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Abstract. For a given family of planar piecewise linear differential systems, it is a very difficult
problem to determine an upper bound for the number of its limit cycles and its explicit expressions.
In this paper, we give a family of planar discontinuous piecewise linear differential systems formed by
two regions separated by a straight line and having only one focus whose limit cycles can be explicitly
described by using the first integrals. We show that these systems may have at most two explicit
non-algebraic limit cycles.
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ÒÄÆÉÖÌÄ. ÁÒÔÚÄËÉ ÖÁÀÍ-ÖÁÀÍ ßÒ×ÉÅÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓ ÌÏÝÄÌÖËÉ ÏãÀáÉÓ-
ÈÅÉÓ ÞÀËÆÄ ÒÈÖËÉÀ ÌÉÓÉ ÆÙÅÒÖËÉ ÝÉÊËÄÁÉÓ ÒÉÝáÅÉÓ ÆÄÃÀ ÓÀÆÙÅÒÉÓ ÂÀÍÓÀÆÙÅÒÀ ÃÀ
ÝáÀÃÉ ÓÀáÉÈ ÌÏÝÄÌÀ. ÍÀÛÒÏÌÛÉ ÌÏÝÄÌÖËÉÀ ßÒ×ÉÈ ÂÀÚÏ×ÉËÉ ÏÒÉ ÀÒÉÈ ÂÀÍÓÀÆÙÅÒÖËÉ
ÁÒÔÚÄËÉ ßÚÅÄÔÉËÉ ÖÁÀÍ-ÖÁÀÍ ßÒ×ÉÅÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÓÉÓÔÄÌÄÁÉ, ÒÏÌËÄÁÓÀÝ ÀØÅÓ ÌáÏ-
ËÏÃ ÄÒÈÉ ×ÏÊÖÓÉ ÃÀ ÒÏÌÄËÈÀ ÆÙÅÒÖËÉ ÝÉÊËÄÁÉ ÛÄÉÞËÄÁÀ ÝáÀÃÀÃ ÀÙÉßÄÒÏÓ ÐÉÒÅÄËÉ
ÉÍÔÄÂÒÀËÄÁÉÓ ÓÀÛÖÀËÄÁÉÈ. ÍÀÜÅÄÍÄÁÉÀ, ÒÏÌ ÀÌ ÓÉÓÔÄÌÄÁÓ ÛÄÉÞËÄÁÀ äØÏÍÃÄÓ ÀÒÀ ÖÌÄÔÄÓ
ÏÒÉ ÝáÀÃÉ ÀÒÀÀËÂÄÁÒÖËÉ ÆÙÅÒÖËÉ ÝÉÊËÉ.
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1 Introduction
The study of piecewise linear differential systems goes back to Andronov, Vitt and Khaikin [1] and still
continues to receive attention by researchers. Piecewise linear systems often appear in the descriptions
of many real processes such as dry friction in mechanical systems or switches in electronic circuits
(see, e.g., [5, 15, 18, 19]). This kind of systems is generally modeled by ordinary differential equations
with discontinuous right-hand sides which can exhibit very complicated dynamics and rich bifurcation
phenomena.

A limit cycle is a periodic orbit of a differential system in R2 isolated in the set of all periodic
orbits of that system. There are two types of limit cycles in the planar discontinuous piecewise linear
differential systems, the crossing and sliding ones. The “sliding limit cycles” contain some arc of the
lines of discontinuity that separate the different linear differential systems (more precise definition can
be found in [17]). The “crossing limit cycles” contain only isolated points of the lines of discontinuity.
In this paper, we consider only the crossing limit cycles of some planar discontinuous piecewise linear
differential systems separated by one straight line.

Limit cycles of discontinuous piecewise linear differential systems separated by a straight line have
been studied by many authors (see, e.g., [2, 7, 8, 10, 11, 13] and the references therein). There are
examples of such systems exhibiting three limit cycles (see [3, 4,9, 12,14]), but at present moment we
do not know whether discontinuous piecewise linear differential systems separated by a straight line
may have more than three limit cycles.

