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Abstract. In this paper, we prove the existence and regularity results of positive solutions for
anisotropic elliptic problems with variable exponents and a singular nonlinearity having also a variable
exponent. The functional setting involves anisotropic Sobolev spaces with variable exponents.
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1 Introduction

Our aim is to prove the existence of at least one positive solution u to the singular anisotropic equation

N
> Di(|Dsu

p”'(m)_ZDiu) = 7f in Q

v(z) ’
i=1 " (1.1)
u>0 in Q,
u=20 on 0f,

where (2 is a bounded open domain in RY (N > 2) with Lipschitz boundary 02, and f is assumed
to be a nonnegative function belonging to L™(2), m > 1. We assume that the variable exponent
v(-) : @ — (0,+00) is a smooth continuous function, and p;(-) : @ — (1,+00), i = 1,..., N, are
continuous functions such that

pi(z) <pafx) <--- <pn(z), Yre®, (1.2)

and
p(z) <N, (1.3)

where

1 11 _
O ;pi(x) , Yzel

Anisotropic operators with variable exponents are involved in various branches of applied sciences.
In some cases, they provide realistic models for studying natural phenomena in electro-rheological
fluids (see the references in [1-3,14,18]). Other important application is related to the image processing
[7]. The corresponding results in the isotropic case are developed in [4-6,13].

In [5], Boccardo and Orsina studied problem (1.1) in the isotropic constant case with a positive
constant v and f in a certain Lebesgue space. They proved some existence and regularity results. In [6],
Carmona and Martinez studied the same case for the singular nonlinearity with a variable exponent.
Additionally, singular nonlinear elliptic equations in RY were studied in [4]. Then, the existence results
for quasilinear nonlocal elliptic problems with variable singular exponent were proved in [13].

In this paper, we prove the existence and regularity results of positive solutions for anisotropic
problems with variable exponents and a singular nonlinearity having also a variable exponent, where

it was addressed to the treatment of cases m = —2¥— in Theorem 3.1, and m = Nzl ) gy
py—1 N~ —1)+ap
Theorem 3.2, where p~ = minp(z), py = minpy(z), @ > max{1,7"}, and v* = max~(z). This is
€ zEQ zeQ

explained under certain conditions in each of the two Theorems 3.1 and 3.2.

The proof requires a priori estimates of the sequence of suitable approximate solutions (u,,), which,
in turn, proves its existence, and then, by passing to the limit, the functional setting involves Lebesgue
and Sobolev spaces with variable exponent LP(), WhLP( ), Wﬁ)’?( ’ ), and WHP (),

We prove the strong convergence. Equipped with this convergence, we pass to the limit in the
weak formulation.

2 Preliminaries

In this section, we recall some facts on anisotropic spaces with variable exponents and give some of
their properties. For further details on the Lebesgue—Sobolev spaces with variable exponents, we refer
to [10,11,16] and the references therein. Here, we set

Ci(Q)={peC@Q): p(z)>1for any x in Q}.
For any p € C4 (), we denote

p* =maxp(z) and p~ = minp(z).
e €
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We define the Lebesgue space with a variable exponent LP(*) () as the set of all measurable functions

u : 2 — R for which the convex modular
u) = / ulP®) da
Q
is finite. The expression

el = ull o gy = {A >0 gy )(A) <1}

defines a norm on LP(*)(Q) called the Luxemburg norm. The space (L") (), l|ul[p(.)) is a separable
Banach space. Moreover, if 1 < p~ < pt < 400, then LPC )(Q) is uniformly convex and hence,
reflexive, and its dual space is isomorphic to LP'(*)(£2), where W + = 1. For all u € LP(") ()

and v € L'( )(Q), the Holder type inequality

‘/uvdm
Q

holds. We also define the Banach space
WP)(Q) = {u e LP)(Q) : |Vu| € LP)(Q)},

P (r)

1 1
< (]7 + F) lwllpeyllollpcy < 2llullpcH vl

which is equipped with the following norm:

[ullipcy = lellwrec @) = llullpcy + [Vullp.)-

The space (W1P()(Q),[lull1,(.)) is a Banach space. Next, we also define Wol’p(')(Q), the Sobolev
space with zero boundary values, by

WOLP()(Q) — {’U, c lep()(Q) LU= 0 on 69}

endowed with the norm || - [|; ,(.). The space Wg’p(')(Q) is separable and reflexive, provided 1 <
p~ <pt < +4o0. For u € Wol’p( )(Q) with p € C, (Q), the Poincaré inequality
[ullpy < ClIVullp. (2.1

holds for some C' > 0 depending on € and p(-). Therefore, |[Vul|,(.y and |lu||1,(.) are equivalent
norms.

