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ASYMPTOTIC ANALYSIS AND REGULARITY RESULTS
FOR A MIXED TYPE INTERACTION PROBLEM OF ACOUSTIC
WAVES AND ELECTRO-MAGNETO-ELASTIC STRUCTURES



Abstract. In the paper, we consider a three-dimensional model of fluid-solid acoustic interaction when
an electro-magneto-elastic body occupying a bounded region Q7 is embedded in an unbounded fluid
domain Q= = R3\ QF. In this case, we have a five-dimensional electro-magneto-elastic field (the dis-
placement vector with three components, electric potential and magnetic potential) in the domain Q,
while we have a scalar acoustic pressure field in the unbounded domain 2~. The physical kinematic
and dynamic relations are mathematically described by the appropriate boundary and transmission
conditions. We consider less restrictions on a matrix differential operator of electro-magneto-elasticity
by introducing asymptotic classes, in particular, we allow the corresponding characteristic polynomial
of the matrix operator to have multiple real zeros.

In the paper, we consider mixed type interaction problem. In particular, except transmission
conditions, electric and magnetic potentials are given on one part of the boundary of Q* (the Dirichlet
type condition), while on the other part, normal components of electric displacement and magnetic
induction are given (the Neumann type condition).

We derive asymptotic expansion of solutions near the line where different boundary conditions
change, and on the basis of asymptotic analysis, we establish optimal Hoélder’s smoothness results for
solutions of the problem.
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1 Formulation of the problems

1.1 Introduction

Solvability of the mixed type interaction problem of acoustic waves and electro-magneto-elastic struc-
tures is investigated in the paper [8] with the use of the potential method and the theory of pseudo-
differential equations on manifolds with boundary and is proved existence and uniqueness theorems
in Sobolev—Slobodetskii spaces.

The Dirichlet type, Neumann type and mixed type interaction problems of acoustic waves and
piezoelectric structures are studied in [4,6,9].

In [7], the Dirichlet and Neumann type interaction problems of acoustic waves and piezo-electro-
magnetic structures are studied.

We consider less restrictions on matrix differential operator of electro-magneto-elasticity by intro-
ducing asymptotic classes My, m, ms(P), where P is determinant of the electro-magneto-elasticity
matrix operator, in particular, we allow the corresponding characteristic polynomial of the matrix
operator to have multiple real zeros.

In this paper, we derive asymptotic expansions of solutions of the problems (M,) and (Mg)
near the line where different boundary conditions meet, and on the basis of asymptotic analysis, we
obtain optimal Holder smoothness results for solutions. In particular, it turns out that the acoustic
pressure has Holder smoothness higher by one than themechanical displacement vector and the electric
potential. It means that the acoustic pressure has co'+1 smoothness, while the displacement vector
and the electric potential have c smoothness, with some §’ € (0,1). In the case when the domain Q%
is occupied by a special class of solids, which belong to the 422 (Tetragonal) or 622 (Hexagonal) class
of crystals, one has § = 1/2. Note that in the general anisotropic case, the smoothness of solutions
depends on the material constants and also on the geometry of the line where the different boundary
conditions meet.

1.2 Electro-magnetic field

Let Q7 be a bounded 3-dimensional domain in R? with a compact, C*°-smooth boundary S = 9Q+
and let Q= := R\ QF. Assume that the domain Q7 is filled with an anisotropic homogeneous
piezoelectro-magnetic material.

The basic equations of steady state oscillations of piezoelectro-magneticity for anisotropic homo-
geneous media are written as follows:

Ciju100ug + prwSpuy + €1i;0,0i0 + qij0;0 + F; =0, j=1,2,3,
—eir10;01uy, + £10;019 + a1 0;01¢ + Fy = 0,
—qik10i01uy, + a1 0;010 + 1310;01 + F5 = 0,
or in the matrix form
A0,w) U+ F =0 in QT

where U = (u,0,%) ", u = (u1,us,u3)" is the displacement vector, ¢ = uy is the electric potential,
1) = us is the magnetic potential and F' = (Fy, Fy, F3, Fy, F5)—r is a given vector-function. The three-
dimensional vector (Fy, Fy, F3) is the mass force density, while Fy is the electric charge density, Fy is
the electric current density, and A(9,w) is the matrix differential operator,

A(O,w) = [Ajx(0,w)]5x5,
Aj(0,w) = ¢ij0i0 + p1wdin,  Aju(0,w) = e1;;010;,  Ajs(0,w) = qi0,0;,
A (0, w) = —€i110;0;,  Aua(0,w) = €40;01, Ay5(0,w) = aq0;0y,
Ask(0,w) = —qik10;0,  As4(0,w) = a;10;0;,  As5(0,w) = pid;0l,
7.k = 1,2,3, where w € R is a frequency parameter, p; is the density of the piezoelectro-magnetic
material, ¢;jix, €iki, Qikl, €il, M, @y are elastic, piezoelectric, piezomagnetic, dielectric, magnetic per-

meability and electromagnetic coupling constants respectively, ¢ is the Kronecker symbol and sum-
mation over repeated indices is meant from 1 to 3, unless otherwise stated. These constants satisfy
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the standard symmetry conditions:

Cijkl = Cjikl = Cklij, €ijk = €ikj, ijk = Qikj, Eij = €jir,  Mjk = Mkj, QAjk = Akj,
1,7, k, 1 =1,2,3.

Moreover, from physical considerations related to the positiveness of the internal energy, it follows
that the quadratic forms c;;x1&i;&k and €;57;m; are positive definite:

Cijki&ii€kl > c0&ij&i; V&ij =& ER, (1.1)
eiming > c2lnl®, qming > eslnl®s pagmimy > ealnl®* VY = (n1,m2,m3) € R?, (1.2)

where ¢y, c1, co and c3 are positive constants.
More careful analysis related to the positive definiteness of the potential energy insure that the

matrix
A= <[€kj]3><3 [akjbxg)
[arslans  [Hhilys 6x6
is positive definite, i.e.,
erjChCy + ar; (GCF + Gill) + i GiCT = ea (ISP +1C717) v ¢ (" e T,

where ¢4 is some positive constant.
The principal homogeneous symbol matrix of the operator A(9,w) has the following form:

[—cijin€illlsng  [—€1ij&i&ilasy [~ @ii&il55
A @) = | [eimbi&)y s —ea&i& —a4§:&
[@ik1&i&il 1 3 —ai&i& —mak&i&t /) s

With the help of inequalities (1.1) and (1.2) it can be easily shown that
—Re AD(E)C- ¢ > ¢¢)PIE)? V¢ eC?h, VEER?, ¢=const >0,
implying that A(0,w) is a strongly elliptic formally nonself-adjoint differential operator.

