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SOLVABILITY OF THE MIXED TYPE
INTERACTION PROBLEM OF ACOUSTIC WAVES AND
ELECTRO-MAGNETO-ELASTIC STRUCTURES



Abstract. In the present paper, we consider a three-dimensional model of fluid-solid acoustic in-
teraction when an electro-magneto-elastic body occupying a bounded region Ω+ is embedded in an
unbounded fluid domain Ω− = R3\Ω+. In this case, we have a five-dimensional electro-magneto-elastic
field (the displacement vector with three components, electric potential and magnetic potential) in the
domain Ω+, while we have a scalar acoustic pressure field in the unbounded domain Ω−. The physical
kinematic and dynamic relations are described mathematically by appropriate boundary and trans-
mission conditions. We consider less restrictions on matrix differential operator of electro-magneto-
elasticity by introducing asymptotic classes, in particular, we allow the corresponding characteristic
polynomial of the matrix operator to have multiple real zeros. Using the potential method and the
theory of pseudodifferential equations based on the Wiener–Hopf factorization method, the uniqueness
and existence theorems are proved in Sobolev–Slobodetskii spaces.
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ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ ÂÀÍáÉËÖËÉÀ ÓÉÈáÉÓÀ ÃÀ ÓáÄÖËÉÓ ÀÊÖÓÔÉÊÖÒÉ ÖÒÈÉÄÒÈØÌÄÃÄÁÉÓ
ÓÀÌÂÀÍÆÏÌÉËÄÁÉÀÍÉ ÌÏÃÄËÉ, ÒÏÃÄÓÀÝ ÄËÄØÔÒÏ-ÌÀÂÍÉÔÏ-ÃÒÄÊÀÃ ÓáÄÖËÓ ÖÊÀÅÉÀ Ω+ ÛÄ-
ÌÏÓÀÆÙÅÒÖËÉ ÀÒÄ, ÒÏÌÄËÉÝ ÜÀÃÂÌÖËÉÀ Ω− = R3 \ Ω+ ÛÄÌÏÖÓÀÆÙÅÒÄË ÓÉÈáÉÓ ÀÒÄÛÉ.
ÀÌ ÛÄÌÈáÅÄÅÀÛÉ ÛÄÌÏÓÀÆÙÅÒÖË Ω+ ÀÒÄÛÉ ÀÒÉÓ áÖÈÂÀÍÆÏÌÉËÄÁÉÀÍÉ ÄËÄØÔÒÏ-ÌÀÂÍÉÔÏ-
ÃÒÄÊÀÃÉ ÅÄËÉ (ÂÀÃÀÀÃÂÉËÄÁÉÓ ÅÄØÔÏÒÉÓ ÓÀÌÉ ÊÏÌÐÏÍÄÍÔÉ, ÄËÄØÔÒÖËÉ ÐÏÔÄÍÝÉÀËÉ ÃÀ
ÌÀÂÍÉÔÖÒÉ ÐÏÔÄÍÝÉÀËÉ), áÏËÏ ÛÄÌÏÖÓÀÆÙÅÒÄË Ω– ÀÒÄÛÉ − ÀÊÖÓÔÉÊÖÒÉ ßÍÄÅÉÓ ÓÊÀËÀÒÖËÉ
ÅÄËÉ. ×ÉÆÉÊÖÒÉ ÊÉÍÄÌÀÔÉÊÖÒÉ ÃÀ ÃÉÍÀÌÉÊÖÒÉ ÖÒÈÉÄÒÈØÌÄÃÄÁÄÁÉ ÌÀÈÄÌÀÔÉÊÖÒÀÃ ÀÙßÄÒÉËÉÀ
ÛÄÓÀÁÀÌÉÓÉ ÓÀÓÀÆÙÅÒÏ ÃÀ ÔÒÀÍÓÌÉÓÉÉÓ ÐÉÒÏÁÄÁÉÈ. ÍÀÛÒÏÌÛÉ ÌÏÈáÏÅÍÉËÉÀ ÍÀÊËÄÁÉ ÛÄ-
ÆÙÖÃÅÄÁÉ ÄËÄØÔÒÏ-ÌÀÂÍÉÔÏ-ÃÒÄÊÀÃÏÁÉÓ ÃÉ×ÄÒÄÍÝÉÀËÖÒ ÏÐÄÒÀÔÏÒÆÄ ÃÀ ÛÄÌÏÙÄÁÖËÉÀ
ÛÄÓÀÁÀÌÉÓÉ ÀÓÉÌÐÔÏÔÖÒÉ ÊËÀÓÄÁÉ. ÊÄÒÞÏÃ, ÌÀÔÒÉÝÖËÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÏÐÄÒÀÔÏÒÉÓ ÛÄ-
ÓÀÁÀÌÉÓ ÌÀáÀÓÉÀÈÄÁÄË ÐÏËÉÍÏÌÓ ÛÄÓÀÞËÏÀ ÂÀÀÜÍÃÄÓ ãÄÒÀÃÉ ÍÀÌÃÅÉËÉ ÍÖËÄÁÉ. ÐÏÔÄÍÝÉ-
ÀËÈÀ ÌÄÈÏÃÉÓÀ ÃÀ ×ÓÄÅÃÏÃÉ×ÄÒÄÍÝÉÀËÖÒ ÂÀÍÔÏËÄÁÀÈÀ ÈÄÏÒÉÉÓ ÂÀÌÏÚÄÍÄÁÉÈ, ÒÏÌÄËÉÝ
Ä×ÖÞÍÄÁÀ ÅÉÍÄÒ-äÏ×ÉÓ ×ÀØÔÏÒÉÆÀÝÉÉÓ ÌÄÈÏÃÓ, ÃÀÌÔÊÉÝÄÁÖËÉÀ ÀÒÓÄÁÏÁÉÓÀ ÃÀ ÄÒÈÀÃÄÒÈÏ-
ÁÉÓ ÈÄÏÒÄÌÄÁÉ ÓÏÁÏËÄÅ-ÓËÏÁÏÃÄÝÊÉÓ ÓÉÅÒÝÄÄÁÛÉ.
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1 Formulation of the problems
1.1 Introduction
Interaction problems of different dimensional fields appear in mathematical models of electro-magneto
transducers. Further examples of similar models are related to phased array microphones, ultrasound
equipment, inkjet droplet actuators, sonar transducers, bioimaging, immunochemistry, and acousto-
biotherapeutics (see [34–36,41]).

The Dirichlet type, Neumann type and mixed type interaction problems of acoustic waves and
piezoelectric structures are studied in [10,12,14].

Similar interaction problems for the classical model of elasticity have been investigated by a number
of authors. An exhaustive information concerning theoretical and numerical results, for the case when
both interacting media are isotropic, can be found in [2–5, 17, 20–22, 25, 26, 28]. The cases when the
elastic body is homogeneous and anisotropic and the fluid is isotropic, are considered in [24, 31, 32].
In this case, one has a three-dimensional elastic field, the displacement vector with three components
in the bounded domain Ω+, and a scalar pressure field in the unbounded domain Ω−.

In our case, in the domain Ω+ we have additional electric and magnetic fields that essentially
complicate the investigation of the transmission problems in question. In particular, except transmis-
sion conditions, electric and magnetic potentials are given on one part of the boundary of Ω+ (the
Dirichlet type condition), while on the other part of Ω+, normal components of electric displacement
and magnetic induction are given (the Neumann type condition).

In contrast to the classical elasticity, the differential operator of electro-magneto-elasticity is not
self-adjoint and positive-definite.

The Dirichlet and Neumann type interaction problems of acoustic waves and piezo-electro-magnetic
structures are studied in [11].

We consider less restrictions on the matrix differential operator of electro-magneto-elasticity by
introducing asymptotic classes Mm1,m2,m3(P), where P is a determinant of the electro-magneto-
elasticity matrix operator, in particular, we allow the corresponding characteristic polynomial of the
matrix operator to have multiple real zeros.

We investigate the aforementioned problem with the use of the potential method and the theory
of pseudodifferential equations on manifolds with boundary and prove the existence and uniqueness
theorems in Sobolev–Slobodetskii spaces.

1.2 Electro-magnetic field
Let Ω+ be a bounded three-dimensional domain in R3 with a compact, C∞-smooth boundary S = ∂Ω+

and let Ω− := R3 \Ω+. Assume that the domain Ω+ is filled with an anisotropic homogeneous piezo-
electro-magnetic material.

The basic equations of steady state oscillations of piezoelectro-magneticity for anisotropic homo-
geneous media are written as follows:

cijkl∂i∂luk + ρ1ω
2δjkuk + elij∂l∂iφ+ qlij∂i∂lψ + Fj = 0, j = 1, 2, 3,

−eikl∂i∂luk + εil∂i∂lφ+ ail∂i∂lψ + F4 = 0,

−qikl∂i∂luk + ail∂i∂lφ+ µil∂i∂lψ + F5 = 0,

or in the matrix form
A(∂, ω)U + F = 0 in Ω+,

where U = (u, φ, ψ)⊤, u = (u1, u2, u3)
⊤ is the displacement vector, φ = u4 is the electric potential,

ψ = u5 is the magnetic potential and F = (F1, F2, F3, F4, F5)
⊤ is a given vector-function. The three-

dimensional vector (F1, F2, F3) is the mass force density, while F4 is the electric charge density, F5 is
the electric current density, and A(∂, ω) is the matrix differential operator,

A(∂, ω) = [Ajk(∂, ω)]5×5, (1.1)
Ajk(∂, ω) = cijkl∂i∂l + ρ1ω

2δjk, Aj4(∂, ω) = elij∂l∂i, Aj5(∂, ω) = qlij∂l∂i,
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A4k(∂, ω) = −eikl∂i∂l, A44(∂, ω) = εil∂i∂l, A45(∂, ω) = ail∂i∂l,

A5k(∂, ω) = −qikl∂i∂l, A54(∂, ω) = ail∂i∂l, A55(∂, ω) = µil∂i∂l,

j, k = 1, 2, 3, where ω ∈ R is a frequency parameter, ρ1 is the density of the piezoelectro-magnetic
material, cijlk, eikl, qikl, εil, µil, ail are elastic, piezoelectric, piezomagnetic, dielectric, magnetic
permeability and electromagnetic coupling constants, respectively, δjk is the Kronecker symbol and
summation over repeated indices is meant from 1 to 3, unless otherwise stated. These constants satisfy
the standard symmetry conditions

cijkl = cjikl = cklij , eijk = eikj , qijk = qikj , εij = εji, µjk = µkj , ajk = akj ,

i, j, k, l = 1, 2, 3.

Moreover, from physical considerations related to the positiveness of internal energy, it follows that
the quadratic forms cijklξijξkl and εijηiηj are positive definite:

cijklξijξkl ≥ c0ξijξij ∀ ξij = ξji ∈ R, (1.2)
εijηiηj ≥ c2|η|2, qijηiηj ≥ c3|η|2, µijηiηj ≥ c1 |η|2 ∀ η = (η1, η2, η3) ∈ R3, (1.3)

where c0, c1, c2 and c3 are positive constants.
More careful analysis related to the positive definiteness of the potential energy insure that the

following matrix

Λ :=

(
[εkj ]3×3 [akj ]3×3

[akj ]3×3 [µkj ]3×3

)
6×6

is positive definite, i.e.,

εkjζ
′
kζ

′
j + akj(ζ

′
kζ

′′
j + ζ ′kζ

′′
j ) + µkjζ

′′
k ζ

′′
j ≥ c4

(
|ζ ′|2 + |ζ ′′|2

)
∀ ζ ′, ζ ′′ ∈ C3, (1.4)

where c4 is some positive constant.
The principal homogeneous symbol matrix of the operator A(∂, ω) has the following form:

A(0)(ξ) =

[−cijlkξiξl]3×3 [−elijξlξi]3×1 [−qlijξlξi]3×1

[eiklξiξl]1×3 −εilξiξl −ailξiξl
[qiklξiξl]1×3 −ailξiξl −µilξiξl


5×5

.

