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OF NON-HOMOGENEOUS EQUATIONS
WITH CONSTANT COEFFICIENTS IN LP(T)



Abstract. Let T = [—7, 7], 1 < p < oo and Q(z) be a polynomial. In this paper, we introduce the
notion called @-primitives of a function in §’(R) and apply it to examine the existence and uniqueness
of solutions in LP(T) of the non-homogeneous equation Q(D)f = ¢ € LP(T). The explicit solutions
of the equation are given. In particular, we show that the condition Q(z) # 0 Vz € Supp{ﬁ\ is the
criterion for the existence of a Q-primitive in LP(T) of f. Note that every Q-primitive in L?(T) of
f is a solution of the equation Q(D)f = 1. Moreover, an inequality for higher order @Q-primitives is
also given.
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1 Introduction

Denote by S(R) the Schwartz space of rapidly decreasing functions and by &’(R) the dual space of
S(R), the space of tempered distributions on R. Let T be the torus, 1 < p < oo, Q(x) = Y. arz® be

k=0
a polynomial and f € S'(R). The differential operator Q(D) is obtained from @Q(z) by substituting
x — —iD = —id/dz,

Q(D)f = ar(—i)*D*f.
k=0

Denote by LP(T) the set of all 2n-periodic functions f on R such that the norm

™ 1/p
» (/ |f<w)de) if p < oo,
p,T = -

esssup | f(x)] if p=oo
€T
is finite. Clearly, LP(T) C S'(R). Let ¢ € LP(T). We consider the following non-homogeneous
equation with constant coefficients in L?(T):

QID)f =1 (1.1)

In the theory of ordinary differential equations, there are several methods for solving the non-homo-
geneous equation with constant coefficients:

y™ (@) + ary" V(@) + -+ an_1y (2) + any(z) = h().

The best method depends on the nature of the function h that makes the equation non-homogeneous. If
h is a linear combination of exponential and sinusoidal functions, then the exponential response formula
may be used. If, more generally, h is a linear combination of functions of the form z*e?®, x* cos(ax),
and 2" sin(az), where k is a nonnegative integer, and a is a constant (which need not be the same
in each term), then the Method of undetermined coefficients may be used. Still more general, the
Annihilator method is applied when h satisfies a homogeneous linear differential equation. The most
general method is the Variation of constants. Note that, in general, f and ¢ in (1.1) are generalized
functions, and so the traditional methods have no effect in our case. Hérmander proved the following
result [13, Theorem 7.3.2]: Let ¢ € E'(R). Then the equation Q(D)f = ¢ has a solution in E'(R) if
and only if 1])\(5)/@(5) is an entire function, where &' (R) is the space of distributions with compact
Supports.

In this paper, by using another method, we solve the non-homogeneous equation Q(D)f = ¢ in
the space LP(T). Since LP(T) is not contained in £'(R), 12(5 ) is not an entire function in general, and
so we cannot apply the just mentioned result to solve (1.1).

The paper consists of three sections. In Section 2, we introduce the notion called @-primitives of
a function in 8&'(R) and use it to examine the existence and uniqueness of solutions of equation (1.1).
The explicit solutions of the equation are given. In Section 3, we obtain an inequality for higher order
Q-primitives.

Notations

Let f € L'(R) and f = Ff be its Fourier transform

F(¢) = (271')71/2/64“]“(3:) dx.

R

The Fourier transform of a tempered distribution f can be defined via the formula

(Ff,o) =(f,Fp), ¢ €SMR).
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Let K be a compact in R and € > 0.

Denote by
Ko:={CeR: FzeK: |v—(| <€}

Recall that supp ]?C Z for any f € LP(T).
We have the following Young inequality for 2m-periodic functions [14]: Let 1 < p < oo, f € LP(T)
and g € LY(R). Then f * g € LP(T) and
1f *gllpr < [ fllpxllgllLr ),

where the convolution f * g is defined as

(f* 9)(z) = / F(x — 1)a(y) dy.
R

Definition. Let f € S§'(R) and @ be a polynomial. The tempered distribution Qf is termed a
Q-primitive of f if Q(D)(Qf) = f.

