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Abstract. In the paper, we consider a stochastic hybrid Korteweg–de Vries–Burgers type equation
with multiplicative noise in the form of cylindrical Wiener process. We prove the existence of a
martingale solution to the equation studied. The proof of the existence of the solution is based on
two approximations of the considered problem and the compactness method. First, we introduce an
auxiliary problem corresponding to the equation studied. Then, we prove the existence of a martingale
solution to this problem. Finally, we show that the solution of the auxiliary problem converges, in
some sense, coincides to the solution of the equation under consideration.
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ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ ÂÀÍáÉËÖËÉÀ ÓÔÏØÀÓÔÖÒÉ äÉÁÒÉÃÖËÉ ÊÏÒÔÄÅÄÂ-ÃÄ ×ÒÉÆ-ÁÖÒÂÄÒÓÉÓ
ÔÉÐÉÓ ÂÀÍÔÏËÄÁÀ ÌÖËÔÉÐËÉÊÀÔÉÖÒÉ áÌÀÖÒÉÈ ÝÉËÉÍÃÒÖËÉ ÅÉÍÄÒÉÓ ÐÒÏÝÄÓÉÓ ×ÏÒÌÉÈ.
ÃÀÌÔÊÉÝÄÁÖËÉÀ ÀÌ ÂÀÍÔÏËÄÁÉÓ ÌÀÒÔÉÍÂÀËÖÒÉ ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄÁÏÁÀ, ÒÏÌÄËÉÝ ÃÀ×ÖÞÍÄÁÖ-
ËÉÀ ÂÀÍáÉËÖËÉ ÀÌÏÝÀÍÉÓ ÏÒ ÌÉÀáËÏÄÁÀÓÀ ÃÀ ÊÏÌÐÀØÔÖÒÏÁÉÓ ÌÄÈÏÃÆÄ. ÈÀÅÃÀÐÉÒÅÄËÀÃ
ÛÄÌÏÚÅÀÍÉËÉÀ ÃÀÌáÌÀÒÄ ÀÌÏÝÀÍÀ, ÒÏÌÄËÉÝ ÛÄÄÓÀÁÀÌÄÁÀ ÛÄÓÀÓßÀÅË ÂÀÍÔÏËÄÁÀÓ. ÛÄÌÃÄÂ,
ÃÀÌÔÊÉÝÄÁÖËÉÀ ÀÌ ÀÌÏÝÀÍÉÓ ÌÀÒÔÉÍÂÀËÖÒÉ ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄÁÏÁÀ. ÃÀ ÁÏËÏÓ, ÍÀÜÅÄÍÄÁÉÀ,
ÒÏÌ ÃÀÌáÌÀÒÄ ÀÌÏÝÀÍÉÓ ÀÌÏÍÀáÓÍÉ ÂÀÒÊÅÄÖËÉ ÀÆÒÉÈ ÄÌÈáÅÄÅÀ ÂÀÍáÉËÖËÉ ÂÀÍÔÏËÄÁÉÓ
ÀÌÏáÓÍÀÓ.
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1 Introduction
The deterministc hybrid Korteweg–de Vries–Burgers (hKdVB) equation has been derived by Misra,
Adhikary and Shuka [10] and by Elkamash and Kourakis [5] in the context of shock excitations in
multicomponent plasma. The hKdVB equation derived in stretched coordinates ξ = ϵ

1
2 (x − vt),

τ = ϵ
3
2 t (v is the phase velocity of the wave) has the form

uτ +Auuξ +Bu3ξ = Cu2ξ −Du. (1.1)

In (1.1), u(ξ, τ) represents electrostatic potential or electric field pulse in the reference frame moving
with the velocity v. Indices denote partial derivatives, that is, uτ = ∂u/∂τ , u2ξ = ∂2u/∂ξ2 and so on.
The constants A, B, C, D are related to the parameters describing properties of plasma [5, Eq. (27)].

Although equation (1.1) was derived for dissipative dispersive waves in multicomponent plasma, it
can be applied in several other physical systems, e.g., surface water waves and the motion of optical
impulses in fibers. For some particular values of constants A, B, C, D, the hKdVB equation (1.1)
reduces to the particular cases:

• the Korteweg–de Vries equation, when C = D = 0;

• the damped (dissipative) KdV equation, when C = 0;

• the Burgers equation, when B = D = 0;

• the KdV–Burgers equation, when D = 0;

• the damped Burgers equation, when B = 0.

The term with A ̸= 0 introduces nonlinearity that with B ̸= 0 is responsible for dispersion, C ̸= 0
supplies diffusive term and D ̸= 0 introduces damping. All equations of these kinds were widely
studied 30-40 years ago, and most of physical ideas have been already understood (see, e.g., Lev
Ostrovsky’s book [11] and the references therein). On the other hand, during the last few years, one
can observe renewal of interest in this field, mostly due to the extensions to higher order equations.

Studies of the full generalized hybrid KdB–Burgers equation (1.1) have appeared in the physical
literature only in [5,10]. Some approximate analytic solutions and several cases of numerical solutions
to (1.1) were subjects of recent studies in [6].

The paper deals with a stochastic hybrid Korteweg–de Vries–Burgers type equation. The presence
of stochastic noise has deep physical grounds. In the case of waves in plasma, it can be caused by
thermal fluctuations, whereas in the case of water surface waves, by air pressure fluctuations due to
the wind. To the best of our knowledge, our paper is the first one which deals with the stochastic
hKdVB equation.

The main result of the paper, Theorem 2.1, supplies the existence of a martingale solution to
equation (2.1), which is the stochastic version of equation (1.1).

