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Abstract. Using the weighted pseudo almost automorphic concept and the Banach fixed point
theorem, in this paper we study the existence and uniqueness of a new class of hematopoiesis model.
The exponential and asymptotic stabilities are also established. In addition, we provide two numerical
examples and computer simulations in order to demonstrate the feasibility of theoretical results. It
should be mentioned that the methods and definitions introduced in the paper can be applied to study
other types of delayed dynamic models.
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ÒÄÆÉÖÌÄ. ÛÄßÏÍÉËÉ ×ÓÄÅÃÏ-ÈÉÈØÌÉÓ ÀÅÔÏÌÏÒ×ÖËÉ ÊÏÍÝÄ×ÝÉÉÓÀ ÃÀ ÁÀÍÀáÉÓ ÖÞÒÀÅÉ ßÄÒ-
ÔÉËÉÓ ÈÄÏÒÄÌÉÓ ÂÀÌÏÚÄÍÄÁÉÈ, ÍÀÛÒÏÌÛÉ ÛÄÓßÀÅËÉËÉÀ ÀáÀËÉ ÊËÀÓÉÓ ÓÉÓáËßÀÒÌÏØÌÍÉÓ
ÌÏÃÄËÉÓ ÀÒÓÄÁÏÁÀ ÃÀ ÄÒÈÀÃÄÒÈÏÁÀ. ÀÂÒÄÈÅÄ ÃÀÃÂÄÍÉËÉÀ ÄØÓÐÏÍÄÍÝÉÀËÖÒÉ ÃÀ ÀÓÉÌÐÔÏ-
ÔÖÒÉ ÌÃÂÒÀÃÏÁÀ. ÂÀÒÃÀ ÀÌÉÓÀ, ÌÏÚÅÀÍÉËÉÀ ÏÒÉ ÒÉÝáÅÉÈÉ ÌÀÂÀËÉÈÉ ÃÀ ÊÏÌÐÉÖÔÄÒÖËÉ
ÓÉÌÖËÀÝÉÀ ÈÄÏÒÉÖËÉ ÛÄÃÄÂÄÁÉÓ ÐÒÀØÔÉÊÀÛÉ ÂÀÍáÏÒÝÉÄËÄÁÀÃÏÁÉÓ ÃÄÌÏÍÓÔÒÉÒÄÁÉÓÈÅÉÓ.
ÖÍÃÀ ÀÙÉÍÉÛÍÏÓ, ÒÏÌ ÍÀÛÒÏÌÛÉ ßÀÒÌÏÃÂÄÍÉËÉ ÌÄÈÏÃÄÁÉ ÃÀ ÂÀÍÌÀÒÔÄÁÄÁÉ ÛÄÉÞËÄÁÀ ÂÀÌÏ-
ÚÄÍÄÁÖË ÉØÍÀÓ ÓáÅÀ ÔÉÐÉÓ ÃÀÂÅÉÀÍÄÁÖËÉ ÃÉÍÀÌÉÊÖÒÉ ÌÏÃÄËÄÁÉÓ ÛÄÓÀÓßÀÅËÀÃ.



New Results on the Weighted Pseudo Almost Automorphic Solutions 3

1 Introduction
The process that results in producing and regulating blood cells is named hematopoiesis. The ma-
thematical modeling of hematopoiesis dynamics has been extensively studied for the past 40 years,
in order to understand and explain the reason leading to a number of repetitive blood cell diseases.
Hence, in 1978 (see [20]), Mackey described the production process of all kinds of blood cells by a
notable self-regulated system given by

Γ′(t) = −ΘΓ(t) +
Q

1 + Γn(t− e)
, t ≥ 0,

where at time t in blood circulation, Γ(t) represents the mature cell density, and e denotes the time
delay between the immature cell production within the marrow of the bone and the maturation of
these cells to be released within the circulating bloodstream. The cells can be in fact lost from the
circulation at an Θ rate. Added to that, the flux of the cells from the stem cell compartment into the
circulation, particularly depends on the mature cell density at previous time t−e. Since any change in
the environment plays a significant role, in [19], the authors considered the next hematopoiesis model:

Γ′(t) = −Θ(t)Γ(t) +

D∑
i=1

Qi(t)Γ
m(t− ei(t))

1 + Γn(t− ei(t))
, t ≥ 0,

where 0 ≤ m ≤ n, m ≤ 1, and they studied the global exponential stability, uniqueness and existence
of a positive almost periodic solution.

Besides, the concept of pseudo almost automorphic functions had been first introduced by Xiao
et al. [23]. Actually, it naturally generalizes the almost periodicity, almost automorphy, and pseudo
almost periodicity. Lately, the existence and stability of pseudo almost automorphic/pseudo almost
periodic solutions of differential equations have been a great deal studied (see [1–4, 9, 10, 14, 17, 18,
21, 22]). In [8], Blot et al. introduced the concept of weighted pseudo almost automorphic functions
using the measure theory, which is a natural generalization of the classical pseudo almost periodicity
(see [24]) and pseudo almost automorphic periodicity, which is the central tool in this paper.

However, the model within biological, physical, and social sciences is in certain cases obligatory
to consider the different time delays. Indeed, such an explicit inclusion of delays within equations is
in many instances the simplification or idealization introduced on account of the detailed description
of underlying processes that are very complex to be modeled mathematically. In this case, it may be
necessary to choose a model with a distributed and/or continuous delay.

Moreover, it is well known that the optimal management of renewable resources has a direct link
with the population development to sustain. Then we can assume that population models are subject
to harvesting. Thus, the term of harvesting plays a great role in protecting the balanced development.

Until now and to the best of our knowledge, the hematopoiesis model studies have been devoted
to the case where 0 ≤ m,n ≤ 1 (i.e., the existence, uniqueness and stability). In addition to that,
most papers have been dedicated to the study of the hematopoiesis model within almost or pseudo
almost periodic functions (see [4, 12, 16, 19]). However, in [13], Haifa et al. established the existence
and exponential stability of the pseudo almost periodic solution of the hematopoiesis model in the
case where m,n > 1. Nevertheless, if m,n > 1, there are many questions that can be asked: How do
things work? What is happening? Is there a solution or not? Is the solution unique? Is it stable or
not? Furthermore, if we consider the hematopoiesis model in this case with mixed delays and with
the harvesting term, this work becomes more and more complicated. In this context, our objective in
this paper is to study the model of hematopoiesis with harvesting term and mixed delays in the case
where m,n > 1 in the space of weighted pseudo almost automorphic functions. The model is given as
follows:

Γ′(t) =−Θ(t)Γ(t) +

D∑
i=1

Qi(t)
Γm(t− ei(t))

1 + Γn(t− ei(t))

+

D∑
i=1

pi(t)

δi∫
0

ki(u)
Γm(t− u)

1 + Γn(t− u)
du− Ξ

(
t,Γ(t− j(t))

)
, t ≥ 0, 1 ≤ m ≤ n, (1.1)
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where Θ( · ), ei( · ) and j( · ) are almost automorphic functions. In addition for all 1 ≤ i ≤ D, Qi( · ),
pi( · ), they are weighted pseudo almost automorphic functions. Moreover, ki( · ) is the kernel, and
Ξ( · , · ) is the harvesting term.

