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Abstract. The weighted Cauchy problem is considered for systems of linear impulsive differential
equations with singularities. The singularity is considered in the sense that the matrix-and vector-
functions corresponding to the impulsive system are not, in general, integrable at the initial point.
Sufficient conditions are established for so-called H-well-posedness of the problem.
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ÒÄÆÉÖÌÄ. ÓÉÍÂÖËÀÒÏÁÄÁÉÀÍ ßÒ×ÉÅ ÉÌÐÖËÓÖÒ ÃÉ×ÄÒÄÍÝÉÀËÖÒ ÂÀÍÔÏËÄÁÀÈÀ ÓÉÓÔÄÌÄÁÉÓ-
ÈÅÉÓ ÂÀÍáÉËÖËÉÀ ÊÏÛÉÓ ßÏÍÉÀÍÉ ÀÌÏÝÀÍÀ. ÓÉÍÂÖËÀÒÏÁÀ ÂÀÉÂÄÁÀ ÉÌ ÀÆÒÉÈ, ÒÏÌ ÉÌÐÖËÓÖÒÉ
ÓÉÓÔÄÌÉÓ ÛÄÓÀÁÀÌÉÓÉ ÌÀÔÒÉÝÖËÉ ÃÀ ÅÄØÔÏÒÖËÉ ×ÖÍØÝÉÄÁÉ, ÓÀÆÏÂÀÃÏÃ, ÀÒ ÀÒÉÀÍ ÉÍÔÄÂ-
ÒÄÁÀÃÍÉ ÓÀßÚÉÓ ßÄÒÔÉËÛÉ. ÃÀÃÂÄÍÉËÉÀ ÓÀÊÌÀÒÉÓÉ ÐÉÒÏÁÄÁÉ, ÒÏÌËÄÁÉÝ ÖÆÒÖÍÅÄËÚÏ×Ó ÀÌ
ÀÌÏÝÀÍÉÓ Ä.ß. H-ÊÏÒÄØÔÖËÏÁÀÓ.
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1 Statement of the problem and basic notation
Let I = [a, b] ⊂ R be a finite and closed interval non-degenerate in the point, t0 ∈ I and It0 = I \{tt0}.

Consider the linear system of impulsive differential equations

dx

dt
= P (t)x+ q(t) for a.a. t ∈ It0 \ T, (1.1)

x(τl+)− x(τl−) = G(l)x(τl) + g(l) (l = 1, 2, . . . ), (1.2)

where T = {τ1, τ2, . . . }, τl ∈ It0 (l = 1, 2, . . . ) are points of impulsive actions such that lim
l→+∞

τl = t0,

P = (pik)
n
i,k=1 ∈ Lloc(It0 ;Rn×n) and q = (qk)

n
k=1 ∈ Lloc(It0 ;Rn)

are matrix-and vector-functions, respectively, and

G = (gik)
n
i,k=1 ∈ E(N;Rn×n) and g = (gk)

n
k=1 ∈ E(N;Rn)

are matrix- and vector-functions of the discrete argument.
Let H = diag(h1, . . . , hn) : It0 → Rn×n be a diagonal matrix-function with continuous diagonal

elements hk : It0 → ]0,+∞[ (k = 1, . . . , n).
We consider the problem of finding a solution x : Ito → Rn of system (1.1), (1.2), satisfying the

condition
lim
t→t0

(H−1(t)x(t)) = 0. (1.3)

Along with system (1.1), (1.2), we consider the perturbed singular system

dx

dt
= P̃ (t)x+ q̃(t) for a.a. t ∈ It0 \ T, (1.4)

x(τl+)− x(τl−) = G̃(l)x(τl) + g̃(l) (l = 1, 2, . . . ), (1.5)

under condition (1.3), where P̃ = (p̃ik)
n
i,k=1 ∈ Lloc(It0 ;Rn×n) and q̃ = (q̃k)

n
k=1 ∈ Lloc(It0 ;Rn) are

matrix- and vector-functions, respectively, and G̃ = (g̃ik)
n
i,k=1 ∈ E(N;Rn×n) and g̃ = (g̃k)

n
k=1 ∈

E(N;Rn) are matrix- and vector-functions of the discrete argument.
As we know, the initial problem for systems of ordinary differential equations with singularities

first have been fundamentally investigated by V. A. Chechik in [8], where the sufficient conditions for
existence and uniqueness of solutions of the problem and some related questions are given.