On the other hand, it seems intuitively clear that “most” limit cycles of discontinuous piecewise
linear differential systems have to be non-algebraic. Nevertheless, in all these papers devoted to the
study of the crossing limit cycles of piecewise linear differential systems, explicit non-algebraic limit
cycles do not appear, their existence is proved by using different methods as the first integrals, the
averaging theory, the Poincaré map, the Newton–Kantorovich Theorem, the Melnikov function.

The goal of this paper is to give a discontinuous piecewise linear differential systems separated by
a straight line for which we can get two explicit limit cycles which are not algebraic. As far as we
know, there are no examples of this situation in the literature.

We consider planar piecewise linear systems with two linearity regions separated by a straight line
Σ = {(x, y) ∈ R2 : x = 0}, where we assume that the two linearity regions in the phase plane are the
left and right half-planes

Σ− =
{
(x, y) ∈ R2 : x < 0

}
, Σ+ =

{
(x, y) ∈ R2 : x > 0

}
.

We suppose that one of the two linear differential systems has no equilibria, neither real nor virtual,
and the other one has a focus at the origin. We prove that these two systems are integrable. Moreover,
we determine sufficient conditions for a discontinuous piecewise linear differential systems to possess
two or one explicit non-algebraic limit cycles. Concrete examples exhibiting the applicability of our
result are introduced.

2 Preliminaries
The following normal form for the linear differential system in R2 and its first integral will help us to
prove our main result.

Lemma 2.1. A linear differential system having a focus at the origin can be written as

ẋ = (2λ− δ)x+ βy, ẏ = − 1

β

(
(λ− δ)2 + ω2

)
x+ δy (2.1)

with ω > 0. Moreover, this system has the first integral

H1(x, y) =
((

(λ− δ)2 + ω2
)
x2 + 2β(λ− δ)xy + β2y2

)
e−

2λ
ω arctan( ωx

(λ−δ)x+βy
).

Proof. Consider a general linear differential system

ẋ = αx+ βy, ẏ = ηx+ δy. (2.2)
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The eigenvalues of this system are

λ1,2 =
1

2

(
α+ δ ±

√
(α− δ)2 + 4βη

)
.

We know that system (2.2) has a real focus if 1
2 (α + δ) = λ, and (α − δ)2 + 4βη = −4ω2, for some

ω > 0, βη < 0 and λ ∈ R, then

α = 2λ− δ, η = − 1

β

(
(λ− δ)2 + ω2

)
.

Therefore, we obtain system (2.1).
Since the unique equilibrium is located at the origin O(0, 0) and is of focus type, any orbit of

system (2.1) crosses the straight line x = 0 at least at one point, namely, (0, C), C ∈ R, thus the
general solution of (2.1) is given by

x(t) =
β

ω
Cetλ sin tω, y(t) =

1

ω
Cetλv(ω cos tω + (δ − λ) sin tω

)
, (2.3)

where C ∈ R. So, from the first equation of (2.3), we obtain

etλ sinωt =
ω

βC
x.

Substituting this last expression into the second equation, we get

etλ cosωt = 1

Cβ

(
(λ− δ)x+ βy

)
.

Therefore,
tanωt =

ωx

(λ− δ)x+ βy
.

From the last equation, we obtain

t =
1

ω
arctan

( ωx

(λ− δ)x+ βy

)
.

Substituting the previous expressions in the first equation of (2.3) and simplifying, we obtain((
(λ− δ)2 + ω2

)
x2 + 2β(λ− δ)xy + β2y2

)
e−

2λ
ω arctan( ωx

(λ−δ)x+yβ
) = h,

where h = (βC)2 ∈ R.

It is known that if the vector field has no equilibrium points, it can be written as

ẋ = ax+ by + c, ẏ = µax+ µby + d, (2.4)

where a, b, c, µ and d are real constants such that d ̸= µc and µ ̸= 0.
The following Lemma provides a first integral for an arbitrary linear differential system without

equilibrium points.

