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A FAMILY OF PLANAR DIFFERENTIAL SYSTEMS
WITH EXPLICIT EXPRESSION FOR ALGEBRAIC
AND NON-ALGEBRAIC LIMIT CYCLES



Abstract. This paper is devoted to the study of a family of planar polynomial differential systems.
First, we prove that the considered family has invariant algebraic curves which are given explicitly.
Then, we introduce an explicit expression for their first integral. Moreover, we provide sufficient
conditions for the systems to possess two limit cycles explicitly given: one is an algebraic and the other
is shown to be non-algebraic. The applicability of our result was illustrated by concrete examples.
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1 Introduction

One of the main problems in the qualitative theory of differential equations is the study of limit cycles
of planar differential systems and especially of the planar polynomial differential systems of the form

a' = dj = P(amy),

dt (1.1)
y = W _ Q(z,y)

dt 9y )

where P(z,y) and Q(z,y) are real polynomials in the variables z and y. The degree of the system is
the maximum of the degrees of the polynomials P and Q.
Recall that:

o A limit cycle of system (1.1) is an isolated periodic orbit in the set of its periodic orbits and is
said to be algebraic if it is contained in the zero set of an invariant algebraic curve of the system.

o An algebraic curve defined by U(z,y) = 0 is an invariant curve for (1.1) if there exists a
polynomial K (x,y) (called the cofactor) such that

oU(z,y)
ox

+ Q(ﬂc,y)M = K(z,y)U(x,y).

P(z,y) oy

« System (1.1) is integrable on an open set 2 of R? if there exists a non-constant analytic function
H: Q — R, called a first integral, such that

dH (z,y)
a P(z,y)

OH (z,y)
ox

0H (z,y)

By 0.

+ Q(z,y)

Among the important and attractive problems in the qualitative theory of differential equations
[8,14] is the study of limit cycles of system (1.1) related to the Hilbert’s 16th problem [11]; several
works and papers in this field investigate their number, stability and location in the phase plane [1,12].

The notion of integrability of (1.1) is based on the existence of a first integral [5,16]. There is
a strong relationship between the integrability of polynomial systems and the number of invariant
algebraic curves they have [7], and questions about the existence of a first integral, determining its
expression explicitly, when it exists, are always presents.

The results and examples [24,9,10] about algebraic and non-algebraic limit cycle are given, but
it is not easy work to decide whether a limit cycle is algebraic or not. Thus, the well-known limit
cycle of the van der Pol differential system exhibited in 1926 (see [15]), was not proved until 1995
by Odani [13] that it was non-algebraic. An invariant algebraic curve is a principal topic for several
authors and researchers because of its importance in understanding the dynamics of a system (we
refer to [6] for an exhaustive survey on this topic).

In this paper, we give an explicit expression of invariant algebraic curves, then we prove that these
systems are integrable, and we introduce an explicit expression of a first integral of a multi-parameter
planar polynomial differential system of thirteenth degree of the form

,_dm_ 2 2\2 2 2
= = v+ @+ (Ps(w,y) — o(e® + 9%’ Ra(w, 1)), 12)

y' = % =y+ (@ + ) (Qs(z,y) — y(2® + y*)’ Ra(,y)),

T

where
Py(z,y) = ax® + b’y + cay® — dy?,
Qs(z,y) = ax’y + da® + (b+ 2d)zy® + i,
Ry(z,y) = (a + 1)a” + (b+ d)ay + (¢ + 1)y?,
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in which a, b, ¢, d are the real constants.

Moreover, we provide sufficient conditions for a polynomial differential system to possess two limit
cycles explicitly given: one is algebraic and the other is shown to be non-algebraic. Concrete examples
exhibiting the applicability of our result are introduced.

We define the trigonometric functions

a—+c a—c

b+d
cos 260 + + sin 26,

t

40) - /G‘jf” o ([ )

Our main result is contained in the following theorem.
Theorem 1.1. For system (1.2), the following statements hold.

(1) If d # 0, then the origin of coordinates O(0,0) is the unique critical point of system (1.2) at a
finite distance.

