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INFINITELY MANY SOLUTIONS
FOR A SECOND ORDER IMPULSIVE DIFFERENTIAL
EQUATION WITH p-LAPLACIAN OPERATOR



Abstract. In this paper, by using the critical point theory, specially the fountain theorem given
in [18], we prove the existence of infinitely many solutions for a second order impulsive differential
equation governed by the one-dimensional p-Laplacian operator. Finally, an example is presented to
illustrate our main result.
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ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ, ÊÒÉÔÉÊÖËÉ ßÄÒÔÉËÉÓ ÈÄÏÒÉÉÓ ÂÀÌÏÚÄÍÄÁÉÈ, ÂÀÍÓÀÊÖÈÒÄÁÉÈ [18]-ÛÉ
ÌÏÝÄÌÖËÉ ÛÀÃÒÄÅÍÄÁÉÓ ÈÄÏÒÄÌÉÈ, ÅÀÌÔÊÉÝÄÁÈ ÖÓÀÓÒÖËÏÃ ÁÄÅÒÉ ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄÁÏÁÀÓ
ÌÄÏÒÄ ÒÉÂÉÓ ÉÌÐÖËÓÖÒÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÉÓÈÅÉÓ, ÒÏÌÄËÉÝ ÌÀÒÈÀÅÓ ÄÒÈÂÀÍÆÏ-
ÌÉËÄÁÉÀÍ p-ËÀÐËÀÓÉÖÒ ÏÐÄÒÀÔÏÒÓ. ÍÀÛÒÏÌÉÓ ÁÏËÏÛÉ ÌÈÀÅÀÒÉ ÛÄÃÄÂÉÓ ÓÀÉËÖÓÔÒÀÝÉÏÃ
ÌÏÚÅÀÍÉËÉÀ ÌÀÂÀËÉÈÉ.
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1 Introduction
We consider the problem

−(ρ(t)Φp(u
′(t)))′ + s(t)Φp(u(t)) = f(t, u(t)), t ̸= ti, a.e. t ∈ [0, T ],

−∆p(ρ(ti)Φp(u
′(ti))) = Ii(u(ti)), i = 1, 2, . . . , l,

u(0) = u(T ) = 0,

(1.1)

where f : [0, T ]× R → R is continuous, Φp(x) = |x|p−2x, p > 1 and ρ, s ∈ L∞([0, T ]) with

ess inf
t∈[0,T ]

ρ(t) > 0, ess inf
t∈[0,T ]

s(t) > 0, < ρ(0), ρ(T ) < +∞, t0 = 0 < t1 < t2 < · · · < tl < tl+1 = T,

are given points and the functions Ii : R → R, i = 1, 2, . . . , l, are continuous. The operator ∆p is
defined as

∆p

(
ρ(ti)Φp(u

′(ti))
)
= ρ(t+i )Φp(u

′(t+i ))− ρ(t−i )Φp(u
′(t−i )),

where u′(t+i ) and u′(t−i ) denote the right and left limits of u′(t) at t = ti, respectively.
Differential equations with impulsive effects arising from the real world describe the dynamics of

processes in which sudden, discontinuous jumps occur. We refer to some recent works on the theory
of impulsive differential equations that have been developed by a large number of mathematicians
[4, 7, 9, 10, 12, 16, 17]. There are many approaches to study the existence of solutions of impulsive
differential equations such as fixed point theory [8], topological degree theory [13], comparison method
[15], and so on. On the other hand, many researchers have used variational methods to study the
existence of solutions for boundary value problems [1–3, 5, 6, 11, 14]. However, to the best of our
knowledge, there are few papers dealing with the existence of infinitely many solutions for impulsive
boundary value problems by using fountain theorems. Recently, in [14], the authors considered the
following problem:

−u′′(t) + g(t)u(t) = f(t, u(t)), t ̸= tj , a.e. t ∈ [0, T ],

∆(u′(tj)) = Ij(u(tj)), j = 1, 2, . . . , p,

u(0) = u(T ) = 0.

(1.2)

They obtained the existence of infinitely many solutions for (1.2) in both cases, superlinear and asym-
ptotically linear, by using the fountain theorems without using the Ambrosetti–Rabinowitz condition
in the superlinear case which is given as follows, that is, there exist η > 2 and K > 0 such that

0 < ηF (t, u) ≤ f(t, u)u, |u| ≥ K for all t ∈ [0, T ], (1.3)

where F is a primitive of f with respect to the second variable, that is, F (t, u) =
x∫
0

f(t, x)dx.

However, there are the functions which are superlinear, but do not satisfy condition (1.3). For
example,

f(t, u) = | sin(t)|
(
2u ln(1 + |u|) + |u|u

1 + |u|

)
for t ∈ [0, T ] and u ∈ R \ {0}. (1.4)

Inspired by the above-mentioned works, in the present paper we study the existence of infinitely
many solutions for problem (1.1), when the nonlinearity f(t, u) and Ii (i = 1, 2, . . . , l) satisfy some
sub-critical conditions.

