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STEKLOV EIGENVALUES PROBLEMS
FOR GENERALIZED (p, q)-LAPLACIAN TYPE OPERATORS



Abstract. In this paper, we study the following class of (p, q) elliptic problems under Steklov-type
boundary conditions {

−div
(
a(|∇u|p)|∇u|p−2∇u

)
+ a(|u|p)|u|p−2u = 0 in Ω,

a(|∇u|p)|∇u|p−2∇u · ν = λ|u|m−2u on ∂Ω,

where Ω is a smooth bounded domain in RN (N ≥ 2), ν is the outward unit normal vector on ∂Ω,
2 ≤ p < N , m ∈ R with m > 1 in suitable ranges listed later and a is a C1 real function and λ > 0 is a
real parameter. Using variational methods, we establish the existence of a continuous and unbounded
set of positive generalized eigenvalues.
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ÒÄÆÉÖÌÄ. ÓÔÀÔÉÀÛÉ ÛÄÓßÀÅËÉËÉÀ (p, q) ÄËÉ×ÓÖÒÉ ÏÐÄÒÀÔÏÒÄÁÉÓ ÛÄÌÃÄÂÉ ÊËÀÓÉ ÓÔÄÊËÏÅÉÓ
ÔÉÐÉÓ ÓÀÓÀÆÙÅÒÏ ÐÉÒÏÁÄÁÉÈ{

−div
(
a(|∇u|p)|∇u|p−2∇u

)
+ a(|u|p)|u|p−2u = 0 in Ω,

a(|∇u|p)|∇u|p−2∇u · ν = λ|u|m−2u on ∂Ω,

ÓÀÃÀÝ Ω ÀÒÉÓ ÂËÖÅÉ ÛÄÌÏÓÀÆÙÅÒÖËÉ ÀÒÄ RN-ÛÉ (N ≥ 2), ν ÂÀÒÄ ÄÒÈÄÖËÏÅÀÍÉ ÍÏÒÌÀËÉÀ
∂Ω-ÆÄ, 2 ≤ p < N , m ∈ R, m > 1, ÉÝÅËÄÁÀ ÛÄÓÀÁÀÌÉÓ ÃÉÀÐÀÆÏÍÛÉ, ÒÏÌÄËÉÝ ØÅÄÌÏÈ ÉØÍÄÁÀ
ÜÀÌÏÈÅËÉËÉ, a ÀÒÉÓ C1 ÊËÀÓÉÓ ÍÀÌÃÅÉËÉ ×ÖÍØÝÉÀ ÃÀ λ > 0 ÀÒÉÓ ÍÀÌÃÅÉËÉ ÐÀÒÀÌÄÔÒÉ.
ÅÀÒÉÀÝÉÖËÉ ÌÄÈÏÃÄÁÉÓ ÂÀÌÏÚÄÍÄÁÉÈ ÃÀÃÂÄÍÉËÉÀ ÃÀÃÄÁÉÈÉ ÂÀÍÆÏÂÀÃÄÁÖËÉ ÓÀÊÖÈÒÉÅÉ
ÌÍÉÛÅÍÄËÏÁÄÁÉÓ ÖßÚÅÄÔÉ ÃÀ ÛÄÌÏÖÓÀÆÙÅÒÄËÉ ÓÉÌÒÀÅËÉÓ ÀÒÓÄÁÏÁÀ.
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1 Introduction
The aim of this paper is to present a preliminary study on a more general class of (p, q)-type eigenvalues
problems under Steklov-type boundary conditions given by−div

(
a(|∇u|p)|∇u|p−2∇u

)
+ a(|u|p)|u|p−2u = 0 in Ω,⟨

a(|∇u|p)|∇u|p−2∇u, ν
⟩
= λ|u|m−2u on ∂Ω,

(1.1)

where Ω is a bounded domain in RN (N ≥ 2) with a smooth boundary ∂Ω, ν is the outward unit
normal vector on ∂Ω, ⟨ · , · ⟩ is the scalar product of RN , 1 ≤ p < N,m ∈ R, with m > 1, λ > 0 is a
real parameter, a : R+ → R+ is a C1 real function satisfying
(a1) There exist constants ξi > 0, i = 0, 1, 2, 3, 1 < p ≤ q < N such that

ξ0 + ξ1t
(q−p)/p ≤ a(t) ≤ ξ2 + ξ3t

(q−p)/p for all t ≥ 0.

Moreover, additional hypotheses on a which are useful in some specific cases are listed here:
(a2) There exists a positive real constant α with q

p ≤ α < m
p such that

1

α(t)t
≤ A(t) =

t∫
0

a(s) ds for all t ≥ 0;

(a3) The map t→ a(t)t(p−2)/p is increasing for t ≥ 0;

(a4) The map a and its derivative a′ satisfy

a′(t)t <
(q − p

p

)
a(t) for all t > 0.

Now, we present some examples of functions a in order to illustrate the degree of generality of the
kind of problems studied here.
Example 1.1. If a ≡ 1, our operator is the p-Laplacian, so problem (1.1) becomes

∆pu = |u|p−2u in Ω,

|∇u|p−2∇u ∂u
∂υ

= λ|u|m−2u on ∂Ω,

with q = p and ξ0 + ξ1 = ξ2 + ξ3.

Example 1.2. If a(t) = 1 + t
q−p
p , we get

∆pu+∆qu = |u|p−2u+ |u|q−2u in Ω,(
|∇u|p−2∇u+ |∇u|q−2∇u

) ∂u
∂υ

= λ|u|m−2u on ∂Ω,

with q = p, ξ0 = ξ1 = ξ2 = ξ3 = 1.
Example 1.3. Taking

a(t) = 1 +
1

(1 + t)
p−2
p

,

we get 
−div

(
|∇u|p−2∇u+

|∇u|p−2∇u
(1 + |∇u|p)

p−2
p

)
= −|u|p−2u− |u|p−2u

(1 + |u|p)
p−2
p

in Ω,

(
|∇u|p−2∇u+

|∇u|p−2∇u
(1 + |∇u|p)

p−2
p

)
∂u

∂υ
= λ|u|m−2u on ∂Ω,

where ξ0 = ξ1 = ξ2 = ξ3 = 1 and ξ2 = 2.
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Example 1.4. If we consider
a(t) = 1 + t

q−p
p +

1

(1 + t)
p−2
p

,

we obtain
−∆pu−∆qu− div

( |∇u|p−2∇u
(1 + |∇u|p)

p−2
p

)
= −|u|p−2u− |u|q−2u− |u|p−2u

(1 + |u|p)
p−2
p

in Ω,

(
|∇u|p−2 + |∇u|q−2

)
∇u ∂u

∂υ
+

|∇u|p−2∇u
(1 + |∇u|p)

p−2
p

u
∂u

∂υ
= λ|u|m−2u on ∂Ω,

with q = p, ξ0 = ξ1 = ξ2 = ξ3 = 1.