The idea of the proof of the existence of a martingale solution to (2.1) consists in the following.
First, we introduce an auxiliary problem (2.6) which we can call ε-approximation of equation (2.1).
Then, in Lemma 2.1, we prove that problem (2.6) has a martingale solution. Here we use the Galerkin
approximation (4.1) of (2.6) and the tightness of the family of distributions of the solutions to the
approximation (4.1). Next, in Lemma 2.2, we show two estimates used in the proof of Theorem 2.1.
Lemma 2.3 guarantees the tightness of the family of distributions of solutions to problem (2.6) in a
proper space. Finally, we prove that the solution to (2.6) converges, in some sense, to the solution of
equation (2.1).

The paper is organized as follows.
In Section 2, we define the martingale solution to some kind of stochastic hybrid Korteweg–de

Vries–Burgers equation (2.1) with a multiplicative Wiener noise on the interval [0, T ]. Then we for-
mulate and prove Theorem 2.1. In the proof, some methods introduced in [7] and extended in [4] have
been adapted to the problem under consideration.

In Section 3, Lemmas 2.2 and 2.3 used in the proof of Theorem 2.1 are proved. Lemma 2.2 contains
a version of estimates which are analogous to those presented in [4] and [7].
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In Section 4, we give the detailed proof of Lemma 2.1. This lemma formulates the sufficient
conditions for the existence of martingale solutions for m-dimensional Galerkin approximation of
Korteweg–de Vries–Burgers equation with a multiplicative Wiener noise for arbitrary m ∈ N.

2 Existence of martingale solution
Denote X := [x1, x2] ⊂ R, where −∞ < x1 < 0 < x2 < ∞. We consider the following initial value
problem for the hybrid Korteweg–de Vries–Burgers type equation{

du(t, x) +
(
Au(t, x)ux(t, x) +Bu3x(t, x)− Cu2x(t, x) +Du(t, x)

)
dt = Φ(u(t, x)) dW (t),

u(0, x) = u0(x), x ∈ X, t ≥ 0.
(2.1)

In (2.1), W (t), t ≥ 0, is a cylindrical Wiener process on L2(X). We define W by setting W (t) =∑
i∈N

βi(t) ei, where {ei}i∈N denotes a basis on L2(X) and {βi}I∈N is a family of real Brownian motions,

mutually independent in a fixed probability space (Ω,F , {Ft}t≥0,P) (see [3, 8]). The series defining
the process W does not converge in L2(X), but it is convergent in any Hilbert space U such that the
embedding L2(X) ⊂ U is Hilbert–Schmidt.

The initial condition u0 ∈ L2(X) is a deterministic real-valued function. In (2.1), u(ω, · , · ) :
R+ × R → R for all ω ∈ Ω. We assume that there exists λX > 0 such that

|u(t, x)| < λX < ∞ for all t ∈ R+ and all x ∈ X. (2.2)

This assumption reflects the finiteness of the solutions to the deterministic equation (1.1) on a finite
interval X (see, e.g., [6, 10]).

By H1(X), H2(X), Hs(X), s < 0, we denote the Sobolev spaces according to definitions in [1].
We assume that Φ is a continuous mapping from H2(X) to L0

2(L
2(X)), the space of Hilbert–Schmidt

operators from L2(X) to itself. Moreover, we assume that Φ is such that there exist the constants
κ1, κ2 > 0 satisfying

∥Φ(u(x))∥L2
0(L

2(X)) ≤ κ1 min
{
|u(x)|2L2(X), |u(x)|L2(X)

}
+ κ2 forany u ∈ H2(X), (2.3)

and that there exist the functions a, b ∈ L2(X) with a compact support such that the mapping

u 7−→
(
Φ(u)a,Φ(u)b

)
L2(X)

is continuous in L2(X). (2.4)

Definition 2.1. We say that problem (2.1) has a martingale solution on the interval [0, T ], 0 < T <
∞, if there exists a stochastic basis (Ω,F , {Ft}t≥0,P, {Wt}t≥0), where {Wt}t≥0 is a cylindrical Wiener
process, and there exists the process {u(t, x)}t≥0 adapted to the filtration {Ft}t≥0 with trajectories
in the space

L∞(0, T ;L2(X)) ∩ L2(0, T ;L2(X)) ∩ C(0, T ;Hs(X)), s < 0, P-a.s.,

such that

⟨u(t, x); v(x)⟩+
t∫

0

⟨
Au(t, x)ux(t, x) +Bu3x(t, x)− Cu2x(t, x) +Du(t, x); v(x)

⟩
ds

= ⟨u0(x); v(x)⟩+
⟨ t∫

0

Φ(u(s, x)) dW (s); v(x)

⟩
, P-a.s.,

for all t ∈ [0, T ] and v ∈ H1(X).
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In our consideration we assume that the coefficients of equation (2.1) satisfy the following condition:

B,C,D ≥ 0 with 3B ≥ A+ 1. (2.5)

The physical sense of the coefficients A, B, C, D and the fact that A can be positive or negative
(see, e.g., [5, 6, 10]) confirm that condition (2.5) is satisfied for a wide class of physically meaningful
equations which contains all particular cases listed in Section 1.

Theorem 2.1. If conditions (2.2)–(2.5) hold, then for all real-valued u0 ∈ L2(X) and 0 < T < ∞
there exists a martingale solution to (2.1).

Proof. Let ε > 0. Consider the following auxiliary problem:
duε(t, x) +

[
εuε

4x(t, x) +Auε(t, x)uε
x(t, x) +Buε

3x(t, x)− Cuε
2x(t, x) +Duε(t, x)

]
dt

= Φ(uε(t, x)) dW (t),

uε
0(x) = uε(0, x), ε > 0.

(2.6)

In the proof of the theorem we use the following lemmas.

Lemma 2.1. For any ε > 0, there exists a martingale solution to problem (2.6) if conditions (2.3),
(2.4) and (2.5) hold.