Lemma 2.2. For system (2.4), the following statements hold.

(i) If a+ bµ = 0, then system (2.4) is Hamiltonian and all its solutions are algebraic and given by
parabolas. Moreover, this system has the first integral

H2(x, y) = bµ2x2 − 2bµxy − 2 dx+ by2 + 2cy.

(ii) If a + bµ ̸= 0, the only algebraic invariant curve of (2.4) is an invariant line. Moreover, this
system has the first integral

H3(x, y) =
(
(a+ bµ)(ax+ by) + ac+ bd

)
e

a+bµ
d−cµ (µx−y).
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Proof.
(i) Via the change of variables x = v, u = 1

d−cµ (y − µx), where d − cµ ̸= 0, system (2.4) is
transformed into

v̇ = (a+ bµ)v + b(d− cµ)u+ c, u̇ = 1. (2.5)

If a+ bµ = 0, the last system is Hamiltonian and it has the first integral

H2(v, u) = v − b(d− cµ)

2
u2 − cu,

and statement (i) follows.
(ii) If a+ bµ ̸= 0, the general solution of (2.5) is

v(t) =
1

(a+ bµ)2

(
(a+ bµ)2(C2 + eat+btµC1)− ac− bd+ b(cµ− d)(a+ bµ)t

)
,

u(t) = − 1

b(d− cµ)

(
(a+ bµ)C2 + b(cµ− d)t

)
,

(2.6)

where C1 and C2 are real constants. So, from the second equation of (2.6), we obtain

t =
(a+ bµ)C2 + bu(d− cµ)

b(d− cµ)
.

Substituting the expression of t into the first equation of (2.6), we get(
b(d− cµ)(a+ bµ)u+ (a+ bµ)2v + ac+ bd

)
e−(a+bµ)u = C1(a+ bµ)2e

C2(a+bµ)2

bd−bcµ .

Going back through the changes of variables, we obtain(
(a+ bµ)(ax+ by) + ac+ bd

)
e

(a+bµ)
d−cµ (µx−y) = h, (2.7)

where h = C1(a+ bµ)2e
C2(a+bµ)2

bd−bcµ ∈ R. From (2.7), we define a first integral of (2.4) as follows:

H3(x, y) =
(
(a+ bµ)(ax+ by) + ac+ bd

)
e

a+bµ
d−cµ (µx−y),

statement (ii) holds.

Suppose that we have a discontinuous piecewise linear differential system separated by Σ. We
assume, without loss of generality, that the left half-system has no equilibria, neither real nor virtual,
and the right half-system is of focus type at the origin. By Lemma 2.1, and using the normal form
(2.4), we can write such a discontinuous piecewise linear differential system as

ẋ = (2λ− δ)x+ βy, ẏ = − 1

β

(
(λ− δ)2 + ω2

)
x+ δy in Σ+,

ẋ = ax+ by + c, ẏ = µax+ µby + d in Σ−.

(2.8)

In order to state precisely our results, we introduce first some notations and definitions. Consider
the piecewise differential system (2.8) defined in Σ±. We use the techniques and approaches presented
by Filippov in [6] and by di Bernardo et al. in [5] to establish these notations. An equilibrium point is
called a real (resp. virtual) singular point of the right system of (2.8) if this point locates in the region
Σ+ (resp. Σ−). A similar definition can be done for the left system of (2.8). Otherwise it is called a
virtual equilibrium point. In order to extend the definition of a trajectory to Σ = {(x, y) ∈ R2 : x =
0}, we split Σ into three parts depending on whether or not the vector field points towards it:

1. Crossing region:
Σc =

{
(0, y) ∈ Σ : β(by + c)y > 0

}
,



18 Aziza Berbache

2. Attractive sliding region:

Σas =
{
(0, y) ∈ Σ : βy < 0, by + c > 0

}
,

3. Repulsive sliding region:

Σrs =
{
(0, y) ∈ Σ : βy > 0, by + c < 0

}
.

