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Abstract. In this work, we establish the LP local uncertainty principle for the windowed spheri-
cal mean transform and deduce the LP version of the Heisenberg—Pauli-Weyl uncertainty principle.
Finally, using the previous uncertainty principles and the techniques of Donoho—Stark, we present
uncertainty principles of concentration type in the LP theory, when 1 < p < 2.
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1 Introduction

The spherical mean operator Z is defined for a function f on R x R™, even with respect to the first
variable [19], by

AD0) = [ Fna+1€) don(n.€), (ra) €RXR,
STL
where S is the unit sphere of R x R™ and do,, is the surface measure on S™, normalized to have total
measure one.

The operator % has many important physical applications, namely, in image processing of the
so-called synthetic aperture radar (SAR) data [12,13,23,25], or in the linearized inverse scattering
problem in acoustics [6].

The Fourier transform .% associated with the spherical mean operator is defined for every integrable
function f on [0, +o0o[ xR™ with respect to the measure dv,, 41 by

“+o0
V(s,y) €Y, F(f)(s,y)= //f(r,:c)%(cos(&)e*“y">)(r,x)d1/n+1(r,x),
0 Rn

where dv,, 41 is the measure defined on [0, +00[ XR™ by

r’ dx
Avps1(r,x) = —= dr ® T
(T 2) 277 I(2f) (2m)=
| - [Ip,vpis is its norm, and Y is the set given by
T=RxR"U{(ir,z), (r,z) € RxR", |r| <|z|}. (1.1)

Many harmonic analysis results related to the Fourier transform .% have already been proved by Jlassi,
Nessibi, Rachdi and Trimeche [16,19,22]. Also, many uncertainty principles related to the Fourier
transform .# have been proved [14,15,18].

The uncertainty principles play an important role in harmonic analysis. These principles assert
that a function f and its Fourier transform f cannot be simultaneously sharply localized, and there
are many mathematical formulations of this general fact, one of them is the Heisenberg uncertainty
principle [11] which states that if f is highly localized, then f cannot be concentrated near a single

point, but it does not preclude f from being concentrated in a small neighborhood of two or more
widely separated points.

Local uncertainty inequality states that if a function is concentrated, then not only is its Fourier
transform spread out, but that it cannot be localized in a subset of finite measure. This object is
proved by Faris [5] and generalized by Price [20,21]. Other forms of the uncertainty principles can be
found in [3,4,10].

Time frequency analysis [9] plays an important role in harmonic analysis, in particular, in signal
theory. In this context and motivated by quantum mechanics, the physicist Dennis Gabor [7] has
introduced the Gabor transform, in which he uses translation, convolution and modulation operators
of a single Gaussian to represent one-dimensional signal. In the same context, many uncertainty
principles related to the continuous Gabor and wavelet transforms have been proved in [2,8,26] and
the references therein.

Our investigation in this work consists in defining the windowed Fourier transform ¥ (called also
the Gabor transform) associated with the integral transform %, where g is a non-zero function. Next,
based on the ideas of Faris [5] and Price [20,21], we show the L? local uncertainty principles for
¥, and deduce the LP version of the Heisenberg—Pauli-Weyl uncertainty principle. We use also the
Heisenberg uncertainty principle, the properties of the windowed Fourier transform and the techniques
of Donoho—-Stark [4,24] and show uncertainty principles of concentration type for the LP theory, when
1l<p<2.

This work is organized as follows. In Section 2, we recall some harmonic analysis results related
to the spherical mean operator and its Fourier transform. In Section 3, we present some elements of
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harmonic analysis related to the windowed Fourier transform. In Section 4, we show local uncertainty
principle. In Section 5, we deduce the LP version of the Heisenberg—Pauli-Weyl uncertainty principle.
The last section is devoted to present uncertainty principles of concentration type in the LP theory,
when 1 < p < 2.

2 The spherical mean operator

In [19], Nessibi, Rachdi and Trimeche showed that for every (u,A) € C x C", the function ¢, x
defined on R x R™ by

QD(H,,\)(T,SU) :%(COS(M')eiiO\"))(r,x) (21)

is the unique infinitely differentiable function on R x R™, even with respect to the first variable
satisfying the following system:

ou

—(rz1, ... xn) = —iNju(r,zy, ..., xy), 1<j<n,
afﬂj
Eanlu(r,:cl, s n) = Au(ryxy, .. ) = —pPu(r, T, . T),
u(0,...,0) =1,
ou
E(o,xl,...,mn):o, (1,...,2n) €R",
where /¢ n1 is the Bessel operator defined by /¢ n1 = 8722 + %% , and A denotes the usual Laplacian

operator defined by A = 38—;2 . The authors also proved that the eigenfunction ¢, ») defined by
j=17%

relation (2.1) is explicitly given by

V(r,2) €R X R, gx)(r,2) = aza (ry/i@ AR eI, (2.2)

where j nt is the modified Bessel function defined by

Juzr(2) = 2nT_lF<n; 1) J;(Z) :F(n_zu) :Zj k!F((;;Fll)k+ 5 (9%’ 2e G

and Ju_1 is the Bessel function of the first kind and index 25 (see [1,17]).