N _
Here and in the sequel, a - b denotes the scalar product of two vectors a,b € CV, a-b:= 3 abg.
k=1

In the theory of electro-magneto-elasticity, the components of the three-dimensional mechanical
stress vector acting on a surface element with a normal n = (nj, ng, ng) have the form

0N 1= Cijirni Qg + eijni0ip + quiyni 01y, j=1,2,3,

while the normal component of the electric displacement vector D = (D1, Dy, D3) " and the normal
component of the magnetic induction vector B = (B1, Ba, B3)T read as

—Din; = —ejpniOiug + €401 + ayn; O,
—Bin; = —qirniOug + ayn;Oip + pin; 0.

Let us introduce the boundary matrix differential operator

T(a’ TL) = [Tjk(a’ n)}5><57
Ti(0,n) = cijikniOy,  Tja(0,n) = eyni0;,  Tjs5(0,n) = quijniol,
Tur(0,n) = —€ipniOy,  Taa(0,n) =eqn;0;, Tus(0,n) = ayn,;0y,
T5k(0,n) = —qiraniO1,  T54(0,n) = ayn;0y, T55(0,n) = pan;oy,
j,k =1,2,3. For a vector U = (u, ,%) ", we have

T(@, n)U = (O’lj’l’Lj, 025M5,03;5T;, —Dmi, —Bmi)—r. (13)
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The components of the vector TU given by (1.3) have the following physical sense: the first three
components correspond to the mechanical stress vector in the theory of electro-magneto-elasticity,
while the fourth one is the normal component of the electric displacement vector and the fifth one is
the normal component of the magnetic induction vector.

In Green’s formulae, one also has the following boundary operator associated with the adjoint
differential operator

A*(D,w) = AT(=0,w) = AT (9, w),
T(8,n) = [Tjx(d,n))

5%x57

where
Tjr(@,n) = Tyr(9,n),  Tja(d;n) = =Tja(dn),  Ty5(,n) = =Ty5(9,n),
Tur(0,n) = =Ty (0,n), Taa(d,n) = Taa(d,n), Tus(8,n) = Tus(9,n),

Tsi(d,n) = —Tsi(9,n), T5a(d,m) = T5a(d,n), Ts5(d,n) = Ts5(d,n),
7,k =1,2,3. Let us consider the equation

[cijin€i& — PwOinlgys  le1i€i&lsy (0168551
P (€, w) = det A(i€,w) = det [—eiri&i&ll 13 il ai&i& =0, (1.4)
[—iri&i€il1 5 ait&i&t Hia&i&l /5o
EcR3\ {0}, weR, 4,5,k 1=1,23,

where ® 4 (&, w) is the characteristic polynomial of the operator A(9,w). The origin is an isolated zero

of (1.4).
We are interested in the real zeros of the function ®4(¢,w), £ € R?\ {0}.
Denote
2
pws o~ &
==, &:= = for [{]|#0,
e S e
[cijri&i& — MNjklsxs  [Aja(€)]sx1 [Aj5(E)]sx1
B(X,§) = [~ A;a(€)]1xs ki ai&i
[*Aj5(A)]1x3 ailgz‘gl Milgigl 5x5
Then (1.4) can be rewritten as
T(A, ) == det B(\, &) = 0. (1.5)

This is a cubic equation in A with real coefficients.
The following theorem holds (see [7]).

~ ~ ~

Theorem 1.1. Equation (1.5) possesses three real positive roots A\1(§), A2(&), A3(§).

Denote the roots of equation (1.5) by A1, A2, Az. Clearly, the equation of the surface S, ;,
7 =1,2,3, in the spherical coordinates reads as

where
& =rcosesinf, & =rsinpsind, &5 =rcosd

with0 < <2m,0<0 <m, r=]|
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We have also the following identity:
3 3

D4 (&, w) = det A(i€,w) = Da(E, 0)r* [ (2 = r2()) = da(&,0)r* [ P ().

Jj=1 Jj=1

It can be easily shown that the vector

n(€) = (1) |[V@A(E,w)| T VOA(E,w), €€ S,

is an external unit normal vector to S, ; at the point &.
Further, we assume that the following conditions are fulfilled (cf. [5,17,21,22]):

(1) P4, w) = <I>A(§A7 0)rt Py (£) Py (€) P3(€), then Ve (P (&) P2(€)P3(£)) # 0 at real zeros & € R3\{0}
of the polynomial (1.4), or

If Py(8,w) = <I>A(§A, 0)r* P (£) Py (&), then V(P (€)P2(€)) # 0 at real zeros £ € R\ {0} of the
polynomial (1.4), or

If &4(6,w) = Du(&, 0)rtP3(€), then V¢ Py (€) # 0 at real zeros £ € R\ {0} of the polynomial
(1.4).

(ii) The Gaussian curvature of the surface defined by the real zeros of the polynomial ®4(§,w),
¢ € R?\ {0}, does not vanish anywhere.

It follows from the above conditions (i) and (ii) that the real zeros & € R?\ {0} of the polynomial
® 4 (€, w) form non-self-intersecting, closed, convex two-dimensional surfaces S, 1, Sw.2, S.,3, enclosing
the origin. For an arbitrary unit vector n = z/|z| with € R3\ {0}, there exists only one point on
each S, j, namely, & = (£7,&,&}) € S,,; such that the outward unit normal vector n(¢7) to S, ;
at the point &7 has the same direction as 7, i.e., n(¢) = n. In this case, we say that the points &7,
7 =1,2,3, correspond to the vector 7.

From (i) we see that the surfaces S, ;, j = 1,2, 3, may have multiplicites.

