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Abstract. In this paper, by using the critical point theory, specially the fountain theorem given
in [18], we prove the existence of infinitely many solutions for a second order impulsive differential
equation governed by the one-dimensional p-Laplacian operator. Finally, an example is presented to
illustrate our main result.
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1 Introduction

We consider the problem

), i=1,2,...,1, (1.1)
u(0) = u(T) =0,

where f:[0,7] x R — R is continuous, ®,(z) = |z|P~2z, p > 1 and p,s € L*>([0,T]) with
)

essinfp(t) > 0, essinfs(t) >0, < p(0), p(T) <400, tr=0<t;1 <tg <- <t <tj41 =T,

te[0,T] te[0,T]
are given points and the functions I; : R =+ R, 4 = 1,2,...,[, are continuous. The operator A, is
defined as

Ap (p(t)Pp(u' (1)) = p(t) @y (' (1)) — p(t7)Pp(w/(t7)),
where u'(t]") and u'(t;) denote the right and left limits of u'(t) at ¢ = ¢;, respectively.

Differential equations with impulsive effects arising from the real world describe the dynamics of
processes in which sudden, discontinuous jumps occur. We refer to some recent works on the theory
of impulsive differential equations that have been developed by a large number of mathematicians
[4,7,9,10,12,16,17]. There are many approaches to study the existence of solutions of impulsive
differential equations such as fixed point theory [8], topological degree theory [13], comparison method
[15], and so on. On the other hand, many researchers have used variational methods to study the
existence of solutions for boundary value problems [1-3,5, 6,11, 14]. However, to the best of our
knowledge, there are few papers dealing with the existence of infinitely many solutions for impulsive
boundary value problems by using fountain theorems. Recently, in [14], the authors considered the

following problem:
—u"(t) + g(t)u(t) = f(t,u(t)), t#t;, ae tel0,T],
A (t;)) = I;(u(ty), j=1.2,....p, (1.2)
u(0) = u(T) = 0.

They obtained the existence of infinitely many solutions for (1.2) in both cases, superlinear and asym-
ptotically linear, by using the fountain theorems without using the Ambrosetti-Rabinowitz condition
in the superlinear case which is given as follows, that is, there exist 7 > 2 and K > 0 such that

0 <nF(t,u) < f(t,u)u, |u|> K forall t € [0,T], (1.3)

-
where F is a primitive of f with respect to the second variable, that is, F(t,u) = [ f(¢,z)dx.
0

However, there are the functions which are superlinear, but do not satisfy condition (1.3). For
example,

F(tu) = |sin(t)|(2uln(1+ lul) + 1'17@') for t € [0,7] and u € R\ {0}. (1.4)

Inspired by the above-mentioned works, in the present paper we study the existence of infinitely
many solutions for problem (1.1), when the nonlinearity f(¢t,u) and I; (i = 1,2,...,1) satisfy some
sub-critical conditions.

The remainder of this paper is organized as follows. In Section 2, we present preliminaries and
main results. In Section 3, we give an example that satisfies the assumptions of our main result.

2 Variational setting and main results

Here and in what follows, X denotes the Sobolev space VVO1 P([0,T]) endowed with the norm

T 1
Jull = ( [ oo or+ souop) dt) " (2.1)
0
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which is equivalent to the usual one. As usual, for 1 < p < +00, we define the norms in LP([0,T7)
and C([0,T1]), respectively, by

t€[0,7]

Jull, = (. / P ar)” Tl = s o)
0

Lemma 2.1 ([1]). For u € Wy([0,T)), we have |[u|oo < M|ul|, where

1
1 T 1 1
M:2émax{ T ; -, ; 1}7 -+ -=1.
T7 aQ 1 t D <7 t D p q
g (féTol,I%] s(t))» (ggﬁ){% p(t))?