The modified Bessel function j n1 has the following integral representation:
(1 —t2)% " cos(zt) dt. (2.3)

Relation (2.3) shows, in particular, that for every z € C and for every k € N, we have
9, (2] < e,
2

From the properties of the modified Bessel function j no1, We deduce that the eigenfunction ¢, y) is
bounded on R x R™ if and only if (1, A) belongs to the set T given by relation (1.1), and in this case

sup [ (@) = 1. (2.4)
(r,z)eRXR™

In the following, we define the translation operators, the convolution product and the Fourier
transform .% associated with the operator Z.
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Definition 2.1.

i) For every (r,z) € [0,+o00] xR™, the translation operator 7, ,) associated with the spherical
y (r,z)
mean operator is defined on LP(dv,41), p € [1,+o0], by
/f(\/r2 + s2+2rscosf,x + y) sin™~1(0) dé.
0

L)

VTI(3)

7-(7”,1')(.](‘)(57 y) =
(ii) The convolution product of measurable functions f and g on [0, +o00[ xR™ is defined by
+oo
W) € (0,400 xR frglri) = [ [ T (s)gt ) dvnia(s,n),
0 Rn

whenever the integral of the right-hand side is defined, where f(s,y) = f(s, —y).

For every (r,z) €]0, +oo[ xR"™, and by a standard change of variables, we have

2

+oo
1
V(s,y) €]0,+0o[ xR"™, Ty (f)(s,y) = W /f(t7$+y)7/n(7’,8,t)tn dt,
270

where the kernel %, is given by

L3 ((r+s)> =)' — (r —5)*)% "
2" (%) /7 (rst)=!

Also, the coming properties are satisfied:

%L(T,S,t) = 1]|7‘78|,r+s[(t)~

e For every f € L'(dv,41) and (r,z) € [0, +oo[ xR", we have

70/T<r,w>(f)(s’y) dva(s,y) = +/Oo/f(s,y) dve (5, 9).
0 R» 0 Re

e For every f € LP(dvn41), p € [1,+00], and (r,z) € [0, +oo[ xR", the function 7, ,(f) belongs
to LP(dvy41), and we have

||7-(T,m)(f)||z7,l’n+1 < Hf||p,l/n+1'
e Let p,q,r € [1,400] such that %—l—% =1+21. Then for every f € LP(dvyp41) and g € L9(dvp41),
the function f x g belongs to the space L™ (dv,+1), and we have the following Young’s inequality:

||f*g||7’,1/n+1 < ||f||p7Vn+1“g‘|q,l’n+1'

Definition 2.2. The Fourier transform .# associated with the spherical mean operator is defined on
LY (dvypi1) by

+oo
N € i FO@N = [ [ 1rakeqn:) dv (o),
0 R
where ¢, ) is the eigenfunction given by relation (2.2), and T is the set defined by relation (1.1).

In the following, we give some properties of this transform.

e For every f,g € L' (dvyy1),
F(fxg)=F ()7 (9).
Moreover, relation (2.4) implies that the Fourier transform .% is a bounded linear operator from
LY(dvp41) into L% (dyn41), and that for every f € L'(dvy41), we have

”y(f)HOOK‘/nJrl < ||f||1,Vn+1'
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e For every f € L'(dv,41) and (r,z) € [0, +o00[ xR, the function 7, ;) (f) belongs to L' (dvp41),
and we have

V(,U,, >‘) e, y(lnr,w)(f))(.u’ /\) = P(,N) (Tv x)j(f)(ﬂa /\)

e For every f € LY (dvnt1), F(f) (1, A) = g(f)(\/;ﬂ + A2, A), where Z is the mapping defined
on L'(dv,41) by

—+o0
= //f(r,x)j%(ru)efio‘lx) dvp1(r, ).
0 Rn»

Theorem 2.3 (Inversion formula). Let f € L*(dv,41) such that Z(f) € L'(dvyny1), then for almost
every (r,x) € R x R™,

f(rv LC) = //'g.(f)(ﬂ'v)‘)so(u,k)(ra‘r) d7n+1(“7/\)

//3“ (115 s (re)e’ X1 du (2, A).