With the help of inequalities (1.2) and (1.3), it can be easily shown that

−ReA(0)(ξ)ζ · ζ ≥ c|ζ|2|ξ|2 ∀ ζ ∈ C4, ∀ ξ ∈ R3, c = const > 0,

implying that A(∂, ω) is a strongly elliptic formally nonselfadjoint differential operator.

Here and in the sequel, a · b denotes the scalar product of two vectors a, b ∈ CN , a · b :=
N∑

k=1

akbk.

In the theory of electro-magneto-elasticity, the components of the three-dimensional mechanical
stress vector acting on a surface element with a normal n = (n1, n2, n3) have the form

σijni := cijlkni∂luk + elijni∂lφ+ qlijni∂lψ, j = 1, 2, 3,

while the normal component of the electric displacement vector D = (D1, D2, D3)
⊤ and the normal

component of the magnetic induction vector B = (B1, B2, B3)
⊤ read as

−Dini = −eiklni∂luk + εilni∂lφ+ ailni∂lψ,

−Bini = −qiklni∂luk + ailni∂lφ+ µilni∂lψ.

Let us introduce the boundary matrix differential operator

T (∂, n) = [Tjk(∂, n)]5×5,
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Tjk(∂, n) = cijlkni∂l, Tj4(∂, n) = elijni∂l, Tj5(∂, n) = qlijni∂l,

T4k(∂, n) = −eiklni∂l, T44(∂, n) = εilni∂l, T45(∂, n) = ailni∂l,

T5k(∂, n) = −qiklni∂l, T54(∂, n) = ailni∂l, T55(∂, n) = µilni∂l,

j, k = 1, 2, 3. For a vector U = (u, φ, ψ)⊤, we have

T (∂, n)U = (σ1jnj , σ2jnj , σ3jnj ,−Dini,−Bini)
⊤. (1.5)

The components of the vector TU given by (1.5) have the following physical sense: the first three
components correspond to the mechanical stress vector in the theory of electro-magneto-elasticity,
while the fourth one is the normal component of the electric displacement vector and the fifth one is
the normal component of the magnetic induction vector.

In Green’s formulae, one also has the following boundary operator associated with the adjoint
differential operator

A∗(∂, ω) = A⊤(−∂, ω) = A⊤(∂, ω),

T̃ (∂, n) =
[
T̃jk(∂, n)

]
5×5

,

where

T̃jk(∂, n) = Tjk(∂, n), T̃j4(∂, n) = −Tj4(∂, n), T̃j5(∂, n) = −Tj5(∂, n),

T̃4k(∂, n) = −T4k(∂, n), T̃44(∂, n) = T44(∂, n), T̃45(∂, n) = T45(∂, n),

T̃5k(∂, n) = −T5k(∂, n), T̃54(∂, n) = T54(∂, n), T̃55(∂, n) = T55(∂, n),

j, k = 1, 2, 3.

1.3 Green’s formulae for electro-magneto-elastic vector fields
For arbitrary vector-functions U = (u1, u2, u3, u4, u5)

⊤ ∈ [C2(Ω+)]5 and V = (v1, v2, v3, v4, v5)
⊤ ∈

[C2(Ω+)]5, we have the following Green’s formulae (see [6]):∫
Ω+

[
A(∂, ω)U · V + E(U, V )

]
dx =

∫
S

{TU}+ · {V }+ dS,

∫
Ω+

[
A(∂, ω)U · V − U ·A∗(∂, ω)V

]
dx =

∫
S

[
{TU}+ · {V }+ − {U}+ · {T̃ V }+

]
dS,

where

E(U, V ) = cijlk∂iuj∂lvk − ρ1ω
2u · v + elij(∂lu4∂ivj − ∂iuj∂lv4)

+ qlij(∂lu5∂ivj − ∂iuj∂lv5) + εjl∂ju4∂lv4 + ajl(∂lu4∂jv5 − ∂ju5∂lv4) + µjl∂ju5∂lv5

with u = (u1, u2, u3)
⊤ and v = (v1, v2, v3)

⊤. The symbol { · }+ denotes the one-sided limits (the trace
operator) on S from Ω+. Note that by the standard limiting procedure, the above Green’s formulae
can be generalized to vector-functions U ∈ [H1(Ω+)]5 and V ∈ [H1(Ω+)]5 with A(∂, ω)U ∈ [L2(Ω

+)]5

and A∗(∂, ω)V ∈ [L2(Ω
+)]5.

Using these Green’s formulae, we can define a generalized trace vector {T (∂, n)U}+ ∈ [H−1/2(S)]5

for a function U ∈ [H1(Ω+)]5 with A(∂, ω)U ∈ [L2(Ω
+)]5:⟨

{T (∂, n)U}+, {V }+
⟩
S
:=

∫
Ω+

[
A(∂, ω)U · V + E(U, V )

]
dx,

where V ∈ [H1(Ω+)]5 is an arbitrary vector-function.
Here and in what follows, the symbol ⟨ · , · ⟩S denotes the duality between the mutually adjoint

function spaces [H−1/2(S)]N and [H1/2(S)]N , which extends the usual L2 scalar product

⟨f, g⟩S =

∫
S

N∑
j=1

fj gj dS for f, g ∈ [L2(S)]
N .
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1.4 Scalar acoustic pressure field and Green’s formulae
We assume that the exterior domain Ω− is filled with a homogeneous isotropic inviscid fluid medium
with constant density ρ2. Further, let the propagation of acoustic wave in Ω− be described by
a complex-valued scalar function (scalar field) w being a solution of the homogeneous Helmholtz
equation

∆w + ρ2ω
2w = 0 in Ω−, (1.6)

where

∆ =

3∑
j=1

∂2

∂x2j

is the Laplace operator and ω > 0. The function w(x) = P sc(x) is the pressure of a scattered acoustic
wave.

We say that a solution w to the Helmholtz equation (1.6) belongs to the class Somp(Ω
−), p = 1, 2,

if w satisfies the classical Sommerfeld radiation condition

∂w(x)

∂|x|
+ i(−1)p

√
ρ2 ωw(x) = O(|x|−2) as |x| → ∞. (1.7)

Note that if a solution w of the Helmholtz equation (1.6) in Ω− satisfies the Sommerfeld radiation
condition (1.7), then (see [42])

w(x) = O(|x|−1) as |x| → ∞.

Let Ω be a domain in R3 with a compact simply connected boundary ∂Ω ∈ C∞.
We denote by Hs(Ω) (Hs

loc(Ω)) and Hs(∂Ω), s ∈ R, the L2 based Sobolev–Slobodetskii (Bessel
potential) spaces in Ω and on the closed manifold ∂Ω. Respectively, we denote by Hs

comp(Ω) the
subspace of Hs(Ω) (Hs

loc(Ω)) consisting of functions with compact supports.
If M is a smooth proper submanifold of a manifold ∂Ω, then we denote by H̃s(M) the following

subspace of Hs(∂Ω):
H̃s(M) :=

{
g : g ∈ Hs(∂Ω), supp g ⊂M

}
,

while Hs(M) denotes the space of restrictions to M of functions from Hs(∂Ω),

Hs(M) :=
{
rMf : f ∈ Hs(∂Ω)

}
,

where rM is the restriction operator to M .
Let

w1 ∈ H1
loc(Ω

−) ∩ Somp(Ω
−), p = 1, 2, ∆w1 ∈ L2,loc(Ω

−), w2 ∈ H1
comp(Ω

−),

then the following Green’s first formula holds:∫
Ω−

(∆ + k2)w1w2 dx+

∫
Ω−

∇w1∇w2 dx− k2
∫
Ω−

w1w2 dx = −
⟨
{∂nw1}−, {w2}−

⟩
S
, (1.8)

where n = (n1, n2, n3) is the exterior unit normal vector to S directed outward with respect to the
domain Ω+, and ∂n = ∂

∂n denotes the normal derivative.

1.5 Formulation of mixed type interaction problem for steady state
oscillation equation

Now we formulate the fluid-solid interaction problems. Let the boundary S = ∂Ω+ = ∂Ω− ∈ C∞ be
divided into two disjoint parts SD and SN , i.e.

S = SD ∪ SN , SD ∩ SN = ∅ and lm := ∂SD = ∂SN ∈ C∞.
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Mixed type problem (Mω): Find a vector-function U = (u, u4, u5)
⊤ = (u, φ, ψ)⊤ ∈ [H1(Ω+)]5 and a

scalar function w ∈ H1
loc(Ω

−) ∩ Som1(Ω
−) satisfying the following differential equations

A(∂, ω)U = 0 in Ω+, (1.9)
∆w + ρ2ω

2w = 0 in Ω−, (1.10)

the transmission conditions

{u · n}+ = b1{∂nw}− + f0 on S, (1.11){
[T (∂, n)U ]j

}+
= b2{w}−nj + fj on S, j = 1, 2, 3, (1.12)

and the mixed boundary conditions

{φ}+ = f
(D)
1 on SD, (1.13)

{ψ}+ = f
(D)
2 on SD, (1.14){

[T (∂, n)U ]4
}+

= f
(N)
1 on SN , (1.15){

[T (∂, n)U ]5
}+

= f
(N)
2 on SN , (1.16)

where b1 and b2 are given complex constants satisfying the conditions

b1b2 ̸= 0, Im[b1b2] = 0, (1.17)

and

f0 ∈ H−1/2(S), fj ∈ H−1/2(S), j = 1, 2, 3,

f
(D)
1 ∈ H1/2(SD), f

(D)
2 ∈ H1/2(SD), f

(N)
1 ∈ H−1/2(SN ), f

(N)
2 ∈ H−1/2(SN ).

The transmission conditions (1.11)–(1.12) are called the kinematic and dynamic conditions. For
an interaction problem of fluid and electro-magneto-elastic body

b1 = [ρ2ω
2]−1, b2 = −1, f0(x) ≡ f inc0 (x) = [ρ2ω

2]−1∂nP
inc(x),

fj = −P inc(x)nj(x), j = 1, 2, 3, (1.18)

where P inc is an incident plane wave,

P inc(x) = eid·x, d = ω
√
ρ2η, η ∈ R3, |η| = 1.

2 Uniqueness of solutions of the problem (Mω)

We denote by JM (Ω+) the set of values of the frequency parameter ω > 0 for which the following
boundary value problem

A(∂, ω)U = 0 in Ω+, (2.1)
{u · n}+ = 0 on S, (2.2){

[T (∂, n)U ]j
}+

= 0 on S, j = 1, 2, 3, (2.3)
{φ}+ = 0 on SD, (2.4)
{ψ}+ = 0 on SD, (2.5)

{u · n}+ = 0 on SN , (2.6){
[T (∂, n)U ]

}+
= 0 on SN , (2.7)

has a nontrivial solution U = (u, φ, ψ)⊤ ∈ [H1(Ω+)]5 (cf., [24]).