Let
K = sup

t

{
ei(t), δi, j(t), i = 1, 2, . . . , n

}
.

We assume that equation (1.1) is supplemented with the initial conditions as follows:

Γ(t) = ψ(t), ψ ∈ BC([−K, 0],R+), (1.2)
Γ(0) = ψ(0) > 0.

We assume in the remainder of the paper that the following conditions hold:

(H1) M [Θ] > 0.

(H2) For all 1 ≤ i ≤ D, the delay kernels satisfy

δi∫
0

ki(u) du = 1.

(H3) Ξ : t 7→ Ξ(t, · ) is almost automorphic in t for each z ∈ V, where V represents a compact subset
of R, and there exists a number L > 0 such that

|Ξ(t, a)− Ξ(t, b)| ≤ L|a− b|

for all t ∈ R and a, b ∈ R+.

The principal results of this paper are:

1. We show the positivity and boundedness of the solution when m,n > 1 which corresponds to
the biological reality, since the blood cells have a life length.

2. A serious and important issue within this kind of nonlinear differential equation is: What are the
sufficient conditions to obtain a weighted pseudo almost automorphic solution if the coefficients
are weighted pseudo almost automorphic? Moreover, if m,n > 1, does the solution exist or not?
What method proves its existence? If the solution exists, is it unique? Hence, in this paper
we obtain the uniqueness and existence of the weighted pseudo almost automorphic solution of
equations (1.1), (1.2) by using the Banach fixed point theorem and some sufficient conditions.

3. What is the impact of continuous and distributed delays on the stability of the solutions? The
answer to this question is given by two new theorems.

Our paper is organized as follows. First of all, Section 2 establishes the required definitions and
fundamental properties of the space PAA(R,RN , η), which will be used to obtain our main results.
Next, Section 3 establishes the necessary criteria for the existence and uniqueness of the weighted
pseudo almost automorphic solution for equation (1.1). Lastly, in Sections 4 and 5, we obtain the
globally exponential and asymptotic stabilities of the weighted pseudo almost automorphic solution.
After that, two numerical examples are given in Section 6 in order to depict the feasibility of theoretical
results that we have got.

2 Definitions and lemmas
Let Σ be a Lebesgue ξ-field of R, Υ denote the set of all positive measures η on Σ satisfying η(R) = ∞
and η([c, d]) <∞ for all c, d ∈ R (c ≤ d). Let us consider the class of measures η ∈ Υ which satisfy
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(A1) (i) For all ς ∈ R, there exists ϵ > 0 and a bounded interval I such that

η
({
d+ ς : d ∈ H

})
≤ ϵη(H)

when H ∈ Σ satisfies H ∩ I = ∅.
(ii) There exists a continuous function λ : R → R+ as follows:

dηθ(s) = λ(s) dη(s), ∀ s ∈ R,

with ηθ(Q) = η((Υ− θ)−1(Q)) for all Q ∈ Σ.

Lemma 2.1 ([7]). Under (A1), for all α > 0,

lim sup
c→∞

η([−c− α, c+ α])

η([−c, c])
<∞.

Definition 2.1 ([8]). A continuous function P : R → RN is called almost automorphic in the case
that for each sequence (On)n∈N there exists a subsequence (ςn)n∈N ⊂ (On)n∈N such that

lim
n→∞

P (t+ ςn) = D(t)

exists for all t ∈ R, and
lim
n→∞

D(t− ςn) = P (t) for all t ∈ R,

are well defined for each t ∈ R.

Let AA(R,RN ) denote the collection from R to RN of all almost automorphic functions.

Definition 2.2 ([17]). Let η ∈ Υ. We can say that a bounded continuous function J : R → RN will
be η-ergodic if

lim
c→∞

1

η([−c, c])

∫
[−c,c]

∥J(t)∥ dη(t) = 0.

We denote the collection of all such functions by PAP0(R,RN , η).

Definition 2.3 ( [17]). Let η ∈ Υ. A function J ∈ BC(R,RN ) is called weighted pseudo almost
automorphic if it can be expressed as J = D + S, where D ∈ AA(R,RN ) and D ∈ PAP0(R,RN , η).
We denote the collection of such functions by PAA(R,RN , η).

Theorem 2.1 ([17]). Let η ∈ Υ. (PAA(R,RN , η), ∥ · ∥∞) is a Banach space.

Corollary 2.1 ( [7]). Let η ∈ Υ and let G : R → R be a continuous function. Assume that for
each bounded subset B̆ of R, ψ is bounded on B̆. If Γ ∈ PAA(R,R, η), then t 7→ G(Γ(t)) belongs to
PAA(R,R, η).

3 Existence and uniqueness of the weighted pseudo almost
automorphic solution

Our first result is given as follows:

Lemma 3.1. Let (H1) hold. Assume that there exist two positive constants R1 and R2 such that
R2 > R1 and

R2 >

D∑
i=1

(pi +Qi)

Θ
, ΘR2 <

D∑
i=1

Q
i

Rm
1

1 +Rn
2

− Ξ .

Then there exists Ts > 0 in such a way that for t ≥ Ts, we get

R1 ≤ Γ(t) ≤ R2(t).
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Proof. Firstly, let us demonstrate that for all t ≥ Ts the solution of (1.1)–(1.2) satisfies Γ(t) ≤ R2.
Let us assume that there exists a number t1 ∈ [Ts,∞) such that

Γ(t1) = R2,

Γ(t) < R2, Ts −K ≤ t < t1.

Hence

0 ≤ Γ′(t1) ≤ −Θ(t1)Γ(t1) +

D∑
i=1

(
Qi(t1)

Γm(t1 − ei(t1))

1 + Γn(t1 − ei(t1))
+ pi(t1)

δi∫
0

ki(u)
Γm(t1 − u)

1 + Γn(t1 − u)

)
du

≤ −Θ(t1)R2 +

D∑
i=1

(
Qi

Γm(t1 − ei(t1))

1 + Γn(t1 − ei(t1))
+ pi

δi∫
0

ki(u)
Γm(t1 − u)

1 + Γn(t1 − u)
du

)
.

Since supa
am

1+an ≤ 1 for m ≤ n, we have

0 ≤ Γ′(t1) ≤ −Θ(t1)R2 +

D∑
i=1

(Qi + pi) < 0,

which is a contradiction. So Γ(t) ≤ R2 for all t ≥ Ts.
On the next step in the proof, it should be demonstrated that there exists Ts > 0 in a certain way

that for t ≥ Ts, R2 ≤ Γ(t). In fact, suppose that there exists t2 ≥ Ts as follows:

Γ(t2) = R1,

Γ(t) > R1, Ts −K ≤ t < t2,

0 ≥ Γ′(t2) ≥ −Θ(t2)Γ(t2) +

D∑
i=1

Qi(t2)
Γm(t2 − ei(t2))

1 + Γn(t2 − ei(t2))
− Ξ

(
t2,Γ(t− j(t2))

)
≥ −Θ(t2)R2 +

D∑
i=1

Q
i

Rm
1

1 +Rn
2

− Ξ ≥ −ΘR2 +Rm
1

D∑
i=1

Q
i

1 +Rn
2

− Ξ > 0,

which is a contradiction. As a consequence, there exists Ts > 0 such that for t ≥ Ts, we have
R1 ≤ Γ(t) ≤ R2.