Lemma 2.2. There exist ε0 > 0 and C̃1 > 0 such that for all ε ∈ (0, ε0),

εE
(
|uε(t, x)|2L2(0,T ;H2(R))

)
≤ C̃1. (2.7)

Moreover, there exist ε0 > 0 and C̃2(k) > 0 such that for all k ∈ Xk and ε ∈ (0, ε0),

E
(
|uε(t, x)|2L2(0,T ;H1(−k,k))

)
≤ C̃2(k), (2.8)

where Xk = {k > 0 : |k| ≤ min{−x1, x2}}.

Lemma 2.3. Let L (uε) denote the family of distributions of the solutions uε to (2.6). Then the
family L (uε) is tight in L2(0, T ;L2(X)) ∩ C(0, T ;H−3(X)).

Now, in Prohorov’s theorem (e.g., see Theorem 5.1 in [2]), we substitute S := L2(0, T ;L2(X)) ∩
C(0, T ;H−3(X)) and K := {L (uε)}ε>0. Since K is tight in S, it is sequentially compact, so there
exists a subsequence of {L (uε)}ε>0 converging to some measure µ in K . Because {L (uε)}ε>0 is
convergent, in Skorohod’s theorem (e.g., see Theorem 6.7 in [2]) one can substitute µε := {L (uε)}ε>0

and µ := limε→0 µε. Then there exist a space (Ω,F , {F t}t≥0,P) and random variables with val-
ues in L2(0, T ;L2(X)) ∩ C(0, T ;H−3(X)) such that u ε → u in L2(0, T ;L2(X)) and u ε → u in
C(0, T ;H−3(X)). Moreover, L (u ε) = L (uε).

Then, due to Lemma 2.2, for any p ∈ N there exist the constants C̃1(p), C̃2 such that

E
(

sup
t∈[0,T ]

|u ε(t, x)|2pL2(X)

)
≤ C̃1(p), E

(
|u ε(t, x)|2L2(0,T ;H2(X))

)
≤ C̃2

and u ε(t, x) ∈ L2(0, T ;H1(−k, k))∩L∞(0, T ;L2(X)), P-a.s. Therefore, one can conclude that u ε → u
weakly in L2(Ω, L2(0, T ;H1(−k, k))).

Let x ∈ R be fixed. Denote

M ε(t) := uε(t, x)− uε
0(x)

+

t∫
0

[
εuε(t, x)4x(t, x) +Auε(t, x)uε

x(t, x) +Buε
3x(t, x)− Cuε

2x(t, x) +Duε(t, x)
]
ds,

M
ε
(t) := u ε(t, x)− u ε

0 (x) +

t∫
0

[
Au ε(t, x)u ε

x(t, x) +B u ε
3x(t, x)− C u ε

2x(t, x) +Du ε(t, x)
]
ds.
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Note that

M ε(t) = uε
0(x)−

t∫
0

[
εuε(t, x)4x(t, x) +Auε(t, x)uε

x(t, x) +Buε
3x(t, x)− Cuε

2x(t, x) +Duε(t, x)
]
ds

+

t∫
0

(
Φ(uε(s, x))

)
dW (s)− uε

0(x)

+

t∫
0

[
Auε(t, x)uε

x(t, x) +Buε
3x(t, x)− Cuε

2x(t, x) +Duε(t, x)
]
ds

=

t∫
0

(
Φ(uε(s, x))

)
dW (s).

So, Mε(t), t ≥ 0, is a square integrable martingale with values in L2(X), adapted to the filtration
σ{uε(s, x), 0 ≤ s ≤ t} with quadratic variation, equal to

[M ε](t) :=

t∫
0

Φ(uε(s, x))
[
Φ(uε(s, x))

]∗
ds.

In the Doob inequality (e.g., see Theorem 2.2 in [8]), substitute Mt := Mε(t) and p := 2p. Then

E
[(

sup
t∈[0,T ]

|Mε(t)|pL2(X)

)]
≤

( p

p− 1

)p

E
(
|Mε(T )|L2(X)

)
. (2.9)

Assume that 0 ≤ s ≤ t ≤ T and let φ be a bounded continuous function on L2(0, s;L2(X)) or
C(0, s;H−3(X)). Let a, b ∈ H3

0 (−k, k), k ∈ N, be arbitrary and fixed. Since M ε(t) is a martingale
and L (u ε) = L (uε), we have (see [7, pp. 377–378])

E
(⟨

M ε(t)−M ε(s); a
⟩
φ(uε(t, x))

)
= 0 and E

(⟨
M

ε
(t)−M

ε
(s); a

⟩
φ(u ε(t, x))

)
= 0.

Moreover,

E
{[

⟨M ε(t); a⟩⟨M ε(t); b⟩ − ⟨M ε(s); a⟩⟨M ε(s); b⟩

−
t∫

s

⟨[
Φ(uε(ξ, x))

]∗
a;
[
Φ(uε(ξ, x))

]∗
b
⟩
dξ

]
φ(uε(t, x))

}
= 0,

E
{[

⟨M ε
(t); a⟩⟨M ε

(t); b⟩ − ⟨M ε
(s); a⟩⟨M ε

(s); b⟩

−
t∫

s

⟨[
Φ(u ε(ξ, x))

]∗
a;
[
Φ(u ε(ξ, x))

]∗
b
⟩
dξ

]
φ(u ε(t, x))

}
= 0.

Denote

M(t) := u(t, x)− u0(x) +

t∫
0

[
Au(t, x)ux(t, x) +B u3x(t, x)− C u2x(t, x) +Du(t, x)

]
ds.

