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Abstract. This paper mainly focuses on the Birkhoff normal form theorem for the Born–Oppenheimer
Hamiltonians. Normal forms are accessible via those of the effective Hamiltonian obtained by the
Grushin reduction method and the pseudodifferential calculus with operator-valued symbols. Res-
onance situations are discussed; the theoretical computations of Birkhoff normal form in the 1 : 1
resonance are written explicitly. Our approach gives compatible numerical results while using a com-
puter program.
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ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÉ, ÞÉÒÉÈÀÃÀÃ, ÄáÄÁÀ ÁÉÒÊäÏ×ÉÓ ÍÏÒÌÀËÖÒÉ ×ÏÒÌÉÓ ÈÄÏÒÄÌÀÓ ÁÏÒÍ-
ÏÐÄÍäÀÉÌÄÒÉÓ äÀÌÉËÔÏÍÉÀÍÄÁÉÓÈÅÉÓ. ÍÏÒÌÀËÖÒÉ ×ÏÒÌÄÁÉ áÄËÌÉÓÀßÅÃÏÌÉÀ Ä×ÄØÔÖÒÉ äÀ-
ÌÉËÔÏÍÉÀÍÄÁÉÓ ÓÀÛÖÀËÄÁÉÈ, ÒÏÌËÄÁÉÝ ÌÉÙÄÁÖËÉÀ ÂÒÖÛÉÍÉÓ ÃÀÚÅÀÍÉÓ ÌÄÈÏÃÉÈ ÃÀ ÏÐÄ-
ÒÀÔÏÒ-ÌÍÉÛÅÍÄËÏÁÄÁÉÀÍÉ ÓÉÌÁÏËÏÄÁÉÓ ×ÓÄÅÃÏÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÀÙÒÉÝáÅÉÈ. ÂÀÍáÉËÖËÉÀ
ÒÄÆÏÍÀÍÓÖËÉ ÓÉÔÖÀÝÉÄÁÉ; ÁÉÒÊäÏ×ÉÓ ÍÏÒÌÀËÖÒÉ ×ÏÒÌÉÓ ÈÄÏÒÉÖËÉ ÂÀÌÏÈÅËÄÁÉ 1 : 1
ÒÄÆÏÍÀÍÓÛÉ ÝáÀÃÀÃ ÀÒÉÓ ÜÀßÄÒÉËÉ. ÜÅÄÍÉ ÌÉÃÂÏÌÀ ÉÞËÄÅÀ ÈÀÅÓÄÁÀÃ ÝÉ×ÒÖË ÛÄÃÄÂÄÁÓ
ÊÏÌÐÉÖÔÄÒÖËÉ ÐÒÏÂÒÀÌÉÓ ÂÀÌÏÚÄÍÄÁÉÓ ÃÒÏÓ.
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1 Introduction
The question of the stability of the multi-body problems dates back to the 18th century. The problem
was analyzed by means of series expansions and the canonical approach. The method of normal forms
is one of the main tools for studying this stability. The idea of the method is to transform a differential
operator into a simpler one by a change of the variables.

The Poincaré theory of normal forms has a counterpart in the Hamiltonian formalism, due to
Birkhoff and then extended to the resonant case by Gustavson. Thus, by carefully choosing trans-
formations, one changes a Hamiltonian system into a form with a well understood part, integrable
part, under a sufficiently small perturbation, such a transformation will conserve the Hamiltonian
structure [2, 8]. Precisely, the well-known Birkhoff theorem states that, in some neighbourhood of
the origin, there exists a canonical transformation under which a smooth semiclassical Schrödinger
operator −h2∆x + V , for energies close to a non-degenerate minimum of V , can be replaced by a
suitable perturbation of a harmonic oscillator.

Some results on Birkhoff normal forms have been proved by Birkhoff [2], Ghomari and Messirdi [5,6]
and Ghomari, Messirdi and Vu Ngoc [7] for Schrödinger operators. Nevertheless, no result of the
existence, constructions and applications of Birkhoff normal forms was known up to now, for Born–
Oppenheimer Hamiltonians. In [9], one can find a description of the question without theoretical
details and numerical analysis.

The main objective of this work is the construction of a Birkhoff normal forms method for the
Born–Oppenheimer Hamiltonians in the semiclassical limit of type P = −h2∆x+Q(x), where Q(x) is
an operator in the electronic y variables that depends only parametrically on the nuclear x variables,
and h2 stands for the ratio between the electronic and nuclear masses, h→ 0+. Q(x) is referred to as
the electronic Hamiltonian, its spectrum is typically discrete in the low energy region and continuous
above the threshold energy. Since Q is an operator, it becomes necessary to use the pseudodifferential
calculus with operator-valued symbols. We are typically interested in the relationship between the
spectrum of the operator P and the classical dynamics of its principal operator-valued symbol.

The main novelty in this work is the introduction of the Birkhoff normal form theorem for Born–
Oppenheimer Hamiltonians. The idea is to combine the usual Birkhoff normal forms method with
the reduction process to an effective Hamiltonian. If Q(x) and λ1(x), the lowest eigenvalue of Q(x),
are smooth and, under suitable assumptions, the Grushin operator associated with P and λ1(x) is
invertible as a pseudodifferential operator near the bottom of λ1(x), then, in particular, we get a
reduction result, namely, the spectral study of P is close, at least modulo O(h2), to one of Pe =
−h2∆x + λ1(x), the effective Hamiltonian in the Born–Oppenheimer approximation. This allows to
get asymptotic expansions of the discrete spectrum and the eigenfunctions of P (see, e.g., [6,10–12]) In
fact, Pe can explain the complete spectral picture of P modulo errors in h. We first present in Section
2 the general framework of normal forms for semiclassical Schrödinger operators −h2∆x + V (x),
where we give a rigourous proof of the Birkhoff normal form theorem. Furthermore, in Section 3, we
explain the core of the mathematical form of the Born–Oppenheimer approximation and describe the
construction of the effective Hamiltonian. Namely, the possibility to approximate, for large nuclear
masses, the true molecular Hamiltonian, a Schrödinger operator with an operator-valued potential, by
some effective Hamiltonian. The effective Hamiltonian is a good approximation to the true molecular
Hamiltonian with error-terms of order h∞ concerning smooth interaction potentials only.

Thanks to the reduction of P to its effective Hamiltonian Pe in x variables, it is now possible
to define the Birkhoff normal forms of the full Hamiltonian P by those of Pe. Consequently, in
Section 4, we introduce the Birkhoff normal form theorem for P , near an equilibrium point in the
Born–Oppenheimer approximation, via the effective Hamiltonian Pe, using the results of Section 2,
where the function λ1(x) plays the role of an effective potential function and h tends to zero. Our main
ingredient is the use successively two reductions, first the reduction to an effective Hamiltonian and
then the classical Birkhoff normal form reduction. We show that one can recover the Birkhoff normal
form for the Born–Oppenheimer operator near an equilibrium point and we give a connection the
between Birkhoff normal form and resonances that occurs in terms of frequencies of the corresponding
harmonic oscillator. As an application, we study the dynamics near a local extremum of the effective
Hamiltonian, for which the frequencies are in 1 : 1 resonance. Our mathematical results are of physical
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or chemical relevance, up to some controlled error depending on the semiclassical parameter h. In
Section 5, we use a computer program to compute easily the Birkhoff normal form for a given effective
Schrödinger Hamiltonian in 1 : 1 resonance. Our numerical results are compatible with the theoretical
ones.