The remainder of this paper is organized as follows. In Section 2, we present preliminaries and
main results. In Section 3, we give an example that satisfies the assumptions of our main result.

2 Variational setting and main results
Here and in what follows, X denotes the Sobolev space W 1,p

0 ([0, T ]) endowed with the norm

∥u∥ =

( T∫
0

(
ρ(t)|u′(t)|p + s(t)|u(t)|p

)
dt
) 1

p

, (2.1)
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which is equivalent to the usual one. As usual, for 1 < p < +∞, we define the norms in Lp([0, T ])
and C([0, T ]), respectively, by

∥u∥p =

( T∫
0

|u(t)|p dt
) 1

p

and ∥u∥∞ = max
t∈[0,T ]

|u(t)|.

Lemma 2.1 ([1]). For u ∈ W 1,p
0 ([0, T ]), we have ∥u∥∞ ≤ M∥u∥, where

M = 2
1
q max

{
1

T
1
p (ess inf

t∈[0,T ]
s(t))

1
p

,
T

1
q

(ess inf
t∈[0,T ]

ρ(t))
1
p

}
,

1

p
+

1

q
= 1.

Proof. For u ∈ W 1,p
0 ([0, T ]), it follows from the mean value theorem that

u(ζ) =
1

T

T∫
0

u(τ)dτ

for some ζ ∈ [0, T ]. Hence, for t ∈ [0, T ], using Hölder’s inequality with 1
p + 1

q = 1, we have

|u(t)| =
∣∣∣∣u(ζ) +

t∫
ζ

u′(τ)dτ
∣∣∣∣

≤
T∫

0

|u(τ)|dτ +

T∫
0

|u′(τ)|dτ ≤ T− 1
p

( T∫
0

|u(τ)|p dτ
) 1

p

+ T
1
q

( T∫
0

|u′(τ)|p dτ
) 1

p

≤ 1

T
1
p (ess inf

t∈[0,T ]
s(t))

1
p

( T∫
0

s(τ)|u(τ)|p dτ
) 1

p

+
T

1
q

(ess inf
t∈[0,T ]

ρ(t))
1
p

( T∫
0

ρ(τ)|u′(τ)|p dτ
) 1

p

≤ 2
1
q max

{
1

T
1
p (ess inf

t∈[0,T ]
s(t))

1
p

,
T

1
q

(ess inf
t∈[0,T ]

ρ(t))
1
p

}
∥u∥,

which completes the proof.

Now, we introduce the following concept for the solution of problem (1.1).

Definition 2.1. We say that a function u ∈ W 1,p
0 ([0, T ]) is a weak solution of problem (1.1) if the

identity

T∫
0

ρ(t)|u′(t)|p−2u′(t)v′(t)dt+
T∫

0

s(t)|u(t)|p−2u(t)v(t)dt+
l∑

i=1

Ii(u(ti))v(ti) =

T∫
0

f(t, u(t))v(t)dt

holds for any v ∈ W 1,p
0 ([0, T ]).

Definition 2.2. A function u ∈ {u ∈ W 1,p
0 ([0, T ]) : ρ|u′|p−2u′ ∈ W 1,∞([0, T ] \ {t1, t2, . . . , tl})} is a

classical solution of problem (1.1) if u satisfies the equation a.e. on [0, T ] \ {t1, t2, . . . , tl}, the limits
u′(t+i ), u′(t−i ), i = 1, 2, . . . , l, exist and satisfy the impulsive condition

−∆p

(
ρ(ti)Φp(u

′(ti))
)
= ρ(t−i )Φp(u

′(t−i ))− ρ(t+i )Φp(u
′(t+i )) = Ii(u(ti)),

and the boundary conditions u(0) = u(T ) = 0 holds.
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Next, we begin describing the variational formulation of our problem. Consider the energy func-
tional J : W 1,p

0 ([0, T ]) → R associated to (1.1) as follows

J(u) =
1

p

T∫
0

(
ρ(t)|u′(t)|p + s(t)|u(t)|p)dt+

l∑
i=1

u(ti)∫
0

Ii(x)dx−
T∫

0

F (t, u(t))dt

=
1

p
∥u∥p +

l∑
i=1

u(ti)∫
0

Ii(x)dx−
T∫

0

F (t, u(t))dt. (2.2)

Since f and Ii (i = 1, 2, . . . , l) are continuous, we deduce that J is of the class C1(W 1,p
0 ([0, T ]),R) and

its derivative is given by

⟨J ′(u), v⟩ =
T∫

0

ρ(t)|u′(t)|p−2u′(t)v′(t)dt

+

T∫
0

s(t)|u(t)|p−2u(t)v(t)dt+
l∑

i=1

Ii(u(ti))v(ti)−
T∫

0

f(t, u(t))v(t)dt (2.3)

for all u, v ∈ W 1,p
0 ([0, T ]).