This class of problems comes, for example, from a general reaction-diffusion system

ut = div(H(u)∇u) + c(x, u), (1.2)

where
H(u) =

(
|∇u|p−2 + µ|∇u|q−2

)
.

This system has a wide range of applications in physics and related sciences like chemical reaction
design [4], biophysics [13] and plasma physics [17]. In such applications, the function u describes a
concentration, the first term on the right-hand side of (1.2) corresponds to the diffusion with a diffusion
coefficient H(u); whereas the second one is the reaction and relates to the source and loss processes.
Typically, in chemical and biological applications, the reaction term c(x;u) has a polynomial form
with respect to the concentration.

This class of problems has received special attention past years. For example, the particular case
a(t) = 1 + t

q−p
p (see Example 1.2) was studied in [7, 8, 20,21].

The problem on RN was studied in [5,6,11,12]. A result of the existence of solutions for a problem
with critical growth can be found in [11], and a result of multiplicity of solutions for a problem
with subcritical growth vis category theory was studied in [12]. In [5, 6], the authors established the
existence of the principal eigenvalue and of a continuous family of eigenvalues.

A further interesting and more general study of the Steklov eigenvalue problems for the (p, q)-
Laplacian, being in a close relationship with both the above results and our problem, is provided
in [21] (see also some references there, in particular, [20]), where the authors consider the following
Steklov problem involving (p, q)-Laplacian:

∆pu+ µ∆qu = |u|p−2u+ µ|u|q−2u in Ω,(
|∇u|p−2∇u+ µ|∇u|q−2∇u

) ∂u
∂υ

= λ
[
mp(x)|u|p−2u+ µmq(x)|u|q−2u

]
on ∂Ω,

where Ω is a smooth bounded domain in RN , µ > 0, λ ∈ R, and mp,mq are the bounded weights
on ∂Ω.

In the light of the specificity of the results cited above and for the sake of completeness within the
study of generalized p, q-Laplacian type operators, we are therefore motivated in this paper to deal
with the more general problem (1.1), thus covering the case of eigenvalues problems, including the
ones with p- or q-Laplacian operators.

2 Variational framework
First, let us observe that by the boundedness of Ω and p ≤ q, W 1,p(Ω) ∩ W 1,q(Ω) = W 1,q(Ω).
Therefore, as functional space, we consider the space W 1,q(Ω) endowed with the norm

∥u∥1,q :=

(∫
Ω

|∇u|q dx+

∫
Ω

|u|q dx
) 1

q

.
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We denote by W 1,p(Ω)∗ a dual space, and the duality pairing between W 1,p(Ω) and W 1,p(Ω)∗ is
written as ⟨ · , · ⟩. It is well known that the embedding W 1,p(Ω) ↪→ Lr(∂Ω) is compact for each
r ∈ [1, p∗), where p∗ = p(N − 1)/(N − p), and there exists Cp > 0 such that

∥u∥Lr(∂Ω) ≤ C∥u∥1,r.

Recall that W 1,p(Ω) is continuously embedded in Lr(∂Ω) for all r ∈ [1, p∗) and

W 1,q(Ω) is compactly embedded in Lr(∂Ω) for all r ∈ [1, p∗). (2.1)

In the following, we denote by ∥ · ∥r the classical norm on Lr(∂Ω). Recall also that a weak solution
of problem (1.1) is a function u ∈W 1,p(Ω) such that∫

Ω

a(|∇u|p)|∇u|p−2∇u∇v dx+

∫
Ω

a(|u|p)|u|p−2uv dx− λ

∫
∂Ω

|u|m−2uv dσ for all v ∈W 1,q(Ω). (2.2)

In order to use variational methods, it is needed to observe that by assumption (a1), we have

a(t)t(p−1)/p ≤ ξ2t
(p−1)/p + ξ32t

(q−1)/q for all t ≥ 0. (2.3)

By these subcritical growth conditions the energy functional Jλ :W 1,q(Ω) → R given by

Jλ(u) :=
1

p

∫
Ω

A(|∇u|p) dx+
1

p

∫
Ω

A(|u|p) dx− λ

m

∫
∂Ω

|u|m dσ

and expression (2.3) are well defined, where A(t) =
t∫
0

a(s) ds. Moreover, by the standard arguments,

Jλ ∈ C1(W 1,q(Ω),R) with the following Frechet derivative:

⟨J ′
λ(u), v⟩ =

∫
Ω

a(|∇u|p)|∇u|p−2∇u∇v dx+

∫
Ω

a(|u|p)|u|p−2uv dx− λ

∫
∂Ω

|u|m−2uv dσ

for every u, v ∈ W 1,q(Ω) and, thanks to the variational structure of the problem, any weak solution
of (1.1) is a critical point of Jλ and vice versa.

Let us recall that λ > 0 is a generalized eigenvalue of problem (1.1) if there exists u ∈W 1,q(Ω)\{0}
such that ∫

Ω

a(|∇u|p)|∇u|p−2∇u∇v dx+ a(|u|p)|u|p−2uv dx = λ

∫
∂Ω

|u|m−2uv dσ = 0

for every v ∈ W 1,q(Ω). We point out that if λ is a generalized eigenvalue to (1.1), then the corre-
sponding eigenfunction u ∈W 1,q(Ω) \ {0} is a nontrivial weak solution to problem (1.1).

In what follows, we denote by λ1(q) (resp., ψ1(q)) the principal eigenvalue (resp., eigenfunction)
to the following Steklov (eigenvalue) problem involving q-Laplacian:

∆qu = |u|q−2u in Ω,

|∇u|q−2∇u ∂u
∂υ

= λ(q)|u|q−2u on ∂Ω

(with 1 < p ≤ q < N).
From now on, specifically, we will distinguish the following cases:

Case I: 1 < m ≤ 2 ≤ p ≤ q < q∗;
Case II: 1 < p < q < q∗; or 1 < p < m = q < m∗ = q∗;

Case III: 1 < p ≤ q < mq∗.
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3 Case I: 1 < m ≤ 2 ≤ p ≤ q < q∗

We analyze the following subcases.