2 Generalities on Birkhoff normal forms
The purpose of this section is to apply the fundamental results on the quantum Birkhoff normal forms
for semiclassical Schrödinger operators. In the classical setting, the operator to be discussed is of the
type P = −h2∆+ V , where V is the multiplication operator by a smooth potential function. In the
molecular case, the corresponding object is Q. Q is neither a multiplication operator, nor smooth if
V is a non-smooth potential. The general philosophy consists in finding adequate transformations in
which P can be written as a commuting perturbation of the harmonic oscillator. Precisely, there exists
a formal real canonical transformation generated by a power series such that P is transformed into a
Hamiltonian which is a power series in one-dimensional uncoupled harmonic oscillator Hamiltonians.
The procedure for transforming to Birkhoff’s normal form is reviewed and enriched here.

Let V ∈ C∞(RN ), N ∈ N, N ≥ 1, and assume that the Hessian matrix V ′′(0) is diagonal, let
(ν21 , . . . , ν

2
N ) be its eigenvalues, with νj > 0 and ν = (ν1, . . . , νN ). The rescaling xj → √

νjxj , x =

(x1, . . . , xN ), transforms P into P = H+W (x), whereH is the harmonic oscillator
N∑
j=1

νj
2 (−h

2 ∂2

∂x2
j
+x2j )

and W (x) is a smooth function such that W (x) = O(|x|3) as |x| → 0. In general, W does not commute
with H, on the other hand, we do not have enough information on this perturbation, for that we will
use the Birkhoff normal form of P which is a transformation of the previous type, but more adapted
and less restrictive.

Let m, d ∈ R, and Sm,d be the space of smooth functions a(x, ξ;h) : RNx × RNξ × ]0, 1] → C such
that for all α ∈ N2N , |∂α(x,ξ)a(x, ξ;h)| ≤ Cαh

d(1 + |x|2 + |ξ|2)m/2 uniformly with respect to x, ξ and
h, Cα > 0. Sd(m) is called the semiclassical space of symbols of order d and degree m. For a ∈ Sm,d

and u ∈ C∞
0 (R2N ), we set

(Opw(a)u)(x) = (2πh)−N
∫

R2n

eih
−1⟨x−x′,ξ⟩a

(x+ x′

2
, ξ;h

)
u(x′) dx′ dξ. (2.1)

Opw(a) is an unbounded linear operator on L2(RN ) with domain C∞
0 (R2N ), the space of infinitely

differentiable functions on R2N with a compact support. Opw(a) : C∞
0 (R2N ) → C∞(R2N ) is called a

semiclassical pseudodifferential operator (or h-Weyl quantization) with h-Weyl symbol a of order d and
degree m. Different classes of symbols can also be defined, but for our purpose this class is enough. For

example, the h-Weyl symbol of the harmonic oscillator H is the polynomial H(x, ξ) =
N∑
j=1

νj
2 (x2j +ξ

2
j ).

Now, we introduce the space S to be the set of formal series:

S =

{ ∑
α,β∈NN , ℓ∈N

tα,β,lx
αξβhℓ : tα,β,l ∈ C

}
,

where the degree of xαξβhℓ is defined by |α|+|β|+2ℓ, for technical reasons that of h is double-counted.
Let M ∈ N and DM be the finite-dimensional vector space spanned by monomials xαξβhℓ of degree M
and let OM be the subspace of S consisting of formal series, whose coefficients of degree < M vanish,

DM =

{ ∑
α,β∈NN , ℓ∈N; |α|+|β|+2ℓ=M

tα,β,lx
αξβhℓ : tα,β,l ∈ C

}
,

OM =

{ ∑
α,β∈NN , ℓ∈N

tα,β,lx
αξβhℓ : tα,β,l = 0 if |α|+ |β|+ 2ℓ < M

}
.
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Note that (OM )M∈N is a filtration, S = O0 ⊃ O1 ⊃ · · · ,
∩
M∈N

OM = {0}.

Let ⟨f, g⟩W = f̂ ĝ − ĝf̂ be the Weyl bracket on S, where f̂ and ĝ are the h-Weyl quantizations of
symbols f and g, respectively. Precisely,

⟨fT , gT ⟩W = σW (f̂ ĝ − ĝf̂),

where fT and gT are the formal Taylor series at the origin of f and g in S, respectively, and σW
denotes the h-Weyl symbol. Then ⟨ · , · ⟩W is antisymmetric satisfying the Jacobi identity

⟨⟨fT , g⟩W , hT ⟩W +
⟨
⟨hT , fT ⟩W , gT

⟩
W

+
⟨
⟨gT , hT ⟩W , fT

⟩
W

= 0

and the Leibniz identity

⟨fT , gThT ⟩W = ⟨fT , gT ⟩WhT + gT ⟨fT , hT ⟩W .

Thus, the space S equipped with the Weyl bracket is a Lie algebra such that if x = (x1, . . . , xN ) and
ξ = (ξ1, . . . , ξN ) ∈ RN , then

⟨h, xj⟩W = ⟨h, ξj⟩W = 0 and ⟨ξj , xj⟩W = −ih for every j = 1, . . . , N.

The filtration of S has a nice behaviour with respect to the Weyl bracket, if M1 +M2 ≥ 2, f ∈ OM1

and g ∈ OM2 , then h−1⟨f, g⟩W ∈ OM1+M2−2. For any S ∈ S, we define the map adS , called the
adjoint action:

adS : S −→ S
S′ 7−→ adS(S

′) = ⟨S, S′⟩W .

Let us consider the important special case of this concept, which is the adjoint action adS for S ∈ D2

and, especially, adH(x,ξ). Let C[z, z, h] be the C-linear space of polynomials spanned by zαz βhℓ

of degree |α| + |β| + 2ℓ; α, β ∈ NN , ℓ ∈ N, where z = (x1 + iξ1, . . . , xN + iξN ) ∈ CN and z =
(x1 − iξ1, . . . , xN − iξN ) is the complex conjugate of z. Then B = {zαz β : z ∈ CN , α, β ∈ NN} is
a natural basis of C[z, z, h]. We are particularly interested in the adjoint action of elements of the
subspace D2 of S. Such elements are of the form hH0 +H, where H0 ∈ C and H is a quadratic form
in (x, ξ). Furthermore, when H is positive, it can be written as harmonic oscillators in some canonical
coordinates.

