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Abstract. In this paper, we consider the following wave equation:

utt −∆u−∆utt +

t∫
0

g(t− s)∆u(s) ds+ |ut|m(x)−2ut = b|u|p(x)−2u.

First, we prove that the equation has a unique local solution for a suitable conditions by using Faedo–
Galerkin methods, and we also prove that the local solution is global in time. Finally, we demonstrate
that the solution with positive initial energy decays exponentially.

2020 Mathematics Subject Classification. 35B40, 35L70, 35L10.

Key words and phrases. Wave equation, variable exponents, memory term, global existence,
general decay.

რეზიუმე. ნაშრომში განხილულია ტალღის განტოლება

utt −∆u−∆utt +

t∫
0

g(t− s)∆u(s) ds+ |ut|m(x)−2ut = b|u|p(x)−2u.

თავდაპირველად, ფაედო-გალერკინის მეთოდების გამოყენებით დამტკიცებულია, რომ შესაფერი-
სი პირობების შემთხვევაში ამ განტოლებას აქვს ერთადერთი ლოკალური ამონახსნი. აგრეთვე
დამტკიცებულია, რომ ლოკალური ამონახსნი გლობალურია დროში. დასასრულ, ნაჩვენებია,
რომ დადებითი საწყისი ენერგიის მქონე ამონახსნი ექსპონენციურად ქრება.



Global Existence and General Decay of Solution for a Nonlinear Wave Equation 63

1 Introduction
We consider the following boundary value problem:

utt −∆u−∆utt +

t∫
0

g(t− s)∆u(s) ds+ |ut|m(x)−2ut = |u|p(x)−2u in Q,

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,

(1.1)

where Q = Ω × (0, T ) and Ω is a bounded domain in Rn, n ≥ 2, with a smooth boundary ∂Ω. p( · )
and m( · ) are the given measurable functions on Ω satisfying

2 ≤ θ− ≤ θ(x) ≤ θ+ ≤ θ∗, (1.2)
θ− := ess inf

x∈Ω
θ(x), θ+ := ess sup

x∈Ω
θ(x)

and

θ∗ =

∞, if n = 2,
2n

n− 2
, if n ≥ 3.

(1.3)

We also assume that p( · ) and m( · ) satisfy the log-Hölder continuity condition

|q(x)− q(y)| ≤ − A

log |x− y|
for a.e. x, y ∈ Ω, with |x− y| < δ, A > 0, 0 < δ < 1. (1.4)

Equation (1.1) can be viewed as a generalization of the evolutional equation

utt −∆u−∆utt +

t∫
0

g(t− s)∆u(s) ds+ ω|ut|m−2ut = b|u|r−2u in Ω× (0, T )

with the constant exponent of nonlinearity, m, r ∈ (2,∞), which appears in various physical contexts.
In the case p(x) = p and m(x) = m, equation (1.1) proved the existence and blow up of solutions.

The results have been established by many authors (see [1–3,5, 11,12,18,23]).
Recently, many authors have been treated the problem with variable exponents (see [2, 10, 14, 16,

19]). The study of these equations is based on the use of the Lebesgue and Sobolev spaces with
variable exponents (see, e.g., [6–9,13]).

Messaoudi et al. [17] studied the solution of the equation

utt −∆u+ |ut|p(x)−2ut = b|u|q(x)−2u in Ω× (0, T )

and used the Faedo–Galerkin method to establish the existence of a unique weak solution. They
also proved that the solutions with negative initial energy blow up in a finite time. Messaoudi and
Talahmeh [16] studied the blow-up in solutions of a quasilinear wave equation with variable exponent
nonlinearities:

utt − div(|∇u|r(x)−2∇u) + a|ut|p(x)−2ut = b|u|q(x)−2u in Ω× (0, T ).

They obtained the blow-up result for the solutions with negative initial energy and for certain solutions
with positive energy.

The outline of this paper is as follows. In Section 2, we state some results about the variable
exponent, Lebesgue and Sobolev spaces Lp( · )(Ω) and W 1,p( · )(Ω). In Section 3, we prove the local
existence. In Section 4, we show that the local solution is global in time, and the exponential decay
results are proved.
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2 Preliminaries and assumptions
In this section, we present some Lemmas about the Lebesgue and Sobolev space with variable com-
ponents (see [6–9,13]). Let p : Ω → [1,+∞] be a measurable function, where Ω is a domain of Rn.

We define the Lebesgue space with a variale exponent p( · ) by

Lp( · )(Ω) :=
{
v : Ω → R : measurable in Ω, %p( · )(λv) < +∞ for some λ > 0

}
,

where
%p( · )(v) =

∫
Ω

|v(x)|p(x) dx.

The set Lp( · )(Ω) is equipped with the norm (Luxemburg’s norm)

∥v∥p( · ) := inf
{
λ > 0 :

∫
Ω

∣∣∣v(x)
λ

∣∣∣p(x) dx ≤ 1

}
,

Lp( · )(Ω) is a Banach space [6].
Next, we define the variable-exponent Sobolev space W 1,p( · )(Ω) as follows:

W 1,p( · )(Ω) :=
{
v ∈ Lp( · )(Ω) such that ∇v exists and |∇v| ∈ Lp( · )(Ω)

}
.

