = 7%0@@ (2.4)
7(2)6j8j¢,- + (a(2) + ﬂ(2))ajai¢;2) _ T2Iéz)¢§2)

@ diul? — 2P = _p X, i =1,2,3, (2.5)

(a§?0;0;— &)@ 720 AP 9,0,0@ 4147 9,0,0@ 4+ 79D AP 9ul? = —poF,  (2.6)

AP 0;0;0® + xP0;0,0® + 1P 0,0,0 = - §, (2.7)

where U® = (u{? u{? uP 9@ ¢, ¢(2) P, 0@ )T 4@ = (P P )T is the displace-
ment vector, 19(2) is the temperature, $? = (¢1 ,(béQ),qS:(f))T is the vector of microrotation, ¢
is the microstretch, (® is the electric field potential, and (f1, f2, f3) is the external body force per
unit mass, @ is the external rate of supply of heat per unit mass, X; is the external body couple per
unit mass, F' is the microstretch body force, f is the density of free charge, Ty is the initial reference
temperature.

The coefficients A2, (2 52 )\82), Béz), a®, @ 42 /\§2)7 u§2) aé2) )\52), Vo, 82), 082),

a®@, k@) 1/3()2), béQ), x@ are constitutive constants, and I(()Q) is the coefficient of inertia, j(() ) is the
microstretch inertia, €;5 is the Levi-Civita symbol.

Due to the positiveness of internal energy, the coefficients of system (2.3)—(2.7) must satisfy the
following conditions:

7B >0, 32 4 2u@ >0, P 42,3 4303 >,
&7 (e 421 £33 > 30077, 4@ > 8], af k) - (1Y) > 0,
BD 443 130 >0, x® >0, a® >0, k@ >0, af? >0, o (¥ - 5P) > 2(5{?)?,
(& = BN [af K = (7)) + 4670?2067 (047)7 = 26O 07)* > 0,
p2>0, I8 >0, i >0, g2

where po is the mass density.
Denote by

AP (9,,7) = [A2 (8, 7)]oxo

the matrix differential operator generated by the left]—hand side expressions in (2.3)—(2.7),
AD (00, 7) = 65 (1 + )00 + (A + 12)0,0; — 2p20;,
A (0., 7) = —780;, AEiLMm):—%@siﬂaz, AR (0, 7) = NP0 AR (0a,7) =0,
AP (0p,7) = —7820;, AR (00,7) = kP00, — 724, AT),(8s,7) =0,
AR (05, 7) =100 — 7, AR(05,7) = 500101, AR, (00,7) = —5Deid,
A 0 =0, AP (00,7) = 657D 010, + (@ + 5P)9,0; — (254 + 721555,
A§i48<a ) =0, AZ 5(00,7) =0, AL (0e,7) = -A0,
AR (05, 7) = P00 + 7, AT 4(00,7) =0, AR (02,7) = aiP 00, — (€57 + 7255),
AR 0, 7) = 2P0, A (0.,7) =0, A (0a,7) = i 010,
AY) (00, 7) =0 A (0e,7) = AP0, Ago(0,7) = XD, 0,5 =1,2,3.
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The stress differential operator of thermo-electro-elasticity is defined as follows:
T® = T73(9,,v,7) == [T (90, v, 7)]oxs,
where
T2 (0,,v,7) = A0 + 1P v0; + 855 (1@ + 5eD)di, T 0uyv,7) = —785 04,
T3, 4000, 7) = =i, T 00, v,7) = A7 viy, TS (0r,7) =0,
Tg (Og,v,7) =0, Tﬁ)(ﬁm,u,ﬂ = k@0, Tfj)_‘_él(am,u T) = fug)sljkylak.,
Tg) (Og,v,7) = 1/1 ) Uk, Tg)(ﬁx,y, T)= —V§2)Vkak, TZ(+21](8$,1/ T)=0,
TZ+4 1(0p, v, T) = 1/5 )Elzkw@k, Ti(izl’j+4(8m, v, T) = a(z)uiaj + B >ujai + (5ij'y ) 11,0,
TH_4 g(Oz,v,T) = b(() )Elmylak, ﬂ(il,g(az, v, T) = Af%likulak, Té?) (Ox,v,7) =0,
T84 (O, v, T) = 1/1 ukak, Té7j+4(8z,y,7) = —béQ)slikulak, TS(? (Og,v,T) = a(()Z)Vkak,
TS(S)(E)E, v, T) = 7A§2>ykak, Tg(f)(ax,z/, 7) =0, Téz) (Op, v, T) = §2)Vk8k,
T9(J+4(6w’ v, T)= —)\EQ)EijVgak, Tg(?(ﬁx, v, T):/\gg)ykﬁk, Téj’(ax, v, ) =xPvebp, i,7=1,2,3.
Introduce the boundary operator f@)(&g, v, T) = [i-(jz)(@g;, v,7)]oxg associated with the formally ad-
joint differential operator (A))*(,,):