3.1 Case 1: 1 < m ≤ 2 < p = q < p∗ = q∗

The main result of this subsection is proved by a generalized version of Weierstrass Theorem as follows.
Steklov eigenvalues problems involving p-Laplacian operator and its generalizations (see Examples 1.1
and 1.3) are included.

Theorem 3.1. Suppose that a ∈ C1(R+,R+) satisfies (a1) with 1 < m ≤ 2 < p = q < p∗ = q∗. Then
for every λ > 0 problem (1.1) possesses at least one nontrivial weak solution or, equivalently, any
λ > 0 is a generalized eigenvalue to (1.1).

Proof. First, let us observe that by (a1) and for every u ∈W 1,p(Ω):

(ξ0 + ξ1)|∇u|p ≤ A(|∇u|p) and a(|∇u|p)|∇u|p ≤ (ξ2 + ξ3)|∇u|p,
(ξ0 + ξ1)|u|p ≤ A(|u|p) and a(|u|p)|u|p ≤ (ξ2 + ξ3)|u|p,

so that, together with Sobolev continuous embedding we find that

Jλ(u) =
1

p

∫
Ω

A(|∇u|p) dx+
1

p

∫
Ω

A(|u|p) dx− λ

m

∫
∂Ω

|u|m dσ ≥ (ξ0 + ξ1)

p
∥u∥p1,p −

λ

m
∥u∥m1,p.

Now, denote by φ(∥u∥1,p) the right-hand side of the above inequality and ∥u∥1,p = t ≥ 0, it is
clear that φ : [0,+∞) → R is a continuous function such that, by m < p, φ/t → +∞ as t → +∞
and Jλ(u) ≥ φ(∥u∥1,p) for every u ∈ W 1,p(Ω). So, for every K > 0, there exists t0 > 0 such that
φ(t)/t ≥ K for any t > t0. Therefore,

Jλ(u) ≥ φ(∥u∥1,p) ≥ K∥u∥1,p > Kt0 if ∥u∥1,p > t0.

If t = ∥u∥1,p ≤ t0, Jλ(u) ≥ C, where C = min{φ(t) : 0 ≤ t ≤ t0}. This implies that for all λ > 0,
Jλ is bounded from below. Moreover, Jλ is also coercive and this is due to the fact that the stronger
condition Jλ(u)/∥u∥1,p → +∞ holds.

Now, we prove that Jλ is weakly lower semicontinuous in W 1,p(Ω). Indeed, for every sequence
(un)n≥0 ⊂ W 1,p(Ω) such that un ⇀ u in W 1,p(Ω), by the compact embedding (2.1) we have un → u
in Lr(∂Ω) for all r ∈ [1, p∗) and, since m < p < p∗, it follows that∫

∂Ω

|un|m dσ −→
∫
∂Ω

|u|m dσ as n→ +∞.

Furthermore, by a subcritical growth in (2.3) for p < p∗, the functional u 7−→
∫
Ω

(A(|∇u|p)+A(|u|p)) dx

is weakly lower semicontinuous, i.e.,∫
∂Ω

|un|m dx ≤ lim inf
n→+∞

∫
∂Ω

|un|m dσ,

thus we obtain

lim inf
n→+∞

Jλ(un) =
1

p
lim inf
n→+∞

∫
Ω

(
A(|∇u|p) +A(|u|p)

)
dx− λ

m
lim

n→+∞

∫
∂Ω

|un|m dx

≥ 1

p

∫
Ω

(
A(|∇u|p) +A(|u|p)

)
dx− λ

m

∫
∂Ω

|un|m dσ = Jλ(u).
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Consequently, by a generalized version of Weierstrass type theorem, we get the existence of a global
minimum point w ∈W 1,p(Ω) such that

Jλ(w) = min
u∈W 1,p(Ω)

Jλ(u)

and then w is a solution for our problem. In order to show that this solution is nontrivial, we consider
v ∈W 1,p(Ω) and t∗ > 0 sufficiently small such that

Jλ(w) ≤ Jλ(t
∗v) ≤ (ξ2 + ξ3)(t

∗)p

p
∥v∥p1,p −

λ(t∗)m

m
∥v∥mLm(∂Ω) < 0

for all λ > 0. Then we conclude that w ̸= 0.

To complete the paper, let us show that the existence of a non-trivial global minimum for Jλ proved
above follows also by means of a direct application of Ekeland’s variational principle [18] under the
additional assumption (a3).

Theorem 3.2. Suppose that a ∈ C1(R+,R+) satisfies (a1) and (a3) with 1 < m ≤ 2 < p = q <
p∗ = q∗. Then for every λ > 0 problem (1.1), possesses at least one nontrivial weak solution or,
equivalently, any λ > 0 is a generalized eigenvalue to (1.1).

Proof. Indeed, since Jλ ∈ C1(W 1,p(Ω),R+) is bounded from below (and coercive) on W 1,p(Ω), by
adding (a3) we are able to show that Jλ satisfies the Palais–Smale condition at level c = inf

u∈W 1,p(Ω)
Jλ(u).

This means that any sequence (un)n≥0 ⊂ W 1,p(Ω) satisfying Jλ(u) → c and ∥J ′

λ(u)∥(W 1,p(Ω))′ → 0

as n → +∞ (briefly, {un} is a (PS)c sequence) has a strongly convergent subsequence. Further, we
make use and adapt the arguments that can be found in [11, Lemma 2.4]. First, it is not difficult to
observe that taking a (PS)c sequence {un}n, by the coerciveness of Jλ as proved before, (un)n≥0 is
bounded in W 1,p(Ω). So, there exists u ∈W 1,p(Ω) such that, up to subsequences, un ⇀ u in W 1,p(Ω),
and our aim is to prove the strong convergence of un to u in W 1,p(Ω). By a(t) ≥ ξ0 for every t ≥ 0,
that follows by the left-hand side inequality in (a1) and the monotonicity assumption (a3), we have

C|x− y|p ≤
⟨
a(|x|P )|x|p−2x− a(|y|P )|x|p−2y, x− y

⟩
(3.1)

for all x, y ∈ RN with N ≥ 1 and ⟨ · , · ⟩ being the scalar product in RN (for the proof, see [11,
Lemma 2.4]). Now, we can write

⟨
J ′
λ(un)− J

′

λ(u), un − u
⟩
=

∫
Ω

(
a(|∇un|p)|∇un|p−2∇un − a(|∇u|p)|∇u|p−2∇u

)
· (∇un −∇u) dx

+

∫
Ω

(
a(|un|p)|un|p−2un − a(|u|p)|u|p−2u

)
(un − u) dx

− λ

∫
∂Ω

(
|un|m−2un − |u|m−2u

)
(un − u) dσ.