The next proposition gives some important properties and results on adH(x,ξ) denoted by adH for

short, where H(x, ξ) =
N∑
j=1

νj
2 (x

2
j + ξ2j ).

Proposition 2.1 ([5, 6]).

(1) ih−1adH(S) = {H(x, ξ), S}, where S ∈ S and {H(x, ξ), S} =
N∑
j=1

∂H
∂ξj

∂S
∂xj

− ∂H
∂xj

∂S
∂ξj

is the classical

Poisson bracket.

(2) adH is diagonal on B, in the sense that adH(zαz β) = h⟨β − α, ν⟩zαz β, α, β ∈ NN .

We say that an element G in D2 is admissible when the algebraic sum ker(adG) + Im(adG) of the
kernel of adG and the image of adG coincides with DM , M ∈ N. A typical example is the harmonic
oscillator H(x, ξ).

Example. H(x, ξ) =
N∑
j=1

νj
2 (x

2
j + ξ2j ) is admissible on DM for all M ∈ N. Indeed, let S ∈ DM , then

S =
∑

α,β∈NN , ℓ∈N; |α|+|β|+2ℓ=M

tα,β,lz
αz βhℓ

=
∑

|α|+|β|+2ℓ=M ; ⟨β−α,ν⟩=0

tα,β,lz
αz βhℓ +

∑
|α|+|β|+2ℓ=M ; ⟨β−α,ν⟩̸=0

tα,β,lz
αz βhℓ,
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where tα,β,l ∈ C and ν = (ν1, . . . , νN ). By using Proposition 2.1, we obtain

⟨β − α, ν⟩ = 0 ⇐⇒ zαz β ∈ ker(adH),

thus ∑
|α|+|β|+2ℓ=M ; ⟨β−α, ν⟩=0

tα,β,lz
αz βhℓ ∈ ker(adH),

⟨β − α, ν⟩ ̸= 0 ⇐⇒ zαz β =
h−1

⟨β − α, ν⟩
adH(zαz β) ⇐⇒ zαz β ∈ Im(adH),

and hence ∑
|α|+|β|+2ℓ=M ; ⟨β−α,ν⟩̸=0

tα,β,lz
αz βhℓ ∈ Im(adH).

The Birkhoff normal form theorem can be expressed as follows.

Theorem 2.1. Let H ∈ D2 be the harmonic oscillator and L ∈ O3. Then there exist S and K in the
subspace O3 such that

eih
−1adS (H + L) = H +K,

where K = K3 + K4 + · · · and Kj ∈ Dj commutes with H : ⟨H,K⟩W = 0. Notice that the sum
eih

−1adS (H +L) =
∑
l

1
l! (

i
h adS)

l(H +L) is convergent on S because i
h adS(OM ) ⊂ OM+1. Moreover,

if L has real coefficients, then S and K can be chosen to have real coefficients, as well.

Proof. We construct S and K by successive approximations. Let M ≥ 1, we show that there exist
SM ∈ O3 and K ∈ O3 such that

eih
−1adSM (H + L) = H +K3 + · · ·+KM+1 +RM+2 +OM+3, (2.2)

where SM = B3 + B4 + · · · + BM+1, Bi ∈ Di, Ki ∈ Di, Ki commutes with H and RM+2 ∈ DM+2.
Indeed, if M = 2, find S2 = B3 ∈ D3 and K3 ∈ D3 which commutes with H and R4 ∈ D4 such that

eih
−1adB2 (H + L) = H +K3 +R4 +O5 = H +K3 +O4, (2.3)

(2.3) ⇐⇒ H + L+ ih−1⟨B3,H + L⟩W + · · · = H +K3 +O4.

As L ∈ O3, then L = L1 + L2 with L1 ∈ D3 and L2 ∈ O4. So,

(2.3) ⇐⇒ H2 + L1 + L2 + ih−1⟨B3,H⟩W + ih−1⟨B3, L⟩W + · · · = H +K3 +O4.

Since H is admissible, it follows that D3 = ker(ih−1adH)⊕Im(ih−1adH) and L1 = L′
1+ih

−1⟨H,L′′
1⟩W ,

where L′
1 ∈ D3 and commutes with H, L′′

1 ∈ D3. Thus, since ih−1⟨B3, L⟩W ∈ O4, we have

(2.3) ⇐⇒ H2 + L′
1 + ih−1⟨H,L′′

1⟩W − ih−1⟨H,B3⟩W +O4 = H +K3 +O4.

So, it suffices to take K3 = L′
1 and S2 = B3 = L′′

1 .
If M = 3, we need to find B4 ∈ D4 and K4 ∈ D4, K4 commutes with H, such that

eih
−1adS3 (H + L) = H +K3 +K4 +O5, (2.4)

where S3 = S2 +B4 = B3 +B4. Using again the fact that H is admissible, we find

(2.4) ⇐⇒ eih
−1adB4 (eih

−1adB3 (H + L)) = H +K3 +K4 +O5

⇐⇒ eih
−1adB4 (H +K3 +R4 +O5) = H +K3 +K4 +O5

⇐⇒ H +K3 +R4 +O5 + ih−1⟨B4,H +K3 +R4 +O5⟩W + · · · = H +K3 +K4 +O5

⇐⇒ R′
4 + ih−1⟨H,R′′

4 ⟩W − ih−1⟨H,B4⟩W +O5 = K4 +O5
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with R4 = R′
4 + ih−1⟨H,R′′

4 ⟩W .
We then take K4 = R′

4 ∈ D4 and B4 = R′′
4 ∈ D4. Assume that the statement (2.2) holds for

some arbitrary natural number M ≥ 1, and prove that (2.2) holds for M + 1. Thus, we want to find
BM+2 ∈ DM+2, where SM+1 = SM +BM+2, and KM+2 ∈ DM+2, KM+2 commutes with H, so that

eih
−1adSM+1 (H + L) = H +K3 + · · ·+KM+1 +KM+2 +OM+3; (2.5)

(2.5) ⇐⇒ eih
−1adBM+2 (eih

−1adSM (H + L)) = H +K3 + · · ·+KM+1 +KM+2 +OM+3

⇐⇒ eih
−1adBM+2 (H +K3 + · · ·+KM+1 +RM+2 +OM+3)

= H +K3 + · · ·+KM+1 +KM+2 +OM+3

⇐⇒ H +K3 + · · ·+KM+1 +RM+2 − ih−1⟨H,BM+2⟩W +OM+3

= H +K3 + · · ·+KM+1 +KM+2 +OM+3

⇐⇒ RM+2 − ih−1⟨H,BM+2⟩W +OM+3 = KM+2 +OM+3

⇐⇒ R′
M+2 + ih−1⟨H,R′′

N+2⟩W − ih−1⟨H,BM+2⟩W +OM+3 = KM+2 +OM+3.