Then it is clear that the critical points of J are weak solutions of problem (1.1).

Lemma 2.2. If u ∈ W 1,p
0 ([0, T ]) is a weak solution of problem (1.1), then u is a classical solution of

problem (1.1).

Proof. The proof is similar to that of Lemma 1 in [2].

To prove our main results, we need the following variant fountain theorem introduced in [18] to
handle our problem. Let X be a Banach space with the norm ∥ · ∥ and X =

⊕
j∈N

Xj with dimXj < +∞

for any j ∈ N. Set

Yk =

k⊕
j=1

Xj , Zk =

∞⊕
j=k

Xj and Bk =
{
u ∈ Yk : ∥u∥ ≤ ρk

}
.

Consider the C1-functional Jλ : X → R defined by

Jλ(u) = A(u)− λB(u), λ ∈ [1, 2],

where

A(u) =
1

p
∥u∥p +

l∑
i=1

u(ti)∫
0

Ii(x)dx and B(u) =

T∫
0

F (t, u(t))dt.

For convenience, we list the following assumptions:

(H1) Ii(u) (i = 1, 2, . . . , l) are odd about u and satisfy Ii(u)u ≥ 0 for all u ∈ R.

(H2) For any i ∈ {1, 2, . . . , l}, there exist the positive constants ai, bi and γi ∈ [0, p− 1[ such that

|Ii(u)| ≤ ai + bi|u|γi for u ∈ R.

(H3) There exist the constants θ1 > 0, θ2 > 0, and ν > p such that

|f(t, u)| ≤ θ1|u|p−1 + θ2|u|ν−1 for all (t, u) ∈ [0, T ]× R.
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(H4) F (t, 0) = 0 and F (t, u) ≥ 0, ∀(t, u) ∈ [0, T ]× R and

lim
|u|→+∞

F (t, u)

|u|p
+∞ uniformly for t ∈ [0, T ].

(H5) F (t,−u) = F (t, u), ∀ (t, u) ∈ [0, T ]× R.

(H6) There exist θ1 ≥ 1, θ2 ≥ 1 such that

θ1G(u(ti)) ≥ G(τu(ti)), ∀ i ∈ {1, 2, . . . , l}, τ ∈ [0, 1] and ∀u ∈ R,

and
θ2F(t, u) ≥ F(t, τu), ∀ (t, u) ∈ [0, T ]× R and τ ∈ [0, 1],

where

G(u(ti)) = pG(u(ti))− Ii(u(ti))u(ti), G(u(ti)) =

u(ti)∫
0

Ii(x)dx

and
F(t, u) = f(t, u)u− pF (t, u).

Theorem 2.1. Assume that (H1)–(H6) are satisfied. Then problem (1.1) possesses infinitely many
high energy solutions {uk} ⊂ W 1,p

0 ([0, T ]) \ {0} satisfying

1

p

T∫
0

(
ρ(t)|u′

k(t)|p + s(t)|uk(t)|p
)

dt+
l∑

i=1

uk(ti)∫
0

Ii(x)dx−
T∫

0

F (t, uk(t))dt −→ +∞ as k → +∞.

To prove our main result, we will show that Jλ satisfies the assumptions of the following variant
fountain theorem.

Theorem 2.2 ([18]). Assume that the functional Jλ defined above satisfies

(A1) Jλ maps bounded sets into bounded sets uniformly for λ ∈ [1, 2], and Jλ(−u) = Jλ(u) for all
(λ, u) ∈ [1, 2]×X;

(A2) B(u) ≥ 0 for all u ∈ X, A(u) → +∞ or B(u) → +∞ as ∥u∥ → +∞;

or

(A3) B(u) ≤ 0 for all u ∈ X, B(u) → −∞ as ∥u∥ → +∞;

(A4) there exist ρk > rk > 0 such that

bk(λ) = inf
u∈Zk, ∥u∥=rk

Jλ(u) > ak(λ) = max
u∈Yk, ∥u∥=ρk

Jλ(u), ∀λ ∈ [1, 2].

Then
bk(λ) ≤ ck(λ) = inf

γ∈Γk

max
u∈Bk

Jλ(γ(u)), ∀λ ∈ [1, 2],

where
Γk =

{
γ ∈ C(Bk, X) : γ is odd, γ|∂Bk

= id ≡ identity
}
.

Moreover, for almost every λ ∈ [1, 2], there exists a sequence {un,k(λ)}n∈N such that

sup
n

∥un,k(λ)∥ < +∞, J ′
λ(un,k(λ)) → 0 and Jλ(un,k(λ)) → ck(λ) as n → +∞.
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Proof of Theorem 2.1. By (H3), there exist positive numbers θ3 and θ4 such that

|F (t, u)| ≤ θ3|u|p + θ4|u|ν . (2.4)

Combining (2.4), (H2) and Lemma 2.1, it is easily seen that Jλ maps bounded sets into bounded
sets uniformly for λ ∈ [1, 2]. By (H1) and (H5), Jλ(−u) = Jλ(u) for all (λ, u) ∈ [1, 2] × X. Thus
condition (A1) holds. Assumption (H4) means that B(u) ≥ 0. Condition (A2) holds for the fact that
A(u) ≥ 1

p∥u∥
p → +∞ as ∥u∥ → +∞ and B(u) ≥ 0. Next, to show assumption (A4), we first show

the following useful lemmas.