We say that a vector-function U = (u1,ua,us,us,us)’ belongs to the M, my ms(P) class if
U € [C*(Q7)]® and the relation

5
U(x) = Z uP ()
p=1

holds, where u? has the following uniform asymptotic expansion as r = |z| — oo:

3 oo
T S S S
Jj=1 q=1

ut(z) =0(r™"), Gput(z) =0(r™?), «’(x) =0(r™"), hu’(x) =0(r"?), k=123,

here P = det A(i0;,w) and df,, € C=, j =1,2,3 (see [5]).
These conditions are the generalized Sommerfeld-Kupradze type radiation conditions in the ani-
sotropic elasticity (cf. [16,17]).
From condition (i) it follows that our M, m, m,(P) class is Mi 1 1(P) or My 1(P) or M3(P).
The class My 11(P) is a subset of generalized Sommerfeld-Kupradze class.

We introduce the single and double layer potentials associated with the differential operator
A(0,w),

Va(g)() = / Tz - y.w)g(y) d,S, =€ F,
S

Wo(f)(z) = / (70, n()TT (= — v,w)] ") dyS, =€ QF,
S

where g = (g1,...,94)" and f = (f1,..., f1)" are density vector-functions and I'(z — y,w) is the
fundamental solution of equation (1.8).
The following theorem holds (see [1]).
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Theorem 1.2. Let g € [H~'+4(9)]*, s > 0. Then

{Vu(9)(2)}* = Hu(9)(2), z€ 5,

where H,, is a weakly singular integral operator,

H,(g9)(2) := /F(z —y,w)g(y)dyS, z€ 8.
S

The mapping properties of these potentials and the boundary integral operators are described in
Appendix of [8].

1.3 Scalar acoustic pressure field and Green’s formulae

We assume that the exterior domain 7 is filled by a homogeneous isotropic inviscid fluid medium
with the constant density py. Further, let the propagation of acoustic wave in 2~ be described by
a complex-valued scalar function (scalar field) w being a solution of the homogeneous Helmholtz
equation

AW + pow?w =0 in Q7 (1.6)

3
where A = ) 88722_ is the Laplace operator and w > 0. The function w(xz) = P*¢(z) is the pressure of
=10
a scattered acoustic wave.

We say that a solution w to the Helmholtz equation (1.6) belongs to the class Som,(27), p = 1,2,
if w satisfies the classical Sommerfeld radiation condition

dw(z)

Al +i(=1)P/prww(z) = O(|z| %) as |z| — oo. (1.7)

Note that if a solution w of the Helmholtz equation (1.6) in Q~ satisfies the Sommerfeld radiation
condition (1.7), then (see [23])
w(z) = O(|z|™!) as |z| — .

Let us introduce the single and double layer potentials

Va(g)(x) : = / (@ - y,w)g(y) dyS, T ¢S,

S
Wa(f)(@) : = / D& — ,0) f(4) dyS, z ¢ 5,
S

where

exp(iy/p, wlz|)
o) =~

is the fundamental solution of the Helmholtz equation (1.6). These potentials satisfy the Sommerfeld
radiation condition, i.e., belong to the class Som; (7).
For these potentials the following theorems are valid (see [12,18]).

Theorem 1.3. Let g € H-'/2(S), f € H'/2(S). Then on the manifold S the following jump relations
hold:

{(Vo(@)}* =Holg), VoY =271 F + KL(f),
{anvw(g)}i = :FZ_lg + ]Cw(g)a {6nWw(f)}+ = {anWw(f)}_ = ‘Cw(f)v
where H,, K and K, are integral operators with the weakly singular kernels,

Ho(9)(2) = /v(z —y,w)g(y)d,S, z €S8,
S
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Ka(f)(2) = / Butoy (= — 1,0 [(4) 4y, 2 € S,
S

Ku(g)(2) = / Bniey(z — 1 w)g () dyS, 2 € 8,
S

while L, is a singular integro-differential operator (pseudodifferential operator) of order 1.
Theorem 1.4. The operators

N = =27 + KX + pH,, - HY?(S) — HY2(9),

M= Lo +p(27 L+ Ky) - HY2(S) — HY2(S)
are invertible provided Im p # 0. Here, I is the scalar identity operator.

The mapping properties of the above potentials and the boundary integral operators are described
in Appendix of [8].

1.4 Formulation of Mixed type interaction problem for steady state
oscillation equation

Now we formulate the fluid-solid interaction problems. Let the boundary S = Nt =00~ € C* be
divided into two disjoint parts Sp and Sy, i.e., S=SpUSN, SpNSy = and [, := 0Sp = 0Sy €
C.

Mixed type problem (11,): Find a vector-function U = (u,us,us)" = (u,¢,9)" € [HY(Q1)]® and a
scalar function w € H}, (©27) N Som; (Q27) satisfying the following differential equations:

A(0,w)U =0 in QF,

AW + pow?w =0 in Q7 (1.9)

the transmission conditions
{u-n}" =b{0,w}~ + fo on S, (1.10)
{[T(0,n)U];}T =bo{w} n;+ f; on S, j=1,2,3, (1.11)

and the mixed boundary conditions

{e}3t =" on Sp, (1.12)
(v} = £ on Sp, (1.13)
{[r(@,n)U)s} " = £ on S, (1.14)
{IT@,n)U15}" = 5 on Sy, (1.15)
where by and by are the given complex constants satisfying the conditions
biby # 0 and Im[biby] = 0, (1.16)

and
foe HTVA(S), fie HTVA(S), j=1,2.3,
R e HY(Sp), 57 e HY(Sp), /i) e HTVA(Sn), f5) € HT?(Sw).

Theorem 1.5. Let a pair (U,w) be a solution of the homogeneous problem (M,,) and w > 0. Then
w=01in Q" and either U=0in Q" if w & Iy (QF), or U € Xpr0(QF) if w € T (QF).

We denote by Jp(27) Jones eigenfrequencies and by X, (Q27) Jones modes corresponding to w
(see [8,15]).
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1.5 Formulation of Mixed type interaction problem for

pseudo-oscillation equations
In this subsection, we consider the mixed type interaction problem for the so-called pseudo-oscillation
equations. These problems are intermediate auxiliary problems for investigation of interaction prob-
lems for the steady state oscillation equations.