When Q(x) = x, then Q-primitives become primitives of tempered distributions defined in [7-9],
and the notion of primitives of distributions in D’(a,b), a,b € R, can be found in [18].

2 The necessary and sufficient conditions for the unique
existence of Q)-primitives of a function in L*(T)

We have the following result.

Theorem 2.1. Let 1 < p < c0,Q(x) be a polynomial and f € LP(T). Then there exists a unique
Q-primitive in LP(T) of f denoted by Qf satisfying Q(x) # 0 Va € supp Qf if and only if Q(x) #£0
Vaz €suppf.

To prove Theorem 2.1, we need the following result in [18]:

Lemma 2.2. Let 1 <p < oo and f € LP(T). Then the Fourier series of f converges to f in S'(R):

flx) = % ) (e““ ] F(t)e ™ dt).

keZ

(The functional series > fr(x) is called convergent to f in S’'(R) if the functional sequence Sy (x) =
kEZ

i frx(z) converges to f in S'(R).)

k=—n

Proof of Theorem 2.1. Necessity. It follows from Lemma 2.2 that the Fourier series of Qf converges

to Of in S'(R),

kEZ

Qf(x) = Z(bkeik1)7 bk: = % / Qf(t)e—ikt dt.

Therefore, the functional series Y. by, (ik)™e?** converges to D™(Qf) in S'(R) for all m € Z,. That
keZ

QD)Qf () =D bxQ(k)e™ .

kEZ

gives

Then, since f = Q(D)Qf,
fa) = beQ(k)e™.

kEZ
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Put A:={2€Z: Q(z) = 0} and let v be a number in A. We have for ¢ € S'(R), supp F 1y C
v — % U+ %]

(FF ) = (f0) = D_ Q)™ ) = Y VamhiQ(k)F o (k). (2.1)
keZ keZ
From v € A and supp F'¢ C [v — 5 ,v + 1], we obtain Q(k) = 0 for k = v, and F (k) = 0 for
ke Z\ {v}. So, Q(k)F'p(k) =0 Vk € Z. Combining these and (2.1), we deduce that
(f.F o) =0.
Hence, v ¢ supp f for all v € A. So, Qx)#A0Vax e suppf.

Sufficiency. Now, we assume that Q(z) #0 Vz € supp f We first prove the existence of Q-primitives
in LP(T) of f. To do this, we put

1 ,
%(f)Z*/f(t)e_”“dt, k=01,2,...
2T

and consider three cases as follows.
Case 1 (Q(z) =2 —d, d#0). Then d ¢ supp f We define the following function I f:

x

If(x) = / (F() —20(f)) dt—7, z€R,

—T

where the constant 7 is chosen such that [ I f(z)dz = 0. Then I f is well defined and bounded

on R. Moreover,

427
(e +27) — I f(2) = / (F(6) = 7o) dt = / (F(8) = ~0(f)) di = 0
T T

and

xT

s = | ( [ =0t at - ) o (@) de
R

—T

T kT T

:/</(f(t)—VO(f))dt><P'($)dI: / (/(f(t)—%(f))dt)p'(x)dm
R -7 I
= 7 (7@'(%) dw) (f(t) —r0(f)) dt = 7—<p’(t)(f(t) o)) dt = —(F —v0(f), )
—k7 t “kr

for all ¢ € C§°(R), where k is an odd natural number such that suppy C (—km, kw). Therefore,
I f € LP(T) and D(I1 f) = f —v0(f).

Further,
/Ilf(x)e—“”' dx = / (/(f(ﬂ—%(f))dt)e‘“” da — /Te—ikw dz

- / ( / = e ) (£(0) = ) d / (5 ) e = ot e = 2L

—T —
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for all k € Z,, where Z, = {k € Z : k # 0}. Then it follows from Lemma 2.2 and [ I f(z)dz =0

that the Fourier series of 2r-periodic function I f converges to I f in &'(R):

Iif(z) = L(f) etk (2.2)
kEZ, ik
Put p
Lf(x) = 70_(5) DY) k(zkffg) ¢FtQf =ilif + Inf.
k€esupp fNZ.