Lemma 2.3. Let
αr(k) = sup

u∈Zk, ∥u∥=1

∥u∥r

with r ≥ p. Then
αr(k) → 0 as k → +∞.

Proof. We aim to prove that αr(k) → 0 as k → +∞. The function αr(k) is decreasing with respect
to k, then there exists αr ≥ 0 for all r ≥ p such that αp(k) → αp and αr(k) → αr as k → +∞. For
any k ≥ 0, there exits uk ∈ Zk such that

∥uk∥ = 1 and ∥uk∥p ≥ αp(k)

2
.

By the fact that X is a reflexive space, we can assume that uk ⇀ u in X. Let {e∗j}j∈N be the family
of the dual space of X and for any e∗n ∈ {e∗j}j∈N, we have

⟨e∗n, uk⟩ = 0 for k > n.

Therefore,
0 = ⟨e∗n, uk⟩ → ⟨e∗n, u⟩ as k → +∞

for any e∗n ∈ {e∗j}j∈N, which implies that u = 0, then uk ⇀ 0 in X, uk → 0 in Lp([0, T ]) and therefore
uk → 0 in C([0, T ]) which implies that αp = 0. Similarly, we prove that αr = 0 for all r ≥ p.

Lemma 2.4. There exists rk > 0 such that

bk(λ) = inf
u∈Zk, ∥u∥=rk

Jλ(u) > 0, ∀λ ∈ [1, 2].

Proof. For any u ∈ Zk and λ ∈ [1, 2], by (2.4) and (H1) and the above definition of αr(k), we have

Jλ(u) =
1

p
∥u∥p +

l∑
i=1

u(ti)∫
0

Ii(x)dx− λ

T∫
0

F (t, u(t))dt

≥ 1

p
∥u∥p − 2θ3∥u∥pp − 2θ4∥u∥νν ≥ 1

p
∥u∥p − 2θ3α

p
p(k)∥u∥p − 2θ4α

ν
ν(k)∥u∥ν .

Choose
rk =

1

αp(k) + αν(k)
.

Then rk → +∞ as k → +∞. Hence for u ∈ Zk with ∥u∥ = rk, we obtain

Jλ(u) ≥
1

p
∥u∥p − 2θ3

αp
p(k)

(αp(k) + αν(k))p
− 2θ4

αν
ν(k)

(αp(k) + αν(k))ν
≥ 1

p
rpk − 2θ3 − 2θ4 > 0.

Therefore,
bk(λ) = inf

u∈Zk, ∥u∥=rk
Jλ(u) > 0, ∀λ ∈ [1, 2].
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Lemma 2.5. There exists ρk large enough and ρk > rk such that

ak(λ) = max
u∈Yk, ∥u∥=ρk

Jλ(u) < 0, ∀λ ∈ [1, 2].

Proof. First, we claim that for any u ∈ Yk, there exists ϵ1 > 0 such that

meas
{
t ∈ [0, T ] : |u(t)| ≥ ϵ1∥u∥

}
≥ ϵ1, ∀u ∈ Yk \ {0}. (2.5)

Proof of claim. We argue by the contradiction and suppose that for any positive integer n there exists
un ∈ Yk \ {0} such that

meas
{
t ∈ [0, T ] : |un(t)| ≥

1

n
∥un∥

}
<

1

n
, ∀n ∈ N.

Set vn(t) =
un(t)
∥un∥ ∈ Yk \ {0}. Then ∥vn∥ = 1 and

meas
{
t ∈ [0, T ] : |vn(t)| ≥

1

n

}
<

1

n
, ∀n ∈ N. (2.6)

Since dimYk < +∞, it follows from the unit sphere of Yk that there exists a subsequence denoted by
{vn} such that vn converges to some v in Yk. Therefore, we have ∥v∥ = 1. By the fact that all norms
are equivalent on Yk, we deduce that vn → v in Lp([0, T ]), i.e.,

T∫
0

|vn(t)− v(t)|p dt → 0 as n → +∞. (2.7)

Thus there exist ξ1, ξ2 > 0 such that

meas
{
t ∈ [0, T ] : |v(t)| ≥ ξ1

}
≥ ξ2. (2.8)

In fact, if not, for all positive integers n, we have

meas
{
t ∈ [0, T ] : |v(t)| ≥ 1

n

}
= 0, i.e., meas

{
t ∈ [0, T ] : |v(t)| < 1

n

}
= T.

It implies that

0 <

T∫
0

|v(t)|p dt < 1

np
T → 0 as n → +∞.

