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Abstract. The qualitative theory of dynamic equation on time scale has received lots of attention
from researchers due to its applicability to various fields. One of the most important aspects is that it
unifies the theory of difference equations, differential equations, quantum calculus, and several others.
In this article, we discuss the development of this theory along with the main emphasis on a second
order dynamic equation. The qualitative properties, especially development in the oscillation theory
of such equations, are discussed in detail. Several examples are provided for a better understanding
of this topic.
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ÒÄÆÉÖÌÄ. ÃÉÍÀÌÉÖÒÉ ÂÀÍÔÏËÄÁÉÓ ÈÅÉÓÏÁÒÉÅ ÈÄÏÒÉÀÓ ÃÒÏÉÓ ÓÊÀËÀÆÄ ÌÊÅËÄÅÀÒÄÁÉ ÃÉÃ
ÚÖÒÀÃÙÄÁÀÓ ÖÈÌÏÁÄÍ ÓáÅÀÃÀÓáÅÀ Ó×ÄÒÏÛÉ ÌÉÓÉ ÂÀÌÏÚÄÍÄÁÉÓ ÂÀÌÏ. ÄÒÈ-ÄÒÈ ÚÅÄËÀÆÄ ÌÍÉÛ-
ÅÍÄËÏÅÀÍ ÀÓÐÄØÔÓ ßÀÒÌÏÀÃÂÄÍÓ ÉÓ ×ÀØÔÉ, ÒÏÌ ÉÂÉ ÀÄÒÈÉÀÍÄÁÓ ÓáÅÀÏÁÉÀÍ ÂÀÍÔÏËÄÁÀÈÀ
ÈÄÏÒÉÀÓ, ÃÉ×ÄÒÄÍÝÉÀËÖÒ ÂÀÍÔÏËÄÁÄÁÓ, ÊÅÀÍÔÖÒ ÂÀÌÏÈÅËÄÁÓ ÃÀ ÓáÅÀ. ÓÔÀÔÉÀÛÉ ÂÀÍÉ-
áÉËÄÁÀ ÀÌ ÈÄÏÒÉÉÓ ÂÀÍÅÉÈÀÒÄÁÀ, ÀÌÀÓÈÀÍ, ÌÈÀÅÀÒÉ ÀØÝÄÍÔÉ ÂÀÊÄÈÄÁÖËÉÀ ÌÄÏÒÄ ÒÉÂÉÓ
ÃÉÍÀÌÉÖÒ ÂÀÍÔÏËÄÁÀÆÄ. ÃÄÔÀËÖÒÀÃÀÀ ÂÀÍáÉËÖËÉ ÀÓÄÈÉ ÂÀÍÔÏËÄÁÄÁÉÓ áÀÒÉÓáÏÁÒÉÅÉ
ÈÅÉÓÄÁÄÁÉ, ÂÀÍÓÀÊÖÈÒÄÁÉÈ ÒáÄÅÉÓ ÈÄÏÒÉÀÓÈÀÍ ÌÉÌÀÒÈÄÁÀÛÉ. ÀÌ ÈÄÌÉÓ ÖÊÄÈ ÂÀÓÀÂÄÁÀÃ
ÌÏÚÅÀÍÉËÉÀ ÒÀÌÃÄÍÉÌÄ ÌÀÂÀËÉÈÉ.



Survey on Qualitative Theory of Dynamic Equations on Time Scale 3

1 Introduction
The theory of time scale or more general measure chain has been introduced by Stefan Hilger (see [41].
The main aim is to unify the theory of discrete and continuous calculus. Since a time scale is any
closed subset of the real line, it has been widely applied to the qualitative analysis of the dynamic
equations and their related applications (see [15,47,62,63]).

Now, we present some basic definitions, useful theorems and basic facts of time scales.

Definition 1.1 ([15]). For t ∈ T, the forward and backward jump operators σ, ρ : T→ T are defined
by

σ(t) := inf
{
s ∈ T : s > t

}
and ρ(t) := sup

{
s ∈ T : s < t

}
,

respectively.

The classification of points of time scale T. For t ∈ T, t is called the right-scattered point if
t < σ(t) and the right dense point if t = σ(t) for t < supT. Similarly, t is called the left-scattered
point if t > ρ(t) and the left dense point if t = ρ(t) for t > infT.

Remark 1.1. We put inf∅ = supT (i.e., σ(t) = t if T has a maximum t), sup∅ = infT (i.e., ρ(t) = t
if T has a minimum t), where ∅ is an empty set.

Definition 1.2 ([15]). A function f : T → R is called rd-continuous provided it is continuous at
all right-dense points in T and its left-sided limit exists (finite) at all left-dense points in T, which is
denoted by

Crd = Crd(T) = Crd(T,R).

We define Tκ = T− {ξ}, if T has a left-scattered maximum ξ, and Tκ = T, otherwise.

Definition 1.3 ([15]). For a function f : T→ R and t ∈ Tκ, we define f∆(t), to be a number (provided
it exists) with the property that for any given ε > 0, there exists a neighborhood Z = (t− δ, t+ δ)∩T
for some δ > 0 such that∣∣[f(σ(t))− f(r)]− f∆(t)[σ(t)− r]∣∣ ≤ ε|σ(t)− r|, ∀ r ∈ Z.
Thus, we call f∆(t) the ∆ or Hilger derivative of f at t.

Theorem 1.1 ([15]). For the functions g, f : T→ R and t ∈ Tκ, the following statements are true:

1. If f is differentiable at t, then f is continuous at t;

2. If f is continuous at t and t is right-scattered, then f is ∆-derivative at t and

f∆(t) =
f(σ(t))− f(t)

µ(t)
;

3. If t is right-dense, then f is differentiable at t iff

f∆(t) = lim
s→t

f(t)− f(s)
t− s

exists and is of finite value;

4. If f is differentiable at t, then

fσ = f(σ(t)) = f(t) + µ(t)f∆(t);

5. If f and g both are differentiable at t, then a product fg : T→ R is differentiable at t and

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t) = f(t)g∆(t) + f∆(t)g(σ(t)),
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hence, for t ∈ T such that a ≤ t ≤ b, ∀ a, b ∈ T, we have the following facts:

b∫
a

fσ(s)g∆(s)∆s = f(b)g(b)− f(a)g(a)−
b∫

a

f∆(s)g(s)∆s, (1.1)

b∫
a

f(s)g∆(s)∆s = f(b)g(b)− f(a)g(a)−
b∫

a

f∆(s)gσ(s)∆s; (1.2)

6. If g(t)g(σ(t)) ̸= 0, then f(t)
g(t) is differentiable at t and

(f
g

)∆

(t) =
f∆(t)g(t)− f(t)g∆(t)

g(t)g(σ(t))
.

Definition 1.4 ( [15]). A function w : T → R is regressive if 1 + µ(t)q(t) ̸= 0, ∀ t ∈ T. Denote the
collection of all rd-continuous functions w : T→ R by R, and

R+ =
{
w ∈ R : 1 + µ(t)w(t) > 0 for all t ∈ T

}
.

Definition 1.5 ([15]). A function F : T → R is called an anti-derivative of f : T → R, provided
F∆(t) = f(t), ∀ t ∈ T. Then ∀ a, b ∈ T such that a ≤ b, Cauchy integral is defined by

b∫
a

f(s)∆s = F (b)− F (a). (1.3)

Definition 1.6 ([43]). Let T = qZ and |q| < 1, we have the relation f∆(t) = Dqf(t), where

Dqf(t) =


f(qt)− f(t)
t(q − 1)

, t ̸= 0,

lim
n→∞

f(qn)− f(0)
qn

, t = 0,

is the q-difference operator.

Remark 1.2. In Definition 1.5, equation (1.3) does not hold for all time scales, for example, in
q-calculus (i.e., T = qZ) the following relation is not always true:

b∫
a

Dqf(t) dqt = f(b)− f(a)

(for more details see [14, p. 12]).

Definition 1.7. If w ∈ R, then we define an exponential function by

ew(t, s) = exp
( t∫

s

ηµ(τ)(w(τ))∆τ

)
, ∀ t ∈ T, s ∈ Tκ,

where ηh(z) is the cylinder transformation, which is defined by

ηh(z) =


log (1 + hz)

h
, h ̸= 0,

z, h = 0.
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Theorem 1.2. Let T be time scales with a, τ ∈ T, and p, q be the positive real numbers such that
p ≤ 1, p+ q > 1 and let r, s be the non-negative rd-continuous functions on [a, τ ]T such that

τ∫
a

1

(r(t))1/(p+q−1)
∆t <∞.

If y : [a, τ ]T → R+ is delta derivative with y(a) = 0, then
τ∫

a

s(x)|y(x) + yσ(t)|p|y∆(x)|q ∆x ≤ L(a, τ, p, q)
τ∫

a

r(x)|y∆(x)|p+q ∆x, (1.4)

where

L(a, τ, p, q) = sup
a≤x≤τ

(
µp(x)

s(x)

r(x)

)
+ 2p

( q

p+ q

)q/(p+q)
[ τ∫

a

(s(x))(p+q)/p

(r(x))q/p

( x∫
a

1

(r(t))1/(p+q−1)
∆t

)p+q−1

∆x

]p/(p+q)

. (1.5)

Lemma 1.1 (Young’s inequality [42]). Let A,B ≥ 0, ξ > 1 and 1
ξ + 1

η = 1, then AB ≤ Aξ

ξ + Bη

η ,
where the equality holds iff B = Aξ−1.

Definition 1.8 ( [13]). A function g belongs to the class of G, denoted by g ∈ G, if and only if
g ∈ C ′(R,R) with yg(y) > 0 and g′(y) > 0 for all y ̸= 0. For any positive constant k, the subset Gk

of G is denoted by
Gk =

{
g ∈ G : g′(y) ≥ k for all y ̸= 0

}
.

Remark 1.3. For the later convenience in the notation, for g ∈ G, we set

g′∗(t) =


g′(x(t)), xσ(t) = x(t),

g(xσ(t))− g(x(t))
xσ(t)− x(t)

, xσ(t) ̸= x(t).

2 Qualitative theory
Oscillation is one of the most important qualitative properties of the solution. So, we focus our
attention on this theory. In [13], Anderson studied the oscillatory behaviour of the following second-
order dynamic equation:

(r(t)x∆(t))∆ + f
(
t, xσ(t), x∆(t)

)
= 0, ∀ t ∈ [t0,∞)T, (2.1)

where T is a time scale unbounded above with t0 ∈ T, the function r : T → (0,∞) is right-dense
continuous, and the function f : T × R → R is right-dense continuous in the first variable. Here, we
assume that the functions r and f are sufficiently smooth to ensure that the solution of equation (2.1)
always has a solution that is continuable on [t0,∞)T. Also, in [13], the author illustrated the new
understanding by extending some continuous results from differential equations to dynamic equations
on arbitrary time scales (unbounded above), it includes the classical results of difference equations
and q-difference equations. For instance, equation (2.1) is studied extensively by Wang [64] in the
case T = R (see also Guvenilir and Zafer [37]). Related discussions can be found in Nasr [48] and
Wong [65], who study the oscillation of

(r(t)x′(t))′ + p(t)|x(t)|α−1x(t) = f(t),

and an extension of this work to the equation

x′′(t) + p(t)|x(τ(t))|α−1x(τ(t)) = f(t)
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can be found in Sun [61]. In the related work [18], Cakmak and Tiryaki considered the oscillation for
the forced equation

x′′(t) + p(t)f(x(τ(t))) = a(t)

(see also Li and Zhu [46], and Wong [66]).
Recently, there has also been a spate of papers on second-order nonlinear dynamic equations

on time scales. For a sampling of the work done on second-order equations, one may consult the
monograph by Agarwal, Grace, and O’Regan [5]. For a few examples of works since then, Bohner and
Tisdell [16] examined oscillation and non-oscillation for

(r(t)x∆(t))∆ + p(t)xσ(t) = f(t).

Erbe, Peterson, and Saker [25] studied the unforced delay dynamic equation

(r(t)x∆(t))∆ + p(t)x(τ(t)) = 0,

and Saker [57] studied the oscillation of the related forced dynamic equation

(r(t)x∆(t))∆ + p(t)f(xσ(t)) = a(t).

In [9, 59], the authors considered the oscillation of the neutral delay dynamic equation(
r(t)

([
x(t) + p(t)x(τ(t))

]∆)γ)∆

+ f
(
t, x(t), x(δ(t))

)
= 0,

while Agarwal, O’Regan and Saker [8] discussed the oscillatory behaviour of the nonlinear perturbed
dynamic equation

(r(t)(x∆(t))γ)∆ + f(t, x(t)) = g(t, x(t), x∆(t)).

Oscillatory criteria for the forced dynamic equation

(r(t)x∆(t))∆ + p(t)|x(τ(t))|α−1x(τ(t)) + q(t)|x(θ(t))|β−1x(θ(t)) = f(t)

were analyzed in [12].
For a, b ∈ [t0,∞)T with a < b, the admissible set

J(a, b) =
{
u ∈ C∆

rd([a, b]T) : u(a) = 0 = u(b), u ̸= 0
}
.

Lemma 2.1. If x is a solution of (2.1) such that the product xxσ > 0 on some interval [a, b]T ⊂
[t0,∞)T, then we have the strict inequality

b∫
a

[
(uσ(t))2

f(t, xσ(t), x∆(t))

xσ(t)
− r(t)(u∆(t))2

]
∆t < 0 (2.2)

for any u ∈ J(a, b).

Proof. Define the Riccati substitution w via

w∆(t) =
r(t)x∆(t)

−x(t)
, t ∈ [t0,∞)T.

Using the delta quotient rule and the fact that x is a solution of (2.1), we have

w∆(t) =
x(t)

r(t)xσ(t)
w2(t) +

f(t, xσ(t), x∆(t))

xσ(t)
. (2.3)
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Multiply both sides of (2.3) by (u2)σ,

b∫
a

(u2)σ(t)w∆(t)∆t

=

b∫
a

x(t)w2(t)

r(t)xσ(t)
(uσ)2(t)∆t+

b∫
a

(uσ)2(t)
f(t, xσ(t), x∆(t))

xσ(t)
∆t−

b∫
a

(u2)∆(t)w(t)∆t

=

b∫
a

x(t)w2(t)

r(t)xσ(t)
(uσ)2(t)∆t+

b∫
a

(uσ)2(t)
f(t, xσ(t), x∆(t))

xσ(t)
∆t,

so that
b∫

a

(uσ)2(t)
f(t, xσ(t), x∆(t))

xσ(t)
∆t = −

b∫
a

[u(t) + uσ(t)]u∆(t)w(t)∆t−
b∫

a

x(t)w2(t)

r(t)xσ(t)
(uσ)2(t)∆t.

Note that, while suppressing the independent variable t,

[u+ uσ]u∆w = 2uσu∆w + u∆w(u− uσ) = 2uσu∆w + µ(u∆)2rx∆/x,

where we have used the simple formula uσ = u+ µu∆ and the Riccati form for w. Thus we have

[u+ uσ]u∆w = 2uσu∆w + (u∆)2rxσ/x− r(u∆)2,

using the simple formula on x this time. Plugging these conclusions back into the integral equalities
above, we obtain

b∫
a

(uσ)2(t)
f(t, xσ(t), x∆(t))

xσ(t)
∆t

= −
b∫

a

[
2uσ(t)u∆(t)w(t) + (u∆)2(t)r(t)xσ(t)/x(t)− r(t)(u∆)2(t)

]
∆t−

b∫
a

x(t)w2(t)

r(t)xσ(t)
(uσ)2(t)∆t

= −
b∫

a

(uσ)2(t)

[
w(t)

√
x(t)

r(t)xσ(t)
+
u∆(t)

uσ(t)

√
r(t)xσ(t)

x(t)

]2
∆t+

b∫
a

r(t)(u∆)2(t)∆t.

It follows that
b∫

a

[
(uσ)2(t)

f(t, xσ(t), x∆(t))

xσ(t)
− r(t)(u∆)2(t)

]
∆t ≤ 0.

If
b∫

a

(uσ)2(t)

[
w(t)

√
x(t)

r(t)xσ(t)
+
u∆(t)

uσ(t)

√
r(t)xσ(t)

x(t)

]2
∆t = 0,

then the integrand is zero, videlicet

0 = uσw

√
x

rxσ
+ u∆

√
rxσ

x
=
√
rxxσ

(u
x

)∆

on [a, b]T. Since r, x, xσ ̸= 0 on [a, b]T by assumption, x must be a constant multiple of u ∈ J(a, b),
this is a contradiction with the nonzero nature of x on [a, b]T. Thus, (2.2) holds.
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Anderson has established some new interval criteria for oscillation of the dynamic equation (2.1)
as follows.

Theorem 2.1. If for some interval [a, b] ⊂ [t0,∞)T there exists an admissible function u ∈ J(a, b)
such that for any x ∈ C∆

rd([t0,∞)T,R) with xxσ > 0 on [a, b]T, we have

b∫
a

[
(uσ(t))2

f(t, xσ(t), x∆(t))

xσ(t)
− r(t)(u∆(t))2

]
∆t ≥ 0, (2.4)

where
J(a, b) =

{
u ∈ C∆

rd([a, b]T) : u(a) = 0 = u(b), u ̸= 0
}
,

then every solution of equation (2.1) has at least one generalized zero in [a, b]T.

Proof. Suppose there exists a solution x of (2.1) such that xxσ > 0 on [a, b]T. Then, by assumption,
there exists u ∈ J(a, b) such that (2.4) holds for this particular solution x. From Lemma 2.1, though,
we then have that (2.2) holds, a contradiction of (2.4).

In 2015, Xun-Huan Deng et al. [21] investigated oscillation of second-order non-linear delay dy-
namic equation on time scales:(

r(t)|x∆(t)|γ−1x∆(t)
)∆

+ p(t)f(x(τ(t))) = 0, γ > 0. (2.5)

For their results, they imposed some conditions

(A1) p ∈ Crd(T, (0,∞)), r ∈ Crd(T, (0,∞)) satisfies

∞∫
t0

( 1

r(s)

)1/γ

∆s =∞;

(A2) the delay function τ ∈ Crd(T,T) satisfies τ(t) ≤ t and lim
t→∞

τ(t) =∞;

(A3) f ∈ C(R,R) satisfies f(y)/(|y|γ−1y) ≥ K > 0 for y ̸= 0, where K is a constant.

Along with the above conditions, they also introduced the auxiliary functions, for a ∈ [t0,∞)T

R(t, a) =

t∫
a

( 1

r(s)

)1/γ

∆s, η1(t, a) =
R(τ(t), a)

R(σ(t), a)
, η2(t, a) =

R(t, a)

R(σ(t), a)
. (2.6)

Theorem 2.2. Assume that conditions (A1)–(A3) hold. Furthermore, suppose that there exist a
function a(t) and a positive ∆-differentiable function δ(t) such that for sufficiently large T ∈ T,

lim sup
t→∞

t∫
t1

[
ψ(s)− γγ([ψ1(s)]+)

1+γ

(1 + γ)1+γ(ψ2(s))γ

]
∆s > δ(t1)

[ 1

Rγ(t1, T )
+ r(t1)a(t1)

]
,

where t1 ∈ T and t1 > T , R(t1, T ) is given in (2.6). Then

1. every solution x(t) of (2.5) is oscillatory for γ ≥ 1;

2. every solution x(t) of (2.5) oscillates for 0 < γ < 1 and a(t) = 0.
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Theorem 2.3. Assume that conditions (A1)–(A3) hold. Furthermore, suppose that there exist a
function a(t) and a positive ∆-differentiable function δ(t) such that for some H1 ∈ R1 and sufficiently
large T ∈ T,

lim sup
t→∞

1

H1(σ(t), t1)

t∫
t1

[
H1(σ(t), σ(s))ψ(s)−

γγ
([
H1(σ(t), σ(s))ψ1(s) +H∆s

1 (σ(t), s)
])1+γ

(1 + γ)1+γ((H1(σ(t), σ(s)))ψ2(s))γ

]
∆s

> δ(t1)
[ 1

Rγ(t1, T )
+ r(t1)a(t1)

]
,

where t1 ∈ T and t1 > T , R(t1, T ) is given in (2.6). Then

1. every solution x(t) of (2.5) is oscillatory for γ ≥ 1;

2. every solution x(t) of (2.5) oscillates for 0 < γ < 1 and a(t) = 0.

Theorem 2.4. Assume that conditions (A1)–(A3) hold. Furthermore, suppose that there exist a
function a(t) and a positive ∆-differentiable function δ(t) such that for some H2 ∈ R2, it has a non-
positive rd-continuous ∆-partial derivative H∆s

2 (t, s) with respect to the second variable and satisfies

lim sup
t→∞

1

H2(σ(t), t1)

t∫
t1

[
H2(σ(t), σ(s))ψ(s)−

γγ
([
H2(σ(t), σ(s))ψ1(s) +H∆s

2 (σ(t), s)
])1+γ

(1 + γ)1+γ((H2(σ(t), σ(s)))ψ2(s))γ

]
∆s

> δ(t1)
[ 1

Rγ(t1, T )
+ r(t1)a(t1)

]
,

where T ∈ T is a sufficiently large number, t1 ∈ T and t1 > T,R(t1, T ) is given in (2.6). Then

1. every solution x(t) of (2.5) is oscillatory for γ ≥ 1;

2. every solution x(t) of (2.5) oscillates for 0 < γ < 1 and a(t) = 0.

In [34], Graef et al. considered the following second-order functional dynamic equation on time
scales and established a new oscillation criteria in which they used a Riccati transformation technique
as follows: (

r(t)|x∆(t)|γx∆(t)
)∆

+ F
(
t, x(t), x(τ(t)), x∆(τ(t))

)
= 0, (2.7)

where γ > 0 is a constant, r is a positive real-valued rd-continuous function defined on T, F : T×R3 →
R is a continuous function. Along with this, they introduced two cases

∞∫
t0

∆t

r1/γ(t)
=∞ (2.8)

and
∞∫

t0

∆t

r1/γ(t)
<∞.

Recently, there has been increasing interest in obtaining sufficient conditions for oscillation of the
solutions of different classes of dynamic equations with or without deviating arguments on time scales.
Some similar and particular kind of dynamic equations have been discussed for oscillation by many
authors. For example, Agarwal et al. [3] considered the second-order linear delay dynamic equation

x∆∆(t) + q(t)x(τ(t)) = 0 for t ∈ T

and established some sufficient conditions for the oscillation. Sahiner [55] considered the second-order
nonlinear delay dynamic equation

x∆∆(t) + q(t)f(x(τ(t))) = 0 for t ∈ T
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and obtained some sufficient conditions for the oscillation by using a Riccati type transformation. Han
et al. [38] extended the results in Agarwal et al. [3] to the second-order Emden–Fowler delay dynamic
equation

x∆∆(t) + q(t)xγ(τ(t)) = 0 for t ∈ T,

where γ is a quotient of an odd positive integer. Erbe et al. [27] considered the second-order nonlinear
delay dynamic equation

(r(t)x∆(t))∆ + q(t)f(x(τ(t))) = 0 for t ∈ T

and gave some oscillation results that improved the results established by Zhang and Shanliang [67]
and Sahiner [55].