If ε → 0, then M
ε
(t) → M(t) and M

ε
(s) → M(s), P-a.s. in H−3(X). Moreover, since φ is continuous,

we have φ(u ε(s, x)) → φ(u(s, x)), P-a.s. So, if ε → 0, then

E
(⟨

M
ε
(t)−M

ε
(s); a

⟩
φ(u ε(t, x))

)
→ E

(⟨
M(t)−M(s); a

⟩
φ(u(t, x))

)
.
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Moreover, since Φ is a continuous operator in the topology L2(X) and (2.9) holds, for ε → 0 we
have ⟨

(Φ(u ε(s, x)))∗a; (Φ(u ε(s, x)))∗b
⟩
→

⟨
(Φ(u(s, x)))∗a; (Φ(u(s, x)))∗b

⟩
and

E
{[⟨

M
ε
(t); a

⟩⟨
M

ε
(t); b

⟩
−
⟨
M

ε
(s); a

⟩⟨
M

ε
(s); b

⟩
−

t∫
s

⟨[
Φ(u ε(s, ξ))

]∗
a;
[
Φ(u ε(s, ξ))

]∗
b
⟩
dξ

]
φ(u ε(t, x))

}

−→ E
{[

⟨M(t); a⟩⟨M(t); b⟩ − ⟨M(s); a⟩⟨M(s); b⟩

−
t∫

s

⟨[
Φ(u(s, ξ))

]∗
a;
[
Φ(u(s, ξ))

]∗
b
⟩
dξ

]
φ(u(t, x))

}
.

Then M(t), t ≥ 0, is also a square integrable martingale adapted to the filtration σ{u(s), 0 ≤ s ≤ t}

with quadratic variation
t∫
0

Φ(u(s, x))(Φ(u(s, x)))∗ ds.

In the representation theorem (e.g., see Theorem 8.2 in [3]), substitute

Mt := M(t), [Mt] :=

t∫
0

Φ(u(s, x))(Φ(u(s, x)))∗ ds

and
Φ(s) := Φ(u(s, x)).

Then there exists a process M̃(t) =
t∫
0

Φ(u(s, x)) dW (s) such that M̃(t) = M(t), P-a.s., and

u(t, x)− u0(x) +

t∫
0

[
Au(t, x)ux(t, x) +Bu3x(t, x)− Cu2x(t, x) +Du(t, x)

]
ds

=

t∫
0

Φ(u(s, x)) dW (s).

This implies that

u(t, x) = u0(x)−
t∫

0

[
Au(t, x)ux(t, x) +Bu3x(t, x)− Cu2x(t, x) +Du(t, x)

]
ds

+

t∫
0

Φ(u(s, x)) dW (s).

Thus u(t, x) is a solution to (2.1), which completed the proof of Theorem 2.1.

3 Proofs of Lemma 2.2 and Lemma 2.3
Proof of Lemma 2.2. Let p : R → R be a smooth function satisfying the following conditions:

(i) p is increasing on X;
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(ii) p(x1) = δ > 0;

(iii) p′(x) > αX for all x ∈ X;

(iv) Bp′′′(x) + Cp′′(x) ≤ γ < −1 for all x ∈ X.

Additionally, let
F (uε) :=

∫
X

p(x)(uε(x))2 dx.

Application of the Itô formula for F (uε) yields the formula

dF (uε(t, x)) =
⟨
F ′(uε(t, x)); Φ(uε(t, x))

⟩
dW (t)

−
⟨
F ′(uε(t, x)); εuε

4x +Auε(t, x)uε
x(t, x) +Buε

3x(t, x)− Cuε
2x(t, x) +Duε(t, x)

⟩
dt

+
1

2
Tr

{
F ′′(uε(t, x))Φ(uε(t, x))

[
Φ(uε(t, x))

]∗}
dt,

where ⟨
F ′(uε(t, x)); v(t, x)

⟩
= 2

∫
X

p(x)uε(t, x)v(t, x) dx and F ′(uε(t, x))v(t, x) = 2p(x)v(t, x).

We use the following auxiliary result.

Lemma 3.1 ([4, p. 242]). There exist the positive constants C1, C2, C3 such that∫
X

p(x)uε(t, x)uε
4x(t, x) dx ≥ 1

2

∫
X

p(x)[uε
2x(t, x)]

2 dx− C1|uε(t, x)|2L2(X)

− C2

∫
X

p′(x)[ux(t, x)]
2 dx;

∫
X

p(x)uε(t, x)uε
3x(t, x) dx =

3

2

∫
X

p′(x)[uε
x(t, x)]

2 dx− 1

2

∫
X

p′′′(x)[u(t, x)]2 dx;

∫
X

p(x)[uε(t, x)]2uε
x(t, x) dx ≥ −C3

(
1 + |uε(t, x)|6L2(X)

)
− 1

2

∫
X

p′(x)[ux(t, x)]
2 dx.

Similarly, as in Lemma 3.1, one has∫
X

p(x)uε(t, x)uε
2x(t, x) dx =

1

2

∫
X

p′′(x)[uε(t, x)]2 dx−
∫
X

p(x)[ux(t, x)]
2 dx.

These estimations imply⟨
F ′(uε(t, x)); εuε

4x(t, x) +Auε(t, x)uε
x(t, x) +Buε

3x(t, x)− Cuε
2x(t, x) +Duε(t, x)

⟩
≥ ε

∫
X

p(x)[uε
2x(t, x)]

2 dx− 2εC1|uε(t, x)|2L2(X) − 2εC2

∫
X

p′(x)[ux(t, x)]
2 dx

+ 3B

∫
X

p′(x)[uε
x(t, x)]

2 dx−B

∫
X

p′′′(x)[uε(t, x)]2 dx− 2AC3

(
1 + |uε(t, x)|6L2(X)

)
−A

∫
X

p′(x)[ux(t, x)]
2 dx− C

∫
X

p′′(x)[uε(t, x)]2 dx

+ 2C

∫
X

p(x)[ux(t, x)]
2 dx+ 2D

∫
X

p(x)[u(t, x)]2 dx
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≥ ε

∫
X

p(x)[uε
2x(t, x)]

2 dx− 2εC1|uε(t, x)|2L2(X) + (3B −A− 2εC2)C2

∫
X

p′(x)[ux(t, x)]
2 dx

−
∫
X

[
Bp′′′(x) + Cp′′(x)

]
[uε(t, x)]2 dx− 2AC3

(
1 + |uε(t, x)|6L2(X)

)
≥ ε

∫
X

p(x)[uε
2x(t, x)]

2 dx+ (3B −A− 2εC2)

∫
X

p′(x)[ux(t, x)]
2 dx

− (γ + 2εC1)|uε(t, x)|2L2(X) − 2AC3

(
1 + |uε(t, x)|6L2(X)

)
.