This is a Banach space with respect to the norm ∥v∥W 1,p( · )(Ω) = ∥v∥p( · ) + ∥∇v∥p( · ) .
Furthermore, we set W 1,p( · )

0 (Ω) to be the closure of C∞
0 (Ω) in the space W 1,p( · )(Ω). Note that

the space W 1,p( · )(Ω) has a different definition in the case of variable exponents.
However, under condition (1.4) both definitions are equivalent (see [6]). The space W−1,p′( · )(Ω),

dual of W 1,p( · )
0 (Ω), is defined in the same way as the classical Sobolev spaces, where 1

p( · ) +
1

p′( · ) = 1.

Lemma 2.1 (Poincaré’s Inequality). Let Ω ⊂ Rn be a bounded domain and suppose that p( · ) satisfies
(1.4), then

∥v∥p( · ) ≤ c∥∇v∥p( · ) for all v ∈W
1,p( · )
0 (Ω),

where c > 0 is a constant which depends on p−, p+, and Ω only. In particular, ∥∇v∥p( · ) define an
equivalent norm on W

1,p( · )
0 (Ω).

Lemma 2.2 (Hölder’s Inequality). Suppose that p, q, s ≥ 1 are measurable functions defined on Ω
such that

1

s(y)
=

1

p(y)
+

1

q(y)
for a.e. y ∈ Ω.

If u ∈ Lp( · )(Ω) and v ∈ Lq( · )(Ω), then uv ∈ Ls( · )(Ω) with

∥uv∥s( · ) ≤ 2∥u∥p( · )∥v∥q( · ).

Lemma 2.3 (Lars et al. [6]). If p is a measurable function on Ω satisfying (1.2), then we have

min
{
∥u∥p

−

p( · ), ∥u∥
p+

p( · )

}
≤ %p( · )(u) ≤ max

{
∥u∥p

−

p( · ), ∥u∥
p+

p( · )
}

for any u ∈ Lp( · )(Ω).

Lemma 2.4 (Lars et al. [6]). If p is a measurable function on Ω satisfying (1.2) and (1.3), then the
embedding H1

0 (Ω) ↪→ Lp( · )(Ω) is continuous and compact.

From Lemma 2.4, there exists the positive constant B satisfying

∥u∥p( · ) ≤ B∥∇u∥2 for u ∈ H1
0 (Ω).
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We denote the total energy related to problem (1.1) as

E(t) =
1

2
∥ut∥22 +

1

2
∥∇ut∥22 +

1

2

(
1−

t∫
0

g(s) ds

)
∥∇u∥22 +

1

2
(g ◦ ∇u)(t)−

∫
Ω

1

p(x)
|u|p(x) dx, (2.1)

where

(g ◦ ∇u)(t) =
t∫

0

∫
Ω

g(t− s)|∇u(t)−∇u(s)|2 dx ds.

We also introduce the following functionals:

Ẽ(t) =
1

2
∥ut∥22 +

1

2
∥∇ut∥22 +

1

2

(
1−

t∫
0

g(s) ds

)
∥∇u∥22 +

1

2
(g ◦ ∇u)(t)− 1

p−

∫
Ω

|u|p(x) dx, (2.2)

˜̃
E(t) =

1

2
∥ut∥22 +

1

2
∥∇ut∥22 +

1

2

(
1−

t∫
0

g(s) ds

)
∥∇u∥22 +

1

2
(g ◦ ∇u)(t)− 1

p+

∫
Ω

|u|p(x) dx, (2.3)

I(t) =

(
1−

t∫
0

g(s) ds

)
∥∇u∥22 + (g ◦ ∇u)(t)−

∫
Ω

|u|p(x) dx, (2.4)

and

J(t) =
1

2

(
1−

t∫
0

g(s) ds

)
∥∇u∥22 +

1

2
(g ◦ ∇u)(t)− 1

p−

∫
Ω

|u|p(x) dx.

We show that
Ẽ(t) ≤ E(t) ≤ ˜̃

E(t). (2.5)
Let us introduce the assumptions:

(A1) g : R+ → R+
∗ is a bounded C1 function satisfying

1−
∞∫
0

g(s) ds = l > 0 and g′(t) ≤ −g(t). (2.6)

(A2) Assume that
I(0) > 0

and

Max
(
Bp−

l

( 2p−

l(p− − 2)
E(0)

) p−−2
2

,
Bp+

l

( 2p−

l(p− − 2)
E(0)

) p+−2
2

)
= λ < 1.

Theorem 2.1. Suppose that m( · ), p( · ) ∈ C(Ω) and (1.4) holds with

2 ≤ p− ≤ p(x) ≤ p+ ≤ 2
n− 1

n− 2
if n ≥ 3,

p(x) ≥ 2 if n = 2,

and

2 ≤ m− ≤ m(x) ≤ m+ ≤ 2
n− 1

n− 2
if n ≥ 3,

m(x) ≥ 2 if n = 2.