The modified Cauchy and some other problems (among them the well-posedness question) for sys-
tems of ordinary differential equations with singularities, i.e., for problem (1.1), (1.3), are investigated,
for example, in the papers [8–11] (see also the references therein).

The singularity of system (1.1) is considered in the sense that the matrix-function P or the vector-
function q are not, in general, integrable at the point t0, i.e., on some ]c, d[ from I such that t0 ∈]c, d[.
So, in general, the solution of problem (1.1), (1.3) is not continuous at the point t0 and, therefore, it
is not a solution in the classical sense. But its restriction to every interval from It0 is a solution of
system (1.1) in the classical sense. To illustrate this we give the following example from [11].

Let α > 0 and ε ∈]0, α[. Then the problem

dx

dt
= −αx

t
+ ε|t|ε−1−α,

lim
t→0

(tαx(t)) = 0

has the unique solution x(t) = |t|ε−α sgn t. This function is not a solution of the equation on the set
I = R, but its restrictions to ]−∞, 0[ and ]0,+∞[ are solutions of that equation.

The existence and uniqueness question of the considered in the paper problem is investigated
in [3,5,6]. As for the well-posedness question, as we know, such a problem for the impulsive differential
problem (1.1), (1.2); (1.3) has not been investigated. So, the present research is quite relevant.
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The theory of the regular impulsive differential equations has been investigated in earlier papers
(see, for example, [1, 2, 4, 7, 12–14] and the references therein). As for the singular case, the corre-
sponding theory, as we know, is far enough from deep research. Some boundary value problems for
linear impulsive systems with singularities are investigated in [3].

In the present paper, we give sufficient conditions for so-called H-well-posedness of problem
(1.1), (1.2); (1.3). The analogous results for the Cauchy problem for ordinary differential systems
with singularities (1.1) belong to I. Kiguradze [9–11].

In the paper, the use is made of the following notation and definitions.
• N = {1, 2, . . . }.
• R = ] − ∞,+∞[ , R+ = [0,+∞[ , [a, b] and ]a, b[ (a, b ∈ R) are, respectively, closed and open

intervals.
• Rn×m is the space of all real n×m matrices X = (xi,j)

n,m
i,j=1 with the norm

∥X∥ = max
j=1,...,m

n∑
i=1

|xij |.

• On×m (or O) is the zero n×m-matrix. 0n (or 0) is the zero n-vector.
• If X = (xik)

n,m
i,k=1 ∈ Rn×m, then

|X| =
(
|xik|

)n,m
i,k=1

, [X]+ =
|X|+X

2
, [X]− =

|X| −X

2
.

• Rn×m
+ =

{
(xij)

n,m
i,j=1 : xij ≥ 0 (i = 1, . . . , n; j = 1, . . . ,m)

}
.

• Rn = Rn×1 is the space of all real column n-vectors x = (xi)
n
i=1.

• If X ∈ Rn×n, then X−1, detX and r(X) are, respectively, the matrix inverse to X, the deter-
minant of X and the spectral radius of X; In is the identity n× n-matrix.

• The inequalities between the matrices are understood componentwisely.
• A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each of its compo-

nent is such.
• X(t−) and X(t+) are, respectively, the left and the right limits of the matrix-function X :

[a, b] → Rn×m at the point t.
• AC([a, b];Rn×m) is the set of all absolutely continuous matrix-functions X : [a, b] → Rn×m.
• ACloc(It0,T ;Rn×m), where It0,T = It0 \T , is the set of all matrix-functions whose restrictions to

every [a, b] ⊂ It0,T belong to AC([a, b];Rn×m).
• If α < β, then Nα,β = {l ∈ N : α ≤ τl < β}.
• L([a, b];Rn×m) is the set of all integrable matrix-functions X : [a, b] → Rn×m.
• Lloc(It0 ;Rn×m) is the set of all matrix-functions X : It0 → D whose restrictions to every closed

interval [a, b] from It0 belong to L([a, b];Rn×m).
• E(M ;Rn×m), where M ⊂ N, is the set of all discrete matrix-functions from M into Rn×m.
• A vector-function x ∈ ACloc(It0,T ;Rn) is said to be a solution of system (1.1), (1.2) if

x′(t) = P (t)x(t) + q(t) for a.a. t ∈ It0,T

and there exist one-sided limits x(τl−) and x(τl+) (l = 1, 2, . . . ) satisfying equalities (1.2).