Hence v = 0, which contradicts that ∥v∥ = 1. Therefore, (2.8) holds.
Now let

Ω0 = meas
{
t ∈ [0, T ] : |v(t)| ≥ ξ1

}
, Ωn =

{
t ∈ [0, T ] : |v(t)| < 1

n

}
and Ωc

n = [0, T ] \ Ωn.

By (2.6) and (2.8), we have

meas(Ω0 ∩ Ωn) = meas
(
Ω0 \ (Ωc

n ∩ Ω0)
)
≥ meas(Ω0)− meas(Ωc

n ∩ Ω0) ≥ ξ2 −
1

n

for all positive integers n. Let n be large enough such that ξ2 − 1
n ≥ 1

2 ξ2 and ξ1 − 1
n ≥ 1

2 ξ1.
Then we have

|vn(t)− v(t)|p ≥
(
ξ1 −

1

n

)p

≥ 1

2p
ξp1 , ∀ t ∈ Ω0 ∩ Ωn.

Also,
T∫

0

|vn(t)− v(t)|p dt ≥
∫

Ω0∩Ωn

|vn − v|p dt ≥ 1

2p
ξp1 meas(Ω0 ∩ Ωn) ≥

1

2p
ξp1

(
ξ2 −

1

n

)
≥ 1

2p+1
ξp1ξ2
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for all large n, which is a contradiction to (2.7). Therefore, (2.5) holds.
Now, using the fact that Yk is finite-dimensional and the claim, we can find ϵk > 0 such that

meas
{
t ∈ [0, T ] : |u(t)| ≥ ϵk∥u∥

}
≥ ϵk, ∀u ∈ Yk \ {0}. (2.9)

By (H4), for any k ∈ N, there exists Rk > 0 such that

F (t, u) ≥ |u|p

ϵp+1
k

uniformly for t ∈ [0, T ] and |u| ≥ Rk.

Set
Ωk

u =
{
t ∈ [0, T ] : |u(t)| ≥ ϵk∥u∥

}
and let us observe that, by (2.9), meas(Ωk

u) ≥ ϵk for any u ∈ Yk \ {0}. Then for any u ∈ Yk with
∥u∥ ≥ Rk

ϵk
, it follows from (H2), (H4), (2.5) and Lemma 2.1 that

Jλ(u) =
1

p
∥u∥p +

l∑
i=1

u(ti)∫
0

Ii(x)dx− λ

T∫
0

F (t, u(t))dt

≤ 1

p
∥u∥p +

l∑
i=1

(
aiM∥u∥+ biM

γi+1∥u∥γi+1
)
−

∫
Ωk

u

F (t, u(t))dt

≤ 1

p
∥u∥p +

l∑
i=1

(
aiM∥u∥+ biM

γi+1∥u∥γi+1
)
− ∥u∥p

ϵp+1
k

ϵpk meas(Ωk
u)

≤ 1

p
∥u∥p +

l∑
i=1

(
aiM∥u∥+ biM

γi+1∥u∥γi+1
)
− ∥u∥p

= − (p− 1)

p
∥u∥p +

l∑
i=1

(
aiM∥u∥+ biM

γi+1∥u∥γi+1
)

for all u ∈ Yk. Since γi < p− 1, choosing ρk large enough such that

ρk > max
{
rk,

Rk

ϵk

}
for all k > k1,

it follows that
ak(λ) = max

u∈Yk, ∥u∥=ρk

Jλ(u) < 0, ∀ k > k1.

Since all assumptions of Theorem 2.2 hold, for λ ∈ [1, 2], there exists a sequence {un,k(λ)}∞n=1 such
that

sup
n

∥un,k(λ)∥ < +∞, J ′
λ(un,k(λ)) → 0 and Jλ(un,k(λ)) → ck(λ) as n → +∞,

where
ck(λ) = inf

γ∈Γk

max
u∈Bk

Jλ(γ(u)).

From the proof of Lemma 2.4, we deduce that for any k > k1 and λ ∈ [1, 2],

ck(λ) ≥ bk(λ) ≥
1

p
rpk − 2θ3 − 2θ4 = bk → +∞ as k → +∞,

and
ck(λ) ≤ max

u∈Bk

J1(u) = ck.

Thus
bk ≤ ck(λ) ≤ ck for all λ ∈ [1, 2].
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As a consequence, for any k ≥ k1, we can choose λm → 1, m → +∞, and get the corresponding
sequences satisfying

sup
n

∥un,k(λm)∥ < +∞, J ′
λm

(un,k(λm)) → 0 and Jλm
(un,k(λm)) → ck(λm) as n → +∞.

Now, we prove that for any k ≥ k1, {un,k(λm)}n∈N admits a strongly convergent subsequence and
that such subsequence is bounded.

Lemma 2.6. For each λm given above, the sequence {un,k(λm)}n∈N has a strong convergent subse-
quence.