Observe that

V[ B
w0 = 5z | [ 50 ] < ny o
and then
w(f) ke | _ ‘ Vi (f) ‘ 2m) =2 fllpx
k(k —d) k(k—d)l — |k(k —d)]
Therefore, it follows from
1
— < 0
ZA |k(k — d)|
k€supp fNZx
that the functional series
Z ’Yk(f) ik
 k(k—4d)
kesupp fNZ.

uniformly converges on R.
Hence I f is well defined and bounded on R. Clearly, Iof € LP(T), which together with I; f €
LP(T) imply Qf € LP(T). From (2.2) and the definition of 5 f, we deduce that the functional series

2 e

kEsupp fﬂZ*

converges to Q(D)I f in §'(R) and

kEsupp fﬁZ*

converges to Q(D)Izf in §'(R). Therefore,

wh+ Y w(EE e Dt = 3 et
k€Esupp fﬂZ* k€Esupp f
converges to Q(D)Qf in S'(R). Hence Q(D)Qf = f.
Case 2 (Q(z) =z). Weput Qf =il;f. Then Qf € LP(T) and Q(D)Qf = f.
Case 3 (degQ(x) > 2). Clearly,

‘%(f) gike| _ (O @m) Pl fllpr
Q(k) QIR — Q)]
and the number series > m converges. Hence the functional series
kEsuppf
Pyk(f) ikx

e, ) = o [ Fe e
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uniformly converges on R. So, Qf is well defined in R, Qf € L?(T), where

_ W (f) ke
o= % gy

k€Esupp f

Then the functional series

Ve (f) ks
2 9w

kesupp f

converges to Qf in S'(R). Consequently, the series > & (f)e*® converges to Q(D)Qf. Therefore,

kesupp f
QD)Qf = f.
Combining Cases 1-3, we get the existence of Q-primitives in LP(T) of f.
Next, we prove the uniqueness of @Q-primitives in LP(T) of f, which is denoted by Qf, satisfying
Q(z) # 0 Vx € supp Of. Indeed, let Q;f and Qs f be Q-primitives in LP(T) of f such that Q;f €

LP(T), Q(D)Q;f = f and Q(z) # 0 V& € supp éj\f, j=1,2. Put ¢ = Q1 f — Qo f. Then the series

S @, (o) = 5 [ o

kEZ

converges to ¢ in S’(R), and then > 74(¢)Q(k)e*® converges to Q(D)¢ in S’(R). Hence it follows
kEZ

from Q(D)¢ = 0 that vy, (¢)Q(k) = 0 for all k € Z. Using Q(x) # 0 Va € supp <Z, we have v, (¢) =0
for all k € Z. That gives ¢ = 0 and then Q; f = Qaf.
To end the proof, we have to show that Q(z) # 0 V& € supp @” . This is obtained from the fact
that the functional series > AA’Q’“(—(kf)) e’ converges to Qf in S’(R). The proof is complete. O
ke€supp f
From the proof of Theorem 2.1 we get the following necessary and sufficient conditions for the
existence of @Q-primitives of a function in LP(T).

Theorem 2.3. Let 1 < p < 0o, Q(x) be a polynomial and f € LP(T). Then there exists a Q-primitive
Qf € LP(T) of f if and only if Q(x) #0 Vx € supp f.

Remark 2.1. It should be noticed that the assumption Q(x) # 0V € supp ]?does not guarantee the
uniqueness of @Q-primitives of f in LP(T), but there is exactly one Q-primitive in LP(T) of f denoted
by Qf satisfying Q(z) # 0 Vx € supp é} For example, f(z) = cosz, Q(x) = x, p = oo then sinx + ¢
is a @Q-primitive in L>°(T) of cosx for all ¢ € C.

Applying Theorem 2.1 and Theorem 2.3, we have the following corollary.

Corollary. Let 1 < p < o0,Q(z) be a polynomial and 1p € LP(T). Then equation (1.1) has a solution
in LP(T) if and only if Q(x) # 0V € supp. Moreover, if equation (1.1) has solutions, then there
is ezactly one solution f satisfying Q(x) # 0 Va € supp f, which has the following explicit form:

Q

k€Esupp {l;

fa)= X Bk ) =g vt

By induction, we obtain the following result.