Han et al. [40] considered the second-order nonlinear delay dynamic equation(
r(t)(x∆(t))γ

)∆
+ q(t)f(x(τ(t))) = 0 for t ∈ T

and established some oscillation results for γ ≥ 1, being an odd positive integer, that improve and
extend the results of Saker [56], [58] and Sahiner [55]. Also, in [20], Chen considered the second-order
half-linear dynamic equation(

r(t)|x∆(t)|γ−1x∆(t)
)∆

+ q(t)|x(t)|γ−1x(t) = 0 for t ∈ T

and obtained some sufficient conditions for the oscillation that improve and extend the results of
Saker [58], Agarwal et al. [3] and Hassan [39].

Lemma 2.2 (Mean Value Theorem on time-scale [36]). If f is a continuous function on [a, b]T and
is ∆-differentiable on [a, b)T, then there exist ξ, η ∈ [a, b]T such that

f∆(η)(b− a) ≤ f(b)− f(a) ≤ f∆(ξ)(b− a).

In what follows, let τ∗(t) := min{t, τ(t)}.

Lemma 2.3. Suppose that the following conditions are satisfied:

(C1) u ∈ C2
rd(I,R), where I = [T,∞) ⊂ T for some T > 0;

(C2) u(t) > 0, u∆(t) > 0, and u∆∆(t) ≤ 0 for t ≥ T .

Then, for each 0 < k < 1, there is Tk ≥ T such that

u(τ(t) ≥ ku(t) τ∗(t)
t

for t ≥ Tk.

Lemma 2.4. Assume that (2.8) holds, r∆(t) ≥ 0,

sgnF (t, x, u, v, w) = sgnx for t ∈ [t0,∞)T and x, u, v, w ∈ R,

and x is an eventually positive solution of (2.7). Then there exists T ≥ t0 such that

x∆(t) > 0, x∆∆(t) < 0 and
(
r(t)|x∆(t)|γ−1x∆(t)

)∆
< 0.

Theorem 2.5. In addition to condition (2.8), assume there are positive functions δ ∈ C1
rd([t0,∞)T,R)

and p ∈ Crd([t0,∞)T,R) such that

F (t, x, u, v, w)/|x|γ−1x ≥ p(t) (2.9)

for all t ∈ [t0,∞)T, x ∈ R \ {0}, and u, v, w ∈ R, and

lim sup
t→∞

t∫
t0

{
δ(s)p(s)− r(s)[(δ∆(s))+]

γ+1

(γ + 1)γ+1δγ(s)

}
∆s =∞. (2.10)

Then every solution of equation (2.7) is oscillatory on [t0,∞)T.
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Proof. Suppose, to the contrary, that equation (2.7) has a non-oscillatory solution x(t) on [t0,∞)T,
say x(t) > 0 and x(τ(t)) > 0 on [t1,∞)T for some t1 ∈ [t0,∞)T. From (2.7) and (2.9), we have(

r(t)|x∆(t)|γx∆(t)
)∆ ≤ −p(t)xγ(t) < 0 (2.11)

for all t ≥ t1, and so r(t)|x∆(t)|γ−1x∆(t) is strictly decreasing on [t1,∞)T. As in Lemma 2.4, we
should have

x∆(t) > 0 for t ∈ [t2,∞)T (2.12)

for some t2 ≥ t1. In view of equations (2.11) and (2.12), we see that(
r(t)(x∆(t))γ

)∆ ≤ −p(t)xγ(t) < 0 for t ∈ [t2,∞)T.

Now, consider the generalized Riccati substitution

w(t) = δ(t)
r(t)(x∆(t))γ

xγ(t)
for t ≥ t2. (2.13)

Clearly, w(t) > 0, and

wδ(t) =
(
r(t)(x∆(t))γ

)∆ δ(t)

xγ(t)
+

(
r(t)(x∆(t))γ

)σ( δ(t)

xγ(t)

)∆

≤ −δ(t)p(t) +
(
r(t)(x∆(t))γ

)σ( δ∆(t)

xγ(σ(t))
− δ(t)(xγ(t))∆

xγ(t)xγ(σ(t))

)
= −δ(t)p(t) + δ∆(t)

δσ(t)
wσ(t)− δ(t) (r(t)(x

δ(t))σ)σ(xγ(t))δ

xγ(t)xγ(σ(t))

= −δ(t)p(t) + (δ∆(t))+
δσ(t)

wσ(t)− δ(t) (r(t)(x
δ(t))σ)σ(xγ(t))δ

xγ(t)xγ(σ(t))
. (2.14)

From (2.12), we have

(xγ(t))∆ = γ

{ 1∫
0

[
(1− h)x(t) + hxσ(t)

]γ−1
dh

}
x∆(t) ≥

{
γ(xσ(t))γ−1x∆(t), 0 < γ ≤ 1,

γ(x(t))γ−1x∆(t), γ > 1.
(2.15)

If 0 < γ ≤ 1, then (2.14) and (2.15) imply

w∆(t) ≤ −δ(t)p(t) + (δ(t))+
δσ(t)

wσ(t)− δ(t) (r(t)(x
∆(t))γ)σγ(xσ(t))γ−1x∆(t)

xγ(t)xγ(σ(t))

= −δ(t)p(t) + (δ∆(t))+
δσ(t)

wσ(t)− γδ(t) (r(t)(x
∆(t))γ)σ

xγ+1(σ(t))

xγ(σ(t))

xγ(t)
x∆(t). (2.16)

If γ > 1, (2.14) and (2.15) imply

w∆(t) ≤ −δ(t)p(t) + (δ(t))+
δσ(t)

wσ(t)− δ(t) (r(t)(x
∆(t))γ)σγ(x(t))γ−1x∆(t)

xγ(t)xγ(σ(t))

= −δ(t)p(t) + (δ∆(t))+
δσ(t)

wσ(t)− γδ(t) (r(t)(x
∆(t))γ)σ

xγ+1(σ(t))

xγ(σ(t))

xγ(t)
x∆(t). (2.17)

Since t ≤ σ(t) and x(t) is increasing on [t2,∞)T, we have x(t) ≤ x(σ(t)). Therefore, (2.16) and (2.17)
yield

w∆(t) ≤ −δ(t)p(t) + (δ∆(t))+
δσ(t)

wσ(t)− γδ(t) (r(t)(x
∆(t))γ)σ

xγ+1(σ(t))
x∆(t) (2.18)

on [t2,∞)T for γ > 0.
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Since r(t)(x∆(t))γ is decreasing, we have

r(t)(x∆(t))γ ≥
(
r(t)(x∆(t))γ

)σ
,

so,

x∆(t) ≥ [(r(t)(x∆(t))γ)σ]

r1/γ(t)
. (2.19)

Using (2.19) and (2.18), we obtain

w∆(t) ≤ −δ(t)p(t) + (δ∆(t))+
δσ(t)

wσ(t)− γδ(t)r−1/γ(t)
[(r(t)(x∆(t))γ)σ](γ+1)/γ

xγ+1(σ(t))
. (2.20)

From (2.13) and (2.20), we conclude that

w∆(t) ≤ −δ(t)p(t) + (δ∆(t))+
δσ(t)

wσ(t)− γδ(t)r−1/γ(t)(δσ(t))−(γ+1)/γ(wσ(t))(γ+1)/γ .

Letting

X =
(γδ(t))γ/(γ+1)wσ(t)

r1/(γ+1)(t)δσ(t)
, λ =

γ + 1

γ
,

and
Y =

rγ/(γ+1)(t)((δ∆(t)))+
λγ(γδ(t))γ/λ

, (2.21)

it is easy to have

w∆(t) ≤ −δ(t)p(t) + r(t)[(δ∆(t))+]
γ+1

(γ + 1)γ+1δγ(t)
for t ∈ [t2,∞)T.

Now, integrating (2.21) from t2 to t, we obtain

t∫
t2

{
δ(s)p(s)− r(s)[(δ∆(s))+]

γ+1

(γ + 1)γ+1δγ(s)

}
∆s ≤ −w(t) + w(t2) ≤ w(t2),

which contradicts condition (2.10). Therefore, equation (2.7) is oscillatory.

For the next Theorem, first we need to consider a condition

sgnF (t, x, u, v, w) = sgnx for t ∈ [t0,∞)T and x, u, v, w ∈ R. (2.22)

Theorem 2.6. Assume that conditions (2.7) and (2.22) hold, r∆(t) ≥ 0, and there are positive
functions δ ∈ C1

rd([t0,∞)T,R) and p ∈ Crd([t0,∞)T,R) and a constant k ∈ (0, 1) such that

F (t, x, u, v, w)/|u|γ−1u ≥ p(t)

for t ∈ [t0,∞)T, x, u ∈ R \ {0}, and v, w ∈ R. If

lim sup
t→∞

t∫
t0

{
δ(s)p(s)

[kτ∗(s)
s

]
− r(s)[(δ∆(s))+]

γ+1

(γ + 1)γ+1δγ(s)

}
∆s =∞,

then every solution of equation (2.7) is oscillatory on [t0,∞)T.

Proof. Suppose that equation (2.7) has a non-oscillatory solution (t), say x(t) > 0 and x(τ(t)) > 0 on
[t1,∞)T for some t1 ∈ [t0,∞)T. From Lemma 2.3, there exists t2 ≥ t1 such that

x(τ(t)) ≥ kτ∗(t)

t
x(t) for all t ≥ t2.
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Defining w(t) as in the proof of the above theorem, we have

w∆(t) =
(
r(t)(x∆(t))γ

)∆ δ(t)

xγ(t)
+
(
r(t)(x∆(t))γ

)σ( δ(t)

xγ(t)

)∆

= −δ(t) F (t, x(t)x(τ(t)), x
∆(t), x∆(τ(t)))

xγ(t)
+

(
r(t)(x∆(t))γ

)σ( δ∆(t)

xγ(σ(t))
− δ(t)(xγ(t))∆

xγ(t)

)
= −δ(t) F (t, x(t)x(τ(t)), x

∆(t), x∆(τ(t)))(x(τ(t)))γ

(x(τ(t)))γ

+
δ∆(t)

δσ(t)
wσ(t)− δ(t) (r(t)(x

∆(t))γ)σ(xγ(t))∆

xγ(t)xγ(σ(t))

≤ −δ(t)p(t) (x(τ(t)))
γ

xγ(t)
+

(δ∆(t))+
δσ(t)

wσ(t)− δ(t) (r(t)(x
∆(t))γ)σ(xγ(t))∆

xγ(t)xγ(σ(t))
. (2.23)

In view of the above theorem, we conclude from (2.23) that

w∆(t) ≤ −δ(t)p(t)
[kτ∗(t)

t

]γ
+

(δ∆(t))+
δσ(t)

− γδ(t)r−1/γ(t)(δσ(t))−(γ+1)/γ(wσ(t))(γ+1)/γ .

The remainder of the proof is similar to that of the above theorem and it is omitted here.

In [2], Agarwal et al. discussed the oscillatory behaviour of the following second-order dynamic
equations on time scale:

(r(t)x∆(t))∆ + p(t)f(x(τ(t))) = 0 (2.24)
and

(r(t)(x∆(t))γ)∆ + p(t)xγ(t) = 0. (2.25)
In view of the paper of Xun-Huan Deng et al. [21] (see the above), we have the conditions (A2) and
(A3). Along with this, we introduce one more condition
(A4): r and p are the positive real-valued rd-continuous functions defined on [t0,∞)T = [t0,∞) ∩ T.
Along with this, we assume

r∆(t) ≥ 0,

∞∫
t0

∆t

r(t)
=∞ and

∞∫
t0

p(t)τ(t)∆t =∞, (2.26)

and
∞∫

t0

∆t

r1/γ(t)
=∞. (2.27)

Theorem 2.7. Assume that (A2)–(A4) and (2.26) are satisfied, and let

σ(t) > t and ρ(t) < t for all t ∈ [t0,∞)∞.

Assume further that there exist a nonnegative function η and a positive, differentiable function δ such
that for some H ∈ W and for sufficiently large t1,

lim sup
t→∞

1

H(σ(t), t1)

ρ(ρ(t))∑
s=t1

µ(s)H(σ(t), σ(s))
[
δσ(s)ϕ(s)− r(s)δ2(s)A2(t, s)

4C(s)δσ(s)

]
=∞,

where ψ, A and C are given as follows:

ψ(t) =
Kp(t)τ(t)

σ(t)
, C(t) =

t

σ(t)

and
A(t, s) =

δσ(s)C1(s)

δ(s)
+
H∆s(σ(t), s)

H(σ(t), σ(s))
, C1(s) =

δ∆(s)

δσ(s)
+ 2

sη(s)

σ(s)
.

Then (2.24) is oscillatory.
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Theorem 2.8. Assume that (A4) and (2.27) are satisfied. Let H ∈ R be such that H has a non-positive
rd-continuous ∆-partial derivative H∆s(t, s) with respect to the second variable and satisfies

lim sup
t→∞

1

H(σ(t), t0)

t∫
t0

[
H(σ(t), σ(s))aγ(s)δσ(s)p(s)

−
r(s)

[
(H(σ(t), σ(s)) δ∆(s)

δ(s) +H∆s(σ(t), s))+
]γ+1

δγ+1(s)

(γ + 1)γ+1((β(s)δσ(s))H(σ(t), σ(s)))γ

]
∆s =∞,

where α, β and δ are given as follows:

1. α(t) = R(t)

R(t) + µ(t)
,

2. β(t) =
{
α(t), 0 < γ ≤ 1,

αγ(t), γ > 1,

3. δ is a positive ∆-differentiable function.

Moreover,(
H(σ(t), σ(s))

δ∆(s)

δ(s)
+H∆s(σ(t), s)

)
+
:= max

{
0,H(σ(t), σ(s))

δ∆(s)

δ(s)
+H∆s(σ(t), s)

}
.

Then (2.25) is oscillatory.

In [10], Agarwal et al. dealt with the oscillation of the second order mixed nonlinear neutral
dynamic equation with a negative neutral term on time scales:(

r(t)(z∆(t))γ
)∆

+ f(t, x(τ1(t))) + g(t, x(τ2(t))) = 0, (2.28)

where
z(t) = x(t)− p1(t)x(η1(t)) + p2(t)x(η2(t)),

subject to the following hypothesis:

(H1) T is a time scale unbounded above and t0 ∈ T with t0 > 0. We define the time scale interval
[t0,∞)T = [t0,∞) ∩ T.

(H2) η1, τ1 and τ2 : T → T are the rd-continuous functions such that η1(t) ≤ t, τ1(t) ≤ t, τ2(t) ≥ t,
lim
t→∞

τ1(t) = ∞ = lim
t→∞

η1(t) and η2 : T → T is an injective rd-continuous increasing function
such that η2(t) ≥ t.

(H3) p1 and p2 are the non-negative rd-continuous functions on an arbitrary time scale T, where

0 ≤ p1(t) ≤ p1 < 1 and 0 ≤ p2(t) ≤ p2.

(H4) r is a positive rd-continuous function such that
∞∫

t0

∆s

r1/γ(s)
=∞.

(H5) f, g ∈ C(T× R,R) such that

uf(t, u) ≥ 0, ug(t, u) ≥ 0, f(t, u) ≥ q1(t)uα and g(t, u) ≥ q2(t)uβ for u ̸= 0,

where q1 and q2 are the non-negative rd-continuous functions on an arbitrary time scale T, α
and β are the quotients of odd positive integers.



Survey on Qualitative Theory of Dynamic Equations on Time Scale 15

(H6) γ is a quotient of odd positive integers. Throughout this paper we assume that

d+(t) = max{0, d(t)}, d−(t) = max{0,−d(t)},

A(t) =


bα−β
0 , α ≥ β,

bα−β
1

[ t∫
t1

∆s

r1/γ(s)

]α−β

, α < β,
C(t) =


b

β
γ −1

0 ,
β

γ
≥ 1,

b
β
γ −1

1

[ σ(t)∫
t1

∆s

r1/γ(s)

] β
γ −1

, α < β,

where b0 and b1 are positive constants.

Theorem 2.9. Assume that (H1)–(H6) hold, τ2(t) ≥ η2(t) for all t ≥ t0 and there exist positive
real-valued ∆-differentiable functions R(t) and δ(t) such that for sufficiently large T and t1, we have

R(t)

r1/γ(t)
t∫

t1

1
r1/γ(s)

∆s

−R∆(t) ≤ 0 (2.29)

and

lim sup
t→∞

t∫
T

[
δ(s)ξ(s)

[
q1(s)L

α(s)A(s) + q2(s)
]
− γγ

βγ(γ + 1)γ+1

r(s)(δ∆+ (s))γ+1

δγ(s)Cγ(s)

]
∆s =∞,

and

L(s) = min
{
R(τ1(t))

R(t)
,
R(η−1

2 (τ1(t)))

R(t)

}
,

ξ(t) = min
{

1

(1 + p2(τ1(t)))α
,

1

(1 + p2(τ2(t)))β
,

1

(1 + p2(η
−1
2 τ1(t)))α

,
1

(1 + p2(η
−1
2 τ2(t)))α

}
.

Then, every solution of (2.28) is almost oscillatory on [t0,∞)T or converges to zero as t→∞.

Theorem 2.10. Assume that (H1)–(H6) hold and τ2(t) ≥ η2(t) for all t ≥ t0. Furthermore, suppose
that there exist positive real-valued ∆-differentiable functions R(t) and δ(t) such that equation (2.29)
is satisfied and for sufficiently large T , we have

lim sup
t→∞

t∫
T

[
δ(s)ξ(s)

[
q1(s)L

α(s)A(s) + q2(s)v
β(s)

]
− γγ

βγ(γ + 1)γ+1

r(s)(δ∆+ (s))γ+1

δγ(s)Cγ(s)

]
∆s =∞,

where
L(s) = min

{
R(τ1(t))

R(t)
,
R(η−1

2 (τ1(t)))

R(t)

}
and v(s) = min

{
1,
R(η−1

2 (s))

R(s)

}
.

Then every solution of (2.28) is almost oscillatory on [t0,∞)T or converges to zero as t→∞.

Theorem 2.11. Assume that (H1)–(H6) and (2.29) hold, τ2(t) ≥ η2(t) for all t ≥ t0 and there exist
the functions H, h such that for each fixed t, H(t, s) and h(t, s) are rd-continuous with respect to s on

D =
{
(t, s) : t ≥ s ≥ t0

}
such that

H(t, t) = 0, t ≥ t0, H(t, s) > 0, t > s ≥ t0, (2.30)
and H has a non-positive continuous ∆-partial derivative H∆s(t, s) satisfying

H∆s(t, s) +H(t, s)
δ∆+ (t)

δσ(t)
= −h(t, s)

δσ(t)
(H(t, s))

γ
γ+1 . (2.31)
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Assume that there exists a positive real-valued ∆-differentiable function δ(t) such that for sufficiently
large T ≥ t1 > t0, we have

lim sup
t→∞

1

H(t, T )

t∫
T

[
δ(s)ξ(s)H(t, s)

[
q1(s)L

α(s)A(s) + q2(s)
]

− γγ

βγ(γ + 1)γ+1

r(s)(h−(s, t))
γ+1

δγ(s)Cγ(s)

]
∆s =∞.

Then every solution of (2.28) is almost oscillatory on [t0,∞)T or convergences to zero as t→∞.

Theorem 2.12. Assume that (H1)–(H6) hold, η2(t) ≥ τ2(t) for all t ≥ t0. Also, assume that there
exist the functions H,h and δ defined as in Theorem 2.11 and satisfying equations (2.30), (2.31) and

lim sup
t→∞

1

H(t, T )

t∫
T

[
δ(s)ξ(s)H(t, s)

[
q1(s)L

α(s)A(s) + q2(s)v
β(t)

]
− γγ

βγ(γ + 1)γ+1

r(s)(h−(s, t))
γ+1

δγ(s)Cγ(s)

]
∆s =∞.

Then every solution of (2.28) is almost oscillatory on [t0,∞)T or convergences to zero as t→∞.

In [54], Qiu et al. discussed new oscillation criteria of the following second order dynamic equation:(
r(t)(x∆(t))γ

)∆
+ p(t)(x∆(t))γ + f(t, x(g(t))) = 0 (2.32)

on a time scale T satisfying infT = t0 and supT =∞. They also assumed that

(C1) r ∈ Crd(T, (0,∞));

(C2) p ∈ Crd(T,R4), where R4 = [0,∞)T;

(C3) γ is a quotient of odd positive integer;

(C4) g ∈ C(T,T) is non-decreasing and g(t) ≥ t for t ∈ T;

(C5) f ∈ C(T× R,R) and there exists a function q ∈ Crd(T,R+) such that

uf(t, u) ≥ q(t)uγ+1;

(C6) −p(t)/r(t) is positively regressive, which means 1− µ(t)p(t)/r(t) > 0 and
∞∫

t0

(e−p/r(t, t0)

r(t)

)1/γ

∆t =∞.

Let
D0 =

{
s ∈ T : s ≥ 0

}
and D =

{
(t, s) ∈ T2 : t ≥ s ≥ 0

}
.

For any function f(t, s) : T2 → R, we denote the partial derivative of f with respect to s by f∆2 .
Define

(A,B) =
{
(A,B) : A(s) ∈ C1

rd(D0,R0 \ {0}), B(s) ∈ C1
rd(D0,R), s ∈ D0

}
.

Theorem 2.13. Assume that (C1)–(C6) hold and there exist (A,B) ∈ (A,B) and H in (2.30) such
that, for any t1 ∈ T,

lim sup
t→∞

1

H(t, t1)

t∫
t1

[
H(t, s)

(
A(s)q(s)−B∆(s)

)
−H∆

2 (t, s)Bσ(s)− ϕ1(s)
]
∆s =∞,
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where

ϕ1(t) =



−H(t, s)A(s)p(s)(α1(s))
γ/(1−γ)

+
r(s)

(
H∆

2 (t, s)Aσ(s) +H(t, s)A∆(s)
)2

4γH(t, s)A(s)α1(s)
, 0 < γ < 1[

r(s)
(
H∆

2 (t, s)Aσ(s) +H(t, s)A∆(s)
)
−H(t, s)A(s)p(s)

]2
×(4H(t, s)A(s)r(s))−1, γ = 1,

r(s)
(
H∆

2 (t, s)Aσ(s) +H(t, s)A∆(s)
)2

4γH(t, s)A(s)α2(s)
, γ > 1, p = 0,

min
{
r(s)

(
H∆

2 (t,s)Aσ(s)+H(t,s)A∆(s)
)2

4γH(t, s)A(s)α2(s)
,

γ−1
(H(t,s)A(s)p(s))1/γ−1

×
(
r(s)

(
H∆

2 (t, s)Aσ(s) +H(t, s)A∆(s)
)
(γα2(s))

−1
)γ/(γ−1)

}
, γ > 1, p > 0.