76 George Chkadua

Nontrivial solutions of problem (2.1)–(2.7) will be referred to as Jones modes, while the correspond-
ing values of ω are called Jones eigenfrequencies, as they were first discussed by D. S. Jones [24] in
a related context (a thin layer of ideal fluid between an elastic body and surrounding elastic exte-
rior). For example, Jones eigenfrequencies exist for any axisymmetric body, such bodies can sustain
torsional oscillations in which only the azimuthal component of displacement is nonzero. However,
we do not expect Jones eigenfrequencies to exist for an arbitrary body. The spaces of Jones modes
corresponding to ω we denote by XM,ω(Ω

+).
Let J∗

M (Ω+) be the set of values of the frequency parameter ω > 0 for which the following boundary
value problem

A∗(∂, ω)V = 0 in Ω+, (2.8)
{v · n}+ = 0 on S, (2.9){

[T̃ (∂, n)V ]j
}+

= 0 on S, j = 1, 2, 3, (2.10)
{v4}+ = 0 on SD, (2.11)
{v5}+ = 0 on SD, (2.12)

{v · n}+ = 0 on SN , (2.13){
[T̃ (∂, n)V ]

}+
= 0 on SN (2.14)

has a nontrivial solution V = (v, v4, v5)
⊤ ∈ [H1(Ω+)]5.

The spaces of Jones modes corresponding to ω for the differential operator A∗(∂, ω) we denote by
X∗

M,ω(Ω
+).

It can be shown that JM (Ω+) and J∗
M (Ω+) are at most countable. Note that for each ω the

corresponding spaces of Jones modes XM,ω(Ω
+) and X∗

M,ω(Ω
+) are of finite dimension.

Using Green’s formulas and the Rellich–Vekua lemma, we obtain the following uniqueness theorem
for the problem (Mω) (cf. [11]).
Theorem 2.1. Let a pair (U,w) be a solution of the homogeneous problem (Mω) and ω > 0. Then
w = 0 in Ω− and either U = 0 in Ω+ if ω ̸∈ JM (Ω+) or U ∈ XM,ω(Ω

+) if ω ∈ JM (Ω+).
Remark 1. Let a pair (V,w) ∈ [H1(Ω+)]5× [H1

loc(Ω
−)∩ Som2(Ω

−)] be a solution of the homogeneous
problem

A∗(∂, ω)V = 0 in Ω+,

(∆ + ρ2ω
2)w = 0 in Ω−,

{v · n}+ + b
−1

2 {∂nw}− = 0 on S,{
[T̃ (∂, n)V ]j

}+
+ b

−1

1 {w}−nj = 0 on S, j = 1, 2, 3,

{v4}+ = 0 on SD,

{v5}+ = 0 on SD,{
[T̃ (∂, n)V ]4

}+
= 0 on SN ,{

[T̃ (∂, n)V ]5
}+

= 0 on SN ,

where b1 and b2 are the given complex constants satisfying conditions (1.17). Then w = 0 in Ω− and
either V = 0 in Ω+ if ω ̸∈ J∗

M (Ω+) or V ∈ X∗
M,ω(Ω

+) if ω ∈ J∗
M (Ω+).

3 Layer potentials
3.1 Potentials associated with the Helmholtz equation
Let us introduce the single and double layer potentials

Vω(g)(x) :=

∫
S

γ(x− y, ω)g(y) dyS, x ̸∈ S,
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Wω(f)(x) :=

∫
S

∂n(y)γ(x− y, ω)f(y) dyS, x ̸∈ S,

where

γ(x, ω) := −
exp(i√ρ

2
ω|x|)

4π|x|

is the fundamental solution of the Helmholtz equation (1.6). These potentials satisfy the Sommerfeld
radiation condition, i.e., belong to the class Som1(Ω

−).
For these potentials the following theorems are valid (see [15,33]).

Theorem 3.1. Let g ∈ H−1/2(S), f ∈ H1/2(S). Then the following jump relations hold on the
manifold S:

{Vω(g)}± = Hω(g), {Wω(f)}± = ±2−1f +K∗
ω(f),

{∂nVω(g)}± = ∓2−1g +Kω(g), {∂nWω(f)}+ = {∂nWω(f)}− =: Lω(f),

where Hω, K∗
ω and Kω are integral operators with weakly singular kernels,

Hω(g)(z) :=

∫
S

γ(z − y, ω)g(y) dyS, z ∈ S,

K∗
ω(f)(z) :=

∫
S

∂n(y)γ(z − y, ω)f(y) dyS, z ∈ S,

Kω(g)(z) :=

∫
S

∂n(z)γ(z − y, ω)g(y) dyS, z ∈ S,

while Lω is a singular integro-differential operator (pseudodifferential operator) of order 1.

Theorem 3.2. The operators

N := −2−1I1 +K∗
ω + µHω : H1/2(S) → H1/2(S), (3.1)

M := Lω + µ
(
2−1I1 +Kω

)
: H1/2(S) → H−1/2(S) (3.2)

are invertible, provided Imµ ̸= 0. Here, I1 is the scalar identity operator.

the mapping properties of the above potentials and the boundary integral operators are described
in Appendix.

3.2 Fundamental solution and potentials of the steady state
oscillation equations of electro-magneto-elasticity

Let us consider the equation

ΦA(ξ, ω) := detA(iξ, ω) = det

[cijlkξiξl − ρ1ω
2δjk]3×3 [elijξlξi]3×1 [qlijξlξi]3×1

[−eiklξiξl]1×3 εilξiξl ailξiξl

[−qiklξiξl]1×3 ailξiξl µilξiξl


5×5

= 0, (3.3)

ξ ∈ R3 \ {0}, ω ∈ R, i, j, k, l = 1, 2, 3,

where ΦA(ξ, ω) is the characteristic polynomial of the operator A(∂, ω). The origin is an isolated zero
of (3.3).

We are interested in the real zeros of the function ΦA(ξ, ω), ξ ∈ R3 \ {0}.
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Denote

λ :=
ρ1ω

2

|ξ|2
, ξ̂ :=

ξ

|ξ|
for |ξ| ̸= 0,

B(λ, ξ̂) :=


[cijklξ̂iξ̂l − λδjk]3×3 [Aj4(ξ̂)]3×1 [Aj5(ξ̂)]3×1

[−Aj4(ξ̂)]1×3 εilξ̂iξ̂l ailξ̂iξ̂l

[−Aj5(ξ̂)]1×3 ailξ̂iξ̂l µilξ̂iξ̂l


5×5

.

Then (3.3) can be rewritten as
Ψ(λ, ξ̂) := detB(λ, ξ̂) = 0. (3.4)

This is a cubic equation in λ with real coefficients.
The following theorem holds (see [11]).

Theorem 3.3. Equation (3.4) possesses three real positive roots λ1(ξ̂), λ2(ξ̂), λ3(ξ̂).

Denote the roots of equation (3.4) by λ1, λ2, λ3. Clearly, the equation of the surface Sω,j ,
j = 1, 2, 3, in the spherical coordinates reads as

r = rj(θ, φ) =

√
ρ1ω√
λj(ξ̂)

,

where
ξ1 = r cosφ sin θ, ξ2 = r sinφ sin θ, ξ3 = r cos θ

with 0 ≤ φ ≤ 2π, 0 ≤ θ ≤ π, r = |ξ|.
We have also the following identity

ΦA(ξ, ω) = detA(iξ, ω) = ΦA(ξ̂, 0) r
4

3∏
j=1

(
r2 − r2j (ξ̂)

)
= ΦA(ξ̂, 0) r

4
3∏

j=1

Pj(ξ).

It can easily be shown that the vector

n(ξ) = (−1)j |∇ΦA(ξ, ω)|−1∇ΦA(ξ, ω), ξ ∈ Sω,j ,

is an external unit normal vector to Sω,j at the point ξ.
Further, we assume that the following conditions are fulfilled (cf. [13, 30,39,40]):

(i) If ΦA(ξ, ω) = ΦA(ξ̂, 0) r
4P1(ξ)P2(ξ)P3(ξ), then ∇ξ

(
P1(ξ)P2(ξ)P3(ξ)

)
̸= 0 at real zeros ξ ∈

R3 \ {0} of polynomial (3.3), or

If ΦA(ξ, ω) = ΦA(ξ̂, 0) r
4P 2

1 (ξ)P2(ξ), then ∇ξ

(
P1(ξ)P2(ξ)

)
̸= 0 at real zeros ξ ∈ R3 \ {0} of

polynomial (3.3), or

If ΦA(ξ, ω) = ΦA(ξ̂, 0) r
4P 3

1 (ξ), then ∇ξP1(ξ) ̸= 0 at real zeros ξ ∈ R3 \ {0} of polynomial (3.3).

(ii) The Gaussian curvature of the surface, defined by the real zeros of the polynomial ΦA(ξ, ω),
ξ ∈ R3 \ {0}, does not vanish anywhere.

It follows from the above conditions (i) and (ii) that the real zeros ξ ∈ R3 \ {0} of the polynomial
ΦA(ξ, ω) form non-self-intersecting, closed, convex two-dimensional surfaces Sω,1, Sω,2, Sω,3, enclosing
the origin. For an arbitrary unit vector η = x/|x| with x ∈ R3 \ {0}, there exists only one point on
each Sω,j , namely, ξj = (ξj1, ξ

j
2, ξ

j
3) ∈ Sω,j such that the outward unit normal vector n(ξj) to Sω,j

at the point ξj has the same direction as η, i.e., n(ξj) = η. In this case, we say that the points ξj ,
j = 1, 2, 3, correspond to the vector η. From (i), we see that the surfaces Sω,j , j = 1, 2, 3, might have
multiplicites.
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We say that a vector-function U = (u1, u2, u3, u4, u5)
⊤ belongs to the Mm1,m2,m3(P) class if

U ∈ [C∞(Ω−)]5 and the relation

U(x) =
5∑

p=1

up(x)

holds, where up has the following uniform asymptotic expansion as r = |x| → ∞:

up ∼
3∑

j=1

e−i rξj
{
d p
0,mj

(η)rmj−2 +

∞∑
q=1

d p
q,mj

(η)rmj−2−q
}
, p = 1, 2, 3, (3.5)

u4(x) = O(r−1), ∂ku
4(x) = O(r−2), u5(x) = O(r−1), ∂ku

5(x) = O(r−2), k = 1, 2, 3,

here P = detA(i∂x, ω) and d p
q,mj

∈ C∞, j = 1, 2, 3 (see [13]).
These conditions are the generalized Sommerfeld–Kupradze type radiation conditions in the ani-

sotropic elasticity (cf. [27, 30]).
From condition (i) follows that our Mm1,m2,m3

(P) class is M1,1,1(P) or M2,1(P) or M3(P).
The class M1,1,1(P) is a subset of the generalized Sommerfeld–Kupradze class.
We can show the following uniqueness theorems.

Theorem 3.4. The homogeneous exterior Dirichlet boundary value problem

A(∂, ω)U = 0 in Ω−, {U}− = 0 on S,

has only the trivial solution in the class [H1
loc(Ω

−)]5 ∩Mm1,m2,m3
(P).