Then for any (u0, u1) ∈ H1
0 (Ω)×H1

0 (Ω), problem (1.1) has a unique weak local solution
u ∈ L∞([0, T );H1

0 (Ω)),

ut ∈ L∞([0, T );H1
0 (Ω)) ∩ Lm( · )(Ω× [0, T )),

utt ∈ L2([0, T );H1
0 (Ω)).
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3 Existence of weak solutions
In this section, we are going to obtain the existence of weak solutions to problem (1.1). We will
use Faedo–Galerkin’s method of approximation. Let {vl}∞l=1 be a basis of H1

0 (Ω) which constructs a
complete orthonormal system in L2(Ω). Denote by Vk = span {v1, v2, . . . , vk} the subspace generated
by the first k vectors of the basis {vl}∞l=1. By the normalization, we have ∥vl∥ = 1, and for any given
integer k, we consider the approximation solution

uk(t) =

k∑
l=1

ulk(t)vl,

where uk are the solutions to the following Cauchy problem:

(u′′k(t), vl)− (∆uk(t), vl)− (∆u′′k(t), vl)−
t∫

0

g(t− s)(∆uk(s), vl) ds

+
(
|u′k(t)|m(x)−2u′k(t), vl

)
=

(
|uk(t)|p(x)−2uk(t), vl

)
, l = 1, 2, . . . , k, (3.1)

uk(0) = u0k =

k∑
i=1

(uk(0), vi)vi → u0 in H1
0 (Ω), (3.2)

u′k(0) = u1k =

k∑
l=1

(u′k(0), vl)vl → u1 in H1
0 (Ω). (3.3)

Note that, system (3.1)–(3.3) can be solved by the Picard iteration method in ordinary differential
equations. Hence there exists a solution in [0, T∗) for some T∗ > 0, and we can extend this solution
to the whole interval [0, T ] for any given T > 0 by making use of a priori estimates below.
Step 1. Multiplying equation (3.1) by u′lk(t) and summing over l from 1 to k, we get

d

dt

(
1

2
∥u′k∥22 +

1

2
∥∇u′k∥22 +

1

2

(
1−

t∫
0

g(s) ds

)
∥∇uk∥22 +

1

2
(g ◦ ∇uk)(t)−

∫
Ω

1

p(x)
|uk|p(x) dx

)

= −
∫
Ω

|u′k|m(x) dx+
1

2
(g′ ◦ ∇uk)(t)−

1

2
g(t)∥∇uk∥22. (3.4)

Then, by virtue of (2.1), assumption (A1) and definition of the expression (g′ ◦ ∇uk)(t), we have

E′(uk(t)) = −
∫
Ω

|u′k|m(x) dx+
1

2
(g′ ◦ ∇uk)(t)−

1

2
g(t)∥∇uk∥22 ≤ 0.

Integrating (3.4) over (0, t), we obtain the estimate

1

2
∥u′k∥22 +

1

2
∥∇u′k∥22 +

1

2

(
1−

t∫
0

g(s) ds

)
∥∇uk∥22 +

1

2
(g ◦ ∇uk)(t)−

∫
Ω

1

p(x)
|uk|p(x) dx

+

t∫
0

∫
Ω

|u′k|m(x) dx ds− 1

2

t∫
0

(g′ ◦ ∇uk)(s) ds+
1

2

t∫
0

g(s)∥∇uk∥22 ds ≤ E(0). (3.5)

Since I(0) > 0, by the continuity there exists T∗ < T such that I(t) ≥ 0 for all t ∈ [0, T∗]. From
(2.3) and (2.4) we get

J(uk(t)) =
p− − 2

2p−

((
1−

t∫
0

g(s) ds

)
∥∇uk∥22 + (g ◦ ∇uk)(t)

)
+

1

p−
I(t).
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Then

J(uk(t)) ≥
p− − 2

2p−

((
1−

t∫
0

g(s) ds

)
∥∇uk∥22 + (g ◦ ∇uk)(t)

)
.

Hence we have (
1−

t∫
0

g(s) ds

)
∥∇uk∥22 ≤ 2p−

p− − 2
J(uk(t)).

From (2.1), (2.2) and (2.4), we obviously have ∀ t ∈ [0, T∗], J(uk(t)) ≤ Ẽ(uk(t)) ≤ E(uk(t)) ≤ E(0).
Thus we obtain (

1−
t∫

0

g(s) ds

)
∥∇uk∥22 ≤ 2p−

p− − 2
E(0). (3.6)

Before continuing the proof, we need the following

Lemma 3.1. Suppose that (1.2) and assumptions (A1), (A2) hold, then

%p( · )(uk) ≤ l ∥∇uk∥22, (3.7)

where l is defined in (2.6).

Proof. By Lemmas 2.3 and 2.4, we have

%p( · )(uk) ≤ max
{
∥uk∥p

−

p( · ), ∥uk∥
p+

p( · )

}
≤ max

{
Bp−

∥∇uk∥p
−

2 , Bp+

∥∇uk∥p
+

2

}
,

and from assumptions (A1), (A2) and (3.6), we get

%p( · )(uk) ≤ max
{
Bp−

∥∇uk∥22 × ∥∇uk∥p
−−2

2 , Bp+

∥∇uk∥22 × ∥∇uk∥p
+−2

2

}
≤ max

(
l∥∇uk∥22 ×

Bp−

l

( 2p−

l(p− − 2)
E(0)

) p−−2
2

, l∥∇uk∥22 ×
Bp+

l

( 2p−

l(p− − 2)
E(0)

) p+−2
2

)
≤ l∥∇uk∥22.

Due to (3.7), inequality (3.5) becomes

1

2
∥u′k∥22 +

1

2
∥∇u′k∥22 +

(1
2
− 1

p−

)(
1−

t∫
0

g(s) ds

)
∥∇uk∥22 +

1

2
(g ◦ ∇uk)(t)

+

t∫
0

∫
Ω

|u′k|m(x) dx ds− 1

2

t∫
0

(g′ ◦ ∇uk)(s) ds+
1

2

t∫
0

g(s)∥∇uk∥22 ds ≤ E(0).