Lemma 3.2. Every solution of (1.1)–(1.2) is strictly positive and bounded for all t ∈ [−K, ζ(ψ)), and
ζ(ψ) = ∞.

Proof. From (1.1), for any ψ ∈ BC([−K, 0],R+), ψ(0) > 0 and for t ≥ 0, we get

Γ(t) = Γ(0) e
−

t∫
0

Θ(u) du

+

t∫
0

e
−

t∫
s

Θ(u) du
[ D∑

i=1

(
Qi(s)

Γm(s−ei(s))
1+Γn(s−ei(s))

+pi(s)

δi∫
0

ki(u)
Γm(s− u)

1+Γn(s−u)
du

)
−Ξ

(
s,Γ(s−j(s))

)]
ds

≥ Γ(0) e
−

t∫
0

Θ(u) du
+

t∫
0

e
−

t∫
s

Θ(u) du
[ D∑

i=1

Qi(s)
Γm(s− ei(s))

1 + Γn(s− ei(s))
− Ξ

(
s,Γ(s− j(s))

)]
ds

≥ Γ(0) e
−

t∫
0

Θ(u) du
+

t∫
0

e
−

t∫
s

Θ(u) du
[ D∑

i=1

Q
i

Rm
1

1 +Rn
2

− Ξ

]
ds

≥ Γ(0) e
−

t∫
0

Θ(u) du
+

t∫
0

e
−

t∫
s

Θ(u) du
Θ dsR1 > 0.
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Then Γ(t) > 0 for all t ∈ [−K, ζ(ψ)).
Now, we have to prove that every solution of equation (1.1) is bounded. In all other respects, there

will exist an unbounded solution Γ(t) of (1.1) satisfying

Γ′(t) ≤ −ΘΓ(t) +

D∑
i=1

(Qi + pi) ≤ 0. (3.1)

In addition, there exits 0 < ta < tb such that

Γ(ta) < Γ(tb) and −ΘΓ(tb) +

D∑
i=1

(Qi + pi) ≤ 0.

By (3.1), we get that Γ′(tb) < 0. Let Γ(tc) = max
ta≤t≤tb

Γ(t). It can be easily seen that tc ̸= ta and
tc ̸= tb. Therefore, Γ′(tc) = 0 and from (3.1) we get

Γ′(tc) ≤ −ΘΓ(tc) +

D∑
i=1

(Qi + pi) ≤ −ΘΓ(tb) +

D∑
i=1

(Q i + pi) < 0.

Consequently, Γ(t) is bounded.

Lemma 3.3. Let η ∈ Υ and Γ ∈ PAA(R,R+, η). Since Γ(t) is bounded, we have 1
Γ ∈ PAA(R,R+, η).

Proof. Since Γ is bounded, there are R1, R2 > 0 such that 0 < R1 ≤ |Γ(t)| ≤ R2. The function
z(z) = 1

z is bounded in R1 ≤ |z(t)| ≤ R2, and according to Corollary 2.1, 1
Γ ∈ PAA(R,R, η).

Lemma 3.4. Let η ∈ Υ and Γ ∈ PAA(R,R, η). Under (H2), for all 1 ≤ i ≤ D, the function

Ăi : t 7−→
δi∫
0

ki(s)
Γm(t− s)

1 + Γn(t− s)
ds

belongs to PAA(R,R, η).

Proof. Since Γ( · ) is a weighted pseudo almost automorphic function and Γ( · ) is bounded, the function
t 7→ Γm(t) is bounded, too. By Corollary 2.1, the function t 7→ Γm(t) is weighted pseudo almost
automorphic. In addition, by Lemma 3.3, the function J(t − s) = Γm(t−s)

1+Γn(t−s) ∈ PAA(R,R, η), then J

is expressed as follows:
J = J1 + J2,

with J1( · ) ∈ AA(R,R) and J2( · ) ∈ PAP0(R,R, η). The function Ăi is written as

Ăi(t) =

δi∫
0

ki(s)J1(t− s) ds+

δi∫
0

ki(s)J2(t− s) ds = Ă1
i (t) + Ă2

i (t)

with

Ă1
i (t) =

δi∫
0

ki(s)J1(t− s) ds, Ă2
i (t) =

δi∫
0

ki(s)J2(t− s) ds.

Now, it should be proven that Ă1
i ( · ) ∈ AA(R,R). Since J1( · ) is almost automorphic, we can extract

a subsequence of real numbers (ςn) ⊂ (O′
n) as follows:

lim
n→∞

J1(t+ ςn − s) = v1(t− s), lim
n→∞

v1(t− ςn − s) = J1(t− s)
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for all s ∈ [0, δi] and t ∈ R. Note that

Gi(t) =

δi∫
0

ki(s)v
1(t− s) ds,

∣∣Ă1
i (t+ ςn)−Gi(t)

∣∣ = ∣∣∣∣
δi∫
0

ki(s)J1(t+ ςn − s) ds−
δi∫
0

ki(s)v1(t− s) ds

∣∣∣∣
=

∣∣∣∣
δi∫
0

ki(s)
[
J1(t+ ςn − s)− v1(t− s)

]
ds

∣∣∣∣
≤

δi∫
0

ki(s)
∣∣J1(t+ ςn − s)− v1(t− s)

∣∣ ds.
Using Lebesgue’s dominated convergence theorem, we have

lim
n→∞

Ă1
i (t+ ςn) = Gi(t).

For all t ∈ R, the above-mentioned approach shows that

lim
n→∞

G̃i(t− ςn) = Ă1
i (t),

thus demonstrating that Ă1
i ( · ) ∈ AA(R,R).

On the following step of this proof, it should be proven that Ă2
i ( · ) ∈ PAP0(R,R, η).

lim
C→∞

1

η([−C,C])

C∫
−C

|Ă2
i (t)| dη(t) ≤ lim

C→∞

1

η([−C,C])

C∫
−C

δi∫
0

ki(s)J2(t− s) ds dη(t)

≤ lim
C→∞

1

η([−C,C])

δi∫
0

ki(s)

( C∫
−C

J2(t− s) dη(t)

)
ds

≤
δi∫
0

ki(s)

(
lim

C→∞

1

η([−C,C])

C∫
−C

J2(t− s) dη(t)

)
ds.

Since J2( · ) ∈ PAP0(R,R, η) and PAP0(R,R, η) is invariant by translation, we have

lim
C→∞

1

η([−C,C])

C∫
−C

J2(t− s) dη(t) = 0.

Consequently,

lim
C→∞

1

η([−C,C])

C∫
−C

|Ă2
i (t)| dη(t) = 0.

Lemma 3.5. Let η ∈ Υ. By Assumption (A1)-(ii), if Γ( · ) ∈ PAA(R,R+, η) and e( · ) ∈ AA(R,R+),
then Γ( · − e( · )) ∈ PAA(R,R+, η).