Theorem 3.5. The homogeneous exterior Dirichlet boundary value problem

A∗(∂, ω)V = 0 in Ω−, {V }− = 0 on S,

has only the trivial solution in the class [H1
loc(Ω

−)]5 ∩Mm1,m2,m3
(P∗), where P∗ = detA∗(∂, ω).

If the surfaces Sω,j , j = 1, 2, 3, have no multipicity, Theorems 3.4 and 3.5 are valid in the generalized
Sommerfeld–Kupradze class (cf. [27]).

Denote by Γ(x, ω) the fundamental matrix of the operator A(∂, ω). By means of the Fourier
transform method and the limiting absorption principle we can construct this matrix explicitly (see [40,
Chapter 1, Section 1])

Γ(x, ω) = lim
ε→0+

F−1
ξ→x

[
A−1(iξ, ω + iε)

]
, (3.6)

where F−1 is the inverse Fourier transform. Columns of the matrix Γ(x, ω) are infinitely differentiable
in R3 \ {0} and belong to the class SK1(R3 \ {0}).

Further, we introduce the single and double layer potentials associated with the differential operator
A(∂, ω),

Vω(g)(x) =

∫
S

Γ(x− y, ω)g(y) dyS, x ∈ Ω±,

Wω(f)(x) =

∫
S

[
T̃ (∂y, n(y))Γ

⊤(x− y, ω)
]⊤
f(y) dyS, x ∈ Ω±,

where g = (g1, . . . , g5)
⊤ and f = (f1, . . . , f5)

⊤ are the density vector-functions.
For a solution U ∈ [H1(Ω+)]5 to the homogeneous equation (1.9) in Ω+ we have the following

integral representation
U = Wω

(
{U}+

)
− Vω

(
{TU}+

)
in Ω+.

For these potentials the following theorem holds (see [6]).
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Theorem 3.6. Let g ∈ [H−1+s(S)]5 and f ∈ [Hs(S)]5, s > 0. Then

{Vω(g)(z)}± = Hω(g)(z), z ∈ S,

{Wω(f)(z)}± = ±2−1f(z) + K̃ω(f)(z), z ∈ S,{
T (∂y, n(y))Vω(g)(z)

}±
= ∓2−1g(z) + Kω(g)(z), z ∈ S,{

T (∂z, n(z))Wω(f)(z)
}+

=
{
T (∂z, n(z))Wω(f)(z)

}−
:= Lω(f)(z), z ∈ S,

where Hω is a weakly singular integral operator, K̃ω and Kω are singular integral operators, while Lω

is a pseudodifferential operator of order 1,

Hω(g)(z) :=

∫
S

Γ(z − y, ω)g(y) dyS, z ∈ S,

K̃ω(f)(z) :=

∫
S

[
T̃ (∂y, n(y))Γ

⊤(z − y, ω)
]⊤
f(y) dyS, z ∈ S,

Kω(g)(z) :=

∫
S

T (∂z, n(z))Γ(z − y, ω)g(y)dyS, z ∈ S.

The mapping properties of these potentials and the boundary integral operators are described in
Appendix.

4 Mixed type interaction problems for pseudo-oscillation
equations

In this section, we consider the mixed type interaction problems for the so-called pseudo-oscillation
equations. These problems are intermediate auxiliary ones used for investigation of interaction prob-
lems for the steady state oscillation equations.

4.1 Formulation of the problems
The matrix differential operator corresponding to the basic pseudo-oscillation equations of the electro-
magneto-elasticity for anisotropic homogeneous media is written as follows:

A(∂, τ) = [Ajk(∂, τ)]5×5,

Ajk(∂, τ) = cijkl∂i∂l + ρ1τ
2δjk, Aj4(∂, τ) = elij∂l∂i, Aj5(∂, τ) = qlij∂l∂i,

A4k(∂, τ) = −eikl∂i∂l, A44(∂, τ) = εil∂i∂l, A45(∂, τ) = ail∂i∂l,

A5k(∂, τ) = −qikl∂i∂l, A54(∂, τ) = ail∂i∂l, A55(∂, τ) = µil∂i∂l,

j, k = 1, 2, 3, where τ is a purely imaginary complex parameter: τ = iσ, σ ̸= 0, σ ∈ R.

Mixed type problem (Mτ ): Find a vector-function U = (u, u4, u5)
⊤ ∈ [H1(Ω+)]5 and a scalar function

w ∈ H1
loc(Ω

−) ∩ Som1(Ω
−) satisfying the differential equations

A(∂, τ)U = 0 in Ω+, (4.1)
∆w + ρ2ω

2w = 0 in Ω−, (4.2)

the transmission conditions

{u · n}+ = b1{∂nw}− + f0 on S, (4.3){
[TU ]j

}+
= b2{w}−nj + fj on S, j = 1, 2, 3, (4.4)
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and the mixed boundary conditions

{u4}+ = f
(D)
1 on SD, (4.5)

{u5}+ = f
(D)
2 on SD, (4.6){

[TU ]4
}+

= f
(N)
1 on SN , (4.7){

[TU ]5
}+

= f
(N)
2 on SN , (4.8)

where b1 and b2 are the given complex constants satisfying conditions (1.17),

f0 ∈ H−1/2(S), fj ∈ H−1/2(S), j = 1, 2, 3,

f
(D)
1 ∈ H1/2(SD), f

(D)
2 ∈ H1/2(SD), f

(N)
1 ∈ H−1/2(SN ), f

(N)
2 ∈ H−1/2(SN ).

Using Green’s formulas and the Rellich–Vekua lemma, we obtain the following uniqueness theorem
for the problem (Mτ ).

Theorem 4.1. Let τ = iσ, σ ̸= 0, σ ∈ R. The homogeneous problem (Mτ ) has only the trivial
solutions.

4.2 Fundamental solution and potentials for the pseudo-oscillation
equations of piezoelectro-magneto-elasticity

The full symbol of the pseudo-oscillation operator A(∂, τ) is elliptic provided τ = iσ, σ ̸= 0, σ ∈ R, i.e.,

detA(−iξ, τ) ̸= 0 ∀ ξ ∈ R3 \ {0}.

Moreover, the entries of the inverse matrix A−1(−iξ, τ) are locally integrable functions decaying at
infinity as O(|ξ|−2). Therefore, we can construct the fundamental matrix Γ(x, τ) = [Γkj(x, τ)]5×5 of
the operator A(∂, τ) by the Fourier transform technique,

Γ(x, τ) = F−1
ξ→x

[
A−1(−iξ, τ)

]
. (4.9)

Note that in a neighbourhood of the origin the following estimates hold (0 < |x| < 1):∣∣Γjk(x, τ)− Γjk(x, ω)
∣∣ ≤ c(τ, ω), (4.10)∣∣∣∂l[Γjk(x, τ)− Γjk(x, ω)
]∣∣∣ ≤ c(τ, ω) ln |x|−1, (4.11)∣∣∣∂α[Γjk(x, τ)− Γjk(x, ω)
]∣∣∣ ≤ c(τ, ω)|x|1−|α|, j, k = 1, 5, (4.12)

where α = (α1, α2, α3) is a multi-index with |α| = α1+α2+α3 ≥ 2, while c(τ, ω) is a positive constant
depending on τ = iσ and ω with σ, ω ∈ R \ {0} (cf. [30]).

Let us introduce the single and double layer pseudo-oscillation potentials

Vτ (h) =

∫
S

Γ(x− y, τ)h(y) dyS,

Wτ (h) =

∫
S

[
T̃ (∂y, n(y))Γ

⊤(x− y, τ)
]⊤
h(y) dyS,

where h = (h1, h2, h3, h4, h5)
⊤ is a density vector-function.

These pseudo-oscillation potentials have the following jump properties (see [6]).
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Theorem 4.2. Let h(1) ∈ [H−1+s(S)]5, h(2) ∈ [Hs(S)]5, s > 0. Then the following jump relations
hold on S: {

Vτ (h
(1))(z)

}±
=

∫
S

Γ(z − y, τ)h(1)(y) dyS,

{
Wτ (h

(2))(z)
}±

= ±2−1h(2)(z) +

∫
S

[
T̃ (∂y, n(y))Γ

⊤(z − y, τ)
]⊤
h(2)(y) dyS,

{
TVτ (h

(1))(z)
}±

= ∓2−1h(1)(z) +

∫
S

T (∂z, n(z))Γ(z − y, τ)h(1)(y) dyS,

{
TWτ (h

(2))(z)
}+

=
{
TWτ (h

(2))(z)
}−
.

Further, we introduce the boundary operators

Hτ (h)(z) =

∫
S

Γ(z − y, τ)h(y) dyS,

Kτ (h)(z) =

∫
S

T (∂z, n(z))Γ(z − y, τ)h(y) dyS,

K̃τ (h)(z) =

∫
S

[
T̃ (∂y, n(y))Γ

⊤(z − y, τ)
]⊤
h(y) dyS,

Lτ (h)(z) =
{
TWτ (h)(z)

}+
=
{
TWτ (h)(z)

}−
.

Note that Hτ is a weakly singular integral operator (pseudodifferential operator of order −1), Kτ and
K̃τ are singular integral operators (pseudodifferential operator of order 0), and Lτ is a pseudodiffe-
rential operator of order 1.

The mapping properties of these potentials are described in Appendix.

4.3 Some results for pseudodifferential equations on a manifold
with boundary

The Fredholm properties of strongly elliptic pseudodifferential operators on a compact manifold with
boundary are studied in [1, 16, 18,19,37].

The spaces Hs
p and Bs

p,p (with s ∈ R, 1 < p < ∞) denote the well-known Bessel potential and
Besov function spaces, respectively (see [38]).

Let Σ ∈ C∞ be a compact n-dimensional, nonselfintersecting manifold with boundary ∂Σ ∈ C∞

and let A be a strongly elliptic scalar pseudodifferential operator of order ν ∈ R on Σ, that is, there
is a positive constant c0 such that

ReSA(x, ξ) ≥ c0

for x ∈ Σ, ξ ∈ Rn with |ξ| = 1. Here, we denote by SA(x, ξ) the principal homogeneous symbol of
the operator A in some local coordinate system (x ∈ Rn

+, ξ ∈ Rn \ {0}).
The Fredholm properties of strongly elliptic scalar pseudodifferential operators on a compact man-

ifold with boundary are investigated by the Wiener–Hopf factorization method. The factorization
index of the principal homogeneous symbol of the operator A is calculated by the following formula
(see [16]):

κ(x) =
ν

2
+

1

2πi
ln SA(x, 0, . . . , 0,−1)

SA(x, 0, . . . , 0,+1)

=
ν

2
+

1

2π

(
argSA(x, 0, . . . , 0,−1)− argSA(x, 0, . . . , 0,+1)

)
− i

2π
ln
∣∣∣∣SA(x, 0, . . . , 0,−1)

SA(x, 0, . . . , 0,+1)

∣∣∣∣,
where

−π
2
< argSA(x, 0,±1) <

π

2
, x ∈ ∂Σ.



Mixed Type Interaction Problem 83

Theorem 4.3. Let s ∈ R, 1 < p <∞, and A be a strongly elliptic pseudodifferential scalar operator
of order ν ∈ R. Then the operator

A : H̃s
p(Σ) → Hs−ν

p (Σ)
(
B̃s

p,p(Σ) → Bs−ν
p,p (Σ)

)
(4.13)

is Fredholm with index zero if

1

p
− 1 + sup

x∈∂Σ
Reκ(x) < s <

1

p
+ inf

x∈∂Σ
Reκ(x). (4.14)

Moreover, the null space and index of operator (4.13) are the same for all s and p satisfying inequality
(4.14).