TS0, v,7) = AX®00; + 1@ 005 + 65 (1 + 5Py, T Ousvym) = 76705,
7;(314(8;8,1/, 7) = =D, 'TS (Og,v,7) = /\0 v, ﬁg)(@x,u, T)=0, 723‘ (0z,v,7) =0,
ﬁ(f)(ai, v,7) = k@0, T 440, v, 7) =0, 7~:1(82) (Oz,v,7) = V§2)Vk8k,

’7(2) (Op, v, T) = y§2)uk8k, 7;+4J(8x, v,7) =0, 7;(31 1 (O, v, T) = Véz)eilkulak,
7;+4J+4(8w,1/ T) = a(2)1/0- + B )ujai + (Ljfy ) 13O 7;+4 §(Og,v,T) = b(()2)€ilkulak7
7;3_49(8171/ T)= /\1 )Ehkul(“)k, '7;;(]2) (0z,v,7) =0, 7;4 (Ox v, T) = u£2)uk8k,

T2 0, m) =0, T (00, vi7) = a0 Tog) (O v7) = AF 110,

T 0y, 7) =0, Top) Ousvi) = =800k, Ty ha(00,1,7) = 0,

7;)8 (Op,v,7) = —/\é U0, 75%2)(836,1/,7') = xP by, 0,5 =1,2,3.

The system of equations (2.3)—(2.7) can be written in the matrix form

A® (9, U = FO),

where

-
U(2) = (U§2)a U52)7 ug}2)a 79(2)7 ¢§2)a g2)a (b{(’)2)7 90(2)’ ¢(2))

1 T
F& = —(p2f1,p2fzap2f37 T p2Q, p2 X1, p2 X2, p2X3, po F f)

and A®)(9,, 1) is the 9-dimensional matrix differential operator corresponding to system (2.3)—(2.7).

3 Formulation of the mixed type boundary-transmission
problem with interior cracks (T'M). . of pseudo-oscillations

By H*® with s € R, we denote the Sobolev—Slobodetsky space. Let Mg be a smooth surface without
boundary. For a proper sub-manifold M C M, we denote by H?(M) the subspace of H*(My),

H*(M) ={g: g€ H*(My), suppg C M},
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while H*(M) stands for the space of restriction on M of functions from H*(M).
We are looking for a solution

UD = @ 9T = (D )T e [H'(Qg,)],
T T
U(2) = (u(2)7 79(2)3 ¢(2)a <p(2)a 77[}(2)) = (U(Q), uz(f)a ug2)a ce. 7ué2)) € [Hl(QEQ))]g
of pseudo-oscillation equations

A9, UMD =0 in Qx,,
AP (9, 1) UP =0 in Qy,,

which satisfy the following transmission conditions on the surface Sy:

() =y =V on 81, j=T4,
(T @0, YUY+ AT (0,0, 1)UV = (P on 81, j=T4, v=-n,

boundary conditions on the surface Si:

uy" = Q" on s, j=59,
mixed boundary conditions on the surface Ss:
(U@} =py” on 857,
{1®(0,, v, 7')U(2)}+ =™ on 5§V,
crack boundary conditions on ¥:
{T(l)(ax,n,T)U(l)}j.[ =F* oy, j=1,2,3
i} = {uf"} " =6 onzy,
{TD(@,,n, ) UD T —{(TD(@,,n, 1)UV} = FY  on 3y,
crack boundary conditions on Ys:
(T 0,1, UP} = FP* on %y, j=1,2,356,7,
(W3 — (WP =GP on sy, j=4,8,9,
{10y, 1) UD} T — (TP (0,0, 1)U} = F}? on %, j=4,8,9,
where
fVeHi(Ss), P eH S, j=11 QY eHi(S), j=509,
p? e (H (S, NV e lmESNVP, FVF e HOR(R), j=1,2,3,
¢V eHi(z), BV e H 3(%)), FFeH 3(%y), j=1,2356,7,
G§2) Eﬁ%(EQ)v j:478797 Fj(2) Gﬁ_%(22)7 j:478797
and the compatibility conditions
FOT —F) " e Ho3(ny), j=1,2,3
FAT - F®T e H3(8,), j=1,2,3,5,6,7,

are satisfied.

(3.11)
(3.12)
(3.13)

For the mixed type boundary-transmission problem (T'M). ,, the following uniqueness theorem

holds.
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Theorem 3.1. The mized type boundary-transmission problem (I'M). . cannot have two different
solutions in the Sobolev space [H*(Qs,)]* x [H(2s,)]°.