1

2
sup

t∈(0,T∗)

∥u′k∥22 +
1

2
sup

t∈(0,T∗)

∥∇u′k∥22

+
(1
2
− 1

p−

)(
1−

t∫
0

g(s) ds

)
sup

t∈(0,T∗)

∥∇uk∥22 +
1

2
(g ◦ ∇uk)(t) +

t∫
0

∫
Ω

|u′k|m(x) dx ds

− 1

2

t∫
0

(g′ ◦ ∇uk)(s) ds+
1

2

t∫
0

g(s)∥∇uk∥22 ds ≤ E(0). (3.8)

From (3.8), we conclude that{
uk is uniformly bounded in L∞([0, T ),H1

0 (Ω)),

u′k is uniformly bounded in L∞([0, T ),H1
0 (Ω)) ∩ Lm( · )(Ω× [0, T )).

(3.9)
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Furthermore, from Lemma 2.4 and (3.9) we have{
|uk|p(x)−2uk} is uniformly bounded in L∞([0, T ), L2(Ω)),{
|u′k|m(x)−2u′k} is uniformly bounded in L

m( · )
m( · )−1 (Ω× [0, T )).

(3.10)

By (3.9) and (3.10), we infer that there exist a subsequence unof uk and a function u such that
uk ⇀ u weakly star in L∞([0, T ),H1

0 (Ω)),

u′k ⇀ u′ weakly star in L∞([0, T ),H1
0 (Ω)),

|u′k|m(x)−2u′k ⇀ ψ weakly in L
m( · )

m( · )−1 (Ω× [0, T )).

(3.11)

By the Aubin–Lions compactness Lemma [15], from (3.11) we conclude that

uk ⇀ u strongly in C([0, T ),H1
0 (Ω))

which implies
uk ⇀ u everywhere in [0, T ]× Ω. (3.12)

It follows from (3.11) and (3.12) that|uk|p(x)−2uk ⇀ |u|p(x)−2u weakly in L∞([0, T ), L2(Ω)),

|u′k|m(x)−2u′k ⇀ |u′|m(x)−2u′ weakly in L
m( · )

m( · )−1 (Ω× [0, T )).
(3.13)

Next, multiplying equation (3.1) by u′′lk(t) and summing over l from 1 to k, we get

∥u′′k∥22 + ∥∇u′′k∥22 +
d

dt

(∫
Ω

1

m(x)
|u′k|m(x) dx

)

= −
∫
Ω

∇uk∇u′′k dx+

t∫
0

g(t− τ)

∫
Ω

∇uk(τ)∇u′′k(t) dx dτ +
∫
Ω

|uk|p(x)−2uku
′′
k dx. (3.14)

From Young’s inequality, we have∣∣∣∣− ∫
Ω

∇uk∇u′′k dx
∣∣∣∣ ≤ δ∥∇u′′k∥22 +

1

4δ
∥∇uk∥22, (3.15)

∣∣∣∣
t∫

0

g(t− τ)

∫
Ω

∇uk(τ)∇u′′k(t) dx dτ
∣∣∣∣ ≤ δ∥∇u′′k∥22 +

1

4δ

∫
Ω

( t∫
0

g(t− τ)∇uk(τ) dτ
)2

dx

≤ δ∥∇u′′k∥22 +
1

4δ

t∫
0

g(s) ds

t∫
0

g(t− τ)

∫
Ω

|∇uk(τ)|2 dx dτ

≤ δ∥∇u′′k∥22 +
(1− l)g(0)

4δ

t∫
0

∥∇uk(τ)∥2dτ, (3.16)

and ∣∣∣∣ ∫
Ω

|uk|p(x)−2uku
′′
k dx

∣∣∣∣ ≤ δ∥u′′k∥22 +
1

4δ

∫
Ω

|uk|2p(x)−2 dx. (3.17)
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From (3.14)–(3.17), inequality (3.14) becomes

(1− δ)∥u′′k∥22 + (1− 2δ)∥∇u′′k∥22 +
d

dt

(∫
Ω

1

m(x)
|u′k|m(x) dx

)

≤ 1

4δ
∥∇uk∥22 +

(1− l)g(0)

4δ

t∫
0

∥∇uk(τ)∥2 dτ +
1

4δ

∫
Ω

|uk|2(p(x)−1) dx.

We have uk ∈ L∞([0, T ),H1
0 (Ω)), then∫

Ω

|uk|2p(x)−2 dx ≤
∫
Ω

|uk|2p
−−2 dx+

∫
Ω

|uk|2p
+−2 dx < +∞,

since
2(p− − 1) ≤ 2(p(x)− 1) ≤ 2(p+ − 1) ≤ 2n

n− 2
.

We chose δ small enough to find a positive constant λ such that

t∫
0

∥u′′k∥22 ds+ λ

t∫
0

∥∇u′′k∥22 ds+
∫
Ω

1

m(x)
|u′k|m(x) dx ≤ C.

Then
u′′k is bounded in L2([0, T ),H1

0 (Ω)).

Similarly, we have
u′′k ⇀ u′′ weakly star in L2([0, T ),H1

0 (Ω)). (3.18)

Setting up k −→ ∞ and passing to the limit in (3.1), we obtain

(u′′(t), vl)− (∆u(t), vl)− (∆u′′(t), vl)−
t∫

0

g(t− s)(∆u(s), vl) ds

+ (|u′(t)|m(x)−2u′(t), vl) =
(
|u(t)|p(x)−2u(t), vl

)
, l = 1, 2, . . . , k.