Proof. The fact that sup
n

∥un,k(λm)∥ < +∞ implies that {un,k(λm)}n∈N is bounded in X. Since X

is a reflexive Banach space, passing to a subsequence, if necessary, we may assume that there is a
uk(λm) ∈ X such that

un,k(λm) ⇀ uk(λm) in X as n → +∞,

un,k(λm) → uk(λm) in Lp([0, T ]) as n → +∞

and
{un,k(λm)}n∈N converges uniformly to uk(λm) on [0, T ].

Thus we have

l∑
i=1

(
Ii(un,k(λm)(ti))− Ii(uk(λm)(ti))

)(
un,k(λm)(ti)− uk(λm)(ti)

)
−→ 0 as n → +∞, (2.10)

T∫
0

(
f(t, un,k(λm))− f(t, uk(λm))

)(
un,k(λm)− uk(λm)

)
dt −→ 0 as n → +∞. (2.11)

Notice that⟨
J ′
λm

(un,k(λm))− J ′
λm

(uk(λm)), un,k(λm)− uk(λm)
⟩

=

T∫
0

ρ(t)
(
Φp(u

′
n,k(λm))− Φp(u

′
k(λm))

)(
u′
n,k(λm)− u′

k(λm)
)

dt

+

T∫
0

s(t)
(
Φp(un,k(λm))− Φp(uk(λm))

)(
un,k(λm)− uk(λm)

)
dt

+

l∑
i=1

(
Ii(un,k(λm)(ti))− Ii(uk(λm)(ti))

)(
un,k(λm)(ti)− uk(λm)(ti)

)
− λm

T∫
0

(
f(t, un,k(λm))− f(t, uk(λm))

)(
un,k(λm)− uk(λm)

)
dt. (2.12)

Recalling the following inequalities, for any x, y ∈ R, there exist cp, dp > 0 such that⟨
|x|p−2x− |y|p−2y, x− y

⟩
≥ cp|x− y|p if p ≥ 2 (2.13)

and ⟨
|x|p−2x− |y|p−2y, x− y

⟩
≥ dp

|x− y|2

(|x|+ |y|)2−p
if 1 < p < 2. (2.14)
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Then if p ≥ 2, there exists cp > 0 such that

T∫
0

ρ(t)
(
Φp(u

′
n,k(λm))− Φp(u

′
k(λm))

)(
u′
n,k(λm)− u′

k(λm)
)

dt

+

T∫
0

s(t)
(
Φp(un,k(λm))− Φp(uk(λm))

)(
un,k(λm)− uk(λm)

)
dt

≥ cp

T∫
0

(
ρ(t)

∣∣u′
n,k(λm)− u′

k(λm)
∣∣p + s(t)

∣∣un,k(λm)− uk(λm)
∣∣p)dt

= cp∥un,k(λm)− uk(λm)∥p. (2.15)

Since
lim

n→+∞
J ′
λm

(un,k(λm)) = 0

and un,k(λm) converges weakly to uk(λm), one has

lim
n→+∞

⟨
J ′
λm

(un,k(λm))− J ′
λm

(uk(λm)), un,k(λm)− uk(λm)
⟩
= 0. (2.16)

By (2.10)–(2.12), (2.15) and (2.16), we have

cp∥un,k(λm)− uk(λm)∥p ≤
⟨
J ′
λm

(un,k(λm))− J ′
λm

(uk(λm)), un,k(λm)− uk(λm)
⟩

−
l∑

i=1

(
Ii(un,k(λm)(ti))− Ii(uk(λm)(ti))

)(
un,k(λm)(ti)− uk(λm)(ti)

)
+ λm

T∫
0

(
f(t, un,k(λm))− f(t, uk(λm))

)(
un,k(λm)− uk(λm)

)
dt −→ 0 as n → +∞.

Then
∥un,k(λm)− uk(λm)∥ → 0 as n → +∞.

If 1 < p < 2, by (2.14), there exists dp > 0 such that

T∫
0

ρ(t)
(
Φp(u

′
n,k(λm))− Φp(u

′
k(λm))

)(
u′
n,k(λm)− u′

k(λm)
)

dt

+

T∫
0

s(t)
(
Φp(un,k(λm))− Φp(uk(λm))

)(
un,k(λm)− uk(λm)

)
dt

≥ dp

T∫
0

(
ρ(t)|u′

n,k(λm)− u′
k(λm)|2

(|u′
n,k(λm)|+ |u′

k(λm)|)2−p
+

s(t)|un,k(λm)− uk(λm)|2

(|un,k(λm)|+ |uk(λm)|)2−p

)
dt. (2.17)

Furthermore, by the Hölder inequality, one has

T∫
0

ρ(t)|u′
n,k(λm)− u′

k(λm)|p dt

≤
T∫

0

(
ρ(t)|u′

n,k(λm)− u′
k(λm)|2

(|u′
n,k(λm)|+ |u′

k(λm)|)2−p
dt
) p

2
( T∫

0

ρ(t)
(
|u′

n,k(λm)|+ |u′
k(λm)|

)p dt
) 2−p

p
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≤ 2
(p−1)(2−p)