Proof. Tt is sufficient to show that the homogeneous problem (T'M ). , has only the trivial solution.
Indeed, suppose (UM, U®?)) is a solution to the homogeneous problem (T'M).,. Let us add

together two Green’s formulas in the domains 2 \ﬁék) and Q(()k), k = 1,2, where Qék) is the above

introduced auxiliary domain ﬁék) C Q, k =1,2. We recall that the crack surface ¥ is a proper

part of the boundary S((Jk) = 898’0 C p. Any solutions to the homogeneous differential equations

AR (9,,7) =0, k = 1,2, of the classes [H'(Qs,)]* and [H'(s,)]?, respectively, and their derivatives

are continuous across the surfaces S(gk) \ S, k=1,2:

/ ES)(U(l),U(l))daz _ <{T(1)U(1)}+, {U(l)}+>51’ (3.14)
le
/ E@U®,T®)de = ({TOUDY (UPY) (3.15)
ng

where the symbols (-, -)g, and (-, - )s,us, denote the duality between the function spaces [H =2 (S;))]*
and [H2(S))]*, and the function spaces [H~2(S; U S5)]? and [H2 (S) U S5)]?, respectively, and

UM = M, 9T U@ = (@ 9@ 6@ o) T
BO@D,T0) = £, 7D) + prr D - rp0 diva®
+ kW) grad 9|2 4 Tﬂél) divuM9® 4 726 M2,
g(u(l)ﬁ(l)) — (/L(l) + %(1))| gradu(1)|2 + ()\(1) + M(l))| divu(1)|2.
Here and in what follows, a - b denotes the scalar product of two, in general, complex valued vectors

N
a~b:Zak5k, a,beCV.

k=1

Obviously, £(u™,7M) >0 Vul) £0,

EQU®,T?) = B®,5) + 202 e, Im (9542 9,67
+ 200 Tm(9;0@9 @) + 20 Im(9;92 ;9 @) + 2ir 55 Im(9;uP9?)
n 2”682) Im(ap(2)19(2)) + 72 (pzlu(Q)‘Q n 152)‘¢(2)|2 +j62)|‘P(2)‘2 + a(2)|19(2)‘2);
here, B(v®,5 ) > 0 Vv® #£ 0 (for the definition of this form (see [6, formula (2.19)]).

Adding Green’s formulas (3.14) and (3.15), and taking into account that (U, U®)) is a solution
to the homogeneous transmission problem (T'M), -, we get

/JES)(U“),U(”)dgcJr / EAWU® T ) de
Qzl QEQ
4 9

<{T(1)U(1)};’, {U(l)};r>sl + Z <{T(2)U(2)}j, {U(2)};r>s1
J

]

Jj=1

=3 <{T<1>U<1>}]+ TP} {U<2>}J+>Sl 0.
j=1

Therefore, we obtain

/E&”(U“%U“Udﬁ / E@U®,T®)dx = 0.

Qs Qs,
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Similarly, we get (see [6])

/E§1>(U<1>,U<1>)dz+/E§2>(U<2>,U<2>)dx:0,
Qzl QEQ

where
EAU®,T®):= B u®,5?) 4 2irp§? Im(9;u/79 @)
+ 2i7062) Im (cp(2)§(2)) + 72 (pz|u(2) 1+ 152) |0®|@ 4 (2)|<,0(2 |2 4+ @93 )

Now if we repeat the reasoning in Theorem 4.1 and Theorem 4.2 of [7] (see also [6, Section 5], we
get

uW =0, 9V =0 in Qg,,
u? =0, ¢ =0, @ =0, 9P =0, v =b in Qy,,

where b is an arbitrary constant.
For the function (®), from the Dirichlet homogeneous condition on the surface S(DQ) it follows that

b = 0. Therefore, for the homogeneous transmission problem (T'M). r, we obtain
U — (u(l),g(l))T =0 in Qy,,
U = (u®, 92, 62, o 4T =0 in 0. 0

4 Properties of potentials and boundary operators

The single and double layer potentials are defined as follows (their properties see [6,18]):

v (g)(z) = / D (& — y)g(y) dy S,
S1

VO (f)(x) = / POz — ) f(y) dyS, VD (h) () = / I (s — y)h(y) d, S,

Sl SZ

W (W) () = / [0 (@, n(y), T (@ = )] XV () d,S,

¥

WE (P () = / [T®(8,,v(y), 7T (@ — )] 7] X (y) dy S,
o

VO (@) (z) = / POz — ) uD(y)d,S, V(D) () = / IO (z — )T (y)d, 5,

21 22

where T (2 —y) and I'® (z —y) are the fundamental solutions of the differential operators A1) (9, 7)
and A®)(9,,7), respectively (see [6,18]).
The following theorem holds (see [6,16,18]).

Theorem 4.1. Let g € [H™2(S))]4, f € [H2(S))]°, h € [H’%(Sg)]g, XV e [Hz2(2)]*, x?@ e
€[H

2
[H2(25)]°, W) e [H2 ()], U@ e [H2(%,)]°, then the following jump relations hold:

1
{T(l)(amn T) (1) (:F — Iy +IC(Sll))g on Sq,

2
1
(F510+K8)f on sy,

9}
(N}

{T(Q)(am,u T)
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{13 (0,0, IV ()} &)
{TO@r,n VO @) = (F 5L+ KD )0 onxy,