Then equation (2.32) is oscillatory.

Theorem 2.14. Assume that (C1)–(C6) hold and there exists A ∈ C1
rd(D0,R\{0}) such that, for any

t1 ∈ T,

lim sup
t→∞

t∫
t1

[
A(s)q(s)− ϕ3(s)

]
∆s =∞,

where

ϕ3(t) =



−A(s)p(s)(α1(s))
γ/(1+γ) +

r(s)(A∆(s))2

4γA(s)α1(s)
, 0 < γ < 1,[

A∆(s)r(s)−A(s)p(s)
]2

(4A(s)r(s))
, γ = 1,

r(s)(A∆(s))2

4γA(s)α2(s)
, γ > 1, p = 0,

min
{
r(s)(A∆(s))2

4γA(s)α2(s)
,

γ − 1

(A(s)p(s))1/γ−1

(A∆(s)r(s)

γα2(s)

)γ/(γ−1)
}
, γ > 1, p > 0.

Then equation (2.32) is oscillatory.

In [29], Grace et al. studied the oscillation criteria for the dynamic equations on time scales(
a(t)(x∆(t))α

)∆
+ q(t)xβ(t) = 0, (2.33)

for the forced dynamic equation (
a(t)(x∆(t))α

)∆
+ q(t)xβ(t) = e(t),

and for the forced-perturbed dynamic equation(
a(t)(x∆(t))α

)∆
+ q(t)xβ(t) = e(t) + p(t)xγ(t),

where α, β and γ are ratios of positive odd integers, a, p and q are real-valued, positive and rd-
continuous functions and e is a real-valued and rd-continuous function on a time scale T ⊂ R with
supT =∞.
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In order to achieve the goal, they introduced some assumptions:
∞∫
t

a−1/α(s)∆s <∞ (2.34)

and

0 < Q(t) :=

∞∫
t

q(s)∆s <∞. (2.35)

Let

H(t, c) =

[
Q(t) + c

∞∫
t

a−1/α(s)(Qσ(s))(1+α)/α ∆s

]1/α
, (2.36)

where c is any positive constant.
Theorem 2.15. Let β > α, and let conditions (2.34) and (2.35) hold. If

lim sup
t→∞

t∫
t1

a−1/α(s)Hσ(s, c)∆s, t1 ∈ [t0,∞)T,

for any positive constant c, then equation (2.33) is oscillatory.
Theorem 2.16. Let β = α, and let conditions (2.34) and (2.35) hold. If

lim sup
t→∞

( t∫
t0

a−1/α(s)∆s

)
H(t, α) < 1,

where H is as in (2.36), then equation (2.33) is oscillatory.
Theorem 2.17. Let β < α, and let conditions (2.34) and (2.35) hold. If for every constant c > 0,

lim sup
t→∞

Qδ(t)

( t∫
t0

a−1/α(s)∆s

)[
Q(t) + c

∞∫
t

a−1/α(s)(Qδ(s))(1+α)/αQδ(s)∆s

]1/α
=∞,

where δ = 1
β −

1
α , then equation (2.33) is oscillatory.

In 2009 Grace et al. [30] discussed various different kind of new oscillation criteria for the second
order dynamic equation (2.33). In their discussion, they assumed a(t) > 0,

∞∫
t0

a−1/α(s)∆s <∞ (2.37)

and
∞∫

t0

a−1/α(s)∆s =∞. (2.38)

The problem of determining the non-oscillation and oscillation of all solutions of the second order
linear equations, e.g., equation (2.33) with α = β = 1, nonlinear equations, e.g., equation (2.33) with
α = 1 and β ̸= 1, half-linear equations, e.g., equation (2.33) with α = β has been a very active area of
research in the last two decades (for recent contributions we refer the reader to [1, 4–7,22,24,27] and
the references cited therein). There is no result concerning the oscillation of the nonlinear equation
(2.33) with α ̸= β on time scales.

In that paper, they intended to employ the generalized Riccati transformation technique to estab-
lish several new oscillation criteria for the nonlinear equation (2.33) with α ̸= β and α ̸= β on time
scales. The results of this paper not only extend the known results appeared in the literature, but
also improve and unify these criteria.
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Theorem 2.18. Let condition (2.37) hold. If there exists a positive non-decreasing delta differentiable
function ξ such that for every t1 ∈ [t0,∞)T

lim sup
t→∞

∞∫
t1

[
ξ(s)q(s)− δ1(s)ηα(s)ξ∆(s)

]
∆s =∞ (2.39)

and
∞∫

t1

(
1

a(s)

t∫
t1

θβ(u)q(u)∆u

)1/α

∆s =∞,

where

δ1(t) =


c1, c1 is any positive constant, if β > α,

1, if β = α,

c2η
β−α(t), c2 is any positive constant, if β < α,

(2.40)

η(t) =

( t∫
t1

a−1/α(s)∆s

)−1

, θ(t) =

∞∫
t

a−1/α(s)∆s,

then equation (2.33) is oscillatory.

Theorem 2.19. Let condition (2.38) hold. If there exists a positive nondecreasing delta differentiable
function ξ such that for every t1 ∈ [t0,∞)T condition (2.39) holds, then equation (2.33) is oscillatory.

Theorem 2.20. Let conditions (2.37) and (2.40) hold. If there exists a nondecreasing positive delta
differentiable function ξ such that for t1 ∈ [t0,∞)T

lim sup
t→∞

t∫
t1

[
ξ(s)q(s)− (α/β)α

(α+ 1)α+1

a(s)(ξ∆(s))α+1

(ξ(s)δ2(s))α

]
∆s =∞, (2.41)

where

δ2(t) =


c1, c1 is any positive constant, if β > α,

1, if β = α,

c2η
β−α(t), c2 is any positive constant, if β < α,

and the functions θ and η are as in Theorem 2.18, then equation (2.33) is oscillatory.

Theorem 2.21. Let condition (2.38) hold. If there exists a nondecreasing positive delta differentiable
function ξ such that for every t1 ∈ [t0,∞)T condition (2.41) holds, then equation (2.33) is oscillatory.

Next theorem presents the following oscillation result for (2.33) when α ≥ 1.

Theorem 2.22. Let α ≥ 1 and conditions (2.37) and (2.40) hold. If there exists a positive delta
differentiable function ξ such that for every t1 ∈ [t0,∞)T

lim sup
t→∞

t∫
t1

[
ξ(s)q(s)−

(
a1/α(s)

4βδ3(s)

( (ξ∆(s))2
ξ(s)

(ηα(s))α−1
))]

∆s =∞, (2.42)

where δ3(t) = δα2 (t) and η and δ2 are as in Theorem 2.18, then equation (2.33) is oscillatory.

Theorem 2.23. Let condition (2.39) hold. If there exists a positive delta differentiable function ξ
such that for any t1 ∈ [t0,∞)T condition (2.42) holds, then equation (2.33) is oscillatory.
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In [28], Grace et al. concerned with the oscillatory behavior of solutions of the second-order
nonlinear dynamic equations of the form

(a(t)x∆(t))∆ + f(t, xσ(t)) = 0, t ≥ t0, (2.43)

subject to the following hypotheses:

(i) a is a positive real-valued rd-continuous function satisfying condition as follows
∞∫

t0

∆s

a(s)
=∞, (2.44)

(ii) f : [t0,∞)× R→ R is continuous satisfying

sgn f(t, x) = sgn(x) and f(t, x) ≤ f(t, y), x ≤ y, t ≥ t0.

There are some results that are obtained for special cases of equation (2.43), e.g., when α = 1 and
f(t, x) = q(t)x, or a = 1 and f(t, x) = q(t)f(x), where f satisfies the condition |f(x)/x| ≥ k > 0 for
x ̸= 0, or f ′(x) ≥ f(x)/x > 0 for x ̸= 0 (see [23,24,26]). In [38], Han et al. considered the second-order
Emden–Fowler dynamic equation on time scales:

x∆∆(t) + q(t)x∆(t) = 0,

where α is the ratio of odd integers, and they used the Riccati transformation technique to obtain
several oscillation criteria for this equation. For the continuous case, (2.43) can be rewritten as

(a(t)x′(t))′ + f(t, x(t)) = 0.

Lemma 2.5. Suppose |y∆| is one sign on [t0,∞) and α > 0. Then

|y|∆

(|y|σ)α
≤ (|y|1−α)∆

(1− α)
≤ |y|

∆

|y|α
on [t0,∞).

Definition 2.1. Equation (2.43) (or the function f) is said to be strongly super-linear if there exists
a constant β > 1 such that

|f(t, x)|
|x|β

≤ |f(t, y)|
|y|β

for |x| ≤ |y|, xy > 0, t ≥ t0, (2.45)

and it is said to be strongly sub-linear if there exists a constant γ ∈ (0, 1) such that

|f(t, x)|
|x|γ

≥ |f(t, y)|
|y|γ

for |x| ≤ |y|, xy > 0, t ≥ t0. (2.46)

If equation (2.45) holds with β = 1, then equation (2.43) is called super-linear and if (2.46) holds with
γ = 1, then (2.43) is called sub-linear.

Lemma 2.6. Condition (2) implies that

|f(t, x)| ≤ |f(t, y)| for |x| ≤ |y|, xy ≥ 0, t ≥ t0. (2.47)

The following lemma will be used in the coming results.

Lemma 2.7. Suppose x solves (2.43) and is of one sign on [t0,∞). Let u, v, t ≥ t0. Then

|x|∆(v) = x∆(v) sgn(v)

and

|x|(t) = |x|(u) + a(v)|x|∆(v)
t∫

u

∆s

a(s)
−

t∫
u

1

a(s)

s∫
v

∣∣f(τ, x(σ(τ)))∣∣ ∆τ ∆s. (2.48)



Survey on Qualitative Theory of Dynamic Equations on Time Scale 21

Next, we define a notation

A(t) =

t∫
t0

∆s

a(s)
for t ≥ t0.

The following simple consequence of Lemma 2.7 will be used in our main results.

Lemma 2.8. Assume that equation (2.44) holds. Suppose x solves (2.43) and is of one sign on [t0,∞).
Then on [t0,∞),

|x|∆ ≥ 0, hence |x| is increasing. (2.49)

Moreover, pick any t1 > t0 and let

c = x(t0) and c∗ =

{
|x(t0)|
A(t1)

+ a(t0)|x|∆(t0)
}

sgn(x(t0)).

Then
|x| ≥ c on [t0,∞), where cx > 0, (2.50)

and
|x| ≤ |c∗A| on [t0,∞), where c∗Ax > 0.

Theorem 2.24. Assume condition (2.44) holds. If

∞∫
t0

|f(τ, c)|∆τ =∞ for all c ̸= 0, (2.51)

then equation (2.43) is oscillatory.

Proof. Differentiating (2.48) with respect to t and then letting t = t0 and using (2.50) and (2.47), we
find, for all v ≥ t0,

|x|∆(t0) ≥
1

a(t0)

v∫
t0

∣∣f(τ, x(σ(τ)))∣∣∆τ ≥ 1

a(t0)

v∫
t0

|f(τ, c)|∆τ,

which contradicts (2.51) and completes the proof.

Theorem 2.25. Assume condition (2.44) holds. If

∞∫
t0

1

a(s)

∞∫
s

|f(τ, c)| ∆τ ∆s =∞ for all c ̸= 0, (2.52)

then all bounded solutions of equation (2.43) are oscillatory.

Proof. Let x be a bounded non-oscillatory solution of (2.43) such that x is of one sign on [t0,∞).
Using (2.50) and (2.47), we obtain∣∣f(τ, x(σ(τ)))∣∣ ≥ |f(τ, c)| for all τ ≥ t0.

Thus, using (2.48) with v ≥ t ≥ t0, together with (2.49), we find

|x(t)| ≥
t∫

t0

1

a(s)

v∫
s

∣∣f(τ, x(σ(τ)))∣∣ ∆τ ∆s ≥ t∫
t0

1

a(s)

v∫
s

|f(τ, c)| ∆τ ∆s,

which, since x is bounded, contradicts (2.52) and completes the proof.
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For the upcoming oscillatory results, we will use the following notation:

A(t) =

t∫
t0

∆s

a(s)
for t ≥ t0

and

Â(t) =

∞∫
t0

∆s

a(s)
for t ≥ t0.

Theorem 2.26. Assume condition (2.44) holds. Suppose (2.43) is super-linear. If

lim sup
t→∞

{
A(t)

∞∫
t

|f(τ, c)|∆τ
}
> |c| for all c ̸= 0, (2.53)

then equation (2.43) is oscillatory.
Proof. Let x be a non-oscillatory solution of (2.43) such that x is of one sign on [t0,∞). Using (2.50)
and (2.45) (with β = 1), we obtain

|f(τ, x(σ(τ)))|
|x(σ(τ))|

≥ |f(τ, c)|
|c|

for all τ ≥ t0.

Thus, using (2.48) with v ≥ t ≥ t0, along with (2.49), we find

|x(t)| ≥
t∫

t0

t

a(s)

v∫
s

∣∣f(τ, x(σ(τ)))∣∣ ∆τ ∆s ≥ t∫
t0

1

a(s)

v∫
s

|f(τ, c)|
|c|

|x(σ(τ))| ∆τ ∆s,

and hence

|c| ≥ A(t)
v∫

t

|f(τ, c)|∆τ,

which contradicts (2.53) and completes the proof.

Next, we present the following result for the strongly superlinear equation (2.43).
Theorem 2.27. Assume that condition (2.44) holds. Suppose (2.43) is strongly super-linear. If

∞∫
t0

1

a(s)

∞∫
s

|f(τ, c)| ∆τ ∆s =∞ for all c ̸= 0, (2.54)

then equation (2.43) is oscillatory.
Proof. Let x be a non-oscillatory solution of (2.43) such that x is of one sign on [t0,∞). Using (2.50)
and (2.45) (with β = 1), we obtain

|f(τ, x(σ(τ)))|
|x(σ(τ))|β

≥ |f(τ, c)|
|c|β

for all τ ≥ t0.

Thus, differentiating (2.48) with respect to t and using (2.49) and Lemma 2.5 (the inequality on the
left-hand side), we find, for v ≥ t,

|x|∆(t) ≥ 1

a(t)

v∫
t

∣∣f(τ, x(σ(τ)))∣∣∆τ ≥ 1

a(t)

v∫
t

|f(τ, c)|
|c|β

|x(σ(τ))|∆τ

≥ 1

a(t)

v∫
t

|f(τ, c)|
|c|β

∆τ |x(σ(τ))|β ≥ 1

a(t)

v∫
t

|f(τ, c)|
|c|

∆τ
(β − 1)|x(σ(τ))|β

−(|x|1−β)∆(t)
,
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and hence

−
(
|x|1−β

)∆
(t) ≥ β − 1

|c|a(t)

v∫
t

|f(τ, c)|∆τ.

Integrating this inequality from t0 to t ≥ t0, we obtain

|x(t0)|1−β ≥ |x(t)|1−β +
(β − 1)

|c|β

t∫
t0

1

a(s)

v∫
s

|f(τ, c)| ∆τ ∆s ≥ (β − 1)

|c|β

t∫
t0

1

a(s)

v∫
s

|f(τ, c)| ∆τ ∆s,

which contradicts (2.54) and completes the proof.

Theorem 2.28. Assume condition (2.44) holds. Suppose equation (2.43) is strongly sub-linear. If
∞∫

t0

|f(τ, cA(τ))|∆τ =∞ for all c ̸= 0, (2.55)

then equation (2.43) is oscillatory.

Proof. Let x be a non-oscillatory solution of (2.43) such that x is of one sign on [t0,∞). Using (2.8)
and (2.46) (with 0 < γ < 1), we obtain

|f(τ, x(τ)|
|x(τ)|γ

≥ |f(τ, c
∗A(τ))|

|c∗A(τ)|γ
for τ ≥ t1.

Thus, using (2.48) with u = t0 and v ≥ t ≥ t1, we find

|x(t)| ≥
t∫

t0

1

a(s)

v∫
s

∣∣f(τ, x(σ(τ)))∣∣ ∆τ ∆s ≥ t∫
t0

1

a(t)

v∫
t

∣∣f(τ, x(σ(τ))∣∣ ∆τ ∆s
= A(t)

v∫
t

∣∣f(τ, x(σ(τ)))∣∣∆τ ≥ A(t) v∫
t

|f(τ, x(τ))|∆τ ≥ A(t)
v∫

t

|f(τ, c∗A(τ))|
|c∗A(τ)|γ

|x(τ)|γ ∆τ

(where we have used (2.49) and (2.47) in the second last inequality), and hence

∣∣∣ x(t)
A(t)

∣∣∣ ≥ z(t), where z(t) := |c∗|−γ

v∫
t

∣∣f(τ, c∗A(τ))∣∣ ∣∣∣ x(τ)
A(τ)

∆τ
∣∣∣.

Thus, using Lemma 2.5 (the inequality on the right-hand side),

− |z|∆(τ) = −z∆(τ) = |c∗|−γ
∣∣f(τ, c∗A(τ))∣∣ ∣∣∣ x(τ)

A(τ)

∣∣∣γ
≥ |c∗|−γ

∣∣f(τ, c∗A(τ))∣∣ |z(τ)|γ ≥ |c∗|−γ
∣∣f(τ, c∗A(τ))∣∣ (1− γ)(−|z|∆(τ))

−(|z|1−γ)∆(τ)
,

and hence
−
(
|z|1−γ

)∆
(τ) ≥ (1− γ)

|c∗|γ
∣∣f(τ, c∗A(τ)∣∣.

Integrating this inequality from t1 to t ≥ t1, we obtain

|z(t1)|1−γ ≥ |z(t)|1−γ +
(1− γ)
|c∗|γ

t∫
t1

∣∣f(τ, c∗A(τ))∣∣∆τ ≥ (1− γ)
|c∗|γ

t∫
t1

∣∣f(τ, c∗A(τ))∣∣∆τ,
which contradicts (2.55) and completes the proof.
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3 Important applications
The results obtained above for equation (2.43) have been applied to the second-order Emden–Fowler
dynamic equation on time scales:

(a(t)x∆(t))∆ + q(t)(xα(t))α = 0, (3.1)

where a and q are the nonnegative rd-continuous functions and a is the ratio of positive odd integers.
Theorem 3.1. Let condition (2.44) hold and define A(t). Equation (3.1) is oscillatory if one of the
following conditions holds:

•
∞∫

t0

q(τ)∆τ =∞ if α > 0;

• lim sup
t→∞

{
A(t)

∞∫
t

q(τ)∆τ

}
> c for any c > 0 and for α ≥ 1;

•
∞∫

t0

1

a(s)

∞∫
s

q(τ) ∆τ ∆s =∞ if α > 1;

•
∞∫

t0

(A(τ))αq(τ)∆τ =∞ if 0 < α < 1.

Remark 3.1. From the results of this paper, we can obtain some oscillation criteria for equation
(2.43) on different types of time scales. If T = R, then σ(t) = t and x∆(t) = x′(t) for t ∈ T. In
this case, the results of this paper are the same as those in [45]. If T = Z, then σ(t) = t + 1 and
x∆(t) = ∆x(t) = x(t + 1) − x(t). In this case, the results of this paper are the discrete analogues
of those in [45]. If T = hZ with h > 0, then σ(t) = t + h, and x∆(t) = (x(t + h) − x(t))/h. The
reformulation of our results is easy and we left that to the readers. We may employ other types of
time scales, e.g. T = qN0 with q > 1, T = N2

0.
In [31], Grace et al. discussed the oscillatory behaviour of the following second-order dynamic

equation on time scales: (
a(t)(x∆(t))α

)∆
+ q(t)xβ(t) = 0, (3.2)

where α and β are the ratios of positive odd integers, a and q are real-valued, positive and rd-continuous
functions on a time scale T ⊂ R with supT =∞.

In this paper, the authors have obtained some comparison results which were applied to neutral
dynamic equation of the form(

a(t)
([
x(t) + p(t)x[x(τ(t))]∆

])α)∆

+ q(t)xβ(t) = 0. (3.3)

In order to achieve the oscillatory result, they assumed some conditions as follows:
∞∫
a−1/α(s)∆s =∞. (3.4)

First, we derive a lemma.
Lemma 3.1. Assume condition (3.4) holds. If the inequality(

a(t)(x∆(t))α
)∆

+ q(t)xβ(t) ≤ 0, (3.5)

where
∞∫
a(t)∆t <∞,

has an eventually positive solution, then (3.2) also has an eventually positive solution.
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Proof. Let x(t) be an eventually positive solution of inequality (3.5). It is easy to see that x∆(t) > 0
is eventual, i.e., there exists t0 ≥ 0 such that x∆(t) > 0, for t ≥ t0. Now, let

y(t) = a(t)(x∆(t))α, t ≥ t0. (3.6)

Then
x∆(t) =

(y(t)
a(t)

)1/α

:= Ψ(a; y)(t) > 0 for t ≥ t0. (3.7)

Integrating this equality from t0 to t ≥ t0, we have

x(t) ≥ x(t)− x(t0) =
t∫

t0

Ψ(a; y)(s)∆s := Y (a; y)(t). (3.8)

From (3.5)–(3.8), we get
y∆(t) + q(t)((Y (a; y))(t))β ≤ 0 for t ≥ t0. (3.9)

Integrating this inequality from v ≥ t and letting v →∞, we have

y(t) ≥
∞∫
t

q(s)((Y (a; y))(s))β ∆s. (3.10)

Now, we define a sequence of successive approximations {un(t)} as follows:
u0(t) = y(t)

un+1(t) =

∞∫
t

q(s)((Y (a; y))(s))β ∆s, n = 0, 1, . . . .
(3.11)

One can easily prove that

0 < un(t) ≤ y(t), un+1(t) ≤ un(t), n = 0, 1, . . . , and t ≥ t0.

Now, let
u(t) = lim

t→∞
un(t) > 0.

Since 0 < u(t) ≤ un(t) ≤ y(t) for all n ≥ 0 and Y (a;un) ≤ Y (a;u), the convergence of the sequence
in (3.11) is uniform with respect to n. Taking the limit on the both sides of (3.11), we obtain

u(t) =

∞∫
t

q(s)((Y (a; y))(s))β ∆s for t ≥ t0.

Therefore,
u∆(t) = −q(s)((Y (a; y))(s))β for t ≥ t0. (3.12)

Define
v(t) = (Y (a; y))(t) for t ≥ t0.