We can therefore take KM+2 = R′
M+2 and BM+2 = R′′

M+2.
Now, if we assume that L and Kj , j ≤ M + 1, have real coefficients, then RM+2 is real, too.

ih−1adH is a real endomorphism on each D4, hence (2.5) can be solved with real coefficients.

Remark 2.1. The Birkhoff normal form theorem remains valid for any element of the subspace D2

of S and in a neighborhood of the origin, via similar canonical transformations defined near 0.

3 Born–Oppenheimer approximation
The Born–Oppenheimer approximation is based on the fact that the mass of the nucleus is much
greater than that of the electron [3]. This principle is exploited in order to approximate the complete
molecular Schrödinger operator by a reduced Hamiltonian, acting on the positions of the nuclei only,
and in which the electrons are involved through the effective electric potential they create only. The
Born–Oppenheimer approximation shows how the electronic motions can be approximately separated
from the nuclear motions. Let us explain the results on the Born Oppenheimer reduction for diatomic
molecules with singular Coulomb-type interactions.

Consider a molecule system composed of two atomic nuclei A and B whose positions are defined
by the vectors xA and xB and one electron of position xe. The nuclei are assumed to be heavy with
a mass of order M ≫ 1 and the electron is light with a mass one. The Hamiltonian of the system is
given by

P = − 1

2M
∂2xA

− 1

2M
∂2xB

− 1

2
∂2xe

+ V (xA − xe) + V (xB − xe) +W (xA − xB),

where V and W represent the Coulomb interactions V (x) = − α
|x| and W (x) = β

|x| ; α and β are real
constants, α > 0, β > 0. P is the sum of kinetic energy of the atomic nuclei − 1

2M ∂2xA
− 1

2M ∂2xB
, kinetic

energy of the electrons − 1
2 ∂

2
xe

, internuclear repulsion W (xA − xB), and electronic-nuclear attraction
V (xA − xe) + V (xB − xe). Removing the center of mass motion of this system and choosing properly
the coordinates, one can correctly describe this approximation. Indeed, we consider the center of a
mass coordinate system

R =
MxA +MxB + xe

2M + 1
, x = xA − xB , y = xe −

xA + xB
2

.

In these coordinates, the Hamiltonian P becomes

P = − 1

2(2M + 1)
∂2R + P,

P = − 1

M
∂2x −

1

2

(
1 +

1

2M

)
∂2y + V

(x
2
− y
)
+ V

(x
2
+ y
)
+W (x).
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If we remove the center of mass motion, the study of P is reduced to that of the operator P on
L2(R6), where the spectrum of P defines the energy levels of the molecule. The Born–Oppenheimer
approximation is a very important method for analyzing this spectrum when M , the mass of nuclei,
tends to infinity. In general, molecular systems of n + p + 1 particles (n + 1 nuclei and p electrons)
in the semiclassical limit, where the mass ratio h2 of electronic to nuclear mass tends to zero, are
described by the many-body Hamiltonians of the type

P = −h2∆x −∆y + V (x, y),

where V is the sum of all interactions between the particles, x ∈ RN , N = 3n, denote the relative
positions of the nuclei, and y ∈ RN ′ , N ′ = 3p, those of the electrons. P is defined on L2(RNx × RN ′

y ),
we denote by Q(x) the electronic Hamiltonian −∆y + V (x, y) on L2(RN ′

y ). Then, one can define the
so-called electronic levels being the discrete eigenvalues λ1(x) < λ2(x) ≤ · · · of the operator Q(x).
Born and Oppenheimer [3] realized that the study of P can be approximately reduced, when h is
small, to the diagonal matrix diag(−h2∆x + λj(x)), j = 1, 2, . . . on

⊕
j

L2(RNx ). In particular, when,

for example, the first simple eigenvalue λ1(x) admits a non-degenerate point well at some energy level
E, the eigenvalues of P near E should admit a complete asymptotic expansion in half-powers of h
(WKB expansions). This principle has been widely used by chemists, but the mathematically rigorous
justifications of this reduction and WKB expansions for eigenfunctions and eigenvalues of a diatomic
molecule are more recent. Such a result was proved for smooth interactions (see, e.g., [4]), it was
generalized later by Belmouhoub and Messirdi to singular Coulombic potentials where they introduced
some x-dependent changes in the y-variables that will regularize the associated eigenfunctions, localize
in a compact region the x-dependent singularities with respect to y in the interactions and construct
a kind of semiclassical pseudodiffcrcntial calculus, adapted to these changes [1].

3.1 Pseudodifferential calculus with operator-valued symbols
In the literature, there exist several versions of operator-valued pseudodifferential calculus, each
adopted to some particular, more or less general, situation. We recall here the constructions made
mainly in [10]. Let Ω be a bounded open subset of RNx , and H, K, L be complex Hilbert spaces.
B(H,K) is the algebra of all continuous linear operators from H into K. We denote by C∞(Ω,Λ) the
set of all infinitely differentiable functions from Ω to Λ = H,K,L. Given ψ ∈ C∞(Ω,R) and V a
neighborhood of 0 in RNx , we set

Ω∗ =
{
(x, ξ) ∈ Ω× CN : ξ − i∇ψ(x) ∈ V

}
.

Pseudodifferential operators can be considered in the following more general context. For m ∈ R,
consider the spaces of formal power series

Sm(Ω,H) =

{ ∞∑
j=0

h−m+j/2sj(x) : sj ∈ C∞(Ω,H)

}
,

e−ψ(x)/hSm(Ω,H) =

{ ∞∑
j=0

h−m+j/2e−ψ(x)/hsj(x) : sj ∈ C∞(Ω,H)

}
,

S0(Ω∗,B(H,K)) =

{ ∞∑
j=0

hjaj(x, ξ) : aj ∈ C∞(Ω∗,B(H,K))

}
.

The operator-valued functions in S0(Ω∗,B(H,K)) are called symbols. For any symbol a = a(x, ξ;h)
in S0(Ω∗,B(H,K)), one can define an operator Op(a) from e−ψ(x)/hSm(Ω,H) into e−ψ(x)/hSm(Ω,K)
by the formula

Op(a)(e−ψ(x)/hs(x, h)) = e−ψ(x)/h
∑
α∈NN

h|α|

i|α|α!
∂αξ a(x, i∇ψ(x);h)∂αy (eχ(x,y)/hs(y, h))y=x,
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χ(x, y) = ψ(y) − ψ(x) − (y − x).∇ψ(x) = O(|x − y|2), s ∈ Sm(Ω,H). Op(a) is called an h-
pseudodifferential the operator with operator-valued symbol a(x, ξ;h) =

∞∑
j=0

hjaj(x, ξ). The function

a0(x, ξ) (coefficient of h0) is called principal symbol of Op(a). Furthermore, such operators verify
eψ(x)/hOp(a)(e−ψ(x)/hs(x, h)) ∈ Sm(Ω,H) and can be composed by using the formula

Op(b) ◦Op(a) = Op(b ♯ a), (3.1)

b ♯ a(x, ξ;h) =
∑
α∈NN

h|α|

i|α|α!
∂αξ b(x, ξ;h)∂

α
x a(x, ξ;h) ∈ S0(Ω∗,B(H,K)).

where a ∈ S0(Ω∗,B(H,K)), b ∈ S0(Ω∗,B(K,L)) and the range of Op(a) is contained in the domain
of Op(b). This formula makes it possible to inverse asymptotically operators Op(a), whose principal
symbol a0(x, ξ) is invertible as a linear operator from H into K.

