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Abstract. Darboux type problem for a class of fourth-order nonlinear hyperbolic equations is con-
sidered. The theorems on existence, uniqueness and nonexistence of solutions of this problem are
proved.

2020 Mathematics Subject Classification. 35G30.

Key words and phrases. Nonlinear fourth-order hyperbolic equations, Darboux type problem,
existence, uniqueness and nonexistence of solutions.

Mgboydy. Jgoobg ®oaol s@5FOF0g 303gMdm@YG obFHmMmgdsms gHMo Jaslobmgol gobbogney-
@05 oMYl Bodol s8m@Esbs. 3@ 0Egdgmos 53 sdm35b0L sdmbsblibols s@Lgdmdals, gHmowg®m=
0mdols s 5@oMLgdmdols mgm®gdgdo.



Darboux Type Problem for a Class of Fourth-Order Nonlinear Hyperbolic Equations 41

1 Statement of the problem

On the plane of variables x and t, we consider the fourth-order hyperbolic equation of the following
form:

D% u+ f(Ou) + g(u) = F(x,t), (1.1)

where (0 := g—; — 68—;2; f, g and F are given functions, while u is an unknown function.
Denote by Dy : 0 < z < t, t < T, an angular domain bounded by a characteristic segment
Yz =1, 0<t<T,and by time and spatial orientation segments v, , : © =0, 0 <t < 7T, and

Yor i t =T, 0<a <T, respectively; for T' = oo, we have Do, : t > |z|, © > 0, and
Moo T=t 0<t<00; Y0 z=0, 0<t < o0.

For equation (1.1) in the domain Dy, consider the following boundary value problem: find in Dr
a solution u = u(x,t) to equation (1.1) which on the parts v, , and v, ;. of the boundary satisfies the
following conditions:

Ju ou

u|M =u(t,t) = m (), W = a(t,t):ug(ty 0<t<T, (1.2)

1,T

0%u 0%u
— t) = t - = t) = t <t<T 1.

u}'Yz,T U(O, ) ,LL3( )7 o2 o2 (Oa ) N’4( )a 0<¢t<T, ( 3)

Yo,1
where p;, i = 1,...,4, are the given scalar functions and the functions g1 and po at a common point

O = 0(0,0) of the curves v, ,. and v, ,. satisfy the condition of agreement p;(0) = p3(0), v = (va, 1)
is a unit vector of outer normal to the boundary 0Dr.
It is noteworthy that the Darboux problems for the second order hyperbolic equation

Ou+ f(,t,u) = F(z, 1)

in angular domain D7 with the Dirichlet or Neumann boundary conditions on the boundary segments

Y, and 7, . were studied by many authors [1-14,16-22,26-29, 31, 32, 34]. Some boundary value

problems for equation (1.1) in spatial multidimensional case when [J := g—; - 83—; ,n>1, f=0,
i=1" "

were studied in [15,23-25].

Remark 1.1. Let f,g € C(R), F € C(Dr). If u, where u,[Ju € C?Dy, represents a classical
solution to problem (1.1)—(1.3), then introducing a function v = Ou this problem can be reduced to
the following boundary value problem with respect to unknown functions u and v:

Li(u,v) =0u—v=0, (z,t) € Dr, (1.4)

Ly(u,v) :=Dv + f(v) + g(u) = F(x,1), (z,t) € Dr, (1.5)

u|71,T =u(t,t) = m (1), U‘%‘T =u(0,t) = ps(t), 0<t<T, (1.6)

vl o =ultt) = =vV2u(t), vl =v(0.8) = p5(t) — pa(t), 0<t<T. (1.7)

Here, in receiving the first equality of (1.7), we took into account that

d o 0 0 o 0
0= (5 + ) vlee 5y L % (32— 71):
therefore,

Y11
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while in receiving the second equality of (1.7), we took into account (1.2), (1.3), and

Pu 0%u
—Jduyu= — — —
v U= T g
therefore,
82u 8211,
ol =00, = 55 (0,0) = 55 (0,0) = j5 () — pu(0).

Vice versa, if u,v € C?(Dr) represents a classical solution to problem (1.4)-(1.7), where 1, 4 €
C2([0,T)), u2 € C3([0,TY), us € C*([0,T)), then the function u will be a classical solution to problem
(1.1)—(1.3).

Definition 1.1. Let f,g € C(R), F € C(Dr) and, for simplicity, u; =0, i =1,...,4. The system of
functions u and v is called a generalized solution of problem (1.4)—(1.7) of the class C if u,v € C'(Dr)
and there exist the sequences

U, vn € C2(Dy) 1= {we C*(Dr): w|, =0, i= 1,2} (1.8)
iT
such that
nlggo [tin — UHC(BT) =0, nlggo l[vn — U”c(ﬁT) =0, (1.9)
Jim [ Lo (un, on)llopgy = 0, Hm[| Lo (un, vn) = Fllom,) = 0. (1.10)

Remark 1.2. Tt is clear that the classical solution u,v € C?(Dr) of problem (1.4)—(1.7) represents a
generalized solution of class C' of this problem.

2 A priori estimate of a solution of the problem (1.4)—(1.7)

Lemma 2.1. Let f,g € C(R), F € C(Dr), u; = 0, i = 1,...,4. Then for any solution u, v of
problem (1.4)—=(1.7) of class C the following inequality is valid:

ju(w,t)] < te' 0]l ). (1) € Dr. (2.1)

Proof. Let u, v be the generalized solution of class C' of problem (1.4)—(1.7), then there exist the
sequences uy,, v, which satisfy conditions (1.8)—(1.10).