Let ε ≤ min{ 3B−A−1
2C2

,− 1+γ
2C1

}. Then⟨
F ′(uε(t, x)); εuε

4x(t, x) +Auε(t, x)uε
x(t, x) +Buε

3x(t, x)− Cuε
2x(t, x) +Duε(t, x)

⟩
≥ ε

∫
X

p(x)[uε
2x(t, x)]

2 dx+

∫
X

p′(x)[ux(t, x)]
2 dx+ |uε(t, x)|2L2(X) − 2AC3

(
1 + |uε(t, x)|6L2(X)

)
≥ ε

∫
X

p(x)[uε
2x(t, x)]

2 dx+

∫
X

p′(x)[ux(t, x)]
2 dx− 2AC3

(
1 + |uε(t, x)|6L2(X)

)
. (3.1)

Let {ei}i∈N be an orthonormal basis in L2(X). Then there exists a constant C4 > 0 such that

Tr
(
F ′′(u)Φ(u)[Φ(u)]∗

)
= 2

∑
i∈N

∫
X

p(x)
∣∣Φ(uε(t, x))ei(x)

∣∣2 dx
≤ C4

∣∣Φ(uε(t, x))
∣∣2
L2

0(L
2(X))

≤ C4

(
κ1|uε(t, x)|2L2(X) + κ2

)2
. (3.2)

From (3.1) and (3.2), we have

EF (uε(t, x)) ≤ F (uε
0)− εE

t∫
0

∫
X

p(x)[uε
2x(t, x)]

2 dx dt− E
t∫

0

∫
X

p′(x)[ux(t, x)]
2 dx dt

+ 2AC3 E
t∫

0

(
1 + |uε(t, x)|6L2(X)

)
dt+ C4 E

(
κ1|uε(t, x)|2L2(R) + κ2

)2
.

Thus

EF (uε(t, x)) + εE
t∫

0

∫
X

p(x)[uε
2x(t, x)]

2 dx dt+ E
t∫

0

∫
X

p′(x)[ux(t, x)]
2 dx dt

≤ F (uε
0) + 2AC3 E

t∫
0

(
1 + |uε(t, x)|6L2(X)

)
dt+ C4 E

(
κ1|uε(t, x)|2L2(R) + κ2

)2

≤ F (uε
0) + 2AC3 E

T∫
0

(
1 + |uε(t, x)|6L2(X)

)
dt+ C4 E

(
κ1|uε(t, x)|2L2(R) + κ2

)2

≤ F (uε
0) + 2AC3 E

T∫
0

(1 + C5) dt+ C6 = F (uε
0) + 2AC3T (1 + C5) + C6 ≤ C7.

Let ε0 > 0 be fixed. Then for all 0 < ε < ε0, one has

εE
(
|uε(t, x)|2L2(0,T ;H2(X))

)
= εE

T∫
0

∫
X

[uε(t, x)]2 dx dt+ εE
T∫

0

∫
X

[uε
2x(t, x)]

2 dx dt
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≤ εC8 + εE
T∫

0

∫
X

[uε
2x(t, x)]

2 dx dt = εC8 + εE
T∫

0

∫
X

1

p(x)
p(x)[uε

2x(t, x)]
2 dx dt

≤ εC8 + εE
T∫

0

∫
X

1

δ
p(x)[uε

2x(t, x)]
2 dx ≤ εC8 +

1

δ
εE

T∫
0

∫
X

p(x)[uε
2x(t, x)]

2 dx

≤ εC8 +
1

δ
C7 ≤ C9(ε+

1

δ
) ≤ C9

(
ε0 +

1

δ

)
,

which proves formula (2.7). Moreover, we have

E
(
|uε(t, x)|2L2(0,T ;H1(−k,k))

)
= E

T∫
0

k∫
−k

[uε(t, x)]2 dx dt+ E
T∫

0

k∫
−k

[uε
x(t, x)]

2 dx dt ≤ C10 + E
T∫

0

k∫
−k

[uε
x(t, x)]

2 dx

≤ C10 + E
T∫

0

∫
X

[uε
x(t, x)]

2 dx ≤ C10 + E
T∫

0

∫
X

1

p′(x)
p′(x)[uε

x(t, x)]
2 dx.

Since p′(x) is bounded from below on every compact set X by a positive number αX > 0, we have

E
(
|uε(t, x)|2L2(0,T ;H1(−k,k))

)
≤ C10 +

1

αX
E

T∫
0

∫
X

p′(x)[uε
x(t, x)]

2 dx ≤ C10 +
1

αX
C7 ≤ C11.

This proves inequality (2.8).