Since un⇀u in W 1,p(Ω), J ′

λ(u)∈(W 1,p(Ω))′ and {un} is a (PS)c sequence implies that J ′

λ(un) → 0
as n→+∞ in (W 1,p(Ω))′, we get ⟨

J
′

λ(un)− J
′

λ(u), un − u
⟩
= on(1)

and, by the compact embedding (2.3),∫
∂Ω

(
|un|m−2un − |u|m−2u

)
(un − u) dσ = on(1).
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Therefore, by (3.1),

0 ≤ C∥un − u∥p1,p ≤
∫
Ω

(
a(|∇un|p)|∇un|p−2∇un − a(|∇u|p)|∇u|p−2∇u

)
· (∇un −∇u) dx

+

∫
Ω

(
a(|un|p)|un|p−2un − a(|u|p)|u|p−2u

)
(un − u) dx = on(1),

which is the desired conclusion
∥un − u∥p1,p = on(1).

3.2 Case 1: 1 < m ≤ 2 < p = q < p∗

Unlike the previous case, here we treat the more general cases involving p- and q-Laplacians and their
perturbations as in Examples 1.2 and 1.4). Nevertheless, also in this case, first by a generalized Weier-
strass Theorem and then for completeness by Ekeland’s Variational Principle, we get the existence of
a non-trivial weak solution to problem (1.1) as is stated in the following

Theorem 3.3. Suppose that a ∈ C1(R+,R+) satisfies (a1) with 1 < m ≤ 2 < p = q < p∗. Then,
for every λ > 0 there is the generalized eigenvalue to problem (1.1), namely, for every λ > 0, problem
(1.1) possesses at least one nontrivial weak solution.

Proof. Using hypothesis (a1) and Sobolev embedding, for every u ∈W 1,p(Ω) we get

Jλ(u) ≥
ξ0
p
∥u∥p1,p +

ξ1
q
∥u∥q1,q −

λ

m
∥u∥mLm(∂Ω) ≥

ξ1
q
∥u∥q1,q

λ

m
C∥u∥m1,q.

By adapting the reasoning used in the previous section and denoting by φ(∥u∥1,q) the right-hand side
of the above inequality, it follows that Jλ is bounded from below in W 1,q(Ω) for all λ > 0. Moreover,
Jλ is also coercive and by the compact embedding (2.2) and subcritical growth (2.3), it is weakly lower
semicontinuous on W 1,q(Ω). Therefore, there exists a global minimum point w ∈W 1,q(Ω) such that

Jλ(w) =

∫
u∈w∈W 1,q(Ω)

Jλ(u).

Thus w is a solution to (1.1). Now, taking v ∈ W 1,q(Ω) and t∗ sufficiently small, by hypothesis (a1),
again we have

Jλ(w) ≤ Jλ(t
∗v) ≤ ξ2(t

∗)p

p
∥v∥p1,p +

ξ3(t
∗)q

q
∥v∥q1,q −

λ

m
∥u∥mLm(∂Ω) < 0

for all λ > 0. Hence the above-found solution w is non-trivial.

Also, in this section, if (a3) also holds, we have to prove the existence of a non-trivial global
minimum for Jλ by applying Ekeland’s variational principle [18].

Theorem 3.4. Suppose that a ∈ C1(R+,R+) satisfies (a1) and (a3) with 1 < m ≤ 2 < p < q < q∗.
Then for every λ > 0, problem (1.1) possesses at least one nontrivial weak solution or, equivalently,
any λ > 0 is generalized a eigenvalue to (1.1).

Proof. The desired follows by adapting the arguments to the proof of Theorem 3.2.

3.3 Case 1: 2 ≤ m = p = q < m∗ = p∗ = q∗

In this situation, we require a little bit more than in Subsection 3.1, namely, m = p = q, and we deal
with 

−div
(
a(|∇u|p)|∇u|p−2∇u

)
+ a(|u|p)|u|p−2u = 0 in Ω,

a(|∇u|p)|∇u|p−2∇u ∂u
∂υ

= λ|u|p−2u on ∂Ω.
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Now, since more specific mathematical techniques are required to study (1.1) due to the presence
of a non-homogeneous operator, and since the aim of this paper is to give a preliminary overview on
the search of eigenvalues to (1.1), we state the following result.

Theorem 3.5. Suppose that a ∈ C1(R+,R+) satisfies (a1) with 2 ≤ m = p = q < m∗ = p∗ = q∗.
Then there exists λ∗ > 0 such that every eigenvalue λ > 0 to problem (1.1) is bounded from below by
λ∗, i.e., λ ≥ λ∗.

Proof. Indeed, if u ̸= 0 is a solution of problem (1.1), then∫
Ω

a(|∇u|p)∇u dx+

∫
Ω

a(|u|p)u dx = λ

∫
∂Ω

|u|p dσ.

Using hypothesis (a1) and Sobolev embedding, we get

(ξ0 + ξ1)∥u∥p1,p ≤ λ

λ1(p)
∥u∥p1,p

and hence there exists only a trivial solution for 0 < λ < (ξ0 + ξ1)λ1(p) = λ∗.

3.4 Case 2: 2 ≤ m = p < q < q∗

First, let us prove the following result.

Theorem 3.6. Suppose that a ∈ C1(R+,R+) satisfies (a1) with 2 ≤ m = p < q < q∗. Then there
exists λ∗ > 0 such that problem (1.1) does not possess any nontrivial weak solution for all λ ∈ (0, λ∗],
i.e., the interval (0, λ∗] does not contain any generalized eigenvalue.

Proof. Reasoning as in the proof of Theorem 3.5, the desired follows by (a1) and the Sobolev embed-
ding by choosing λ∗ = ξ0λ1(p).