These three regions are relatively open in Σ and may have several connected components. There-
fore, their definitions exclude the so-called tangency points, that is, points where one of the two vector
fields is tangent to Σ, which can be characterized by{

(0, y) ∈ Σ : y = 0 or by + c = 0
}
.

These points are on the boundary of the regions Σc, Σas and Σrs.
Periodic orbits that have neither sliding part nor tangent points are called crossing periodic orbits,

otherwise, they are called sliding periodic orbits. We say that an isolated periodic orbit Γ is an
algebraic limit cycle if all its points are contained in the level sets of polynomials. Otherwise, they
are called non-algebraic limit cycles.

3 Main result
Our main result is contained in the following

Theorem 3.1. The discontinuous piecewise linear differential system (2.8) may have at most two
non-algebraic crossing limit cycles. Moreover, there are the systems in this class having one or two
non-algebraic crossing limit cycles.

Theorem 3.1 is proved in Section 4.
The next Propositions show that there are discontinuous piecewise linear differential systems of

the form (2.8) (in case the left half-linear system of (2.8) is non-Hamiltonian) with two, or one
(respectively) non-algebraic crossing limit cycles.

Proposition 3.1. For a = µ+1, c = −1, d = −µ−3, b = −1, µ ̸= 0 and λ = − 1
2 ω, the discontinuous

piecewise linear differential system (2.8) defined by

ẋ = −(ω + δ)x+ βy, ẏ = − 1

β

(
δ2 + δω +

5

4
ω2

)
x+ δy in Σ+,

ẋ = (µ+ 1)x− y − 1, ẏ = µ(µ+ 1)x− µy − (µ+ 3) in Σ−,

(3.1)

when ω > 1.7525, µ ̸= 0 and β < 0, has exactly two nested crossing limit cycles. Moreover, these limit
cycles are hyperbolic, non-algebraic and given by

Γ1 =

{
(x, y) ∈ Σ+ :

((
δ2 + δω +

5

4
ω2

)
x2 − β(2δ + ω)xy + β2y2

)
e− arctan( 2ωx

(2δ+ω)x−2βy
) = 50.971β2

}
∪
{
(x, y) ∈ Σ− : ((1 + µ)x− y + 2)e

1
3 y−µ

3 x = 0.846 03
}
,

Γ2 =

{
(x, y) ∈ Σ+ :

((
δ2 + δω +

5

4
ω2

)
x2 − β(2δ + ω)xy + β2y2

)
e− arctan( 2ωx

(2δ+ω)x−2βy
) = 19.825β2

}
∪
{
(x, y) ∈ Σ− : ((1 + µ)x− y + 2)e

1
3 y−µ

3 x = 1.462 7
}
.

This proposition will be proved in Section 5.
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Proposition 3.2. For a = µ − 1, c = −3, d = −(3µ + 10), b = −1, λ = −ω and µ ̸= 0, the
discontinuous piecewise linear differential system (2.8) defined by

ẋ = −(2ω + δ)x+ βy, ẏ = − 1

β

(
(ω + δ)2 + ω2

)
x+ δy in Σ+,

ẋ = (µ− 1)x− y − 3, ẏ = µ(µ− 1)x− µy − (3µ+ 10) in Σ−,

(3.2)

when ω > 5.315, µ ̸= 0 and β < 0, has exactly one explicit hyperbolic non-algebraic crossing limit
cycle given by

Γ =
{
(x, y) ∈ Σ+ :

((
(ω + δ)2 + ω2

)
x2 − 2β(ω + δ)xy + β2y2

)
e−2 arctan( ωx

(δ+ω)x−βy
) = 32.1β2

}
∪
{
(x, y) ∈ Σ− : (x+ y − µx+ 13)e

µ
10x−

1
10y = 12.925

}
.

This proposition will be proved in Section 6.
The next proposition shows that there are discontinuous piecewise linear differential systems of the

form (2.8) (in case the left half-linear system of (2.8) is Hamiltonian) with one crossing non-algebraic
limit cycle.