The matrix differential operator corresponding to the basic pseudo-oscillation equations of the
electro-magneto-elasticity for anisotropic homogeneous media is written as follows:

A0, 7) = [Ajk(0,T)]5x5,
Aj(0,7) = ¢ij0i0, + p17° 05k, Aju(0,7) = €;;000;,  Ajs(0,7) = q14;0,0;,
Ayr(0,7) = —€in10;0;, Aus(0,7) = €000, Aus(0,7) = a40;01,
Asp(0,7) = =i 00y,  As4(0,7) = ayn0;0y,  Ass(0,7T) = pa0;0l,

4,k =1,2,3, where 7 is a purely imaginary complex parameter: 7 =1i0, 0 # 0, 0 € R.

Mixed type problem (M, ): Find a vector-function U = (u,uy,us)' € [H}(Q7)]® and a scalar function
w € HL (7)) N Som; (Q27) satisfying the differential equations

A0, 7)U =0 in QF, (1.17)
AW + pow’w =0 in Q7 (1.18)
the transmission conditions
{u-n}t = bl{anw}7 + fo on S, (1.19)
{ITU);}" = bo{w} ™ nj + f; on S, j=1,2,3, (1.20)

and the mixed boundary conditions

{ug}T = ) on 5p, (1.21)
{us}T = P on 5p, (1.22)
{[rUl}" = A7 on Sy, (1.23)
{Iru)s} " = 1) on Sy, (1.24)

where b; and by are the given complex constants satisfying conditions (1.16), fo € H~/2(S), fi €
H2(S), 5 =1,2,3, ({7 € HV(Sp), ;7 € H'*(Sp), i) € HT(Sn), 137 € HT(S).

The following uniqueness theorem holds for the problem (M) (see [8]).
Theorem 1.6. Let 7 = io, 0 #0, o0 € R. The homogeneous problem (M) has only trivial solutions.

Investigation of the problem (M) is reduced to the following scalar pseudodifferential equations

on the manifold Sy with the boundary with respect to the unknown functions g{", ¢ € H'/2(Sy)

(see [8]),

rsy Al g = FO on Sy,
rsy AP gl = F® on Sy,

where
AWV = [A, B1(0,0,0,48",0)7],, FV e HV2(Sy),
AP P = [A, B;1(0,0,0,0,96)7],, F@ e HV2(Sy),
and

Ay = (=27 + KO)H ! = [A545, 4,k =1,5,
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is the Steklov—Poincaré type operator on S. This operator is a strongly elliptic pseudodifferential
operator of order 1 (see [2] and [3] for details),

[Crlaxs  [Afsx1 [APP]3x1
BT = [0]1><3 Il 0 )
[0]1><3 0 I 5%5
[Crlaxs = [AZF]axs — baby [N ]axi [M ' ng]ixs, j,k=1,2,3.

Let us introduce the single and double layer pseudo-oscillation potentials

V. (h) = / P(x — y,7)h(y) dy S,
S

W, (h) = / 70y ()T (z — ,7)]  h(y) dyS.
S

where h = (hy, ho, ks, hy, hs) T is a density vector-function and I'(x —y, 7) is the fundamental solution
of equation (1.17).

Theorem 1.7. Let h € [H7175(9)]%, s > 0. Then

+

[V, (hV)(2)}* = / P(z — y, 7)h(y) dy 5.

S

Further, we introduce the following boundary operator:

H, (h)(z) = / Iz — y,7)h(y) dy S,
S

Note that H. is a weakly singular integral operator (pseudodifferential operator of order —1).
The mapping properties of these potentials are described in Appendix of [8].

1.6 Formulation of the existence and uniqueness theorems of
the mixed type problems (M,) and (M,)

We introduce the notation

§:= inf  Resx(a’), 6":= sup Resx;(z'), where 0 <4 <§”" <1,
z'€lm, j=1,2 &' €l, §=1,2
where s (z), j = 1,2, are the factorization indices of the symbols & ,i)(z,£) = & ,» (§), 7 = 1,2, at
the “frozen” point z € 9Sn, whose real part is calculated by the formula [14]:
1 1 1
Re s;(x) = 5 + 3 I8 GA@(I,O, -1) - 5. 818 GA‘(’_j)(I,O,+1),
T T
5 < aI‘gGAs_j)(IE,O,:l:l) < 3 ji=1,2, ©€dSN.

It is evident that 0 < Res;(z) <1 j=1,2, for x € 0Sy.
The following theorem holds (see [8]).

Theorem 1.8. The operators rg, ALV rg . AP . H*(Sy) — HY(Sy) are invertible for all s satis-
fying

1 1 .
-5 +£1§EN Rekj(z) <s< 3 +xéB£N Rek;(z).

The following existence theorem holds for the problem (M) (see [8,19]).
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Theorem 1.9. Let 7 = io, 0 # 0, 0 € R, and let fo € H Y2(S), f; € H™Y2(9), j = 1,2,3,
fD),fz(D) € H'Y?(Sp) and fl(N),fz(N) € H™Y2(Sy). Then the problem (M,) has a unique solution
(U,w), U € [HY(QM)]5, we HL (7)) N Som; (™) which is represented by the potentials

U=V.H'g inQ", w=W,+uV,)h inQ",

where the densities g € [H'/?(S)]®> and h € HY?(S) are defined from the uniquely solvable system
in [8]. If the conditions fo € H*~1(S), f; € H™*(S), j = 1,2,3, fl(D), 2(D) € H*(Sp), fl(N), 2(N) €
H*~Y(Sy) hold for the data in (1.19)—(1.24) and

% <s< % + xe@Sivn,fj:LQ Re s;(x), (1.25)
then the solution (U,w) of the mized type problem (M,) exists, is unique and U € [H*t1/2(Q1))®,
we HPV2(07) 1 Somy ().

Moreover, if the conditions fo € H*(S), f; € H*7'(S), j = 1,2,3, fl(D), 2(D) € H*(Sp),
1(N) Q(N) € H*"Y(Sy) hold for the data in (1.19)—(1.24) and (1.25) is satisfied, then the so-
lution (U,w) of the mized type problem (M,) exists, is unique and U € [H*T/2(QT)]°, w €
HP? Q) N Somy ().

loc

Theorem 1.10. If w & Jy (1), then the problem (M) is uniquely solvable, and if w € Jy (QF),
then the mized type problem (M) is solvable if and only if the following orthogonality condition

3 T~ f— — . —
DA 1) - {[T0 )17 - (([T0],) . 77),
+({TF R+ ({01, 7) =0 vTeXp @) (126)
holds, and a solution is defined modulo Jones modes Xy ., (7).