4.4 Existence of solutions of the problem (Mτ )

By Theorem 6.4 (see Appendix), the operator Hτ : [Hs(S)]5 → [Hs+1(S)]5 is invertible for all s ∈ R
and we can look for a solution of the problem (Dτ ) in the form

U = VτH−1
τ g in Ω+, w = (Wω + µVω)h in Ω−, µ ∈ C, Imµ ̸= 0,

where g = (g̃, g4, g5)
⊤ ∈ [H1/2(S)]5, g̃ = (g1, g2, g3)

⊤, h ∈ H1/2(S) are unknown densities. From
Theorems 6.1, 6.3 and 6.4 (see Appendix) it follows that U ∈ [H1(Ω+)]5 and w ∈ H1

loc(Ω
−).

The transmission conditions (4.3), (4.4), and the Dirichlet type conditions (4.5), (4.6) lead to the
following system of pseudodifferential equations with respect to the unknowns g̃, g4, g5 and h:

g̃ · n− b1M(h) = f0 on S, (4.15)[(
− 2−1I5 + Kτ

)
H−1

τ g
]
j
− b2njN (h) = fj on S, j = 1, 2, 3, (4.16)

rSD
g4 = f

(D)
1 on SD, (4.17)

rSD
g5 = f

(D)
2 on SD, (4.18)

rSN
[Aτg]4 = f

(N)
1 on SN , (4.19)

rSN
[Aτg]5 = f

(N)
2 on SN , (4.20)

where
N = −2−1I1 +K∗

ω + µHω, M = Lω + µ
(
2−1I1 +Kω

)
.

Here and in what follows, Im stands for the m×m unit matrix.
The matrix operator generated by the left-hand side expressions in system (4.15)–(4.20) reads as

Pτ,M :=



[n]1×3 0 0 −b1M
[Ajk

τ ]3×3 [Aj4
τ ]3×1 [Aj5

τ ]3×1 [−b2njN ]3×1

[0]1×3 rSD
I1 0 0

[0]1×3 0 rSD
I1 0

rSN
[A4j

τ ]1×3 rSN
[A44

τ ] rSN
[A45

τ ] 0

rSN
[A5j

τ ]1×3 rSN
[A54

τ ] rSN
[A55

τ ] 0


8×6

, j, k = 1, 2, 3,

where
Aτ :=

(
− 2−1I5 + Kτ

)
H−1

τ = [Ajk
τ ]5×5, j, k = 1, 5, (4.21)

is the Steklov–Poincaré type operator on S. This operator is a strongly elliptic pseudodifferential
operator of order 1 (see [6, 9] for details).

By Theorems 6.2 and 6.4 (see Appendix), the operator Pτ,M possesses the following mapping
property:

Pτ,M : [Hs(S)]6 → [Hs−1(S)]4 × [Hs(SD)]2 × [Hs−1(SN )]2, s ∈ R. (4.22)
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Next, we show that system (4.15)–(4.20) is uniquely solvable in the space [H1/2(S)]6.
Any extensions of the Dirichlet datum f

(D)
1 ∈ H1/2(SD) and f

(D)
2 ∈ H1/2(SD) onto the whole

boundary S have the form

G
(1)
0 + g

(1)
0 ∈ H1/2(S), G

(2)
0 + g

(2)
0 ∈ H1/2(S),

where G(1)
0 ∈ H1/2(S) and G

(2)
0 ∈ H1/2(S) are some fixed extensions of f (D)

1 and f
(D)
2 , respectively,

while g(1)0 ∈ H̃1/2(SN ), g(2)0 ∈ H̃1/2(SN ).
Rewrite system (4.15)–(4.20) in the equivalent form with respect to g̃, g4, g5, h, g(1)0 , g(2)0 :

g̃ · n− b1M(h) = f0 on S, (4.23)[
Aτ (g̃, g4)

⊤]
j
− b2njN (h) = fj on S, j = 1, 2, 3, (4.24)

g4 − g
(1)
0 = G

(1)
0 on S, (4.25)

g5 − g
(2)
0 = G

(2)
0 on S, (4.26)

rSN

[
Aτ (g̃, g4, g5)

⊤]
4
= f

(N)
1 on SN , (4.27)

rSN

[
Aτ (g̃, g4, g5)

⊤]
5
= f

(N)
2 on SN . (4.28)

Remark 2. Systems (4.15)–(4.20) and (4.23)–(4.28) are equivalent in the following sense:

(i) if (g̃, g4, g5, h) solves system (4.15)–(4.20), then (g̃, g4, g5, h, g0) solves system (4.23)–(4.28), where
g
(1)
0 = g4 −G

(1)
0 , g(2)0 = g5 −G

(2)
0 and G(1)

0 , G(2)
0 are some fixed extensions of the functions f (D)

1

and f
(D)
2 from SD onto the whole boundary S;

(ii) if (g̃, g4, g5, h, g(1)0 , g
(2)
0 ) solves system (4.23)–(4.28), then (g̃, g4, g5, h) solves system (4.15)–(4.20).

From the results obtained in [11], system (4.23)–(4.26) is uniquely solvable with respect to g̃, g4,
g5, h for any extensions G(1)

0 + g
(1)
0 and G(2)

0 + g
(2)
0 of the Dirichlet boundary data f (D)

1 and f (D)
2 . We

have to find such extensions of f (D)
1 and f (D)

2 (i.e., such functions g(1)0 and g(2)0 ) that equations (4.27)
and (4.28) are satisfied.

The operator corresponding to system (4.23)–(4.28) has the following form:

P(1)
τ,M :=



[n]1×3 0 0 −b1M 0 0

[Ajk
τ ]3×3 [Aj4

τ ]3×1 [Aj5
τ ]3×1 [−b2njN ]3×1 [0]3×1 [0]3×1

[0]1×3 I1 0 0 −I1 0

[0]1×3 0 I1 0 0 −I1
rSN

[A4j
τ ]1×3 rSN

[A44
τ ] rSN

[A45
τ ] 0 0 0

rSN
[A5j

τ ]1×3 rSN
[A54

τ ] rSN
[A55

τ ] 0 0 0


8×8

, j, k = 1, 2, 3.

The operator P(1)
τ,M is bounded in the spaces

P(1)
τ,M : [Hs(S)]6 × [H̃s(SN )]2 → [Hs−1(S)]4 × [Hs(S)]2 × [Hs−1(SN )]2, s ∈ R.

Let us consider the system generated by equations (4.23)–(4.26) with respect to the unknowns g̃, g4,
g5, and h:

g̃ · n− b1M(h) = f0 on S, (4.29)[
Aτ (g̃, g4, g5)

⊤]
j
− b2njN (h) = fj on S, j = 1, 2, 3, (4.30)

g4 = G
(1)
0 + g

(1)
0 on S, (4.31)

g5 = G
(2)
0 + g

(2)
0 on S. (4.32)
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System (4.29)–(4.32) is uniquely solvable in the class [H1/2(S)]6 and the corresponding operator of
this system

Pτ,D : [Hs(S)]6 → [Hs−1(S)]4 × [Hs(S)]2

is invertible for all s ∈ R (see Appendix, Theorem 6.6).
Define h from equation (4.29) (see Theorem 3.2) and substitute in equation (4.30). Then we obtain

a uniquely solvable system with respect to g̃, g4, g5:

Bτ (g̃, g4, g5)
⊤ = Ψ on S, (4.33)

where

Bτ =

[Cτ ]3×3 [Aj4
τ ]3×1 [Aj5

τ ]3×1

[0]1×3 I1 0

[0]1×3 0 I1

)5×5,

[Cτ ]3×3 = [Ajk
τ ]3×3 − b2 b

−1
1 [njN ]3×1[M−1nk]1×3, j, k = 1, 2, 3,

Ψ = (Ψ1,Ψ2,Ψ3,Ψ4,Ψ5)
⊤ ∈ [H−1/2(S)]3 × [H1/2(S)]2,

Ψj = fj − b2b
−1
1 nj NM−1f0, j = 1, 2, 3,

Ψ4 = G
(1)
0 + g

(1)
0 , Ψ5 = G

(2)
0 + g

(2)
0 .

Since the operator

Bτ : [H1/2(S)]5 → [H−1/2(S)]3 × [H1/2(S)]2

is invertible, from equation (4.33) we deduce

(g̃, g4, g5)
⊤ = B−1

τ Ψ on S. (4.34)

After substituting (4.34) into equations (4.27) and (4.28), on the manifold SN with boundary we
obtain the following scalar pseudodifferential equations with respect to the unknown functions g(1)0

and g
(2)
0 :

rSN
A(1)

τ g
(1)
0 = F (1) on SN ,

rSN
A(2)

τ g
(2)
0 = F (2) on SN ,

where

A(1)
τ g

(1)
0 : =

[
Aτ B−1

τ (0, 0, 0, g
(1)
0 , 0)⊤

]
4
,

F (1) : = f
(N)
1 − rSN

[
Aτ B−1

τ (Ψ1,Ψ2,Ψ3, G
(1)
0 , 0)⊤

]
4
∈ H−1/2(SN ),

A(2)
τ g

(2)
0 : =

[
Aτ B−1

τ (0, 0, 0, 0, g
(2)
0 )⊤

]
5
,

F (2) : = f
(N)
2 − rSN

[
Aτ B−1

τ (Ψ1,Ψ2,Ψ3, 0, G
(2)
0 )⊤

]
5
∈ H−1/2(SN ).

Thus system (4.23)–(4.28) can be reduced to the following equivalent system with respect to the
unknowns g̃, g4, g5, h, g(1)0 , g(2)0 :

P(2)
τ,M (g̃, g4, g5, h, g

(1)
0 , g

(2)
0 )⊤ = Φ,
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where

P(2)
τ,M =



[n]1×3 0 0 −b1M 0 0

[Ajk
τ ]3×3 [Aj4

τ ]3×1 [Aj5
τ ]3×1 [−b2njN ]3×1 [0]3×1 [0]3×1

[0]1×3 I1 0 0 −I1 0

[0]1×3 0 I1 0 0 −I1
[0]1×3 0 0 0 rSN

A(1)
τ 0

[0]1×3 0 0 0 0 rSN
A(2)

τ


8×8

=


Pτ,D Ĩ∗6×1 I∗6×1

[0]1×6 rSN
A(1)

τ 0

[0]1×6 0 rSN
A(2)

τ


8×8

, j, k = 1, 2, 3,

with
I∗6×1 = (0, 0, 0, 0, 0,−I1)⊤, Ĩ∗6×1 = (0, 0, 0, 0,−I1, 0)⊤

and

Φ =
(
f0, f1, f2, f3, G

(1)
0 , G

(2)
0 , F (1), F (2)

)⊤ ∈ [H−1/2(S)]4 × [H1/2(S)]2 × [H−1/2(SN )]2.