Proof. For u € W,*([0,T)), it follows from the mean value theorem that

t
()] = [u(@) + [ o/(r)dr
¢
T =
/|u |dT+/|u ) dr < T (/|u( )|pdT) +Tq(/u’(7)pdr>
0
T 1 1 T 1
D T4qa , P
< [sDun)Pdr) + ——( [ p(n)(r)Pdr
T (essmfs )P (essinf p(t))?
te[0,T) 0 te[0,7T] 0
1 1 T4
§2qmaX{ T avETeR ; 1}||u|l7
T» i t))r i t))r
(?S?of% s(t)) (?2?01,171“] p(t))
which completes the proof. O

Now, we introduce the following concept for the solution of problem (1.1).

Definition 2.1. We say that a function u € W, ([0,T]) is a weak solution of problem (1.1) if the
identity

T T I T
[ ool @@ e [ s uo e+ 3 L)) = [ euwwod

holds for any v € Wy ([0, T)).

Definition 2.2. A function u € {u € Wy P([0,T]) : plu/[P~2u € Whoo([0,T)\ {t1,t2,...,t:})} is a
classical solution of problem (1.1) if u satisfies the equation a.e. on [0,T]\ {t1,t2,...,%}, the limits
o' (t7), W/ (t7), i =1,2,...,1, exist and satisfy the impulsive condition

=4 (p(ta) @y (u/ (1)) = p(t; ) @p(u'(t;7)) — p(t7) (' (7)) = Liults)),

and the boundary conditions u(0) = «(T") = 0 holds.
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Next, we begin describing the variational formulation of our problem. Consider the energy func-
tional J : W, ([0, T]) — R associated to (1.1) as follows

T u(ty) T
%/ ()P + s(t)|u(t)[?) dt+z / )dm—/F(t,u(t))dt
0 =17 0

o ult)

=+ [ @) fF (2.2)

110

Since f and I; (i = 1,2,...,1) are continuous, we deduce that .J is of the class C* (W, ([0, T]), R) and
its derivative is given by

T
(J'(u), v) = /p(t)IU'(t)l”’QU'(t)v’(t) d
0

. T
s(t)[u(t) [P~ 2u(t)v(t) dt + Z Ii(u(t;))v(t;) — /f(t, u(t))v(t) dt (2.3)
i=1 )

+
o\)\]

for all u,v € Wy*([0,T]).
Then it is clear that the critical points of J are weak solutions of problem (1.1).

Lemma 2.2. If u € Wy *([0,T)) is a weak solution of problem (1.1), then u is a classical solution of
problem (1.1).

Proof. The proof is similar to that of Lemma 1 in [2]. O
To prove our main results, we need the following variant fountain theorem introduced in [18] to

handle our problem. Let X be a Banach space with the norm | - || and X = @ X with dim X; < 400
JEN

for any j € N. Set

k o0
Vo= @X Ze= @) md B~ {ueis ul <)
j= i=k

Consider the C'-functional Jy : X — R defined by
Ia(u) = A(u) — AB(u), A€L,2],

where
u ti)

1 T
A(u) ||u||p > / Ii(z)dz and B(u) = /F(t,u(t))dt.
1=1 0

For convenience, we list the following assumptions:
(Hy1) Ii(u) (1 =1,2,...,1) are odd about u and satisfy I;(u)u > 0 for all u € R.
(Hs) For any i € {1,2,...,1}, there exist the positive constants a;, b; and ~; € [0,p — 1] such that

[I;(w)| < a; + b;|ul” for u e R.

(H3) There exist the constants 81 > 0, 63 > 0, and v > p such that

|f(t,u)] < Oq]ulP~ + Osful”~! for all (t,u) € [0,7T] x R.
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(Hy) F(t,0) =0and F(t,u) >0, V(t,u) € [0,7T] x R and

F(t,u)

1
|u|—+o0 ‘U|p

+ oo uniformly for ¢ € [0, 7).