Proposition 3.3. For a = µ, λ = −ω
2 , c = −3, b = −1, d = −(1+ 3µ) and µ ̸= 0, the discontinuous

piecewise linear differential system defined by

ẋ = −(δ + ω)x+ βy, ẏ = − 1

β

(
δ2 + δω +

5

4
ω2

)
x+ δy in Σ+,

ẋ = µx− y − 3, ẏ = µ2x− µy − (1 + 3µ) in Σ−,

(3.3)

when ω > 0.34337, µ ̸= 0 and β < 0, has exactly one explicit hyperbolic non-algebraic crossing limit
cycle given by

Γ =

{
(x, y) ∈ Σ+ :

((
δ2 + δω +

5

4
ω2

)
x2 − β(2δ + ω)xy + β2y2

)
earctan( −2xω

(2δ+ω)x−2βy
) = 57.375β2

}
∪
{
(x, y) ∈ Σ− : −µ2x2 + 2µxy + 2(1 + 3µ)x− y2 − 6y = −11.927

}
.

This proposition will be proved in Section 7.

Remark 3.1. The assumption β < 0 in Propositions 3.1, 3.2 and 3.3 is a necessary condition for the
existence of crossing limit cycles of system (3.1) (resp. (3.2) and (3.3)). Effectively, if the crossing
region of (3.1) (resp. (3.2) and (3.3)) exists with β > 0, then the inequality y(−y − 1) > 0 (resp.
y(−y−3) > 0) implies that the crossing region is an open interval (−1, 0) (resp. (−3, 0)) of the line Σ.
Since the right half-system is of focus type at the origin, any orbit starting at the point (0, y0) with
y0 < 0 goes into the left zone Σ− under the flow of the left linear differential systems. If these orbits
can reach Σ again at some point (0, y1) after some time t > 0, must be y1 > 0 and so, the condition
β > 0 precludes the existence of crossing limit cycles.

4 Proof of Theorem 3.1
Suppose that we have a discontinuous piecewise linear differential system (2.8). In order to investigate
the crossing limit cycles of this system, we use the first integrals for the right and the left side systems
of (2.8). Due to Lemmas 2.1 and 2.2, these first integrals are

H1(x, y) =
((

(λ− δ)2 + ω2
)
x2 + 2β(λ− δ)xy + β2y2

)
e−

2λ
ω arctan( ωx

(λ−δ)x+βy
),

H2(x, y) =

{(
(a+ bµ)(ax+ by) + ac+ bd

)
e

a+bµ
d−cµ (µx−y) if a+ bµ ̸= 0,

bµ2x2 − 2bµxy − 2 dx+ by2 + 2cy if a+ bµ = 0
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in Σ+ and Σ−, respectively. Suppose that this discontinuous piecewise differential system has some
limit cycles intersecting Σ at two points, namely, (0, y0) with y0 < 0, and (0, y1) with y1 > 0. Then
the first integrals H1 and H2 must satisfy the following two equations:

H1(0, y0)−H1(0, y1) = 0,

H2(0, y0)−H2(0, y1) = 0,
(4.1)

it is easy to see that the implicit form of the orbit arc of (2.8) in Σ+ which starting at the point
(0, y0), where y0 < 0 when t = 0, is given by H1(x, y)− β2y20 = 0, this last orbit can be given also by
the analytic curves (x+(t), y+(t)), where

x+(t) =
β

ω
y0e

λt sinωt,

y+(t) =
1

ω
y0e

λt(ω cosωt+ (δ − λ) sinωt).

Denote by t+ the minimum positive time such that x(t+) = x(0) = 0, then t+ = π
ω . Since the orbits

starting at the point (0, y0) go into the left zone Σ− under the flow of the left linear differential systems
and since these orbits can reach Σ again at some point (0, y1) after the time t+ = π

ω , we have

y1 = y(t+) = −y0e
λπ
ω ,

which is proves that H1(0, y0) − H1(0, y1) = 0. Now, it is easy to see that the existence of cross-
ing periodic solutions of discontinuous piecewise linear differential system (2.8) is equivalent to the
existence of negative values of y0 satisfying

H2(0, y0) = H2(0,−y0e
λπ
ω ). (4.2)

Here, we have to separate the proof of Theorem 3.1 in two cases.
Case 1. a+ µb = 0.