Then v(t) > 0. Thus, for t ≥ t0,

v∆(t) = Ψ(a;u)(t) =
(u(t)
a(t)

)1/α

and
a(t)(v∆(t))α = u(t). (3.13)

From (3.12) and (3.13), we get (
a(t)(v∆(t))α

)∆
+ q(t)vβ(t) = 0.
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This shows that (3.2) has a positive solution v(t).
Similarly, we can show that if the inequality(

a(t)(x∆(t))α
)∆

+ q(t)xβ(t) ≥ 0

has an eventually negative solution, then (3.2) also has an eventually negative solution. This completes
the proof.

From Lemma 3.1, one can easily obtain the following comparison results.

Theorem 3.2. Assume that (3.4) holds. If 0 < Q(t) ≤ q(t) for t ≥ t0 ≥ 0 and the equation(
a(t)(z∆(t))α

)∆
+Q(t)zβ(t) = 0

is oscillatory, then (3.2) is also oscillatory.

Proof. Immediately follows from Lemma 3.1.

Theorem 3.3. Assume that (3.4) holds. If b(t) ≥ a(t) for t ≥ t0 and the equation(
b(t)(z∆(t))α

)∆
+ q(t)zβ(t) = 0

is oscillatory, then (3.2) is oscillatory.

Proof. Suppose that (3.2) is non-oscillatory. Without loss of generality, we may assume that (3.2) has
a positive solution x(t) for t ≥ t0. Using the same arguments as in Lemma 3.1, we can show that (3.8)
holds. Thus

x(t) ≥ Y (a; y)(t) ≥ Y (b; y)(t).

So,
yδ(t) + q(t)(Y (b; y)(t))β ≤ 0 for t ≥ t0.

The rest of the proof is similar to that of Lemma 3.1 and hence omitted.

Next, consider another dynamic equation(
a(t)(x∆(t))α

)∆
+ q(t)f(x(t)) = 0, (3.14)

where α, a and q are as in (3.2), f : R→ R is continuous and satisfies

x(f(x))− xβ ≥ 0 for x ̸= 0. (3.15)

The following comparison result can be obtained.

Theorem 3.4. Assume that (3.4) and (3.15) hold. If (3.2) is oscillatory, then (3.14) is oscillatory.

Proof. Without loss of generality, suppose that (3.14) has an eventually positive solution x. By
conditions (3.15) and (3.6), we have(

a(t)(x∆(t))α
)∆

+ q(t)xβ(t) ≤ 0.

Thus, by Lemma 3.1, we see that (3.2) has a positive solution, which is a contradiction to the fact
that (3.2) is oscillatory. This completes the proof.

Next, as an application to the above results, we consider the neutral dynamic equation (3.3), where
p(t) is the rd-continuous function with 0 ≤ p(t) ≤ 1 and τ : T → T satisfies τ(t) ≤ t for t ∈ T and
lim
t→∞

τ(t) =∞.
The next oscillatory result is as follows.
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Theorem 3.5. Assume that condition (3.4) holds. If the equation(
a(t)(x∆(t))α

)∆
+ q(t)(1− p(t))βxβ(t) = 0 (3.16)

is oscillatory, then (3.3) is also oscillatory.

Proof. Without loss of generality, suppose that x is a non-oscillatory solution of equation (3.3), say,
x(t) > 0 for t ≥ t0 ≥ 0. Let

y(t) = x(t) + p(t)x[τ(t)], t ≥ t0.
Then (

a(t)(y∆(t))α
)∆

+ q(t)xβ(t) = 0. (3.17)
It is easy to see that y∆(t) > 0 and x(t) ≤ y(t) and x(τ(t)) ≤ y(τ(t)) ≤ y(t) for t ≥ t1 for some
t1 ≥ t0. Thus, we have

x(t) = y(t)− p(t)x[τ(t)] ≥ y(t)− p(t)y(t) := (1− p(t))y(t). (3.18)

Using (3.18) and (3.17), we obtain(
a(t)(y∆(t))α

)∆
+ q(t)(1− p(t))βyβ(t) ≤ 0 for t ≥ t1.

By Lemma 3.1, we see that (3.16) has an eventually positive solution, which is a contradiction. This
completes the proof.

In [35], Grace et al. discussed the oscillatory behaviour of the equation

x∆(t) = e(t)−
t∫

0

k(t, s)f(s, x(s))∆s, t ≥ 0, (3.19)

and the Volterra integral equation

x(t) = e(t)−
t∫

0

k(t, s)f(s, x(s))∆s, t ≥ 0, (3.20)

where e : [0,∞)T → R is rd-continuous, k(t, · ) : [0,∞)T → [0,∞) is rd-continuous for each fixed
t ∈ T, k( · , s) : [0,∞)T → [0,∞) is rd-continuous for each fixed s ∈ T, f( · , x) : [0,∞)T → ∞ is
rd-continuous for each x ∈ R, and f(t, · ) : [0,∞)T → R is continuous for each t ∈ T.

Some oscillation theorems for Volterra integro-differential and integral equations in the continuous
case can be found in [52,53], the oscillation problem for the integral and integro-dynamic equations on
time scales is a fairly new topic. To the best of our knowledge, the only study regarding the integro-
dynamic equation (3.19) has been recently carried out in [32]. Therefore, the objective in this paper
is to make further contributions to the subject by studying the oscillation problem for the equations
of form (3.19) and (3.20).

Some necessary assumptions and lemmas are given as follows.

Lemma 3.2 ([5]). If X and Y are non-negative real numbers, then

Xλ − (1− λ)Y λ − λXY λ−1 ≤ 0 for 0 < λ < 1.

The equality holds if and only if X = Y .

Throughout the work in [35], the authors assumed that the following hypothesis (H) holds.

(H) There exist rd-continuous functions a, q,m : [0,∞)T → (0,∞) and a real number λ, 0 < λ ≤ 1,
such that

k(t, s) ≤ a(t)q(s) for all t ≥ s
and

0 < xf(t, x) ≤ m(t)|x|λ+1 for x ̸= 0 and t ≥ 0.
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In what follows, denote

h±(t) = e(t)± (1− λ)λλ/(1−λ)a(t)

t∫
0

pλ/(λ−1)(s)m1/(1−λ)(s)q1/(1−λ)(s)∆s, 0 < λ < 1, (3.21)

where p : [0,∞)T → (0,∞) is a given rd-continuous function.
We first give the sufficient conditions under which every non-oscillatory solution of equation (3.19)

satisfies x(t) = O(t), t→∞.

Theorem 3.6. Let 0 < λ < 1 and (H) hold, and let h± be defined by (3.21). Assume that

∞∫
0

a(s)∆s <∞ (3.22)

and
∞∫
0

sp(s)∆s <∞. (3.23)

If

lim sup
t→∞

1

t

t∫
0

h±(s)∆s <∞, lim inf
t→∞

1

t
h±(s)∆s > −∞, (3.24)

then every non-oscillatory solution x(t) of equation (3.19) satisfies

lim sup
t→∞

|x(t)|
t

<∞. (3.25)

Proof. Let x(t) be a solution of equation (3.19), we may assume that x(t) > 0 for all t ≥ t1 for some
t1 > 0. Let

k1 := min
{
f(t, x(t)) : t ∈ [0, t1]T

}
≤ 0 and k2 := −k1

t1∫
0

q(s)∆s ≥ 0.

In view of the condition (H), we can then write

x∆(t) = e(t)−
t1∫
0

k(t, s)f(s, x(s))∆s−
t∫

t1

k(t, s)f(s, x(s))∆s

≤ e(t)− k1a(t)
t1∫
0

q(s)∆s+ a(t)

t∫
t1

q(s)m(s)xλ(s)∆s

= e(t) + k2a(t) + a(t)

t∫
t1

(
q(s)m(s)xλ(s)− p(s)x(s)

)
∆s+ a(s)

t∫
t1

p(s)x(s)∆s.

Applying the above lemma to q(s)m(s)xλ(s)− p(s)x(s) with

X = (qm)1/λx, Y =
(p(qm)−1/λ

λ

)1/(λ−1)

,

we have

q(s)m(s)xλ(s)− p(s)(x(s)) ≤ (1− λ)λλ/(λ−1)pλ/(λ−1)(s)m1/(1−λ)(s)q1/(1−λ)(s).
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Thus,

x∆(s) ≤ h±(t) + k2a(t) + a(t)

t∫
t1

p(s)x(s)∆s. (3.26)

Integrating equation (3.26) from t1 to t, and using equation (3.22) and the fact that a(t) is bounded,
say by c1, we get

x(t) ≤ x(t1) +
t∫

t1

h+(s)∆s+ k2

t∫
t1

a(s)∆s+ c1

t∫
t1

t∫
t1

p(s)x(s) ∆s∆r.

If we now employ [17, Lemma 3], to the interchange of the order of this integration, then it follows
that

z(t) ≤ x(t1) +
t∫

t1

h+(s)∆s+ k2

t∫
t1

a(s)∆s+ c1t

t∫
t1

p(s)x(s)∆s, (3.27)

and so,
x(t)

t
≤ c2 + c1

t∫
t1

sp(s)
x(s)

s
∆s, t ≥ t1.

Now, in view of (3.22) and (3.24), c2 > 0 is an upper bound for

1

t
x(t1) +

1

t

t∫
t1

h+(s)∆s+
k2
t

t∫
t1

a(s)∆s.

Applying Gronwall’s inequality to the above inequality, then using equation (3.23), we have

lim sup
t→∞

x(t)

t
<∞. (3.28)

If x(t) is eventually negative, we can obtain that y = −x and that y satisfies equation (3.19) with e(t)
replaced by −e(t) and f(t, x) replaced by −f(t, x). It follows in the similar manner that

lim sup
t→∞

−x(t)
t

<∞.

Thus, from the last two relations, we conclude that equation (3.25) holds.

Theorem 3.7. Let 0 < λ < 1 and (H) hold, and let h± be defined by (3.21). Assume that (3.22) and
(3.24) are satisfied and that

lim sup
t→∞

∞∫
0

sp(s)∆s <∞.

If
lim sup
t→∞

h+(s)∆s =∞, lim inf
t→∞

h−(s)∆s = −∞, (3.29)

then equation (3.19) is oscillatory.

Proof. Suppose on the contrary that there is a non-oscillatory solution x(t) of equation (3.19), which
is eventually positive, say x(t) > 0 for t ≥ t1 for some t1 > 0. The proof when x(t) is eventually
negative is similar. Proceeding as in the proof of Theorem 3.6, we arrive at (3.27). Therefore,

x(t) ≤ x(t1) +
t∫

t1

h+(s)∆s+ k2

t∫
t1

a(s)∆s+ c1t

t∫
t1

sp(s)
x(s)

s
∆s. (3.30)
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On the other hand, (3.28) implies (3.23), and so the conclusion of equation (3.30) holds. This, together
with equation (3.22), shows that the last two integrals of the above relations are bounded. Finally,
taking lim sup as t→∞ and using (3.29) in (3.30), the result contradicts the fact that x(t) is eventually
positive.

Similar to the sub-linear case, one can easily prove the following theorems for the integro-dynamic
equation (3.19) when λ = 1. Now, assume the following:

lim sup
t→∞

t∫
0

e(s)∆s =∞, lim inf
t→∞

t∫
0

e(s)∆s = −∞. (3.31)

Theorem 3.8. Let λ = 1 and (H) hold. In addition to (3.22), assume that

lim sup
t→∞

t∫
0

sm(s)q(s)∆s <∞. (3.32)

If

lim sup
t→∞

1

t

t∫
0

e(s)∆s <∞, lim inf
t→∞

1

t

t∫
0

e(s)∆s > −∞, (3.33)

then every non-oscillatory solution of equation (3.19) satisfies (3.25).

Theorem 3.9. Let λ = 1 and (H) hold. Assume that (3.22), (3.31) and (3.33) are satisfied. If

lim sup
t→∞

t

t∫
0

sm(s)q(s)∆s <∞,

then equation (3.19) is oscillatory.

Theorem 3.10. Let 0 < λ < 1, (H) and (3.23) hold, and let h± be defined by (3.21). If

lim sup
t→∞

a(t)

t
<∞, lim sup

t→∞

h+(t)

t
<∞, lim inf

t→∞

h−(t)

t
> −∞, (3.34)

then every non-oscillatory solution x(t) of equation (3.20) satisfies (3.25).

Proof. Let x(t) be an eventually positive solution of (3.20), say x(t) > 0 for t ≥ t1 for some t1 > 0.
Proceeding as in the proof of Theorem 3.6, similarly to (3.26), we arrive at

x(t) ≤ h+(t) + k2a(t) + a(t)

t∫
t2

p(s)x(s)∆s

and hence
x(t)

t
≤ k3 + k2k4

t∫
t1

sps(s)
x(s)

s
∆s, t ≥ t1, (3.35)

where, in view of (3.34), k3 and k4 are, respectively, the upper bounds for h+(t)/t and a(t)/t. An ap-
plication of the Gronwall inequality to (3.35) gives (3.25). The proof is similar when x(t) is eventually
negative.

Theorem 3.11. Let 0 < λ < 1, (H) and (3.23) hold, and let h± be defined by (3.21). Assume that

lim sup
t→∞

a(t) <∞, lim sup
t→∞

h+(t)

t
<∞, lim inf

t→∞

h−(t)

t
> −∞. (3.36)
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If
lim sup
t→∞

h+(t) =∞, lim inf
t→∞

h−(t) = −∞, (3.37)

then equation (3.20) is oscillatory.

Proof. Suppose on the contrary that there is a non-oscillatory solution x(t) of equation (3.20), which
is eventually positive, say x(t) > 0 for t ≥ t1 for some t1 ≥ 0. As in the proof of the above theorem,
we have

x(t) ≤ h+(t) + k2a(t) + a(t)

t∫
t1

sp(s)
x(s)

s
∆s, t ≥ t1. (3.38)

Note that since a(t) is bounded, condition (3.36) implies (3.34), and hence the conclusion of the above
theorem holds. In view of (3.21), (3.37) and the fact that x(t)

t is bounded, by taking lim inf on both
sides of (3.38) as t→∞, we obtain a contradiction with x(t) being eventually positive. The proof is
similar when x(t) is eventually negative.

Again, similar to sub-linear case, we have the following results for the Volterra integral equation
(3.20) when λ = 1.

Theorem 3.12. Let λ = 1 and (H) hold. Assume that (3.32) holds. If

lim sup
t→∞

a(t)

t
<∞, lim sup

t→∞

e(t)

t
<∞, lim inf

t→∞

e(t)

t
> −∞,

then every non-oscillatory solution x(t) of equation (3.20) satisfies (3.25).

Assume
lim sup
t→∞

e(t) =∞ and lim inf
t→∞

e(t) = −∞. (3.39)

Theorem 3.13. Let λ = 1 and (H) hold. Assume that (3.32) and (3.39) are satisfied. If

lim sup
t→∞

a(t) <∞, lim sup
t→∞

e(t)

t
<∞, lim inf

t→∞

e(t)

t
> −∞,

then equation (3.20) is oscillatory.

Motivated by the results from [35] by Grace et al., in their paper [5], Agarwal et al. concerned with
the asymptotic behavior of non-oscillatory solutions of the second-order integro-dynamic equation on
time scales of the form (

r(t)(x∆(t))α
)∆

+

t∫
0

a(t, s)F (s, x(s))∆s = 0, (3.40)

and the oscillatory behavior of the second-order forced integro-dynamic equation

(r(t)(x∆(t)))∆ +

t∫
0

a(t, s)F (s, x(s))∆s = e(t). (3.41)

Here, T ⊂ R+ = [0,∞) is an arbitrary time-scale with 0 ∈ T and supT =∞.
Furthermore, throughout the paper they assumed:

1. e, r : T → R and a : T × T → R are rd-continuous and r(t) > 0, and a(t, s) ≥ 0 for t > s, α is
the ratio of positive odd integer and

sup
t≥t0

t0∫
0

a(t, s)∆s := k <∞, t0 ≥ 0; (3.42)
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2. F : T×T→ R is continuous and assume that there exist continuous functions f1, f2 : T×R→ R
such that F (t, x) = f1(t, x)− f2(t, x) for t ≥ 0;

3. there exit constants β and γ, being the ratios of positive odd integer, and the functions pi ∈
Crd(T, (0,∞)), i = 1, 2, such that

xf1(t, x) ≥ p1(t)xβ+1 for x ̸= 0 and t ≥ 0,

xf2(t, x) ≥ p2(t)xγ+1 for x ̸= 0 and t ≥ 0.

Now, define

R(t, t0) =

t∫
t0

( s

r(s)

)1/α

∆s, t > t0 ≥ 0.

Note that due to the monotonicity,

lim
t→∞

R(t, t0) ̸= 0. (3.43)

Lemma 3.3. If X and Y are non-negative real numbers, then

Xλ + (λ− 1)Y λ − λXY λ−1 ≥ 0 for λ > 1, (3.44)
Xλ − (1− λ)Y λ − λXY λ−1 ≤ 0 for λ < 1, (3.45)

where the equality holds if and only if X = Y .

4 Oscillatory results for (3.40)
Theorem 4.1. Let the conditions (i)–(iii) hold with γ = 1 and β > 1 and suppose

lim
t→∞

1

R(t, t0)

t∫
t0

(
1

r(v)

v∫
t0

u∫
t0

a(u, v)p
1/(1−β)
1 (s)p

1/(β−1)
2 (s) ∆s∆u

)1/α

∆u <∞ (4.1)

for some t0 ≥ 0. If x is a non-oscillatory solution of (3.40), then

x(t) = O(R(t, t0)) as t→∞. (4.2)

Proof. Let x be a non-oscillatory solution of equation (3.40). Hence x is either eventually positive or
eventually negative. First assume x is eventually positive, say x(t) > 0 for t ≥ t0 for some t1 > 0.
Using the conditions (ii) and (iii) with β > 1 and γ = 1 in equation (3.40), for t ≥ t1, we obtain

(
r(t)(x∆(t))α

)∆ ≤ − t1∫
0

a(t, s)F (s, x(s))∆s+

t∫
t1

a(t, s)
[
p2(s)x(s)− p1(s)xβ(s)

]1/(β−1)
∆s. (4.3)

If we apply (3.44) with λ = β, X = p
1/β
1 x, and Y = ( 1β p2p

−1/β
1 )1/(β−1), we have

p2(t)x(t)− P1(t)x
β(t) ≤ (β − 1)ββ/(1−β)p

1/(1−β)
1 (t)p

β/(β−1)
2 (t), t ≥ t1. (4.4)

Substituting (4.4) into (4.3), we get

(
r(t)(x∆(t))α

)∆ ≤ − t∫
t1

a(t, s)F (s, x(s))∆s+(β−1)ββ/(1−β)

t∫
t1

a(t, s)p
1/(1−β)
1 (s)p

β/(β−1)
2 (s)∆s (4.5)

for all t ≥ t1 ≥ 0. Let
m := max

{
|F (t, x(t))| : t ∈ [0, t1]T

}
.
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By using assumption (i), we have∣∣∣∣−
t∫

t1

a(t, s)F (s, x(s))∆s

∣∣∣∣ ≤
t1∫
0

a(t, s)|F (s, x(s))|∆s ≤ mk := b. (4.6)

Hence from (4.5) and (4.6), we obtain

(
r(t)(x∆(t))α

)∆ ≤ b+ (β − 1)ββ/(1−β)

t1∫
0

a(t, s)p
1/(1−β)
1 (s)p

β/(β−1)
2 (s)∆s.

Integrating this inequality from t1 to t we arrive to

(x∆(t))α ≤ r(t1)|(x∆(t1))α|
r(t)

+ b
(t− t1)
r(t)

+
(β − 1)ββ/(1−β)

r(t)

t∫
t1

u∫
t1

a(u, s)p
1/(1−β)
1 (s)p

β/(β−1)
2 (s) ∆s∆u,

or

(x∆(t))α ≤ c0t

r(t)
+

(β − 1)ββ/(1−β)

r(t)

t∫
t1

t∫
t1

a(u, s)p
1/(1−β)
1 (s)p

β/(β−1)
2 (s) ∆s∆u,

where
c0 =

r(t1)|(x∆(t1))α|
t1

+ b.

By employing a well-known inequality

(a1 + b1)
λ ≤ σλ(aλ1 + bλ1 ) for a1 ≥ 0, b1 ≥ 0 and λ > 0,

where σλ = 1 if λ < 1 and σλ = 2λ−1 if λ ≥ 1, we see that there exist the positive constants c1 and
c2 depending on α such that

x∆(t) ≤ c1
( t

r(t)

)1/α

+ c2

(
1

r(t)

t∫
t1

u∫
t1

a(u, s)p
1/(1−β)
1 (s)p

β/(β−1)
2 (s) ∆s∆u

)1/α

.

Integrating this inequality from T1 to t ≥ t1, we obtain

|x(t)| ≤ |x(t1)|+ c1R(t, t1) + c2

t∫
t1

(
1

r(v)

v∫
t1

u∫
t1

a(u, s)p
1/(1−β)
1 (s)p

β/(β−1)
2 (s) ∆s∆u

)1/α

∆v

≤ |x(t1)|+ c1R(t, t0) + c2

t∫
t0

(
1

r(v)

v∫
t0

u∫
t0

a(u, s)p
1/(1−β)
1 (s)p

β/(β−1)
2 (s) ∆s∆u

)1/α

∆v.

Dividing the above relation by R(t, t0) and using (3.43) and (4.1), we see that (4.2) holds. The proof
is similar if x is eventually negative.

Theorem 4.2. Let the conditions (i)–(ii) hold with f2 = 0 and xf1(t, x) > 0 for x ̸= 0 and t ≥ 0. If
x is a non-oscillatory solution of equation (3.40), then equation (4.2) holds.

Proof. Let x(t) be a non-oscillatory solution of equation (3.40) with f2 = 0. First, assume x is
eventually positive, say x(t) > 0 for t ≥ t1 for some t1 ≥ t0. From (3.40), we find that

(
r(t)(x∆(t))α

)∆
= −

t∫
0

a(t, s)f1(s, x(s))∆s ≤
t1∫
0

a(t, s)f1(s, x(s))∆s.
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Using (3.42) in the above inequality, we obtain (r(t)(x∆(t))α)∆ ≤ b. The rest of the proof is similar
to that of the above theorem and hence is omitted.

Theorem 4.3. Let the conditions (i)–(iii) hold with β > 1 and γ < 1 and assume that there exists a
positive rd-continuous function ξ : T→ T such that

lim
t→∞

1

R(t, t0)

t∫
t0

(
1

r(v)

v∫
t0

u∫
t0

a(u, v)

×
[
c1ξ

β/(β−1)(s)p
1/(1−β)
1 (s) + c2ξ

γ/(γ−1)(s)p
1/(1−γ)
2 (s)

]
∆s∆u

)1/α

∆v <∞

for some t0 ≥ 0, where c1 = (β − 1)ββ/(1−β) and c2 = (1 − γ)γγ/(1−γ). If x is a non-oscillatory
solution of equation (3.40), then (4.2) holds.
Proof. Let x be a non-oscillatory solution of equation (3.40). First, assume x is eventually positive,
say x(t) > 0 for t ≥ t1 for some t1 ≥ t0. Using (ii) and (iii) in equation (3.40), we obtain

(
r(t)(x∆(t))α

)∆ ≤ − t∫
0

a(t, s)F (s, x(s))∆s

+

t∫
t1

a(t, s)
[
ξ(s)x(s)− p1(s)xβ(s)

]
∆s+

t∫
t1

a(t, s)
[
p2(sx

γ(s)− ξ(s)x(s))
]
∆s.