Therefore. the operator

P(2)
τ,M : [H1/2(S)]6 × [H̃1/2(SN )]2 → [H−1/2(S)]4 × [H1/2(S)]2 × [H−1/2(SN )]2

is Fredholm with index zero if the operators

rSN
A(1)

τ , rSN
A(2)

τ : H̃1/2(SN ) → H−1/2(SN )

are Fredholm with index zero.
Let us show that the operators rSN

A(1)
τ , rSN

A(2)
τ are Fredholm with index zero. First, we show

that the pseudodifferential operators of order 1

rSN
A(1)

τ , rSN
A(2)

τ : H̃s(SN ) → Hs−1(SN ), s ∈ R,

are strongly elliptic.
By S

A
(1)
τ
(x, ξ) = S

A
(1)
τ
(ξ) and S

A
(2)
τ
(x, ξ) = S

A
(2)
τ
(ξ) we denote the principal homogeneous

symbol of the operators A(1)
τ and A(2)

τ at the “frozen” point x ∈ SN , where ξ ∈ R2. Below, we
suppose that the principal homogeneous symbols of the operators are written at the “frozen” point
x ∈ SN .

First, we find the form of the principal homogeneous symbol of the pseudodifferential opera-
tor AτB−1

τ

SAτB−1
τ
(ξ) = SAτ (ξ)S

−1
Bτ

(ξ),

where

SAτ
(ξ) =

[Sjk
Aτ

(ξ)]3×3 [Sj4
Aτ

(ξ)]3×1 [Sj5
Aτ

(ξ)]3×1

[S4k
Aτ

(ξ)]1×3 S44
Aτ

(ξ) S45
Aτ

(ξ)

[S5k
Aτ

(ξ)]1×3 S54
Aτ

(ξ) S55
Aτ

(ξ)


5×5

, j, k = 1, 2, 3,

is the principal homogeneous symbol of the Steklov–Poincaré type operator Aτ . This operator is
strongly elliptic, since the pseudodifferential operator NM−1 is of order −1. Therefore, the principal
homogeneous symbol of the operator Bτ has the form

SBτ (ξ) =

[Sjk
Aτ

(ξ)]3×3 [Sj4
Aτ

(ξ)]3×1 [Sj5
Aτ

(ξ)]3×1

[0]1×3 I1 0

[0]1×3 0 I1


5×5

, j, k = 1, 2, 3,
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and the inverse symbol matrix of SBτ (ξ) reads as

S−1
Bτ

(ξ) =

[Sjk
Aτ

(ξ)]−1
3×3 −[Sjk

Aτ
(ξ)]−1

3×3 [S
j4
Aτ

(ξ)]3×1 −[Sjk
Aτ

(ξ)]−1
3×3 [S

j5
Aτ

(ξ)]3×1

[0]1×3 I1 0

[0]1×3 0 I1


5×5

,

j, k = 1, 2, 3.

Then we obtain

SAτ
(ξ)S−1

Bτ
(ξ) =

 I3 [0]3×1 [0]3×1

[D1]1×3 D2 D3

[D4]1×3 D5 D6


5×5

,

where

D1 = [S4k
Aτ

(ξ)]1×3 [S
jk
Aτ

(ξ)]−1
3×3,

D2 = −[S4k
Aτ

(ξ)]1×3 [S
jk
Aτ

(ξ)]−1
3×3 [S

j4
Aτ

(ξ)]3×1 +S44
Aτ

(ξ),

D3 = −[S4k
Aτ

(ξ)]1×3 [S
jk
Aτ

(ξ)]−1
3×3 [S

j5
Aτ

(ξ)]3×1 +S45
Aτ

(ξ),

D4 = [S5k
Aτ

(ξ)]1×3 [S
jk
Aτ

(ξ)]−1
3×3,

D5 = −[S5k
Aτ

(ξ)]1×3 [S
jk
Aτ

(ξ)]−1
3×3 [S

j4
Aτ

(ξ)]3×1 +S54
Aτ

(ξ),

D6 = −[S5k
Aτ

(ξ)]1×3 [S
jk
Aτ

(ξ)]−1
3×3 [S

j5
Aτ

(ξ)]3×1 +S55
Aτ

(ξ),

j, k = 1, 2, 3.

Therefore, the principal homogeneous symbols of the pseudodifferential operators A(1)
τ and A(2)

τ have
the form

S
A

(1)
τ
(ξ) = −[S4k

Aτ
(ξ)]1×3 [S

jk
Aτ

(ξ)]−1
3×3 [S

j4
Aτ

(ξ)]3×1 +S44
Aτ

(ξ), j, k = 1, 2, 3,

S
A

(2)
τ
(ξ) = −[S5k

Aτ
(ξ)]1×3 [S

jk
Aτ

(ξ)]−1
3×3 [S

j5
Aτ

(ξ)]3×1 +S55
Aτ

(ξ), j, k = 1, 2, 3.

Since the symbol SAτ (ξ) is strongly elliptic, it is easy to check that the symbols [Sjk
Aτ

(ξ)]−1
3×3, j, k =

1, 2, 3, S44
Aτ

(ξ) and S55
Aτ

(ξ) are also strongly elliptic.
From the strong ellipticity of the operator Aτ , the following inequality follows:

ReSAτ
(ξ)ζ · ζ ≥ c0|ξ| |ζ|2,

where c0 is a positive constant, ξ ∈ R2, ζ = (ζ
′
, ζ4, ζ5)

⊤ ∈ C4.
Suppose now that

ζ
′
= −[Sjk

Aτ
(ξ)]−1

3×3 [S
j4
Aτ

(ξ)]3×1ζ4, j, k = 1, 2, 3.

Then

ReSAτ (ξ)(ζ
′
, ζ4, 0)

⊤ · (ζ
′
, ζ4, 0)

⊤

= Re

 [0]3×1

S
A

(1)
τ
(ξ)ζ4

[S5k
Aτ

(ξ)]1×3ζ
′ +S54

Aτ
(ξ)ζ4

 ·

ζ ′ζ4
0

 = ReS
A

(1)
τ
(ξ)|ζ4|2 ≥ c0|ξ|

(
|ζ

′
|2 + |ζ4|2

)
≥ c0|ξ| |ζ4|2,

i.e.,
ReS

A
(1)
τ
(ξ) ≥ c0|ξ|.

Thus we find that the pseudodifferential operator rSN
A(1)

τ is strongly elliptic. Analogously, we
can show that the pseudodifferential operator rSN

A(2)
τ is strongly elliptic. Therefore, it follows from

Theorem 4.3 for p = 2 that the operators

rSN
A(j)

τ : H̃s(SN ) → Hs−1(SN )
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are Fredholm with index zero if

−1

2
+ sup

x∈∂SN

Reκj(x) < s <
1

2
+ inf

x∈∂SN

Reκj(x), (4.35)

where κj(x), j = 1, 2, are the factorization indices of the symbols S
A

(j)
τ
(x, ξ) = S

A
(j)
τ
(ξ), j = 1, 2, at

the “frozen” point x ∈ ∂SN , whose real part is calculated by the formula (see Subsection 4.3):

Reκj(x) =
1

2
+

1

2π
argS

A
(j)
τ
(x, 0,−1)− 1

2π
argS

A
(j)
τ
(x, 0,+1), (4.36)

−π
2
< argS

A
(j)
τ
(x, 0,±1) <

π

2
, j = 1, 2, x ∈ ∂SN .

It is evident that 0 < Reκj(x) < 1, j = 1, 2, for x ∈ ∂SN and s = 1
2 satisfies condition (4.35).

Thus we find that the operators

P(1)
τ,M ,P

(2)
τ,M : [Hs(S)]6 × [H̃s(SN )]2 → [Hs−1(S)]4 × [Hs(S)]2 × [Hs−1(SN )]2

are Fredholm with index zero for all s satisfying

−1

2
+ sup

x∈∂SN , j=1,2
Reκj(x) < s <

1

2
+ inf

x∈∂SN , j=1,2
Reκj(x). (4.37)

Now we show that the operator P(1)
τ,M is injective.

Let (
g̃, g4, g5, h, g

(1)
0 , g

(2)
0

)⊤ ∈ [H1/2(S)]6 × [H̃1/2(SN )]2

be some solutions of the homogeneous system

P(1)
τ,M

(
g̃, g4, g5, h, g

(1)
0 , g

(2)
0

)⊤
= 0.

It is clear that g4 = g
(1)
0 , g5 = g

(2)
0 and the potentials

U = VτH−1
τ g in Ω+, w = (Wω + µVω)h in Ω−,

solve the homogeneous problem (Mτ ).
It follows from the uniqueness result for the problem (Mτ ) (see Theorem 4.1) that U = 0 in Ω+

and w = 0 in Ω−. Then

{U}+ =
(
g̃, g

(1)
0 , g

(2)
0

)⊤
= 0 on S and {∂nw}− = Mh = 0 on S.

From the invertibility of the operator M (see Theorem 3.2), we obtain that h = 0 on S.
Hence we obtain that system (4.23)–(4.28) is uniquely solvable. It means that the corresponding

operator of system (4.23)–(4.28)

P(1)
τ,M : [H1/2(S)]6 × [H̃1/2(SN )]2 → [H−1/2(S)]4 × [H1/2(S)]2 × [H−1/2(SN )]2

is invertible.
The null space and index of the operator P(1)

τ,M are the same for all s satisfying (4.37).
Hence it follows that the operator

P(1)
τ,M : [Hs(S)]6 × [H̃s(SN )]2 → [Hs−1(S)]4 × [Hs(S)]2 × [Hs−1(SN )]2

is invertible for all s satisfying (4.37).
Note that the solutions g̃, g4, g5, h of system (4.23)–(4.28) do not depend on the extensions

G
(1)
0 + g

(1)
0 and G

(2)
0 + g

(2)
0 of the functions f

(D)
1 and f

(D)
2 , respectively, while g

(1)
0 and g

(2)
0 do.

However, the sums G(1)
0 + g

(1)
0 and G

(2)
0 + g

(2)
0 are defined uniquely.

Due to Remark 2, we conclude that the operator

Pτ,M : [Hs(S)]6 → [Hs−1(S)]4 × [Hs(SD)]2 × [Hs−1(SN )]2

is invertible for all s satisfying (4.37).
Thus for the problem (Mτ ) the following existence theorem holds.
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Theorem 4.4. Let τ = iσ, σ ̸= 0, σ ∈ R, and let f0 ∈ H−1/2(S), fj ∈ H−1/2(S), j = 1, 2, 3,
f
(D)
1 , f

(D)
2 ∈ H1/2(SD) and f

(N)
1 , f

(N)
2 ∈ H−1/2(SN ). Then the problem (Mτ ) has a unique solution

(U,w), U ∈ [H1(Ω+)]5, w ∈ H1
loc(Ω

−) ∩ Som1(Ω
−), which is represented by the potentials

U = VτH−1
τ g in Ω+, w = (Wω + µVω)h in Ω−,

where the densities g ∈ [H1/2(S)]5 and h ∈ H1/2(S) are defined from the uniquely solvable system
(4.15)–(4.20). If the conditions

f0 ∈ Hs−1(S), fj ∈ Hs−1(S), j = 1, 2, 3, f
(D)
1 , f

(D)
2 ∈ Hs(SD), f

(N)
1 , f

(N)
2 ∈ Hs−1(SN )

hold for the data in (4.3)–(4.8) and
1

2
< s <

1

2
+ inf

x∈∂SN , j=1,2
Reκj(x), (4.38)

then the solution (U,w) of the mixed type problem (Mτ ) exists, is unique and U ∈ [Hs+1/2(Ω+)]5,
w ∈ H

s+1/2
loc (Ω−) ∩ Som1(Ω

−).
Moreover, if the conditions

f0 ∈ Hs(S), fj ∈ Hs−1(S), j = 1, 2, 3, f
(D)
1 , f

(D)
2 ∈ Hs(SD), f

(N)
1 , f

(N)
2 ∈ Hs−1(SN )

hold for the data in (4.3)–(4.8) and (4.38) is satisfied, then the solution (U,w) of the mixed type
problem (Mτ ) exists, is unique and U ∈ [Hs+1/2(Ω+)]5, w ∈ H

s+3/2
loc (Ω−) ∩ Som1(Ω

−).
Remark 3. In the last statement of Theorem 4.4, the smoothness of w follows from the representation
of h (see (4.15))

h = b−1
1 M−1(g̃ · n)− b−1

1 M−1(f0) ∈ Hs+1(S) on S

and mapping properties of potentials Wω and Vω (see Appendix, Theorem 6.1), where f0 ∈ Hs(S),
g̃ ∈ [Hs(S)]3 and s satisfies (4.38).