An important role in manipulating the generalized Lebesgue and Sobolev spaces is played by the
modular p,(.)(u) of the space LP()(Q). We have the following results.

Proposition 2.1 ([10]). If u,,u € LPC)(Q) and p* < 400, then the following properties hold:
o |lullpcy <1 (resp. =1, > 1) <= pp(.y(u) <1 (resp. =1, > 1),

1 1

1
o min (pp. ()7 ppy (W) ) < Ilully( ) < max (pp(.y ()7, ppy ()7 ),
. - + _
o min (Jull2] ) JullZ) ) < oy () < max (g, Jul ),
o [Jullpcy < ppy(u) +1,
o ||un —ullpc.y = 0 <= ppc.y(un —u) = 0.

Remark 2.1. Note that the inequality

/ P de < C / D da,
Q Q

in general, does not hold (see [12]). But by Proposition 2.1 and (2.1) we have

/ 17 dz < Cmax {IDSIE IDFIE ). (2:2)
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In this paper, we will also need the space I/Vli’f( ) (Q), which is defined as follows:

WP (@) = {u e WHP()(U) for all open U € Q}.

loc
We equip VVlicp ¢ )(Q) with the initial topology induced by the embeddings

Wl’p(')(Q) — WhPC)(U) for all open U € Q.

loc

Now, we present the anisotropic Sobolev space with a variable exponent which is used to study

problem (1.1). First of all, let p;(-) : @ — [1,400), i = 1,..., N, be continuous functions, we set

T)=(),....pn(+)) and po(2) = max pi(z) for all x € Q. The anisotropic variable exponent
_1'_

Sobolev space W1 ( )(Q) is defined as
WP O(Q) = {ue LP+()(Q): Due P)(Q), i=1,...,N},

which is a Banach space with respect to the norm

N

lullws 7y = ullpy () + D IDittllp.-
=1

We denote by Wol’ﬁ(')(ﬁ) the closure of C§°(Q) in le(')(Q)7 and we define
WEPC/(Q) = WwhPO(Q) nwhi(Q)
and

loc c

N
Wl,?(')(Q) _ ﬂ Wli),pi(')(Q).
i=1
If Q is a bounded open set with Lipschitz boundary 0f2, then
WATO@) = {ue W TO@) : ulga =0}

It is well-known that in the constant exponent case, that is, when ?( F) = 7 e [1,4+00)", we have
Wol’? Q) = Wlﬁ(Q) However, in the variable exponent case, in general, Wol’?( )(Q) cWLEC )(Q)
and smooth functions, in general, are not dense in WL?(‘)(Q), but if for each i« = 1,..., N, p; is
log-Hélder continuous, that is, there exists a positive constant L such that

Ipi(e) — piy)] < ———

1
<—, Vaz,yeQ, lz—y| <
—Infz —y|

5 )
then C§°(92) is dense in WLEC )(Q) Thus Wol’?( )(Q) = WP )(Q). For more details on the study
of anisotropic variable exponent Sobolev spaces VVO1 ’7(‘)(9) and I;[/l’?(')(Q), we refer to the work
audited in [11,15,16].

For all # € Q) we set

_ N
p(z) = — — p+(z) = @2@%(%%
e
+ _ . ) _ .

P+—r;1§3<p+(w)7 pf(:v)—lglgn]vpz(w), p- rlnelgpf(w)»
and define Np(z)
X

. — for p(z ,
) ={N—p@) P
—+o0 for p(x) >

We have the following embedding results.
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Ifq(+) € C4(Q) and

124
Lemma 2.1 ([11]). Let Q@ C RN be a bounded domain and () e ()N
for all x € Q, q(x) < max(py(x), p*(x)), then the embedding

WEPC)(Q) — L10)(Q)

is compact.
Lemma 2.2 ([11]). Let Q € RN be a bounded domain and P(-) € (C4(Q))N. Suppose that
Q (2.3)

pi(a) < (), Voel.