Since {vl}∞l=1 is a basis of H1
0 (Ω), we deduce that u satisfies the equation of (1.1). From (3.11),

(3.13), (3.18) and Lemma 3.1.7 in [22] with B = H1
0 (Ω) in the both cases, we infer that{

uk(0)⇀ u(0) weakly in H1
0 (Ω),

u′k(0)⇀ u′(0) weakly in H1
0 (Ω).

(3.19)

We get from (3.2) and (3.19) that u(0) = u0, u′(0) = u1.
Thus the proof of the existence is complete.
Now, it remains to prove the uniqueness. Let u1, u2 be two solutions in the class described in the

statement of this theorem, and w = u1 − u2.
Then w satisfies

wtt −∆w −∆wtt +

t∫
0

g(t− s)∆w(s) ds

+ ω
(
|u1t |m(x)−2u1t − |u2t |m(x)−2u2t

)
= |u1|p(x)−2u1 − |u2|p(x)−2u2 (3.20)

and
w(x, 0) = w0(x), wt(x, 0) = w1(x).
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Multiplying (3.20) by wt, then integrating with respect to x, we get

1

2

∫
Ω

|wt|2 dx+
1

2

∫
Ω

|∇wt|2 dx+
1

2

(
1−

t∫
0

g(s) ds

)
∥∇w∥22

+
1

2
(g ◦ ∇w)(t)− 1

2

t∫
0

(g′ ◦ ∇w)(s) ds+ 1

2

t∫
0

g(s)∥∇w∥22 ds

+ ω

t∫
0

∫
Ω

(
|u1t |m(x)−2u1t − |u2t |m(x)−2u2t

)
wt dx ds =

t∫
0

∫
Ω

(
|u1|p(x)−2u1 − |u2|p(x)−2u2

)
wt dx ds.

By using the inequality (
|a|m(x)−2a− |b|m(x)−2b

)
(a− b) ≥ 0

for all a, b ∈ R and a.e. x ∈ Ω, this implies that

1

2

∫
Ω

|wt|2 dx+
1

2

(
1−

t∫
0

g(s) ds

)
∥∇w∥22 ≤ C

t∫
0

∫
Ω

(
|u1|p(x)−2u1 − |u2|p(x)−2u2

)
wt dx ds.

Repeating the estimate as in [17], we arive at

∫
Ω

|wt|2 dx+ ∥∇w∥22 ≤ C

t∫
0

(∫
Ω

|wt|2 dx+ ∥∇w∥22
)
ds.

Gronwall’s inequality yields ∫
Ω

|wt|2 dx+ ∥∇w∥22 = 0.

Thus w = 0. The shows the uniqueness.

4 Global existence and energy decay
Theorem 4.1. Suppose that the assumptions of Theorem 2.1 and (A1) and (A2) hold. If (u0, u1) ∈
H1

0 (Ω)×H1
0 (Ω), then the solution of (1.1) is bounded and global in time.

Proof. It suffices to show that ∥∇u(t)∥22 + ∥ut(t)∥22 is bounded independently of t. To obtain this, we
observe that

E(0) ≥ E(t) ≥ Ẽ(t)

=
1

2
∥ut∥22 +

1

2
∥∇ut∥22 +

p− − 2

2p−

((
1−

t∫
0

g(s) ds

)
∥∇u∥22 + (g ◦ ∇u)(t)

)
+

1

p−
I(t)

≥ 1

2
∥ut∥22 +

1

2
∥∇ut∥22 +

p− − 2

2p−
(
l∥∇u∥22 + (g ◦ ∇u)(t)

)
, (4.1)

since I(t) > 0, (g ◦ ∇u)(t) are positives. Therefore,

∥∇u∥22 + ∥ut∥22 ≤ CE(0),

where C is a positive constant, depends only on p− and l and is independent of t. This infer that the
solution of (1.1) is bounded and global in time.
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Lemma 4.1. Under the assumptions of Theorem 2.1, we have∫
Ω

|u|2p(x)−2 dx ≤ c∥∇u∥22,
∫
Ω

|ut|2m(x)−2 dx ≤ c∥∇ut∥22.

Proof. By Lemma 2.3, we have∫
Ω

|u|2(p(x)−1) dx ≤ max
{
∥u∥2(p

−−1)
2(p( · )−1), ∥u∥

2(p+−1)
2(p( · )−1)

}
.

On the other hand, by Lemma 2.4, we have∫
Ω

|u|2(p(x)−1) dx ≤ max
{
B2(p−−1)∥∇u∥2(p

−−1)
2 , B2(p+−1)∥∇u∥2(p

+−1)
2

}
≤ max

{
B2(p−−1)∥∇u∥2(p

−−2)
2 , B2(p+−1)∥∇u∥2(p

+−2)
2

}
∥∇u∥22,

since
2(p− − 1) ≤ 2(p(x)− 1) ≤ 2(p+ − 1) ≤ 2n

n− 2
.

Using (4.1), we obtain∫
Ω

|u|2(p(x)−1) dx ≤ max
{
B2(p−−1)

( 2p−

l(p− − 2)
E(0)

)p−−2

, B2(p+−1)
( 2p−

l(p− − 2)
E(0)

)p+−2
}
∥∇u∥22

≤ c∥∇u∥22.

Similarly, we get ∫
Ω

|ut|2m(x)−2 dx ≤ c∥∇ut∥22.