In this case (4.2) becomes

y0
(
b(1− e

2λπ
ω )y0 + 2c(1 + e

λπ
ω )

)
= 0. (4.3)

It is easy to see that when b = 0 or c = 0, the unique solution of (4.3) is y0 = 0. So, in this case, the
discontinuous piecewise linear differential system (2.8) has no limit cycles.

When b ̸= 0 and c ̸= 0, equation (4.3) has two roots: y01 = 0, which cannot contribute a limit cycle
and y0 = 2c(e

λπ
ω +1)

b(e
2λπ
ω −1)

̸= 0. Moreover, we can choose the appropriate parameters b, c, λ and ω in such

a way that (4.3) has exactly one real negative root y0 = 2c(e
λπ
ω +1)

b(e
2λπ
ω −1)

, thus obtaining at most one limit
cycle for the discontinuous piecewise linear differential system (2.8). Using the first integrals of both
linear differential systems and knowing that the non-algebraic crossing periodic orbit passes through
the point (0, y0) when t = 0 and through the point (0,−y0e

λπ
ω ) when t = π

ω , where y0 = 2c(e
λπ
ω +1)

b(e
2λπ
ω −1)

< 0,
we get the expression

Γ =
{
(x, y) ∈ Σ+ :

((
(λ− δ)2 + ω2

)
x2 + 2β(λ− δ)xy + β2y2

)
e−

2λ
ω arctan( ωx

(λ−δ)x+βy
) = β2y20

}
∪
{
(x, y) ∈ Σ− : bµ2x2 − 2bµxy − 2 dx+ by2 + 2cy = (2c+ by0)y0

}
So, Theorem 3.1 is proved in Case 1.
Case 2. a+ µb ̸= 0.

In this case (4.2) becomes(
ac+ bd− b(a+ bµ)eπ

λ
ω y0

)
e

a+bµ
d−cµ y0e

λπ
ω

= (b(a+ bµ)y0 + ac+ bd)e−
a+bµ
d−cµy0 . (4.4)
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Then the existence of crossing periodic solutions of discontinuous piecewise linear differential system
(2.8) is equivalent to the existence of zeros for equation (4.4) with respect to the variable y0. On the
other hand, this equation can be rewritten as

(
ac+ bd− b(a+ bµ)e

λπ
ω y0

)
e

(a+bµ)(e
λπ
ω +1)

d−cµ y0 − b(a+ bµ)y0 − ac− bd = 0.

For convenience, we use the notation

f(y) =
(
ac+ bd− b(a+ bµ)e

λπ
ω y

)
e

(a+bµ)(e
λπ
ω +1)

d−cµ y − b(a+ bµ)y − ac− bd. (4.5)

Now, solving (4.4) is equivalent to finding the solutions y0j of the equation f(y) = 0. In order to
investigate a number of solutions of f(y) = 0, and since f is a differentiable function in R, we use the
first two derivatives of the function f . Simple calculations yield

f ′(y) =
a+ bµ

cµ− d

(
be

λπ
ω (1 + e

λπ
ω )(a+ bµ)y − ac− bd− c(a+ bµ)e

λπ
ω

)
e

(e
λπ
ω +1)(a+bµ)

d−cµ y

− b(a+ bµ)(d− cµ)

d− cµ
,

f ′′(y) = −
(
beπ

λ
ω (1 + eπ

λ
ω )(a+ bµ)y − eπ

λ
ω (ac− bd+ 2bcµ)− bd− ac

)
(eπ

λ
ω + 1)

× (a+ bµ)2

(d− cµ)2
e

(e
λ
ω

π
+1)(a+bµ)
d−cµ y.