Consider a function u,, € C?(Dr) as a classical solution to the following boundary value problem:

Li(tp,vn) := 0wy — vy = Gul(a,t), (z,t) € Dr, (2.2)
Un|, =un(t,t) =0, un|, =u,(0,t)=0, 0<t<T,
Y11 Yo, 1

where the function

Gy = Li(up,vy) (2.4)
due to (1.10) satisfies the condition
lim [Gallos,, = 0. (2.5)

Multiplying both sides of equation (2.2) by the function agi" and integrating over the domain

D, :={(z,t) € Dy : t <7}, where 0 <7 < T, we get

1 [0 [0up\? 0?u, O, duy, du,,
7/&(7> dx dt — 7d$dt—/vn7dxdt_/Gnﬁdxdt. (2.6)
D,

2 ot 0x2 Ot ot

D, D, D,
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Using integration by parts and the Green formula, we obtain

1 0 [0up\?2 1 Oup\ 2
/o _ 2 Gln 2.
2/8t(6t)dmdt 2/<at)”tds’ (2.7)
D, oD,
0%u,, Ou, Ou, Oun, Ou, O%u,
*/ gz o rd=- / E'W”ﬂcd”/?'atam de dt
D, oD D,
ou,, Ou, 1 [0 (0up\2
—‘/%'W”ﬂﬂdsw oi (o) duw
aD. D,
ou, Ou, 1 Oup \ 2
__/Eﬁywd8+§ (E) thS, (28)
oD, oD,

where v = (v, 1) is a unit vector of the outer normal to the boundary dD..
Taking into account that 0D, = v, U, Uws, where v, = v, N{t < 7}, i = 1,2, and
wr=0D, N{t=7}={t=7, 0<z <7}, we have

(V:c7Vt)|7LT = (% —%) (2.9)

(Vx,l/t)|’y = (_170)7 (sznyt):wT = (07 1)7 (21())
2,T
(L’ =], =o. (2.11)
i1
Taking into account (2.9)—(2.11), since up|,, = 0 (see (2.3)) and, therefore, Bgt" vy = 0, from

(2.7) and (2.8) we get

%/%(%)dedt:% / (%)Qytds

B (C Ry e

o Y Yar
%/(%)2da¢+% / (a(;;n)2z/tds, (2.12)
wr M-

—/(?;;-%?dxdt:— %-%des—&-% / (%)2%618

o oD, oD,

- 83?'%””5_ aazn'%”””ds_ ac‘;g'%%ds

wr V1,r V2,7
+%/<%>2th5+%/<%>2th3+%/<zzgl>2ytd5

wr V1,- Y2, r
Ou,, Ou, 1 Oun \ 2
—0- U ds—04= [ (22 14
0 /Bx o e 0*2/(695) v
Y1,+

+% / (%)ZthS-i-O

’Yl,ﬂ'

1 Oun \ 2 1 Oup \ 2 ou, Ouy,
—5/(37) d“i/(a?) vids = | 5y veds (219)

wr Y1, Y1,
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From (2.12) and (2.13), in view of (2.11), we have

1/ 0 (%) drdi— [ Sl O g gy

p ot \ ot y 922 ot
UG O Jar [ g [ e (Y o 2] o
TG Gy o [ g (G Y ) s an

Taking into account that (v % — Uy %) represents the derivative in a tangent direction, i.e., an
inner differential on the curve v, .., due to the equality wy g = 0, we have

Oun , _ Oun
oz ' ot
and from (2.14) we obtain

1
L[ ) e [ [ ) o o

D, D, wWr
From (2.6) and (2.15) it follows that
Oup \ 2 Oup\ 2 B ouy, ou,,
wr D, D,

Using a simple inequality 2ab < a? + b2, from (2.16) we obtain

/[(%)2+(%ﬂ)2} df”</[v +<a dxdtJrD/ 8“” }dxdt

wr -

/ a“" d dt+ / [v2 + G2] dudt. (2.17)

D, D,

If we introduce the notation

o= 1)+ (o
and take into account that ’
J1G2) + (%) ] dwde= [ wioydo
b 0

then from (2.17) we have

§2/ a“” dx dt+/ [vp + G2 dadt
D, D,
8un 6un 2
§2/ +(52) }dwdt+/[vfb+Gi] dx dt
D D,
:2/w(0)d0+/vg dxdt+/Gfl dz dt
0 D, D.
=2 [ w(@)do + oall} ) + [Gall i,y 0 <7 <T. (218)
0
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According to the Gronwall lemma, from (2.18) we obtain
2 2 T
w(r) < (lonll}yon) + 1Galfap,))e¥ 0< T < T, (2.19)

Since u,(0,t) =0, 0 <t < T, we have

untet) = [ 20 1) de, (a,1) € Dr.