Now, we define
G(t) =ME(t) + εΦ(t) + Ψ(t), (4.2)

where M and ε are positive constants which specified later and

Φ(t) =

∫
Ω

utu dx+

∫
Ω

∇ut(t)∇u(t) dx, (4.3)

Ψ(t) =

∫
Ω

(∆ut − ut)

t∫
0

g(t− s)(u(t)− u(s)) ds dx. (4.4)

Before we prove our result, we need the following lemmas.
Lemma 4.2. Let u ∈ L∞([0, T );H1

0 (Ω)), then we have∫
Ω

( t∫
0

g(t− s)(u(t)− u(s)) ds

)2

dx ≤ (1− l)c2(g ◦ ∇u)(t),

where c is Sobolev–Poincaré constant.
Proof. By the Hölder inequality, we get

∫
Ω

( t∫
0

g(t− s)(u(t)− u(s)) ds

)2

dx ≤
∫
Ω

( t∫
0

g(t− s) ds

)( t∫
0

g(t− s)|u(t)− u(s)|2 ds
)
dx

≤ (1− l)c2
t∫

0

g(t− s)∥∇u(t)−∇u(s)∥22 ds ≤ (1− l)c2(g ◦ ∇u)(t).



72 Wissem Boughamsa, Amar Ouaoua

Lemma 4.3. Let u be a solution of (1.1), then there exist two positive constants B1 and B2 such that

B1E(t) ≤ G(t) ≤ B2E(t).

Proof. By Young’s inequality, we have∣∣∣∣ ∫
Ω

utu dx

∣∣∣∣ ≤ δ∥ut∥22 +
1

4δ
∥u∥22 ≤ δ∥ut∥22 +

c

4δ
∥∇u∥22 (4.5)

and ∣∣∣∣ ∫
Ω

∇ut∇u dx
∣∣∣∣ ≤ δ∥∇ut∥22 +

1

4δ
∥∇u∥22. (4.6)

It follows from (4.4) that

Ψ(t) = −
∫
Ω

∇ut

t∫
0

g(t− s)(∇u(t)−∇u(s)) ds dx−
∫
Ω

ut

t∫
0

g(t− s)(u(t)− u(s)) ds dx. (4.7)

By Young’s inequality and Hölder’s inequality, the first term on the right-hand side of (4.7) can be
estimated as ∣∣∣∣− ∫

Ω

∇ut

t∫
0

g(t− s)(∇u(t)−∇u(s)) ds dx
∣∣∣∣

≤ 1

2
∥∇ut∥22 +

1

2

∫
Ω

( t∫
0

g(t− s)(∇u(t)−∇u(s)) ds
)2

dx

≤ 1

2
∥∇ut∥22 +

1− l

2
(g ◦ ∇u)(t). (4.8)

Applying similar arguments as in deriving (4.8) and then using Lemma 4.2, we have∣∣∣∣− ∫
Ω

ut

t∫
0

g(t− s)(u(t)− u(s)) ds dx

∣∣∣∣
≤ 1

2
∥ut∥22 +

1

2

∫
Ω

( t∫
0

g(t− s)(u(t)− u(s)) ds

)2

dx

≤ 1

2
∥ut∥22 +

1− l

2
c2(g ◦ ∇u)(t). (4.9)

Hence, by using (4.5)–(4.9), from (4.2) we have the following inequalities:

G(t) ≤ME(t) + εΦ(t) + Ψ(t)

≤ME(t) + λ1∥ut∥22 + λ2∥∇ut∥22 + λ3∥∇u∥22 + λ4(g ◦ ∇u)(t)

≤ME(t) + λ5

(
∥ut∥22 + ∥∇ut∥22 + ∥∇u∥22 + (g ◦ ∇u)(t)

)
,

where
λ1 =

1

2
+ εδ, λ2 =

1

2
+ εδ, λ3 =

1 + c

4δ
, λ4 =

1− l

2
(1 + c2).

On the other hand, we have

G(t) ≥ME(t)− λ5

(
∥ut∥22 + ∥∇ut∥22 + ∥∇u∥22 + (g ◦ ∇u)(t)

)
,

where λ5 = max(λ1, λ2, λ3, λ4). Thus from the definition of E(t) and (4.1), choosing M sufficiently
large and ε small enough, there exist two positive constants B1 and B2 such that

B1E(t) ≤ G(t) ≤ B2E(t).
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Theorem 4.2. Given (u0, u1) ∈ H1
0 (Ω) ×H1

0 (Ω), suppose that (A1) and (A2) hold. Then for t ≥ t0
the energy of the solution of (1.1) satisfies

E(t) ≤ ke−ξ(t−t0), t ≥ t0,

where ζ is a positive constant.

Proof. In order to obtain the decay result of E(t), we need to estimate the derivative of G(t). From
(4.3) and the first equation of (1.1) it follows that

Φ′(t) = ∥ut∥22 + ∥∇ut∥22 − ∥∇u∥22

−
∫
Ω

|ut|m(x)−2utu dx+

∫
Ω

|u|p(x) dx+

∫
Ω

∇u
t∫

0

g(t− s)∇u(s) ds dx. (4.10)

The last term on the right-hand side of (4.10) can be estimated as

∣∣∣∣ ∫
Ω

∇u
t∫

0

g(t− s)∇u(s) ds dx
∣∣∣∣ ≤ ∫

Ω

( t∫
0

g(t− s)|∇u(s)−∇u(t)| ds
)
dx+

t∫
0

g(s) ds∥∇u∥22

≤ (1+η)

t∫
0

g(s) ds∥∇u∥22+
1

4η
(g ◦ ∇u)(t) ≤ (1+η)(1−l)∥∇u∥22+

1

4η
(g ◦ ∇u)(t) for η>0. (4.11)