- (3
=
(T, v, )V (@)} F (? LA + K@) u® on 5,
= (
(

2
(WO ()} i%IﬁNc(”)x(” on 31,
(WA = (£ 5+ N on 5,
where
K (9)(2) = / TW(8,,n(2), )TV (2 — y)g(y) d,S, =€ S,
S1
KW@ = [ 120, G = ) dyS, = € 51
S1
KM = [ TO0..06), )0 e = hia)d,S, = € Sa
Sa
KO (w0)(2) = / T (0., n(2), TV (z — 1) TV() d, S, = € 5,
3
KO (W) (2) = / T 0., 0(2), T (2 — 1) VD (y)d,S, = € T,
3
NO W) (z) = / [Ty, n(y), TV 2 — V@) d,S, =€ Ty,
3
NP ((P)(2) = / ['T“<1><ay,u<y),7>[r(2><z_y>x<2><y>ffdys, 2 € 5y,
3
and
HY (9)(2) = (VD (9) ()} = (Vi(9)(2)} . z € 5,
HE (N () = V(N = (V& (=), ze s,
HS (h)(2) = {VE () ()} = {VE (W) (2)}, 2 Sa,
LV (g)(z) = {TOWD (9)(2)} " = {TOWD(9)(2)} 7, z €%y,
LOf)(2) = {TOWR(f)(2)} = {TOWD(f)(2)} ", 2 €3y

Here, we collect some theorems describing the mapping properties of potentials and corresponding
boundary (pseudodifferential) operators. The proof of these theorems can be found in [1,6,10,13,14,
17-19].

Theorem 4.2. Let s € R. Then the single- and double-layer potentials can be extended to the
continuous operators

Ve [E(s)] = [HE )
Ve [H (8] = [H R )], VD [HY(S)]” - (B ()],
= [H3(05,]", VO [H ()" -

— 2 LW [H(59)] = [HTE (]
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Theorem 4.3. Let s € R. Then the pseudodifferential operators of order —1
s 4 o 4
1S [Ho (s = [HS)]
1 [H(S)]) = [Hs)] HG : [H(S))” = [H(S:)]”
are invertible and the pseudodifferential operators of order 1
re, L0 [H ()] = [H7U(S)]Y, ren £ [H(0)]° = [H1(52)]°
are invertible.

Theorem 4.4. Let s € R. Then the singular integral operators

K (7o (50" = [Ho ()]
KS) [ ()] = [H*(51)]",
K [H(S)]” — [H*(52)]"
KO :[H2 (=) = [Ho (SS9,
’C£2) :[ﬁs(EQ)]Q N [HS(S(()2))]9

are continuous.

5 Existence of a solution to the mixed type
boundary-transmission problem (7M).,
of pseudo-oscillations

We are looking for a solution to the mixed boundary-transmission problem (T'M). . in the form of
the following single layer potentials:

U — V(l)(’H )7 Lg® + WD L yOgO) iy Qy
U@ — V(2) (Hfg)) 1.(2) +V(2)(’H,(S22))*1h(2) + Wc(z)x(z) + Vc(z)q,(z) in O,
where the unknown densities ¢(*), ¢, A x(1) @) T and T2 belong to the following Sobolev
spaces:
1 1
gV = (g" g NTeE=s)), ¢ =6",....05")" € [Hx(s0)]°,
1 1
W = (0, hg) T e HE (), XV = 6T e [HE ()]
1 ~ 1
K=, x <2>> e[S, v = (i W) e [HE (s
v® = (@ )T e (3 (3,))°.

Let us note that the boundary conditions on crack faces ¥j, k = 1,2, (3.8) and (3.11) can be
transformed equivalently as (see [5, 6])

{T(I)U(l)},+ {TOTWys = J S Fj(l)v* onY, j=1,3,
(TOUOY 7Oy Wys = FDF L D™ on sy, j=T13,
(TOUDY (TPU®); = FPF —FP7 on%,, j=1,2,3,5,6,7,

J

2)r7(2)\+ 22— _ p(2)+ (2),— S
{TOUOY +{TCUP}; = B + F; onY,, j=1,2,3567.

Therefore, the boundary and boundary-transmission conditions (3.1)—(3.13) of the problem (TM).,
can be rewritten as the transmission conditions on the surface Si:

=y = Y on sy, =14
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{T(l)U(l)}j + {T(Q)U(Q)}j _ fj@) onS, j=1,4, v=—n,
boundary conditions on the surface S;:
{u (2)}+ Q(2) on Si, j=59,
mixed boundary conditions on the surface Ss:
{U(z)}+ ) on S(D)
(TAy@)1+ on S(N),
crack boundary conditions on X:
(TOUWyr (rOyWy- = T FD" oy, j=1.3
{T(I)U(l)};r + {T(l)U(l)}; = Fj(l)’+ + Fj(l)’_ onY;, j7=1,3
{uf"} = ("} =G on
(TOUNF —(TOyW) ] = Fil) on ¥,
crack boundary conditions on Ys:
{TPU®} — {T<2>U yo=FET FPT on%,, j=1,2,3,5,6,7,

(TAUPY 4 TOU?) - :F]@”JFF]@)" onYs, j=1,2,3,56,7,

(P — (P} =6 on %y, j=4,8,9,
(TOUOY (TOUP)- = F? on%y, j=4,8,9.