R

Theorem 2.4 (Plancherel theorem). The Fourier transform Z can be extended to an isometric
isomorphism from L?(dv,y1) onto itself. In particular, for every f € L?(dvni1),

IF (2wnsr = 1F 201

Corollary 2.5. For all functions f and g in L?(dv,41), we have

T f(T’,,I)g(T‘,I)an+1(T’,,I)
/ /
0 Rn
//ff (1> N)-Z (9) (s A) dmga (12, A // Z(9) (11 A) v g1 (1, )

RIL
Remark 2.6.

(i) For every f,g € L*(dvn41), the function f x g belongs to the space C. o(R x R™) consisting of
continuous functions h on R x R™, even with respect to the first variable, and such that

lim  h(r,z) =0.

r24|z|?2 =400

Moreover,

frg=F UF(HF9).
where .Z ! is the mapping defined on L' (dv,,.1) by

(r,) // 901, Njoa (r)e N v (0, 3) = F (3) . 2).

(i) Let f,g € L?(dvny1), the function f * g belongs to L?(dv, 1) if and only if éfv(f)f(g) belongs
to L?(dvp11), and we have

F(f*g9) = F())Z(9).
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3 The windowed Fourier transform associated with
the spherical mean operator

We recall some results introduced and proved in [15].
Definition 3.1. Let g € L?(dv,11) and (s,y) € [0, +0o[ xR™. The modulation of g by (s,y) is the
function defined by

960 (1,2) = F (VT (1F(9)2) ) (r,2), (r,) € [0, +00[ xR,

We denote by

o LP(dupt1) = LP(dvps1 ® dvpy1), 1 < p < 400, the space of measurable functions f on
([0, +-00[ xR™)? with respect to the measure

dun+1((rv l’), (Sa y)) = anJrl(ra SL’) & an+1(57 y)
such that
||F||p,,m+1 = / / |F((7“,ac)7 (s,y))|p dptnt1((r,x), (s,9)) < oo, 1< p< +oo,

([0,400[ xR™)2

1 F |l oo pnss = esssup |F((T‘7 ), (Svy))| < oo.
(r,z),(s,y)€[0,400[ XxR™

e (-, )u,,, the usual inner product in the Hilbert space L*(dpn+1).

Definition 3.2. Let g be a non-zero function in L?(dv,,11), called the window function. The windowed
Fourier transform associated with the spherical mean operator is the mapping ¥ defined for f €
Lz(dyn+1) by

+oo
%(f)((r7 CE)7 (87 y)) = / /f(,u, )‘)7-(r,r) (g(s,y))(,u'a )\) dl/n+1(:u7 /\) = <f7 IT(T,a:) (g(S,y))>l,n+17
0 R™

where (-, )y, is the usual inner product in the Hilbert space L?(dvy1).

Proposition 3.3. Let g be a window function. For every f € L?(dv,41), we have

175 (oo pnir < N ll2.0mi 9ll2,0041- (3.1)

Proposition 3.4. Let g be a window function.

(i) Plancherel formula: for every f € L?(dvy,11), we have
17(f)
(ii) Parseval formula: for all f,h € L*(dv,11), we have

SARAGY

(3.2)

2, fnt1 — ||f||27l’n+1Hg| 2,Vny1*

= Hg 2,Vn41 <f7 h’>’/'n,+1 .

Hng1

(iii) Inversion formula: for every f € L'(dvni1) N L3(dvyy1) such that F(f) € LY (dv,.1), we have

1
FN) = —5—
X = o —
([0,4-00[ xR™)2

%(f)((ra 71’)7 (57 y)),]-(’l,‘L) (g(s,y))(.ua 7/\) dVﬂ-‘rl(Tv $) an-‘rl(S? y)

By Riesz—Thorin’s interpolation theorem we obtain the following

Proposition 3.5. Let g be a window function, f € L*(dvp41) and 2 < p < 400, then

175 (f)l

Psfin+1 < Hf||271/n+1 ||g||2,l’n+1' (33)
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4 L? local uncertainty principle for 7

In this section, we establish the LP local uncertainty principle for the windowed Fourier transform 7;.

Theorem 4.1. Let g be a window function and 3 be measurable subset of ([0, +oo[ xR™)? such that
0 < pn41(E) < +oo. Let p€]1,2], ¢ = ;5 and 0 <b < 275;1 . For every f € LP(dvp41),

15 %5 s < a1, @) aca () (I 2) s + 110 2P Pl Yol (A1)

Proof. 1t is clear that the inequality holds if |||(r,2)|" fll2p,u,., = +o0 or |[|(r,2)|°fl2,v.,, = +00. Let
feLlP(dvpi1),l<p<2,g= 1% such that

1, 2)1° Fll2p + 11, )] < +o0.