We consider problem (1.1), (1.2); (1.3) only in the case t0 = b. Similarly, we can consider the case
t0 = a. The general case t0 ∈ ]a, b[ will be reduced to the given two cases.

In the considered case, without loss of generality, we can assume that the solution x of the impulsive
differential system (1.1), (1.2) is continuous from the left in the points of the impulsive actions τl
(l = 1, 2, . . . ), i.e., x(τl) = x(τl−) (l = 1, 2, . . . ).

We assume that
det(In +G(l)) ̸= 0 (l = 1, 2, . . . ). (1.6)

The above inequalities guarantee the unique solvability of the Cauchy problem for the corresponding
nonsingular systems, i.e., for the case when P ∈ L(I;Rn×n) and q ∈ L(I;Rn) (see [4, 12–14]).
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Remark 1.1. In the case t0 = a, we assumed that the solutions are continuous from the right in the
impulsive actions, then we would assume that the condition

det(In −G(l)) ≠ 0 (l = 1, 2, . . . )

holds instead of condition (1.6). In the general case, i.e., where t0 ∈ ]min I, sup I[ , we assumed that
the solutions are continuous from the left in the impulsive actions τl (l = 1, 2, . . . ) for which τl < t0,
and continuous from the right if τl > t0. In this case, we would assume that

det(In + (−1)jG(l)) ̸= 0 for (−1)j(τl − t0) < 0 (j = 1, 2; l = 1, 2, . . . ).

Let P0 ∈ Lloc(It0 ;Rn×n) and G0 ∈ E(N;Rn×n). Then a matrix-function C0 : It0 × It0 → Rn×n is
said to be the Cauchy matrix of the homogeneous impulsive differential system

dx

dt
= P0(t)x, (1.7)

x(τl+)− x(τl−) = G0(l)x(τl) (l = 1, 2, . . . ), (1.8)

if for every interval J ⊂ It0 and τ ∈ J , the restriction of the matrix-function C0(., τ) : It0 → Rn×n to
J is the fundamental matrix of system (1.7), (1.8) satisfying the condition C0(τ, τ) = In. Therefore,
C0 is the Cauchy matrix of system (1.7), (1.8) if and only if the restriction of C0 to J × J , for every
interval J ⊂ It0 , is the Cauchy matrix of the system in the sense of definition given in [11].

2 Formulation of the main results
Definition 2.1. Problem (1.1), (1.2); (1.3) is said to be H-well-posed if it has a unique solution x and
for every ε > 0 there exists η > 0 such that problem (1.4), (1.5); (1.3) has a unique solution y and the
estimate

∥H(t) (x(t)− y(t))∥ < ε for t ∈ I (2.1)

holds for every matrix-functions P̃ ∈ Lloc(It0,T ;R
n×n), G̃ ∈ E(N;Rn×n) and vector-functions q̃ ∈

Lloc(It0,T ;R
n), g̃ ∈ E(N;Rn) such that

det(In + G̃(l)) ̸= 0 (l = 1, 2, . . . ), (2.2)
t0∫
t

∥∥H−1(τ)(P̃ (s)− P (s))H(s)
∥∥ ds+ ∑

l∈Nt,t0

∥∥H−1(τl)(G̃(l)−G(l))H(τl)
∥∥ < η for t ∈ I, (2.3)

and

t0∫
t

∥∥H−1(τ)(q̃(s)− q(s))
∥∥ ds+ ∑

l∈Nt,t0

∥∥H−1(τl)(g̃(l)− g(l))
∥∥ < η for t ∈ I. (2.4)

Theorem 2.1. Let there exist a matrix-function P0 ∈ Lloc(It0,T ;R
n×n), a discrete matrix-function

G0 ∈ E(N;Rn×n) and constant matrices B0, B ∈ Rn×n
+ such that the conditions

det(In +G0(l)) ̸= 0 (l = 1, 2, . . . ), (2.5)
r(B) < 1 (2.6)

hold, and the estimates

|C0(t, τ)| ≤ H(t)B0H
−1(τ) for t ≤ τ, τ /∈ T, (2.7)∣∣C0(t, τl) (In +G0(l))