Proof. Γ( · ) ∈ PAA(R,R+, η), through the use of the composition theorem, Γ( · ) is expressed by
Γ = Γ1 + Γ2, with Γ1( · ) ∈ AA(R,R+) and Γ2( · ) ∈ PAP0(R,R+, η):

Γ(t− e(t)) = Γ1(t− e(t)) + Γ(t− e(t))− Γ1(t− e(t)).
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After that, it shall be proven that Γ1( · − e( · )) ∈ AA(R,R+). Γ1 ∈ BC(R,R+), so Γ1 is uniformly
continuous in each compact S ⊂ BC(R,R+), that is, for all ε > 0, there exists ι > 0 such that for all
s1, s2 ∈ S, one has

∥s1 − s2∥ < ι =⇒ ∥Γ(s1)− Γ(s2)∥ < ε.

Γ1( · − a), e( · ) ∈ AA(R,R+), then we have a subsequence (ςn) ⊂ (ζn) such that

lim
n→∞

Γ1(t+ ςn − a) = R(t− a), lim
n→∞

e(t+ ςn) = ω(t)

and
lim
n→∞

R(t− ςn − a) = Γ1(t− a), lim
n→∞

ω(t− ςn) = e(t).

On the other hand,∣∣Γ(t+ ςn − e(t+ ςn))−R(t− ω(t))
∣∣

≤
∣∣Γ(t+ ςn − e(t+ ςn))− Γ(t+ ςn − ω(t))

∣∣+ ∣∣Γ(t+ ςn − ω(t))−R(t− ω(t))
∣∣.

Consequently, Γ1( · − e( · )) is almost automorphic.
It is shown that Γ( · − e( · ))− Γ1( · − e( · )) ∈ PAP0(R,R+, η),

lim
C→∞

1

η([−C,C])

C∫
−C

∣∣Γ(t− e(t))− Γ1(t− e(t))
∣∣ dη(t)

= lim
C→∞

1

η([−C,C])

C∫
−C

|Γ2(t− e(t))| dη(t) ≤ lim
C→∞

1

η([−C,C])

C+e∫
−(C+e)

|Γ2(t)| dη(t+ e(t))

≤ lim
C→∞

η([−C − e, C + e])

η([−C,C])
1

η([−C − e, C + e])

C+e∫
−(C+e)

|Γ2(t)|λ(t) dη(t)

≤ lim
C→∞

η([−C − e, C + e])

η([−C,C])
sup

ξ∈[−(C+e),C+e]

λ(ξ)
1

η([−C − e, C + e])

C+e∫
−(C+e)

|Γ2(t)| dη(t).

Thus Γ( · − e( · ))− Γ1( · − e( · )) ∈ PAP0(R,R+, η). So, Γ( · − e( · )) ∈ PAA(R,R+, η).

Lemma 3.6. Let η ∈ Υ. By assumption (H3), the function t 7→ Ξ(t,Γ(t − j(t))) is weighted pseudo
almost automorphic.

Proof. Γ( · ) ∈ PAA(R,R+, η), using the composition theorem, Γ( · ) is written as Γ = Γ1 + Γ2 with
Γ1( · ) ∈ AA(R,R+) and Γ2( · ) ∈ PAP0(R,R+, η). Therefore, the function Ξ( · , · ) is expressed by

Ξ
(
t,Γ(t− j(t))

)
= Ξ

(
t,Γ1(t− j(t))

)
+ Ξ

(
t,Γ(t− j(t))

)
− Ξ

(
t,Γ1(t− j(t))

)
.

It should be proven now that the function t 7→ Ξ(t,Γ1(t − j(t))) is almost automorphic. Γ1( · ) ∈
AA(R,R+) and Ξ( · ,Γ) ∈ AA(R × R+,R+), so, for each sequence (On), we have a subsequence
(ςn) ⊂ (On) such that

lim
n→∞

Γ1(ςn + t) = z(t), lim
n→∞

Ξ(t+ ςn, u) = N(t, u),

lim
n→∞

z(t− ςn) = Γ1(t), lim
n→∞

N(t− ςn, u) = Ξ(t, u).

Therefore,∣∣Ξ(t+ ςn,Γ1(t+ ςn))−N(t,z(t))
∣∣

≤
∣∣Ξ(t+ ςn,Γ1(t+ ςn))− Ξ(t+ ςn,z(t))

∣∣+ ∣∣Ξ(t+ ςn,z(t))−N(t,z(t))
∣∣

≤ L|Γ1(t+ ςn)−z(t)|+
∣∣Ξ(t+ ςn,z(t))−N(t,z(t))

∣∣.
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Since
lim
n→∞

Ξ(t+ ςn,z(t)) = N(t,z(t)),

we obtain
lim
n→∞

Ξ(t+ ςn,Γ1(t+ ςn)) = N(t,z(t)).

Similarly, we give
lim
n→∞

N(t− ςn,z(t− ςn)) = Ξ(t,Γ1(t)).

Accordingly, the function t 7→ Ξ(t,Γ1(t − j(t))) is almost automorphic. Next, we shall prove that
Ξ( · ,Γ( · − j( · )))− Ξ( · ,Γ1( · − j( · ))) is η-ergodic,

lim
C→∞

1

η([−C,C])

C∫
−C

∣∣Ξ(t,Γ(t− j(t))
)
− Ξ

(
t,Γ1(t− j(t))

)∣∣ dη(t)
≤ lim

C→∞

L

η([−C,C])

C∫
−C

∣∣Γ(t− j(t))− Γ1(t− j(t))
∣∣ dη(t)

≤ lim
C→∞

L

η([−C,C])

C+j∫
−(C+j)

|Γ2(t)| dη(t+ j(t))

≤ lim
C→∞

η([−C − j, C + j])

η([−C,C])
L

η([−C,C])

C+j∫
−(C+j)

|Γ2(t)|λ(t) dη(t)

≤ lim
C→∞

sup
ξ∈[−(C+j),C+j]

λ(ξ)
η([−C − j, C + j])

η([−C,C])
L

η([−C − j, C + j])

C+j∫
−(C+j)

|Γ2(t)| dη(t).

Thus t 7→ Ξ(t,Γ(t − j(t))) − Ξ(t,Γ1(t − j(t))) is η-ergodic. Consequently, Ξ(t,Γ( · − j( · ))) ∈
PAA(R,R+, η).

Theorem 3.1. Consider η ∈ Υ. Under assumption (H1)–(H3), the operator Π defined as

(ΠΓ)(t) =

t∫
∞

e
−

t∫
s

Θ(u) du

×
[ D∑

i=1

(
Qi(s)

Γm(s− ei(s))

1 + Γn(s− ei(s))
+ pi(s)

δi∫
0

ki(u)
Γm(u+ s)

1 + Γn(u+ s)
du

)
− Ξ

(
s,Γ(s− j(s))

)]
ds

is a mapping in PAA(R,R, η) into itself.

Proof. As regards Lemmas 3.4, 3.5, besides the use of Lemma 3.6, the function

Λ : s 7−→
D∑
i=1

(
Qi(s)

Γm(s− ei(s))

1 + Γn(s− ei(s))
+ pi(s)

δi∫
0

ki(u)
Γm(s− u)

1 + Γn(s− u)
du

)
− Ξ

(
s,Γ(s− j(s))

)
is weighted pseudo almost automorphic. Consequently, Λ is written as

Λ(s) = Λ1(s) + Λ2(s),
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where Λ1( · ) ∈ AA(R,R) and Λ2( · ) ∈ PAP0(R,R, η). Then

(ΠΓ)(t) =

t∫
∞

e
−

t∫
s

Θ(u) du
Λ1(s) ds+

t∫
∞

e
−

t∫
s

Θ(u) du
Λ2(s) ds = (ΠΛ1)(t) + (ΠΛ2)(t).