Then the following Poincaré-type inequality holds
N
(2.4)

lull sy < C D IDstull o @y Y€ WHTCI(Q),

i=1
N
Thus 3 || Diullpric-)(q) is an equivalent norm in

where C' is a positive constant independent of u
i=1

WLPC)(Q).
The following embedding results for the anisotropic constant exponent Sobolev space are well-
..,an). Suppose u € Wol’&(Q) and set

known (see [17,19,20]).
N, we pose & = (a1,

Lemma 2.3. Leta>1,i=1,..., N,
N No
1 1 a* = f @< N,
1 Z* @ N = if @
o o M any number in [1,4+00) if @ > N.
ay ifa < N, and also onr and |Q| ifa > N

Then there exists a constant C depending on N, a1,
(2.5)

such that
iy < CT[1DalNs

i=1

The next Lemma is Lemma 4.1 given in [8]
Lemma 2.4. For all u in W1Pi(Q) N L>(Q), where p < N, we have
(2.6)

(/'“'a)g_l l;[ |DyufPfufPe) 7

Pi

for any choice of a and b;, where
1 a(N—=1)=1+4
a: T with ch—l

3 Main results
Definition 3.1. We say that u € W* ELS )(Q) is a positive solution of problem (1.1) if u > 0 almost

everywhere in €2,
f(z)
2 € L)
and
|DyulP =2 DuD;p da = / u{é) (3.1)
Q

SO
‘MZ

q
Il
-

for every ¢ € C§(9).
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Our main results are the following statements.

Theorem 3.1. Let f € L™(Q), where m = pf’—;l, let pi(+) : Q — (1,+00) be continuous functions
—

such that (1.2), (1.3), and (2.3) hold, and let () : Q — (0,+00) be a smooth continuous function.
Then problem (1.1) has a positive solution u in le(m)(Q) .

Theorem 3.2. For some o > max{1,7y"}, let f € L"™(Q), where m = %, let pi(+):Q —

(1,4+00) be continuous functions such that (1.2), (1.3), and (2.3) hold, and let y(-) : @ — (0, +0c0)
be a smooth continuous function. Then problem (1.1) has a positive solution u in L") (), where

r(z) =N 5;(%) (o — 14+ p(x)), and this solution belongs to Wllo’?(x)(ﬂ) .

Remark 3.1. From (1.2) we have p,(z) = py(z) for all x € Q, while r~ = N (T%:)* (a—1+Dp7),
where p~ is the harmonic mean of {p;, i=1,...,N}.
4 Existence
We use the following problem:
S J
= Di(|Dsun|"* 2 D, ) = m

=1 n

U, =0 on 012,

in Q
s (4.1)

where f, = T,(f), n > 1.
We are going to prove the existence of a positive solution u,, to problem (4.1).

Lemma 4.1. Let f € L™(Q) and let y(-) : @ — (0,+00), pi(+) : @ = (1,+00), i = 1,..., N, be
continuous functions. Assume that (2.3) holds. Then there exists at least one nonnegative solution
Uy € WLF(')(Q) to problem (4.1) in the sense that

3 [ 1D,

i=1 Q

()= fnp
o "o
for every ¢ € Wl’?(')(ﬁ) N L>®(£).
Proof. Consider the following problem:
N
- Z DZ(|D1un pi(m)_QDiun) = 7']{” in Q,
P (|| + )7 (4.3)
Up =0 on 0N).

Fix n € N* and consider for X = L¥(*)(Q) the operator
VX x[0,1] = X, (v,0) = u, = (v, 0),

where u,, is the only solution of the problem

f

_ ) . pi(®)—2p). — g

E 1 DZ(|Dlun| Dlun) U(|vn| I G in Q,
1= n

Up =0 on 0f).

(4.4)

It is clear that problem (4.4) has a unique solution whenever the right-hand side belongs to Le¢) (Q),
where ¢(-) is defined as in Lemma 2.1, i.e., ¢(-) <p*(-) in Q (see [8,9,11]).