For p > 0, let
B, = {(r,z) € [0, 400 xR"; r* +|z|* < p*}.

Denote by x, and Xz, respectively, the characteristic functions associated to ¥ and B,. Using
Minkowski’s inequality, relations (3.1) and (3.3), we obtain

s g (Dl ginir < WX Yo, Mlapnin + 11X (Xsg g st
< (Mn+1 (Z))E ||/V9(XBpf)Hooyll/n+l + ||7/9<X32 f)||Q;Mn+1

1
< (MnJrl(E))q ||g||27Vn+1 HXBpf||27Vn+1 + ||g||2,l/n+1 ||XB;;’f||21Vn+1'

On the other hand, by Holder’s inequality,

X5, Fllzms < N2 X0, l2g0m 00 11 D) Fll2pvs -

2n+1

By simple calculus and the hypothesis 0 < b < , we obtain

X6, Fll2nis < Comgp” 5 U1 @) Fll2pvs (4.2)

Moreover,

||XBgf||27Vn+l < p—b|||(r’ SL’) b

From (4.2) and (4.3), we get

15 g (Pl gyt 4

_ 2n+41
<pllI(r, + (n1(2)) 7 Cogp 21 N1, 2)* Fllzpin 191120,
We choose ~
p= (Cb n q) 24T (g1 (2)) 20FT
and obtain inequality (4.1). O

Lemma 4.2. Let g be a window function and ¥ be measurable subset of ([0, +oo[ xR™)? such that
0 < pn41(E) < +oo. Let p€]1,2], ¢ = ;5 and b > 27’5—;1 . For every f € LP(dvp41),

s )75 ()l s < Cabym, @) (1 () 7 Hfllz;uiqfl I1(r, 2)]° szZ?ZM

where

Q

I (3t T (e “)))21 24b )7( ) e
1) |

Cs(b,n,q) = .
2 7 <bp2”+2F(n—|— %)F(%) 2gb — (2n + 2n +1
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Proof. We suppose naturally that f # 0. It is clear that the inequality holds if ||f 2p, or

I(r,2)|° fll2p,nsy = +00. Assume that

Un41

||f||2p,l/n+1 + |||(T7 w)‘bf||2p,l/n+1 < +00.

From the hypothesis b > 27;;1, we deduce that the function (r,z) — (1 + (72 + |x\2)bp)%1 belongs to
L%(dvy,41) and, by Holder’s inequality, we have

+o0 »
||f||2 W = ( / / 1+ r2 + |x‘2)bp)_71(1 + (rQ + |x‘2)bp)%|f(r, :L')‘Q dyn+1(r7 :L‘))

(/ / dy"ﬁf;fi )g> (17122 0, + N DAL )- (1.4)

However, with a standard computation, we obtain

</ / 1+dyn++1 |;x; )Z>

Replacing f(r,z) by fi(r,x) = f(rt,xt), t > 0, in relation (4.4), we deduce that for all ¢ > 0,

Qs

n 2gb—(2n+1 P
_ <r<22:,:1>r< i >>>‘3
- 1
bp2n 2T (n+ $)0(2)

I]

112 <
e < iy DD

2n+1 2gb—(2n+1)
I( ) ) (2n+1)(p—1) (2n+1)(p—1)—2pb
t 111550, +1 I(r, @) £ 1155 ...,

In particular, for

‘o ((pr (2n+ 1)(p — D)l[(r, z)[° f||2pxl'n+1 ) s
(27’L + 1)( )||f||2p,un+1 ,

we obtain
[fll2.0 10 < Cz(b,n,q)llf\\zp,yi‘ffl 11(r, 2))° fllgf,?im,
where
Catbon.a PCREMTCESEENG - 20 N 2 N
y Ty = 1 - .
2 ( q (bp2’rl+2]_—‘(n+é)r(g)> 2qb7(2n+1)) (2n+1 )
Moreover,
1 1
X2 75 (F)lgupnr < (i () 71175 (F)lloc,inan < (Mn+1( ) Hfllzunﬂllgllzwm
1_2n+1 2041
< Calb,n,q) (1 (3)) s IIf\Izp Vi‘fl I1(r,z)[° f||2§q3n+1||9||2,un/+1~
This completes the proof. O

Lemma 4.3. Under the same assumptions as in Lemma 4.2 and with b =
constant C3(b) such that for all f € LP(dvp41),