The following theorem holds.

Theorem 1.11. Let

1 1 )
3 <s<g+ melgg,v Re s (), (1.27)

where »;(x), j = 1,2, are the factorization indices of the principal homogeneous symbol of the operators
Agj), j = 1,2 (see Subsection 1.5), and let U € [HY(QT)]?, w € HL _(Q27)N Som;(Q27) be the solution

loc

of the mized type problem (M,). Then the following regularity result holds:

if fo € H=Y(S), fj € HNS), j=1,2,3, 1P 1PV e Ho(Sp), £V, V) € H=1(Sy), then
U e [H+Y2(QH), we HE2(Q7) N Som; (7).

loc

Moreover, if
foe HY(S), fieHYS), j=123, 2. 187 e (Sp). NV, 1N e T (Sy),

and (1.27) is satisfied, then U € [H*+Y/2(Q))5, w € HE™/%(Q7) N Somy (Q7).

loc

Remark 1.12. In the last statement of Theorem 1.11, the smoothness of w follows from the repre-
sentation of h (see [8])

h= by M™ Hugling — by ' M7 (fo) € HFY(S) on S

and the mapping properties of potentials W, and V,, (see [8, Appendix, Theorem 6.1]), where fy €
H*(S), g € [H*71(9)]° and s satisfies (1.27).
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2 Asymptotics of solutions and regularity results for
the mixed type problems (M;) and (M,,)

2.1 Asymptotic analysis of the mixed type problem (),) and
regularity result

Here, we investigate the asymptotic behavior of a solution of the mixed type problem (M) near the
line ,, = 9Sn.
Let 2’ € I, and Hg,n) be the plane passing through the point 2’ and orthogonal to the curve I,

at ’. We introduce the polar coordinates (r,«), r > 0, —7 < a < 7, in the plane H( ™) with origin at
the point z’. Denote by S3 two dlfferent faces of the surface Sy. It is clear that (r, :t7r) € SE.

The intersection of the plane H and )~ is identified with the half-plane » > 0 and —7 < a < 0,

while the intersection of the plane Hi,, ™) and QF is identified with the half-plane r > 0and 0 < a < 7.
For simplicity of the description of the method applied below, we assume that the boundary data of
the mlxed type problem (M) are infinitely smooth, fy, f; € C*°(5), j =1,2,3, f(D), (D) ¢ C>(Sp),
5 € 0=(Sw).
In [8], we have shown that the mixed type problem (M) is uniquely solvable and a solution (U, w)
can be represented in the form

U= VTH;l(gv g4ag5)T in Q+7 (21)
w= W, +uV,)h in Q7 (2.2)

where (g, g4, 95, h) " is the unique solution of the system (see [8])

PT,M(ga 94,95, h)T = q)7

with §
(anf17f27f3 (D)7f2 ) 1(N)7f2(N)) 5
and
[n]1x3 0 0 - M
['Az'k]SxS [-’414]3><1 [Az—s];gxl [_b2nj/\[]3x1
0 rspl 0 0
Prm = [0]1x3 Spdl , 1,k=1,2,3. (2.3)
[0]1x3 0 rsp, 11 0
roy AP ixs oy AR rsy [AP] 0
ron A 1x3 15y A% ey [A2] 0

8x6

To establish the asymptotic behaviour of the vector U near the curve [,,, we rewrite (2.1) as
_ 1) (2
U=VHG g 9) +R, (2.4)

where R := V. H;'(0,0,0, G(l) G(Q)) € COO(QiJF) Gél),G(()z) € C(S) are some fixed extensions
of fl(D), fQD) € C*(Sp), respectively, and 90 , 962) are the unique solutions of the scalar strongly
elliptic pseudodifferential equation on the manifold Sy with the boundary:

rsn AWV = PO j =12, on Sy, (2.5)
where

A<1>gol> = [A.B71(0,0,0,98",0)7],
:f(N) — TSy [A Bil(\IIh\IIQa \Ij3’G[()1)’O)T]4 € H71/2(SN)7
A(2> = [A.B:1(0,0,0,0,95) 7],
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F@ = (V) g [AB Y (U1, Ua, U3,0,G5) 7], € HY2(Sy),
;= fj — boby 'y NM ™ fy, j=1,2,3.
Applying the results from [11,14], we can derive the following asymptotic expansion of the solution

g(()j ), j = 1,2, of the strongly elliptic pseudodifferential equation (2.5) near the line [,,

N &k
g(()])(x’,r) (J) Y () ZZ RALS T RE\,)H(x r), j=1,2 (2.6)
k=1i=0
where N is an arbitrary positive integer, aéj ),a%) € C*(l,,), and the remainder term R% 11 €
C"%“er*s(fr D, U o = b x [0,€'] with Ve > 0, Ve' >0, 2" € I, j = 1,2.
The vector-function (g, 94,95) " satisfies the uniquely solvable equation (see [8])

BT(§794795)T =¥ on 57

where
U= (\11/7\1/43\115)T7 \II/: (\Pl,\IIQ,\I/?,),
U, = f; —bob ' NM L fy € C(S), j=1,2,3,
Uy =G +g5", w5 =G0 + g
Then we get
~ _ _ T
(G.91.95)" = B7H(w) = B (W, G + g8, G + o)
whence
30,007 = B,H (W, G + gV GP + g5) T~ (0,0,0,94,95) 7 2.7)
Since . . _ . A
[CTLS_XS 7[CT]:3_><3[A3-4]3><1 *[CT]:S_XS[Ag-S]le
B;l = [0]1><3 L 0 )
[0]1><3 0 I 5%5

taking into account g4 = G(()l) + g(()l), g5 G(()z) + g(()2), from (2.7) we get

[Crlsts® — [CrlatalAisu1 (GSY + gi) = [Cr)5 k5[ A3 (G + 987)
(3,0,0)T = a4 gt
G + g8
[Crlats ¥’ — [Crl3s[Ai Y551 (GE + g8V)