Proof of Lemma 2.3. Let k ∈ Xk be arbitrary and fixed and let 0 < ε < ε0 ≤ 1. Then

uε(t, x) = uε
0(x)−

t∫
0

[
εuε

4x(t, x) +Auε(t, x)uε
x(t, x) +Buε

3x(t, x)− Cuε
2x(t, x) +Duε(t, x)

]
ds

+

t∫
0

(
Φ(uε(s, x))

)
dW (s). (3.3)

Denote:

J1 := uε
0(x); J2 := −ε

t∫
0

uε
4x(t, x) ds; J3 := −A

t∫
0

uε(s, x)uε
x(s, x) ds; J4 := −B

t∫
0

uε
3x(t, x) ds;

J5 := C

t∫
0

uε
2x(t, x) ds; J6 := −D

t∫
0

uε(t, x) ds; J7 :=

t∫
0

(
Φ(uε(s, x))

)
dW (s).

Now, we start estimating the above terms.
From the assumption,

E |J1|2W 1,2(0,T ;H−2(−k,k)) = C1,

where C1 > 0.
Next, there exists a constant C2 > 0 such that

| − εuε
4x(t, x)|H−2(−k,k) = ε|uε

4x(t, x)|H−2(−k,k) ≤ C2ε|uε(s, x)|H2(−k,k).
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So, due to Lemma 2.2, there exists a constant C3(k) > 0 such that

E | − εuε
4x(t, x)|2L2(0,T ;H−2(−k,k))

= E
T∫

0

| − εuε
4x(t, x)|2H−2(−k,k) ds ≤ C2

2ε
2 E

T∫
0

|uε(s, x)|2H2(−k,k) ds ≤ C3(k).

Therefore we can write
E |J2|2W 1,2(0,T,H−2(−k,k)) ≤ C4(k),

where C4(k) > 0.
Now, we use the following result from [4].

Lemma 3.2 ( [4, p. 243]). There exists a constant C5(k) such that the following inequality holds:

|uε(s, x)uε
x(s, x)|H−1(−k,k) ≤ C5(k)|uε(s, x)|

3
2

L2(−k,k)|u
ε(s, x)|

1
2

H1(−k,k).

Due to Lemma 3.2, there exist the positive constants C6, C7(k), C8(k) such that∣∣−Auε(s, x)uε
x(s, x)

∣∣
H−2(−k,k)

= A|uε(s, x)uε
x(s, x)|H−2(−k,k) ≤ C6A|uε(s, x)uε

x(s, x)|H−1(−k,k)

≤ AC7(k)|uε(s, x)|
3
2

L2(−k,k)|u
ε(s, x)|

1
2

H1(−k,k)

≤ AC7(k)|uε(s, x)|L2(−k,k)|uε(s, x)|
1
2

L2(−k,k)|u
ε(s, x)|

1
2

H1(−k,k)

≤ AC7(k)
[
(2kλ2

X)
1
2

]
|uε(s, x)|

1
2

H1(−k,k) ≤ AC8(k)λX |uε(s, x)|H1(−k,k).

Due to Lemma 2.2, there exists a constant C9(k) > 0 such that we can write

E
∣∣−Auε(s, x)uε

x(s, x)
∣∣2
L2(0,T ;H−2(−k,k))

= E
T∫

0

| −Auε(s, x)uε
x(s, x)|2H−2(−k,k) ds ≤ A2C2

8 (k)λ
2
X E

T∫
0

|uε(s, x)|2H1(−k,k) ds

= A2C2
8 (k)λ

2
X E|uε(s, x)|2L2(0,T ;H1(−k,k)) ≤ A2C9(k)λ

2
X .

Therefore, we obtain
E |J3|2W 1,2(0,T,H−2(−k,k)) ≤ C10(k),

where C10(k) > 0.
Next, there exist the constants C11, C12 > 0 such that

| −Buε
3x(t, x)|H−2(−k,k) = B|uε

3x(t, x)|H−2(−k,k)

≤ BC11|uε(s, x)|H1(−k,k) ≤ BC12|uε(s, x)|H2(−k,k).

Lemma 2.2 implies the existence of a constant C13(k) > 0 such that we can write the following
estimates:

E | −Buε
3x(t, x)|2L2(0,T ;H−2(−k,k))

= E
T∫

0

| −Buε
3x(t, x)|2H−2(−k,k) ds ≤ B2C2

12 E
T∫

0

|uε(s, x)|2H2(−k,k) ds

= B2C2
12 E |uε(s, x)|2L2(0,T ;H2(−k,k)) ≤ B2C2

12 E |uε(s, x)|2L2(0,T ;H2(R)) ≤ B2C13.

So, we obtain
E |J4|2W 1,2(0,T,H−2(−k,k)) ≤ C14,
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where C14 > 0.
For some constant C15 > 0, we have

|Cuε
2x(t, x)|H−2(−k,k) = C|uε

2x(t, x)|H−2(−k,k) ≤ C C15|uε(s, x)|L2(−k,k) ≤ C C16|uε(s, x)|H2(−k,k).

Lemma 2.2 implies the existence of a constant C17(k) > 0 such that

E |Cuε
2x(t, x)|2L2(0,T ;H−2(−k,k))

= E
T∫

0

|Cuε
2x(t, x)|2H−2(−k,k) ds ≤ C2C2

16 E
T∫

0

|uε(s, x)|2H2(−k,k) ds

= C2C2
16 E |uε(s, x)|2L2(0,T ;H2(−k,k)) ≤ C2C2

16 E |uε(s, x)|2L2(0,T ;H2(R)) ≤ C2C17.

Hence we receive
E |J5|2W 1,2(0,T,H−2(−k,k)) ≤ C18,

where C18 > 0.
There exists a constant C19 > 0 such that

| −Duε(t, x)|H−2(−k,k) = D|uε(t, x)|H−2(−k,k) ≤ DC19|uε(s, x)|H2(−k,k).