2ntl yhere exists a finite
q

15 g (Pl gyt 4
1 1 1 1 1
< O3 (0) (pnt1 (X)) 2 (Ilflliumlll(?", D) 130, + 1F 1130, N x)lbf||§p,yn+1) 9ll2,0sr- (45)

Proof. Let s > 0, from the inequality

2n41

(I(m)\)mﬂl <1+ (I(mc)l) 5

S S
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it follows that

2n+1 2n+41 —(2n+1) 2n+1
Hl(’l‘, JJ)| ta f”2p,l/n+1 S8t ”fHQpaVnJrl +s A |H(’I“,Z‘)| 2a f||2P7Vn+1'
In particular, by choosing
§ = |||(T,Z) 1 f“gp’yn+1||f||2p,l/n+17

we obtain
2n 2n+1

+1 1 1
T Fapas S WM =1L,

[1(r, )]
Similarly, we prove that
2041 1 2n41 1
e 2) 5 fll,,, < 20f030, L )= £l
Thus, from (4.1), we deduce that

X Yo (P g1

2n+1 1 2n+1 2041
< O (Z ) s O F (15 A, + 110D A, gl
2n+1 1
<204 (Tq,’rh Q) (Mn-i—l (E))2q
1 2n41 1 1 2n41 1
o (1 i I OR[GO il N 1 1 PSP
which gives the result for b = 221, O

2q

5 L? Heisenberg—Pauli-Weyl uncertainty principle for 7,

From the LP local uncertainty principle we can find the following LP Heisenberg—Pauli-Weyl uncer-
tainty principle for the windowed Fourier transform 7;.

Theorem 5.1. Let g be a window function, 1 < p < 2, ¢ = ﬁ and 0 < b < 27;21. For every

f € LP(dvpy1) and a > 0,

||7/g(f)||q,ﬂn+1 < Cl(avb7n7 C])

% (16328 s + NP F o)™ N0, G LA NIET, (5.1)

Qs ln+1 2,Vnt1?

where

Ci(b,n,q)) =™ 5 4by wim §
b = (22”+1(F(12n j;;;m (&) +@))"

Proof. Let 0 < b < 27;;1 ,a>0. For p> 0, let

By = {((5,9). (1.2)) € (10, +00] xR")% 5+ u? + [y + A < °}.

Then
1 CUNG i = s, Yo UG pin + I Po (G - (5.2)

From (4.1), we get

~ 2bgq q
1Xs, Yol < CLO1 D) 11 (Bo)ZT (I, 2)* Pl + 1120 2 ) lg

On the other hand, by [15, Lemma 6.6], we have

lg;l/n+1'

. p4n+2
B0 ) P —
Hn1(By) = S 1 9)
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Using the previous result, we obtain

q
95Hn+1

X5, %5(f)

< (b, q)(

1 2bg

2n+1 b b b q q
wrrangy) O 0D s + 1162 o) Tl (53)

Moreover,
q

“Xég%(f)”q,unﬂ <p |((S Y), | Yy (f

By Combining relations (5.2), (5.3) and (5.4), we get

(5.4)

95Hn+1

175 (g

||qu“‘n+l
1 2bgq

< (b I R =
1( ’n7Q)(22n+11"(2n+2)) 14

q
2911, )[* s + 1 x>|”f||2,un+l) I905.0,..,

+ o7 (s ), (s )[4 (f

q,fnt1

We choose

2bq 1 _1
. (G(QZ"HF(QH +2))nit > (eFama ( 11(Cs, 9), (s AN Pg (Pl g1 > o
4bCY (b, n, q) N, 2) P Fllzpwnir + 2P Fll2in) 190200000

and obtain inequality (5.1). O

2n+1

Lemma 5.2. Under the same assumptions as in Theorem 5.1 and with b > there exists a finite

constant Ca(a,b,n,q) such that for all f € LP(dvp41),

a(g— 22

”af/g(f)”q,ltwrl < 02(a7b7 n, q)”f”Z;:;t,itaq
) FI T g T (5.0, . I (| T, (5.5
2p7V7L+1 g 27VVL+1 S’y),</1/7 ))‘ g('f)‘ qyfbni1 ) ( : )

where

(Ca(b,n, q)) ¥ (( aq )Jf—;ﬁu(zlnm)m)%'

C. b = -
2(117 ,naQ) (22n+1r(2n+2))m 4dn + 2 aq

Proof. Let b > 275;1 ,a>0, f##0andlet p> 0. From Lemma 4.2, we obtain

x5, Yo (s < CE(by 1, ) ptns1 (B )||f||2p,yn+1 I1(r,)[? J”Hzp,unﬂ||9||‘21,un+1
4n+2