126

Mokhtar Naceri

e It is clear that ¢ (v,,0) = 0 for all v,, € X, since the only weak solution to the problem

N
— ZDi(\Diun\pi(”)_QDiun) =0 in €,
i=1
Uy =0 on 0f)
isu, =0¢€ X.

o Let us estimate the elements of X such that v, = ¥ (v, 0).

For all ¢ € Wl*ﬁ(')(Q), we have

Z/len

219

fnsc
pl . . — _—
Dﬂ}nDzQO dr = O'/ (|Un‘ i)’y(w) dx.

Choosing ¢ = v, in (4.6), we get

N
/1P
o =1

Recall Young’s inequality: for any € > 0, and a,b > 0,

pi(@) dp < plH7" / V| da.

’

ab < eaP + c(e)b?

where c(e) = —— - z% and%+ﬁ:1.
(ep) P

(4.5)

(4.6)

(4.8)

It follows from (4.8) that for any € > 0, there exists a constant C'(¢) depending on ¢ such that

Z/\Dv Pi(2) g < 1+ <g/|unp d:U—I—C(s))
Q

119

<np't" (601 / |Djvn|P- dx + C(s)) <np'tr” (502 <1 + / | Doy,
Q

<n't <602( ij:/Dvn

where c1, co are positive constants.
+
Now, we choose ¢ = 1/(2n'*7" ¢3), then

Z/|Dv

119

plz)dx<c( ).

On the other hand, we have

Z/ | Dyon P dz > me (D0l s b,

ZIQ

where || - |l =1 - ||LP7:(')(Q)'

We define
Bi = Py i [ Divallp,) <1,
p= if [Divnllpi) 2 1.

pi(@) dx) + C(e))

P ) +0(e) ).
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We obtain

N
- +
> min {||Divn |7, 1 Divall27 )}

i=1

2 Z 1 D; vn”p () = Z ||D1"Uan ()~ Z (”DivnHZ;(.) - HDivn”PiPi(.))

{i,8:=p1}
> Z 1Dl s~ S 1Dl > (5 Z 1Dl )™~ N
{i,8:=pT}
From (2.4) we get
/\D valPr® d > (7 |\Un||X) ~N. (4.10)
i= 1Q
From (4.9) and (4.10) we conclude that
[vnllx < C(n). (4.11)

Then it follows from Leray—Schauder theorem that the operator ¢, : X — X defined by Vo € X :
¥1(x) = ¥(z, 1) has a fixed point.

So, by the Sobolev compact embedding in Lemma 2.1, we conclude that the approximation problem
(4.4) has the solution in WP )(Q) for every fixed n € N*.

Since W >0, the maximum principle (see [9]) implies that wu,, >0, thus u, solves (4.3). O

4.1 A priori estimates

In this section, we state and prove a uniform estimate for the approximate solutions wu,, of prob-
lem (4.2).
Following the same proof steps as in [5,6], we obtain the following two lemmas below.

Lemma 4.2. The sequence (uy) is increasing with respect to n.

Proof. From (4.2) we have

i/|Du

i=1

Z/|D Un+1

i=1

Q

pi( Dlun—‘rlDlsﬁd / fn+150 o dI,
un+1 + TH 7

)

then

N
Z/ (‘Di’u,nlpi(x)_gDiun — |Diun+1|pi(x)_2Diun+1)Di<p dzr
=19

fn fn+1
= — dx. 4.12
/ ((un + %)w(r) (Ung1 + %_H)’v(z) )‘»0 ( )

Q

Taking ¢ = (uy — uny1)™ as a test function in (4.12) and observing that if 0 < f,, < f,11, then

fn N fn+1 < f 1( 1 1 )
(up + %)v(x) (Unt1 + n%rl)w(x) = Jnt (un + %ﬂ)w(w) (Una1 + - )w(x)
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we find that the right-hand side gives

2

=1

‘D U, pi(z)= 2D,»un - |Diun+1 pi(m)sziu,H_l)Di(un - un+1)+ dx

:0\

1 1
fn+1 — )(un *un—O—l)jL dx.
/ + )v(m) (Una1 + %H)W(»L)

Since fn11 >0, (up — ups1)™ >0 and

1

o+ @ G 1 @ =0 €2 w0 = @)

we get

pi(m)72Diun — \Dium_l pi(w)72Diun+1)Di(un - un+1)+ dx S 0. (413)