(2) The curve U(x,y) = 25+ 3aty? + 3 2%y* +y5 — 1 is an invariant algebraic curve of system (1.2)
with a cofactor

K(e,y) = =6(a® + ) (1+ (22 + )% ((a + Da® + (b + d)ay + (e + 1)y?) ).

(3) System (1.2) has the first integral

Hir.y) = (1 — (2 +y*)?)A(arctan £) + B(arctan £)
ny)= (22 + y2)3 — 1 :

(4) System (1.2) has an explicit limit cycle, given in Cartesian coordinates by
(Ty) : 2% +32%% +32%y* +4° —1=0.

(5) Ifd< 0, —=2—(a+c)>|b+d|+|c—a|l and4d+a+c > |b+d|+ |c— al, then system (1.2) has
non-algebraic limit cycle (I's), explicitly given in the polar coordinates (r,0) by

r(0,7.) = <<B(9) +A0)(B(2r) — 1) + A(%))é
o AB)(B(27) — 1) + A(27)

Moreover, the algebraic limit cycle (') lies inside the non-algebraic limit cycle (Ts).

2 Proof of Theorem 1.1

Proof of Statement (1). By definition, A(xq,yo) € R? is a critical point of system (1.2) if

zo + (23 + y3) (P3(wo, yo) — zo(d + y3)*Ra(x0,y0)) =0,

yo + (23 + 13) (Q3(z0, yo) — yo(23 + y3)*Ra (w0, 10)) = 0,
and we have

(28 + ¥3)? (Yo Ps (0, o) — 0Q3(w0,Y0)) = —d(x0® + yo?)™.

Since d # 0, we have that (xg,y0) = (0,0) is the unique solution of this equation. Thus the origin is
the unique critical point at a finite distance.
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This completes the proof of Statement (1) of Theorem 1.1.
Proof of Statement (2). A computation shows that
Uz,y) =25 +32ty? + 327y + 45 - 1
satisfies the linear partial differential equation

oU (x,y)
o P(z,y) +

the associated cofactor being
K(z,y) = —6(z* + y*)* (1 + (@ + 9y ((a+ 12 + (b + d)zy + (c + 1)y2)).

This completes the proof of Statement (2) of Theorem 1.1.

Proof of Statement (3). To prove Statement (3), we need to convert system (1.2) in polar coordinates
(r,0) given by & =rcosf and y = rsinf, then system (1.2) takes the form

r = % =r+GO)r" + (—G(H) — 1)r'3,
, b (2.1)

Y _ s
a Y

Taking 6 as an independent variable, we obtain the equation

ar 1 5 GO) GO -1 -
a0 a" tTg "t " (2.2)

Using the change of variables p = 75, equation (2.2) is transformed into the Riccati equation

dp _ 6 6G()  ~6GO)-6 ,

a0 dta "’ d

This equation is integrable, since it possesses the particular solution p = 1.
By introducing the standard change of variables z = p — 1, we obtain the Bernoulli equation
dz —6-6G(#) , —12—-6G(0)

0 pi z°+ 7 z. (2.4)

We note that z = 0 is the solution for (2.4), and by introducing the standard change of variables
Yy = %, we obtain the linear equation

dy  6+6G(6) 12+6G(6) 25)
o~ d d '

The general solution of linear equation (2.5) is

y<0>—“;(‘2)("),

where @ € R. Then the general solution of equation (2.4) is

z(0) =0, z(0)= af(j)(ﬁ)’ where a € R.

The general solution of equation (2.3) is

a+ A(0) + B(0)

h R.
a+A(9) , where o €

p(0) =1, p(0) =
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Consequently, the general solution of (2.2) is

a+ A(9) + B(9)
a+ A(9)

r(@)=1, r(0) = ( )%, where a € R.

From this solution we obtain a first integral in the variables (z,y) of the form

(1 — (2 +y?)*)A(arctan ¥) + B(arctan £)

H =
Hence, Statement (3) of Theorem 1.1 is proved.

Proof of Statement (4). The curves H = h with h € R, which are formed by trajectories of the
differential system (1.2), in Cartesian coordinates are written as
a+ A(f) + B(9)

a+ A(9) ’

$2+y2:1, (x2+y2)3:

where o € R.