= C4(b,n,q) ——2

W ||f||2p,yn+1 I[1(r, $)| f||2p,un+1 ||9||3,Vn+1~ (5.6)

Combining relations (5.2), (5.4) and (5.6), we get

0 8 < CHb1.0) b M )P ISE I
40 (5. A )
We choose
= (S NS )
(4 + 030, iy N 2) S o N

and obtain inequality (5.5). O
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Corollary 5.3. Under the same assumptions as in Theorem 5.1 and with b = there exists a

finite constant Cs(a,b) such that for all f € LP(dvn41),

2n+1
2q

1 1 1 1 ot
170 s < Calasb) (1713, NP AU s+ 1 13 N1 @) SN )

_2b _a__
<[l (5.9 (e DN Nall5i

where

exe) = nn gy () (1))

Proof. Let b= 221 4 >0, f # 0 and let p > 0. From (4.5), we get

2g
X, %D
~ 1 1 1 1 1 q
< (C5(0))(n+1(By))? (Hflliuw s 2) P FU3 0y + 1130 10 x)\bfllfp,yn,+1> 930
p2n+1
= (C3(b))*

22n+1T (20 + 2)
3 bes 3 beps 1
X <||f||2,y"+1|||(73 )30y 1500 1 2)] szp,ynH) llgl

Combining relations (5.2), (5.4)) and (5.7), we obtain

(5.7)

q
2,Vpy1°

2n+1

P
HA//g(f)Hq,uu < (Cs(0))* 22n+1T(2n + 2)

1 1 1 b 1 q
x (I\J“’Ilé’,unﬂ|||(7“,fl:)lbfllé,un+1 1A 3p 0 10 2)] f||§p,un+1) 91151,
— q
+ o7 [1((s,9), (1, M) 5 ()|

@ bntr’
We choose
aq (2271 (2n + 2)) % \ TeiF
. ( (Ca®))?(2n +1) >
§ < 1 .90, G ISl ln Tt
AIZ s, M2 FNS,,, + 1S )P F 130, ) g2
and obtain the result of this corollary. O

6 LP-Donoho—Stark’s uncertainty principle for the windowed
Fourier transform 7

In what follows, we use the L? Heisenberg—Pauli-Weyl uncertainty principle to obtain a concentration
uncertainty principle.

Definition 6.1. Let 0 < & < 1 and let S be a measurable set of [0, +oo[ xR™. We say that f €
LP(dvp41), p € [1,2], is e-concentrated on S in LP(dv,41)-norm if there is a measurable function h
vanishing outside S such that

Hf - h||p,l/n+1 < €Hf||p,1/n+1'

We introduce a projection operator Pg as Psf(r,z) = f(r,z) if (r,x) € S, and Psf(r,x) = 0 if
(r,x) &€ S.

Let 0 < eg < 1. Then f is eg-concentrated on S in LP(dvy,11)-norm if and only if

If = Psf|

PsVn+1 < ESHf”P,VnJrl'
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Definition 6.2. Let g be a window function and let X be a measurable set of ([0, +-00[ xR™)2. We
define a projection operator @y as

Qsf =7, (Pa(%(f))).
Let 0 < ex < 1. Then ¥} is ex-concentrated on ¥ in L(dp,41)-norm, 1 < ¢ < 2 if and only if

176(f) = Y@ Pllapnss < eV (F)llgpinsa-

Proposition 6.3. Let g be a window function and ¥ be a measurable set of ([0, +oo] xR™)2. Then
for every p > 2 and € > 0, if ¥ is e-concentrated in ¥ with respect to the norm || - ||2,u,.,,, then

P

fing1(3) = (1 —€%)72,
where

() = [ [ i) s (s.0).
b

Proof. Let f € L?(dvp41) and p > 2. Since ¥,(f) is e-concentrated in ¥ with respect to the norm
| - ll2,0041, We have

IXse Yo (P21 sr < Ellfll2mm i llgll2,0 41
Now, using relation (3.2), we get

IxXs Ya (D3 = A= NSI5,,.,, 9]

Applying Hoélder’s inequality, we obtain

2
2,Vny1°

-2

s 7o (OB i S NP (P s (Hnsr ()7
By relation (3.3), we obtain

p—2

B (L1 (2)) 7

Ixs 7o (OB, < I3, 9]