(Hs) F(t,—u) = F(t,u), ¥V (t,u) € [0,T] x R.
(Hg) There exist 61 > 1, 63 > 1 such that

01G(u(t;)) > G(ru(t;)), Vie{1,2,...,1}, 7€][0,1] and Vu € R,

and
O F (t,u) > F(t,7u), V(t,u)€[0,T] xR and 7 € [0,1],
where
u(t,)
G(u(ti)) = pGlu(ti)) — Li(u(t:))u(t), G(u(ti)) = / Ii(z) dz
0
and

F(t,u) = f(t,u)u — pF(t,u).

Theorem 2.1. Assume that (H,)—(Hg) are satisfied. Then problem (1.1) possesses infinitely many
high energy solutions {u} C Wy P([0,T])\ {0} satisfying

T ;o uwk(t) T
/ g (OF + s(t)|ux(t)[?) dt+z / /F t,ug(t))dt — +o00 as k — +o0.
0 0

SRR

i=1

To prove our main result, we will show that J) satisfies the assumptions of the following variant
fountain theorem.

Theorem 2.2 ([18]). Assume that the functional Jy defined above satisfies

(A1) Jx maps bounded sets into bounded sets uniformly for X € [1,2], and Jx(—u) = Jx(u) for all
(Au) e 1,2] x X;

(A2) B(u) >0 for allu e X, A(u) — +00 or B(u) = +00 as |lul]| = +o0;
or
(A3) B(u) <0 for allu e X, B(u) = —o0 as |jul| = +oo;

(Ay4) there exist py, > ri > 0 such that

bi(\) = inf Ja(u) > ap(N) = max  Jy(u), YA€]L2].
UEZy, ||ull=rk u€Yy, [lull=pr
Then
< P
br(A) < cx(N) lenrfk max I(v(w), YAe(l,2]
where

Uy = {7y € C(By, X) : vis odd, 7, =id= identity}.
Moreover, for almost every A € [1,2], there exists a sequence {un (N)}nen such that

sup [[un k(N < 400,  Jy(un k(X)) = 0 and Jx(unk(N)) = cx(N) as n — +oo.
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Proof of Theorem 2.1. By (Hj), there exist positive numbers 03 and 64 such that
|F(t,u)| < 0s|ul? + O4]ul”. (2.4)

Combining (2.4), (Hz) and Lemma 2.1, it is easily seen that Jy maps bounded sets into bounded
sets uniformly for A € [1,2]. By (H1) and (Hs), Jxa(—u) = Ja(u) for all (A, u) € [1,2] x X. Thus
condition (A;) holds. Assumption (H4) means that B(u) > 0. Condition (As) holds for the fact that
A(u) > %Hqu — 400 as |Jul]] = +o0o and B(u) > 0. Next, to show assumption (A4), we first show
the following useful lemmas.

Lemma 2.3. Let
ar (k) = sup (foa s
UEZy,, |lul|=1
with v > p. Then
ar(k) =0 as k — +oo.

Proof. We aim to prove that a, (k) — 0 as k — +o00. The function a, (k) is decreasing with respect
to k, then there exists a,, > 0 for all » > p such that a,(k) — «, and o,.(k) — «, as k — +o0. For
any k > 0, there exits uy € Zj such that

ap(k)
5 -

Jur]| =1 and [Jugll, =

By the fact that X is a reflexive space, we can assume that uy — u in X. Let {€]} en be the family
of the dual space of X and for any e;, € {€}};jen, we have

(er,ur) =0 for k> n.
Therefore,
0= (e, ur) — (e, u) as k — 400
for any e;, € {€}};en, which implies that u = 0, then u, — 0 in X, u. — 0 in LP([0, T]) and therefore
ur — 0 in C([0,T]) which implies that «, = 0. Similarly, we prove that «, = 0 for all r > p. O
Lemma 2.4. There exists v > 0 such that

bk(>\) = inf J)\(’LL) >0, VA€ [1,2]

UEZy, |lul|=rk

Proof. For any u € Zj, and X € [1,2], by (2.4) and (H1) and the above definition of «,.(k), we have