Let us add that, as we prove in the next theorem, for λ greater than a suitable positive constant, Jλ
is obviously weakly lower semicontinuous but also bounded from below and coercive on W 1,q(Ω) for Jλ
belonging to a neighborhood of the origin, then u0 is the unique solution of the equation (nonnegative
or not) and 0 is the global minimum of the functional Jλ. On the other hand, problem (1.1) admits
a non-trivial solution for Jλ in a neighborhood of +∞ as stated below.

Theorem 3.7. Suppose that a ∈ C1(R+,R+) satisfies (a1) with 2 ≤ m = p < q < q∗. Then for every
λ > 0 bounded from below by a positive constant, problem (1.1) possess at least one nontrivial weak
solution or, equivalently, there exists λ∗∗ > 0 such that every λ belonging to the set (λ∗∗,+∞) is a
generalized eigenvalue to (1.1).

Proof. By hypothesis (a1), Hölder’s inequality and m = p < q, we note that for every u ∈W 1,q(Ω),

Jλ(u) =
1

p

∫
Ω

A(|∇u|p) dx+
1

p

∫
Ω

A(|u|p) dx− λ

p

∫
∂Ω

|u|p dσ

≥ ξ0
p
∥u∥p1,p +

ξ1
q
∥u∥q1,q −

λ

p
∥u∥pLq(∂Ω) ≥

ξ1
q
∥u∥q1,q −

λ

p
C

′
∥u∥p1,p,

where C ′
= Sp(λ1(q))

−1. Then, by adapting slightly the arguments used in the proof of Theorem 3.3,
Jλ is bounded from below and coercive on W 1,q(Ω) for all λ > 0. So, by (2.2), there exists w ∈W 1,q(Ω)
such that

Jλ(w) = min
u∈W 1,q(Ω)

Jλ(u).

Consequently, w is a solution to problem (1.1). In order to conclude that w ̸= 0, namely, that w is
a nontrivial solution, let v ∈ W 1,q(Ω) and t∗ > 0 be sufficiently small so that hypothesis (a1) again
implies

Jλ(w) ≤ Jλ(t
∗v) ≤ ξ2(t

∗)p

p
∥v∥p1,p +

ξ3(t
∗)q

q
∥v∥q1,q −

λ(t∗)p

p
∥v∥pLp(∂Ω) < 0
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and this is possible if λ > 0 is in a neighborhood of +∞. More precisely, we can choose λ >
ξ2λ1(p). Indeed, taking ψ1(p), the regular and positive eigenfunction corresponding to λ1(p) such
that ∥ψ1(p)∥pLp(∂Ω) = 1, by (a1), we get

Jλ(w) ≤ Jλ(t
∗ψ1(p)) ≤

ξ2(t
∗)p

p
∥ψ1(p)∥p1,p +

ξ3(t
∗)q

q
∥ψ1(p)∥q1,q −

λ(t∗)p

p
∥ψ1(p)∥pLp(∂Ω)

= (t∗)p
(ξ2λ1(p)− λ

p

)
+
ξ3(t

∗)q

q
∥ψ1(p)∥q1,q < 0

for t sufficiently small and p < q.

Furthermore, if we assume that (a3) holds, then in this case a non-trivial global minimum for Jλ
also exists as a consequence of Ekeland’s variational principle [18].

Theorem 3.8. Suppose that a ∈ C1(R+,R+) satisfies (a1) with 2 ≤ m < q < p < q∗. Then problem
(1.1) possesses at least one nontrivial weak solution for every λ > 0 bounded from below by a positive
constant or, equivalently, there exists λ∗∗ > 0 such that every λ belonging to the set (λ∗∗,+∞) is a
generalized eigenvalue to (1.1).

Proof. We refer to the proof of Theorem 3.4 with some minor changes.

4 Case II: 2 ≤ p < m < q < q∗ or 2 ≤ p < m = q < m∗ = q∗

In the following subsection let us first consider the case 2 ≤ p < m < q and then the case 2 ≤ p <
m = q.

4.1 Case 2: 2 ≤ p < m < q < q∗

Here, we prove that for λ bounded from above by a suitable positive constant, Jλ does not possess
nontrivial critical points as is stated in the following

Theorem 4.1. Suppose that a ∈ C1(R+,R+) satisfies (a1) with 2 ≤ p < m < q < q∗. Then there
exists λ∗ > 0 such that problem (1.1) does not possess any nontrivial weak solution for all λ ∈ (0, λ∗);
that is, any λ ∈ (0, λ∗) is not a generalized eigenvalue to (1.1).

Proof. Assume to the contrary that there exists a nontrivial weak solution u of problem (1.1). So,
multiplying the equation by u and integrating over Ω we obtain∫

Ω

a(|∇u|p)|∇|p dx+

∫
Ω

a(|u|p)|u|p dx = λ

∫
∂Ω

|u|m dσ.

By the left-hand side of (a1) and the Poincaré inequality, it follows that

ξ0C∥u∥pp + ξ1C
′
∥u∥qq ≤ λ∥u∥mLm(∂Ω),

where C and C
′ denote the Poincaré constants. Since p < m < q, by the interpolation inequality, we

have
∥u∥mLm(∂Ω) ≤ ∥u∥vpLp(∂Ω)∥u∥

1−v
Lq(∂Ω)

with v ∈ (0, 1) and 1
m = v

p + (1−v)
q so, by the Young inequality, we obtain

∥u∥mLm(∂Ω) ≤ v∥u∥pLp(∂Ω) + (1− v)∥u∥qLq(∂Ω).

Consequently,
(λv − ξ0C)∥u∥pp +

(
λ(1− v)− ξ1C

′)
∥u∥qq ≥ 0

and if we choose λ such that
λ < min

{ξ0C
v

,
ξ0C

′

(1− v)

}
= λ∗.
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Theorem 4.2. Suppose that a ∈ C1(R+,R+) satisfies (a1) with 2 ≤ p < m < q < q∗. Then
there exists λ∗∗ > 0 such that problem (1.1) possesses at least one nontrivial weak solution for all
λ ∈ (λ∗∗,+∞); equivalently, any λ ∈ (0, λ∗∗) is a generalized eigenvalue to problem (1.1) with λ∗∗ > 0.

Proof. Since the boundedness of the level sets of Jλ assures that the functional is coercive, we begin
by proving that Jb

λ = {u ∈W 1,q(Ω) : Jλ(v)≤b} are bounded. If u ∈ Jb
λ, then

1

p

∫
Ω

A(|∇u|p) dx+
1

p

∫
Ω

A(|u|p) dx− λ

m

∫
∂Ω

|u|m dσ ≤ b.