Theorem 2.4. Let 1 < p < oo, Q(x) be a polynomial and f € LP(T). Then there exists only one
sequence of functions (Q™ f)2°_, C LP(T) such that Q°f = f, Q(D)(Q™ T f) = Q™ f and Q(x) # 0
for all x € supp Q™ f, m=0,1,..., if and only if Q(x) A0 Vz € suppf.
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3 An inequality for higher order ()-primitives

We give now an inequality for higher order @Q-primitives.

Theorem 3.1. Let 1 < p < oo, K be a subset of Z with a finite number of elements, Q(x) be a
polynomial and f € LP(T). Assume that supp f C K and Q(z) # 0 Vo € K. Then there exists a
constant C' = C(K, Q), independent of f, such that

19" fllpz < Cmsup | s 1 (3.1)

forallmeN, p e [1,00].

Proof. Since Q(x) # 0 Va € K, there is a positive number £ such that Q(z) # 0 Vo € K,;. We define
the function y as follows:

) ce/ =D if |z < 1,
Z) =
X 0 it 2] > 1,

where the positive constant ¢ satisfies [ x(z) dz = 1. For m € N, we define the function ¥,, € C§°(R)
R

via the formula

Vo = 1Ky 0y * Xojamy»
where
4m 4m
Xuam @) = 7 x(2 )

Clearly, ¥,,(2) = 1 if z € Ky/(4m) and ¥, (2) = 0 if z & Ky/,,,. Using
F=0riQm(z) vmez,
and supp @ C K,V (2) =1V2z¢€ Kyum), we have

U, (2)
Qm(z)

onf=f

~—

Hence

m 1 1 ¥m(2)
"t = g 1+ ()

So, it follows from the Young inequality for 27-periodic functions that

m 1 —1 \Ijm(z)
1977 < 2= 1|7 (G ) ooy (32)
Now, we define B
1 (T2
In(@) = (f (Qm(z)))(x)'
Clearly,
Tul) = —= [ imBas o L [ e Znl g,
" 2m ] Qm(z) V2 i Qm(z)
z L/m
o swln@) < —= [ |52E]ec o= s |gm] 10l (3.3)
Sup |Jm = on y Q" (z) = \/ﬂweKUm Q" (x) m||L(R)
E 2/m
Moreover,

1l 21 @) < WLk oy 1L @) X i [ 21 (R) < meas(Ke) (x| L1 (r) = meas(Ky),
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where meas(Ky) is the Lebesgue measure of Ky. Combining this with (3.3), we obtain

meas(Ky)
sup |Im(¢)| < ————= sup ‘ ‘ 3.4
sup () < " sw [ (3.4)
Since Ky, is compact, there is a number o, € K, such that
sup [Q(z)] = |Q(om)].
IEK@/M
By om € Ky/m, there exists v, € K such that |0, — 9| < £/m. Then from
1Q(om) = Q(ym)| = |om — Yml - 1Q" (zm)]
for some z,, € Ky/p,, we derive
0Q (2)] _ £8UPsek,,, Q@)
Qo) — Q)| < 1L EmIl y <4
m m m
where C1 := ¢ sup |Q’(z)|. Therefore,
rze Ky
C C
Q)] > 1Q(ym)| = - < sup Q)| + .
m reK
Consequently,
Ch
f > inf -
dnf Q@) > inf Q)| -
Hence
C1 "
i m > f f—) = inf |Q™ 1—-—
Lt 1Qm@) 2 (g 1) i @(1- o)
zeK
and then
1 . Cl -m 1 Cl -
sup ‘ ’S inf |Q(x)] — — = sup‘i‘ (1—.) .
a0 gl = ek =50) 7 = (g D (- wariow
Combining this and (1 +t)"/* < e Vt > —1/2, we obtain
sup ‘7‘20 sup‘T‘ Vm > my, 3.5
€Ky m Qm(x) 216[( Q (l‘) 0 ( )
where o0
Cy/ inf
Oy e Y EIR@ f|Ql( -
;cng
Hence, by (3.4), we deduce that
1
sup | Im ()| < C5 su ’7‘ Ym > my, 3.6
s1p |, ()| < s sup | s : (36)
where
O Co meas(Ky)
3 -— m .
Moreover,