3.2 Representation of the effective Hamiltonian
Let Ω ⊂ RNx be an open neighborhood of 0 and V ∈ C∞(Ω,B(H2(RN ′

y ), L2(RN ′

y ))) be ∆y-compact:

V (x, y)(−∆y + 1)−1 ∈ C∞(Ω,B(L2(RN
′

y ))). (3.2)

Thus, P is self-adjoint on L2(RNx × RN ′

y ) with domain the Sobolev space H2(RNx × RN ′

y ), as well as
the operator Q(x) is self-adjoint on L2(RN ′

y ) with domain H2(RN ′

y ).
For the sake of simplicity, we take into account only the first electronic level λ1(x) = inf(σ(Q(x))

and call u1(x, y) the first eigenfunction of Q(x) associated to λ1(x) and normalized,
∥u1(x, · · · )∥L2(RN′

y ) = 1 in L2(RN ′

y ) for any x ∈ RN . We also assume that λ1(x) is separated by
a constant gap from the rest of the spectrum σ(Q(x)), i.e.,

inf
x∈RN

(
inf
(
σ(Q(x)) \ {λ1(x)}

))
> 0, (3.3)

and λ1(x) has a unique and non-degenerate minimum at 0:

λ1(x) ≥ 0, λ−1
1 (0) = {0}, λ′1(0) = 0, λ′′1(0) > 0. (3.4)

It can be shown that λ1 ∈ C∞(Ω,R) and u1 ∈ C∞(Ω,H2(RN ′

y )) (cf. [10]). In particular, the assump-
tions (3.2) and (3.3) imply that the orthogonal projection Π(x) on the subspace of L2(RN ′

y ), spanned
by u1(x, · · · ), x ∈ Ω, is C2-regular with respect to x (see [4]). To construct the effective Hamiltonian
of P , the idea here is to use the pseudodifferential calculus with operator-valued symbols developed
previously.

For λ ∈ C, Reλ < inf(σ(Q(x)) \ {λ1(x)}), we consider the Grushin operator

Pλ =

(
P − λ u1
⟨ · , u1⟩y 0

)
acting on L2(RNx ×RN ′

y )⊕L2(RN ′

y ), where ⟨ · , u1⟩y is the inner product in L2(RN ′

y ). It follows from the
assumptions that Pλ = Op(aλ) is an h-pseudodifferential operator in x, from e−ψ(x)/hSm(Ω,H2(RN ′

y ))

into e−ψ(x)/hSm(Ω, L2(RN ′

y )), with the operator-valued symbol aλ,

aλ(x, ξ) =

(
ξ2 +Q(x)− λ u1

⟨ · , u1⟩y 0

)
∈ S0(Ω∗,B(H2(RN

′

y )⊕ C, L2(RN
′

y )⊕ C)),

where ψ(x) is the Agmon distance associated to the metric λ1(x) dx2. We show that Pλ is invertible
and describe a method for finding its inverse. Using the fact that (∇ψ)2(x) = λ1(x) and the gap
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assumption (3.3), one can easily show that for |λ| small enough and ξ close enough to i∇ψ(x),
Re(Π̂(x)Q(x)Π̂(x)− λ) > 0 and thus aλ is invertible with inverse

b0(x, ξ;λ) =

(
Π̂(x)(ξ2 + Π̂(x)Q(x)Π̂(x)− λ)−1Π̂(x) u1

⟨ · , u1⟩y λ− ξ2 − λ1(x)

)
,

where Π̂(x) = 1−Π(x) (see, e.g., [1]). In particular, b0(x, ξ;λ) ∈ S0(Ω∗,B(L2(RN ′

y )⊕C,H2(RN ′

y )⊕C)).
Then using the composition formula (3.2), it is easy to construct a symbol

bλ(x, ξ;h) = b0(x, ξ;λ) + hb1(x, ξ;λ) + h2b2(x, ξ;λ) + · · ·

bλ(x, ξ;h) ∈ S0(Ω∗,B(L2(RN
′

y )⊕ C,H2(RN
′

y )⊕ C)),

such that aλ ♯ bλ(x, ξ;h) = 1 and Op(aλ) ◦ Op(bλ) = I, where I is the identity operator on
e−ψ(x)/hSm(Ω, L2(RN ′

y )⊕ C). Let us pose

Op(bλ) =

(
E(λ) E+(λ)
E−(λ) E∓(λ)

)
.

By Lemma 3.1 in [1], we know that E∓(λ) = Op(eλ(x, ξ;λ)) is h-pseudodifferential operator with the
symbol eλ(x, ξ;λ) ∈ S0(Ω∗,C) and its principal symbol is e0(x, ξ;λ) = λ− ξ2 − λ1(x). In particular,
λ − E∓(λ) is a scalar h-pseudodifferential operator with the principal symbol ξ2 + λ1(x). Moreover,
we have the following fundamental spectral reduction:

λ ∈ σ(P ) ⇐⇒ λ ∈ σ(λ− E∓(λ)).

Hence, the spectral study of the Hamiltonian P on L2(RNx × RN ′

y ) is reduced to that of the h-
pseudodifferential operator λ − E∓(λ) on L2(RNx ), the so-called effective Hamiltonian of P . In fact,
one can show in many situations that λ − E∓(λ) = Pe + O(h2), which makes it easy to compare
(using, for example, the maximum principle) the eigenvalues of P and those of Pe = −h2∆x + λ1(x),
and then identify them when h decays to zero fast enough [4]. In the next section, this reduction will
justify our definition of the normal Birkhoff forms for P as those of the effective Hamiltonian Pe.

4 The Birkhoff normal forms for the Born–Oppenheimer
Hamiltonian and resonances

In the previous section, it has been established that the Born–Oppenheimer Hamiltonian P can be
reduced to the effective Hamiltonian Pe = −h2∆x + λ1(x) on L2(RNx ), modulo O(h2). Thus, it is
natural to define the Birkhoff normal forms of P as those of Pe modulo O(h2).

Definition 4.1. We call normal forms of the Born–Oppenheimer Hamiltonian P the Birkhoff normal
forms of the associated effective Hamiltonian Pe when the semiclassical parameter h tends to zero.