2

T∫
0

(
ρ(t)|u′

n,k(λm)− u′
k(λm)|2

(|u′
n,k(λm)|+ |u′

k(λm)|)2−p
dt
) p

2
( T∫

0

ρ(t)(|u′
n,k(λm)|p + |u′

k(λm)|p)dt
) 2−p

p

≤ 2
(p−1)(2−p)

2

T∫
0

(
ρ(t)|u′

n,k(λm)− u′
k(λm)|2

(|u′
n,k(λm)|+ |u′

k(λm)|)2−p
dt
) p

2 (
∥un,k(λm)∥+ ∥uk(λm)∥

) (2−p)p
2 . (2.18)

Similarly,

T∫
0

s(t)
∣∣un,k(λm)− uk(λm)

∣∣p dt

≤ 2
(p−1)(2−p)

2

T∫
0

(
ρ(t)|un,k(λm)− uk(λm)|2

(|un,k(λm)|+ |uk(λm)|)2−p
dt
) p

2 (
∥un,k(λm)∥+ ∥uk(λm)∥

) (2−p)p
2 . (2.19)

So, by (2.17)–(2.19), it follows that
T∫

0

ρ(t)
(
Φp(u

′
n,k(λm))− Φp(u

′
k(λm))

)
(u′

n,k(λm)− u′
k(λm))dt

+

T∫
0

s(t)
(
Φp(un,k(λm))− Φp(uk(λm))

)(
un,k(λm)− uk(λm)

)
dt

≥ 2
(p−1)(p−2)

2 dp
(∥un,k(λm)∥+ ∥uk(λm)∥)2−p

[( T∫
0

ρ(t)
∣∣u′

n,k(λm)− u′
k(λm)

∣∣p dt
) 2

p

+

( T∫
0

s(t)|un,k(λm)− uk(λm)|p dt
) 2

p
]

≥ 2p−2dp
(∥un,k(λm)∥+ ∥uk(λm)∥)2−p

∥un,k(λm)− uk(λm)∥2, (2.20)

which implies by (2.10), (2.11), (2.12) and (2.16) that

2p−2dp
(∥un,k(λm)∥+ ∥uk(λm)∥)2−p

∥un,k(λm)− uk(λm)∥2

≤
⟨
J ′
λm

(un,k(λm))− J ′
λm

(uk(λm)), un,k(λm)− uk(λm)
⟩

−
l∑

i=1

(
Ii(un,k(λm)(ti))− Ii(uk(λm)(ti))

)(
un,k(λm)(ti)− uk(λm)(ti)

)
+ λm

T∫
0

(
f(t, un,k(λm))− f(t, uk(λm))

)(
un,k(λm)− uk(λm)

)
dt −→ 0 as n → +∞.

Then
∥un,k(λm)− uk(λm)∥ → 0 as n → +∞.

Therefore, in all cases, {un,k(λm)}n∈N converges strongly to uk(λm) in X for all m ∈ N and k ≥ k1.
As a consequence, we obtain

J ′
λm

(uk(λm)) = 0, Jλm
(uk(λm)) ∈ [bk, ck], ∀m ∈ N and k ≥ k1. (2.21)

The lemma is proved.
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Lemma 2.7. For any k ≥ k1, the sequence {uk(λm)}m∈N is bounded.

Proof. For simplicity, we set uk(λm) = um. We suppose by contradiction that

∥um∥ → +∞ as m → +∞. (2.22)

Let zm = um

∥um∥ for any m ∈ N, {zm}m∈N be bounded and ∥zm∥ = 1. Then there exists a subsequence
of zm denoted again by zm such that

zm ⇀ z in X as m → +∞, (2.23)
zm → z in Lp([0, T ]) as m → +∞, (2.24)

{zm}m∈N converges uniformly to z on [0, T ]. (2.25)

Now we distinguish two cases.

Case z = 0. We can say that for any m ∈ N, there exists tm ∈ [0, 1] such that

Jλm
(tmum) = max

t∈[0,1]
Jλm

(tum). (2.26)

By (2.22), we can choose rj = (2jp)
1
p zm such that

0 <
rj

∥um∥
< 1, (2.27)

with m large enough. By (2.25), F ( · , 0) = 0 and the continuity of F , we have

F (t, rjzm) → F (t, rjz) = 0 as m → +∞ for any j ∈ N and uniformly for t ∈ [0, T ]. (2.28)

By (H3), (H4), Lemma 2.1, (2.25), (2.28) and by applying the dominated convergence theorem, we
deduce that

F (t, rjzm) → 0 in L1([0, T ]) as m → +∞ for any j ∈ N. (2.29)