Notice that system (1.2) has a periodic orbit if and only if equation (2.2) has a strictly positive
2m-periodic solution. This, moreover, is equivalent to the existence of a solution of (2.2) that fulfils
r(0,7r.) = r(2m,r.) and r(6,r.) > 0 for any ¢ in [0, 27].

The solution r(8,ry) of the differential equation (2.2) such that r(0,rg) = rq is

oo +AW) + BO)\ ¢
7"(9,7“0) = ( ,,,8%14_14(9) ) ’

where 7o = r(0).

We have the particular solution p(f) = 1 of the differential equation (2.3); from this solution we
obtain 7%(f) = 1 > 0 for all § in [0, 27|, which is a particular solution of the differential equation (2.2).

This is an algebraic limit cycle for the differential systems (1.2), corresponding, of course, to an
invariant algebraic curve U(z,y) = 0.

More precisely, in Cartesian coordinates r? = 224 y? and 6 = arctan(¥) the curve (I';) defined by
this limit cycle is (I'1) : 25 + 324y + 32%y* +9° — 1 = 0.

Hence, Statement (4) of Theorem 1.1 is proved.

Proof of Statement (5). A periodic solution of system (1.2) must satisfy the condition r(0,7.) =
r(2m,r.), which leads to a unique value 7o = r, given by

o <A(27r) Z(ZSW) - 1)7

The value r, is the intersection of the periodic orbit with the O X axis. After the substitution of this
value 7, into r(6,ry), we obtain

r(0.7.) = <(B(9)—|—A(9))(B(2ﬂ') -1) +A(27T)>é
o A(0)(B2m) — 1)+ A(27) '

In what follows, it is proved that (6, 7,.) > 0. Indeed,

2w t

6+ 6G(t —-12 - 6G
A(2m) — A(9) = /‘LTU exp (/d(w) dw) dt.
0 0
According tod < 0, =2 — (a+c¢) > |b+d| + |c—a] and4+a+c>|b+d|+|cfa|,henceﬂfTG(0)

and id(e) > 0 for all # in [0, 27], then we have A(27) — A(f) > 0 and B(27) > 1; therefore, we have
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r« > 0 and r(0,7.) > 0 for all § in [0,2x]. This is the second limit cycle for the differential system
(1.2), we denote it by (I'2). This limit cycle is not algebraic, due to the expression

0
-1
) = exp (/ 2= 6G dw).
0

More precisely, in the Cartesian coordinates 72 = 2% + 32 and 6 = arctan(¥), the curve defined by
this limit cycle (I'z) is F'(z,y) = 0, where

Fla.y) = (2% + ) — (B(arctan £) + A(arctan £))(B(27) — 1) + A(27r).
A(arctan 2)(B(2m) — 1) + A(27)
If the limit cycle is algebraic, this curve should be given by a polynomial, but a polynomial F'(z,y)
in the variables x and y satisfies that there is a positive integer n such that anFi(f’y) = 0, but this is
not the case, therefore, the curve (I'y) : F(x,y) = 0 is non-algebraic and the limit cycle will also be
non-algebraic.
According tod <0, =2 —(a+¢) > |b+d|+|c—aland 4 +a+c> |b+d| + |c — a|, we get

B(2m) -1

re=(1+ A(27)

and

r(6,7.) = (1 + %)é 1,

We conclude that system (1.2) has two limit cycles, the algebraic (I';) lies inside the non-algebraic

one (T'g).
This completes the proof of Statement (5) of Theorem 1.1.

3 Examples

Example 3.1. We take a = ¢ = —g ,d=—-5and b= % , then system (1.2) reads as

1 1
x’:x+(x2+y2)2( 6x3+5—x y— ny2+5y3) (x +y2)5< 2+—xy77y2),
5 10 5 ) 10 5 (3.1)
y':y+(ﬂc2+y2)2( 8 a2y—5at— 2 gy —gy) y(x2+y2)5(—lz2+ixy—ly2)
) 10 5 ) 10 ) ’

In this case, we get

6
3 3 24 3
S (2t) ( S 2 20)
o/sm Hexw (355 + 55 ¢~ 700 529
0

3 3
B(0) = exp ( ~ 100 cos(20) + % 9 + 100)

O’!