Now, it should be proven that (ΠΛ1)( · ) ∈ AA(R,R). Since Θ( · ), Λ1( · ) are almost automorphic, so
for every sequence of real numbers (On), we can extract a subsequence (ςn) such that

lim
n→∞

Λ1(t+ ςn) = υ1(t), lim
n→∞

υ1(t− ςn) = Λ1(t),

lim
n→∞

Θ(t+ ςn) = ι(t), lim
n→∞

ι(t− ςn) = Θ(t)

for all t ∈ R. Let us consider

(B̆υ1)(t) =

t∫
∞

e
−

t∫
s

ι(u) du
υ1(s) ds,

∣∣(ΠΛ1)(t+ ςn)− (B̆υ1)(t)
∣∣ = ∣∣∣∣

t+ςn∫
∞

e
−

t+sn∫
s

Θ(u) du
Λ1(s) ds−

t∫
∞

e
−

t∫
s

ι(u) du
υ1(s) ds

∣∣∣∣
=

∣∣∣∣
t∫

∞

e
−

t+ςn∫
s+ςn

Θ(u) du

Λ1(s+ ςn) ds−
t∫

∞

e
−

t∫
s

ι(u) du
υ1(s) ds

∣∣∣∣
≤

t∫
∞

e−(t−s)Θ|Λ1(s+ ςn)− υ1(s)| ds

+ ∥υ1∥∞

t∫
∞

∣∣∣e− t∫
s

Θ(u+ςn)
− e

−
t∫
s

ι(u) du∣∣∣ ds.
Consequently, one can find θ ∈]0, 1[ satisfying∣∣(ΠΛ1)(t+ sn)− (B̆υ1)(t)

∣∣
≤

t∫
∞

e−(t−s)Θ|Λ1(s+ ςn)− υ1(s)| ds

+ ∥υ1∥∞

t∫
∞

e
−

t∫
s

Θ(u+ςn) du+θ
t∫
s

[Θ(u+ςn)−ι(u)] du
∣∣∣∣

t∫
s

Θ(u+ ςn)− ι(u) du

∣∣∣∣ ds
≤

t∫
∞

e−(t−s)Θ|Λ1(s+ ςn)− υ1(s)| ds+ ∥ς1∥∞

t∫
∞

∣∣∣∣
t∫

s

Θ(u+ ςn)− ι(u) du

∣∣∣∣e−(t−s)Θ ds.

By Lebesgue’s dominated convergence theorem, we immediately obtain that for all t ∈ R,

lim
n→∞

(ΠΛ1)(t+ sn) = (B̆υ1)(t).

Similarly, for all t ∈ R,
lim
n→∞

(B̆υ1)(t− sn) = (ΠΛ1)(t).

which implies that (ΠΛ1)( · ) ∈ AA(R,R+). Now, it is necessary to demonstrate that (ΠΛ2)( · ) ∈
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PAP0(R,R+, η). We have

lim
C→∞

1

η([−C,C])

C∫
−C

∣∣∣∣
t∫

∞

e
(−

t∫
s

Θ(u) du)
Λ2(s) ds

∣∣∣∣ dη(t)
≤ lim

C→∞

1

η([−C,C])

C∫
−C

t∫
∞

|Λ2(s)|e
(−

t∫
s

Θ(u) du)
ds dη(t)

≤ lim
C→∞

1

η([−C,C])

C∫
−C

t∫
∞

e−(t−s)Θ|Λ2(s)| ds dη(t)

≤ lim
C→∞

1

η([−C,C])

C∫
−C

∞∫
0

e−sΘ|Λ2(t− s)| ds dη(t)

≤ lim
C→∞

∞∫
0

e−sΘ

(
1

η([−C,C])

C∫
−C

|Λ2(t− s)| dη(t)
)
ds.

Utilizing Lebesgue’s dominated convergence theorem as well as hypothesis (A1), we get

lim
C→∞

∞∫
0

e−sΘ

(
1

η([−C,C])

C∫
−C

|Λ2(t− s)| dη(t)
)
ds

=

∞∫
0

e−sΘ lim
C→∞

(
1

η([−C,C])

C∫
−C

|Λ2(t− s)| dη(t)
)
ds = 0.

Consequently, (ΠΛ2)( · ) belongs to PAP0(R,R+, η), which implies the result.

Theorem 3.2. Let η ∈ Υ. Under (H1)–(H3) and

(H4)

D∑
i=1

(Qi + pi)
[( (n−m)

4 + m
(1+Rn

1 )
2

)
Rm−1

2

]
+ L

Θ
< 1,

equations (1.1)–(1.2) have one weighted pseudo almost automorphic solution within a convex subset
B = {f ∈ PAA(R,R, η), R1 ≤ Γ(t) ≤ R2}.

Proof. Firstly, by Theorem 3.1, the operator Π noted as

(ΠΓ)(t) =

t∫
∞

e
−

t∫
s

Θ(u) du

×
[ D∑

i=1

(
Qi(s)

Γm(s− ei(s))

1 + Γn(s− ei(s))
+ pi(s)

δi∫
0

ki(u)
Γm(s− u)

1 + Γn(s− u)
du

)
− Ξ(s,Γ(s− j(s)))

]
ds

is a mapping in PAA(R,R, η) into itself. Next, we have to prove that for Γ ∈ B, R1 ≤ (ΠΓ)(t) ≤ R2.
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For Γ ∈ B,

(ΠΓ)(t) =

t∫
∞

e
−

t∫
s

Θ(u) du

×
[ D∑

i=1

(
Qi(s)

Γm(s− ei(s))

1 + Γn(s− ei(s))
+ pi(s)

δi∫
0

ki(u)
Γm(s− u)

1 + Γn(s− u)
du

)
− Ξ(s,Γ(s− j(s)))

]
ds

≥
t∫

∞

e−(t−s)Θ

[ D∑
i=1

Q
i

Rm
1

1 +Rn
2

− Ξ

]
ds ≥

t∫
∞

e−(t−s)ΘR1Θ = R1.

However,

(ΠΓ)(t) =

t∫
∞

e
−

t∫
s

Θ(u) du

×
[ D∑

i=1

(
Qi(s)

Γm(s− ei(s))

1 + Γn(s− ei(s))
+ pi(s)

δi∫
0

ki(u)
Γm(s− u)

1 + Γn(s− u)
du

)
− Ξ(s,Γ(s− j(s)))

]
ds

≤
t∫

∞

e−(t−s)Θ

[ D∑
i=1

(Qi + pi)

]
ds ≤ R2.