Note that from the invertibility of the operator P(1)
τ,M there follows the invertibility of the operator

P(2)
τ,M . Therefore, the following Remark holds.

Remark 4. The operators

rSN
A(1)

τ , rSN
A(2)

τ : H̃s(SN ) → Hs−1(SN )

are invertible for all s satisfying (4.35).

5 Existence of a solution of the mixed type problem (Mω)

We look for a solution of the problem (Mω) in the form

U = Vωg in Ω+, w = (Wω + µVω)h in Ω−, µ ∈ C, Imµ ≠ 0,

where g ∈ [H−1/2(S)]5 and h ∈ H1/2(S) are unknown densities, and ω ∈ R \ {0}. From Theorems 6.1
and 6.3 (see Appendix), it follows that U ∈ [H1(Ω+)]5 and w ∈ H1

loc(Ω
−).

The transmission conditions (1.11), (1.12), and the mixed boundary conditions (1.13), (1.14),
(1.15), (1.16) lead then to the following system of pseudodifferential equations with respect to the
unknowns g and h:

[Hωg]lnl − b1M(h) = f0 on S, (5.1)[
(−2−1I4 + Kω)g

]
j
− b2njN (h) = fj on S, j = 1, 2, 3, (5.2)

[Hωg]4 = f
(D)
1 on SD, (5.3)

[Hωg]5 = f
(D)
2 on SD, (5.4)[

(−2−1I5 + Kω)g
]
4
= f

(N)
1 on SN , (5.5)[

(−2−1I5 + Kω)g
]
5
= f

(N)
2 on SN . (5.6)
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The operator generated by the left-hand side of system (5.1)–(5.4) reads as

Qω,M =



[nlHlk
ω ]1×5 −b1M

[(−2−1I5 + Kω)
jk]3×5 [−b2njN ]3×1

[H4k
ω ]1×5 0

[H5k
ω ]1×5 0

[(−2−1I5 + Kω)
4k]1×5 0

[(−2−1I5 + Kω)
5k]1×5 0


8×6

, j = 1, 2, 3, k = 1, 5.

By Theorem 6.5, the operator

Qω,M : [Hs−1(S)]5 ×Hs(S) → [Hs−1(S)]4 × [Hs(SD)]2 × [Hs−1(SN )]2, s ∈ R,

is bounded.
In view of estimates (4.10)–(4.12), it follows that the main parts of the operators Hω and Hτ (as

well as the main parts of the operators Kω and Kτ ) are the same, implying that the operators

Hω − Hτ : [H−1/2(S)]5 → [H1/2(S)]5, (5.7)
Kω − Kτ : [H−1/2(S)]5 → [H−1/2(S)]5 (5.8)

are compact. Hence the operator

Qω,M −Qτ,M : [Hs−1(S)]5 ×Hs(S) → [Hs−1(S)]4 × [Hs(SD)]2 × [Hs−1(SN )]2, s ∈ R,

is compact, where
Qτ,M := Pτ,MTτ

with

Tτ :=

(
Hτ [0]5×1

[0]1×5 I1

)
6×6

. (5.9)

Therefore, from the invertibility of the operators

Pτ,M : [Hs(S)]6 → [Hs−1(S)]4 × [Hs(SD)]2 × [Hs−1(SN )]2

for all s satisfying (4.35) and

Tτ : [Hs−1(S)]6 ×H1/2(S) → [Hs(S)]6

for all s (see Section 4), the invertibility of the operator

Qτ,M : [Hs−1(S)]5 ×Hs(S) → [Hs−1(S)]4 × [Hs(SD)]2 × [Hs−1(SN )]2

follows for all s satisfying (4.35). In turn, this implies that the operator

Qω,M : [Hs−1(S)]5 ×Hs(S) → [Hs−1(S)]4 × [Hs(SD)]2 × [Hs−1(SN )]2 (5.10)

is Fredholm with index zero for all s satisfying (4.35).
Let us show that for ω ̸∈ JM (Ω+) the operator Qω,M is injective. Indeed, let g ∈ [H−1/2(S)]5 and

h ∈ H1/2(S) be solutions of the homogeneous system

Qω,M (g, h)⊤ = 0 on S.

Construct a vector-function U = Vωg and a scalar function w = (Wω +µVω)h with µ ∈ C, Imµ ̸= 0.
Clearly, the pair (U,w) solves the homogeneous problem (Mω). Since ω ̸∈ JM (Ω+), it follows from
Theorem 2.1 that U = Vωg = 0 in Ω+, w = (Wω + µVω)h = 0 in Ω−.
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In view of the equation {w}− = N (h) = 0 on S and invertibility of the operator N , we deduce
that h = 0 on S. From continuity of single layer potential, we have {U}+ = {U}− = 0 on S.

Thus U = Vωg solves the exterior homogeneous Dirichlet problem

A(∂, ω)U = 0 on Ω−, {U}− = 0 on S. (5.11)

U = Vωg ∈ Mm1,m2,m3(P) and by Theorem 3.4 U = Vωg ≡ 0 in Ω−. Using the jump formula
{TU}− − {TU}+ = g on S, we get that g = 0 on S. Thus the null space of the Fredholm operator
(5.10) is trivial and since the index equals zero, we conclude that (5.10) is invertible.

These results imply the following assertion.

Theorem 5.1. If ω ̸∈ JM (Ω+), then the problem (Mω) is uniquely solvable.

Now let us consider the case when ω is a Jones’s frequency, ω ∈ JM (Ω+).
The operator adjoint to Qω,M has the form

Q∗
ω,D=

(
[H∗kl

ω nl]5×1

[
(−2−1I5+K∗

ω)kj
]
5×3

[H∗k4
ω ]5×1 [H∗k5

ω ]5×1

[
(−2−1I5+K∗

ω)k4
]
5×1

[
(−2−1I5+K∗

ω)k5
]
5×1

−b1M∗ [−b2N∗nj ]1×3 0 0 0 0

)
6×8

,

j = 1, 2, 3, k = 1, 5,

where

H∗
ω(g)(z) =

∫
S

[
Γ(y − z, ω)

]⊤
g(y) dyS, z ∈ S,

K∗
ω(g)(z) =

∫
S

[
T (∂y, n(y) Γ(y − z, ω))

]⊤
g(y) dyS, z ∈ S,

N ∗(h)(z) =
(
− 2−1I1 +Kω

)
(h)(z) + µH∗

ω(h)(z), z ∈ S,

M∗(h)(z) = L∗
ω(h)(z) + µ

(
2−1I1 +K∗

ω

)
(h)(z), z ∈ S,

while

Kω(h)(z) =

∫
S

∂n(z)γ(z − y, ω)h(y) dyS, z ∈ S,

K∗
ω(h)(z) =

∫
S

∂n(y)γ(z − y, ω)h(y) dyS, z ∈ S,

H∗
ω(h)(z) =

∫
S

γ(z − y, ω)h(y) dyS, z ∈ S,

L∗
ω(h)(z) =

{
∂n(z)W̃ω(h)(z)

}±
, z ∈ S,

W̃ω(h)(x) =

∫
S

∂n(y)γ(x− y, ω)h(y) dyS, x ̸∈ S,

Ṽω(h)(x) =

∫
S

γ(x− y, ω)h(y) dyS, x ̸∈ S.

The adjoint operator possesses the following mapping property:

Q∗
ω,M : [H1/2(S)]4 × [H̃−1/2(SD)]2 × [H̃1/2(SN )]2 → [H1/2(S)]5 ×H−1/2(S).

Let

Ψ :=
(
ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7, ψ8

)⊤ ∈ [H1/2(S)]4 × [H̃−1/2(SD)]2 × [H̃1/2(SN )]2
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be a solution of the homogeneous adjoint system

Q∗
ω,MΨ = 0. (5.12)

Construct the potentials

Ũ = ṼωΨ
(1) + W̃ωΨ

(2) + ṼωΨ
(3) + W̃ωΨ

(4) in Ω−, (5.13)
w̃ = −b1W̃ωψ1 − b2Ṽω[Ψ

′ · n] in Ω+, (5.14)

where

Ψ(1) := (nψ1, 0, 0)
⊤, Ψ(2) := (Ψ′, 0, 0)⊤, Ψ(3) := (0, 0, 0, ψ5, ψ6)

⊤,

Ψ(4) := (0, 0, 0, ψ7, ψ8)
⊤, Ψ′ = (ψ2, ψ3, ψ4)

⊤,

Ṽω(g)(x) :=

∫
S

[Γ(y − x, ω)]
⊤
g(y) dyS, x ∈ Ω+,

W̃ω(g)(x) :=

∫
S

[T (∂y, n(y))Γ(y − x, ω)]⊤g(y) dyS, x ∈ Ω+.

The vectors Ṽω(g) and W̃ω(g) are the single and double layer potentials associated with the operator
A∗(∂, ω).

It follows from (5.12) that

{Ũ}− = 0 and {∂nw̃ + µw̃}+ = 0 on S,

where µ = µ1 + iµ2, µ2 ̸= 0.
Since the vector Ũ ∈ [H1

loc(Ω
−)]5∩Mm1,m2,m3

(P∗) and it solves the homogeneous Dirichlet problem

A∗(∂, ω)Ũ = 0 in Ω−, {Ũ}− = 0 on S,

it follows from the uniqueness Theorem 3.5 that Ũ = 0 in Ω−.
On the other hand, the function w̃ ∈ H1(Ω+) solves the homogeneous Robin type problem

(∆ + ρ2ω
2)w̃ = 0 in Ω+, (5.15)

{∂nw̃ + µw̃}+ = 0 on S. (5.16)

This problem possesses only the trivial solution. Indeed, the following Green’s first formula holds:∫
Ω+

(∆ + ρ2ω
2)w̃w̃ dx+

∫
Ω+

|∇w̃| dx− ρ2ω
2

∫
Ω+

|w̃| dx =
⟨
{∂nw̃}+, {w̃}+

⟩
S
. (5.17)

Taking into account equation (5.15) and the boundary condition (5.16), from (5.17) we get∫
Ω+

|∇w̃| dx− ρ2ω
2

∫
Ω+

|w̃| dx = −µ1

∫
S

|{w̃}+|2 dS + iµ2

∫
S

|{w̃}+|2 dS.