1 w(ty) T
() Hu||P+Z/ da:—)\/F
p =1 0 0

1 1
= 3 lell? = 205 fully = 26allully = lul” = 2005, (k)[ul” = 2ace; (k) [Jul}”-

Choose
1

ap (k) + o (k)

Then r, — 400 as k — +o0o. Hence for u € Z with ||u|| = r, we obtain

T =

1 a? (k) ay (k) 1
J > 2 |ullP — 20 P —20 v > 2P — 205 — 20, > 0.
A(u) > ’ [lull 3 Ton (k) + an (W))7 B+ ) 2 o 3 4
Therefore,
be(A) = inf  Jy(u) >0, VA€ [L,2). O

UEZy, |lull=rk
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Lemma 2.5. There exists py large enough and py > 11 such that

ar(\) = max  Jy(u) <0, VAe[L,2].

u€Yy, ||ull=pw
Proof. First, we claim that for any u € Y}, there exists €; > 0 such that
meas {t € [0,T] : [u(t)] > e1||ull} > €1, Vu € Yi\ {0} (2.5)

Proof of claim. We argue by the contradiction and suppose that for any positive integer n there exists
U, € i \ {0} such that

1 1
meas{t € 0,71+ fun(d)] > — HunH} <=, ¥neN.

Set v () = %=1 € v;,\ {0}. Then [|jv,| = 1 and

T Mluall

1 1
meas{t € 0,7]: fun(®)] > } <=, VneN. (2.6)

Since dim Yy < 400, it follows from the unit sphere of Y} that there exists a subsequence denoted by
{v,} such that v, converges to some v in Y;. Therefore, we have ||v]| = 1. By the fact that all norms
are equivalent on Yy, we deduce that v,, — v in LP([0,T]), i.e.,

T
/|vn(t) — ()P dt =0 as n — +oo. (2.7)
0

Thus there exist £1,& > 0 such that
meas {t € [0,T] : [v(t)| > &} > &. (2.8)

In fact, if not, for all positive integers n, we have

meas {t €[0,7]: |v(t)] > %} =0, i.e., meas {t €[0,7]: u(t)] < %} =T.

It implies that

T
1
0</\v(t)|pdt<—pT—>0 as n — +oo.
n
0

Hence v = 0, which contradicts that ||v|| = 1. Therefore, (2.8) holds.
Now let

Qo = meas {t € [0, 7] : |v(t)] > &}, Qn:{te 0,7]: |o(t)| < %} and Q° =[0,T]\ Q.

By (2.6) and (2.8), we have
1
meas(Qo N Q) = meas (Q \ (2, NQp)) > meas(Qp) — meas(Q, N Q) > & — -

for all positive integers n. Let n be large enough such that & — % > %EQ and & — % > %51.

Then we have Lo .
[oa®) —o@F 2 (61— ~) 2 5 &, VteQNnQ,.

Also,

T
1 1 1 1
/|vn(t) —(t)[Pdt > / vy, — v|P dt > o & meas(Qo N Q,) > o §f(§2 — ﬁ) > ﬁfffg
0 QN
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for all large n, which is a contradiction to (2.7). Therefore, (2.5) holds.
Now, using the fact that Y} is finite-dimensional and the claim, we can find €; > 0 such that

meas {t € [0,T] : |u(t)| > exllul|} > ex, Yu e Yy \ {0} (2.9)
By (H,), for any k € N, there exists Ry > 0 such that

P
F(t,u) > % uniformly for ¢ € [0,7] and |u| > Ry.
&
Set
Q= {te0,7]: u(t)| > exllull }
and let us observe that, by (2.9), meas(Q2F) > ¢, for any u € Y, \ {0}. Then for any u € Y, with
lu|| > £&, it follows from (Hz), (H4), (2.5) and Lemma 2.1 that

w(ti)