Consequently, Π is a mapping in B into itself. Now, we shall prove that Π is a contraction mapping.
For A,B ∈ B,∣∣(ΠA)(t)− (ΠB)(t)

∣∣
=

∣∣∣∣∣
t∫

∞

e
−

t∫
s

Θ(u) du
[ D∑

i=1

Qi(s)

[
Am(s− ei(s))

1 +An(s− ei(s))
− Bm(s− ei(s))

1 +Bn(s− ei(s))

]

+

D∑
i=1

pi(s)

δi∫
0

ki(u)

[
Am(s− u)

1 +An(s− u)
− Bm(s− u)

1 +Bn(s− u)

]
du

+ Ξ(s,B(s− j(s)))− Ξ(s,A(s− j(s)))

]
ds

∣∣∣∣∣
≤

t∫
∞

e−(s−t)Θ

[ D∑
i=1

Qi

∣∣∣ Am(s− ei(s))

1 +An(s− ei(s))
− Bm(s− ei(s))

1 +Bn(s− ei(s))

∣∣∣
+

D∑
i=1

pi

δi∫
0

ki(u)
∣∣∣ Am(s− u)

1 +An(s− u)
− Bm(s− u)

1 +Bn(s− u)

∣∣∣ du+ L
∣∣B(s− j(s))−A(s− j(s))

∣∣]ds.
From the elementary mean value theorem of differential calculus, we have

am

1 + an
− bm

1 + bn
=

(m− n)ϱm+n−1 +mϱm−1

(1 + ϱn)2
(a− b),

where ϱ lies between a and b. Then∣∣∣ Am

1 +An
− Bm

1 +Bn

∣∣∣ ≤ [ (n−m)ϱm−1

4
+

mϱm−1

(1 + ϱn)2

]
|A−B|.
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Besides, we have∣∣(ΠA)(t)− (ΠB)(t)
∣∣

≤ ∥A−B∥∞

t∫
∞

e−(s−t)Θ

[ D∑
i=1

(Qi + pi)
[ (n−m)Rm−1

2

4
+

mRm−1
2

(1 +Rn
1 )

2

]
+ L

]
ds

≤

D∑
i=1

(Qi + pi)
[( (n−m)

4 + m
(1+Rn

1 )
2

)
Rm−1

2 + L
]

Θ
∥A−B∥∞ ≤ ∥A−B∥∞.

Consequently, the mapping Π has a unique positive weighted pseudo almost automorphic solution
Γ∗ ∈ B via the contraction principle.

4 Exponential stability of the weighted pseudo almost
automorphic solution

The exponential stability of equations (1.1), (1.2) is established in this section.

Theorem 4.1. Let η ∈ Υ. Beneath (H1)–(H4). The weighted pseudo almost automorphic solution
Γ∗ of equations (1.1)–(1.2) is globally exponentially stable in the region B.

Proof. Let Σ be as follows:

Σ(t) = t−Θ+ LetK +
[( (n−m)

4
+

m

(1 +Rn
1 )

2

)
Rm−1

2

] D∑
i=1

(
Qie

tr + pi

δi∫
0

ki(s) e
ts ds

)
.

Clearly, the function t 7→ Σ(t) is continuous on R+, and

Σ(0) = −Θ+ L+
[( (n−m)

4
+

m

(1 +Rn
1 )

2

)
Rm−1

2

] N∑
i=1

(
Qi + pi

δi∫
0

ki(s) ds

)
.

By hypothesis (H4), we get Σ(0) < 0. Therefore, we have one sufficiently small constant ϖ > 0 as
Σ(ϖ) < 0.

Let Γ(t) be another solution of (1.1)–(1.2) and Λ(t) = |Γ∗(t)−Γ(t)|eϖt. For −K ≤ t ≤ 0, we have

Λ(t) ≤ sup
−K≤t≤0

|Γ∗(t)− Γ(t)|eϖt ≤ sup
−K≤t≤0

|Γ∗(t)− Γ(t)| =M ≤M + ζ.

In the remaining of this proof, it should be proven that Λ(t) ≤ M , for t ≥ 0. In all other respects,
for ζ > 0, {t > 0 : Λ(t) > M + ζ} ̸= ∅. Let ts = inf{t > 0 : Λ(t) > M + ζ}. Then Λ(tS) = M + ζ,
D+Λ(t) ≥ 0 and Λ(t) ≤M + ζ, for −K ≤ t ≤ ts. Calculating the upper derivative of Λ(t), we obtain

0 ≤ D+Λ(ts) = D+
[
|Γ∗(ts)− Γ(ts)|eϖts

]
= eϖts

[
ϖ|Γ∗(ts)− Γ(ts)| −Θ(ts)|Γ∗(ts)− Γ(ts)|

+

D∑
i=1

Qi(ts)
[( (n−m)

4
+

m

(1 +Rn
1 )

2

)
Rm−1

2

] ∣∣Γ∗(ts − ei(ts))− Γ(ts − ei(ts))
∣∣

+

D∑
i=1

pi(t)
[( (n−m)

4
+

m

(1 +Rn
1 )

2

)
Rm−1

2

] δi∫
0

ki(s)|Γ∗(t0 − s)− Γ(t0 − s)| ds

+
∣∣∣Ξ(ts,Γ∗(ts − j(ts))

)
− Ξ

(
ts,Γ(ts − j(ts))

)∣∣∣ ]
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≤ (ϖ −Θ)Γ(ts) +

D∑
i=1

Qi

[( (n−m)

4
+

m

(1 +Rn
1 )

2

)
Rm−1

2

]
Γ(ts − ei(ts)) e

ϖr

+

D∑
i=1

pi

[( (n−m)

4
+

m

(1 +Rn
1 )

2

)
Rm−1

2

] δi∫
0

ki(s) e
ϖsΓ(ts − s) ds+ LΓ(ts − j(ts)) e

ϖr

≤
[
ϖ −Θ+

D∑
i=1

Qi

[( (n−m)

4
+

m

(1 +Rn
1 )

2

)
Rm−1

2

]

+

D∑
i=1

pi

[( (n−m)

4
+

m

(1 +Rn
1 )

2

)
Rm−1

2

] δi∫
0

ki(s) e
ϖs ds+ Leϖr

]
(M + ε) ≤ 0,

which is a contradiction. Thus, for every ε > 0, we have Λ(t) ≤ M + ε for all t ≥ 0, and it can be
concluded that Λ(t) ≤M + ε, for all t ≥ −K. Consequently,

|Γ(t)− Γ∗(t)| ≤ (M + ε)e−ϖt, t ≥ −K,

for ε→ 0, and we get
|Γ(t)− Γ∗(t)| ≤Me−ϖt, t ≥ −K,

5 Asymptotic stability of the weighted pseudo almost
atutomorphic solutions

Theorem 5.1. Let η ∈ Υ. Suppose that (H1)–(H4) are satisfied, and let Γ∗ be the unique posi-
tive weighted pseudo almost automorphic solution of equations (1.1)–(1.2). Then Γ∗ will be globally
asymptotically stable in the region B.

Proof. Let Γ be an arbitrary solution of equations (1.1)–(1.2) in B. Consider the Lyapunov function

W (t) = |Γ∗(t)− Γ(t)|.