Ot~

whence due to the Cauchy inequality, we have

T t t

@ < [12a [ (G2) €< [ (52) €0
0

0 0
t t

<o [ (G2) ende<e [[(52) + (52) € de =i, @oenr. (20

X
0 0

Here, we take into account that if (x,t) € D, then x < t.
From (2.19) and (2.20) follows

1

11 1 2 2 2
funa, )] < ok () < (ol o) + 1GnlEu,)) ¢!
1
<3 (Jonll Loy + 1Gall Ly s @8) €Dr. (221)

If we pass to the limit in inequality (2.21) as n — oo, then in view of (1.9), (1.10) and (2.2), we
obtain )
lu(z,t)| < ﬁet”UHLQ(Dt)v (z,t) € Dr. O

Consider the conditions imposed on the functions f and g:

/f(T) dr > —M; — Mys® Vs € R, M; =const >0, i=1,2, (2.22)
0

lg(s)] < N1+ Nals| Vs € R, N; =const >0, i=1,2. (2.23)

Lemma 2.2. Let f,g € C(R), F € C(D), u; = 0, i = 1,...,4, and the functions f and g satisfy
conditions (2.22) and (2.23). Then for any generalized solution u, v of problem (1.4)—(1.7) of class
C, the following a priori estimates are valid:

[u(@, )| < C1l|Fllp, + Cas (@,0)€ Dr, (224)
[0(2,8)| < Cs|IFll,p,) + Ca, (a1)e Dr, (225)

where the values C; = Cy(t) >0, i=1,...,4, do not depend on the functions u, v and F.

Proof. Let u, v be a generalized solution of problem (1.4)—(1.7) of class C, then there exist the
sequences u,, v, which satisfy conditions (1.8)—(1.10).

Consider the function v,, € C?(Dr) as a classical solution of the following boundary value problem:

Ly (up,vy,) :=0vp + f(vn) + g(un) = Qn(z,t), (z,t) € Dr, (2.26)
'Un|,y = 'Un(t,t) = Oa vn!’y = U"(Ovt) = 0’ 0 S t S T’ (227)
1,7 2, T

where the function
Qrn = La(up,vy) (2.28)
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due to (1.10) satisfies the condition
Tim Qn = Fllepyy = 0. (2.29)
v,

Multiplying both sides of equation (2.26) by the function 57 and integrating over the domain
D, :={(z,t) € Dy : t <7}, where 0 < 7 < T, we obtain

1 [0 /0v,\2 0?v,  Ov,
S 2N qrar — LU e dt
2/81%(675) v /ax2 at

D, D,

a'Un avn o 8vn
Jr/f(vn)ﬁd:cdt+/g(un)ﬁd:rdti/Qn 5t dxdt. (2.30)

D, D, D,

Analogously as we obtained (2.16) from (2.6) when proving Lemma 2.1, from (2.30) we have the
following equality:

[ + () e

(%n 8vn avn
D D, D.
Using the notation
165)= [ f(r)ar, (2.32)
0
we have oI(v,) o
n) _ oy Ot
o )

Taking into account that I(0) = 0, vniv =0, =1,2, and, therefore I(v,)] =0,i=1,2, due to
i, T T

Vi
(2.10) and the Green formula, we obtain

—2/f(vn)%”dxdt= —2/ O1(vn) dxdt = —2 / I(vy)ve ds
D,

ot
D, oD,

= —2/I(vn) -1ds—2 / I(vy)veds — 2 / I(vy)veds = —2/I(vn) dx. (2.33)
wr Y1, Yo, wWr

In view of (2.22), from (2.32) and (2.33) we get

0

Wr wr

-2 / f(vn) a—? dxdt < 2/ (M + Myv?)dx < 2My7 + 2M, /og dz. (2.34)
DT

According to condition (2.23), we have

—2/g(un) % dx dt < / (gQ(un) + (%)2) dx dt

D. D,

2

D D.

2
< 2 2.2 OUp,
< /(21\11 4 2NZu?) da:dt+/<8t> dz dt
D, D,
2 A72 2 2 Ovp |2
= 72N2 4 oN2 [ u2(a,t) dodt + (ﬁ) dz dt, (2.35)
D, D,
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where we use the simple inequalities 2ab < a? + b2, (a + b)2 < 2a? + 2b? and the equality

1
/1- drdr = 57'2.

D,

For (z,t)€e D, from (2.21) we have

2
w2 (,8) < t(Jonll i) + 1Gnll o) €

2 2 T 2 2
< 2t (oalll, p,) + 1Galf0,) ) < 27 (I0nllZaio,) + 1GnllEaco,)):

whence we obtain

T 2 2
/ui(:c,t) drdt < 206 (|loall2, o) + Gl ) /1. do dr
D, D,

T 2 T 2 T T 2
=732 ||UTLHL2(DT)+7-362 1Gnllz,p. =732 /v% dx dt + 73? 1Gullz, ) (2-36)

D,

Due to (2.34), (2.35) and (2.36), from (2.31) we obtain

[1(G2) = () ]

wr

< 2MhyT + 2M, / v2 dx 4+ T2N7 + 2N7 |:7'362T / v2 dxdt + TSeQTHGnHQLQ(DT)

wr

b,
+/(%L:)dedt—&—/(%)2dxdt+/é2i%dxdt
D, D, D,
< (2M2+2N2273@27+2)/ 2+ (%)2+ (%”)2} dz dt

D,

2T+ PN 2NE Gl + [ @2

D,

If we take into account conditions (2.27) and use the Newton—Leibniz formula, we get

%Lt"@,t)dtz %(a:,t)dt, (z,7)€ Dr,

(2, 7) = vp(z,2) + Fy

and, therefore, using Cauchy’s inequality, we get

02 (z,7) < {/71 %?@,t)’dtr g/Tﬁdt-/T(%”;(x,t)fdt

-0 [ () ast [ (Gren)