By (a1), the Hölder and Poincaré inequalities applied to the left-hand side of the previous expression,
we have

ξ0
p
∥u∥p1,p + ∥u∥m1,p

(ξ1
q
∥u∥q−m

1,p − λ

m

(
meas(∂Ω)

) q−m
q (C

′′
)

m
q

)
≤ b, (4.1)

where C ′′ is a Poincaré constant. If

∥u∥1,q ≤ 2
( λq

ξ1m

) 1
q−m (

meas(∂Ω)
) 1

q (C
′′
)

m
q(q−m) ,

then ∥u∥1,q is bounded and, by (4.1), we obtain

ξ0
p
∥u∥p1,p ≤ b+D

with D = D(q, λ,m,meas(∂Ω), C ′′
). Therefore, ∥u∥ is also bounded. On the other side, if

∥u∥p1,p ≥ 2
( λq

ξ1m

) 1
q−m (

meas(∂Ω)
) 1

q (C
′′
)

m
q(q−m) ,

from (4.1) it follows that

ξ0
p
∥u∥p1,p ≤ b, and ∥u∥m1,p

(ξ1
q
∥u∥q−m

1,p − λ

m

(
meas(∂Ω)

) q−m
q (C

′′
)

m
q

)
≤ b.

If ∥u∥1,q → +∞, for m < q we would obtain a contradiction, thus the proof of coercivity is complete.
Moreover, following the proof of Theorem 3.3, Jλ is bounded from below and weakly lower semicon-
tinuous on W 1,q(Ω) and, by a generalized version of Weierstrass type theorem, we obtain the existence
of a global minimum. As a conclusion, taking w ∈ W 1,q(Ω), w ̸= 0, for λ sufficiently large, we have
Jλ(w) < 0 and this ensures that the found minimum is nontrivial. Under the addition of hypothesis
(a3) and taking into account the reasoning used in the proof of Theorem 3.4, we can here apply a
consequence of Ekeland’s variational principle to obtain what follows.

Theorem 4.3. Suppose that a ∈ C1(R+,R+) satisfies (a1) and (a3) with 2 ≤ p < m < q < q∗. Then
there exists λ∗∗ > 0 such that problem (1.1) possesses at least one non-trivial weak solution for all
λ ∈ (0, λ∗], namely, there exists λ∗ > 0 such that (0, λ∗] does not contain a generalized eigenvalue to
problem (1.1) with λ∗∗ > 0.

4.2 Case 2: 2 ≤ m = p < m∗ = q∗

At this point, we study problem (1.1) in the case 2 ≤ p < m = q < m∗ = q∗, namely,
−div

(
a(|∇u|p)|∇u|p−2∇u

)
+ a(|u|p)|u|p−2u = 0 in Ω,

a(|∇u|p)|∇u|p−2∇u ∂u
∂υ

= λ|u|q−2u on ∂Ω.

We first claim and prove that for λ belonging to a suitable neighborhood of the origin, problem (1.1)
possesses only a trivial solution.
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Theorem 4.4. Suppose that a ∈ C1(R+,R+) satisfies (a1) with 2 ≤ p < m = q < m∗ = q∗. Then
there exists λ∗ > 0 such that problem (1.1) does not possess any nontrivial weak solution for all
λ ∈ (0, λ∗], namely, there exists λ∗ > 0 such that (0, λ∗] does not contain generalized eigenvalues.

Proof. Following the reasoning of the proof of Theorem 3.6, by (a1) and the Sobolev embedding, the
result is proved with λ∗ = ξ1λ1(q).

Also, in this case, Jλ is bounded from below and coercive for λ ≤ λ∗, therefore 0 is the global
minimum of the functional and u ≡ 0 is the unique solution of the equation (nonnegative or not).
Moreover, the result just proved above is confirmed by the proof of the proposition, which we show
below.

First, recall an interpolation inequality which is a well-known consequence of the Hölder inequality
and the Sobolev continuous embedding.

Lemma 4.5. For every u ∈W 1,q(Ω), we have

∥u∥qLq(∂Ω) ≤ Sq∥u∥qt1,p∥u∥
q(1−t)
Lq(∂Ω),

where t ∈ (0, 1) and C is a suitable positive real constant.

Now we prove the following

Proposition 4.6.

(1) Suppose that a ∈ C1(R+,R+) satisfies (a1) with 2 ≤ p < m = q < m∗ = q∗. Then there exists
∧∗ ∈ R with ξ1λ1(q) ≤ ∧∗ ≤ ξ3λ1(q) such that there is no (positive) eigenvalue λ < ∧∗.

(2) If a ∈ C1(R+,R+) satisfies (a1) and, in addition, (a4) and 2 ≤ p < m = q < m∗ = q∗, then ∧∗

cannot be an eigenvalue to problem (1.1); consequently, every (positive) eigenvalue λ to problem
(1.1) satisfies λ > ∧∗.

Proof. First, let us prove (1). Indeed, let us introduce the functional ∧∗ :W 1,q(Ω)\{0} → R defined by

∧(u) =

∫
Ω

a(|∇u|p)|∇|p dx+
∫
Ω

a(|u|p)|u|p dx∫
∂Ω

|u|q dσ
.

For any u ∈W 1,q(Ω) \ {0}, by (a1), we have

∧(u) ≥
∫

u∈W 1,p(Ω), u ̸=0

ξ0
∫
Ω

(|∇u|p + |u|p) dx+ ξ1
∫
Ω

(|∇u|p + |u|p) dx∫
∂Ω

|u|q dσ

≥
∫

u∈W 1,p(Ω), u ̸=0

ξ1
∫
Ω

(|∇u|p + |u|p) dx∫
∂Ω

|u|q dσ
= ξ1λ1(q) > 0

from which it follows that ∧ is bounded from below in W 1,q(Ω) \ {0} and ∧∗ = inf
u∈W 1,p(Ω), u ̸=0

∧(u) is

a positive real number with ∧∗ ≥ ξ1λ1(q).
Now we prove that ∧∗ ≤ ξ3λ1(q). First, let ψ1(q) be the positive eigenfunction corresponding to

λ1(q) such that
∫
∂Ω

|ψ1(q)|q dσ = 1, so ψ1(q) satisfies ∥ψ1(q)∥q1,q = λ1(q). Thus since (a1) holds, we

obtain
∧∗ ≤ ∧(tψ1(q)) ≤ ξ2t

p−q∥ψ1(q)∥q1,q + ξ3λ1(q),

and by q − p > 0 and letting t → +∞, we get the desired upper bound to ∧∗. Consequently,
ξ1λ1(q) ≤ ∧∗ ≤ ξ3λ1(q).
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Suppose that there exists an eigenvalue λ > 0 and then a non-trivial weak solution to problem
(1.1) in W 1,q(Ω) satisfies λ < ∧∗. So, we can find v ∈W 1,q(Ω), v ̸= 0, such that∫

Ω

a(|∇u|p)|∇u|p dx+

∫
Ω

a(|u|p)|u|p dx− λ

∫
∂Ω

|v|q dσ = 0.