Taking into account the boundary and boundary-transmission conditions of the mixed type prob-
lem (T'M). -, we obtain the following system of equations with respect to the vector functions g,

9@, h@ D @ w0 and v

o) 47, [V (HE) D), 4 s, WX 47, VW) = @

g(l) gj(z) s [Vs(f)(H(szz))_lh(Q)b +rg, WD + g, VOB,
s WX, g [VPUD), = fV on S, j=T4,

[(—114+IC§1))(H“ -1 (1>] (- I + KV HE) g g

2

+rg, [T Véj) (7.[(2)) h) 4 rg, [TOWD D] 4 rg, [TOVO GO,

+rg, [T<2>W§2>X<2>]j +rg, [T (2)‘/0(2)\1,(2)]j _ fj on Sy
g O] gl g WA 4 g V8
2) (42— 1 2 2)\_
ron [TOVE HE) @] 4 g (= 51 + K& ) (HE) 1A
+ 7o [T(2)WC(2)X(2)] + 7 [T(z)Vc(z)\Il
2 2

ro, [TV ()79 V] s, [LDX D) + s, KO WO

, =14,

2)] — p;D) on SéD)

DT LT on sy, =13,

r, [TOVE (MG 9P, + s, [TOVE (HE)TA®] 475, [£Px

1 1

HEDT L FEDT) on S, j=1,2,

where

1 _ 1),+ 1),— o
v ——(Fj —F; ) on¥y, j=1,3,

3,5,6,7,

on Sl, ] = m, (51)

(5.2)

@] = g™ on 85N, (5.5)

O 45, KOV
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v = —FN W =g on 3y, (5.9)
2 2 2),— .

v = —(FOT - FP7) on %y, j=1,2,3,5,6,7, (5.10)

v =—F? @ =6® onx,, j=4,80. (5.11)

We introduce the notation

Xgl) .= (X( ) 41D 0 )) X[()2) = (XEQ) (2) ) (2 1(2) (2))

@ x5! AP B @ By
XV = (0,0,0,x") T, X :=(0,0,0,x?,0,0,0,x?, x?)T.

As we see, the sought for densities (1) W2 the forth component of the vector x(*), and the
forth, eighth and ninth components of the vector x(?) are determined explicitly by the data of the
transmission problem. Hence it remains to find the densities g™, g®, A(®) and (M), x(2).

Equation (5.4) can be rewritten as follows:

rs, Ve, (HS) 1@ + 1@ g, [WOYD] 4 rg,[VEEP] = 37 + 1§? on S, (5.12)
where <I>(()2) € [H=(S,)) is a fixed extension of the Dirichlet condition the vector function péD) €

[H%(SED))}Q over the entire surface Sy, and h((f) € [H%(Sém)] supph S(N) Let us determine
h(?) from equations (5.12) in the following way:

h® (I>((J2) + h(()2) —rs, [Vs(f)(%g))—lg@)] —rg, WA = pg, [VA W)

and insert it into equations (5.1), (5.2), (5.3), (5.5) and (5.7) of system (5.1)—(5.7). At the same time,
we change the places of equations (5.1) and (5.2), and multiply equation (5.1) by —1. In this case, we

get the following equivalent system of equations with respect to the vector functions ¢(*), ¢(®), h((f),

5(\(1) = (Xc()l)70> and X(Q) = ( 52)?X§2)?X§2)?Ong2)7X¢(32)7X52)7070)T:

1

9" - (2)+7"51[Vs<22 (HE)™ (T52V§2)(H§))_19(2))}j—7“51[Vs(f)(“fi(s?)_lh(()z)]ﬁ?“sl[Wc(l)?(l)]j

s, WS 4, [V (HE) 7 (r VPR | = 752 on 81, j=T4, (5.13)

2 2 2)\— 2 2)\ — 2 2)\ — 2 ~
7 s, |V (HED T s, VD (HE) 0| s [VED G 0], = s VDR

+ 15, [V HE) " (s, [WC@)Q(Z)])} =Q® onS,, j=5.79, (5.14)
(ks ] (- k) ),

=7 [TOVEHE) VD HE) 1) | s [TOVE )67,

T rs, [TOWORO] 4, [TAWEDR)]

— 15, [TOVE HE) e, (WA = F2 on 81, j =14, (5.15)

roo [TV HD)=1g®] - oo [( _ 71 +IC(2))(H§?)* (rs, VO (1)~ g(z))]

g (= 5 Tt KDY HD) 1 —rgon [ (3 o+ kD) HE) ™ rs, W3] |

Frgm [T(Q)WC(Z))?(Q)] = Q{QN) on SéN), (5.16)
rs, [TOVEHG) W] +rs, [£ORW] = FY on 3y, j =13, (5.17)
e, [T(Q)Vs(f)(’}-lg))_lgm]j [T(Q)V (7—[(2)) ( VS(12 (H(2 )t (2))]j

re, [TOVE M) 0] + 75, [£PRP)
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=, [TOVE G s, WERP)| = F on D, j=1,2,3,5,6.7, (5.18)