Integrating equality (2.38), we obtain

T

/vidxzjvg(x,r)dxg:r] U(%?(x,t))zdt} dsz/(%)dedt.

wr 0 0 = D,

(2.37)

(2.38)

(2.39)
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If we add inequalities (2.37) and (2.39), we get

[l (G2 + () ]

Ovp\2 [ Oup\2
< (2M2+2N227'3627+T+3)/ 02+ (a%) + (%) | ot
D,
+2Mi7 + T2NE 4 NG| Gull?, o,y + (@l (2:40)
Using the notation
Ovp \ 2 Ovp \ 2
e = [ [+ (Ge) + () e (241)

wr
and taking into account
-

J b2 G2y (52) o= [ wtoan

D, 0

from (2.40) we obtain

w(o) do + My, 0<7<T, (2.42)

g

S

IN

&
O~

where
My = 2My + 2NZT3*T + T + 3, (2.43)
My = 2My7 + 72N} + 2N3T2e¥||Goll2, .y + 1Qnll 2 .-
According to the Gronwall lemma, from (2.42) we obtain
wy (1) < My, 0 <7 <T. (2.44)

Analogously to how inequality (2.20) was obtained, from (2.41) and (2.44) we get

1
o (2, £)] < t2wi (t) < M.

S
D=
[N

tzez Mt (1. t) € Dr, (2.45)

i

where 7 =t in ]TL.
If we pass to the limit in (2.45) as n — oo, due to the limit equalities (1.9), (2.5) and (2.29), we
obtain P
lo(z, t)| < M2tze2™:t () € Dy, (2.46)

where
My = 2Myt + N7 + | Fl|7,p,)- (2.47)

From (2.1) and (2.46) it follows that

1
2
u(z, )] < te'l|v]l p,p,y = tet(/vz dmdt)

t

1 1
< tet(/M4TeM3T dx dt) = tet <M4T6M3T/1 dx dt)
D, D

1 3 1 1 1 1
= tet <M4T6M3T §t2) - ﬁﬁTfo eTEMT (g e Dy, (2.48)
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According to the simple inequality
m % m
(at)" < X lail,
i=1 i=1
from (2.47) we have
1 1
Mgz < (2Mit)2 +tNy + ||F||L2(Dt) (2.49)

and (2.46), (2.48) can be rewritten as follows:
u(z, )] < Cil|F L, p,) + C2, (2:1)€ Dr,
|1)(:E,t)‘ < C3||FHL2(Dt) + Cy, (:,C,t) € Dr,

where
1 1 1
Cy = % 2T 3MT Oy = [(2Myt)? + N ] % 2T etts MoT (2.50)
Cy=trer Mt Oy = [(2Myt)% + t Ny ]2 €2 Mo, (2.51)

This proves Lemma 2.2, where the constants C;, i = 1,...,4, from (2.24) and (2.25) are given by
formulas (2.50) and (2.51). O

3 The uniqueness of a solution of the problem (1.4)—(1.7)

Definition 3.1. We say that the functions f and g satisfy the Lipchitz local condition if V r=const > 0,
|f(s2) — f(s1)] < Ai(r)|se —s1| Vsi,s2 € R |si| <7, i=1,2, (3.1)
and
l9(s2) = g(s1)| < Aa(r)ls2 —s1] Vs, 2 € R si| <, i = 1,2, (32)
where A; = A;(r) = const > 0,i=1,2.
It is obvious that if f (resp. g) € C*(R), then condition (3.1) (resp. (3.2)) is valid, where due to
the Lagrange theorem A (r) = max|f’(s)| (resp. Az(r) = max lg’(s)]).

ls|]< ||

Theorem 3.1. Let f,g € C(R), F € C(D7) and pu; =0, i = 1,...,4. If the functions f and g satisfy
the Lipschitz local conditions (3.1) and (3.2), then problem (1.4)—(1.7) cannot have more than one
generalized solution of class C'.

Proof. Let problem (1.4)—(1.7) have two generalized solutions uy, v1 and wus, vy of class C, i.e., due

o
to the definition, there exist the sequences ui,, v1, and us,, v, which belong to the class CQ(DT)
defined in (1.8) and satisfy the following limit equalities:

nh_)rr;o ||’U,1n - ul”C(ﬁT) = 0, nh—>Holo va - ,UiHC(ET) = 0, 1= 1, 2, (33)
Jim ([ Ly (win, vin) | ooy = 0, W ([ Lo (tin, vin) = Fllop,) =0, i=1,2. (3.4)

Introducing the notation
Pn = U2n — Uln, 1% = V2np — VUln, (35)

and taking into account the definition of operators L; and Ly from (1.4) and (1.5), we have

Ovn =Y + An(z,t), (z,t) € Dr, (3.6)

(Pn’,yl,T = @n(tﬂt) = 0, L;0n|,Y2YT = @n(oat) = 07 0<t< T,
O, = ~(F(v20) = F(012)) = (9(v2n) = 9(v1)) + Bula,t), (2,1) € Dr, (37)
77[Jn|,Y1)T =¢n(t,t)=0, ¢n‘ww :¢n(07t):07 OStST,
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where the sequences
Ay = Ll(u2na UQn) - Ll(ulvu Uln)y
By, := Ly(uzn, v2n) — La(U1n, Vin),
according to the limit equalities (3.4), satisfy the conditions

lim Al e,y =0 lim 1Ballogs,) =0 (33)