As in the proof of the above theorems, one can easily show that

(
r(t)(x∆(t))α

)∆ ≤ − t∫
0

a(t, s)F (s, x(s))∆s

+

t∫
t1

a(t, s)
[
(β − 1)ββ/(1−β)ξβ/(β−1)(s)p

1/(1−β)
1 (s) + (1− γ)γγ/(1−γ)ξγ/(1−γ)(s)p

1/(1−γ)
2 (s)

]
∆s.

The rest of the proof is similar to that of Theorem 4.1 and hence is omitted.

Theorem 4.4. Let the conditions (i)–(iii) hold with β > 1 and γ < 1 and suppose that there exists a
positive rd-continuous function ξ : T→ T such that

lim
t→∞

1

R(t, t0)

t∫
t0

(
1

r(v)

v∫
t0

u∫
t0

a(u, v)ξβ/(β−1)(s)p
1/(1−β)
1 (s) ∆s∆u

)1/α

∆v <∞

and

lim
t→∞

1

R(t, t0)

t∫
t0

(
1

r(v)

v∫
t0

u∫
t0

a(u, v)ξγ/(γ−1)(s)p
1/(1−γ)
1 (s) ∆s∆u

)1/α

∆v <∞

for some t0 ≥ 0. If x is a non-oscillatory solution of equation (3.40), then equation (4.2) holds.
For the cases where both f1 and f2 are super-linear (β > γ > 1) or else sub-linear (1 > β > γ > 0),

we have the following result.
Theorem 4.5. Let the conditions (i)–(iii) hold with β > γ and assume

lim
t→∞

1

R(t, t0)

t∫
t0

(
1

r(v)

v∫
t0

u∫
t0

a(u, v)p
γ/(γ−β)
1 (s)p

β/(β−γ)
2 (s) ∆s∆u

)1/α

∆v <∞

for some t0 ≥ 0. If x is a non-oscillatory solution of equation (3.40), then (4.2) holds.
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Proof. Let x be a non-oscillatory solution of (3.40). First, assume x is eventually positive, say x(t) > 0
for t ≥ t1 for some t1 ≥ t0. Using the conditions (ii) and (iii) in equation (3.40), we get

(
r(t)(x∆(t))α

)∆ ≤ − t1∫
0

a(t, s)F (s, x(s))∆s+

t∫
t1

a(t, s)
[
p2(s)x

γ(s)− p1(s)xβ(s)
]
∆s.

By applying Young’s inequality with

n =
β

γ
, X = xγ(s), Y =

γp2(s)

βp1(s)
, m =

m

β − γ
,

we obtain

p2(s)x
γ(s)− p1(s)xβ(s) =

β

γ
p1(s)

[
xγ(s)

γp2(s)

βp1(s)
− γ

β
(xγ(s))β/γ

]
=
β

γ
p1(s)

[
XY − 1

n
Xn

]
≤ β

γ
p1(s)

( 1

m
Y m

)
=

(β − γ
γ

)[γ
β
p2(s)

]β/(β−γ)

(p1(s))
γ/(γ−β).

The rest of the proof is similar to that of Theorem 4.1 and hence is omitted.

5 Oscillatory results for (3.41)
In order to achieve the results, some necessary assumptions are given as follows:

(I) e, r : T → R and a : T × T → R are rd-continuous, r(t) > 0 and a(t, s) ≥ 0 for t > s and there
exist rd-continuous functions k,m : T→ R+ such that

a(t, s) ≤ k(t)m(s), t ≥ s, (5.1)

with

k1 := sup
t≥0

k(t) <∞, k2 = sup
t≥0

t∫
0

m(s)∆s <∞.

In this case, condition (3.42) is satisfied with k = k1k2.

(II) F : T × R → R is continuous and assume that there exists an rd-continuous function q : T →
(0,∞) and a real number β with 0 < β ≤ 1 such that

xF (t, x) ≤ q(t)xβ+1 for x ̸= 0 and t ≥ 0.

In what follows,

g±(t) = e(t)± k1k1(1− β)ββ/(1−β)

t∫
0

pβ/(β−1)(s)q1/(1−β)(s)m1/(1−β)(s)∆s,

where 0 < β < 1, p ∈ Crd(T, (0,∞)).
First, we give some sufficient conditions under which non-oscillatory solutions x of equation (3.41)

satisfy
x(t) = O(t) as t→∞.

Theorem 5.1. Let 0 < β < 1 and the conditions (I) and (II) hold, assume the function 1/r(t) is
bounded, and for some t0 ≥ 0,

∞∫
t0

s

r(s)
∆s <∞. (5.2)
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Let p ∈ Crd(T, (0,∞)) such that
∞∫

t0

sp(s)∆s <∞. (5.3)

If

lim sup
t→∞

1

t

t∫
t0

1

r(u)

u∫
t0

g−(s, p) ∆s∆u <∞,

lim inf
t→∞

1

t

t∫
t0

1

r(u)

u∫
t0

g+(s, p) ∆s∆u > −∞,

(5.4)

then every non-oscillatory solution x(t) of (3.41) satisfies

lim sup
t→∞

|x(t)|
t

<∞.

Proof. Let x be a non-oscillatory solution of (3.41). First, assume x is eventually positive, say x(t) > 0
for t ≥ t1 for some t1 ≥ t0. Using condition (5.1) in (3.41), we have

(
r(t)(x∆(t))

)∆ ≤ e(t)− t1∫
0

a(t, s)F (s, x(s))∆s+

t∫
t1

a(t, s)q(s)xβ(s)∆s (5.5)

for t ≥ t1. Let
c := max

0≤t≤t1
|F (t, x(t))| <∞.

By assumption (5.1), we obtain

∣∣∣∣−
t1∫
0

a(t, s)F (s, x(s))∆s

∣∣∣∣ ≤ c
t1∫
0

a(t, s)∆s ≤ ck1k2 =: b, t ≥ t1.

Hence from (5.5), we have

(
r(t)(x∆(t))

)∆ ≤ e(t) + b+ k1

t∫
t1

[
m(s)q(s)xβ(s)− p(s)x(s)

]
∆s+ k1

t∫
t1

p(s)x(s)∆s, t ≥ t1.

Applying (3.45), we obtain

λ = β, X = (qm)1/βx, Y =
( 1

β
p(mq)−1/β

) 1
β−1

,

we get
m(s)q(s)xβ(s)− p(s)x(s) ≤ (1− β)ββ/(1−β)pβ/(β−1)(s)m1/(1−β)(s)q1/(1−β)(s).

Thus, we obtain

r(t)x∆(t) ≤ r(t1)x∆(t1) +
t∫

t1

g+(s, p)∆s+ b(t− t1) + k1

t∫
t1

u∫
t1

p(s)x(s) ∆s∆u

for t ≥ t1. Hence, we obtain

r(t)x∆(t) ≤ r(t1)x∆(t1) +
t∫

t1

g+(s, p)∆s+ b(t− t1) + k1t

t∫
t1

p(s)x(s)∆s, t ≥ t1,
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and so,

x∆(t) ≤ r(t1)x
∆(t1)

r(t)
+

1

r(t)

t∫
t1

g+(s, p)∆s+
1

r(t)
b(t− t1) +

1

r(t)
k1t

t∫
t1

p(s)x(s)∆s, t ≥ t1.

Integrating this inequality from t1 to t and using (5.2) and the fact that the function t
r(t) is bounded

for t ≥ t1, say by k3, we see that

x(t) ≤ x(t1) + r(t1)x
∆(t1)

t∫
t1

1

r(t)
∆s

+

t∫
t1

1

r(u)

u∫
t1

g+(s) ∆s∆u+ b

t∫
t1

s

r(s)
∆s+ k1k3

t∫
t1

u∫
t1

p(s)x(s) ∆s∆u, t ≥ t1.

Once again, we have

x(t) ≤ x(t1) + r(t1)x
∆(t1)

t∫
t1

1

r(t)
∆s

+

t∫
t1

1

r(u)

u∫
t1

g+(s) ∆s∆u+ b

t∫
t1

s

r(s)
∆s+ k1k3t

t∫
t1

p(s)x(s)∆s, t ≥ t1,

and so,

x(t)

t
≤ c1 + c2

t∫
t1

sp(s)
(x(s)

s

)
∆s, t ≥ t1. (5.6)

Noting (5.2) and (5.4), c2 = k1k3 and c1 is an upper bound for

1

t

[
x(t1) + r(t1)x

∆(t1)

t∫
t1

1

r(s)
∆s+

t∫
t1

1

r(u)

u∫
t1

g+(s) ∆s∆u+ b

t∫
t1

s

r(s)
∆s

]

for t ≥ t1, and applying Gronwall’s inequality to inequality (5.6) and then using condition (5.3), we
have

lim sup
t→∞

x(t)

t
<∞.

Similarly, we can do for the eventually negative solution x for equation (3.41).

Theorem 5.2. Let 0 < β < 1, and conditions (I), (II), (5.2), (5.3) and (5.4) hold, assume the
function t/r(t) is bounded, and there is a function p ∈ Crd(T, (0,∞)) such that (5.3) holds. If for
every 0 < M < 1,

lim sup
t→∞

[
Mt+

u∫
t0

g−(s, p) ∆s∆u

]
=∞, lim inf

t→∞

[
Mt+

u∫
t0

g+(s, p) ∆s∆u

]
= −∞, (5.7)

then equation (3.41) is oscillatory.

Proof. Let x be a non-oscillatory solution of equation (3.41), say x(t) > 0 for t ≥ t1 for some t1 ≥ t0.
The proof when x(t) is eventually negative is similar. Proceeding as in the proof of Theorem 4.1, we
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arrive at (4.1). Therefore,

x(t) ≤ x(t1) + r(t1)x
∆(t1)

t∫
t1

1

r(s)
∆s

+

t∫
t1

1

r(u)

u∫
t1

g+(s,p) ∆s∆u+ b

∞∫
t1

s

r(s)
∆s+ k1k3t

∞∫
t1

sp(s)
(x(s)

s

)
∆s, t ≥ t1.

Clearly, the conclusion of Theorem 4.1 holds. This, together with (5.2), imply that

x(t) ≤M1 +mt+

t∫
t1

1

r(u)

u∫
t1

g+(s, p) ∆s∆u, (5.8)

where M1 and M are the positive real numbers. Note that we make M < 1 possible by increasing the
size of t1. Finally, taking lim inf in (5.8) as t→∞ and using (5.7) result in a contradiction with the
fact that x(t) is eventually positive.

Moreover, Negi et al. [50] revealed an open problem given in the paper [35] by Grace et al.
As a future direction on the problem, we may ask for weakening condition (H). It should also be

noted that the problem is open in the super-linear case λ > 1.
Motivated by the above, we establish some sufficient conditions for oscillation of the following,

more general, p-Laplacian (p > 1) dynamic equation with z(t∗) = 0 for fixed t∗ ∈ T:

(r(t)Φp(z(t)))
∆ = e(t)−

t∫
t∗

k(t, τ)f(τ, Φp(z(τ)))∆τ, (5.9)

on a time scale T such that sup(T) = ∞, where Φp(z) = z|z|p−1; [t∗,∞)T is a time-scale interval
or half-line; r : [t∗,∞)T → R+ is rd-continuous on T; e : [t∗,∞)T → R is rd-continuous on T;
k(t, · ) : [t∗,∞)T → R+ and k( · , s) : [t∗,∞)T → R+ are rd-continuous at each t ∈ T and for fixed
s ∈ T, respectively. f( · , z∗) : [t∗,∞)T → R is rd-continuous for each z∗ ∈ R; f(t, · ) : [t∗,∞)T → R is
a rd-continuous function at each t ∈ T.

In [50], Negi et al. conferred some new oscillation criteria of the first-order p-Laplacian nonlinear
dynamic equations on time scales. Moreover, the Kamenev- and Philos-type oscillation criteria were
discussed. Consequently, the idea of techniques proposed to obtain results in his paper is implemented
to improve and extend the results in the literature. Further, some outcomes are demonstrated through
some interesting examples.

They provided three new oscillatory results for equation (5.9) under certain conditions. Equa-
tion (5.9) is a half-linear dynamic equation which appears in the various real world problems and
phenomena, for instance, the turbulent flow of a polytropic gas in a porus medium and the study of
non-newtonian fluid theory.

We introduce some auxiliary assumptions which will help in our investigations.

1. zf(t, Φp(z)) > 0 for z ̸= 0 and k(t, s) > 0 for all s ≤ t, for all s, t ∈ T;

2. there exists M : [t∗,∞)Tκ → R such that M(t∗) = 0 and e(t) =M∆(t) for all t ≥ t∗.

Theorem 5.3. If conditions (1), (2) hold and there exists a delta-derivative function S : [t∗,∞)T →
R+ such that S∆(t) ≥ 0 with M(t)

S(t) → 0 as t→∞ and

∞∫
t∗

M(σ(τ))S∆(τ)

S(σ(τ))S(τ)
∆τ = 0, (5.10)

then equation (5.9) has an oscillatory solution on [t∗,∞)T.
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Proof. Let us assume that equation (5.9) has a non-oscillatory solution. Then, without loss of gen-
erality, assume that z(t) > 0 on [t∗,∞)T for t∗ ∈ T. Hence, by the assumption, there exists a
delta-derivative function S and then we define the following function:

W (t) =
M(t)− r(t)Φp(z(t))

S(t)
, t∗ ≤ t. (5.11)

Differentiating equation (5.11) with respect to t and using equation (5.9), we obtain

W∆(t) =

(
M(t)− r(t)Φp(z(t))

)∆
S(t)

S(t)S(σ(t))

≥
[
M(σ(t))− r(σ(t))Φp(z(σ(t)))

]
S∆(t)

S(t)S(σ(t))
− M(σ(t))S∆(t)

S(σ(t))S(t)
. (5.12)

Integrating equation (5.12) from t∗ to t and using equation (5.10) we get the following relation:

−
t∫

t∗

M(σ(τ))S∆(τ)

S(σ(τ))S(τ)
∆τ ≤W (t) ≤ M(t)

S(t)

−→ 0 ≤W (t) ≤ 0←− as t→∞. (5.13)

Clearly, W (t) = 0, which implies r(t)Φp(z(t)) =M(t), and putting this value into the original equation
(5.9) and using e(t) = M∆(t), we have that the right-hand side (integral part) of equation (5.9) is
zero, which is impossible because k and f are positive functions. Hence, we get a contradiction. A
similar argument will be hold when z(t) < 0 on [t∗,∞)T. This completes the proof.

Corollary 5.1. If conditions (1), (2) hold and M(t) → 0 as t → ∞, then equation (5.9) has an
oscillatory solution on [t∗,∞)T.

Theorem 5.4. If conditions (1), (2) hold and there exists a delta-derivative function S : [t∗,∞)T →
R+ such that S∆(t) ≥ 0 with the conditions

lim inf
t→∞

1

r(t)

[
M(t) + S(t)

t∫
t∗

M(σ(τ))S∆(τ)

S(σ(τ))S(τ)
∆τ

]
= −∞ (5.14)

and

lim sup
t→∞

1

r(t)

[
M(t) + S(t)

t∫
t∗

M(σ(τ))S∆(τ)

S(σ(τ))S(τ)
∆τ

]
= +∞,

then equation (5.9) oscillates on [t∗,∞)T.

Proof. Following the proof of Theorem 5.3, integrating equation (5.12) from t∗ to t, we obtain

Φp(z(t)) ≤
1

r(t)

[
M(t) + S(t)

t∫
t∗

M(σ(τ))S∆(τ)

S(σ(τ))S(τ)
∆τ

]
. (5.15)

Now, if we take lim inf
t→∞

on both sides of equation (5.15), we get a contradiction as Φp(z(t)) is positive,
but due to equation (5.14), the right-hand side of the later inequality approaches −∞ as t→∞.

Theorem 5.5. Assume condition (1) holds and the relations

lim sup
t→∞

1

r(t)

t∫
t∗

e(τ)∆τ =∞



40 Syed Abbas, Shekhar Singh Negi, Said R. Grace, Ravi P. Agarwal, Chao Wang

and

lim inf
t→∞

1

r(t)

t∫
t∗

e(τ)∆τ = −∞ (5.16)

are satisfied, then every solution of equation (5.9) oscillates on [t∗,∞)T.

Proof. On the contrary, we assume that the solution of equation (5.9) is non-oscillatory, so it is
necessary to assume that it is either positive or negative over the half-time scale interval. That is,
there exists t∗ ∈ T such that z(t) > 0 on [t∗,∞)T. Indeed, from equation (5.9) and condition (1), we
have

(r(t)Φp(z(t)))
∆(t) ≤ e(t) for t∗ ≤ t. (5.17)

Integrating the later inequality from t∗ to t, we obtain

Φp(z(t))(t) ≤ r(t∗)Φp(z(t∗)) +
1

r(t)

t∫
t∗

e(τ)∆τ.

Since z(t∗) = 0, this implies that

Φp(z(t))(t) ≤
1

r(t)

t∫
t∗

e(τ)∆τ.

Finally, we take lim inf
t→∞

on both sides of the latter inequality, and then we get a contradiction that
z(t) > 0, but we have one of the conditions of equation (5.16). Thus, we obtain the required result.

They imposed the above techniques to find oscillatory solutions of the first-order integro-dynamic
equation (3.19) for z(t∗) = 0. Therefore, keeping Theorems 5.3, 5.4 and 5.5 in mind, we immediately
obtain the following results.

Theorem 5.6. If conditions (1), (2) hold and there exists a delta-derivative function S : [t∗,∞)T →
R+ such that S∆(t) ≥ 0 with M(t)

S(t) → 0 as t→∞ and
∞∫

t∗

M(σ(τ))S∆(τ)

S(σ(τ))S(τ)
∆τ = 0,

then equation (3.19) oscillates on [t∗,∞)T.

Proof. Following the steps of the proof of Theorem 5.3 and using equation (5.13), we must have

W (t) =
M(t)− z(t)

S(t)
, t∗ ≤ t. (5.18)

Consequently, from equations (5.18), (5.12) and (5.13) (see Theorem 5.3), we have M(t) = z(t), which
gives a contradiction.

Theorem 5.7. If conditions (1), (2) hold and there exists a delta-derivative function S : [t∗,∞)T →
R+ such that S∆(t) ≥ 0, and the relations

lim inf
t→∞

[
M(t) + S(t)

t∫
t∗

M(σ(τ))S∆(τ)

S(σ(τ))S(τ)
∆τ

]
= −∞

and

lim sup
t→∞

[
M(t) + S(t)

t∫
t∗

M(σ(τ))S∆(τ)

S(σ(τ))S(τ)
∆τ

]
= +∞

hold, then equation (3.19) oscillates on [t∗,∞)T.
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Theorem 5.8. If condition (1) holds, as well as the conditions

lim sup
t→∞

1

r(t)

t∫
t∗

e(τ)∆τ =∞

and

lim inf
t→∞

1

r(t)

t∫
t∗

e(τ)∆τ = −∞

hold, then equation (3.19) oscillates on [t∗,∞)T.
Remark 5.1. In [35], Grace and Zafar discussed the oscillatory behaviour of solutions of equation
(3.19) with an assumption:

H: k(t, s) ≤ a(t)q(s) for s ≤ t and 0 < zf(t, z) < m(t)|z|λ+1, where m, a, q : [t∗,∞)T → R+ are
rd-continuous functions.

They only discussed the case 0 < λ ≤ 1, whereas the problem is still open for the case λ > 1. Therefore,
we look at the conditions given in [35], and then take a quick look at the conditions proposed in the
present paper, we comply that the proposed results hold for all real values of λ. That is, with the
condition H in hand, we can obtain some oscillatory results for equation (3.19) with the extreme value
λ > 1 (see Theorems 5.6–5.8).

Furthermore, we also discuss the oscillatory solutions of the second-order forced integro-dynamic
equation on time scales which was considered by Agarwal et al. [5], see (3.41).

We now give two oscillatory theorems for equation (3.41) on [0,∞)T, fixed 0 ∈ T with z∆(0) = 0.
The proofs are omitted here, since they are similar to the previous results.
Theorem 5.9. Assume that conditions (1), (2) hold and there exists a delta-derivative function
S : [t∗,∞)T → R+ such that S∆(t) ≥ 0, and the relations

lim inf
t→∞

t∫
0

1

r(s)

[
M(s) + S(s)

s∫
0

M(σ(τ))S∆(τ)

S(σ(τ))S(τ)
∆τ

]
∆s = −∞

and

lim sup
t→∞

t∫
0

1

r(s)

[
M(s) + S(s)

s∫
0

M(σ(τ))S∆(τ)

S(σ(τ))S(τ)
∆τ

]
∆s = +∞

hold, then equation (3.41) oscillates on [t∗,∞)T.
Theorem 5.10. Assume that conditions (1) and r(t∗) = 0 hold. Moreover, the following erlations

lim sup
t→∞

t∫
t∗

(
1

r(s)

s∫
t∗

e(τ)∆τ

)
∆s =∞

and

lim inf
t→∞

t∫
t∗

(
1

r(s)

s∫
t∗

e(τ)∆τ

)
∆s = −∞

are satisfied, then every solution of equation (3.41) oscillates on [t∗,∞)T.
Finally, we mention the last result of our paper for a case r(t∗) ̸= 0.

Theorem 5.11. Assume that the conditions in Theorem 5.10 are satisfied. Moreover, if
∞∫

t∗

1

r(τ)
∆τ <∞

holds, then equation (3.41) oscillates on [t∗,∞)T.
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6 Kamenev- and Philos-type criteria
Theorem 6.1. Assume conditions (1), (2) hold. Also, there exist a number L > 0 and a delta-
derivative function S : [t∗,∞)T → R+ such that S∆(t) ≥ 0 with the following conditions:

lim sup
t→∞

t∫
t∗

M(σ(τ))

S(σ(τ))

[
((t− τ)L)∆τ − (t− τ)L S

∆(τ)

S(τ)

]
∆τ =∞

and

lim inf
t→∞

t∫
t∗

M(σ(τ))

S(σ(τ))

[
((t− τ)L)∆τ − (t− τ)L S

∆(τ)

S(τ)

]
∆τ = −∞.