The intersection of the non-algebraic limit cycle (I'y) with the OX, axis is the point

(116 8+ exp(£r) —1
Ty =

1
6
s ) ~ 1.2876.
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Example 3.2. We take a = =i c=

In this case, we get

B(6) = exp (

R il
S a w a e e |
g
LSS

PP S S A

Figure 3.1. Limit cycles of system (3.1).

T 100 5 d= 7andb—%,then system (1.2) reads as
x’:x+(x2+y2)<1gl 3+% yfﬁ y+7y)
_x@?+ff( iﬂ:+ﬁiy_§ﬁ> 62)
M=y+@3+ff(—%%ﬁy—hﬁ—%?wf—ggf) |
—Mﬁ+ffﬂﬁ%ﬁ+%jy—%y>

0
3 3 3 3 3
A(0) = ——— [ (cos(2t) + sin(2t) — 5) ex (——i——sm2t——cos2t+ )dt,
() 140/(() (2) = 5) exp (555 + 555 $1(20) ~ 555 o520 + 7
0
5 in(20) (26) + o2,

— —— sin ——cos —

280 280 280
N VA VA S A RV
N T T T A A Eal e e
R T T T e g e
N
NN
NNy~
\"\m\?/d “
At L
NS
~n 4t =
EULIR § -

LA RALY

Figure 3.2. Limit cycles of system (3.2).

The intersection of the non-algebraic (I's) limit cycle with the OX . axis is the point

16.509 + exp(2F) — 1
= (

1
s
~ 1.4047.
16.509 ) 047
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Example 3.3. We take a = 552t , c = 59>, d = —1 and b = 12}, then system (1.2) reads as
101 151 21
r_ 2, . 2\2 191 _ 2
o=t @y g+ gy g+ )
1 1
2 2\ L L L
o+ ( - 100m+50 o= 55 9): (33)
y’=y+(x2+y2)2(—f 2y 0¥ 4 iy 2—Ey3) |
100 150 20
*y(l'eryQ)‘r’( 2+ = y*iy)
100 150 20
In this case, we get
1 ; 1 3 1 291
%/ 6 cos(2t) + sin(2t) — 9) exp (m + 0 sin(2t) — 100 cos(2t) + Et) dt,
0
291 1
B(0) = (7 20) — == cos(2t) + =0+ ).
(6) = exp {55 sin(20) 100008( )T 500 100
The intersection of the non-algebraic limit cycle (I'y) with the OX axis is the point
1.019 x 10 + exp(22T) — 1\ §
ro=( b g5") )" =~ 2.0566.
1.019 x 1014
A U i
SRR
CERORCR MR
SR Y
SN
Ry 2
WP
AN % Pl
Y A
N P
Y T
N A
~AP
=N T T
—e—mhE 4
R P el -
A A Py
R
Figure 3.3. Limit cycles of system (3.3).
Example 3.4. We take a = %%7 , ¢ = _1%)%9 ,d=—-5and b= %, then system (1.2) reads as
107 507 109
r_ 2, oy2f LU0 3 22— 2
v=rt () ( 100" T 1007 Y " 00 T )
7 9
DTS R - ¥ A A _ 7
2z +y)( 100" 100" 1ooy> 3.4
107 493 109 '
/ 2, . 2\2 2 3 2 %
v =yt @+ ( = g ety =58 - pp vt = 5
7 7 9
2, . 2\5 2
v+ (= 3057+ 1067 ~ 100 V')
In this case, we get
0
21 3 21 138
A(9) = — 2 cos(2t 2) — 1 (7 = sin(2t) — ot —t)dt
(6) 500 ) (2 cos(26) + Tsin(2t) = 16) exp { 555 + 55 sn(2) = 3555 cos(2) + 755
3 21 138 21
B(6) = (—'207 2t 9—)
(6) = exp { 555 5in(26) = 1550 cos0) + 550+ 1555
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=4 b b e
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R 4y
R 4oh
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Figure 3.4. Limit cycles of system (3.4).

The intersection of the non-algebraic limit cycle (I's) with the OX axis is the point

104.804 276my _ 14 &
. = ( +exp( 555 ) )" ~ 1.4870.
104.804
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