Multiplying both sides of equation (3.6) by the function 2 2= , integrating over the domain D,
{(z,t)e Dr: t <7}, where 0 < 7 < T, and repeating those reasonings which were used for obtalnlng
(2.16) from (2.6), we get

/[(%’L)Z (8%)2} d:c:2/¢n 8(;’;” dxdt+2/An8%dmdt. (3.9)

wr D, D,

Similarly, as (2.16) was obtained, from (2.36) and (3.9) we get

/api(m,t) drdt < 73T / V2 dx dt + T?’eQTHAn||2L2(DT). (3.10)
D, D,

Multiplying both sides of (3.7) by the function ag;" and integrating over the domain D, by analogy
to the equality (2.31), we have

J1G2) + (52) o= =2 [ (F0m0) = f010)) T v

wr D

-2 /(g(vgn) —g(v1n)) % drdt+2 / B,

D, D,

a;’" dedt. (3.11)

Due to the limit equalities (3.3), since the sequences {u;, } and {v;, } converge in the space C(Dr),
they are bounded in this space. Therefore, there exists r > 0 such that

Huian(BT) <r, ””in”C(BT) <rVvneN, i=1,2. (3.12)
In view of (3.1), (3.5) and (3.12), we have

‘—2/(f(v2n) = F(owm) 8;’” dxdt‘ < 2/A1 vsn — vin

D, D,

= ()/2% Otn dmdt<A1/w dx dt + A, /‘5$n

D, D,

Analogously, from (3.2), (3.5) and (3.12) we obtain

aw” dx dt

2
drdt. (3.13)

‘—2/(9(U2n)—g(v1n)) g" dx dt‘ <A2/<pn dmdt+A2/‘8¢" dx dt. (3.14)
D, D, D,
From (3.11), (3.13) and (3.14) we have
IMn\2 | (OPn 5 M |2
- < _ri
/[(%) +(8t>}d;p Al/w dzdt+A1/) dz dt
wr D,
2
+A2/<pn da:dt—&-Az/‘aw" dxdt+/B§dxdt+/‘% dx dt
D, D, D,

M, |2
=A1/wid:cdtJr./\g/widxchtJr(z\1+A2+1)/(ﬁ dxdt+/B§dmdt, 0<7<T,
D, D, D, D,
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whence due to (3.10),

2 2
/[(%) n (a;f”) }dx <A /w,% dxdt+AQT?’e2T/¢g de dt + A7 | Al L, (o)
D, D.

wr

O
ot

2
+(A1+A2+1)/‘ dxdt+/33 do dt < (A1+A2T3e2T)/¢3 do dt
D, D, D,

2 2 2
Ao dt+ 8T |4, 1y gy + 1Bl 1oy (315)

oy,
+(A1+A2+1>/ gt
D,

Note that inequality (2.39) is valid if instead of v,, we take the function ,, i.e.,

/ﬁd:cST/(ag’"

2
: ) dz dt. (3.16)
D,

Summing up inequalities (3.15) and (3.16), we obtain
2 2 2
/WLJF (%) n (awn) | dx < (s +A2T362T)T/ <%) dz dt

Ox ot ot
wr D,
+ (A +Ax+1) T drdt + AT e | Anll” 1, pyy + 1Bnll" 1, (Do)
D,
4 2T 0Py, |2
S (A1T+A2T € +A1 +A2+1) ot dx dt

D,
2 2
+ AT Anll® 1y iy + 1Ball” Ly

< (MT + AsT* e + Ay + Ao + 1)/ [1/’2 + (awn)Q + (%)2} dx dt

ox ot
D,
+ AT | Anl® (g + I1Ball® L)
8¢n 2 61[)»,1 2
< 2r(== '

D,

where
K= (MT 4+ AT* e + Ay + Ay + 1), Koy, = A2T362T||An||2L2(DT) H1Bal? L, pry:  (3:18)

Introducing the notation

w3(T) 1= / [ 2+ (%)2 + (ag)t"f} dx (3.19)

W
and taking into account the equality
-

/ [%214_ (%)24_ (%)2} dxdt:/w3(0)do',

D, 0

from (3.17) we obtain

T

ws (o) SKl/wg(J) do + Koy, 0<7<T, (3.20)
0
and due to the Gronwall lemma, from (3.20) it follows that

ws (1) < Konefi7 0<7<T.
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According to the limit equality (3.8), we have
Jin [ Anll, o =0, 0 1Ball o) =0

Therefore, in view of (3.18), we obtain
lim Ka, = 0. (3.21)

n—oo

Analogously to (2.20), for the function ), the inequality

wi<x,t>§t/[(a§f§)2+(8§;) [GOLS

0
is valid and, therefore, (3.19) implies
/ 8 0
<t / wn )+ ( g> [ (6.1) de = tws (1) < thone™t, (2t) € Dy (322)
0

Passing to the limit in inequality (3.22) as n — oo, and taking into account the limit equalities
(3.3), (3.5) and (3.21), we have

(02 = v1) (@, )2 = lim |(v2n — i)z, t)|* = Tim 2 (2,1) < 1" lim Koy =0, (3.23)
whence we get va(x,t) = v1(z,t), (x,t) € Dr.
From (3.5), (3.8), (3.10) and (3.23), we obtain

/(UQ - u1)2 drdt = lim (ugn — uln)2 drdt = lim goi dx dt

n—oo n—oo
Dt Dt Dt

<13 lim [ 2 dedt + T3e2T lim |4, ||L2(D ) <TPeT lim TKy, ST da dt

n—oo
Dt DT

1
=TT 0T / ldzdt lim K, = T*e*TefST. T2 lim Ky, =0,
n— o0 n—oo
Dt

whence we conclude that us = uy in the domain Dp. The theorem is proved. O

4 Equivalent reduction of problem (1.4)—(1.7) to a system
of Volterra type integral equations

Let us now consider the equivalent reduction of problem (1.4)—(1.7) to a system of Volterra type
integral equations in the class of continuous functions C(Dr7).