where
Y 0+, V2 D07, s WO 1, [V — i, (RO,
+ s, WX, = s, [V (HED ™ (s, V)]
—rs, [V HE) e, WOXD)] 5 =T14,
oW .= 7@52) +rs [V, (2)(H(2))71¢82)]j +rg, VAT — g [V, (2)(7—[(2))’1(7"321/0(2)\11(2))]].
+ 15, (WX —rs, [Ve2 (HE) T re; WORP)] ,» 5 =75.9,
P = 1 = rs [TV HE) ) s, [TAVED (HE) T (WX
T, [TQ)V@)(H(SZ))_l([VC(2)\I/(2)]J-) . [T(1)WC(1)X()1)]L
— g, [TOVOEO] g, [TOWEFD] g [T(Q)V(Q)\I/@)] -Ta
CA1<2N) = (IéN)_TSéM( %IQ+K32 ) (Hg?)_lq’é )+TS§N) [( -1y —HC )(7—[(22)) TS, [WC(Q)Y((]Q)H
trgpo [(= 570+ Q) HE) s, [V )
— 7o) [T(2)W§2)Y§2)} — T [111(2)‘/'0(2)\1;(2)]7

FO e 2 1 (FO 4 ) = g, [CDRO] g, [£O0], = T3,

=2 (BT 4 B — s, [TOVE (HE) 0]

s, [TOVE ) (s, WERP) | = re, [£0%7)]

15, [TOVE MG o, [V52\If(2)])L — s, [KOWA)] | j=1,2,3,5.6,7.

System (5.13)—(5.18) can be rewritten in the following matrix form:

Pe(g™, g, nG XD T = F, (5.19)
where
]—'::(f) JW.QD QR FP TP
~ ~ ~ ~ ~ ~ ~ ~ ~ T
Fl(l),Fz(l),F?El),Fl(Q),FQ(Q),FS(Q),FéQ),FéQ),F;2)>
[ Toxa —Iy+ B T By, Ts, i
AY Ao +C R Ds, Rs,
PC = [0]g><4 D TSéN)Ai) [0]9><3 sz 5
Ms, [0]3x9 [0]3x9 Tzl[ﬁgl)]gxs [0]3x6
[0exa  Ms, Ds, 06 rsalL)6xe +Csl 4 a
here,
10000000 0"
.01 0000000
4= 190 010 0 0 0 0 O >
000100U0TO00

the operators

1 1
AG) = (= S LA KGN T AG == 5 1+ kD ) HEN T AL ;:( — 5 K ) (HE) ™!
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are the Poincaré-Steklov type operators (see [6,17,18]), which are strongly elliptic pseudodifferential
operators of order 1,

Bi=rs, [V HE) e,V HED) ] L €= s [TOVE MG e,V HEH) )]

) )
9%x9 4x9

D i=rgom [TOVE (HG) ™ gg = ropm [AE (rs, VED (HE) ™) g0

(1)
- (2) (2/(2)y— - (2) (7/(2) _ |rs, [We
Ti= o [Ve, ) guer Ri= s, [TV (M) g By = { ’ [[0]5xj4XBL 5
X

'Dzl =TS [T(I)Wc(l)]4><37 7—22 =Ts |: (2)(H(2)) 2[W6(2)}:|9><6 —Ts [WC(2)]9><6’
Ry, = —rs, {T(Q)VS(S) (ngz))_lr52 [WC(Z)]:|4X6 +rs [T(2)Wc(2)]4><6
N, i= =1 gon [AD 05, WEPD] |+ 7500 W oxs,
Cs, =15, [T(2)V§§)(H(S?)’1 [I/Vc(z)”w67 Dy, = ry, [ 2)V(2)(H(2)) ]
Ms, =1y, [T(l V(l)(H(l)) }3X4’
Ms, = 7,22[ 2)V(2)(H(2)) ]6 o~ TS, [T(2 V(Q) (7‘[(2)) (Véf)(H(Q)) )]
[‘C ]6><6 [[ g bk:lGXG’ ]7k:1a273757677a
[‘C(l)]3><3 [[ ((/ ]]k]3><37 J)k: 1a2a3'

6x9’

6x9’

The operator P, : X — Y is bounded, where
X = [H3(S0)]' x [H3 (S5 x [H (S0)] x [H (£2))°,
Y = [H3(S)]° x [H™2 (S0 x [H72(55™)]° x [H3 (S0 x [H#(52)]°
The following theorem holds.
Theorem 5.1. The operator P, : X — Y is invertible.

Proof. First, we show that the operator P, : X — Y is Fredholm with zero index.
Indeed, obviously, the operators

B:[Hz?(S))° — [H*(S1)]°, Tzz

are compact, since S; NSy =@ and S; NYE, =, 5,k =1,2.
Now, we consider the operator

Toxa —1Iy [0loxo [ [0]oxe
A(gll) [A Naxo  [0)axo [0]ax3 [0laxe

P = |[0oxa  [0]oxo 7“5§N>Ag‘;) [0]9x3 [0]oxe ;
[0]3xa  [0]3x9 O3 75, £ ]5xa [0]3x6

[[0]6x4  [Oloxo [06x9 [06x3 rea[£676x6, ] 31%31
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where the operator P, — 790(1) : X = Y is compact. If we show that the operator ’Pc(l) : X > Yis
Fredholm with zero index, then the operator P, : X — Y will be Fredholm with zero index.