- (030a070795)T = 0
0
Therefore,
7= —[C)atal A1 98" = [Crltsl AP s 957 + Ra, (2.8)
where

Ru = [Colital Al sxr Gy + [Crlg s [ AP GEY € [C(5)P°
From system (2.3) we obtain
h=b "M (G-n) = b "M (fo), (2.9)
where b ' M~1(fo) € C>(S9).
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Denote
~(1) —1 j4 ~(1) [59)]3“
[C+7]3x1 == —[Cr]5s[ AT Isx1, [Py ]sx1 = I )
L
c(2) —1 1435 D(2) [C g1
[CF7lsx1 == =[Crl3ys[ AP lsx1,  [DF]sx1 = I )
I

which are the operators of order 0.
Substituting (2.8) and (2.9) in (2.4) and (2.2), respectively, the solutions of the problem (M,,) can
be represented in the form of potential type functions

U= \77_H;1 ([D(l)]5 1g( ) + [ ( )]5 1g(() )> + El in Q+, (210)
W= (W Vo )br Mg (€087 + €208 ) + B in @ (2.11)

where Ry € [C(QF)]5, Ry € C(Q7).
By using the asymptotic expansion (2.6) and by means of the asymptotic expansion of potential

type functions (see [10, Theorem 2.2, Remark 2.11]), from (2.10) and (2.11) we obtain the following
asymptotic expansions of solutions U and w of the mixed type problem (M, ) near the line [,,

2 2 N N
Uz r,a) = Zp(()])(x’, a)ri(@) 4 Z p;cji) (2, a)r @t 4 Uy (2, ), (2.12)
j:l j=1i=0 k=1
2 N N
w(x',r, a) Zq Jr ()41 —&—ZZZ(],&?(% Q) @R e (2 ), (2.13)
j=1i=0 k=1

where po,pjr € [C°(Ln % [0,7])]°, qo,qjx € C°(Lym x [—,0]), and the remainder terms Un41 €
[CF+N+1=e(QF)]5 wyyy € COTNT2=¢(Q7) for Ve > 0, 2/ € Iy,

Now we can obtain a regularity result. From the asymptotlc expansions (2.12), (2.13), we obtain
the optimal Holder smoothness of solutions of the problem (M),

Uelc” @), wec’ T ().

where
8 := inf = Res;(a).

' E€ly, j=1,2

2.2 Regularity result and asymptotic analysis of the mixed type
problem (M,,)

Here, we establish the asymptotic behavior and optimal regularity results for the solution of the mixed
type problem (M,,) near the line /,,. To this end, we will need theorems in Bessel potential and Besov
spaces.

The following assertions hold.

Theorem 2.1. Let % <p< % , T=10,0 #0, 0 € R and let the boundary data of the problem
(M) belong to the following Besov spaces:

fO € Bil/p(s)(fo € B}l)’/;?/(s))’ fj € B;;/p(s)v j = 172733
P, 1P e BYY (8p), fM NV e By (Sy), - =1-=.

Then the unique solution pair (U,w) of the mized type problem (M) belongs to the space [H,(27)]° x
[Hy 10¢(27) N Soma ()] ([Hy (QF)]° x [H 150(Q7) N Somy (27)]).

p,loc
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Theorem 2.2. Let fo, f;, 7 =1,2,3 and (U, w) be as in Theorem 2.1, and the conditions

1 1
¥_1+6H<8<¥+5/’ 1<t<oo
be fulfilled. If

foer,t(S)v fj eBtS,t(S)v j:1a2337
D D s N N s—
1( ) 2( ) € Bt,t(SD)a 1( ), 2( ) € Bt,t 1(SN)7

then

U, w) € [H V4P x [HHQ7) 1 Somy (7).

t,loc

Theorem 2.3. Let the right-hand side of transmission conditions (1.10), (1.11) and boundary condi-

tions (1.12)~(1.15) of the mized type problem (M,,) satisfy (1.26) if w € Jp(QF), and let

fo€ ByYP(S)(fo € BYY'(S)), f;€ B L/P(S), j=1,2,3,

1

1(D),f2(D) c B;,/;)/(SD), l(N)7f2(N) c B;;,/p(SN), —=1-=

/

p

with
2 <y < 2
2 — " p 1-6"

Then the solution pair (U,w) of the mized type problem (M,,) belongs to the space [H;(Q“')]E’ X

[H;;,loc

(27) N Somy (27)] ([HL(Q)]® x [H2

p,loc

(Q7) N Som, (Q_)])

Theorem 2.4. Let fo, f;, 7 =1,2,3 and (U, w) be as in Theorem 2.3, and the conditions

1 1
{_1+5//<8<Z+6/’ 1<t<oo
be fulfilled. If

Jo GBf,t(S)v fj GBtS,t(S)v J=1,2,3,
D D s N N s—
1( )v 2( ) € Bt,t(SD)a 1( )» 2( ) € Bt,t 1(SN)7

then

(U, w) € [H V4N x [HHQ7) 1 Somy (7).

t,loc

Proofs of Theorems 2.1-2.4 are similar to those of Theorems 7.1-7.4 from [6].

Now we investigate the regularity and asymptotics of solutions of the mixed type problem (M,,).

Let the boundary data of the mixed problem (M,,) belong to the following Besov spaces:

fo€ BEFY(S), f€ Bif(S), i=1,2,3
D D s N N s
fl( )’ 2( ) eBt:tH(SD)a 1( )’fQ( ) eBt,t(SN)v

where the numbers ¢ and s satisfy the conditions of Theorem 2.4.
Then the solution of the problem (M,,) can be represented in the form

U=V,g in QF,
w= W, +uV,)h in Q7,

where g and h are the solutions of the system

Qw7M<ga h)T = (I),
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[ H 1 x5 —bi M
(=275 + K, ) *]3x5 [—baniN3x1
Qi = [H s 0 . j=1,2,3, k=1,5,
7 [H2 )15 0
[(—2_115 + Kw)4k]1><5 0
[(—271]5 + Kw)5k]1><5 0