Let the functions v and v represent a generalized solution of the class C' to problem (1.4)—(1.7), i.e
there exist the sequences {u,} and {v,} satisfying conditions (1.8), (1.9) and (1.10). As it has been
shown, the function wu, is a classical solution of problem (2.2),(2.3), where the function G,, is given
by formula (2.4), and it satisfies the limit equality (2.5). Analogously, the function v, is a classical
solution of problem (2.26), (2.27), where the function @,, is given by formula (2.28), and it satisfies
the limit equality (2.29).

Let P = P(x,t) be any point of Dr. Denote by €, ; the characteristic rectangle PP P, P3 with
vertices P; and P, P3 laying on the curves v, .. and v, ., respectively, i.e.,

t—z t—=x
2 7 2

t t
P12:P1(0,t—1}), PQZ:PQ( o +$)

)’ PJ_PS( 2 2
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Integrating equation (2.2) over the rectangle €, ;, conducting integration by parts and taking into
account homogeneous boundary conditions (2.3), we obtain [15]

1 1
U (z,t) — 3 / vp (2, ) da’ dt’ = 3 / Gn(2',t') dz’ dt', (x,t) € Dr. (4.1)

x,t Qz,t

By analogous reasoning with respect to problem (2.26), (2.27), we have

v (2,t) + % / [f (vn) + g(un)] (', ) da’ dt’ = % / Qn(z',t') dx' dt’, (z,t) € Dr. (4.2)

z,t z,t

Passing to the limit in equalities (4.1) and (4.2) as n — oo and due to the limit equalities (1.9),
(1.10) and (2.5), (2.29) with respect to the functions u and v, we obtain the following Volterra type
system of nonlinear integral equations in the class of continuous functions C(Dr) :

u(z,t) — % / v(@',t") da' dt' =0, (z,t) € Dr, (4.3)
Qa ¢
v(z,t) + % / [f(v) + g(w)] (', ¢) da’ dt’ = % / F(2' t') dx' dt', (z,t) € Dr. (4.4)

z,t z,t

Remark 4.1. When f,g € C'(R), F € C'(Dr), the reverse proposition is valid: if the functions
and v represent a solution of the class C(Dr) to system (4.3), (4.4), then these functions represent a
generalized solution of class C' to problem (1.4)—(1.7) [1,16].

Let us introduce the notation U := (u,v) and rewrite the system of integral equations (4.3), (4.4)

in a vectorial form
U(z,t)+ (KU)(z,t) = ®(x,t), (x,t) € Dr, (4.5)

where

K = (Kl,KQ); (KlU)(LL',t> = —(K()U)(J?,t),

(K2U)(x,t) = (Ko(f(v) + g(u)))(z,1), (4.6)
(Kow)(x,t) = % /w(x’,t’) da’ dt’, (4.7)
O(z,t) = (0, (KoF)(z,1)). (4.8)

5 The smoothness of a solution of problem (1.4)—(1.7).
Global solvability of problem (1.4)—(1.7) in the class
of continuous functions. The existence of a global
solution in the domain D

Remark 5.1. As is known, the operator K defined by formula (4.7) satisfies the following conditions
of smoothness: if w € C*(Dr), then Kqw € C**1(Dr), k= 0,1,.... Therefore, when f,g € C*(R),
F € CY(Dr), the continuous solution U = (u,v) of system (4.5) satisfies the following conditions of
smoothness: u,v € C?(Dr) and represents a classical solution of problem (1.4)—(1.7).

Remark 5.2. As is known, the space C'(Dr) is compactly embedded into the space C(D7). There-
fore, if we take into account Remark 5.1 and consider K as an operator acting from the space C'(Dr)
to the space C'(Dr), then due to formula (4.5), we find that the operator

K C(ﬁT) — C(ﬁT)
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is continuous and compact. Therefore, the operator L : C(Dr) — C(Dr) acting by the rule
(LU)(I’,t) = *(KU)(%,t)#*(I)(x,t), (fE,t) ebTa (51)

will also be continuous and compact, and equation (4.5) in the space C'(Dr) can be rewritten as
follows:
U=LU. (5.2)

Remark 5.3. It follows from the above reasoning that if f,g € C'(R), F € C'(Dr), then U :=
(u,v) € C(Dr) is a generalized solution of class C' to problem (1.4)—(1.7) if and only if U is a solution
of problem (5.2) of class C(Dr). Hence it follows from Lemma 2.2 that when conditions (2.22), (2.23)
are fulfilled, the solution of equation (5.2) of class C'(Dr) satisfies a priori estimates (2.24) and (2.25).
From equation (5.2) and the structure of constants C;, i = 1,...,4, and from a priori estimates (2.24)
and (2.25), it follows that the solution of the equation U = 7LU of class C(Dr), where the parameter
T € [0, 1], satisfies the same a priori estimates (2.24) and (2.25), where the constants C;, i = 1,...,4,
in view of (2.22), (2.23), (2.43), (2.50) and (2.51), do not depend on the function F' and the parameter
7. Therefore, since the operator L : C(Dr) — C(D7) from equation (5.2) is continuous and compact,
according to the Leray—Schauder theorem [33], equation (5.2) has at least one solution in the space
C (D7) which, as it was noted above, is also a generalized solution of problem (1.4)—(1.7) of class C.