Therefore, {w̃}+ = 0. For a solution w̃ ∈ H1(Ω+) to the homogeneous equation (5.15) we have the
following integral representation:

w̃ =Wω

(
{w̃}+

)
− Vω

(
{∂nw̃}+

)
in Ω+. (5.18)

Since {w̃}+ = 0 and {∂nw̃}+ = 0, from the representation formula (5.18) we get that w̃ = 0 in Ω+.
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Using the jump formulae for potentials (5.13) and (5.14), we derive that on the surface S the
following relations hold:

{w̃}− = b1ψ1,

{∂nw̃}− = −b2 Ψ′ · n,{
[T̃ Ũ ]

}+
= −(njψ1, ψ5, ψ6)

⊤,

{Ũ}+ = (Ψ′, ψ7, ψ8)
⊤.

Hence we deduce that Ũ = (Ũ1, Ũ2, Ũ3, Ũ4, Ũ5)
⊤ = (Ũ ′, Ũ4, Ũ5)

⊤ with Ũ ′ = (Ũ1, Ũ2, Ũ3, )
⊤ and w̃

solves the following homogeneous transmission problem:

A∗(∂, ω)Ũ = 0 in Ω+,

(∆ + ρ2ω
2)w̃ = 0 in Ω−,

{Ũ ′ · n}+ + b
−1

2 {∂nw̃}− = 0 on S,{
[T̃ (∂, n)Ũ ]j

}+
+ b

−1

1 {w̃}−nj = 0 on S, j = 1, 2, 3,

{Ũ4}+ = 0 on SD,

{Ũ5}+ = 0 on SD,{
[T̃ (∂, n)Ũ ]4

}+
= 0 on SN ,{

[T̃ (∂, n)Ũ ]5
}+

= 0 on SN .

From the uniqueness result (see Remark 1), it follows that w̃ = 0 in Ω− and Ũ ∈ X∗
M,ω(Ω

+), i.e., Ũ
belongs to the space of Jones modes X∗

M,ω(Ω
+). Then we obtain

ψ1 = 0, ψj+1 = {Ũj}+ j = 1, 2, 3, ψ5 = −{[T̃ Ũ ]4}+,

ψ6 = −{[T̃ Ũ ]5}+, ψ7 = {Ũ4}+, ψ8 = {Ũ5}+.

Vice versa, if Ũ ∈ X∗
M,ω(Ω

+), then from the representation formula

Ũ = W̃ω{Ũ}+ − Ṽω{T̃ Ũ}+ in Ω+ (5.19)

it is easy to show that the vector-function

Ψ̃ :=
(
0, {Ũ1}+, {Ũ2}+, {Ũ3}+,−{[T̃ Ũ ]4}+,−{[T̃ Ũ ]5}+, {Ũ4}+, {Ũ5}+

)⊤
is a solution of the adjoint homogeneous system (5.12). Indeed, let us substitute Ψ̃ in system (5.12).
Therefore, we obtain the equalities[

(−2−1I4 + K∗
ω)

kj
]
5×3

{Ũ ′}+ −
[
H∗k4

ω

]
5×1

{[T̃ Ũ ]4}+ −
[
H∗k5

ω

]
5×1

{
[T̃ Ũ ]5

}+
+
[
(−2−1I5 + K∗

ω)
k4
]
5×1

{Ũ4}+ +
[
(−2−1I5 + K∗

ω)
k5
]
5×1

{Ũ5}+ = 0, j = 1, 2, 3, k = 1, 5, (5.20)

−b2N ∗({Ũ ′}+ · n
)
= 0, (5.21)

where Ũ ′ = (Ũ1, Ũ2, Ũ3)
⊤.

By taking a trace of the representation formula (5.19), we get

{Ũ}+ = 2−1{Ũ}+ + K∗
ω{Ũ}+ − H∗

ω{T̃ Ũ}+ on S,

i.e.,
(−2−1I + K∗

ω){Ũ}+ − H∗
ω{T̃ Ũ}+ = 0 on S. (5.22)
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Since Ũ ∈ X∗
M,ω(Ω

+), we have

{Ũ4}+ = 0, {Ũ5}+ = 0, {[T̃ Ũ ]j}+ = 0, j = 1, 5, (5.23)
{Ũ ′}+ · n = 0. (5.24)

Therefore, taking into account (5.23) in equality (5.22), we find that (5.20) is true, and from (5.24) it
follows that (5.21) is true, as well.

Therefore,
dim kerQω,M = dim kerQ∗

ω,M = dimX∗
M,ω(Ω

+).

Thus the following orthogonality condition

3∑
j=1

⟨
fj , {Ũj}+

⟩
S
−
⟨{[

T̃ Ũ
]
4

}+
, f

(D)

1

⟩
S
−
⟨{[

T̃ Ũ
]
5

}+
, f

(D)

2

⟩
S

+
⟨{[

Ũ
]
4

}+
, f

(N)

1

⟩
S
+
⟨{[

Ũ
]
5

}+
, f

(N)

2

⟩
S
= 0 ∀ Ũ ∈ X∗

D,ω(Ω
+), (5.25)

is necessary and sufficient for the system of pseudodifferential equations (5.1)–(5.6) to be solvable.
We can now formulate the following existence theorem.

Theorem 5.2. If ω ∈ JM (Ω+), then the mixed type problem (Mω) is solvable if and only if the
orthogonality condition (5.25) holds, and a solution is defined modulo Jones modes XM,ω(Ω

+).

Remark 5. Let (f1, f2, f3) = nψ, where ψ is a scalar function and n is the unit normal vector to S
(see (1.18)). Then the necessary and sufficient condition (5.25) reads as⟨{[

T̃ Ũ
]
4

}+
, f

(D)
1

⟩
S
+
⟨{[

T̃ Ũ
]
5

}+
, f

(D)
2

⟩
S

−
⟨{[

Ũ
]
4

}+
, f

(N)

1

⟩
S
−
⟨{[

Ũ
]
5

}+
, f

(N)

2

⟩
S
= 0 ∀ Ũ ∈ X∗

M,ω(Ω
+).

Clearly, if the mixed datum are constant, or ω ̸∈ J∗
M (Ω+), then the problem (Mω) is always solvable.

The following theorem holds.

Theorem 5.3. Let
1

2
< s <

1

2
+ inf

x∈∂SN

Reκj(x), (5.26)

where κj(x), j = 1, 2, are the factorization indices of the principal homogeneous symbol of the operators
A(j)

τ , j = 1, 2 (see Subsection 4.4), and let U ∈ [H1(Ω+)]5, w ∈ H1
loc(Ω

−)∩ Som1(Ω
−) be the solution

of the mixed type problem (Mω). Then the following regularity result holds:

if f0 ∈ Hs−1(S), fj ∈ Hs−1(S), j = 1, 2, 3, f (D)
1 , f

(D)
2 ∈ Hs(SD), f (N)

1 , f
(N)
2 ∈ Hs−1(SN ), then

U ∈ [Hs+1/2(Ω+)]5, w ∈ H
s+1/2
loc (Ω−) ∩ Som1(Ω

−).

Moreover, if

f0 ∈ Hs(S), fj ∈ Hs−1(S), j = 1, 2, 3, f
(D)
1 , f

(D)
2 ∈ Hs(SD), f

(N)
1 , f

(N)
2 ∈ Hs−1(SN ),

and (5.26) is satisfied, then U ∈ [Hs+1/2(Ω+)]5, w ∈ H
s+3/2
loc (Ω−) ∩ Som1(Ω

−).

Remark 6. In the last statement of the Theorem 5.3, the smoothness of w follows from the repre-
sentation of h (see (5.1))

h = b−1
1 M−1[Hωg]l nl − b−1

1 M−1(f0) ∈ Hs+1(S) on S

and mapping properties of potentials Wω and Vω (see Appendix, Theorem 6.1), where f0 ∈ Hs(S),
g ∈ [Hs−1(S)]5 and s satisfies (5.26).
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6 Appendix
For the readers convenience, we collect here some results describing properties of the layer potentials.
Here, we preserve the notation from the main text of the paper. For the potentials associated with
the Helmholtz equation, the following theorems hold (see [15,23,29,33]).

Theorem 6.1. Let s ∈ R, 1 < p < ∞, S ∈ C∞. Then the single and double layer scalar potentials
can be extended to the following continuous operators:

Vω : Hs(S) → Hs+3/2(Ω+), Vω : Hs(S) → H
s+3/2
loc (Ω−),

Wω : Hs(S) → Hs+1/2(Ω+), Wω : Hs(S) → H
s+1/2
loc (Ω−).

Theorem 6.2. Let s ∈ R, 1 < p <∞,S ∈ C∞. Then the operators

Hω : Hs(S) → Hs+1(S),

Kω,K∗
ω : Hs(S) → Hs+1(S),

Lω : Hs(S) → Hs−1(S)

are continuous.

For the potentials of steady state oscillation and pseudo-oscillation equations, the following theo-
rems hold (see [6–9,12]).

Theorem 6.3. Let s ∈ R, 1 < p < ∞, S ∈ C∞. Then the vector potentials Vω, Wω, Vτ and Wτ

are continuous in the following spaces:

Vω,Vτ : [Hs(S)]5 → [Hs+3/2(Ω+)]5
(
[Hs(S)]5 → [H

s+3/2
loc (Ω−)]5

)
,

Wω,Wτ : [Hs(S)]5 → [Hs+1/2
p (Ω+)]5

(
[Hs(S)]5 → [H

s+1/2
loc (Ω−)]5

)
.

Theorem 6.4. Let s ∈ R, 1 < p <∞, S ∈ C∞. Then the operators

Hτ : [Hs(S)]5 → [Hs+1(S)]5,

Kτ , K̃τ : [Hs(S)]5 → [Hs(S)]5,

Lτ : [Hs(S)]5 → [Hs−1(S)]5

are bounded.
The operators Hτ and Lτ are strongly elliptic pseudodifferential operators of order −1 and 1,

respectively, while the operators ±2−1I5+Kτ and ±2−1I5+K̃τ are elliptic pseudodifferential operators
of order 0.

Moreover, the operators Hτ , 2−1I5 + K̃τ and 2−1I5 +Kτ are invertible, whereas the operators Lτ ,
−2−1I5 + K̃τ and −2−1I5 + Kτ are Fredholm operators with index zero.

Theorem 6.5. Let s ∈ R, 1 < p <∞, S ∈ C∞. Then the operators

Hω : [Hs(S)]5 → [Hs+1(S)]5,

±2−1I5 + Kω : [Hs(S)]5 → [Hs(S)]5,

±2−1I5 + K̃ω : [Hs(S)]5 → [Hs(S)]5,

Lω : [Hs(S)]5 → [Hs−1(S)]5

are bounded Fredholm operators with index zero.

The following theorem holds [11].
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Theorem 6.6. The operator

Pτ,D : [Hs(S)]6 → [Hs−1(S)]4 × [Hs(S)]2
(
[Bs

p,p(S)]
6 → [Bs−1

p,p (S)]4 × [Bs
p,p(S)]

2
)

is invertible for all s ∈ R 1 < p <∞, where

Pτ,D =


[n]1×3 0 0 −b1M

[Ajk
τ ]3×3 [Aj4

τ ]3×1 [Aj5
τ ]3×1 [−b2njN ]3×1

[0]1×3 I1 0 0

[0]1×3 0 I1 0


6×6

, j, k = 1, 2, 3.
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