Due to Lemma 2.2, for some constant C20(k) > 0, we obtain

E | −Duε(t, x)|2L2(0,T ;H−2(−k,k)) = E
T∫

0

| −Duε(t, x)|2H−2(−k,k) ds ≤ D2C2
19 E

T∫
0

|uε(s, x)|2H2(−k,k) ds

= D2C2
19 E |uε(s, x)|2L2(0,T ;H2(−k,k)) ≤ D2C2

19 E |uε(s, x)|2L2(0,T ;H2(R)) ≤ D2C20.

This implies that
E |J6|2W 1,2(0,T,H−2(−k,k)) ≤ C21,

where C21 > 0.
In Lemma 2.1 from [7], insert f(s) := Φ(u(s, x)), K = H = L2(X). Then

I (f)(t) =

t∫
0

Φ(u(s, x)) dW (s)

and for all p ≥ 1 and α < 1
2 , there exists a constant C22(p, α) > 0 such that

E
∣∣∣∣

t∫
0

Φ(um(s, x)) dW (s)

∣∣∣∣2p
Wα(p),2p(0,T ;L2(X))

≤ C22(2p, α)E
( T∫

0

|Φ(um(s, x))|2p
L0

2(L
2(X))

ds

)
.

Therefore, due to condition (2.3), we can write

E
∣∣∣∣

t∫
0

Φ(um(s, x)) dW (s)

∣∣∣∣2p
Wα,2p(0,T ;L2(X))

≤ C23(p, α), where C23 > 0.

Substitution of p := 1 in the above inequality yields

E |J7|2Wα,2(0,T ;L2(X)) = E
∣∣∣∣

t∫
0

Φ(u(s, x)) dW (s)

∣∣∣∣2
Wα,2(0,T ;L2(X))

≤ C23(2, α) = C24(α). (3.4)

Let β ∈ (0, 1
2 ) and α ∈ (β + 1

2 ,∞) be arbitrarily fixed. Note that the following relations hold:

Wα,2(0, T ;L2(R)) ⊂ Wα,2(0, T ;H−2([−k, k)), W 1,2(0, T,H−2(−k, k)) ⊂ Wα,2(0, T,H−2(−k, k)).
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Therefore, there exists a constant C25(α) > 0 such that

E |um(s, x)|2Wα,2(0,T,H−2(−k,k)) = E
∣∣∣ 7∑
i=1

Ji

∣∣∣2
Wα,2(0,T,H−2(−k,k))

≤ E
( 7∑

i=1

|Ji|Wα,2(0,T,H−2(−k,k))

)2

= E
[ 7∑

i=1

|Ji|2Wα,2(0,T,H−2(−k,k)) + 2

6∑
i=1

7∑
j=i+1

|Ji|Wα,2(0,T,H−2(−k,k))|Jj |Wα,2(0,T,H−2(−k,k))

]

≤ E
[ 7∑

i=1

|Ji|2Wα,2(0,T,H−2(−k,k)) + 2

6∑
i=1

7∑
j=i+1

(
|Ji|2Wα,2(0,T,H−2(−k,k)) + |Jj |2Wα,2(0,T,H−2(−k,k))

)]

= E
[
8

7∑
i=1

|Ji|2Wα,2(0,T,H−2(−k,k))

]
= 8

7∑
i=1

[
E |Ji|2Wα,2(0,T,H−2(−k,k))

]
≤ C25(α).

Moreover, one has
Wα,2(0, T,H−2(−k, k)) ⊂ Cβ(0, T ;H−3

loc (−k, k), Wα,2(0, T,H−2(R)) ⊂ Wα,2(0, T,H−2(−k, k)).

So, there exist the constants C27(k), C28(k, α) > 0 such that
E |uε(s, x)|2Cβ(0,T ;H−3(−k,k) ≤ C26 E |uε(s, x)|2Wα,2(0,T,H−3(−k,k)) ≤ C27(k, α),

E |uε(s, x)|Wα,2(0,T,H−2(−k,k)) ≤ C28(k, α).
(3.5)

Let η > 0 be arbitrarily fixed. Lemma 2.2 implies the existence of a constant C30(k) > 0 such that

E |uε(s, x)|2L2(0,T,H−1(−k,k)) ≤ C29(k)E |uε(s, x)|2L2(0,T,H−1(R))C̃2 = C30(k). (3.6)

Substituting in Lemma 2.1 of [4] αk := η−12k(C30(k) +C27(k, α) +C28(k, α)) and using Markov’s
inequality [12, p. 114] for

X := |uε(s, x)|2L2(0,T,H−1(−k,k)) + |uε(s, x)|2Wα,2(0,T,H−2(−k,k)) + |uε(s, x)|2
Cβ(0,T ;H−3

loc(−k,k)
,

ε := η−12k(C30(k) + C27(k, α) + C28(k, α)),

one obtains

P
(
uε ∈ A

(
{αk}

))
= 1− P

(
|uε(s, x)|2L2(0,T,H−1(−k,k)) + |uε(s, x)|2Wα,2(0,T,H−2(−k,k))

+ |uε(s, x)|2
Cβ(0,T ;H−3

loc(−k,k))
≥ η−12k(C30(k) + C27(k, α) + C28(k, α))

)
= 1− C30(k) + C27(k, α) + C28(k, α)

η−12k(C30(k) + C27(k, α) + C28(k, α))
= 1− η

2k
> 1− η.

Let K be a mapping such that for η > 0, K(η) := A({a(η)k }), where {a(η)k } is an increasing sequence of
positive numbers that may, but does not have to, depend on η. Note that due to [4, Lemma 2.1], the
set K(η) is compact for all η > 0. Moreover, P{K(η)} > 1− η, then the family L (uε) is tight.