Thus, according to Theorem 3.1 and Remark 5.1, the following statement is valid.

Theorem 5.1. Let f,g € CY(R), F € CY(Dr), u; =0,i=1,...,4, and the functions f and g satisfy
conditions (2.22) and (2.23). Then problem (1.4)—(1.7) has a unique generalized solution of the class
C which is also a classical solution of the same problem in the domain Dr.

From Theorems 3.1 and 5.1 follows

Theorem 5.2. Let f,g € CY(R), F € CY(Dy), p; = 0, i = 1,...,4, and the functions f and g
satisfy conditions (2.22) and (2.23), then problem (1.4)—~(1.7) for T = oo has a unique global classical
solution in the domain Ds.

Proof. From Theorem 5.1, it follows that there exists a unique classical solution uy, v of problem
(1.4)—(1.7) in the domain D, where T'=k € N. Since u4+1|p, is also a classical solution of problem
(1.4)—(1.7) in the domain Dy, because of the uniqueness of the solution, we have ugt1|p, = ux,
Vk+1|p, = k. Therefore, the functions u and v constructed by the rule u(z,t) = uk(zx,t), v(z,t) =
vg(z,t), when k = [t] + 1, where [¢] is an entire part of number ¢ and (z,t) € Do, represent a unique
global solution of problem (1.4)—(1.7) in the domain Ds,. The theorem is proved. O

Definition 5.1. Let f,g € C(R), F € C(Ds), i = 0, i = 1,...,4. Problem (1.4)—(1.7) is called
globally solvable in the class C' if for any positive T, this problem has at least one generalized solution
of class C in the domain Dt in the sense of Definition 1.1.

Remark 5.4. It is obvious that if problem (1.4)—(1.7) is not globally solvable in the class C' in the
sense of Definition 3.1, then it does not have a global classical solution in the domain D.,. Besides,
if the conditions of Theorem 5.2 are fulfilled, then problem (1.4)—(1.7) has a global classical solution
in the domain D, and, therefore, it is also globally solvable in the class C.

6 Nonexistence of solutions of problem (1.4)—(1.7)

Below, we show that if conditions (2.22) and (2.23) are violated, then problem (1.4)—(1.7) may not be
globally solvable in the sense of Definition 3.1.

Theorem 6.1. Let f =0, g € CY(R), Foe C*(Dr), Folp, >0 and F = \Fy, A = const > 0, p; = 0,
i=1,...,4. Thenif g(u) < —|u|®, a = const > 1, there exists a number \g = A\o(Fp, ) > 0 such that
for X > Xg, problem (1.4)—(1.7) does not have a generalized solution of class C in the domain Dr.
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Proof. Let u, v represent a generalized solution of problem (1.4)-(1.7) of class C. Since f =
g € CY(R) and F € C*(Dr), according to Remarks 4.1 and 5.1, this solution will be a classical
solution of problem (1.4)—(1.7). Therefore, the function u satisfies equation (1.1) in the domain Dy,
ie.,

0% u + g(u) = F(x,t), (x,t) € Dy, (6.1)

and g(u),0%u € C(Dr).
Let us consider a test function
Ol

o € CN(Dr,dDr) = {¢€C4 Dr): 9|, >0, ¢|aDT:W
V' loDr

=0, i= 1,2,3},

where v = (v, 1) is a unit vector of the outer norm to the boundary dD7. Let us multiply by it
both sides of equation (6.1) and integrate over the domain Dr. By integration by parts and taking

into account that ¥|gp, = %bDT =0,7=1,2,3, we obtain
/ u? o drdt = — /g(u)gp drdt+ A / Fop dzdt ¥ € CY(Drp,0Dr). (6.2)
Dr Dr Dr
According to the conditions g(u) < —|u|® and ¢ > 0, from (6.2) it follows

/\u| pdrdt < /uD2godxdt—)\/F0gp dx dt weé‘*(bT,aDT). (6.3)
DT DT

Below, we use the method of test functions [30]. Consider the test function ¢ € C*(Dz,dD7)
such that ¢|p, > 0. If in the Young inequality with parameter £ > 0

1 ,
ab<—a +———0b%, a,b>0, o = @
a

/o/l Oé—l

2 ’
we take a = |u|pa and b= B2l then due to % = a — 1, we obtain
(p(l

0%l _ 0
2 gl = fulpt 8 < Sy L T
pa o a'e @
From (6.3) and (6.3), we have
e o 1 (D
(1-2) [ Wl dedt < —— o dedt =\ [ Fop dudt

DT DT
whence for € < «, we obtain

1 02 | A
/ u|*p dx dt < - / "l gy — 9N /Fw da dt. (6.4)
(v —e)aex’—1 ¥ 1 a—¢

T Dr

. ) ! o _ Oé/
In view of the equalities o' = %5, a = ;7 and
o
min ———————— =1,
0<e<a (@ — €)a’e®

which is reached for € = 1, from (6.4) we have

a |0? <p|a /
[ul“p dzdt < T dedt — o'\ | Fyp dx dt. (6.5)