8x6
with T
D) (D) p(N) AN
d = (anfl?vaf?n 1( )7f2( )7f1( )7f2( )) .
Rewrite (2.16) in the form
QT,M(97 h)T = (I)7
where N
® =@+ (Qrar — Qua)(9:h)"
with
& (T 7 7 7 2 T s s s
o= (fo.fufo fu A7 B2 B BY) € (BEEO x [BEF (Sp)P x (B (Sx))%.
To establish the asymptotic behaviour of the vector U near the line /,,, we rewrite (2.14) as
U=V,H'(7,9".g5)" + R nQt, (2.17)
where

G oV + 6, gP +GP)T =H.g, R:=V, H;'(0,0,0,G",G)T € [HT M),

G(()l), Gé2) € Bf:{l(S) is some fixed extension of fl(D) ED) € Bf,jl(SD) and g(()l), géz) are the unique
solutions of the scalar strongly elliptic pseudodifferential equations on the manifold Sy with boundary:

rsn AV = F on Sy, j=1,2, (2.18)
with
FO = FNV g [ABZ (W1, W0, W3, GSY,0)T], € Bf,(Sn),
FO = [NV g [ABZ (01, W2, 5,0,G5) 7], € Bf,(Sn),
U; = f; — by 'y NMTU fy, W5 € BiT'(S), j=1,2,3.
For any v < ¢’, one can find s satisfying s < 1/t + ¢’ and € > 0 such that s = 1/t +e+ 4. It

follows from the embedding theorem (see [20, Theorem 4.6.2(b)]) that Bgét+€+7(SN) C Htl/tJ”(SN).

Therefore, F € Htl/H_V(SN), where v < ¢’

Applying the results on asymptotic expansions of solutions to strongly elliptic pseudodifferential
equations on a manifold with the boundary (see [11,14]), we can derive the following asymptotics of
the solution go of the strongly elliptic pseudodifferential equation (2.18) near the line I,;,:

g6 (@', r) = af (@)D £ RY ('), = 1,2, (2.19)
where aéj) € H?H*‘S” (Im) and the remainder term jo) € Ef?HH/t(SN) forany 1 <t < oo,y <d,
j=1,2.

From the embedding theorem (see [20, Theorem 4.6.1(e)]), it follows that

H ) € ) B S c e, )
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where
1

y4+1-=46"

We assume that v = §' — € with an arbitrarily small ¢ > 0 and max{;——, ==} < t < co. Then

<t<oo, 0<y<é.

from the asymptotic expansion (2.19) and embeddings (2.20) we obtain that g(j) e C9(8), where

supp gy € Sy, j =1,2.

The vector-function (g, Gél) + gél), GE)Q) + g(()Z))T satisfies the uniquely solvable equation (see [8])

B (g, Gél) + gél), G62 + géz)) =V on S,

where _ o B o
U=, 0y, 0:)7, U= (T, T, Ts) e [HTVH9)
and -
Uy =G +g5", U5 =00 + g0
Then we get
3,65 + g0, G2 +g)T = B1(8) = B (#,65 + o, 6+ 42),
whence
(.0,0T = B,H (W, G + ¢5,G9 + g8) " = (0,0,0,G + 8. G + g57) T (2.21)

Therefore, from (2.21) we get

7= —[C 15 1A 50 08V — [Crl5 L5142 51 957 + R, (2.22)

where

Ry = [Cr)5. 15[ A0 551 GV + O35 [ AP35 G € [H TV (9)]2.

From the first equation of system (2.16) with the right-hand side function fo, we obtain
h=b7" MG n) — b7 M (fo), (2.23)

where _
by M (fo) € HTT(S).

Substituting (2.22) and (2.23) in (2.17) and (2.15), respectively, the solutions of the problem (M)
can be represented in the form of potential type functions

U = VTH:l([ﬁg_l)]g)Xlgél) + [5(2)]5><lg(2)) + El in Q+ (224)
w = (W, + pVo)by "My (C],68Y + [C2),987) + Ry in Q0 (2.25)

where

§1 c [Htv+1+2/t(Q+)]5 c [Cv+1—1/t(m)]57 R c Hv+2+2/t(Q—) c C'y+2—1/t(97_).

t,loc
Now, we can obtain the regularity result. Since the potential type operators
Vo H [DW]50, VOH [DP]5, : [CV(S)]° — [CY (@),
(Wey + 11V )by "M ™0 [C);, (Wi + Vi )by " M0, [CP)]; - €0 (8) — ¥+ ()

are continuous (cf. [16, Chapter 5], [12, Chapter 2]), taking into account that g(()l), g(()Z) e C%(S), from

(2.24), (2.25) we obtain optimal Holder smoothness of solutions of the mixed type problem (M,,)

Uelc” @), wec¥ (@),
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where
"= inf (2.
0 2l j=12 Re s (@)

By using the asymptotic expansion (2.19) and by means of the asymptotic expansion of potential
type functions (see [10, Theorem 2.2, Theorem 2.3, Remark 2.11]), from (2.24) and (2.25) we obtain
the following asymptotic expansions of the solution (U, w) of the mixed type problem (M,,) near the
line {,,

U, r, ) Zp (2, 0)r ) 4 Uy (2,7, ), (2.26)
2 .
wia',ra) = g (@, ) O L wa(al ), (227)
j=1

where pg € [C8(l,, x [0,7))]°, g0 € CP(l,n x [-7,0]), and the remainder terms U; € [CP(QT)]®,
wi € CP(Q7) with 8 =~+1— 8" — 1/t for any max{;——, =} <t < oo, wheree = — v > 0 is
an arbitrarily small number.

Remark 2.5. Note that the first coefficients péj ) and q(()j ), j = 1,2, of the asymptotic expansions
(2.26) and (2.27) have the same smoothness as the first coefficient a(J) Jj = 1,2, of the asymptotic

expansion (2.19), since the coefficients p(j) and q(j) j = 1,2, are defined by the coefficient ag (see [10,
Theorem 2.3]).