The calculation of an upper Dini derivative D+W (t) of W leads to

0 ≤ D+W (t) = D+|Γ∗(t)− Γ(t)|

≤ −Θ(t)|Γ∗(t)− Γ(t)|+
D∑
i=1

bi(t)

∣∣∣∣ (Γ∗)m(s− ei(s))

1 + (Γ∗)n(s− ei(s))
− Γm(s− ei(s))

1 + Γn(s− ei(s))

∣∣∣∣
+

D∑
i=1

pi

δi∫
0

ki(u)

∣∣∣∣ (Γ∗)m(u+ s)

1 + (Γ∗)n(u+ s)
− Γm(u+ s)

1 + Γn(u+ s)

∣∣∣∣+ ∣∣Ξ(t,Γ∗(t− j(t))
)
− Ξ

(
t,Γ(t− j(t))

)∣∣
≤ −Θ(t)|Γ∗(t)− Γ(t)|+

( D∑
i=1

(Qi + pi)
[( (n−m)

4
+

m

(1 +Rn
1 )

2

)
Rm−1

2

]
+ L

)
|Γ∗(t)− Γ(t)|

≤ −
(
Θ−

D∑
i=1

(Qi + pi)
[( (n−m)

4
+

m

(1 +Rn
1 )

2

)
Rm−1

2

]
− L

)
|Γ∗(t)− Γ(t)|.

By hypothesis (H4),

ξ = Θ−
D∑
i=1

(Qi + pi)
[( (n−m)

4
+

m

(1 +Rn
1 )

2

)
Rm−1

2

]
− L > 0.

Then
D+W (t) ≤ −ξ|Γ∗(t)− Γ(t)| < 0. (5.1)
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Hence, equation (1.1)–(1.2) is stable in the Laypunov sense. Integrating (5.1) over [T, t], gives

ξ

t∫
T

|Γ∗(s)− Γ(s)| ds ≤W (T )−W (t),

which implies
t∫

T

|Γ∗(s)− Γ(s)| ds ≤ W (T )

ξ
.

It follows that

lim sup
t→∞

t∫
T

|Γ∗(s)− Γ(s)| ds <∞.

Therefore,
lim
t→∞

|Γ∗(t)− Γ(t)| = 0.

Remark. In this paper, we provide new criteria concerning the hematopoiesis model with 1 < m ≤ n.
The existence of a unique point is proved by the Banach fixed point theorem. The kinds of stability
exponential and asymptotic criteria are derived by using suitable Lyapunov functionals and other
techniques. Note that our methods can be applicable when Ξ( · , · ) = 0 or p( · ) = 0, or Ξ( · , · ) =
p( · ) = 0. Furthermore, if η = 1, we obtain PAA(R,R, 1) = PAA(R,R), then our method and results
are more general, since PAP(R,R) ⊆ PAA(R,R) ⊆ PAA(R,R, η) and PAP(R,R, η) ⊆ PAA(R,R, η).

In fact, the stability plays an important role in many areas. That is why we prove in this paper
the global exponential stability and the global asymptotic stability of equations (1.1)–(1.2) when
n ≥ m > 1. Hence our finding on the existence and some kinds of stability of equations (1.1)–(1.2) is
new.

In this paper, the continuous time delays and the distributed delays when n ≥ m > 1 are considered
to provide a generally more realistic description of our model, since it is a model of mathematical
biology.

6 Example 1
In this section, we give two examples with the goal of verifying the validity of the results from previous
sections.

Consider the following hematopoiesis model:

Γ′(t) = −
(
8 + cos

( 1

2 + sin(t) + cos(t)

))
Γ(t)

+
(
2 +

1

2
cos

( 1

2 + sin(t) + cos(t)

)
+ exp(−t)

) Γ2(t− 0.9)

1 + Γ3(t− 0.9)

+
1

8

(
1 +

1

2
sin

( 1

2 + sin(t) + cos(t)

)
+

1

100(1 + t2)

) π
2∫

0

cos(u) Γ2(t− u)

1 + Γ3(t− u)
du

− 1

10
cos

( 1

2 + sin(t) + cos(t)

)2 |Γ(t− 0.8)|
1 + Γ2(t− 0.8)

, (6.1)

where n = 3, m = 2, D = 1, e(t) = 0.9, j(t) = 0.8, and δ = π
2 . Let us take into account measure η

with the result that the Radon–Nikodym derivative is ρ = exp(t), and ρ(t) satisfies (A1), i.e.,

lim sup
|t|→∞

ρ(t+ r)

ρ(t)
<∞.
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Figure 6.1. Curve of the weighted pseudo almost automorphic solution Γ(t) of equation (6.1) for
initial value 0.2, 0.7 .

Then η satisfies hypothesis (A1).
Moreover, for

Θ(t) = 8 + cos
( 1

2 + sin(t) + cos(t)

)
,

Q(t) = 2 +
1

2
cos

( 1

2 + sin(t) + cos(t)

)
+ exp(−t),

p(t) =
1

8

(
1 +

1

2
sin

( 1

2 + sin(t) + cos(t)

)
+

1

100
exp(−t)),

Ξ
(
t,Γ(t− j(t))

)
=

1

10
cos

( 1

2 + sin(t) + cos(t)

)2 |Γ(t− 0.8)|
1 + Γ2(t− 0.8)

,

and k(t) = cos
(
π
2 t

)
, all hypotheses (H1)–(H3) are satisfied. Furthermore,

(Q+ p)[( (n−m)
4 + m

(1+Rn
1 )

2 )R
m−1
2 ] + L

Θ
∼ 0.016 < 1.

Then hypothesis (H4) is verified. Consequently, all conditions of Theorems 3.2, 4.1, and 5.1 hold, and
equation (1.1) has in the region B a unique weighted pseudo almost automorphic solution.

7 Example 2
Consider the following model of hematopoiesis

Γ′(t) =−Θ(t)Γ(t) +

D∑
i=1

bi(t)
Γm(t− ei(t))

1 + Γn(t− ei(t))

+

D∑
i=1

pi(t)

δi∫
0

ki(u)
Γm(t− u)

1 + Γn(t− u)
du− Ξ

(
t,Γ(t− j(t)

)
), (7.1)
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where n = 2, m = 2, D = 1, e(t) = 0.2, j(t) = 0.4, and δ = 1. Let us take into consideration measure
η with the result that the Radon–Nikodym derivative is ρ = exp(t), and ρ(t) satisfies (A1), i.e.,

lim sup
|t|→∞

ρ(t+ r)

ρ(t)
<∞.

Then η satisfies hypothesis (A1).

0 10 20 30 40 50 60 70 80 90 100

time t

0.195

0.2

0.205

0.21

0.215

0.22

0.225

0.23

0.235

0.24

0.245
x
(t

)

Figure 7.1. Curve of the weighted pseudo almost automorphic solution Γ(t) of the equation (7.1) for
initial value 0.2, 0.7 .

Besides, for

Θ(t) = 2 + cos
( 1

2 + sin(t) + cos(t)

)2

,

Q(t) =
1

10

(
2 +

1

2
sin

( 1

2 + sin(t) + cos(t)

)
+

1

10
exp(−t)

)
,

p(t) =
1

8

(
1 +

1

2
sin

( 1

2 + sin(t) + cos(t)

)
+

1

100
exp(−t)

)
,

Ξ(t,Γ(t− j(t))) =
1

100
cos

( 1

2 + sin(t) + cos(t)

)2 |Γ(t− 0.8)|
1 + Γ2(t− 0.8)

,

and k(t) = cos(π2 t), all hypotheses (H1)–(H3) are satisfied. Furthermore,

(Q+ p)[( (n−m)
4 + m

(1+Rn
1 )

2 )R
m−1
2 ] + L

Θ
≤ 0.16 < 1.