Ja(u) \|u||p+2/ d:c—)\/TFtu

110

W + Z a;M||ul| + b M |u

i=1

wt) — /F(t,u(t)) dt

Qk
1 l [l
< Nl 3 (ol b M ) — T € meas(€2)
=1 k

l
Hull” + > (M ull + b Ml ) — [fu|”

i=1
l
__ =D M b MY+ [
== Il + > (aiM]ul| +b; )
i=1

for all u € Yy. Since v; < p — 1, choosing pj large enough such that
Ry,

Pk > max {rk, } for all k> kq,
€k

it follows that
ar(A) = max  Jy(u) <0, Vk> ky. O
u€EYk, |lull=ps
Since all assumptions of Theorem 2.2 hold, for A € [1, 2], there exists a sequence {un k(\)}22; such
that
sup [[un k(A < 400,  Jy(unk(A) = 0 and Jx(unk(A)) = cx(N) as n — +oo,

where

cx(A) = inf max Jy(y(u)).

From the proof of Lemma 2.4, we deduce that for any k > k; and X € [1,2],

1 _
Ck(A)Zbk(A)Z — — 203 — 204 = by, — +00 as k — +o0,
p
and
cx(A) < max J1(u) = .
Thus

b, < cip(N) <7 forall Xel,2].
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As a consequence, for any k > ki, we can choose \,;, — 1, m — 400, and get the corresponding
sequences satisfying

sup [[un x(Am) || < 400, I\ (tnk(Am)) = 0 and Jx, (tnk(Am)) = cx(Am) as n— +oo.

Now, we prove that for any k > ki1, {unrx(Am)}nen admits a strongly convergent subsequence and
that such subsequence is bounded.

Lemma 2.6. For each A\, given above, the sequence {un i(Am)}nen has a strong convergent subse-
quence.

Proof. The fact that sup ||ty k(Am)| < +oo implies that {w, k(Am)}nen is bounded in X. Since X

is a reflexive Banach space, passing to a subsequence, if necessary, we may assume that there is a
u®(\,,) € X such that

Un k(Am) = ur(Am) in X as n — +o0,
Un k(Am) = k(M) in LP([0,T]) as n — 400

and

{tn k(Am) Inen converges uniformly to wug(A,,) on [0,T].
Thus we have

l
3 (it o) (1)) = L) (1)) (o) (1) — () (82)) — 0 as m— +o0,  (2.10)

i=1

/ Ft un k(M) — f(t,uk()\m))) (un,k(km) — uk()\m)) dt — 0 as n — +oo. (2.11)

Notice that

—Am / (St un e (Am)) = f(tue(Am)) (U e (Am) — ue(Am)) dt. (2.12)

0

Recalling the following inequalities, for any z,y € R, there exist ¢,,d, > 0 such that
([a[P~2z = y|P "2y, 2 —y) > eple —y|P if p>2 (2.13)

and

2
P24 |y P2y B el | I R 2.14
(o2 = o 2 =) 2 dy LU 1 <p < .14
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Then if p > 2, there exists ¢, > 0 such that

ch/(p(t)’u:lk()\m)—u;()\mﬂp—&—s |unk Am) — ug(A )|p) dt
0
= plltin ke (Am) — wi(Am) [P (2.15)

Since
lim J)\ (tUnx(Am)) =0

n—-+o00

and uy, () converges weakly to ug(Ay,), one has

tim (5 (o)) = 4 ()t ) = () ) = 0. (2.16)

n—-+00
By (2.10)—(2.12), (2.15) and (2.16), we have
ot n) =k )7 < (4, () = I3, (0 ), e ) = (A

l

= > il ) () = Li(wr ) (8))) (i () (83) = wrA) (84)

i=1

T
+ )\m/ Ft unkx(Am)) — f(t7uk()\m))) (un,k()\m) — uk()\m)) dt — 0 as n — 4o0.
0

Then
|tk (Am) — uk(Am)]] = 0 as n — +oo.