−1
∣∣ ≤ H(t)B0H

−1(τl) (l = 1, 2, . . . ), (2.8)
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and
t0∫
t

|C0(t, τ)(P (s)− P0(s))H(s)| ds

+
∑

l∈Nt,t0

∣∣C0(t, τl)(In +G0(l))
−1(G(l)−G0(l))H(τl)

∣∣ ≤ H(t)B (2.9)

are satisfied on the interval [t0 − δ, t0[ for some δ > 0, where C0 is the Cauchy matrix of system
(1.7), (1.8). Let, moreover,

lim
t→t0

( t0∫
t

∥∥H−1(s)C0(t, s)q(s)
∥∥ ds+ ∑

l∈Nt,t0

∥∥H−1(τl)C0(t, τl)(In +G0(l))
−1g(l)

∥∥) = 0. (2.10)

Then problem (1.1), (1.2); (1.3) is H-well-posed.
Theorem 2.2. Let there exist a constant matrix B = (bik)

n
i,k=1 ∈ Rn×n

+ such that condition (2.6)
holds, and the estimates

ci(t, τ) ≤ b0
hi(t)

hi(τ)
for t ≤ τ (i = 1, . . . , n), (2.11)

∣∣∣∣
t0∫
t

ci(t, τ)hi(τ)[pii(τ)]− dτ +
∑

l∈Nt,t0

ci(tl, τl)hi(τl)[gii(l)]−

∣∣∣∣ ≤ biihi(t) (i = 1, . . . , n) (2.12)

and∣∣∣∣
t0∫
t

ci(t, τ)hk(τ)|pik(τ)| dτ +
∑

l∈Nt,t0

ci(t, τl) [gii(l)]+ · (1 + [gii(l)]+)
−1hk(τl)gik(l)

∣∣∣∣
≤ bikhi(t) (i ̸= k; i, k = 1, . . . , n) (2.13)

hold on [t0 − δ, t0[ for some b0 > 0 and δ > 0. Let, moreover,

lim
t→t0

( t0∫
t

ci(t, τ)

h(t)
q(τ) dτ +

∑
l∈Nt,t0

ci(t, τl)

hi(t)
[gii(l)]+ ·

(
1 + [gii(l)]+

)−1
g(l)

)
= 0 (i = 1, . . . , n), (2.14)

where ci is the Cauchy function of the impulsive differential equation
dx

dt
= p0i(t)x,

x(τl+)− x(τl−) = g0i(l)x(τl) (l = 1, 2, . . . );

here
p0i(t) ≡ [pii(t)]+, g0i(l) ≡ [gii(l)]+ (i = 1, . . . , n).

Then problem (1.1), (1.2); (1.3) is H-wellposed.
Remark 2.1. The Cauchy functions ci(t, τ) (i = 1, . . . , n) have the form

ci(t, τ) =



exp
( t∫

τ

[pii(s)]+ ds

) ∏
l∈Tτ,t

(
1 + [gii(l)]+

)
if t > τ,

exp
( t∫

τ

[pii(s)]+ ds

) ∏
l∈Tt,τ

(
1 + [gii(l)]+

)−1 if t < τ,

1 if t = τ

(2.15)

for t, τ ∈ I.
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Remark 2.2. In Theorems 2.1 and 2.2, the strict inequality (2.6) cannot be replaced by the non-
strict one. We give the corresponding example from [11] for ordinary differential equations, i.e., when
G(l) ≡ On×n and g(l) ≡ 0n.

On the interval ]− 1, 0[ consider the problem

dx

dt
=

x

t
+

1

| ln |t||
, (2.16)

lim
t→0

x(t)

t
= 0. (2.17)

Every solution of equation (2.16) has the form

x(t) = ct+ t ln | ln |t|| (c ∈ R).

So, problem (2.16), (2.17) is not solvable. On the other hand, the Cauchy function c(t, τ) has the form
c(t, τ) = tτ−1 for t ≤ τ < 0 and the conditions of Theorem 2.1, except of condition (2.6), are fulfilled
(on ] − 1, 0[) for n = 1, P (t) ≡ t−1, q(t) ≡ | ln |t||−1 and h(t) ≡ t only for the case where B ≥ 1, i.e.,
when r(B) ≥ 1.