Then by (2.26), (2.27) and (2.29), we have

Jλm
(tmum) ≥ Jλm

(rjzm) =
1

p
∥rjzm∥p +

l∑
i=1

G(rjzm(ti)− λm

T∫
0

F (t, rjzm(t))dt ≥ 2j − j = j,

provided n is large enough, for any j ∈ N. Therefore,

Jλm
(tmum) → +∞ as m → +∞. (2.30)

Since Jλm
(0) = 0 and Jλm

(tmum) ∈ [bk, ck], we deduce that tm ∈]0, 1[ for m large enough.
From (2.26), we have

⟨
J ′
λm

(tmum), tmum

⟩
= tm

d

dt

∣∣∣∣
t=tm

Jλm
(tum) = 0. (2.31)

Let θ = max{θ1, θ2} and taking into account (H6) and (2.31), we have

p

θ
Jλm

(tmum) =
1

θ

(
pJλm

(tmum)−
⟨
J ′
λm

(tmum), tmum

⟩)
=

1

θ

l∑
i=1

(
pG(tmum(ti))− Ii(tmum(ti))tmum(ti)

)
+

λm

θ

T∫
0

(
f(t, tmum(t))tmum(t)− pF (t, tmum(t))

)
dt
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=
1

θ

l∑
i=1

G(tmum(ti)) +
λm

θ

T∫
0

F(t, tmum(t))dt

≤ 1

θ

l∑
i=1

θ1G(um(ti)) +
λm

θ

T∫
0

θ2F(t, um(t))dt

≤
l∑

i=1

G(um(ti)) + λm

T∫
0

F(t, um(t))dt

= pJλm(um)− ⟨J ′
λm

(um), um⟩ = pJλm(um)

which contradicts (2.21) and (2.30).
Case z ̸= 0. Let Ω = {t ∈ [0, T ] : z(t) ̸= 0}, then meas(Ω) > 0. By using (2.22) and z ̸= 0, we obtain

|zm(t)| → +∞ uniformly on t ∈ Ω as m → +∞. (2.32)

Notice that

1

p
− Jλm(um)

∥um∥p
= λm

T∫
0

F (t, um(t))

∥um∥p
dt−

l∑
i=1

G(um(ti))

∥um∥p

≥ λm

∫
Ω

|zm(t)|p F (t, um(t))

|um(t)|p
dt−

l∑
i=1

G(um(ti))

∥um∥p
.

Putting together (H4), (H2) and applying Fatou’s Lemma, we deduce that∫
Ω

|zm(t)|p F (t, um(t))

|um(t)|p
dt −→ +∞ as m → +∞ (2.34)

and ∣∣∣ l∑
i=1

G(um(ti))

∥um∥p
∣∣∣ ≤ l∑

i=1

ai|um(ti)|
∥um∥p

+

l∑
i=1

bi|um(ti)|γi+1

(γi + 1)∥um∥p

≤
l∑

i=1

aiM∥um∥
∥um∥p

+

l∑
i=1

biM
γi+1∥um∥γi+1

(γi + 1)∥um∥p

=

l∑
i=1

aiM

∥um∥p−1
+

l∑
i=1

biM
γi+1

(γi + 1)∥um∥p−γi−1
.

Since p > 1 and p > γi + 1 for all i ∈ {1, 2, . . . , l}, we have
l∑

i=1

aiM

∥um∥p−1
+

l∑
i=1

biM
γi+1

(γi + 1)∥um∥p−γi−1
−→ 0 as m → +∞

which implies that
l∑

i=1

G(um(ti))

∥um∥p
−→ 0 as m → +∞. (2.35)

Then, by (2.21), (2.33), (2.34) and (2.35), we obtain 1
p ≥ +∞, which is a contradiction.

Thus we have proved that the sequence {um}m∈N is bounded in X.

Therefore, {uk(λm)}m∈N is bounded in X for all k ≥ k1. Also, as a similar argument of the proof
of Lemma 2.6, we can show that uk(λm) → uk in X as m → +∞ for all k ≥ k1. Then uk is a critical
point of J = J1 with J(uk) ∈ [bk, ck] for all k ≥ k1. According to bk → +∞ as k → +∞, we know
that problem (1.1) has infinitely many nontrivial high energy solutions.
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3 Example
In this section, an example is given to illustrate our result.

Consider the following problem:

−
(
(t+ 3)|u′(t)|5u′(t)

)′
+(t2 + 5t+ 1)|u(t)|5u(t) = (t9 + 6)|u|5u ln(1 + |u|), t ̸= t1, a.e. t ∈ [0, T ],

−∆7((t1 + 3)|u′(t1)|5u′(t1)) = u5(t1), (3.1)
u(0) = u(T ) = 0,

we have chosen p = 7, I1(u) = u5(t1) and

f(t, u) = (t9 + 6)|u|5u ln(1 + |u|) for all (t, u) ∈ [0, T ]× R.

We remark that all assumptions (H1)–(H6) are satisfied. Therefore, by Theorem 2.1, problem (3.1)
has infinitely many nontrivial high energy solutions.
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