Also, by Hölder’s and Young’s inequalities, we get∣∣∣∣ ∫
Ω

|ut|m(x)−2utu dx

∣∣∣∣ ≤ η∥u∥22 +
1

4η

∫
Ω

|ut|2m(x)−2 dx. (4.12)

Substitution of (4.11) and (4.12) into (4.10) yields

Φ′(t) ≤ ∥ut∥22 + ∥∇ut∥22 − ∥∇u∥22 + (1 + η)(1− l)∥∇u∥22

+
1

4η
(g ◦ ∇u)(t) + η∥u∥22 +

1

4η

∫
Ω

|ut|2m(x)−2 +

∫
Ω

|u|p(x) dx. (4.13)

Next, we would like to estimate Ψ′(t). Taking the derivative of Ψ(t) in (4.4) and using the first
equation of (1.1), we get

Ψ′(t) =

∫
Ω

∇u(t)
t∫

0

g(t− s)(∇u(t)−∇u(s)) ds dx

−
∫
Ω

( t∫
0

g(t− s)∇u(s) ds
)( t∫

0

g(t− s)(∇u(t)−∇u(s)) ds
)
dx

+

∫
Ω

|ut|m(x)−2ut

t∫
0

g(t− s)(u(t)− u(s)) ds dx−
∫
Ω

|u|p(x)−2u

t∫
0

g(t− s)(u(t)− u(s)) ds dx

−
∫
Ω

ut

t∫
0

g′(t− s)(u(t)− u(s)) ds dx−
( t∫

0

g(s) ds

)
∥∇ut∥22

−
( t∫

0

g(s) ds

)
∥ut∥22 −

∫
Ω

∇ut

t∫
0

g′(t− s)(∇u(t)−∇u(s)) ds dx. (4.14)



74 Wissem Boughamsa, Amar Ouaoua

Similar to (4.13), in what follows, we estimate the right-hand side of (4.14),

∣∣∣∣ ∫
Ω

∇u
t∫

0

g(t− s)(∇u(t)−∇u(s)) ds dx
∣∣∣∣

≤ δ∥∇u∥22 +
1

4δ

∫
Ω

( t∫
0

g(t− s)(∇u(t)−∇u(s)) ds
)2

dx ≤ δ∥∇u∥22 +
1− l

4δ
(g ◦ ∇u)(t). (4.15)

and ∣∣∣∣ ∫
Ω

( t∫
0

g(t− s)∇u(s) ds
)( t∫

0

g(t− s)(∇u(t)−∇u(s)) ds
)
dx

∣∣∣∣ ≤ δI1 +
1

4δ
I2, (4.16)

where

I1 =

∫
Ω

( t∫
0

g(t− s)|∇u(s)| ds
)2

dx,

I2 =

∫
Ω

( t∫
0

g(t− s)|∇u(t)−∇u(s)| ds
)2

dx.

By Hölder’s and Young’s inequalities, for η > 0, we obtain

I1 ≤
∫
Ω

( t∫
0

g(t− s)
(
|∇u(s)−∇u(t)|+ |∇u(t)|

)
ds

)2

dx

≤
∫
Ω

( t∫
0

g(t− s)|∇u(s)−∇u(t)| ds
)2

dx+

∫
Ω

( t∫
0

g(t− s)|∇u(t)| ds
)2

dx

+ 2

∫
Ω

( t∫
0

g(t− s)|∇u(s)−∇u(t)| ds
)∫

Ω

( t∫
0

g(t− s)|∇u(t)| ds
)
dx

≤
( t∫

0

g(s) ds

)2

∥∇u∥22 +
∫
Ω

( t∫
0

g(t− s) ds

)( t∫
0

g(t− s)|∇u(s)−∇u(t)|2 ds
)
dx

+ η

∫
Ω

( t∫
0

g(t− s)|∇u(t)| ds
)2

dx+
1

η

∫
Ω

( t∫
0

g(t− s)|∇u(s)−∇u(t)| ds
)2

dx

≤ (1 + η)(1− l)2∥∇u∥22 +
(
1 +

1

η

)
(1− l)(g ◦ ∇u)(t) (4.17)

and

I2 =

∫
Ω

( t∫
0

g(t− s)|∇u(t)−∇u(s)| ds
)2

dx ≤ (1− l)(g ◦ ∇u)(t). (4.18)

Taking η = l
1−l in (4.17) and using (4.18), from (4.16) we get

∣∣∣∣− ∫
Ω

( t∫
0

g(t− s)∇u(s) ds
)( t∫

0

g(t− s)(∇u(t)−∇u(s)) ds
)
dx

∣∣∣∣
≤ (1− l)

(
δ∥∇u∥22 +

(δ
l
+

1

4δ

)
(1− l)(g ◦ ∇u)(t)

)
. (4.19)



Global Existence and General Decay of Solution for a Nonlinear Wave Equation 75

By Hölder’s inequality, Young’s inequality and Poincaré’s inequality, we have

∣∣∣∣ ∫
Ω

|ut|m(x)−2ut

t∫
0

g(t− s)(u(t)− u(s)) ds dx

∣∣∣∣ ≤ δ

∫
Ω

|ut|2m(x)−2 dx+
(1− l)c2

4δ
(g ◦ ∇u)(t) (4.20)

and ∣∣∣∣ ∫
Ω

|u|p(x)−2u

t∫
0

g(t− s)(u(t)− u(s)) ds dx

∣∣∣∣ ≤ δ

∫
Ω

|u|2p(x)−2 dx+
(1− l)c2

4δ
(g ◦ ∇u)(t). (4.21)