Then equation (5.9) has an oscillatory solution on [t∗,∞)T.
Proof. The partial proof of this theorem follows from the proof of Theorem 5.3. Then, further, there
exists L > 0 and multiplying equation (5.12) by (t− τ)L for τ < t, and then integrating from t∗ to t,
we obtain

t∫
t∗

(t− τ)LW∆(τ)∆τ ≥ −
t∫

t∗

(t− τ)L M(σ(τ))S∆(τ)

S(σ(τ))S(τ)
∆τ. (6.1)

Now, first we expand the left-hand side of the above inequality as follows:
t∫

t∗

(t− τ)LW∆(τ)∆τ = −(t− t∗)LW (t∗)−
t∫

t∗

((t− τ)L)∆τW (σ(τ))∆τ.

Since
W (t) =

M(t)− (r(t)Φp(z(t)))

S(t)
,

we get
t∫

t∗

(t− τ)LW∆(τ)∆τ = −(t− t∗)LW (t∗)−
t∫

t∗

((t− τ)L)∆τ
M(τ)− (r(τ)Φp(z(τ)))

S(τ)
∆τ

= −(t− t∗)LW (t∗)−
t∫

t∗

((t− τ)L)∆τ
M(σ(τ))

S(τ)
∆τ +

t∫
t∗

((t− τ)L)∆τ
r(τ)Φp(z(τ))

S(τ)
∆τ.

By using the fact that ((t − τ)L)∆τ ≤ −L(t − στ)L−1 ≤ 0 given in [57] by Saker, r(t) > 0, S(t) > 0
and z(t) > 0, we obtain

t∫
t∗

(t− τ)LW∆(τ)∆τ ≤ −(t− t∗)LW (t∗)−
t∫

t∗

((t− τ)L)∆τ
M(σ(τ))

S(τ)
∆τ. (6.2)

It follows from equations (6.1) and (6.2) that
t∫

t∗

M(σ(τ))

S(τ)

[
((t− τ)L)∆τ − (t− τ)L S

∆(τ)

S(τ)

]
∆τ ≤ −(t− t∗)LW (t∗),

which implies that

lim inf
t→∞

1

tL

t∫
t∗

M(σ(τ))

S(τ)

[
((t− τ)L)∆τ − (t− τ)LS

∆(τ)

S(τ)

]
∆τ ≤ − lim inf

t→∞

(
1− t∗

t

)L
W (t∗) <∞.

Thus, we arrive at a contradiction with the fact that the left-hand side of the above inequality is
−∞.
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Theorem 6.2. If condition (1) holds and there exists L > 0 such that

lim sup
t→∞

1

tL

t∫
t∗

(t− τ)Le(τ)∆τ =∞

and

lim inf
t→∞

1

tL

t∫
t∗

(t− τ)Le(τ)∆τ = −∞,

then equation (5.9) has an oscillatory solution on [t∗,∞)T.

Proof. We will prove this theorem by contradiction. So, let us assume that equation (5.9) has a non-
oscillatory solution, which implies that there exists t∗ ∈ T such that the solution “z(t)” of equation
(5.9) is either z(t) > 0 or z(t) < 0 on [t∗,∞)T. Without loss of generality, let z(t) be a positive
solution of equation (5.9). Now, since there exists L > 0 and multiplying equation (5.17) by (t− τ)L,
and then integrating from t∗ to t, we get

t∫
t∗

(t− τ)L(r(τ)Φp(z(τ)))
∆(τ)∆τ ≤

t∫
t∗

(t− τ)Le(τ)∆τ. (6.3)

From Theorem 6.1, it is easy to observe that

t∫
t∗

(t− τ)L(r(τ)Φp(z(τ)))
∆(τ)∆τ ≥ −(t− t∗)Lr(t∗)Φp(z(t∗)). (6.4)

From equations (6.3) and (6.4), we have

−(t− t∗)Lr(t∗)Φp(z(t∗)) ≤
t∫

t∗

(t− τ)Le(τ)∆τ. (6.5)

Finally, dividing equation (6.5) by tL and then taking lim inf
t→∞

on both sides, we obtain

lim inf
t→∞

{
−
(
1− t∗

t

)L
r(t∗)Φp(z(t∗))

}
≤ lim inf

t→∞

1

tL

t∫
t∗

(t− τ)Le(τ)∆τ,

thus, we get a contradiction because the left-hand side is finite, but the right-hand side is −∞.
Therefore, the proof is completed.

7 Philos-type criteria
In this section, we investigate the well-known Philos-type oscillation criteria. These criteria generalize
the previous known Kamenev-type criteria. For these criteria, we require some preliminaries.

Let us define D := {(t, s) : t∗ ≤ s ≤ t}, then there exists a rd-continuous function P : D→ R with
the conditions 

P(t, t) = 0,

P(t, s) > 0,

P∆s(t, s) ≤ 0 for t∗ ≤ s < t <∞,
(7.1)

where P∆s(t, s) is a partial derivative of the function P(t, s) with respect to s.
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Theorem 7.1. Let conditions (1), (2) and the condition of equality in (7.1) hold. Moreover, assume
that there exists a delta-derivative function S : [t∗,∞)T → R+ such that S∆(t) ≥ 0 and

lim sup
t→∞

1

P(t, t∗)

t∫
t∗

[
P∆τ (t, τ)M(τ)

S(τ)
− P(t, σ(τ))M(σ(τ))S∆(τ)

S(σ(τ))S(τ)

]
∆τ =∞ (7.2)

and

lim inf
t→∞

1

P(t, t∗)

t∫
t∗

[
P∆τ (t, τ)M(τ)

S(τ)
− P(t, σ(τ))M(σ(τ))S∆(τ)

S(σ(τ))S(τ)

]
∆τ = −∞,

then equation (5.9) has an oscillatory solution on [t∗,∞)T.

Proof. Assume that equation (5.9) has a non-oscillatory solution, meaning that there exists t∗ ∈ T
such that equation (5.9) has either positive or negative solution on [t∗,∞)T. Thus, without loss of
generality, we assume that z(t) is a positive solution of equation (5.9). Now, multiplying equation
(5.12) by P(t, σ(τ)) for τ ≤ t, after integrating from t∗ to t, we obtain

t∫
t∗

P(t, σ(τ))W∆(τ)∆τ ≥ −
t∫

t∗

P(t, σ(τ))M(σ(τ))S∆(τ)

S(σ(τ))S(τ)
∆τ. (7.3)

First, to expand the left-hand side of equation (7.3) with equation (7.1) in hand, we obtain

t∫
t∗

P(t, σ(τ))W∆(τ)∆τ = −P(t, t∗)W (t∗)−
t∫

t∗

P∆τ (t, τ)W (τ)∆τ

= −P(t, t∗)W (t∗)−
t∫

t∗

P∆τ (t, τ)
M(τ)

S(τ)
∆τ +

t∫
t∗

P∆τ (t, τ)r(τ)Φp(z(τ))∆τ. (7.4)

Since P∆τ (t, τ) ≤ 0, we have
t∫

t∗

P(t, σ(τ))W∆(τ)∆τ ≤ −P(t, t∗)W (t∗)−
t∫

t∗

P∆τ (t, τ)
M(τ)

S(τ)
∆τ. (7.5)

Equations (7.3) and (7.5) yield the inequality

1

P(t, t∗)

t∫
t∗

[
P∆τ (t, τ)

M(τ)

S(τ)
− P(t, σ(τ))M(σ(τ))S∆(τ)

S(σ(τ))S(τ)

]
∆τ ≤ −W (t∗),

and then taking lim inf
t→∞

on both side and using equation (7.2), we arrive at a contradiction. Hence,
the proof is completed.

Theorem 7.2. Suppose conditions (1) and (7.1) hold. Moreover, the conditions

lim sup
t→∞

1

P(t, t∗)

t∫
t∗

P(t, σ(τ))e(τ)∆τ =∞

and

lim inf
t→∞

1

P(t, t∗)

t∫
t∗

P(t, σ(τ))e(τ)∆τ ∆τ = −∞ (7.6)

are satisfied, then equation (5.9) oscillates on [t∗,∞)T.
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Proof. Assume that equation (5.9) has a non-oscillatory solution, which implies that there exists
t∗ ∈ T such that equation (5.9) has either positive or negative solution on [t∗,∞)T. Thus, without loss
of generality, we assume that z(t) is a positive solution of equation (5.9). Now, multiplying equation
(5.17) by P(t, σ(τ)) for t∗ ≤ τ ≤ t, and integrating from t∗ to t, we conclude that

t∫
t∗

P(t, σ(τ))(r(τ)Φp(z(τ)))
∆ ∆τ ≤

t∫
t∗

P(t, σ(τ))e(τ)∆τ. (7.7)

Observing equations (7.4), (7.5), we have

t∫
t∗

P(t, σ(τ))(r(t)Φp(z(t)))
∆(τ)∆τ

= −P(t, t∗)r(t∗)Φp(z(t∗))−
t∫

t∗

P∆τ (t, τ)r(τ)Φp(z(τ))∆τ ≥ −P(t, t∗)r(t∗)Φp(z(t∗)). (7.8)

It follows from equations (7.7) and (7.8) that

−Φp(z(t∗)) ≤
1

P(t, t∗)

t∫
t∗

P(t, σ(τ))e(τ)∆τ,

so, now taking lim inf
t→∞

on both sides and using equation (7.6), we get a contradiction. Therefore, we
have the oscillatory solutions of equation (5.9) on [t∗,∞)T.

In [51], Negi et al. discussed the oscillatory behaviour of the following second-order dynamic
equation on time scales:

y∆∆(t) + a(t)y∆(t) + y(t) +K(y(t− h)) + f(W(y∆(t− h))) = 0, ∀ t ∈ T, (7.9)

where the functions a : T → R, f : R → R, and the time scale T satisfies t − h < t and t − h ∈ T,
∀ t ∈ T, for some positive real constant h. One can easily see that for some h > 0, in [44], Kubyshkin
and Moryakova considered the second-order differential-difference equation of delay type

ẍ(t) +Aẋ(t) + x(t) +K(x(t− h)) +W(ẋ(t− h)) = 0, (7.10)

which can be achieved by taking T = R, a(t) = A > 0 and f(x) = x, ∀x ∈ R in equation (7.9).
Here, the real constants A, h > 0, and the functions K,W : R → R are defined by K(x(t)) =
k1x(t) + k2x

2(t) + · · · , and W(x(t)) = w1x(t) + w2x
2(t) + · · · , ∀ ki, wj ∈ R, respectively. Equation

(7.9) is very general in nature, and techniques from time scales calculus can analyze it. Equation
(7.9) covers not only differential equations (i.e., T = R) and difference equations (i.e., T = Z), but
also covers more general time scales hZ = {hn : n ∈ Z} for h > 0, T =

∪
k∈Z

[k(a + b), k(a + b) + a]

for a, b > 0, and T =
∪

m∈Z
{m+ 1

n : n ∈ N} ∪ Z, etc. Throughout the paper [51], they obtained some

sufficient conditions of the oscillation for the dynamic equation (7.9). To the best of their knowledge,
no work has been done regarding the oscillatory behaviors of (7.9) so far.

In their paper, firstly, they dealt with two functions K(y(t− h)) and W(y∆(t− h)), which play an
important role in our analytical findings. As we see from the assumption

|F (t, u)| ≥ p(t)|u|γ , |G(t, u, v)| ≤ q(t)|u|γ , ∀u ∈ R \ {0}, v ∈ R, t ∈ T,

the absolute value of functions F and G are related to the absolute value of the unknown function
u(t) by the functions p(t) and q(t), respectively. In the equation(

r(t)
([
y(t) + p(t)y(t− τ)

]∆)γ)∆

+ f(t, y(t− δ)),
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Saker [59] assumed that the continuous function f : T×R→ R is such that uf(t, u) > 0, ∀u ̸= 0 and
|f(t, u)| ≥ q(t)|u|γ , where a nonnegative function q(t) is defined on T. In [19], Chen considered the
following equation

((x∆(t))γ)∆ + p(t)(x∆(t))γ + q(t)f(xσ(t)) = 0, (7.11)

where the function f ∈ C(R,R) satisfies xf(x) > 0 and f(x) ≥ Lx for ∀x ̸= 0, L is positive real
constant. The author established the sufficient conditions of Kamenev-type as well as Philos-type
oscillation criteria through employing the Riccati transformation. Moreover, in [33], Graef and Hill
investigated the non-oscillation solutions of the higher order nonlinear delay dynamic equation on
time scales:

(a(t)x∆(t))∆
n−1

+ q(t)f(x(g(t))) = r(t), ∀ t ∈ T,

and established the sufficient conditions of the non-oscillation, in which they considered the function
f ∈ C(R,R) being such that for γ > 0, |f(x(t))| ≤ |x(t)|γ + B for all x(t), ∀ t ∈ T, where A, B are
non-negative real constants.

In order to establish some oscillation criteria for (7.9), we need |Ky(t)| ≥ p(t)|y(t)| for y(t) ̸= 0
such that y(t)K(y(t)) > 0. Moreover, there exists a function f ∈ C(R,R) such that |f(W(y∆(t)))| ≥
M(t)|y∆(t)|, as well as y(t)f(W(y∆(t))) > 0, ∀ y(t) ̸= 0 in R, where M(t) is a nonnegative rd-
continuous function defined on T. Now we choose the real coefficients wj , ki such that

ki, wj =

{
0 if i, j are even natural numbers,
+ve if i, j are odd natural numbers,

and W,K are defined in (7.10), then we obtain the following relation:

|K(y(t))| =
∣∣k1y(t) + k3y

3(t) + · · ·
∣∣ = k1|y(t)|

∣∣∣1 + k3
k1
y2(t) + · · ·

∣∣∣ ≥ k1|y(t)|, (7.12)

such that y(t)K(y(t)) > 0 ∀ y(t) ∈ R, t ∈ T. Similarly, we immediately obtain an inequality

|W(y∆(t))| ≥ w1|y∆(t)|, ∀ t ∈ T. (7.13)

Let us now consider a function f ∈ C(R,R) for y(t) ∈ R such that

f(Wy∆(t)) = q(t) sgn(y(t))|W(y∆(t))|, ∀ t ∈ T,

then, from (7.13), we obtain,

|f(Wy∆(t))| =
∣∣q(t) sgn(y(t))|W(y∆(t))|

∣∣ ≥ q(t)w1|y∆(t)|, ∀ y(t) ∈ R, ∀ t ∈ T,

where q(t) is nonnegative rd-continuous defined function on T. Thus, we can find such a function
f ∈ C(R,R) which satisfies

|f(W(y∆(t)))| ≥ q(t)w1|y∆(t)|, (7.14)

and y(t)f(W(y∆(t))) > 0 for y(t) ̸= 0, ∀ t ∈ T and q(t) is rd-continuous defined on T. In equation
(7.14), the absolute value of f is related to the absolute value of y∆(t), ∀ t ∈ T.

For simplicity, throughout this paper, we denote [a,∞)T = [a,∞) ∩ T. In addition, we also need
the following assumptions:

(O1) Assume a, p : [t0,∞)T → R are the positive rd-continuous functions such that 0 < p(t) ≤ k1 <∞
and

q(t) := p(t)
µ(t)

w1
;

(O2)

∞∫
t0

1

ez(t)(t, s0)
∆t =∞, where z(t) := a(t)

1− a(t)µ(t)
> 0, ∀ t ∈ T.
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Lemma 7.1. Let y(t) be a non-oscillate solution of (7.9) and assume that (O1), (O2) and relations
(7.12) and (7.14) hold, then there exists s0 ≥ 0; s0 > t0 such that

y(t) > 0, y∆(t) > 0 and y∆∆(t) < 0 (7.15)

and
y(t− h) > 0, y∆(t− h) > 0 and y∆∆(t− h) < 0 on [s0,∞)T.

Lemma 7.2. If (7.15) holds, then for t ̸= s0, we have

0 < G(t) ≤ y(t)

yσ(t)
≤ 1, (7.16)

where
G(t) := t− s0

t− s0 + µ(t)
.

Lemma 7.3. If (7.15) and (7.16) hold, then for 2s0 ≤ t, we have

t

2

G(t)w(t)
δ(t)

≤ (t− s0)
G(t)w(t)
δ(t)

≤ y(t− h)
yσ(t)

≤ 1, (7.17)

where w(t) = δ(t) y∆(t)
y(t) is a Riccati transformation function.

8 Oscillatory results
Theorem 8.1. Assume that (O1), (O2) and relations (7.12), (7.14) hold. If there exists a function
δ(t) > 0 such that

lim sup
t→∞

t∫
2s0

F(s)∆s =∞, (8.1)

where s0 ≥ 0, t0 ≤ 2s0 < t,

F(t) :=
(
δσ(t)G(t)−

(
δ∆(t)− G(t)δσ(t)(a(t) + p(t) s2 )

)2
4δσ(t)G(t)

)
,

then equation (7.9) oscillates on [t0,∞)T.

Proof. Assume to the contrary that (7.9) has a non-oscillatory solution. Let y(t) be a non-oscillatory
solution of (7.9). Then, without loss of generality, we assume that y(t) is an eventually positive
solution i.e., there exists s0 ≥ t0 such that y(t) > 0, ∀ t ∈ [s0,∞)T. A similar argument holds for the
case where y(t) is an eventually negative solution. We define a Riccati transformation function such
that

w(t) = δ(t)
y∆(t)

y(t)
, t0 ≤ 2s0 < t. (8.2)

Considering the ∆-derivative of equation (8.2) with respect to t, we have

w∆(t) = δ∆(t)
y∆(t)

y(t)
+ δσ(t)

(y∆∆(t)y(t)− (y∆(t))2

y(t)yσ(t)

)
= w(t)

δ∆(t)

δ(t)
− w2(t)

δσ(t)y(t)

yσ(t)δ2(t)
+
δσ(t)

yσ(t)
y∆∆(t). (8.3)

From (7.16) and (8.3), we obtain

w∆(t) ≤ w(t) δ
∆(t)

δ(t)
− w2(t)G(t) δ

σ(t)

δ2(t)
+
δσ(t)

yσ(t)
y∆∆(t). (8.4)
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To solve the right-hand side of equation (8.4), we use equation (7.16) and the relation y∆(t) > 0, we
obtain

δσ(t)

yσ(t)
y∆∆(t) ≤ −δσ(t)

(
y(t)

yσ(t)
+ p(t)

yσ(t− h)
yσ(t)

+ a(t)
y∆(t)

yσ(t)

)
≤ −δσ(t)G(t)− δσ(t)a(t) G(t)

δ(t)
w(t)− δσ(t)p(t) y(t− h)

yσ(t)
. (8.5)

From (8.5) and (7.17), we get

δσ(t)

yσ(t)
y∆∆(t) ≤ −δσ(t)G(t)− δσ(t)a(t) G(t)

δ(t)
w(t)− p(t)δσ(t)s

2

G(t)
δ(t)

w(t). (8.6)

Substituting (8.6) into (8.4), we arrive at

w∆(t) ≤ w(t) δ
∆(t)

δ(t)
− w2(t)G(t) δ

σ(t)

δ2(t)
− δσ(t)G(t)− δσ(t)a(t) G(t)

δ(t)
w(t)− p(t)δσ(t)s

2

G(t)
δ(t)

w(t)

= −δσ(t)G(t) + 1

δ(t)

(
δ∆(t)− G(t)δσ(t)

(
a(t) + p(t)

t

2

))
w(t)− δσ(t)

δ2(t)
G(t)w2(t)

= −δσ(t)G(t)−
(
w(t)

√
δσ(t)G(t)
δ(t)

−
δ∆(t)− G(t)δσ(t)(a(t) + p(t) s2 )

2
√
δσ(t)G(t)

)2

+

(
δ∆(t)− G(t)δσ(t)(a(t) + p(t) s2 )

)2
4δσ(s)G(s)

. (8.7)

From equations (8.1) and (8.7), we arrive at

w∆(t) ≤ −F(t) for 2s0 < t. (8.8)

Integrating equation (8.8) from 2s0 to t, we have

t∫
2s0

F(s)∆s ≤ w(2s0) <∞. (8.9)

For sufficient large t, we derive a contradiction to (8.1), as the left-hand side of (8.9) is finite, which
completes the proof of our theorem.

From Theorem 8.1, we may also obtain some results concerning the oscillation behavior of solutions
of equation (7.9).

Corollary 8.1. Assume that (O1), (O2) and relations (7.12), (7.14) hold. Moreover, if there exists a
∆-derivative function δ(t) > 0 and s0 ≥ 0, t0 ≤ 2s0 < t, respectively, satisfying the conditions

lim sup
t→∞

t∫
2s0

δσ(s)G(s)∆s =∞

and

lim sup
t→∞

t∫
2s0

(
δ∆(s)− G(s)δσ(s)(a(s) + p(s) s2 )

)2
4δσ(s)G(s)

∆s <∞,

then equation (7.9) oscillates on [t0,∞)T.

The next result immediately follows from Theorem 8.1 by different choices of δ(t). In particular,
we take δ(t) as a positive constant (say C > 0) and establish the following
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Corollary 8.2. Assume that (O1), (O2) and relations (7.12), (7.14) hold. Moreover, if there exists
s0 ≥ 0 such that t0 ≤ 2s0 < t, satisfying the condition

lim sup
t→∞

t∫
2s0

G(s)
4

(
4−

(
a(s) + p(s)

s

2

)2)
∆s =∞,

then equation (7.9) oscillates on [t0,∞)T.

We introduce one more condition µ(t) δ∆(t)
δσ(t) < 1 to obtain a new oscillations criterion for equation

(7.9).

Theorem 8.2. Assume that (O1), (O2) and relations (7.12), (7.14) hold. Moreover, if there exist a
∆-derivative function δ(t) > 0 and s0 ≥ 0 such that µ(t) δ∆(t)

δσ(t) < 1 and t0 ≤ 2s0 < t, respectively,
satisfying the condition

lim sup
t→∞

t∫
2s0

1

1− δ∆(s)
δσ(s) µ(s)

[
G(s)δ(s)− δ(s)A2(s)

4G(s)

]
∆s =∞, (8.10)

where
A(t) :=

δ∆(t)

δσ(t)
− G(t)

(
a(t) + p(t)

t

2

)
, (8.11)

then equation (7.9) oscillates on [t0,∞)T.