Remark 2.3. By Definition 2.1, problem (1.1), (1.2); (1.3) is H-well-posed if and only if it has a
unique solution x and for every sequences of matrix-and vector-functions,

Pm = (pmik)
n
i,k=1 ∈ Lloc(It0 ;Rn×n), qm = (qmk)

n
k=1 ∈ Lloc(It0 ;Rn) (m = 1, 2, . . . )

and
Gm = (gmik)

n
i,k=1 ∈ E(N;Rn×n), gm = (gmk)

n
k=1 ∈ E(N;Rn) (m = 1, 2, . . . ),

such that
det(In +Gm(l)) ̸= 0 (l = 1, 2, . . . ) for every sufficiently large m,

and the conditions

lim
m→+∞

( t0∫
t

∥∥H−1(τ)(Pm(s)− P (s))H(s)
∥∥ ds+ ∑

l∈Nt,t0

∥∥H−1(τl)(Gm(l)−G(l))H(τl)
∥∥) = 0,

lim
m→+∞

( t0∫
t

∥∥H−1(τ)(qm(s)− q(s))
∥∥ ds+ ∑

l∈Nt,t0

∥∥H−1(τl)(gm(l)− g(l))
∥∥) = 0

hold uniformly on I, the impulsive differential system

dx

dt
= Pm(t)x+ qm(t) for a.a. t ∈ It0 \ T, (1.1m)

x(τl+)− x(τl−) = Gm(l)x(τl) + gm(l) (l = 1, 2, . . . ) (1.2m)

has a unique solution xm satisfying condition (1.3) for every sufficiently large m and

lim
m→+∞

∥∥H(t) (xm(t)− x(t))
∥∥ = 0 (2.18)

uniformly on I.

3 Auxiliary propositions
We give the lemma on a priori estimate of solutions of system (1.1), (1.2) (see Lemma 3.2 below). To
prove the lemma, we use the Cauchy formula for the representation of solutions of impulsive differential
systems.
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Lemma 3.1 (Variation-of-constants formula). Let G∗ ∈ E(N;Rn×n) be such that

det(In +G∗(l)) ̸= 0 (l = 1, 2, . . . ).

Then every solution of the system

dx

dt
= P∗(t)x+ q∗(t) for a.a. t ∈ I,

x(τl+)− x(τl−) = G∗(l)x(τl) + g∗(l) (l = 1, 2, . . . ),

where P∗ ∈ Lloc(I;Rns×n), q∗ ∈ Lloc(I;Rn) and G∗ ∈ E(N;Rn×n), g∗ ∈ E(N;Rn), admits the
representation

x(t) = C∗(t, τ)x(τ)+

t∫
τ

C∗(t, s)q∗(s) ds+
∑

l∈Nτ,t

C∗(t, τl)(In+G∗(l))
−1g∗(l) for τ < t, τ, t ∈ I, (3.1)

where C∗ is the Cauchy matrix of the homogeneous system

dx

dt
= P∗(t)x for a.a. t ∈ I,

x(τl+)− x(τl−) = G∗(l)x(τl) (l = 1, 2, . . . ).

Representation (3.1) is proved, for example, in [4, 13,14].

Lemma 3.2. Let the matrix-functions P0 ∈ Lloc(It0 ;Rn×n), G0 ∈ E(N;Rn×n) and the constant mat-
rices B0 and B from Rn×n

+ be such that conditions (2.5)–(2.9) hold for some δ > 0, where C0 is the
Cauchy matrix of system (1.7), (1.8). Let, moreover,

γ(t) = sup
{ t0∫

τ

∥∥H−1(τ)C0(τ, s)q(s)
∥∥ ds

+
∑

l∈Nτ,t0

∥∥H−1(τ)C0(τ, τl)(In +G0(l))
−1g(l)

∥∥ : t ≤ τ ≤ t0

}
< +∞ for t ∈ [t0 − δ, t0[ . (3.2)

Then every solution x of system (1.1), (1.2) admits the estimate

∥H−1(t)x(t)∥ ≤ ρ
(
∥B0∥ ∥H−1(τ0)x(τ0)∥+ γ(t)

)
for t ∈ J, t < τ0, (3.3)

where ρ = ∥(In − B)−1∥, while J ⊂ [t0 − δ, t0[ and τ0 ∈ J are an arbitrary interval and an arbitrary
point, respectively.

This lemma is proved in [6].