Therefore, all conditions of Theorems 3.2, 4.1 and 5.1 are satisfied. Then the hematopoiesis model
with a harvesting term and mixed delays (7.1) has one unique weighted pseudo almost automorphic
solution (as illustrated in Figure 7.1) in the region B = {Γ ∈ PAA(R,R, η), R1 ≤ Γ(t) ≤ R2}.

Conclusion
In this paper, one novel Mackey–Glass model which has been studied. By using the theory of the ex-
ponential dichotomy along with the Banach fixed point theorem, some conditions have been provided,
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enough to obtain the existence and uniqueness of the weighted pseudo almost automorphic solution.
In addition to that, we have established the global exponential and asymptotic stabilities of the unique
solution. An example is given with the purpose of showing the efficiency of the obtained results. Up
to our knowledge, there has not been any paper published considering the model of Mackey–Glass
with a harvesting term as well as mixed delays when 1 < m ≤ n. Moreover, no research has been
published for this model in the space of weighted pseudo almost automorphic functions.

Acknowledgement
The authors would like to thank the anonymous reviewers and the editors for their constructive
comments, which greatly improved the quality of the original version.

References
[1] S. Abbas, Pseudo almost automorphic solutions of some nonlinear integro-differential equations.

Comput. Math. Appl. 62 (2011), no. 5, 2259–2272.
[2] S. Abbas, S. Dhama, M. Pinto and D. Sepúlveda, Pseudo compact almost automorphic solutions

for a family of delayed population model of Nicholson type. J. Math. Anal. Appl. 495 (2021),
no. 1, Paper No. 124722, 22 pp.

[3] M. Amdouni and F. Chérif, The pseudo almost periodic solutions of the new class of Lotka-
Volterra recurrent neural networks with mixed delays. Chaos Solitons Fractals 113 (2018), 79–88.

[4] M. Amdouni and F. Chérif, Pseudo almost periodic solutions of the third order differential equa-
tion with continuous delay. Appl. Math. Inf. Sci. 14 (2020), no. 2, 223–235.

[5] B. Ammar, F. Cherif and A. M. Alimi, Existence and uniqueness of pseudo almost-periodic
solutions of recurrent neural networks with time-varying coefficients and mixed delays. IEEE
Transactions on Neural Networks and Learning Systems 23 (2012), no. 1, 109–118.

[6] Ch. Aouiti, F. Dridi and F. Kong, Pseudo almost automorphic solutions of hematopoiesis model
with mixed delays. Comput. Appl. Math. 39 (2020), no. 2, Paper No. 87, 20 pp.

[7] J. Blot, Ph. Cieutat and Kh. Ezzinbi, Measure theory and pseudo almost automorphic functions:
new developments and applications. Nonlinear Anal. 75 (2012), no. 4, 2426–2447.

[8] J. Blot, G. M. Mophou, G. M. N’Guérékata and D. Pennequin, Weighted pseudo almost auto-
morphic functions and applications to abstract differential equations. Nonlinear Anal. 71 (2009),
no. 3-4, 903–909.

[9] F. Chérif and M. Abdelaziz, Stepanov-like pseudo almost periodic solution of quaternion-valued
for fuzzy recurrent neural networks with mixed delays. Neural Process. Lett. 51 (2020), 2211–2243.

[10] E. A. Dads, S. Fatajou and L. Khachimi, Pseudo almost automorphic solutions for differential
equations involving reflection of the argument. ISRN Math. Anal. 2012, Art. ID 626490, 20 pp.

[11] T. Diagana and H. Zhou, Existence of positive almost periodic solutions to the hematopoiesis
model. Appl. Math. Comput. 274 (2016), 644–648.

[12] H.-Sh. Ding, Q.-L. Liu and J. J. Nieto, Existence of positive almost periodic solutions to a class
of hematopoiesis model. Appl. Math. Model. 40 (2016), no. 4, 3289–3297.

[13] H. B. Fredj and F. Ch’erif, Positive pseudo almost periodic solutions to a class of hematopoiesis
model: oscillations and dynamics. J. Appl. Math. Comput. 63 (2020), 479–500.

[14] S. Hajjaji and A. Chérif, Sp-almost periodic and Sp-almost automorphic solutions of an integral
equation with infinite delay. Miskolc Math. Notes 22 (2021), no. 1, 211–244.

[15] R. Jia, Pseudo almost periodic solutions for a model of hematopoiesis with a feedback control. J.
Appl. Math. Comput. 49 (2015), no. 1-2, 475–491.

[16] A. Jiang, Pseudo almost periodic solutions for a model of hematopoiesis with an oscillating
circulation loss rate. Math. Methods Appl. Sci. 39 (2016), no. 12, 3215–3225.



20 Manel Amdouni, Farouk Chérif

[17] J. Liang, G. M. N’Guérékata, Ti-J. Xiao and J. Zhang, Some properties of pseudo-almost auto-
morphic functions and applications to abstract differential equations. Nonlinear Anal. 70 (2009),
no. 7, 2731–2735.

[18] J. Liang, J. Zhang and Ti-J. Xiao, Composition of pseudo almost automorphic and asymptotically
almost automorphic functions. J. Math. Anal. Appl. 340 (2008), no. 2, 1493–1499.

[19] B. Liu, New results on the positive almost periodic solutions for a model of hematopoiesis.
Nonlinear Anal., Real World Appl. 17 (2014), 252–264.

[20] M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems. New Series
197 (1977), no. 4300, 287–289.

[21] I. Mishra, D. Bahuguna and S. Abbas, Existence of almost automorphic solutions of neutral
functional differential equation. Nonlinear Dyn. Syst. Theory 11 (2011), no. 2, 165–172.

[22] G. M. Mophou and G. M. N’Guérékata, On some classes of almost automorphic functions and
applications to fractional differential equations. Comput. Math. Appl. 59 (2010), no. 3, 1310–1317.

[23] Ti-J. Xiao, J. Liang and J. Zhang, Pseudo almost automorphic solutions to semilinear differential
equations in Banach spaces. Semigroup Forum 76 (2008), no. 3, 518–524.

[24] Ch. Zhang, Almost Periodic Type Functions and Ergodicity. Science Press Beijing, Beijing; Kluwer
Academic Publishers, Dordrecht, 2003.

(Received 16.01.2021; revised 25.05.2021; accepted 05.07.2021)

Authors’ addresses:

Manel Amdouni
MaPSFA, ISSAT, Université de Sousse, Sousse, Tunisia.
E-mail: manel.amdouni@hotmail.fr

Farouk Chérif
ISSATs, MaPSFA, LR11ES35, Ecole Supérieure des Sciences et de Technologie de Hammam-

Sousse, Université de Sousse, Sousse, Tunisia.
E-mail: faroukcheriff@yahoo.fr