Write the system corresponding to the operator 736(1) as follows:
gV P = on 8y, j=171, (5.20)
-3V =F onSl,j—59 (5.21)
(5.23)
(5.24)
(5.25)

TS§N>A»(S22)TLO = L}éN) on SEN)
e EOR = FO) on's,.
rEQZ(Q))A{él) =F® on o,

System (5.20)—(5.25) is equivalent to the following system:

gV —g?P =fY on 8y, j=T14, (5.26)
~3 = F; on 81, j =59, (5.27)

(AY) + A3 o =T on S, (5.28)
rsézv)Agz)ﬁ(()Z) = (}éN) on SéN), (5.29)
rzlz(l)iél) =F® on 3y, (5.30)

re, LAY = F® on 5, (5.31)

where
A(2) [Ag)Jl}4x47 J7 _ma V= (¢1,1/)2,1/13,1/14)T,

:W+ZN”THZN”ngM

S1 ]1 S1,J1

The operator corresponding to system (5.26)—(5.31) has the form

Igx4 —1Iy [0]gxo [0]ox3 [0]oxe
Afgll) + ngzl) [0laxeo  [0]axg [0]4xs [0]4x6

Pc(2) = [0]gxa [0]oxo TSEN)A(S? [0]oxs [0loxe )
[0]3x4 [0]3x9 [0]3x9 rs, [£ g Jax3 [0]3x6

[0]6x4 [0l6xo  [0]6x9 [0]6x3 r5 [ £P6x6- 4100

Evidently, the operator 7752) : X — Y is bounded.

Consider the composition ’PC(S) = Pc(2) o Q, where

[0laxo  —Is  [0]laxo [Olaxz [0]axe

Ig [0}9><4 [0]9><9 [0}9><3 [O]9><6
Q:= |[OJoxo [0Joxa  Io  [0Joxs [Oloxe

[O0]3xa [0]sxo [O]zxo I3 [O]3xe

[0]6xa [Olexo [Oléxo [Ol6xs  Ios |41.5

Obviously, the operator Q : X — X is invertible.
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The operator P has the following form:

—1Iy Toxa [0]oxo [0loxs [0]oxs
Olaxo  AG) +AE) [0]axo [0]4xs [Olaxs
P = |[0]oxo [0]9x4 Tsézv)«‘lfgi) [0]gxs [0]oxe )
[0]3x9 [0]3%4 [0]3x9 7"21[521)]%3 [0]3x6
L[0]6x9 [0]65a [0]6x9 [0]6x3 Ty, [ECQ)]Gxﬁa_ 31x31

To show that the operator P. : X — Y is Fredholm with zero index, it is sufficient to show that the
operator Pc(3) : X = Y is Fredholm with zero index.

Since the operator Pc(3) is triangular diagonal, it is sufficient to show that the operators standing
on the diagonal are Fredholm with zero index.

As we know, from Lemma 5.2 in [7] it follows that the operator

A+ AD) [HE(S)] - [H (5]
is Fredholm with zero index, while the strongly elliptic pseudodifferential operators

rgoo A [ (SEV)° = (A ()P,

re, [L0]sxs : [HE(E0)]? = [H72(20), 12, [LP]oxe : [H2 (22)]° — [H72(22)]°

are invertible (see [6, Theorem 7.7, Theorem 7.6], and [18, Theorem 14]). Hence the operator S
X — Y is Fredholm with zero index. Then the operators Pc(l), 0(2) : X — Y will also be Fredholm
with zero index. Therefore, the operator P, : X — Y is Fredholm with zero index.

Now we show that the operator P, : X — Y is invertible.

The invertibility of the operator P, is derived from the uniqueness of the solution of the boundary-
transmission problem (T'M)., .

Indeed, let (g(l), g@, hég), Xgl), ng))T € X be a solution of the homogeneous equation

Pe(9M, 9@, h8 XD @) T =0, (5.32)

0 0

We construct the following potentials:

U® = v #P) gD 4w, (5.33)
U = VR 0D) g + VU)W, (534

Since (g(l),g@),hé2),xg1),xg2))T is a solution of the homogeneous equation (5.32), i.e., of the ho-
mogeneous system (5.13)—(5.18), it is clear that (U(!),U?)) will be a solution of the homogeneous
boundary-transmission problem (7'M). . Then from the uniqueness theorem of the problem (T'M), -
it follows that

UM =0 in Qy,, (5.35)
U® =0 in Qy,. (5.36)

Since the single layer potentials are continuous in space R3, we have

{U(1)}+ _ {U(l)}— =0 on S,
{U(Q)}+ — {U(z)}i = 0 on S] U 52'

Hence the vector functions U®) and U(?) satisfy the following Dirichlet problems:

AW (9, VUM =0 inR3\ Q,
{UMy= =0 on Sy,
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and _
AP (9, 7)UP =0 inR3\ Qy,
{U(Q)}i =0 on S U Ss.