Let us consider the above investigated mixed type interaction problem for particular components.
We assume that the medium occupying the domain Q7 belongs to the 422 (Tetragonal) or 622 (Hexag-
onal) class of crystals. The corresponding system of differential equations reads as follows (see,
e.g., [13]):

(c1107 + 6603 + c4402)uy + (12 + Co6)0102us + (13 + €44)0103u3
—e140205 — 1502030 + prw’uy = F,

(c12 + c66)0201u1 + (ce607 + 1103 + 4403 )uz + (c13 + c44)D205us3
+e1401030 + q1501031) + prw’uy = Fh,
(c13 + €24)0301u1 + (13 + €44)D309us + (2407 + c4203 + c3303 )uz + prw’uz = F3,
1402031 — €140103u2 + (1107 + £1105 + 5338§)g0 = Fy,
q150205u1 — q150103us + (11107 + p1103 + ps303)Y = Fs,

where cy1, c12, €13, €33, 44 and ceg = U572 are the elastic constants, e14 is the piezoelastic constant,
q15 is the piezomagnetic constant, €11 and €33 are the dielectric constants, p17 and uss are the magnetic
permeability constants, satisfying the inequalities which follow from the positive definiteness of the
internal energy form (see (1.1), (1.2)):

ci1 > |era], cas >0, ces >0, csz(err + cia) > 2, (2.28)
€11 >0, e33>0, pi1>0, p33>0.

The following proposition holds.

Proposition 2.6. In the case when the domain QT is occupied by solids of a special class, which
belongs to the 422 (Tetragonal) or 622 (Hexagonal) class of crystals, the factorization index of the
principal homogeneous symbol of the pseudodifferential operator A(Tj), Jj=1,2, is equal to 1/2, i.e.,
»; =1/2, j =1,2. In this case, solutions of the problems (M;) and (M,,) have optimal smoothness

Ue[CY2@QP), weC¥2(Q).
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Proof. The validity of this proposition follows from
&%) =640 (0, 41) =6 4 (0,-1) >0, j=1.2,
since the factorization indices of the symbols
GAS_j) (Z‘, 5) = 6A5_J) (5)7 Jj=12
are calculated by formula (see [14]):
1 1 1 a0 (2,0, -1)
%](.]3) = 5 + ﬂ argGA(Tj)(xa 0; _1) — 77(_ arg GAS_J') (3770, +1) ‘W . (229)

Here, it is assumed that the line [,,, is parallel to the plane of isotropy, i.e., to the plane x3 =0
Indeed, since

Gim(o,il) = —[&4 (0,£1)], , [6% (0,£1)], , [6% (0,£1)], , + &4 (0,£1), j k=123

Gjm (0,£1) = —[&3F (0,£1)]1x5 [&74 (0, j:1)]3X3 (&%) (0,%1)], , + &% (0,£1), j,k=1,2,3,
where

S, (0,£1) =6 5174k, (0,1)64 (0,1),

in this case,

= 2441 414Cs5  2441414Cy5 Css
A d d 2d '’
ot 2A51A15C 44 _ 2451 A414Cy5 _ Cyy
AP d d 2d '’

where nonzero elements of the symbol matrix Sk _(0,1) are

A= —i e14¢e6(ba — b1) ; €14975 [ el ca4(by — b1)(e33b1bo + 511)}
2b1bo/B aeedy |V ess VB ’
Aps = Q15066(62 —b1) ; Q15¢1s [ c11 caa(by — b1)(es3b1be + 811)}
° 2ab1b9vV B Qg€ €33 VB ’
Ay = — 614533(b2 - bl) L Ay = — Q15€33(b2 - b1) ,
2V B
A+ \F 1 2\1/2 M1 p33
€14 = 6 +a , a=—=">0,
V 2044833 244633 R a15) €11 £33

= 614 + cq4611 + ce6e33 >0, B = A? — 4deqqcepe11833 >0, A > VB.

[ceee
biby = 6611
C44E€33
It can be proved that A14441 < 0, A15A51 < 0 (see [3]).
Let us calculate the entries Aoz and Ass. Introduce the notation

Note that

o 2 e 2 2
C .= C11€33 — Cy3 — 2013(244, D:=C*— 4844633611.
Consider two cases.

Case 1. Let D > 0. Then

— 044(d2 - dl)(Cn - 013d1d2)

Agy = A
23 Sdydg/D 32 =

044(d2 —d1)(cazdida — c13) (2.30)
2dydor/D ’ '
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C—-+VD C++vVD
dy = \| oY dy =y 2
2cy4C33 2c4q 33
Inequalities (2.28) imply that C' > +/D and
dydy — Ve (ds— dy)? = C — 2c44+/c33 /Cc11 >0

)
C33 C44C33

Then from (2.30), we obtain Az3Ass > 0.
Case 2. Let D < 0. In this case,

Aoe — G 0044(\/611033 - C13) Ay — — GC44(\/C11033 - 013) 3:
23 \/j bl 32 m Cl b

where

a

—

where

a =

1 \/—C + 2044\/011033 -0

C44C33

and we get again

. 0?14 az(\/cu €33 — 013)2 \/033
AgzAzp =

-D \/011
Nonzero elements of the symbol matrix Sg_(0,4+1) = Gy (0, —1) are:
by — by €11
Cip=—-——— —
11 B (833 + ble),
dy —dy ( [ca3 .
— c33+c¢ —) if D >0,
oD\ T a7
Co =
a €33 .
———(e3+c ) if D <0,
/D ( 33 + Caay [ — o
dy —dy .
- <C44 + \/011033> it D>0,
2\/
Css = u
_ﬁ (644 + s/611033> if D <0,

Cu = {b2 —h (044 + 66 ) + Yeres q%5~2 { o caalby = b1)(Es
QE11€1y £33

b1b2 + 611) :| }

<5

C.r {bQ —b ( C66 ) ety [ €11 Caa(by — b1)(e33biby +€11) ] }
55="Y"" = \ut— )t s—= |{/— — ;
2v/B b1b2 201161y €33 VB
Cus = Cyy = 14015 [ e11 caa(ba — b1)(es3bibo +€11) ] Cos = — 1
7 2aep1ed, |V ess VB ’ 2\/M1m33

Note that C;; <0, j =1,6 (see [3]).

Therefore, we obtain

ejm =6, (0,41) =6 4, (0,-1) >0, j=1,2,

and from (2.29), we get 2; = 1/2.

From (2.26) and (2.27), we obtain that U € [CY/2(Q1)]?, w € C'3/2(Q7). O
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