Then we get

∧ > λ =

∫
Ω

a(|∇u|p)|∇u|p dx+
∫
Ω

a(|u|p)|u|p dx

λ
∫
∂Ω

|v|q dσ

≥
∫

u∈W 1,p(Ω), u ̸=0

∫
Ω

a(|∇u|p)|∇u|p dx+
∫
Ω

a(|u|p)|u|p dx

λ
∫
∂Ω

|v|q dσ
= ∧∗,

which is a contradiction. So, there is no eigenvalue less than ∧∗.
At this point, if (a4) also holds, we prove (2), namely, that ∧∗ cannot be an eigenvalue to prob-

lem (1.1).
Indeed, observe that ∧ is a C1 weakly lower semicontinuous functional bounded from below as just

we have proved.
So let (un)n≥0 be a minimizing sequence inW 1,q(Ω)\{0} such that ∧∗ = lim

n,→+∞
∧(un). This implies

that (un)n≥0 is bounded. Indeed, since ∧(un) is a convergent real sequence, it is also bounded, i.e.,
∧ ≤ C. On the other hand, by Lemma 4.5 and (a1) we obtain

∧(un) ≥
ξ0∥un∥p1,p + ξ1∥un∥q1,q
C∥u∥qt1,p∥u∥

q(1−t)
1,p

.

Consequently, (un)n≥0 is bounded, otherwise ∧(un) → +∞ as n → +∞ which contradictions
∧(un) ≤ C. Then there exists u ∈ W 1,q(Ω) such that un ⇀ u in W 1,q(Ω) and by a weakly lower
semicontinuity of ∧, we have ∧(u) ≤ lim inf

n→+∞
∧(un), thus ∧(u) = ∧∗ implies that u ̸= 0. Therefore, u is

a critical point to ∧, i.e., ⟨∧′
(u), v⟩ = 0 for every v ∈W 1,q(Ω). This is equivalent to

p

∫
Ω

(
a′(|∇u|p)|∇u|p + a(|∇u|p)

)
|∇u|p−2∇u · ∇v dx

+ p

∫
Ω

(
a′(|u|p)|u|p + a(|u|p)

)
u|p−2uv dx = ∧∗q

∫
∂Ω

|u|q−2uv dσ,

and, since we have supposed by the contradiction that ∧∗ is an eigenvalue with an associated eigen-
function u ̸= 0, we have∫

Ω

(
pa′(|∇p|p)|∇p|p − (q − p)a(|∇p|p)

)
|∇p|p−2∇u · ∇v dx

+

∫
Ω

(
pa′(|u|p)|u|p − (q − p)a(|u|p)

)
u|p−2uv dx = 0

for every v ∈ W 1,q(Ω) such that un ⇀ u in W 1,q(Ω). By assumption (a4), we conclude that u = 0.
Thus we have a contradiction. Therefore, ∧∗ cannot be an eigenvalue to problem (1.1), and any
positive eigenvalue λ to problem (1.1) satisfies λ > ∧∗.

Lemma 4.7. Assume that (a1) holds and 2 ≤ p < m = q < m∗ = q∗. Then for each λ > ξ3λ1(q), the
functional Jλ satisfies the following conditions:
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(Jα) There exist ρ, α > 0 such that

Jλ(u) ≥ α, for every u ∈W 1,q(Ω) : ∥u∥ = ρ;

(Je) There exists e ∈ Bc
ρ(0) verifying Jλ(e) < 0.

Proof.
(Jα) Let u ∈W 1,q(Ω) and recall that ∥u∥ := ∥u∥1,p + ∥u∥1,q. By (a1) and Lemma 4.5,

Jλ(u) ≥
ξ1
q
∥u∥q1,q −

λ

q
∥u∥qLq(∂Ω) ≥

ξ1
q
∥u∥q1,q −

λ

q
Sq∥u||yq(1−t)

1,q ∥u∥qt1,q.

≥ ξ1
q
∥u∥q(1−t)

1,q

(
∥u∥qt1,q − λC

′
∥u||yqt1,q

)
.

We can choose ∥u∥1,p = ϵ and ∥u∥1,q = (1 + λC
′
ϵqt)

1
qt for ϵ > 0 sufficiently small. Consequently,

Jλ(u) ≥
ξ1
q
(1 + λC

′
ϵqt)

1−t
t

for any u ∈W 1,q(Ω) such that ∥u∥ = ρ = (1 + λC
′
ϵqt)

1
qt + ϵ.

(Je) We denote by ψ1(q) the normalized eigenfunction associated to λ1(q), namely,
−div

(
|∇ψ1|q−2∇ψ1

)
+ |ψ1|q−2ψ1 = 0 in Ω,

|∇ψ1|p)∇ψ1
∂ψ1

∂υ
= λ|ψ1|q−2ψ1 on ∂Ω

and ∫
∂Ω

|∇ψ1(q)|q−1 dσ + |ψ1|q−1 = 1.

Hence, taking t > 0, by ∫
∂Ω

|ψ1(q)|q dσ =
1

λ1(q)
,

we have

Jλ(t1ψ1(p)) ≤
tp

p
ξ2∥ψ1(p)∥p1,p +

tq

q
ξ3∥ψ1(p)∥q1,q − λ

tq

q
∥ψ1(q)∥qLq(∂Ω)

≤ tp

p
ξ2∥ψ1(p)∥p1,p +

tq

q

(
ξ3 −

λ

λ1(q)

)
.

If λ > ξ3λ1(q), then as t → +∞, we get Jλ(tψ1(q)) → −∞. Consequently, there exists t∗ > 0 such
that Jλ(tψ1(q)) < 0 and we put e = t∗ψ1(q).