Finally,
p—2

(Hn41(2) 7 > 1-¢€% O

Proposition 6.4. Let g be a window function and f € LY(dvny1) N L3(dvpy1) such that
1Y (F)l2,nss = 1. I f is eg-concentrated on S in L' (dv,41)-norm and ¥4(f) is ex;-concentrated on
Y in L?(dpin11)-norm, then

vat1(S) = (L—es)’IIfI1 ..., 1915,

and

IS0 )] 13 BTN (7] ETN

Proof. Since ¥, (f) is ex-concentrated on ¥ in L?(dfi,,+1)-norm, by the orthogonality of the projection
operator Py, it follows that

16 = 17605 = P (D)5 = P (DB > 1 B

Thus
1—e5 < 17N ertnt1(E) < pingr S F 150, l9ll5 0, -

In the same way, since f is eg-concentrated on S in L!(dv,1)-norm, we obtain

(1 _€S)||f||17Vn+l < /lf(r=$)|dyn+1(r>x)-
S

Now, by the Cauchy-Schwarz inequality and the fact that || f||2,,,.,, , we get

— 1
”9”2#714,1

i1 ()

(17€S)Hf||1yl/n+l < .
||g||27V'n+1
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Definition 6.5. Let g be a window function and ¥ be a measurable set of ([0, +o0o[ xR™)2. Let a > 0,
f € LP(dvpy1), p € [1,2] and 0 < ex < 1. We say that |((s,y), (¢, A))|*¥; is ex-concentrated on ¥ in
L(dpy41)-norm if and only if

1w, e D75 05) = (s, (0 )@ | < e[, G )] (5|

9 Hhn41 qsHhn41

Theorem 6.6. Let g be a window function and ¥ be a measurable set of ([0,+oc[ xR™)2. Let
f € LP(dvps1), p€]1,2], 0 < ex <1 and a > 0. If |((s,y), (11, N))|* ¥y is ex-concentrated on ¥ in
L(dpy+1)-norm, then

176 () g0 1

n+4b P
cl<a,b7n,q)(u|<r,x>|bf||2p,unﬂ + m(r,x)v’fnz,ynﬂ) lgll5o™
=5 2 1
([l [ H@sn| )T ifo<b< T
]. — €&y gy lhn+1 2(]
a(q— 2L a(2n+1) agq
n aq 2b(4n+2+a n aq
< C (a b n, Q)||f||2;71 ;;2;; |H(’I“ Z‘)| f||2p(1/7:;1Jr R ||g ;,th:rl
h 1 o S . on + 1
(= |l e H@sh)| ) ifb> =
1-— (S Gy Hn+1 2q
1 1 1 1 P
Ca(@,0) (I£130, o, N DI N3,y + 1 W MNP A )
2b
= a+2b . 2n + 1
o (5.0, () Fe(@sh|| ) ifb="00
1 Q51 2q

Proof. Let f € LP(dv,41), p €]1,2]. Since |((s,y), (1, A))|*¥, is ex-concentrated on ¥ in L9(dfn1)-
norm, we have

1659 G " 6)

q,Mn+1

S [(CHIRTBIIEACS

+ x| (). (1. )" ()

q,Mn+1 q,Mn+1
Thus
(eI AT (s, ([ P5(@)]|
qrHn+1 q5Hn+1
Then we obtain the results from Theorem 5.1, Lemma 5.2 and Corollary 5.3. O
Definition 6.7. Let ¥ be a measurable subset of ([0, 4+o00[ xR™)? and 0 < 7 < 1. Then a nonzero
function f € LP(dvy41),1 < p < 2, is n-bandlimited on ¥ in Lq(cl,un_~_1)—1101“rn7 q= zﬁ’ if

HX}:C%](f)HQ:Hn+1 g an”PvVnJrl'
Corollary 6.8. Let g be a window function such that ||gl|2,., ., = 1.

(i) Ifo<b< 2"4+1, then there exists a positive constant C' such that for every function f which is
n-bandlimited on X,

(s (ENF (10 )° s + G 2) ) > 00w

(ii) If b > 2"4+1, then there exists a positive constant C' such that for every function f which is
n-bandlimited on X,

)P f||4un+1 > C(L =) 3w,

Proof. Since f € L?*(dv,1) is n-bandlimited on ¥, we have

NnJrl( )

X e (D3 i = 1130y = X Za (D3 = L= 0P)IFIIS,0 -

For (i) and (ii), we use the local inequalities given, respectively, by Theorem 4.1 and Lemma 4.2. O



LP Uncertainty Principles for the Windowed Spherical Mean Transform 89

References

[1]

[18]
[19]
[20]

[21]
[22]

23]

G. E. Andrews, R. Askey and R. Roy, Special Functions. Encyclopedia of Mathematics and its
Applications, 71. Cambridge University Press, Cambridge, 1999.