Proof. Assume to the contrary that (7.9) has a non-oscillatory solution. Let y(t) be a non-oscillatory
solution of (7.9). Then, without loss of generality, we assume that y(t) is an eventually positive
solution of (7.9) i.e., there exists t0 ≤ s0 such that y(t) > 0, ∀ t ∈ [s0,∞)T. A similar argument holds
for the case if y(t) is eventually negative. Now, ∆-differentiating equation (8.2) with respect to t, we
have

w∆(t) = δ(t)
(y∆(t)
y(t)

)∆

+ δ∆(t)
(y∆(t)
y(t)

)σ

. (8.12)

From equations (8.2), (7.16) and (8.12), we obtain

w∆(t) ≤ δ∆(t)

δσ(t)
wσ(t)− G(t)

δ(t)
w2(t) + δ(t)

y∆∆(t)

yσ(t)

=
δ∆(t)

δσ(t)
(w(t) + µ(t)w∆(t))− G(t)

δ(t)
w2(t) + δ(t)

y∆∆(t)

yσ(t)
. (8.13)

To solve the right-hand side of equation (8.13), we replace δσ(t) by δ(t) in (8.6) and we obtain

δ(t)
y∆∆

yσ(t)
≤ −G(t)δ(t)− a(t)G(t)w(t)− p(t) t

2
G(t)w(t). (8.14)

Substituting (8.14) into (8.13), we arrive at

w∆(t) ≤ δ∆(t)

δσ(t)
(w(t) + µ(t)w∆(t))− G(t)

δ(t)
w2(t)− G(t)δ(t)− a(t)G(t)w(t)− p(t) t

2
G(t)w(t),

which is equivalent to

(
1− δ∆(t)

δσ(t)
µ(t)

)
w∆(t) ≤ −G(t)δ(t) +A(t)w(t)− G(t)

δ(t)
w2(t)

= −G(t)δ(t) + δ(t)A2(t)

4G(t)
−
(√
G(t)
δ(t)

w(t)− A(t)

2

√
δ(t)

G(t)

)2

≤ −G(t)δ(t) + δ(t)A2(t)

4G(t)
. (8.15)
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Since
δ∆(t)

δσ(t)
µ(t) < 1,

dividing (8.15) by 1− δ∆(t)
δσ(t) µ(t), we arrive at

w∆(t) ≤ − 1

1− δ∆(t)
δσ(t) µ(t)

[
G(t)δ(t)− δ(t)A2(t)

4G(t)

]
. (8.16)

Integrating equation (8.16) from 2s0 to t, we get

t∫
2s0

1

1− δ∆(s)
δσ(s) µ(s)

[
G(s)δ(s)− δ(s)A2(s)

4G(s)

]
∆s ≤ w(2s0)− w(t) < w(2s0) <∞.

For sufficiently large t, we derive a contradiction to (8.10), as the left-hand side of the above relation
is finite, which completes the proof of our theorem.

Theorem 8.3. Assume that (O1), (O2) and relations (7.12), (7.14) hold. Moreover, if there exist a
∆-derivative function δ(t) > 0 and s0 ≥ 0, t0 ≤ 2s0 < t, respectively, satisfying the condition

lim sup
t→∞

t∫
2s0

(
δ(s)G(s)−

(
δ∆(s)− δ(s)G(s)(a(s) + p(s) s2 )

)2
4δ(s)

)
∆s =∞, (8.17)

then equation (7.9) oscillates on [t0,∞)T.

Proof. Assume to the contrary that (7.9) has a non-oscillatory solution. Let y(t) be a non-oscillatory
solution of (7.9). Then, without loss of generality, we assume that y(t) is an eventually positive
solution of (7.9) i.e., there exists t0 ≤ s0 such that y(t) > 0, ∀ t ∈ [s0,∞)T. A similar argument holds
also for the case if y(t) is eventually negative. Now, from equations (8.2) and (8.12), we obtain

w∆(t) ≤ δ∆(t)

δσ(t)
wσ(t)− δ(t)

(δσ(t))2
(wσ(t))2 + δ(t)

y∆∆(t)

yσ(t)
. (8.18)

From (8.14), we have

δ(t)
y∆∆

yσ(t)
≤ −G(t)δ(t)− a(t)G(t)w(t)− p(t) t

2
G(t)w(t). (8.19)

Substituting (8.19) into (8.18), we arrive at

w∆(t) ≤ −δ(t)G(t) + δ∆(t)

δσ(t)
wσ(t)− δ(t)

(δσ(t))2
(wσ(t))2 − G(t)

(
a(t) + p(t)

t

2

)
w(t). (8.20)

From (8.2), (7.16) and y∆∆(t) < 0, we obtain the relation

w(t) ≥ δ(t)

δσ(t)
wσ(t). (8.21)

Substituting (8.21) into (8.20), we get

w∆(t) ≤ −δ(t)G(t) + δ∆(t)

δσ(t)
wσ(t)− δ(t)

(δσ(t))2
(wσ(t))2 − δ(t)

δσ(t)
G(t)

(
a(t) + p(t)

t

2

)
wσ(t),

which is equivalent to

w∆(t) ≤ −δ(t)G(t) +
δ∆(t)− δ(t)G(t)(a(t) + p(t) t2 )

δσ(t)
wσ(t)− δ(t)

(δσ(t))2
(wσ(t))2. (8.22)
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By following the similar steps of equations (8.7) and (8.8), equation (8.22) becomes

w∆(t) ≤ −δ(t)G(t) +
(
δ∆(t)− δ(t)G(t)(a(t) + p(t) s2 )

)2
4δ(t)

. (8.23)

Integrating equation (8.23) from 2s0 to t, we have

t∫
2s0

[
δ(s)G(s)−

(
δ∆(s)− δ(s)G(s)(a(s) + p(s) s2 )

)2
4δ(s)

]
∆s ≤ w(2s0) <∞.

For sufficiently large t, we derive a contradiction to (8.17), as the left-hand side is finite, which
completes the proof of our theorem.

In view of the above theorem, we immediately obtain the following

Corollary 8.3. Assume that (O1), (O2) and relations (7.12), (7.14) hold. Moreover, if there exist
∆-derivative function δ(t) > 0 and s0 ≥ 0, t0 ≤ 2s0 < t, respectively, satisfying the conditions

lim sup
t→∞

t∫
2s0

δ(s)G(s)∆s =∞

and

lim sup
t→∞

t∫
2s0

(
δ∆(s)− δ(s)G(s)(a(s) + p(s) s2 )

)2
4δ(s)

∆s <∞,

then equation (7.9) oscillates on [t0,∞)T.

In order to present our next theorems, we first introduce Saker’s result [59] as follows:

((t− s)N )∆s ≤ −N (t− σ(s))N−1 ≤ 0 for N > 1 and σ(s) ≤ t. (8.24)

By using an integral averaging technique of Kamenev-type, we present some new oscillation criteria
of (7.9).

Theorem 8.4. Assume that (O1), (O2) and relations (7.12), (7.14) hold. If there exists a function
δ(t) > 0 and there exists N > 1 such that

lim sup
t→∞

1

tN

t∫
2s0

(t− s)NF(s)∆s =∞, (8.25)

where s0 ≥ 0, t0 ≤ 2s0 < t,

F(t) :=
(
δσ(t)G(t)−

(
δ∆(t)− G(t)δσ(t)(a(t) + p(t) s2 )

)2
4δσ(t)G(t)

)
,

then equation (7.9) oscillates on [t0,∞)T.

Proof. Assume to the contrary that (7.9) has a non-oscillatory solution. Let y(t) be a non-oscillatory
solution of (7.9). Then, without loss of generality, we assume that y(t) is an eventually positive
function, i.e., there exists t0 such that y(t) > 0, ∀ t ∈ [t0,∞)T. A similar argument holds also for the
case if y(t) is eventually negative. From equation (8.8), we have

F(t) ≤ −w∆(t) for 2s0 ≤ t.
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Multiplying the above relation by (t− s)N and then integrating from 2s0 to t, we obtain

t∫
2s0

(t− s)NF(s)∆s ≤ −
t∫

2s0

(t− s)Nw∆(s)∆s. (8.26)

Comparing the right-hand side of (8.26) with equation (1.2), we have

−
t∫

2s0

(t− s)Nw∆(s)∆s = (t− 2s0)
Nw(2s0) +

t∫
2s0

((t− s)N )∆swσ(s)∆s. (8.27)

From equations (8.24), (8.26) and (8.27), we arrive at

t∫
2s0

(t− s)NF(s)∆s ≤ (t− 2s0)
Nw(2s0). (8.28)

Thus
1

tN

t∫
2s0

(t− s)NF(s)∆s ≤ (t− 2s0)
N

tN
w(2s0) for 2s0 ≤ t. (8.29)

Taking lim sup as t→∞ on both side of equation (8.29), we have

lim sup
t→∞

1

tN

t∫
2s0

(t− s)NF(s)∆s <∞. (8.30)

Thus, we derive a contradiction to (8.25), which completes the proof of our theorem.

Corollary 8.4. Assume that (O1), (O2) and relations (7.12), (7.14) hold, s0 ≥ 0, t0 ≤ 2s0 < t. If
there exist δ(t) > 0 and N > 1 such that the following conditions hold

lim sup
t→∞

1

tN

t∫
2s0

(t− s)N δσ(t)G(t)∆s =∞

and

lim sup
t→∞

1

tN

t∫
2s0

(t− s)N
(
δ∆(t)− G(t)δσ(t)(a(t) + p(t) s2 )

)2
4δσ(t)G(t)

∆s <∞,

then equation (7.9) oscillates on [t0,∞)T.

Theorem 8.5. Assume that (O1), (O2) and relations (7.12), (7.14) hold. If there exists a function
δ(t) > 0 such that µ(t) δ

∆(t)
δσ(t) < 1, and for N > 1, s0 ≥ 0, t0 ≤ 2s0 < t, the following condition holds

lim sup
t→∞

1

tN

t∫
2s0

(t− s)N

1− δ∆(s)
δσ(s) µ(s)

[
G(s)δ(s)− δ(s)A2(s)

4G(s)

]
∆s =∞, (8.31)

where A(t) is given by (8.11), then equation (7.9) oscillates on [t0,∞)T.

Proof. Assume to the contrary that (7.9) has a non-oscillatory solution. Let y(t) be a non-oscillatory
solution of (7.9). Then, without loss of generality, we assume that y(t) is an eventually positive
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function, i.e., there exists t0 such that y(t) > 0, ∀ t ∈ [t0 ∞)T. A similar argument holds for the case
if y(t) is eventually negative. From equation (8.16), we have

1

1− δ∆(t)
δσ(t) µ(t)

[
G(t)δ(t)− δ(t)A2(t)

4G(t)

]
≤ −w∆(t) for 2s0 ≤ t.

Multiplying the above relation by (t− s)N and then integrating from 2s0 to t, we obtain

t∫
2s0

(t− s)N

1− δ∆(s)
δσ(s) µ(s)

[
G(s)δ(s)− δ(s)A2(s)

4G(s)

]
∆s ≤ −

t∫
2s0

(t− s)Nw∆(s)∆s. (8.32)

By following the similar steps of equations (8.26)-(8.28), equation (8.32) becomes

t∫
2s0

(t− s)N

1− δ∆(s)
δσ(s) µ(s)

[
G(s)δ(s)− δ(s)A2(s)

4G(s)

]
∆s ≤ (t− 2s0)

Nw(2s0).

Thus, we have

1

tN

t∫
2s0

(t− s)N

1− δ∆(s)
δσ(s) µ(s)

[
G(s)δ(s)− δ(s)A2(s)

4G(s)

]
∆s ≤ (t− 2s0)

N

tN
w(2s0). (8.33)

Taking lim sup as t→∞ in equation (8.33), we obtain

lim sup
t→∞

1

tN

t∫
2s0

(t− s)N

1− δ∆(s)
δσ(s) µ(s)

[
G(s)δ(s)− δ(s)A2(s)

4G(s)

]
∆s <∞. (8.34)

Thus, we derive a contradiction to (8.31), which completes the proof of our theorem.

Theorem 8.6. Assume that (O1), (O2) and relations (7.12), (7.14) hold. If there exist δ(t) > 0 and
N > 1, s0 ≥ 0, t0 ≤ 2s0 < t such that

lim sup
t→∞

1

tN

t∫
2s0

(t− s)N
(
δ(s)G(s)−

(
δ∆(s)− δ(s)G(s)(a(s) + p(s) s2 )

)2
4δ(s)

)
∆s =∞, (8.35)

then equation (7.9) oscillates on [t0,∞)T.

Proof. Assume to the contrary that (7.9) has a non-oscillatory solution. Let y(t) be a non-oscillatory
solution of (7.9). Then, without loss of generality, we assume that y(t) is an eventually positive
function, i.e., there exists t0 such that y(t) > 0, ∀ t ∈ [t0,∞)T. From equation (8.23) and following
the similar steps of equations (8.26)–(8.30), we easily obtain the relation

1

tN

t∫
2s0

(t− s)N
(
δ(s)G(s)−

(
δ∆(s)− δ(s)G(s)(a(s) + p(s) s2 )

)2
4δ(s)

)
∆s ≤

(
1− 2s0

t

)N
w(2s0) <∞.

For all sufficiently large t, we derive a contradiction to (8.35).

Corollary 8.5. Assume that (O1), (O2) and relations (7.12), (7.14) hold. If there exists a function
δ(t) > 0 and N > 1 s0 ≥ 0, t0 ≤ 2s0 < t such that the following conditions hold

lim sup
t→∞

1

tN

t∫
2s0

(t− s)N δ(s)G(s)∆s =∞



54 Syed Abbas, Shekhar Singh Negi, Said R. Grace, Ravi P. Agarwal, Chao Wang

and

lim sup
t→∞

1

tN

t∫
2s0

(t− s)N
(
δ∆(s)− δ(s)G(s)(a(s) + p(s) s2 )

)2
4δ(s)

∆s <∞,

then equation (7.9) oscillates on [t0,∞)T.

Our next aim is to establish the Philos-type oscillation criteria for (7.9). We define some elementary
assumptions as follows:

For any number η ∈ R, we define positive and negative parts, η+ and η−, respectively, of η by

η+ := max{0, η} and η− := max{0, η}.

Assume that the rd-continuous functions H,h : D→ R, where D = {(t, s) : t0 ≤ s0 ≤ t}, is such that

H(t, t) ≥ 0, t0 ≤ t and H(t, s) > 0 and H∆s(t, s) < 0, t0 ≤ s < t (8.36)

and H∆s(t, s) (∆-derivative w.r.t second variable) is rd-continuous.

Theorem 8.7. Assume that (O1), (O2) relations (7.12), (7.14) and equation (8.36) hold. Moreover,
if there exist a ∆-derivative function δ(t) > 0 and s0 ≥ 0, t0 ≤ 2s0 < t, respectively, satisfying the
conditions

H∆s(σ(t), s) +
Hσ(σ(t), s)

δ(t)

(
δ∆(t)− G(t)δσ(t)

(
a(t) + p(t)

t

2

))
= −h(t, s)

δ(t)

√
Hσ(σ(t), s) (8.37)

and

lim sup
t→∞

1

H(σ(t), 2s0)

σ(t)∫
2s0

(
Hσ(σ(t), s)δσ(s)G(s)− (h−(t, s))

2

4δ(s)G(s)

)
∆s =∞, (8.38)

then equation (7.9) oscillates on [t0,∞)T.

Proof. Assume to the contrary that (7.9) has a non-oscillatory solution. Let y(t) be a non-oscillatory
solution of (7.9). Then, without loss of generality, we assume that y(t) is an eventually positive
function, i.e., there exists t0 such that y(t) > 0, ∀ t ∈ [t0,∞)T. A similar argument holds for the case
if y(t) is eventually negative. We have defined a Riccati transformation function in (8.2). Now, from
(8.7), we have

w∆(t) ≤− δσ(t)G(t) + 1

δ(t)

(
δ∆(t)− G(t)δσ(t)

(
a(t) + p(t)

t

2

))
w(t)

− δσ(t)

δ2(t)
G(t)w2(t) for 2s0 ≤ t. (8.39)

Multiplying equation (8.39) by Hσ(σ(t), s), i.e., H(σ(t), σ(s)), and then integrating from 2s0 to σ(t),
we obtain

σ(t)∫
2s0

Hσ(σ(t), s)δσ(s)G(s)∆s ≤ −
σ(t)∫
2s0

Hσ(σ(t), s)w∆(s)∆s

+

σ(t)∫
2s0

Hσ(σ(t), s)

(
1

δ(s)

(
δ∆(s)− G(s)δσ(s)

(
a(s) + p(s)

s

2

))
w(s)− δσ(s)

δ2(s)
G(s)w2(s)

)
∆s. (8.40)
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From (1.1), we obtain the right-hand side of (8.40) as follows:

≤ H(σ(t), 2s0)w(2s0)

+

σ(t)∫
2s0

[
H∆s(σ(t), s) +

Hσ(σ(t), s)

δ(s)

(
δ∆(s)− G(s)δσ(s)

(
a(s) + p(s)

s

2

))]
w(t)∆s

−
σ(t)∫
2s0

Hσ(σ(t), s)
δσ(s)

δ2(s)
G(s)w2(s)∆s. (8.41)

Substituting (8.37) into (8.41), we arrive at

σ(t)∫
2s0

Hσ(σ(t), s)δσ(s)G(s)∆s ≤ H(σ(t), 2s0)w(2s0)

+

σ(t)∫
2s0

(
h−(t, s)

√
Hσ(σ(t), s)

δ(s)
w(s)−Hσ(σ(t), s)

δσ(s)

δ2(s)
G(s)w2(s)

)
∆s. (8.42)

which is equivalent to

σ(s)∫
2s0

Hσ(σ(t), s)δσ(s)G(s)∆s ≤ H(σ(t), 2s0)w(2s0)

+

σ(t)∫
2s0

(h−(t, s))
2

4δσ(s)G(s)
∆s−

σ(t)∫
2s0

(√
Hσ(σ(t), s)δσ(s)G(s)

δ(s)
w(s)− h−(t, s)

2
√
δσ(s)G(s)

)2

∆s. (8.43)

Hence, we have
σ(t)∫
2s0

Hσ(σ(t), s)δσ(s)G(s)∆s ≤ H(σ(t), 2s0)w(2s0) +

σ(t)∫
2s0

(h−(t, s))
2

4δσ(s)G(s)
∆s. (8.44)

Dividing (8.44) by H(σ(t), 2s0), we obtain

1

H(σ(t), 2s0)

σ(t)∫
2s0

(
Hσ(σ(t), s)δσ(s)G(s)− (h−(t, s))

2

4δ(s)G(s)

)
∆s ≤ w(2s0) <∞

for sufficiently large t. Thus, we derive a contradiction to (8.38).

Corollary 8.6. Assume that (O1), (O2), relations (7.12), (7.14) and the equation (8.36) hold. More-
over, if there exist a ∆-derivative function δ(t) > 0 and s0 ≥ 0, t0 ≤ 2s0 < t, respectively, satisfying
the conditions

H∆s(σ(t), s) +
Hσ(σ(t), s)

δ(t)

(
δ∆(t)− G(t)δσ(t)

(
a(t) + p(t)

t

2

))
= −h(t, s)

δ(t)

√
Hσ(σ(t), s) ,

lim sup
t→∞

1

H(σ(t), 2s0)

σ(t)∫
2s0

Hσ(σ(t), s)δσ(s)G(s)∆s =∞

lim sup
t→∞

1

H(σ(t), 2s0)

σ(t)∫
2s0

(h−(t, s))
2

4δ(s)G(s)
∆s <∞,

then equation (7.9) oscillates on [t0,∞)T.
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Theorem 8.8. Assume that (O1), (O2), relations (7.12), (7.14) and equation (8.36) hold. Moreover,
if there exist a ∆-derivative function δ(t) > 0 and s0 ≥ 0 such that µ(t) δ

∆(t)
δσ(t) < 1 and t0 ≤ 2s0 < t,

respectively, satisfying the conditions

H∆s(σ(t), s) +
Hσ(σ(t), s)

1− δ∆(t)
δσ(t) µ(t)

A(t) = − h(t, s)

1− δ∆(t)
δσ(t) µ(t)

√
Hσ(σ(t), s) , (8.45)

and

lim sup
t→∞

1

H(σ(t), 2s0)

σ(t)∫
2s0

(
Hσ(σ(t), s)G(s)− (h−(t, s))

2

4G(s)

) δ(s)

1− δ∆(s)
δσ(s) µ(s)

∆s =∞, (8.46)

where A(t) is given by (8.11), then equation (7.9) oscillates on [t0,∞)T.

Proof. Assume to the contrary that (7.9) has a non-oscillatory solution. Let y(t) be a non-oscillatory
solution of (7.9). Then, without loss of generality, we assume that y(t) is an eventually positive
function, i.e., there exists t0 such that y(t) > 0, ∀ t ∈ [t0 ∞)T. A similar argument holds for the case
if y(t) is eventually negative. We have defined a Riccati transformation function in (8.2). Now, from
(8.15), we have (

1− δ∆(t)

δσ(t)
µ(t)

)
w∆(t) ≤ −G(t)δ(t) +A(t)w(t)− G(t)

δ(t)
w2(t),

which can be written as
G(t)δ(t)

1− δ∆(t)
δσ(t) µ(t)

≤ −w∆(t) +
A(t)

1− δ∆(t)
δσ(t) µ(t)

w(t)− G(t)
δ(t)(1− δ∆(t)

δσ(t) µ(t))
w2(t). (8.47)

Multiplying equation (8.47) by Hσ(σ(t), s) and then integrating from 2s0 to σ(t), we have

σ(t)∫
2s0

Hσ(σ(t), s)G(s)δ(s)
1− δ∆(s)

δσ(s) µ(s)
∆s ≤ −

σ(t)∫
2s0

Hσ(σ(t), s)w∆(s)∆s

+

σ(t)∫
2s0

Hσ(σ(t), s)A(s)

1− δ∆(s)
δσ(s) µ(s)

w(s)∆s−
σ(t)∫
2s0

Hσ(σ(t), s)G(s)
δ(s)(1− δ∆(s)

δσ(s) µ(s))
w2(s)∆s. (8.48)

From (8.45), (8.48) and following the similar steps of equations (8.41)–(8.44), we obtain

σ(t)∫
2s0

Hσ(σ(t), s)G(s)δ(s)
1− δ∆(s)

δσ(s) µ(s)
∆s ≤ H(σ(t), 2s0)w(2s0) +

σ(t)∫
2s0

δ(s)(h−(t, s))
2

4(1− δ∆(s)
δσ(s) µ(s))G(s)

∆s. (8.49)

Dividing equation (8.49) by H(σ(t), 2s0), we obtain

1

H(σ(t), 2s0)

σ(t)∫
2s0

(
Hσ(σ(t), s)G(s)− (h−(t, s))

2

4G(s)

) δ(s)

1− δ∆(s)
δσ(s) µ(s)

∆s < w(2s0) <∞.

For sufficiently large t, we derive a contradiction to (8.46), which completes the proof of our theo-
rem.

Theorem 8.9. Assume that (O1), (O2), relations (7.12), (7.14) and equation (8.36) hold. Moreover,
if there exist a ∆-derivative function δ(t) > 0 and s0 ≥ 0, t0 ≤ 2s0 < t, respectively, satisfying the
conditions

H∆s(t, s) +
H(t, s)

δσ(t)

(
δ∆(t)− G(t)δ(t)

(
a(t) + p(t)

t

2

))
= −h(t, s)

δσ(t)

√
H(t, s) , (8.50)
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and

lim sup
t→∞

1

H(t, 2s0)

t∫
2s0

(
H(t, s)δ(s)G(s)− (h−(t, s))

2

4δ(s)

)
∆s =∞,

then equation (7.9) oscillates on [t0,∞)T.