By the Mountain Pass Theorem (see [1]), there exists a Palais-Smale sequence at level

C̃ =

∫
η∈Γ

max
t∈[0,1]

Jλ(η(t))

with Γ = {η ∈ [0, 1],W 1,q(Ω) : η(0) = 0 and Jλ(η(t)) ≤ 0}. However, this condition together with
(a2) is not useful because we cannot show that such a sequence is bounded in X. Indeed, since m = q,
condition (a2) becomes q/p ≤ α < q/p, then q/p < q/p which is impossible.

This enables us to affirm that we cannot obtain a critical point for Jλ by using this method
involving the Mountain Pass Theorem. But if the Palais-Smale sequence is bounded under suitable
assumptions, there exists u ∈W 1,q(Ω) such that, up to the subsequences, un ⇀ u in W 1,q(Ω), and it
remains to prove the strong convergence ofun to u in W 1,q(Ω). Since p < q, we can refer to the last
part of the proof of Theorem 3.4 with due changes to make and we have done. Therefore, defining
λ∗∗ := max{∧∗, ξ3λ1(q)} = ξ3λ1(q), we can conclude that for every λ > λ∗∗, problem (1.1) admits a
non-trivial Mountain Pass solution and we have proved the following result.
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Theorem 4.8. Suppose that a ∈ C1(R+,R+) satisfies (a1), (a3) and (a4) with 2 ≤ p < m = q < m∗ =
q∗ and every Palais–Smale sequence at any level c̃ ∈ R is bounded in X. Then there exists λ∗∗ > 0
such that problem (1.1) admits both a trivial and a nontrivial weak solution for all λ ∈ (λ∗∗,+∞). In
particular, (λ∗∗,+∞) with λ∗∗ > 0 contains generalized eigenvalues to problem (1.1).

5 Case III: 2 ≤ m = p < m∗ = q∗

Let us consider together the cases 2: 2 ≤ p = q < m < p∗ = q∗ and 2 ≤ p < q < q∗.

Theorem 5.1. Assume that (a1)–(a3) hold and 2 ≤ m = p < m∗ = q∗. Then for every λ > 0,
there exist both a trivial and a nontrivial weak solution to problem (1.1). In particular, there exists a
continuous set of positive generalized eigenvalues to problem (1.1).

The above theorem will be proved once we show that the functional Jλ has the geometry of
Mountain Pass Theorem as shown below.

Lemma 5.2. Assume that (a1) holds. Then for each λ > 0, the functional Jλ satisfies conditions
(Jα) and (Je) (as in Lemma 4.7).

Proof.
(Jα) By (Je), we have

Jλ(u) ≥
ξ0
p

∫
Ω

(
|∇u|p + |u|p

)
dx+

ξ1
q

∫
Ω

(
|∇u|q + |u|q

)
dx− λ

m

∫
∂Ω

|u|m dx

≥ C1

(
∥u∥q1,q + ∥u∥q1,q

)
− λ∥u∥mLm(∂Ω).

Choosing 0 < ∥u∥ = ρ < 1, since p < q, we get ∥u∥q1,q ≤ ∥u∥p1,q, hence

Jλ(u) ≥ C2

(
∥u∥q1,q + ∥u∥q1,q

)
− Cmλ∥u∥mLm(∂Ω) ≥ C2∥u∥q − Csλ∥u∥mLm(∂Ω),

where in the last inequality we have exploited the Sobolev embedding. Now, since q ≤ p < m, the
condition (Jα) follows easily.
(Je). Fixing v ∈ C∞(Ω) with v > 0 on Ω, from (a1) we derive

Jλ(tv) ≤
tpξ2
p

∫
Ω

(
|∇v|p + |u|p

)
dx+

tqξ3
q

∫
Ω

(
|∇v|q + |u|q

)
dx− λtm

m

∫
∂Ω

|v|m dσ.

Since p ≤ q < m, there exists t > 1 such that e = tv satisfies Jλ(e) < 0 and ∥e∥ ≥ ρ.

By exploiting and adapting the proofs of Theorems 3.2 and 3.4, by (a2), (a3) it follows that Jλ
satisfies the Palais–Smale condition at the Mountain Pass level

C̃ = inf
η∈Γ

max
t∈[0,1]

Jλ(η(t))

with Γ = {η ∈ [0, 1],W 1,q(Ω) : η(0) = 0 and Jλ(η(t)) ≤ 0} and then Theorem 5.1 will be proved.
In fact, also in this case, we use the arguments that can be found in [11, Lemma 2.4] and in the

proof of Theorems 3.2 and 3.4. So, let (un)n≥0 be a (PS)c sequence. Therefore,

C(1 + ∥un∥) ≥ Jλ(un)−
1

m
⟨J

′

λ(un), un⟩

≥ 1

p

∫
Ω

A(|∇(un)|p) dx+
1

p

∫
Ω

A(|un|p) dx

− 1

m

∫
Ω

a(|∇(un)|p)|∇(un)|p dx− 1

m

∫
Ω

a(un|p)|un|p dx,
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and (a2) and then (a1) imply

C(1 + ∥un∥) ≥
( 1

pα
− 1

m

)∫
Ω

(
a(|∇(un)|p)|∇(un)|p + a(|un|p)|un|p

)
dx

≥ C1∥un∥p1,p + C2∥un∥q1,p. (5.1)

Now, if q = p, the boundedness of (un)n≥0 in W 1,p(Ω) follows easily. If q > p, suppose by contradiction
that, up to subsequence, ∥un∥ → +∞. If ∥un∥1,q is bounded and ∥un∥1,q → +∞, by (5.1), we obtain
an absurd. If ∥un∥1,p → +∞ and ∥un∥1,q → +∞, since ∥un∥q−p

1,q ≥ 1 implies ∥un∥q1,q ≥ ∥un∥p1,q, (5.1)
involves

C
(
1 + ∥un∥

)
≥ C1∥un||yp1,q + C2∥un∥q1,q ≥ C3

(
∥un∥1,q + ∥un∥1,q

)p
= C3∥un∥p,

which is also an absurd. Consequently, by the boundedness of un in W 1,p(Ω) a function exists such
that, up to subsequence, un ⇀ u (weakly) in W 1,p(Ω) and it remains to prove the strong convergence
of un to u in W 1,p(Ω). In the case q = p, we can refer to the last part of the proof of Theorem 3.2,
while when p < q, to the one of the proof of Theorem 3.4 with the due changes.
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