ﬁ;/ (|1Diun

We recall the following well-known inequalities that hold for any two real vectors £, 7 and a real p > 1:

2 N .
(1€[P72¢ = [nP~2n) (€ = n) > e n\‘z — 7|2 Lren (4.14)
-1 7(|§| T if 1<p<?2.

Foralli=1,..., N, we put
O ={2e€Q, pi(r)>2} and Q? ={2€Q, 1< pi(z) <2},
then, by virtue of (4.14), we have

Q

P2 Dy, — | Dyt pi(m)iQDiun+l)Di(un — Upy1) dx

_ T
> 9277 /|Di<un—un+1)
o

On the other hand, by the Holder inequality, (4.14) and Proposition 2.1, we have

pi(@), (4.15)

/ |D; (up — un+1)|pi($) dx

Q7
D.(u, —u pi(z) pi(2)(2=p;(2))
< Dilen nﬂl-m)(z—pn(w» (IDitun| + [ Dittn 41]) ’ dx
(IDitn| + | Ditin 1)~ =
1 Un 1 Un+1

D:(w, —u pi(®) Pi(2)(2=p; (=)
SQH | z( n n+1)pi(z)(27pi(1)) ) (|Dzun|+|D7un+1D 2 H —2
(IDstin| + [ Ditin 41]) L7 (@2) L7 (@3)

Sy

P

Di n — Un 2 % D1 n — Un 2 2
< Zmax{(/ | Diu tn )| dx) ,(/ |Di(u Unt1)| d:c) }
A (IDjtin] 4 | Dyt 41])2P:(®) A (IDitn| 4 | Dyt 41])%P:(®)
Q Q

i i

_pt —pT
2i 2pi

P
x max{(/ (‘DZ“"‘ + |Di“n+1|)pl( )dl") 5 (/ (|Dzun| + ‘Diun+1|)pl( )dx> }
Q Q

P;
2

< 2cmax { (/ (|Diu’ﬂ|pi(x)_2Diun - ‘Diun+1‘pi(w)_zDiunJrl)Di(un — Upt1) dx) ;
Q
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p

2
(/ (\Diun|pi(r)_2Diun - |Diun+1|pi(m)_2Diun+l)Di(un - un+1)d$> }
Q

S

2—-p

Ditin] + | Ditin1])) = + 1). (4.16)

X ((pm(

Since Uy, Up+1 € V’[/L?(')(Q;Rm), from (4.15), (4.16) and (4.13) we obtain

/|D1(un — ) P ® de <0 forall i=1,...,N.
Q

Hence
Up < Upiq- (4.17)

The lemma is proved. O

Lemma 4.3. For alln € N*, u,, € L*(Q) and for all w € Q, there exists C,, > 0 (independent of n)
such that

u, > C,, > 0. (4.18)

Proof. As the right-hand side of (4.1) belongs to L>°(f2), therefore the L () estimate of (u,), is a
direct consequence of Stampachia’s result [19].
Now, since we have

N

— D;(|Dyuy [Pi®) 2D, — h > fi >0
; z(| U1 ul) (ul + 1)7(x) - (”Ul”oo + 1)7(1) =
the strong maximum principle and (4.17) give (4.18). O

Lemma 4.4. Let m, v(-), and p;(-) be restricted as in Theorem 8.1. Then (uy) is bounded in
WP @)/(Q).

Proof. Choosing ¢ = u, in (4.2) and letting Qs = {z € Q, dist(z,9Q) < 0}, we have

N
Z | Djun [Pi®) da = _ ot dx
iln (un+%)~/(z)
Q

i=1 Q

fnun / fnun / 1— . fun
S L R I gp < | ful @) g+ e —
/ ( + 27 (n + ) (tn + 27

. - S - n
Qs Q\Qs Qs O\ Qs

L—y() _ ot oyt
< / Inty, T dy + / (Un n %)’Y(I) dr + (1 + CQ\ST(;) frtin dz
QsN{u, <1} QsN{u,>1} Q\Qs

g/fdx+(2+05\”ﬂi§)/fundx-

Q Q

Using the Holder inequality and (2.4), we obtain

/iv: | Diun,

Q =1

(5 ot
P d < cf|fllpme) + C(2+ CQ\’YQ*(;)”JCHL’"(Q)HUVLH

LPN(Q)