4 Proof of Lemma 2.1
Proof. Let {ei}i∈N be an orthonormal basis in the space L2(X). Denote by Pm, for all m ∈ N, the
orthogonal projection on Sp(e1, . . . , em). Consider a finite-dimensional Galerkin approximation of
problem (2.6) in space PmL2(X) in the form

dum,ε(t, x) +

(
εθ
( |um,ε

4x (t, x)|2

m

)
um,ε
4x (t, x) +Aθ

( |um,ε
x (t, x)|2

m

)
um,ε(t, x)um,ε

x (t, x)

+Bθ
( |um,ε

3x (t, x)|2

m

)
um,ε
3x (t, x)− Cθ

( |um,ε
2x (t, x)|2

m

)
um,ε
2x (t, x) +Dum,ε(t, x)

)
dt

= PmΦ(um,ε(t, x)) dWm(t),

um,ε
0 (x) = Pmuε(0, x),

(4.1)
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where θ ∈ C∞(R) satisfies the conditions
θ(ξ) = 1, when ξ ∈ [0, 1],

θ(ξ) ∈ [0, 1], when ξ ∈ (1, 2),

θ(ξ) = 0, when ξ ∈ [2,∞).

(4.2)

Let m ∈ N be arbitrarily fixed and

b(u(t, x)) := εθ
( |um,ε

4x (t, x)|2

m

)
um,ε
4x (t, x) +Aθ

( |um,ε
x (t, x)|2

m

)
um,ε(t, x)um,ε

x (t, x)

+Bθ
( |um,ε

3x (t, x)|2

m

)
um,ε
3x (t, x)− Cθ

( |um,ε
2x (t, x)|2

m

)
um,ε
2x (t, x) +Dum,ε(t, x),

σ(u(t, x)) := PmΦ(um,ε(t, x)).

Then

|b(u(t, x))|L2(X) ≤ ε

∣∣∣∣θ( |um,ε
4x (t, x)|2

m

)
um,ε(t, x)um,ε

4x (t, x)

∣∣∣∣
L2(X)

+A

∣∣∣∣θ( |um,ε
x (t, x)|2

m

)
um,ε(t, x)um,ε

x (t, x)

∣∣∣∣
L2(X)

+B
∣∣∣θ( |um,ε

3x (t, x)|2

m

)
um,ε
3x (t, x)

∣∣∣
L2(X)

+ C
∣∣∣θ( |um,ε

2x (t, x)|2

m

)
um,ε
2x (t, x)

∣∣∣
L2(X)

+D|um,ε(t, x)|L2(X) =: εJ1 +AJ2 +BJ3 + CJ4 +DJ5.

Note that

J2 =

0, when |um,ε
x (t, x)| ≥

√
2m,

λ|um,ε(t, x)um,ε
x (t, x)|L2(X), when |um,ε

x (t, x)| ≤
√
2m,

where λ ∈ [0, 1]. So,

J2 ≤ |um,ε(t, x)um,ε
x (t, x)|L2(X) ≤

√
2m|um,ε(t, x)|L2(X).

Similarly,

J1 =

0, when |um,ε
4x (t, x)| ≥

√
2m,

λ|um,ε
4x (t, x)|L2(X), when |um,ε

4x (t, x)| ≤
√
2m,

J3 =

0, when |um,ε
3x (t, x)| ≥

√
2m,

λ|um,ε
3x (t, x)|L2(X), when |um,ε

3x (t, x)| ≤
√
2m,

and

J4 =

0, when |um,ε
2x (t, x)| ≥

√
2m,

λ|um,ε
2x (t, x)|L2(X), when |um,ε

2x (t, x)| ≤
√
2m,

where λ ∈ [0, 1]. Thus
J1, J3, J4 ≤

√
2m.

Therefore, one gets∣∣b(um,ε(t, x))
∣∣
L2(X)

= εJ1 +AJ2 +BJ3 + CJ4 +DJ5

≤ ε
√
2m+A

√
2m |um,ε(t, x)|L2(X) +B

√
2m+ C

√
2m+D|um,ε(t, x)|L2(X)

= (A
√
2m+D)|um,ε(t, x)|L2(X) +

√
2m (ε+B + C).
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Moreover, due to condition (2.3), there exist the constants κ1, κ2 > 0 such that

∥Φ(um(t, x))∥L2
0(L

2(X)) ≤ κ1|um(t, x)|L2(X) + κ2,

so,∣∣b(um,ε(t, x))
∣∣
L2(X)

+ ∥σ(um(t, x))∥L2
0(L

2(X))

≤ (A
√
2m+D)|um,ε(t, x)|L2(X) +

√
2m (ε+B + C) + κ1|um(t, x)|L2(X) + κ2

= (A
√
2m+D + κ1)|um,ε(t, x)|L2(X) +

√
2m (ε+B + C) + κ2.

Let κ := max {κ1, κ2} and Λ = max {A, ε+B + C}. Then∣∣b(um,ε(t, x))
∣∣
L2(X)

+ ∥σ(um(t, x))∥L2
0(L

2(X))

≤
(
Λ
√
2m+ κ+D

)
|um,ε(t, x)|L2(X) + Λ

√
2m+ κ+D

=
(
Λ
√
2m+ κ+D

)(
|um,ε(t, x)|L2(X) + 1

)
.

Therefore, by [9, Proposition 3.6], and [9, Proposition 4.6], for all m ∈ N, there exists a martingale
solution to (4.1). Additionally, applying the same methods as in Section 3, one can show that for all
m, there exists a constant C̃1(ε) > 0 such that

E
(
|um,ε(t, x)|2L2(0,T ;H2(X))

)
≤ C̃1(ε).

Moreover, for all m and all k ∈ Xk, there exists a constant C̃2(k, ε) > 0 such that

Ev
(
|um,ε(t, x)|2L2(0,T ;H1(−k,k))

)
≤ C̃2(k, ε),

and the family of distributions L (um,ε) is tight in L2(0, T ;L2(X))∩C(0, T ;H−3(X)). Then applica-
tion of the same methods as in Section 2, leads to the proof of the existence of a martingale solution
to (2.6) with conditions (2.3), (2.4) and (2.5).
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