1
zeR V2T zeRr

sup |x2(7m(m)\ < sup

R/ei“DQ (Z:Ez;) dz
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which gives

o l? 7 (o) < L (D*Uin(2) | | o 1 (D (2))(DQ(2))
sup 127, >|s\/%[{/ e R R e
ZEKy/m
(D*Q(2) (DQ(2))*
+m’ﬁ/m(z)m‘ +m(m—|—1)’\11m(z)QT2(Z) dz.
Therefore, 1
sup o Tn(@)] < Cam 500 | s (3.7)
where
Cin=—= [ (D00 (:)Q )] + 20 D () (DQE)QL)
4,m—\/g ) m\ 2 z m miZ z z

+ | W (2)(D2Q(2)Q(2)] + mlm + 1) | (2)(DQ(2))?] ) d.
To evaluate Cy r,, we observe that
4m\ 2
||D2\I’m||L°°(1R) = H1K2/<2m) * (D2X2/<4m>)HL°°(R) < HDQ(X@/Mm))HLl(R) = (7) ”D2X”L1(R)’

dm
1Dl e wy = Loy * (PXsiamy M oy < 1D am ) = () IDXl 22y

and
[Vl Lo ) = HlKe/@m) * (Xe/<4m))HL°°(R) <Xy camy 2@y = Xl ey = 1.
So,
Cym < C5m?,
where

Cs =

16 DXl ) |Q%(2)] (1Dl )| D(Q(2))Q(2)]
Vor / < Iz + /

z€EK,
+(D*Q)QE)] +2/(DQ()P] )
Combining this with (3.5) and (3.7), we obtain

sup |22 T ()] < Cem? sup Ym > my, (3.8)
zeR

1 ’
zeK‘Q (LE)
Wl ere

o= 0o e |

Further, we have

| Tl )y = / | T ()] do + / | T (2)] dz

|z]<m |z|>m
< / | T (2)] d2z + (sup|x2j (x)|> / idac
|z|<m z|>m

that gives
2
| Tl 1 ry < 2msup | T (z)| + — sup |x2jm(x)\. (3.9)
z€eR m zeR
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Combining (3.6), (3.8) and (3.9), we obtain

fAS

Clearly, the constants Cy, Cs, C3, C5, Cg are not dependent on f, m, p. Note that, for m < mg, Im
are not dependent on f, p and || Jn|/z1(r) < co. From (3.2) and (3.10), we conclude that there exists
a constant C, independent of f, m, p, such that

™ f

1
< Cm sup‘i’ Vm € N.
p,T ||pr7T:v€K Qm(l')

The proof is complete. O
Remark 3.1. Note that (3.1) cannot be obtained by using itself (for m = 1) m times.

It was shown in Section 2 that the condition Q(z) # 0V € supp fAis a criterion for the existence of
Q-primitives in LP(T) of f. Moreover, this condition guarantees the unique existence of one sequence

(Qmf)2°_, C LP(T) satisfying Q°f = f, Q(D)(Q™+'f) = Q™ f and Q(z) # 0 for all z € supp O™,
m =0,1,.... By the same method as in [10] and using Theorem 3.1, we have the following behavior
of the sequence (||Q™ f|lp. )50~y based on the spectrum of f. Note that the behavior of the sequences
of norm of derivatives and primitives of functions based on their spectra was studied in [1-17].

Theorem 3.2. Let1 <p < < oo, Q(x) be a polynomial and (Q™ f)2°_, C LP(T). Assume that Q(x) # 0
Vz e suppf Then supp me = Suppf for allm e Z, and

1
hmlnf||me||1/m_ sup ‘—‘
kEsuppf Q(k)

Moreover, if suppf is compact, then we have the following limit:

lin Q" f)F = sup |5
m—ro0 kesupp Q( )
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