Using Young’s inequality and (A1) to deal with the last term of (4.14), we have

∣∣∣∣− ∫
Ω

∇ut

t∫
0

g′(t− s)(∇u(t)−∇u(s)) ds dx
∣∣∣∣ ≤ δ∥∇ut∥22 −

g(0)

4δ
(g′ ◦ ∇u)(t). (4.22)

Exploiting again Young’s inequality and (A1) to estimate the fiveth term, we get

∣∣∣∣− ∫
Ω

ut

t∫
0

g′(t− s)(u(t)− u(s)) ds dx

∣∣∣∣
≤ δ∥ut∥22 +

1

4δ

∫
Ω

t∫
0

g′(t− s)|u(t)− u(s)|2 ds dx ≤ δ∥ut∥22 −
g(0)c2

4δ
(g′ ◦ ∇u)(t). (4.23)

Further, combining estimates (4.15)–(4.23), (4.14) becomes

Ψ′(t) ≤ δ∥ut∥22 + δ∥∇ut∥22 + (1− l)δ∥∇u∥22 + δ

∫
Ω

|ut|2m(x)−2 dx

+ δ

∫
Ω

|u|2p(x)−2 dx+ δ∥∇u∥22 +
(1− l)

4δ
(g ◦ ∇u)(t) +

(δ
l
+

1

4δ

)
(1− l)2(g ◦ ∇u)(t)

+
(1− l)

4δ
c2(g ◦ ∇u)(t) + (1− l)

4δ
c2(g ◦ ∇u)(t)− g(0)

4δ
(g′ ◦ ∇u)(t)

− g(0)c2

4δ
(g′ ◦ ∇u)(t)−

( t∫
0

g(s) ds

)
∥∇ut∥22 −

( t∫
0

g(s) ds

)
∥ut∥22. (4.24)

By (4.24) and Lemma 4.1, we obtain

Ψ′(t) ≤ c1∥ut∥22 + c2∥∇ut∥22 + c3∥∇u∥22 + c4(g ◦ ∇u)(t)− c5(g
′ ◦ ∇u)(t), (4.25)

where

c1 =

(
δ −

t∫
0

g(s) ds

)
, c2 =

(
δ + cδ −

t∫
0

g(s) ds

)
,

c3 = ((1− l)δ + δ + cδ), c4 =
((δ

l
+

1

4δ

)
(1− l)2 +

(1− l)

4δ
+

2(1− l)

4δ
c2
)

and
c5 =

(g(0)
4δ

+
g(0)c2

4δ

)
.
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Since g(t) is positive and continuous, for any t0 > 0, there exist g1, g0 such that

g(t) ≥ g1 and
t∫

0

g(s) ds ≥
t0∫
0

g(s) ds = g0, ∀ t ≥ t0. (4.26)

Hence we conclude from (4.2), (4.13), (4.25) and (4.26) that for any t ≥ t0 > 0,

G′(t) =ME′(t) + εΦ′(t) + Ψ′(t)

≤
(M

2
− c5

)
(g′ ◦ ∇u)(t) + (ε+ c1)∥ut∥22 +

(
ε+ c2 +

εc

4η

)
∥∇ut∥22

+
(
− M

2
g1 + c3 − ε+ εcη + (1− η)(1− l)

)
∥∇u∥22 +

(
c4 +

ε

4η

)
(g ◦ ∇u)(t) + ε

∫
Ω

|u|p(x) dx.

However, g′(t) ≤ −g(t) by (A1), thus we can see that

G′(t) ≤ −(−ε− c1)∥ut∥22

−
(
− ε− c2 −

εc

4η

)
∥∇ut∥22 −

(M
2
g1 − c3 + ε− εcη − (1− η)(1− l)

)
∥∇u∥22

−
(M

2
− c4 − c5 −

ε

4η

)
(g ◦ ∇u)(t) + ε

∫
Ω

|u|p(x) dx.

At this point, we take δ = ε, η =
√
δ and choose ε small enough such that g0 > (c+ 2)ε+ c

√
ε . Once

ε is fixed, we pick M sufficiently large so that(M
2

− c4 − c5 −
ε

4η

)
> 0 and

(M
2
g1 − c3 + ε− εcη − (1− η)(1− l)

)
> 0.

Therefore, for any t ≥ t0, we have

G′(t) ≤ −
(
c6∥ut∥22 + c7∥∇ut∥22 + c8∥∇u∥22 + c9(g ◦ ∇u)(t)− ε

∫
Ω

|u|p(x) dx
)
,

where

c6 = (−ε− c1), c7 =
(
− ε− c2 −

εc

4η

)
, c8 =

(M
2
g1 − c3 + ε− εcη − (1− η)(1− l)

)
,

and
c9 =

(M
2

− c4 − c5 −
ε

4η

)
.

Combining Lemma 4.3 with (4.1) and (2.5), we get

G′(t) ≤ −c10E(t) ≤ −c10
B2

G(t), (4.27)

for some positive constant c10 > 0. The integration of (4.27) over (t0, t) gives

G(t) ≤ G(t0)e
− c10

B2
(t−t0), t ≥ t0.

Again, by virtue of Lemma 4.3,

E(t) ≤ G(t0)

B1
e−

c10
B2

(t−t0), t ≥ t0.

This completes the proof.
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