Assumption (3.4) implies that λ1(x) ∈ O3, and since H+λ1(x) ∈ D2, one can obtain the quantum
Birkhoff normal forms for Pe as a direct consequence of the Birkhoff normal form theorem (Theorem
2.1), when the potential energy operator V (x) = λ1(x) is regular and the Hessian matrix λ′′1(0)
is diagonal with the eigenvalues (ν21 , . . . , ν

2
N ), νj > 0. The complicated behavior of the dynamics

and spectrum of a molecular system happens under a resonance. In this case, to decide wether the
Hamiltonian has resonance frequencies or not, we need the following definitions.

Definition 4.2. The frequencies vector ν = (ν1, . . . , νN ) is non-resonant if k · ν =
N∑
j=1

kjνj ̸= 0 for all

k ∈ ZN \{0}. ν is resonant if ν1, . . . , νN are dependent over Z, i.e., there exist integers k1, . . . , kN ∈ Z,

not all zero, such that k1ν1 + · · · + kNνN = 0. The number r =
N∑
j=1

|kj | is called the degree of

resonance of Pe. In the particular resonant case, where νj = νckj for every j = 1, . . . , N , with νc > 0
and k1, . . . , kN ∈ N, the frequencies vector ν is said to be completely resonant.
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For a theoretical definition of resonances, the interested reader may consult the excellent paper [10].
As an application we study the dynamics near a local extremum of the effective Hamiltonian, for

which the frequencies are in 1 : 1 Darling–Dennison resonance (νj , νj). This is a well-known effect
in the overtone spectroscopy of molecules such as water molecule H2O, acetylene C2H2, methyli-
dynephosphane (phosphaethyne) HCP, . . . .

In what follows, we explicitly give the computations of Birkhoff normal forms in the 1 : 1 resonance
for P , therefore, for the effective Hamiltonian Pe of P , the situation which can be encountered in
physical models, like small molecules. So, all the following computations are valid modulo O(h2).

Consider the semiclassical harmonic oscillator with the resonant frequencies vector ν = (1, 1):

H =
1

2

(
− h2

∂2

∂x21
+ x21

)
+

1

2

(
− h2

∂2

∂x22
+ x22

)
and the symbol H(z1, z2) =

1
2 |z1|

2 + 1
2 |z2|

2, where zj = xj + iξj , j = 1, 2.
To find a Birkhoff normal form for P , we construct a formal series K3 in D3 such that ⟨H2,K3⟩W =

0. Thus, K3 =
∑

α,β∈N2, 2ℓ+|α|+|β|=3

hℓzαz β and we should verify the resonance relation ⟨ν, β − α⟩ = 0.

Let α = (α1, α2), β = (β1, β2) ∈ N2,

⟨ν, β − α⟩ = 0 ⇐⇒ β1 − α1 + β2 − α2 = 0 ⇐⇒ α1 + α2 = β1 + β2. (4.1)

We then look for all monomials of order 3 of type zα1
1 zα2

2 z β1

1 z β2

2 satisfying the resonance relation (4.1).
The system {

α1 + α2 + β1 + β2 = 3,

α1 + α2 = β1 + β2

does not admit solutions in N. Thus, there is no monomial in D3 verifying |α| + |β| = 3 and the
resonance relation (4.1), K3 = 0, but one can calculate K4 ∈ D4. The couples α = (α1, α2) ∈ N2 and
β = (β1, β2) ∈ N2 which verify the system α1 + α2 + β1 + β2 = 4 and α1 + α2 = β1 + β2, are

α = β = (1, 1); α = β = (2, 0); α = β = (0, 2);

α = (2, 0) and β = (0, 2); α(0, 2) and β = (2, 0).

Therefore, K4 is generated by the monomials |z1|4; |z2|4; |z1|2|z2|2; z21z 2
2 ; z 2

1 z
2
2 and h2. Since K4 is

real, we have

K4 = a1|z1|4 + a2|z2|4 + a3|z1|2|z2|2 + a4 Re(z21 z 2
2 ) +O(h2); a1, a2, a3, a4 ∈ R.

We can use Taylor series for λ1(x) to determine the coefficients a1, a2, a3 and a4. Remember that
Pe = H + λ

(3)
1 (x) + λ

(4)
1 (x) + · · · ,

λ
(3)
1 (x) =

1

12
√
2

∂3λ1
∂x31

(0)x31 +
1

4
√
2

∂3λ1
∂x21∂x2

(0)x21x2 +
1

4
√
2

∂3λ1
∂x1∂x22

(0)x1x
2
2 +

1

12
√
2

∂3λ1
∂x32

(0)x32.

By setting yj = 1√
2
(zj + zj), j = 1, 2, and after a long but straightforward calculation, we can

determine all monomials that are in K4,

− 5

48

[(∂3λ1
∂x31

(0)
)2

+
( ∂3λ1
∂x21∂x2

(0)
)2]

|z1|4 −
5

48

[(∂3λ1
∂x32

(0)
)2

+
( ∂3λ1
∂x1∂x22

(0)
)2]

|z2|4

+
1

8

[
∂3λ1
∂x31

(0)
∂3λ1
∂x21∂x2

(0) +
∂3λ1
∂x32

(0)
∂3λ1
∂x22∂x1

(0)

+
∂3λ1
∂x31

(0)
∂3λ1
∂x22∂x1

(0) +
∂3λ1
∂x32

(0)
∂3λ1
∂x21∂x2

(0)

]
|z1|2|z2|2

+
1

6

[(( ∂3λ1
∂x21∂x2

(0)
)2

+
( ∂3λ1
∂x22∂x1

(0)
)2)]

|z1|2|z2|2
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− 1

192

[
∂3λ1
∂x31

(0)
∂3λ1
∂x21∂x2

(0) +
∂3λ1
∂x32

(0)
∂3λ1
∂x1∂x22

(0)

+
∂3λ1
∂x31

(0)
∂3λ1
∂x1∂x22

(0) +
∂3λ1
∂x32

(0)
∂3λ1
∂x21∂x2

(0)

]
Re(z21z 2

2 ).

The fourth degree Taylor polynomial for λ1(x) at 0 is given by

λ
(4)
1 (x1, x2) =

1

4!

∂4λ1
∂x41

(0)x41 +
1

4!

∂4λ1
∂x42

(0)x42 +
1

6

∂4λ1
∂x31∂x2

(0)x31x2

+
1

6

∂4λ1
∂x1∂x32

(0)x1x
3
2 +

1

4

∂4λ1
∂x21∂x

2
2

(0)x21x
2
2.