If 1 <p <2, by (2.14), there exists d,, > 0 such that

/ (1) (B (1 1 (M) — By 1y () (1 e Aom) — 1 ()
0

+ / S(8) (@ (tn k(M) — @ (1 (An))) (W ) — (M)

0

[ pO ) = O 5Ol An) — )
o/< (luzy e Am)| + | (Am)[)277 i (Jtin & (Am) | + (M) )22 )dt (2.17)

Furthermore, by the Holder inequality, one has

T
/ p(0) iy () — (M) [P
0

P T 2—p

/T (& k“"’“ |+)uf“(§|>§i at) ([ o) O + i o))
J G,

0
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2-p

P

((p(tnu;,k(m—ummn? dt) (/Tp ol + o)) dt)p

|u;’k()‘m)| + |u;q(A77l)|)2_p

(p—1)(2—p)
2

(p=1(2=p) p(t)|uy, 1 (Am) — g (M) 2 ) H (Eop)p
2 ’ dt Un, i (Am) || + |luk(Am 2 2.18
(St ms ) (sl + sl (2.18)
Similarly,
T
/S }unk —uk()\m)|pdt
0

(2—p)p

T B
Szw/ (<p£Z)LIZ§Z§AZ)|Uk?§LA)”§3|-pdt) (len o) |+ ) )% (2:19)

So, by (2.17)-(2.19), it follows that

+ /S(t) (Cbp(un k(>\m)) — @p(uk()\m))) (un k(>\ ) _ Uk(>\ )) dt
0
2%% n ) 2
> (ke ) | e ) )27 Ko/p(t)!un,k(A m) — W (Am)[” dt>
T 2
([ 5@ htnrOn) = ux )l dt )
(/ )
2P—2dp . . ,
2 Monr O Tur oz 1tk (An) = e (2.20)
which implies by (2.10), (2.11), (2.12) and (2.16) that
2P=2d, . ,
(Tt Qo) [+ TTetze ) D27 [n,k(Am) = wk(Am) |
< (5, () = T4, @ On))s e ) = (M) )
l
= 2 (Fi(un s Oon) (#0)) = Ll Q) (6))) (i) () = 0 () (1)
=1 .
+ A\ / (f (@t un e (Am)) = f(E ue(Am))) (Unge(Am) — ur(Am)) dE — 0 as n — +oo.
0

Then
|tun.e(Am) — ue(Am)|| = 0 as n — +oo.
Therefore, in all cases, {un k(Am) tnen converges strongly to ug(Ay,) in X for all m € Nand k > k;.

As a consequence, we obtain
J;\m (uk()\m)) =0, Ji, (uk()\m)) S [Bk,ék], VmeN and k > ky. (2.21)
O

The lemma is proved.
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Lemma 2.7. For any k > ki, the sequence {ug(Am)}men s bounded.

Proof. For simplicity, we set ug (M) = tnm,. We suppose by contradiction that

[tm]] = +00 as m — +oo. (2.22)

Let z, = ” 2 for any m € N, {2m }men be bounded and ||z, || = 1. Then there exists a subsequence
of zn, denoted again by z,, such that

Zm — 2z in X as m — 400, (2.23)

Zm — 2z in LP([0,T]) as m — o0, (2.24)

{Zm }men converges uniformly to z on [0, 7. (2.25)

Now we distinguish two cases.