It is easy to see that f ′ and f ′′ are continuous functions in R.
It is obvious that f

′′
(y) = 0 has at most one root y0, thus the equation f ′(y) = 0 has at most two

zeros y0j , j = 1, 2, and the equation f(y) = 0 has at most three roots y0i, i = 1, 2, 3.
Note that the equation f(y) = 0 has the solution y0 = 0, which cannot contribute a limit cycle.

So, in this case, the equation f(y) = 0 may have eventually two real solutions, y0j ̸= 0 for j = 1, 2
that can provide at most 2 limit cycles for the discontinuous piecewise linear differential system (2.8).
Moreover, we can choose the appropriate parameters a, b, c, d, λ, δ, µ and ω in such a way that
f(y) = 0 has exactly 2 real negative roots y0i, i = 1, 2, that can provide 2 limit cycles for the
discontinuous piecewise linear differential system (2.8).

Using the first integrals of both linear differential systems and knowing that the non-algebraic
crossing periodic orbits pass through the points (0, y0i) when t = 0, and through the point (0,−y0ie

λπ
ω )

when t = π
ω , where y0i, i = 1, 2, are the zeros of f(y) = 0. Thus the expressions for these orbits are:

Γi =
{
(x, y) ∈ Σ+ :

((
(λ− δ)2 + ω2

)
x2 + 2β(λ− δ)xy + β2y2

)
e−

2λ
ω arctan( ωx

(λ−δ)x+βy
) = β2y20i

}
∪
{
(x, y) ∈ Σ− :

(
(a+ bµ)(ax+ by) + ac+ bd

)
e

a+bµ
d−cµ (µx−y) =

(
b(a+ bµ)y0i + ac+ bd

)
e

a+bµ
cµ−dy0i

}
.

This completes the proof of Theorem 3.1 in Case 2.

Remark 4.1. The orbit arc passing through the crossing point (0,−y0e
λπ
ω ) is H1(x, y)−β2(y0e

λπ
ω )2=

0, this orbit, when (λ− δ)x+βy ̸= 0 and ((λ− δ)2+ω2)x2+2β(λ− δ)xy+β2y2 ̸= 0, can be rewritten
as

tan
(−ω

2λ
ln β2y20(

((λ− δ)2 + ω2)x2 + 2β(λ− δ)xy + β2y2
) − π

)
=

ωx

(λ− δ)x+ βy
,

thus
tan

(−ω

2λ
ln β2y20(

((λ− δ)2 + ω2)x2 + 2β(λ− δ)xy + β2y2
)) =

ωx

(λ− δ)x+ βy
,

this last equation is equivalent to
H1(x, y)− β2y20 = 0,

and shows that H1(0, y0)−H1(0,−y0e
λπ
ω ) = 0.
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5 Proof of Proposition 3.1
We prove that the discontinuous piecewise linear differential system (3.1) has exactly two hyperbolic
non-algebraic limit cycles. It is easy to see that the left half-system has no equilibria, neither real nor
virtual, and since − 1

2 ± iω, ω > 0 are the eigenvalues of the matrices of the right half-system of (3.1),
this system has its equilibria as focus type at the origin.

The two linear differential systems of (3.1) have the following first integrals:

H1(x, y) =
((

δ2 + δω +
5

4
ω2

)
x2 − β(2δ + ω)xy + β2y2

)
e− arctan( 2ωx

(2δ+ω)x−2βy
),

H2(x, y) = ((1 + µ)x− y + 2)e
1
3 y−µ

3 x

in Σ+ and Σ−, respectively. The parametric solution of the right half-system of (2.8) starting at the
point (0, y0) with y0 < 0 when t = 0, is

x+(t) =
β

ω
y0e

−ω
2 t sinωt,

y+(t) =
1

ω
y0e

−ω
2 t

(
ω cosωt+

(
δ +

ω

2

)
sinωt

)
.