4 Proof of the main results
Proof of Theorem 2.1. By conditions (2.5)–(2.9), problem (1.1), (1.2) has a unique solution x (see [6]).
On the other hand, because I is the finite and closed interval, there exists ρ ∈ Rn×n

+ such that

|x(t)| ≤ H(t)ρ for t ∈ I. (4.1)

Let us denote by B1 the n× n-matrix whose every element equals to 1. Due to (2.6), there exists
η0 ∈]0, 1[ such that

r(B̃) < 1, (4.2)

where B̃ = B + η0B0 B1.
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We introduce the functions

v(t) = ∥B0∥
∥∥H−1(t)(P̃ (t)− P (t))H(t)

∥∥ for t ∈ [a, t0 − δ],

αl = ∥B0∥
∥∥H−1(τl)|G(l)−G0(l)|H(τl)

∥∥ (l = 1, 2, . . . ).

Let ε > 0 be an arbitrary fixed number. Then, taking into account (2.3), we get that there exists
η ∈]0, η0[ such that

ρ0 <
ε

2
(4.3)

and
ρ1ρ2 exp(ρ3) < ε, (4.4)

where

ρ0 = η (1 + ∥ρ∥)
(
1 + ∥(In − B̃)−1∥

)
∥B0∥, ρ1 = η (1 + ∥ρ∥)∥(In − B̃)−1∥ ∥B0∥,

ρ2 =

t0−δ∫
a

v(s) ds, ρ3 =
∏

l∈Na,t0−δ

(1 + αl).

In addition, it is evident that ρ3 + ρ4 < +∞.
Let P̃ ∈ Lloc(It0 ;Rn×n) and G̃ ∈ E(N;Rn×n) be matrix-functions satisfying conditions (2.2)

and (2.3).
Then by (2.7), due to (2.3) and (2.9), we find

t0∫
t

∣∣C0(t, τ)(P̃ (s)− P0(s))
∣∣H(s) ds+

∑
l∈Nt,t0

∣∣∣C0(t, τl)(In +G0(l))
−1(G̃(l)−G0(l))

∣∣∣H(τl)]

≤
t0∫
t

∣∣C0(t, τ)(P (s)− P0(s))
∣∣H(s) ds+

t0∫
t

∣∣C0(t, τ)(P̃ (s)− P (s))
∣∣H(s) ds

+
∑

l∈Nt,t0

∣∣∣C0(t, τl)(In +G0(l))
−1(G(l)−G0(l))

∣∣∣H(τl)

+
∑

l∈Nt,t0

∣∣∣C0(t, τl)(In +G0(l))
−1(G̃(l)−G(l))

∣∣∣H(τl)

≤ H(t)B +H(t)B0

t0∫
t

H−1(s)|P̃ (s)− P (s)|H(s) ds

+H(t)B0

∑
l∈Nt,t0

H−1(τl)|(G̃(l)−G(l))|H(τl) ≤ H(t)(B + ηB0B1) for t ∈ [t0 − δ, t0[

and, therefore,

t0∫
t

∣∣C0(t, τ)(P̃ (s)− P0(s))
∣∣H(s) ds

+
∑
lNt,t0

∣∣∣C0(t, τl)(In +G0(l))
−1(G̃(l)−G0(l))

∣∣∣H(τl) ≤ H(t)B̃ for t ∈ [t0 − δ, t0[ . (4.5)

So, the matrix-functions P̃ , G̃ and the constant matrix B̃ satisfy conditions (2.6) and (2.9) as well.
Analogously, for the vector-functions q̃ ∈ Lloc(It0 ;Rn×n) and ũ ∈ E(N;Rn×n), satisfying conditions

(2.4), we show that
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t0∫
t

∥∥H−1(t)C0(t, s)q̃(s)
∥∥ ds+ ∑

l∈Nt,t0

∥∥∥H−1(t)C0(t, τl)(In +G0(l))
−1g̃(l)

∥∥
≤

t0∫
t

∥∥H−1(t)C0(t, s)q(s)
∥∥ ds+ ∑

l∈Nt,t0

∥∥H−1(t)C0(t, τl)(In +G0(l))
−1g(l)

∥∥
+

t0∫
t

∥∥H−1(t)C0(t, s)(q̃(s)− q(s))
∥∥ ds+ ∑

l∈Nt,t0

∥∥∥H−1(t)C0(t, τl)(In +G0(l))
−1(g̃(l)− g(l))

∥∥∥
≤

t0∫
t

∥∥H−1(t)C0(t, s)q(s)
∥∥ ds+ ∑

l∈Nt,t0

∥∥∥H−1(t)C0(t, τl)(In +G0(l))
−1g(l)

∥∥∥
+ ∥B0∥

t0∫
t

∥∥H−1(s)(q̃(s)− q(s))
∥∥ ds+ ∥B0∥

∑
l∈Nt,t0

∥∥H−1(τl)(g̃(l)− g(l))
∥∥ for t ∈ [t0 − δ, t0[.