Case z = 0. We can say that for any m € N, there exists ¢,, € [0, 1] such that

I, (bmtim) = tgl{g)f] Iy, (tum). (2.26)

By (2.22), we can choose r; = (2jp)%zm such that

i, (2.27)

[t |

0<

with m large enough. By (2.25), F(-,0) = 0 and the continuity of F', we have
F(t,rjzm) = F(t,rjz) =0 as m — +oo for any j € N and uniformly for t € [0,T]. (2.28)

By (H3), (H4), Lemma 2.1, (2.25), (2.28) and by applying the dominated convergence theorem, we
deduce that
F(t,r;zm) — 0 in L'([0,T]) as m — 4oco for any j € N. (2.29)

Then by (2.26), (2.27) and (2.29), we have

T
n (bmstn) = I (732m) = ||rjzm||P+ZGr]zm (t) = A [ Fltrzn(0)de > 2) 5=
=1 0

provided n is large enough, for any j € N. Therefore,

Ir,, (bmtm) = +00 as m — +o0. (2.30)

Since Jy,, (0) = 0 and Jy,, (tmUm) € [bk, k), we deduce that ¢, €]0, 1 for m large enough.
From (2.26), we have

d

— = 0. 2.31
| I () = 0 (2:31)

t=tm

<J§\m (tmtim), tmum> =

Let 6 = max{61, 02} and taking into account (Hg) and (2.31), we have

[u—y

gJAm (tinUm) = = (pJA (tmum) — (J3,. (tmum),tmum>>

>

Qb\>—~

l
Z PG (tmum (t; )_Ii(tmum(ti))tmum(ti))

T
/\7’”/ (t, tin i (8) et (£) — PF(t, toyum () dt
0
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= pJa,, (um) — <J§\m (), um) = pJa,, (Um)
which contradicts (2.21) and (2.30).
Case z #0. Let Q ={t € [0,T] : z(t) # 0}, then meas(2) > 0. By using (2.22) and z # 0, we obtain
|2m ()] = +oo uniformly on ¢t € Q as m — +oo. (2.32)

Notice that

T !

L Dualtn) [Pt (0) g, 5 Glen(t)

P Tuml? J " Tenl? 2

1
F(t um(t) G(um(t:))
>\ dt — —_—
/ |Um( )P ; [t [P
Q
Putting together (Hy), (H2) and applying Fatou’s Lemma, we deduce that
F(t, um(t)
|zm dt — 400 as m — +oo (2.34)
/ Jum(BP

and

l l l
G (U, (t; ;| U, (t; b; | (t; Yitl
’Z( ())‘§Z| ()|+Z| (t:)|
l[wm 1P = NumllP = (i + Dlfum|?
l

a; M ||u,, b MVt || e+t

3 oMl 5B
[ [[P (vi + 1) [lum|[P

i=1

! b.M%‘,+1

+ ! .
Z T G e

Since p >1and p > ~; + 1 for all i € {1,2,...,1}, we have

l

biM%'-‘rl
—0 —
Z (|t |p 1 Zl (i 4 1) um ||~ 2 as m — 400

which implies that

G(Um (t;
Z Glum(ts) — 0 as m — +oo. (2.35)
2l
Then, by (2.21), (2.33), (2.34) and (2.35), we obtain % > 400, which is a contradiction.
Thus we have proved that the sequence {u, }men is bounded in X. O

Therefore, {ug(Am)}men is bounded in X for all k > k1. Also, as a similar argument of the proof
of Lemma 2.6, we can show that ug(\,,) = u in X as m — +oo for all k > ky. Then wuy is a critical
point of J = J; with J(ug) € [bx,¢] for all k > k;. According to by — +00 as k — 400, we know
that problem (1.1) has infinitely many nontrivial high energy solutions. O
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3 Example

In this section, an example is given to illustrate our result.
Consider the following problem:

—((t+3)|u' ()P (£)) +(# + 5t + D) Pu(t) = (#° + 6)|ulPuln(l + |u]), t # t1, ae. t €[0,T],
—Aq((tr +3)|u' (1) (1)) = u (), (3.1)
u(0) = u(T) =0,

we have chosen p = 7, I (u) = u’(¢;) and
f(t,u) = (t° 4 6)|ul>uln(1 + |u|) for all (¢,u) € [0,T] x R.

We remark that all assumptions (H;)—(Hg) are satisfied. Therefore, by Theorem 2.1, problem (3.1)
has infinitely many nontrivial high energy solutions.
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