A. Bonami, B. Demange and Ph. Jaming, Hermite functions and uncertainty principles for the
Fourier and the windowed Fourier transforms. Rev. Mat. Iberoamericana 19 (2003), no. 1, 23-55.

M. G. Cowling and J. F. Price, Bandwidth versus time concentration: the Heisenberg—Pauli—Weyl
inequality. STAM J. Math. Anal. 15 (1984), no. 1, 151-165.

D. L. Donoho and Ph. B. Stark, Uncertainty principles and signal recovery. SIAM J. Appl. Math.
49 (1989), no. 3, 906-931.

W. G. Faris, Inequalities and uncertainty principles. J. Mathematical Phys. 19 (1978), no. 2,
461-466.

J. A. Fawcett, Inversion of n-dimensional spherical averages. SIAM J. Appl. Math. 45 (1985),
no. 2, 336-341.

D. Gabor, Theory of communication. Part 1: The analysis of information. Journal of the Insti-
tution of Electrical Engineers — Part III: Radio and Communication Engineering 93.26 (1946),
429-441.

S. Ghobber and S. Omri, Time-frequency concentration of the windowed Hankel transform. In-
tegral Transforms Spec. Funct. 25 (2014), no. 6, 481-496.

K. Grochenig, Foundations of Time-Frequency Analysis. Applied and Numerical Harmonic Anal-
ysis. Birkh&duser Boston, Inc., Boston, MA, 2001.

G. H. Hardy, A Theorem Concerning Fourier Transforms. J. London Math. Soc. 8 (1933), no. 3,
227-231.

W. Heisenberg, Uber den anschaulichen Inhalt der quantentheoretischen Kinematik und
Mechanik. Z. Phys. 43 (1927), 172-198.

H. Hellsten and L. E. Andersson, An inverse method for the processing of synthetic aperture
radar data. Inverse Problems 3 (1987), no. 1, 111-124.

M. Herberthson, A numerical implementation of an inverse formula for CARABAS raw data.
National Defense Research Institute, Internal Report, D 1986, 30430-3.

Kh. Hleili, Uncertainty principles for spherical mean L2-multiplier operators. .J. Pseudo-Differ.
Oper. Appl. 9 (2018), no. 3, 573-587.

Kh. Hleili, Some results for the windowed Fourier transform related to the spherical mean ope-
rator. Acta Math. Vietnam. 46 (2021), no. 1, 179-201.

M. Jelassi and L. T. Rachdi, On the range of the Fourier transform associated with the spherical
mean operator. Fract. Cale. Appl. Anal. 7 (2004), no. 4, 379-402.

N. N. Lebedev, Special Functions and their Applications. Revised edition, translated from the
Russian and edited by Richard A. Silverman. Unabridged and corrected republication. Dover
Publications, Inc., New York, 1972.

N. Msehli and L. T. Rachdi, Heisenberg—Pauli-Weyl uncertainty principle for the spherical mean
operator. Mediterr. J. Math. 7 (2010), no. 2, 169-194.

M. M. Nessibi, L. T. Rachdi and K. Trimeche, Ranges and inversion formulas for spherical mean
operator and its dual. J. Math. Anal. Appl. 196 (1995), no. 3, 861-884.

J. F. Price, Inequalities and local uncertainty principles. J. Math. Phys. 24 (1983), no. 7, 1711-
1714.

J. F. Price, Sharp local uncertainty inequalities. Studia Math. 85 (1986), no. 1, 37-45 (1987).

L. T. Rachdi and K. Trimeche, Weyl transforms associated with the spherical mean operator.
Anal. Appl. (Singap.) 1 (2003), no. 2, 141-164.

Th. Schuster, The Method of Approximate Inverse: Theory and Applications. Lecture Notes in
Mathematics, 1906. Springer, Berlin, 2007.



90 Khaled Hleili

[24] F. Soltani, L? local uncertainty inequality for the Sturm-Liouville transform. Cubo 16 (2014),
no. 1, 95-104.

[25] L. V. Wang (Eds.), Photoacoustic Imaging and Spectroscopy. CRC Press, 2009.

[26] E. Wilczok, New uncertainty principles for the continuous Gabor transform and the continuous
wavelet transform. Doc. Math. 5 (2000), 201-226.

(Received 13.11.2020; accepted 14.04.2021)

Author’s addresses:

1. Department of Mathematics, Preparatory Institute for Engineering Studies of Kairouan, Kai-
rouan University, Tunisia.

2. Department of Mathematics, Faculty of Science, Northern Borders University, Arar, Saudi
Arabia.

E-mail: khaled.hleili@gmail.com