From the uniqueness of solutions of the Dirichlet problem it follows that these problems have only
trivial solution, i.e.,

UM =0 inR3\ Q,
U? =0 in R\ Q.
Hence from (5.35) and (5.36) we get
UM =0 inR3\ T,
U® =0 inR3\ Ty
Then, applying the jump formulas of potentials (5.33) and (5.34), we get
(OO T+ = ¢ =0 on S,
{T(Q)U(Q)}— _ {T(2)U(2)}+ =¢® =0 on S,
{TOU@} —(TAU} = b =0 on S,
(U (W} =W =0 on ¥y,
(U —{UP}~ =33 =0 on 2y.

Therefore, we obtain Ker P, = {0} and, since ind P = 0, we have Ker P = {0}. Thus the operator
P.: X — Y is invertible, and Theorem 5.1 is proved. O

The invertibility of the operator P, implies the unique solvability of equation (5.19), i.e., of systems
(5.13)—(5.18) and (5.1)—(5.11). Consequently, we obtain the unique solvability of the mixed type
boundary-transmission problem (T'M)., .

Thus we obtain the existence and uniqueness theorem of the mixed type boundary-transmission
problem (T'M), -.

Theorem 5.2. Let 51,52,31,52 € C®, T =0+ iw, 0 > 09 >0, w €R, and
AV e (S), [P eHH(S,), j=T4, QY eHi(S), j=509,
ps” e (2 (S, g™ e (H A SYP, VT e HOA (D), j=1,2.3,
¢V e Hi(zy), RV eH ¥(x1), FOFeH (D), j=1,2,3,56,7,
G§2) Eﬁ%(22)7 j:478797 Fj(2) Eﬁ_%(22)7 j:478793
and the compatibility conditions
FOF —FV " e Hoi(ny), j=1,2,3,
FP% —FP" e H3(%,), j=1,2,3,56,T,

are satisfied.
Then the mized boundary-transmission problem (T'M). . has a unique solution

U, UR) e [H (Qs,)]* x [H'(25,)]°,
which is presented in the following form:
vW = v #HE) T gO £ wO D Ly Oe® Gy
U® — V(z)(H(z)) (2) +V§2)(Hfg22))*1h(2) +Wc(z)x(z) +VC(2)\II(2) in Qs

where gV, g2 R M) @) G W) gre the unique solutions of system (5.1)—~(5.11).
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Let us introduce the notation

cng) + p)\?) +q V§2)
2~(2) ’

d:=

where

(bég)blz + >\(12)bz2 + V£2)b32),

1
(057011 + APl + 15 7bs1), pi= 5

l\D\H

-1
RORNC e
(b(2)b 13 + )\( Tbas + Vé )bss) [bjklaxa = )\gQ) x@ y§2)
V§2) 2 L@

Vs

l\:JM—l

Denote by C§°(Xy), k = 1,2, the space of functions vanishing along with all tangential (to )
derivatives at €£k) =0%, k=1,2.
The following regularity theorem holds.

Theorem 5.3. Suppose S1,S5 € C* and

£V e c=(sy), f<2>eC°°<Sl) j:n QP e Cc=(81), j =59,
ps” e jo=(S)e, e[C=@EP, FVF e ™), j=1,23,
GV ec>Ey), F“) € C®()), FP*ec™(,), j=1,2,3,567,

J
G eC=(Dy), FYeC™(T), j=489,

1)+ 1),— o /= . 2),+ 2),— e )
FOT - FDT e GRS, j=1,23, FPT - FPT € GF (), j=1,2,3,5,6,T.

Let (UM, UP)) be the unique solution to the mived type boundary-transmission problem (TM)..,.
Then the components of u) and U® have C2-Hélder smoothness in one-sided interior and
exterior neighborhoods of the surfaces S(()l) and 582), respectively, and 9 has the C'% -smoothness in

one-sided interior and exterior neighborhoods of the surface Sél). While

(1) If d < 0, then the vector U®) belongs to the [071]9 Hélder class in a neighborhood of the line
by = BSéD) c’)S(N), where 1 1 — ; arctg 2v/—d, 1 depends on the material constants, does
not depend on the geometry of the exceptzonal line lm and may take any values from the interval

(Oa %)7
(2) Ifd > 0, then the vector U belongs to the [C%]Q—Hb'lder class in a neighborhood of the line £,

Proof of this theorem follows from the work [6, Section 9], where the asymptotic properties and
the smoothness of solutions of mixed and crack type problems are studied near the change of the
boundary conditions, i.e., near the line £, and crack edges ok = 0%k, k=1,2 (cf. [3,5]). Note that
the smoothness of the vector functions U") and U is finite in the neighborhoods of ﬁgl) and 652), lns
respectively, but taking into account the data conditions of Theorem 5.3, outside these neighborhoods
UM and U@ are infinitely differentiable.
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