Hence, in view of conditions (2.8) and (2.10), it follows that the vector-functions q̃ and g̃ satisfy
condition (2.10) as well.

Thus, according to Theorem 2.1, the last two conditions together with inequality (4.2) guarantee
the unique solvability of problem (1.4), (1.5); (1.3). Let y be a solution of the problem.

Let us assume
z(t) ≡ x(t)− y(t) and u(t) ≡ H−1(t)z(t).

Then z will be a solution of the impulsive system

dz

dt
= P̃ (t)z + q∗(t) for a.a. t ∈ It0 \ T, (4.6)

z(τl+)− z(τl−) = G̃(l)z(τl) + g∗(l) (l = 1, 2, . . . ), (4.7)

under the condition
lim

s0→t0−
(H−1(s0) z(s0)) = 0, (4.8)

where

q∗(t) ≡ (P (t)− P̃ (t))x(t) + q(t)− q̃(t), g∗(l) ≡ (G(l)− G̃(l))x(τl) + g(l)− g̃(l).

According to Lemma 3.2, conditions (4.2), (4.5) and (4.6)–(4.8) guarantee the estimate

u(t) ≤ ∥(In − B̃)−1∥ γ(t) for t ∈ [t0 − δ, t0[, (4.9)

where
γ(t) = sup

{
ξ∗(τ) : t ≤ τ < t0

}
for t ∈ [t0 − δ, t0[ , (4.10)

and

ξ∗(τ) ≡
t0∫
τ

∥∥H−1(τ)C0(τ, s)q∗(s)
∥∥ ds+ ∑

l∈Nτ,t0

∥∥∥H−1(τ)C0(τ, τl)(In +G0(l))
−1g∗(l)

∥∥∥.
Hence, due to (2.7), (2.8) and (4.1), we conclude

ξ∗(t) ≤ ∥B0∥
( t0∫

t

∥∥H−1(s)|q∗(s)|
∥∥ ds+ ∑

l∈Nt,t0

∥∥H−1(τl)|g∗(l)|
∥∥)

≤ ∥B0∥
t0∫
t

∥∥∥H−1(s)
(
|(P (s)− P̃ (s))x(s)|+ |q(s)− q̃(s)|

) ∥∥∥ ds
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+ ∥B0∥
∑

l∈Nt,t0

∥∥∥H−1(τl)
(
|(G(l)− G̃(l))x(τl)|+ |(g(l)− g̃(l))|

) ∥∥∥
≤ ρ∥B0∥

( t0∫
t

∥∥H−1(s)|P (s)− P̃ (s)|H(s)|
∥∥ ds+ ∑

l∈Nt,t0

∥∥H−1(τl)|G(l)− G̃(l)|H(τl)|
∥∥)

+ ∥B0∥
( t0∫

t

∥∥H−1(s)|q(s)− q̃(s)|
∥∥ ds+ ∑

l∈Nt,t0

∥∥H−1(τl)|g(l)− g̃(l)|
∥∥)

and, therefore, due to (2.3), (2.4) and (4.10), we find

γ(t) ≤ η (1 + ∥ρ∥)∥B0∥ for t ∈ [t0 − δ, t0[

and, in view of (4.3),

u(t) ≤ η (1 + ∥ρ∥) ∥(In − B̃)−1∥ ∥B0∥ < ρ0 <
ε

2
for t ∈ [t0 − δ, t0[ . (4.11)

Since z is a solution of the impulsive system (4.6), (4.7), it is evident that it is a solution of the
system

dz

dt
= P0(t)z + q0(t) for a. a. t ∈ It0 \ T,

z(τl+)− z(τl−) = G0(l)z(τl) + g0(l) (l = 1, 2, . . . )

as well, where

q0(t) ≡ (P̃ (t)− P0(t))z(t) + q∗(t), g0(l) ≡ (G̃(l)−G0(l))z(τl) + g∗(l).