Dt
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It is easy to show the existence of a function ¢ for which

’
«

|:|2
| @(f_'l dz dt < +o0. (6.6)

p e C4(ET76DT)3 @‘DT > 07 Ro = /
Dr

Indeed, the function built by the formula

p(o,t) =[xt —2)(T — )"

for a sufficiently large natural m satisfies conditions (6.6).
Since according to the condition Fy € C(Dr), Fy|p, > 0 and ¢|p, > 0, we have

0< K= /Fogo dx dt < +o0. (6.7)

Dr

Denote by x(A) the right-hand side of inequality (6.5) which is linear with respect to the parame-
ter A. Then from (6.5), (6.6) and (6.7), we have

XA) <0, when A > po and x(A) >0, when A\ < pug, (6.8)
where
X(A) = ko — A6y, Ao = ,,/;0 .
(e

According to (6.8), when A > )\, the left-hand side of (6.5) is negative, while the right-hand side
is non-negative. This contradiction proves the theorem. O

Note that when g(u) < —|u|”, o = const > 1, condition (2.23) is violated.

7 Local solvability of problem (1.4)—(1.7) in the class
of continuous functions

Definition 7.1. Let f,g € C(R), F € C(Dw), i = 0, i = 1,...,4. Problem (1.4)—(1.7) is called
locally solvable in the class C' if there exists a positive constant Ty = Tp(F') such that problem
(1.4)—(1.7) has at least one generalized solution of class C' in the domain Dy, when T' < T,

Theorem 7.1. Let f,g € CY(R), p; =0, i =1,...,4. Then for any function F € C'(Dy,), problem
(1.4)—(1.7) s locally solvable in the class C. Moreover, there exists a positive constant Ty = To(F')
such that problem (1.4)—(1.7) has a unique generalized solution of class C in the domain Dr, when
T < Ty, which represents a classical solution of this problem.

Remark 7.1. In case the conditions of Theorem 6.1 are fulfilled, problem (1.4)—(1.7) for any function
F € C'(Ds) may not be globally solvable. Indeed, if Fy € C*(Dy), Fo|lp., > 0, and for a fixed
positive T' we take F' = AFp, then this problem does not have a generalized solution of class C' in the
domain Dp, when A > Ag.

Proof of Theorem 7.1. According to Remark 5.3 U = (u,v) € C(Dr) represents a generalized solution
of problem (1.4)—(1.7) of class C if and only if U is a solution of equation (5.2) from the space C(Dr).

Let us fix the positive constants T and r. Below, we suppose that |U| = |(u,v)| = |u| + [v],
HU||C(5T) = ||(u,v)\|c(5T) = ||u||C(5T) + ||v||c(5T), and denote by B,.(0) a ball of radius r in the

space D of continuous vector functions U = (u,v) with a center in the null element (0,0), i.e.,

B (0):={U = (u,0) € C(Dr): |[(w,0)l e,y <7 -
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When U € B,(0), due to (4.6)-(5.1), if we take into consideration the structure of the operator L
from equation (5.2), take T' < Tj and the point (z,t) € Dr, we get

(LU)(, )] < [(KU)(z, )] + |@(x, 8)] < [(KaU) (2, 8)] + [(KoU) (2, 6)] + [(Ko F) (2, )]
[(Kov) (@, )] + [(Ko(f () + g(u)) (&, 0) + |(KoF)(z )]

1 1
sIolom, [ 1dzd+ s ( ) [ 1dvar
slello, [ vdedes 5 (max]f(s)] + maxlo(s)l) [ 1o

Qw,t Qm,t

1
+?W%@0/1Mﬂ
Qm,t

IN

IN

IN

1
B,y T + +IFller )42
lvllem,) gl@lf(S)l g@lg(S)l 1Fllem,)) 5

IN
N R

2
7 (ol e,y + max|£(5)] + max|a(s)] + [ Flloqo,,))
whence we obtain

1 2
ILUll ey < 4 T <||v||c<5T1> Inax £ (s)] + max lg(s)] + IIFHc@Tl))

1 2

From (7.1) it follows that if we take T such that T' < Ty, where

N

4
TO = min (T]_ i ) s
r+ 1 leqeray + 19l omrmy + 1Flc@a,)
then
ILUllpyy < 7 when [Ulloap,, < r- (7.2)

From (7.2) it follows that the operator L : C(Dr) — C(Dr) maps the ball B,(0) into itself
and since by Remark 5.2 this operator is continuous and compact, according to Schauder’s theorem,
equation (5.2) has at least one solution U from the space C(Dr). Due to Remark 5.3 and Theorem 5.1,
this solution is a unique classical solution of problem (1.4)—(1.7) in the domain. The theorem is
completely proved. O

Therefore, from the results obtained above it follows that if we do not require from the functions
f and g the fulfillment of conditions (2.22) and (2.23) together with smoothness f,g € C'(R), then
according to Theorem 6.1, problem (1.4)—(1.6) may not be globally solvable and, moreover, it may not
have a global solution in the domain D.,. Nevertheless, in case of conditions (2.22), (2.23) violate,
problem (1.4)—(1.7) is locally solvable for any function F € C*(Dy).
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