Proof. Assume to the contrary that (7.9) has a non-oscillatory solution. Let y(t) be a non-oscillatory
solution of (7.9). Then, without loss of generality, we assume that y(t) is an eventually positive func-
tion, i.e., there exists t0 such that y(t) > 0, ∀ t ∈ [t0 ∞)T. We have defined the Riccati transformation
function in (8.2). Now, multiplying equation (8.23) by H(t, s) and integrating from 2s0 to t, we have
the relation

t∫
2s0

H(t, s)δ(t)G(s)∆s ≤ −
t∫

2s0

H(t, s)w∆(s)∆s

+

t∫
2s0

H(t, s)
δ∆(s)− δ(s)G(s)(a(s) + p(s) s2 )

δσ(s)
wσ(s)∆s−

t∫
2s0

H(t, s)δ(s)

(δσ(s))2
(wσ(s))2 ∆s.

From (1.2) and (8.36), we obtain

t∫
2s0

H(t, s)δ(s)G(s)∆s

≤ H(t, 2s0)w(2s0) +

t∫
2s0

(
H∆(t, s) +H(t, s)

δ∆(s)− δ(s)G(s)(a(s) + p(s) s2 )

δσ(s)

)
wσ(s)∆s

−
t∫

2s0

H(t, s)δ(s)

(δσ(s))2
(wσ(s))2 ∆s. (8.51)

From equations (8.50), (8.51) and by following the similar steps of equations (8.26)–(8.30), we obtain
a new relation

1

H(t, 2s0)

t∫
2s0

(
H(t, s)δ(s)G(s)− (h−(t, s))

2

4δ(s)

)
∆s ≤ w(2s0) <∞

for sufficiently large t. Thus, we derive a contradiction to (8.9), which completes the proof of our
theorem.

Corollary 8.7. Assume that (O1), (O2), relations (7.12), (7.14) and equation (8.36) hold. Moreover,
if there exist a ∆-derivative function δ(t) > 0 and s0 ≥ 0, t0 ≤ 2s0 < t, respectively, satisfying the
conditions

H∆s(t, s) +
H(t, s)

δσ(t)

(
δ∆(t)− G(t)δ(t)

(
a(t) + p(t)

t

2

))
= −h(t, s)

δσ(t)

√
H(t, s)

and

lim sup
t→∞

1

H(t, 2s0)

t∫
2s0

H(t, s)δ(s)G(s)∆s =∞, lim sup
t→∞

1

H(t, 2s0)

t∫
2s0

(h−(t, s))
2

4δ(s)
∆s <∞,

then equation (7.9) oscillates on [t0,∞)T.
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In [49], Negi et al. considered the following singular initial-value problem for the second-order
dynamic equation on time scales with the initial point a ∈ T ⊆ R, and t∗ ≤ a for all t∗ ∈ T:

(rβ(t)Y (t))∆ − F
(
t, yσ(t), y∆(t)

)
+

t∫
t∗

O(s)D(s, y(s), yσ(s))∆s = G(t, y(t), y∆(t)),

y(a) = 0, y∆(a) = b for b ∈ R,

 (8.52)

where β ̸= 0,

Y (t) = y∆(t) + sgn(y(t))K
(
t, y(t), yσ(t), y∆(t),

t∫
a

p∗3(t, s)|y∆(s)|γ ∆s
)
− f(t)

and T is an unbounded time scale, i.e., supT = ∞. The functions F , G, K, D, r, p∗3, g and f
are rd-continuous on their respective domains. Throughout this paper, we denote the time scale
interval [t1,∞)T = [t1,∞) ∩ T for t1 ∈ T, and C∆n

rd (T,R) denotes the set of all nth-delta derivable
rd-continuous functions, for n ∈ N. By a solution of equation (8.52), we mean a nontrivial real-valued
function y(t) ∈ C∆2

rd ([ty,∞)T,R) and rβ(t)Y (t) ∈ C∆
rd([ty,∞)T,R), ty ≤ t.

In order to establish the oscillation criteria, we have not used the Riccati technique and provided
a new way to establish the oscillation criteria. Moreover, some superior estimates are given in our
main theorems by employing the generalized Opial’s type inequality on time scales. Some results are
also presented without using the inequality.

For the oscillatory results, we need the following assumptions which have a vital role in our analytic
findings:

[A1]: (a) O : T→ [0,∞) is a rd-continuous function such that O > 0 for t0 < t; otherwise zero.
(b) p∗3 : [t0,∞)T × [t0,∞)T → (0,∞)R, r, q, p′3, pi : [t0,∞)T → (0,∞)R for i = 1, 2, 3, 4, and f :

[t0,∞)T → R are rd-continuous functions such that p∗3(y, x) ≥ p3(y)p′3(x) for x, y ∈ [t0,∞)T,
x ≤ y, p1(t) ≤ p2(t), and p∗

∆y

3 (y, x), f∆(t) and r∆(t) exist for each y, x, t ∈ [t0,∞)T.

[A2]: F,G : T×R2→ R and D : T×R2→ R are rd-continuous functions such that uG(t, u, v) > 0,
u∗F (t, u∗, v) > 0 and uD(t, u, u∗) > 0, which satisfy

|F (t, u∗, v)| ≤ p1(t)|u∗|α
∗
|v|α and |G(t, u, v)| ≤ p2(t)|u|α

∗
|v|α for 0 ̸= u, u∗v ∈ R,

where α > 0, and α∗ is a positive odd integer.

[A3]:
∞∫

t0

1

p
1/α
4 (s)

∆s <∞ and
∞∫

t0

c1
rβ(s)

∆s <∞ for any real constant c1.

[A4]: K : [t0,∞)T × R4 → [0,∞)R is delta-derivable on T and there is a delta-derivable function
g : [t0,∞)T → R such that

g(t) +K(t, u, u∗, v,X) ≥ q(t)X for any γ, u, u∗ ̸= 0, v, w,X ∈ R.

9 Oscillatory results
The purpose of this section is to give new sufficient conditions of the oscillation for equation (8.52) on
time scales T, except for the time scale T = {qn : n ∈ N} ∪ {0}, 0 < q < 1.

Theorem 9.1. Suppose the conditions [A1]–[A4] and the relation L(t0, t, α) ≤ q(t)p3(t)rβ(t) hold for
t0 ≤ t with γ > 1 + α and α∗ = 1. Furthermore, assume that

lim inf
t→∞

t∫
t0

[
f(X) + g(X) + q(X)p3(X)

X∫
t0

M(s)∆s

]
∆X = −∞
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and

lim sup
t→∞

t∫
t0

[
f(X)− g(X)− q(X)p3(X)

X∫
t0

M(s)∆s

]
∆X = +∞,

where L(t0, t, α) in defined by (1.5) and

M(t) = (1 + α)
1+α

γ−1−α (γ − 1− α)γγ/1+α−γ(p′3(t))
(1+α)/1+α−γ(p4(t))

γ/γ−1−α,

then all nontrivial solutions of equation (8.52) are oscillatory on [t0,∞)T.
Proof. Assume the contrary, then there exists a solution y(t) of (8.52) which may be assumed to be
nonnegative on [t0,∞)T such that y(t0) = 0 and y(t) > 0 for t0 < t. Similar proof can be done in case
y(t) < 0 for t0 < t. From equation (8.52), using the assumptions [A1] and [A2], we obtain

(rβ(t)Y (t))∆ = G(t, y(t), y∆(t)) + F (t, yσ(t), y∆(t))−
t∫

t∗

O(s)D(s, y(s), yσ(t))∆s

≤ p1(t)y(t)|y∆(t)|α + p2(t)y
σ(t)|y∆(t)|α

−
t0∫

t∗

O(s)D(s, y(s), yσ(t))∆s−
t∫

t0

O(s)D(s, y(s), yσ(t))∆s

≤ p2(t)|y∆(t)|α|y(t) + yσ(t)|. (9.1)

Integrating equation (9.1) from t0 to t and using the assumption [A4], we have

y∆(t) + p3(t)q(t)

t∫
t0

p′3(s)|y∆(t)|γ ∆s− f(t)− g(t)

≤ c1
rβ(t)

+
1

rβ(t)

t∫
t0

p2(s)|y∆(s)|α|y(s) + yσ(s)|∆s. (9.2)

From equations (1.4), (9.2) and (1.5), we obtain

y∆(t) ≤ f(t) + g(t) +
c1
rβ(t)

+
L(t0, t, α)

rβ(t)

t∫
t0

p4(s)|y∆(s)|1+α ∆s− q(t)p3(t)
t∫

t0

p′3(s)|y∆(s)|γ ∆s

≤ f(t) + g(t) +
c1
rβ(t)

+ q(t)p3(t)

[ t∫
t0

(
p4(s)|y∆(s)|1+α − p′3(s)|y∆(s)|γ

)
∆s

]
, (9.3)

since γ > 1 + α, substituting A = |y∆(t)|1+α, B = ( 1+α
γ ) p4(s)

p′
3(s)

, ξ = γ
1+α and η = γ

γ−1−α in part (1) of
Lemma 1.1, we obtain

y∆(t) ≤ f(t) + g(t) +
c1
rβ(t)

+ q(t)p3(t)

t∫
t0

[
γ

1 + α
p′3(s)

(
AB − 1

ξ
Aξ

)]
∆s

≤ f(t) + g(t) +
c1
rβ(t)

+ q(t)p3(t)

t∫
t0

M(s)∆s. (9.4)

Integration of equation (9.4) from t0 to t gives

y(t) ≤
t∫

t0

[
f(X) + g(X) + q(X)p3(X)

X∫
t0

M(s)∆s

]
∆X +

t∫
t0

c1
rβ(s)

∆s,
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and taking lim inf on both sides as t → ∞, we get a contradiction to the fact that y(t) is eventually
nonnegative. Hence the proof is done.

From Theorem 9.1, we may also obtain some results concerning the oscillation behavior of equation
(8.52).

Corollary 9.1. Suppose the conditions [A1]–[A4] and the relation L(t0, t, α) ≤ q(t)p3(t)rβ(t) hold for
t0 ≤ t with γ > 1 + α and α∗ = 1. Furthermore, assume that

∞∫
t0

q(X)p3(X)

X∫
t0

M(s) ∆s∆X <∞,

lim inf
t→∞

t∫
t0

[
f(X) + g(X)

]
∆X = −∞, lim sup

t→∞

t∫
t0

[
f(X)− g(X)

]
∆X = +∞,

where M(t) is from Theorem 9.1 and L(t0, t, α) is defined by (1.5). Then all nontrivial solutions of
equation (8.52) are oscillatory on [t0.∞)T.

Similarly, the next result immediately follows from the above Theorem 9.1.

Corollary 9.2. Suppose the conditions [A1]–[A4] and the relation L(t0, t, α) ≤ q(t)p3(t)rβ(t) hold for
t0 ≤ t with γ > 1 + α and α∗ = 1. Furthermore, assume that

∞∫
t0

q(X)p3(X)

X∫
t0

M(s) ∆s∆X <∞,

and for any real constant c1,

lim inf
t→∞

t∫
t0

[
f(X) + g(X) +

c1
rβ(s)

]
∆X = −∞, lim sup

t→∞

t∫
t0

[
f(X)− g(X) +

c1
rβ(s)

]
∆X = +∞,

where M(t) is from Theorem 9.1 and L(t0, t, α) is defined by (1.5). Then all nontrivial solutions of
equation (8.52) are oscillatory on [t0.∞)T.

We also obtain some more results concerning the oscillation behavior of equation (8.52).

Theorem 9.2. Suppose the conditions [A1]–[A4] and the relation L(t0, t, α) ≤ q(t)p3(t)rβ(t) hold for
t0 ≤ t with any ζ such that 1 + α < ζ < γ. Furthermore, assume that there exists an rd-continuous
function η : T→ (0,∞) and

lim inf
t→∞

t∫
t0

[
f(X) + g(X) + q(X)p3(X)

X∫
t0

M1(s) +M2(s)∆s

]
∆X = −∞

and

lim sup
t→∞

t∫
t0

[
f(X) + g(X) + q(X)p3(X)

X∫
t0

M1(s) +M2(s)∆s

]
∆X = +∞,

where L(t0, t, α) is defined by (1.5) and

M1(t) = (1 + α)
1+α

ζ−1−α (ζ − 1− α)ζζ/1+α−ζ(η(t))(1+α)/1+α−ζ(p4(t))
ζ/ζ−1−α

and
M2(t) = ζ

ζ
γ−ζ (γ − ζ)γγ/ζ−γ(p′3(t))

ζ/ζ−γ(η(t))γ/γ−ζ .

Then all nontrivial solutions of equation (8.52) are oscillatory on [t0.∞)T.
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Proof. Suppose the contrary, then there exists a solution y(t) of (8.52) which may be assumed to be
nonnegative on [t0,∞)T such that y(t0) = 0 and y(t) > 0 for t0 < t. Similar proof can be done in case
y(t) < 0 for t0 < t. In Theorem 9.1, from equation (9.3), we obtain

y∆(t) ≤ f(t) + g(t) +
c1
rβ(t)

+ q(t)p3(t)

[ t∫
t0

(
p4(s)|y∆(s)|1+α − η(s)|y∆(s)|ζ

)
∆s

]

+ q(t)p3(t)

[ t∫
t0

(
η(s)|y∆(s)|ζ − p′3(s)|y∆(s)|γ

)
∆s

]
.

Now, we observe equations (9.3) to (8.6) in Theorem 9.1, thus we obtain the inequality

y(t) ≤
t∫

t0

[
f(X) + g(X) + q(X)p3(X)

X∫
t0

M1(s) +M2(s)∆s

]
∆X +

t∫
t0

c1
rβ(s)

∆s.

Taking lim inf on both sides as t → ∞, we obtain a contradiction to the fact that y(t) is eventually
nonnegative. Hence the proof is done.

Introduce the following condition:

[A5]: K : [t0,∞)T×R4 → [0,∞)R, S : [t0,∞)T× [t0,∞)T → [0,∞)R are delta-derivable on T such that
S(t, s) ≥ S1(t)S2(s) for s ≤ t and 1 ≤ q(t)p3(t)rβ(t) ≤ S1(t)r

β(t). Also, there is a delta-derivable
function g : [t0,∞)T → R such that

g(t) +K(t, u, u∗, v,X) ≥ q(t)X +

t∫
t0

S(t, s)
(
|u|α

∗
+ |u∗|α

∗)δ
∆s

for any δ, γ, u, u∗ ̸= 0, X, v ∈ R.

If we consider [A5] in place of [A4] in the above theorem, we do not need the generalized Opial’s type
inequality for the sufficient conditions of the oscillation of equation (8.52) for all odd integer α∗.

Theorem 9.3. Suppose the conditions [A1]–[A3] hold for t0 ≤ t for all α∗, γ > 2α > 0 and 2 < δ.
In addition to [A5], assume that the conditions

lim inf
t→∞

t∫
t0

f(s) + g(s) + S1(s)

[ s∫
t0

W2(τ) +W1(τ)∆τ

]
∆s = −∞

and

lim sup
t→∞

t∫
t0

f(s)− g(s)− S1(s)

[ s∫
t0

W2(τ) +W1(τ)∆τ

]
∆s = +∞

hold, where
W1(s) = (2α)

2α
γ−2α (γ − 2α)γγ/2α−γ(p′3(s))

2α/2α−γ(p2(s))
γ/γ−2α

and
W2(s) = (2α)

2
δ−2 (δ − 2)δδ/2−δ(S2(s))

2/2−δ(p2(s))
δ

δ−2 ,

then all nontrivial solutions of equation (8.52) are oscillatory on [t0,∞)T.

Proof. Suppose the contrary, then there exists a solution y(t) of (8.52) which may be assumed to be
nonnegative on [t0,∞)T such that y(t0) = 0 and y(t) > 0 for t0 < t. Similar proof can be done in case
y(t) < 0 for t0 < t. From equation (9.1), we have

(rβ(t)Y (t))∆ ≤ p2(t)|y∆(t)|α
(
|y(t)|α

∗
+ |yσ(t)|α

∗)
. (9.5)
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Integrating equation (9.5) from t0 to t, we have

Y (t) ≤ c1
rβ(t)

+
c1
rβ(t)

t∫
t0

p2(s)|y∆(s)|α
(
|y(s)|α

∗
+ |yσ(s)|α

∗)
,

and since 1 ≤ q(t)p3(t)rβ(t), we obtain

≤ c1
rβ(t)

+ q(t)p3(t)

t∫
t0

p2(s)|y∆(s)|2α ∆s+ q(t)p3(t)

t∫
t0

p2(s)
(
|y(s)|α

∗
+ |yσ(s)|α

∗)2
∆s.

Therefore, from the condition [A5], using the relation 1 ≤ q(t)p3(t)rβ(t) ≤ S1(t)r
β(t), we obtain

y∆(t) ≤ f(t) + g(t) +
c1
rβ(t)

+ S1(t)

[ t∫
t0

p2(s)
(
|y(s)|α

∗
+ |yσ(s)|α

∗)2 − S2(s)
(
|y(s)|α

∗
+ |yσ(s)|α

∗)δ]

+ S1(t)

[ t∫
t0

p2(s)|y∆(s)|2α − p′3(s)|y∆(s)|γ
]
.

For 2α < γ, 2 < δ and observing equations (8.4), (8.5), we get

y∆(t) ≤ f(t) + g(t) +
c1
rβ(t)

+ S1(t)

[ t∫
t0

W2(s) +W1(s)∆s

]
. (9.6)

Integrating equation (9.6) from t0 to t, we have

y(t) ≤
t∫

t0

f(s) + g(s) + S1(s)

[ s∫
t0

W2(τ) +W1(τ)∆τ

]
∆s+

t∫
t0

c1
rβ(s)

∆s,

and taking lim inf on both sides as t → ∞, we get a contradiction to the fact that y(t) is eventually
nonnegative. Hence the proof is done.

Remark 9.1. In view of the above theorem, we may also obtain some results concerning the oscillation
behavior of equation (8.52).

The technique we used above can also be applied to study the higher order dynamic equations on
time scales in the following form:

[
rβ(t)

(
y∆

n−1

(t) + sgn(y(t))
[
K
(
t, y(t), y∆(t), . . . , y∆

n−1

(t)
)
− g(t)

]
− f(t)

)]∆
− F

(
t, yσ(t), y∆(t), . . . , y∆

n−1

(t)
)
= G

(
t, y(t), y∆(t), . . . , y∆

n−1

(t)
)
−

t∫
t∗

O(s)D(s, y(s))∆s (9.7)

and
y(t0) = 0, y∆(t0) = a1, y

∆2

(t0) = a2, . . . , y
∆n−1

(t0) = an−1 for each ai ∈ R.

If we introduce one more condition [A6] in the above Theorem 9.1, i.e.,
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[A6]:
∞∫

t0

τn−1∫
t0

· · ·
τ3∫

t0

τ2∫
t0

1

p
1/α
4 (τ1)

∆τ1∆τ2 · · ·∆τn−1<∞ and
∞∫

t0

τn−1∫
t0

· · ·
τ3∫

t0

τ2∫
t0

c1
rβ(τ1)

∆τ1∆τ2 · · ·∆τn−1<∞

for any constant c1,

the similar oscillation condition for equation (9.7) can be derived easily. The proofs are omitted, since
they are quite similar to the the proof of Theorem 9.1.

Theorem 9.4. Suppose the conditions [A1]–[A4] and the relation L(t0, t, α) ≤ q(t)p3(t)rβ(t) hold for
t0 ≤ t with for γ > 1+α and α∗ = 1. Furthermore, in addition to the condition [A6], we assume that

lim inf
t→∞

t∫
t0

τn−1∫
t0

· · ·
τ3∫

t0

τ2∫
t0

[
f(τ1) + g(τ1) +W1(τ1)

]
∆τ1∆τ2 · · ·∆τn−1 = −∞

and

lim sup
t→∞

t∫
t0

τn−1∫
t0

· · ·
τ3∫

t0

τ2∫
t0

[
f(τ1)− g(τ1)−W1(τ1)

]
∆τ1∆τ2 · · ·∆τn−1 = +∞,

where W1(τ1) = q(τ1)p3(τ1)
τ1∫
t0

M(s)∆s, and M(t) is as in Theorem 9.1 and L(t0, t, α) is defined by

(1.5), then all nontrivial solutions of equation (9.7) are oscillatory on [t0,∞)T.

Proof. Comparing the solution of equation (8.52) and using the same argument as in Theorem 9.1,
we can prove the oscillatory Theorem for (9.7).

In view of the above theorems, some corollaries can also be carried out.

Corollary 9.3. Suppose the conditions [A1]–[A4] and the relation L(t0, t, α) ≤ q(t)p3(t)r
β(t), β > 0

hold for t0 ≤ t with for γ > 1 + α and α∗ = 1. Furthermore, in addition to the condition [A6], we
assume that

∞∫
t0

W1(τ1)∆τ =

∞∫
t0

q(τ1)p3(τ1)

τ1∫
t0

M(s) ∆s∆τ1 <∞,

lim inf
t→∞

t∫
t0

τn−1∫
t0

· · ·
τ3∫

t0

τ2∫
t0

[
f(τ1) + g(τ1)

]
∆τ1∆τ2 · · ·∆τn−1 = −∞

and

lim sup
t→∞

t∫
t0

τn−1∫
t0

· · ·
τ3∫

t0

τ2∫
t0

[
f(τ1)− g(τ1)

]
∆τ1∆τ2 · · ·∆τn−1 = +∞.

where M(t) is as in Theorem 9.1 and L(t0, t, α) is defined by (1.5), then all nontrivial solutions of
equation (9.7) are oscillatory on [t0.∞)T.

Corollary 9.4. Suppose the conditions [A1]–[A4] and the relation L(t0, t, α) ≤ q(t)p3(t)r
β(t), β > 0

hold for t0 ≤ t with for γ > 1 + α and α∗ = 1. Furthermore, in addition to the condition [A6], we
assume that

∞∫
t0

W1(τ1)∆τ =

∞∫
t0

q(τ1)p3(τ1)

τ1∫
t0

M(s) ∆s∆τ1 <∞,

and for any real constant c1,

lim inf
t→∞

t∫
t0

τn−1∫
t0

· · ·
τ3∫

t0

τ2∫
t0

[
f(τ1) + g(τ1) +

c1
rβ(s)

]
∆τ1∆τ2 · · ·∆τn−1 = −∞
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and

lim sup
t→∞

t∫
t0

τn−1∫
t0

· · ·
τ3∫

t0

τ2∫
t0

[
f(τ1)− g(τ1) +

c1
rβ(s)

]
∆τ1∆τ2 · · ·∆τn−1 = +∞,

where M(t) is as in Theorem 9.1 and L(t0, t, α) is defined by (1.5), then all nontrivial solutions of
equation (9.7)) are oscillatory on [t0,∞)T.
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