According to Lemma 3.1, applying to the last system, we find

H−1(t)z(t) = H−1(t)C0(t, t0 − δ)z(t0 − δ)

−
t0−δ∫
t

H−1(t)C0(t, s)q0(s) ds−
∑

l∈Nt,t0−δ

H−1(t)C0(t, τl)(In +G0(l))
−1g0(l)

= H−1(t)C0(t, t0 − δ)z(t0 − δ)−
t0−δ∫
t

H−1(t)C0(t, s)(P̃ (s)− P0(s))z(s) ds

−
t0−δ∫
t

H−1(t)C0(t, s)q∗(s) ds+
∑

l∈Nt,t0−δ

H−1(t)C0(t, τl)(In +G0(l))
−1(G̃(l)−G0(l))z(τl)

−
∑

l∈Nt,t0−δ

H−1(t)C0(t, τl)(In +G0(l))
−1g∗(l) for t ∈ [t0 − δ, t0[ . (4.12)

By (2.7), (2.8) and (4.1), for every t ∈ [t0 − δ, t0[ , we get∥∥H−1(t)C0(t, t0 − δ)z(t0 − δ)
∥∥ ≤ ∥B0∥ ∥H−1(t0 − δ)z(t0 − δ)∥,∥∥∥∥

t0−δ∫
t

H−1(t)C0(t, s)(P̃ (s)− P0(s))z(s) ds

∥∥∥∥ ≤ ∥B0∥
t0−δ∫
t

∥∥H−1(s)|P̃ (s)− P0(s)|H(s)
∥∥u(s) ds,
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∥∥∥∥
t0−δ∫
t

H−1(t)C0(t, s)q∗(s) ds

∥∥∥∥
≤ ∥ρ∥ ∥B0∥

t∫
t0−δ

∥∥H−1(s)|P̃ (s)− P (s)|H(s)
∥∥ ds+ ∥B0∥

t0−δ∫
t

∥∥H−1(s)|q̃(s)− q(s)|
∥∥ ds,

∥∥∥∥ ∑
l∈Nt,t0−δ

H−1(t)C0(t, τl)(In +G0(l))
−1(G̃(l)−G0(l))z(τl)

∥∥∥∥
≤ ∥B0∥

∑
l∈Nt,t0−δ

∥∥H−1(τl)|(G̃(l)−G0(l))|
∥∥u(τl)

and∥∥∥∥ ∑
l∈Nt,t0−δ

H−1(t)C0(t, τl)(In +G0(l))
−1g∗(τl)

∥∥∥∥
≤ ∥ρ∥ ∥B0∥

∑
l∈Nt,t0−δ

∥∥H−1(τl)|G̃(l)−G(l)|H(τl)
∥∥+ ∥B0∥

∑
l∈Nt,t0−δ

∥∥H−1(τl)|g̃(l)− g(l)|
∥∥.

In view of these estimates, due to (2.3) and (2.4), from (4.12) we conclude

u(t) ≤ (1 + ∥ρ∥)∥B0∥η + ∥B0∥u(t0 − δ) + ∥B0∥
t0−δ∫
t

∥∥H−1(s)|P̃ (s)− P0(s)|H(s)
∥∥u(s) ds

+ ∥B0∥
∑

l∈Nt,t0−δ

∥∥H−1(τl)|G̃(l)−G0(l)|
∥∥u(τl) for t ∈ [a, t0 − δ].

Therefore, if we take into account (4.11), we find

u(t) ≤ ρ1 +

t0−δ∫
t

v(s)u(s) ds+
∑

l∈Nt,t0−δ

αlu(τl) for t ∈ [a, t0 − δ]. (4.13)

Further, according to the Gronwall–Bellman inequality (see [14, Lemma 2.1]), we have

u(t) ≤ ρ1
∏

l∈Nt,t0−δ

(1 + αl) exp
( t0−δ∫

t

v(s) ds

)
for t ∈ [a, t0 − δ]. (4.14)

From (4.14) we obtain u(t) ≤ ρ1ρ2 exp(ρ3) for t ∈ [a, t0 − δ]. According to (4.4), we find u(t) < ε
for t ∈ [a, t0 − δ]. Thus estimate (2.1) holds.

Proof of Theorem 2.2. This theorem is a particular case of Theorem 2.1. Thus it is easy to check that
under conditions of Theorem 2.2, problem (1.1), (1.2); (1.3) is uniquely solvable (see [6]).
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