N
P
< llflzm@ +C2+ Coigo) Il ( > Dt o )(Q)>' (4.19)
=1
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On the other hand, we have

N -
1 p_
Z/ | D |PH ) dz > (ﬁ > IDiun, pi(.)) - N. (4.20)
i=1¢) i=1
From (4.19) and (4.20) we get the desired result. O

Lemma 4.5. Let m, a, v(-), and p;(-) be restricted as in Theorem 3.2. Then (uy) is bounded in
L™ (Q) with
p*(z)

r(x) =N ) (a —1+7p(x)).

Proof. Chousing ¢ = u% in (4.2) and using the Holder inequality, we have

) a1 Frtin a=r(2) Y
a/|Dlun\ ug dmg/(unJrl) &) d;c</fu dz + ( 1—&—6’9\Q / ful dx
Q Q

Q(j Q\Qé

S/fdsc—i— 2—1—09\7Q /fugdx§c||f||Lm(Q)+(2+CQ\"YQ )||f||LnL(Q)||uz|L7n/(Q)
Q

< el Fllzmy + @+ O 1l ey (el - () 7 -
where 8 = Z—. From the fact that

|| + / | Dyt [P 0@t da > /|Diun|’”;ug_1 dx
Q Q

we get

[ 1Danlr i e <+ eallunl o) 7 (a.21)

From (4.21) we obtain

N 1 N
_ = S\ P
H (/ | Dy, |P: ugldz> "< (e +02(un|Lr(Q))B> . (4.22)
Q

i=1

From (4.22), after applying Lemma 2.4 with respect to

r-—1 1 140 1
bi: -, a=7T, Cizi( +177_>a
P; N -1 a D;

we get
_ 1 N
1 =

r L T 5
(lunlly )™ " < (er + eallunlly, ))

Therefore, we obtain

_P- - 1
(ltnll - ) =5 < e+ ealllunll - o) (423)
Since ||un||;, @ <1, we have
HunHLr* ) <1 (4.24)
Since [Jun| - @ > b from (4.23) we get
o S i T 1
(”unHLr* (Q))l V< (Cl + cQ)(HU’ﬂHLr* (Q)) .
Since 1 5 < 1 — ==, we have
||unHLr*(Q) <C. (4.25)

Then (4.24) and (4.25) imply that (u,,) is bounded in L™ () with r(z) = N 2((7“)') (a—14p(x)). O
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4.2 Proof of Theorems 3.1 and 3.2
4.2.1 Proof of Theorem 3.1

By Lemma 4.4, (u,) is bounded in le(m)(Q). Consequently, we can extract a subsequence (denoted
again by (u,)) such that

u, — u weakly in V(VI’?(‘”)(Q).
From here and Lemma 2.1 we obtain
U, — u strongly in L@ (Q),

where ¢(-) <p*(-) in Q. Thus
Up — u a.e. in Q.

So, for all p € CA(Q), we get

/|D U [P =2 Dyuy, Dy d: — Z/ |DiuP®=2DuD;pdr  as n — +o0. (4.26)

i=1 Q =1 Q
For all p € C3(9), ¢ # 0, and on the set where u,, > Covayr 2\ Qs being the support of ¢, we have

fne

<
0 ‘ )W(I)

Then the dominated Lebesgue’s theorem permits us to conclude that

/< _{ 1)) x—)/u{:?p dx asn— +oo. (4.27)
4.2.2 Proof of Theorem 3.2

By Lemma 4.5 and the continuous embedding L"(*)(Q) < L"™ (Q) we find that (u,) is bounded in
L") (Q). Then, by the monotone convergence theorem, we have

Uy, — u strongly in L") (Q).

Now, we can pass to the limit in the weak formulation (4.2) prove (4.26) and (4.27) in a similar way.
On the other hand, we find that

Z/|Du Pi@)y 0=t dg < C.

119

By the strong maximum principle for every compact K & ) we have

Cy 1Z/|Dun|da:<0

119

Thus we obtain
up, — u weakly in Wl1 Pl (Q)
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