It is easy to see that only 1
4!
∂4λ1

∂x4
1
(0)x41, 1

4
∂4λ1

∂x2
1∂x

2
2
(0)x21x

2
2 and 1

4!
∂4λ1

∂x4
2
(0)x42 contain the terms of K4,

the remainder terms are absorbed by the rest of the Taylor series

y41 =
1

4
(z1 + z1)

4 =
1

4

(
z41 + 4z21 |z1|2 + 6|z1|4︸ ︷︷ ︸

∈K4

+4z 2
1 |z1|2 + z 4

1

)
,

y42 =
1

4
(z2 + z2)

4 =
1

4

(
z42 + 4z22 |z2|2 + 6|z2|4︸ ︷︷ ︸

∈K4

+4z 2
2 |z2|2 + z 4

2

)
,

y21y
2
2 =

1

4
(z1 + z1)

2(z2 + z2)
2 =

1

4
z21z

2
2 +

1

4
z21z

2
2︸︷︷︸

∈K4

+
1

2
z 2
1 |z2|2

+
1

4
z 2
1 z

2
2︸︷︷︸

∈K4

+
1

4
z 2
1 z

2
2 +

1

2
z 2
1 |z2|2 +

1

2
z22 |z1|2 +

1

2
|z1|2z 2

2 + |z1|2|z2|2︸ ︷︷ ︸
∈K4

.

Therefore,

a1 =
1

16

∂4λ1
∂x41

(0)− 5

48

[(∂3λ1
∂x31

(0)
)2

+
( ∂3λ1
∂x21∂x2

(0)
)2]

, (4.2)

a2 =
1

16

∂4λ1
∂x42

(0)− 5

48

[(∂3λ1
∂x32

(0)
)2

+
( ∂3λ1
∂x1∂x22

(0)
)2]

,

a3 =
1

4

∂4λ1
∂x21∂x

2
2

(0) +
1

8

[(∂3λ1
∂x31

(0)
∂3λ1
∂x21∂x2

(0) +
∂3λ1
∂x32

(0)
∂3λ1
∂x22∂x1

(0)
)

+
(∂3λ1
∂x31

(0)
∂3λ1
∂x22∂x1

(0) +
∂3λ1
∂x32

(0)
∂3λ1
∂x21∂x2

(0)
)]

+
1

6

[(( ∂3λ1
∂x21∂x2

(0)
)2

+
( ∂3λ1
∂x22∂x1

(0)
)2)]

,

a4 =
1

8

∂4λ1
∂x21∂x

2
2

(0)− 1

192

[
∂3λ1
∂x31

(0)
∂3λ1
∂x21∂x2

(0) +
∂3λ1
∂x32

(0)
∂3λ1
∂x1∂x22

(0)

+
∂3λ1
∂x31

(0)
∂3λ1
∂x1∂x22

(0) +
∂3λ1
∂x32

(0)
∂3λ1
∂x21∂x2

(0)

]
.

The Weyl quantization Opw(K4) of K4 is given by

Opw(K4) = a1Opw
(
|z1|4

)
+ a2Opw

(
|z2|4

)
+ a3Opw

(
|z1|2|z2|2

)
+ a4Opw

(
Re(z21z 2

2 )
)
+O(h2).

Furthermore,

|z1|4 = x41 + ξ41 + 2x21ξ
2
1 ,

|z2|4 = x42 + ξ42 + 2x22ξ
2
2 ,

|z1|2|z2|2 = x21x
2
2 + x21ξ

2
2 + x22ξ

2
1 + ξ21ξ

2
2 ,
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Re(z21z 2
2 ) = x21x

2
2 − x21ξ

2
2 − x22ξ

2
1 + ξ21ξ

2
2 + 4x1x2ξ1ξ2,

then the Weyl quantization of every monomial gives

Opw
(
|z1|4

)
= x41 + h4

∂4

∂x41
− h2

[
2x21

∂2

∂x21
+ 1
]
,

Opw
(
|z2|4

)
= x42 + h4

∂4

∂x42
− h2

[
2x22

∂2

∂x22
+ 1
]
,

Opw
(
|z1|2|z2|2

)
= x21x

2
2 − h2

[
x21

∂2

∂x22
+ x22

∂2

∂x21
− h2

∂4

∂x21∂x
2
2

]
,

Opw(Re(z21z 2
2 )) = x21x

2
2 − h2

[
− x21

∂2

∂x22
− x22

∂2

∂x21
− h2

∂4

∂x21∂x
2
2

+ 2x1x2
∂2

∂x1∂x2
+ 2
]
.

Finally, we obtain the following Birkhoff normal form in the 1 : 1 resonance of the Hamiltonian P
with the electronic energy level λ1(x):

H +Opw(K4) =
1

2

(
− h2

∂2

∂x21
+ x21

)
+

1

2

(
− h2

∂2

∂x22
+ x22

)
+ a1

[
x41 + ~4

∂4

∂x41
− h2

(
x21

∂2

∂x21
+ 2
)]

+ a2

[
x42 + h4

∂4

∂x42
− h2

(
x22

∂2

∂x22
+ 2
)]

+ a3

[
x21x

2
2 − h2

(
x21

∂2

∂x22
+ x22

∂2

∂x21
− h2

∂4

∂x21∂x
2
2

)]
+ a4

[
x21x

2
2 + h2x21

∂2

∂x22
+ h2x22

∂2

∂x21
+ h4

∂4

∂x21∂x
2
2

− 4h2x1x2
∂2

∂x1∂x2
+ 2h2x1

∂

∂x1
+ 2h2x2

∂

∂x2

]
+O(h2).

Remark 4.1. To study just a small neighborhood of some fixed energy level, it suffices to take the
first electronic level λ1(x) of Q(x). However, in order to study a larger range of energy, we shall as well
treat the case of several electronic levels λ1(x), . . . , λN (x) (N arbitrary), and assume that there exists
a gap between them and the rest of the spectrum of Q(x). In such a case, the effective Hamiltonian is
an N ×N matrix of pseudodifferential operators; does this general situation lead to the same Birkhoff
normal form theorem? We hope to investigate this interesting question in a future work.

5 Numerical results for the 1 : 1 resonance
The 1 : 1 symbol H(x, ξ) = 1

2 (x
2
1 + ξ21) +

1
2 (x

2
2 + ξ22), x = (x1, x2), ξ = (ξ1, ξ2), of the harmonic

oscillator is defined by using the Maple notation as follows:

| let H =Maple. to−poly ”0.5 ∗ x[1]^2+0.5 ∗ xi[1]^2+0.5 ∗ x[2]^2+0.5 ∗ xi[2]^2”;;

H is converted in the complex coordinates to H(z1, z2) =
1
2 |z1|

2+ 1
2 |z2|

2, zj = 1√
2
(xj + iξj), j = 1, 2.

In order to deal with harmonic oscillators in real variables (xj , ξj), we need to use the new variables
x′j =

1√
2
(xj + iξj), ξ′j = 1√

2
(xj − iξj), j = 1, 2. The harmonic oscillator has now the required form

H = x′1ξ
′
1 + x′2ξ

′
2.

| let Hz = coordz H;;
| Maple. of−poly Hz;;
| − : string = ”1 ∗ x[1]^1 ∗ xi[1]^1+1 ∗ x[2]^1 ∗ xi[2]^1”
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We add now a simple perturbation λ1(x1, x2) = x21x
2
2, which we convert to complex coordinates:

| let λ1 = Maple.to−poly ”x[1]^2 ∗ x[2]^2”;;
| let λ1z = coordz λ1;;
| Maple.of−poly vz;;
| − : string =

| ”1.0606601810596428 ∗ x[2]^1 ∗ xi[2]^2+0.3535533936865476 ∗ x[2]^3+
| 1.0606601810596428 ∗ x[2]^2 ∗ xi[2]^1+0.3535533936865476 ∗ xi[2]^3”

Thus, in the complex coordinates (x′j , ξ
′
j) we have

λ1 = x21x
2
2 = 0, 25x′21 x

′2
2 + 0, 5x′21 x

′
2ξ

′
2 + 0, 25x′21 ξ

′2
2 + 0, 5x′1x

′2
2 ξ

′
1

+ x′1x
′
2ξ

′
1ξ

′
2 + 0, 5x′1ξ

′
1ξ

′2
2 + 0, 25x′22 ξ

′2
1 + 0, 5x′2ξ

′2
1 ξ

′
2 + 0, 25 ξ′21 ξ

′2
2 .

We consider now the Hamiltonian Pe = H + λ1:

| let Hz = Weyl . add Hz vz;;

Define the frequency vector [1; 1] and apply Birkhoff procedure at order 4:

| let freq = [ | one; of−int 1 | ]; ;
| let kz = birkhoff freq hz 4;;

Then we get the normalized Hamiltonian kz, which we convert in the real coordinates and print the
result:

| let k = coordx kz;;
| Maple. of−poly k;;
| − : string =

| ”0.5 ∗ x[1]^2+0.5 ∗ xi[1]^2+0.5 ∗ x[2]^2+0,5 ∗ xi[2]^2+1,5 ∗ x[1]^2 ∗ x[2]^2
| +0,5 ∗ x[1]^2 ∗ xi[2]^2+0,5 ∗ x[2]^2 ∗ xi[1]^2+1,5 ∗ xi[1]^2 ∗ xi[2]^2
| +2 ∗ x[1] ∗ x[2] ∗ xi[1] ∗ xi[2]

We see from formula (4.2) that a1 = a2 = 0, a3 = 1
4

∂4λ1

∂x2
1∂x

2
2
(0) = 1 and a4 = 1

8
∂4λ1

∂x2
1∂x

2
2
(0) = 1

2 . Hence,

K4 = a3|z1|2|z2|2 + a4 Re(z21z2 2) +O(h2)

= x21x
2
2 + x21ξ

2
2 + x22ξ

2
1 + ξ21ξ

2
2 +

1

2

(
x21x

2
2 − x21ξ

2
2 − x22ξ

2
1 + ξ21ξ

2
2 + 4x1x2ξ1ξ2

)
+O(h2)

=
3

2
x21x

2
2 +

1

2
x21ξ

2
2 +

1

2
x22ξ

2
1 +

3

2
ξ21ξ

2
2 + 2x1x2ξ1ξ2 +O(h2)

and

H +K4 =
1

2
x21 +

1

2
ξ21 +

1

2
x22 +

1

2
ξ22 +

3

2
x21x

2
2 +

1

2
x21ξ

2
2 +

1

2
x22ξ

2
1 +

3

2
ξ21ξ

2
2 + 2x1x2ξ1ξ2 +O(h2).

These results are qualitatively identical to those obtained above over a Maple module, the Birkhoff
module and the normal form algorithm.

Acknowledgments
The authors would like to thank the referee for the valuable comments which helped to improve the
manuscript.

This research was supported by Laboratory of Fundamental and Applicable Mathematics of Oran
(LMFAO).



Theoretical and Numerical Results on Birkhoff Normal Forms and Resonances 97

References
[1] S. Belmouhoub and B. Messirdi, Singular Schrödinger operators via Grushin problem method.

An. Univ. Oradea Fasc. Mat. 24 (2017), no. 1, 83–91.
[2] G. D. Birkhoff, Dynamical Systems. American Mathematical Society Colloquium Publications,

Vol. IX American Mathematical Society, Providence, R.I. 1927.
[3] M. Born and R. Oppenheimer, Zur Quantentheorie der Molekeln. (German) Annalen d. Physik

84 (1927), 457–484.
[4] J. M. Combes, P. Duclos and R. Seiler, The Born–Oppenheimer Approximation. In Rigorous

Atomic and Molecular Physics, pp. 185–213, Springer, Boston, MA, 1981.
[5] K. Ghomari and B. Messirdi, Hamiltonians spectrum in Fermi resonance via the Birkhoff–

Gustavson normal form. Int. J. Contemp. Math. Sci. 4 (2009), no. 33-36, 1701–1707.
[6] K. Ghomari and B. Messirdi, Quantum Birkhoff–Gustavson normal form in some completely

resonant cases. J. Math. Anal. Appl. 378 (2011), no. 1, 306–313.
[7] K. Ghomari, B. Messirdi and S. Vũ Ngọc, Asymptotic analysis for Schrödinger Hamiltonians via

Birkhoff–Gustavson normal form. Asymptot. Anal. 85 (2013), no. 1-2, 1–28.
[8] F. G. Gustavson, On constructing formal integrals of a Hamiltonian system near an equilibrium

point. Astrophys. J. 71 (1966), no. 8, 670–686.
[9] N. Latigui, B. Messirdi and K. Ghomari, Birkhoff normal forms for Born–Oppenheimer operators.

Int. J. Anal. Appl. 18 (2020), no. 2, 183–193.
[10] B. Messirdi, Asymptotique de Born–Oppenheimer pour la prédissociation moléculaire (cas de

potentiels réguliers). (French) [Born-Oppenheimer asymptotics for molecular predissociation (case
of regular potentials)] Ann. Inst. H. Poincaré Phys. Théor. 61 (1994), no. 3, 255–292.

[11] B. Messirdi and A. Senoussaoui, Méthode BKW formelle et spectre des molécules polyatomiques
dans l’approximation de Born-–Oppenheimer. Can. J. Phys. 79 (2001), no. 4, 757–771.

[12] B. Messirdi, A. Senoussaoui and G. Djellouli, Resonances of polyatomic molecules in the Born–
Oppenheimer approximation. J. Math. Phys. 46 (2005), no. 10, 103506, 14 pp.

(Received 25.12.2020)

Authors’ addresses:

Nawel Latigui
1. Department of Mathematics, University of Oran1 Ahmed Ben Bella, Algeria.
2. Laboratory of Fundamental and Applicable Mathematics of Oran (LMFAO).
E-mail: nawelatigui@gmail.com

Kaoutar Ghomari
National Polytechnic School of Oran, Maurice Audin, Algeria.Laboratory of Fundamental and

Applicable Mathematics of Oran (LMFAO).
E-mail: kaoutar.ghomari@enp-oran.dz

Bekkai Messirdi
Laboratory of Fundamental and Applicable Mathematics of Oran (LMFAO).
E-mails: bmessirdi@yahoo.fr, messirdi.bekkai@univ-oran1.dz