Let t+ denote the minimum positive time such that x(t+) = x(0) = 0, then t+ = π
ω . Since the orbits

starting at the point (0, y0) go into the left zone Σ− under the flow of the left linear differential systems
and since these orbits can reach Σ again at some point (0, y1) after the time t+ = π

ω , we have

y1 = y(t+) = −y0e
−π

2 .

Then, for the discontinuous piecewise linear differential system (3.1), the function (4.5) becomes

f(y) = (ye
−π
2 + 2)e−

1
3 (e

−π
2 +1)y + y − 2.

The graphic of this function is given in Figure 5.1.

Figure 5.1. The graphic of the function f(y).

The equation f(y) = 0 has exactly three zeros y00 = 0, y01 = −4.4522 and y02 = −7.1392. From these
values of y0i, i = 0, 1, 2, we get the values y10 = 0, y11 = 0.92558 and y12 = 1.4841.

Straightforward computations show that the solution passing through the crossing points (0, y01)
and (0, y11) corresponds to

Γ1=

{
(x, y) ∈ Σ+ :

((
δ2+δω+

5

4
ω2

)
x2−β(2δ+ω)xy+β2y2

)
e− arctan 2ωx

(2δ+ω)x−2βy =19.825β2

}
∪
{
(x, y) ∈ Σ− : ((1 + µ)x− y + 2)e

1
3 y−µ

3 x = 1.4627
}
,
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and the solution passing through the crossing points (0, y02) and (0, y12) corresponds to

Γ2=

{
(x, y) ∈ Σ+ :

((
δ2+δω+

5

4
ω2

)
x2−β(2δ+ω)xy+β2y2

)
e− arctan 2ωx

(2δ+ω)x−2βy =50.971β2

}
∪
{
(x, y) ∈ Σ− : ((1 + µ)x− y + 2)e

1
3 y−µ

3 x = 0.84603
}
.

Moreover, Γ1 and Γ2 are non-algebraic and travel in a counterclockwise sense around the sliding
segment Σrs = {(0, y) ∈ Σ : −1 ≤ y ≤ 0}. Clearly, Γ1 and Γ2 are nested, and Γ1 is the inner one and
Γ2 is the outer one. Now we prove that these non-algebraic crossing periodic orbits are the hyperbolic
limit cycles.

Let T be the period of the periodic solution

Γ :
{
(x(t), y(t)), t ∈ [0, T ]

}
.

To see that Γ is, in fact, a limit cycle, we recall a classic result characterizing limit cycles among other
periodic orbits for a smooth differential system in the plane (see, e.g., Perko [16] for more details),
which means that Γ(t) is a hyperbolic limit cycle when

T∫
0

div(Γ(t) dt ̸= 0, (5.1)

stable if
T∫
0

div(Γ(t)) dt < 0, and instable if
T∫
0

div(Γ(t)) dt > 0.

Using the form parametric (x−i(t), y−i(t)) of the curve H2(x, y) = (−y1i + 2)e
1
3y1i starting at the

point (0, y1i) in the half-plane Σ−

x−i(t) = y1i − 3t+ (2− y1i)e
t − 2,

y−i(t) = y1i − 2µ− (3µ+ 3)t+ (2µ− µy1i)e
t + µy1i,

where i = 1, 2 and y1i = −y0ie
−π

2 , it is easy to check that the periodic orbits Γ1 and Γ2 have periods
T1 = 1.7926 and T2 = 2.8745, respectively.

Formula (5.1) can be extended to the discontinuous piecewise linear differential systems considered
here, then for the discontinuous piecewise linear differential system, we have

Γ1 :
{
(x+1(t), y+1(t)), t ∈

[
0,

π

ω

]}
∪
{
(x−1(t), y−1(t)), t ∈

[π
ω
, T

]}
,

Γ2 :
{
(x+2(t), y+2(t)), t ∈

[
0,

π

ω

]}
∪
{
(x−2(t), y−2(t)), t ∈

[π
ω
, T

]}
,

where

x+i(t) =
β

ω
y0ie

− 1
2 ωt sinωt,

y+i(t) =
1

ω
y0ie

− 1
2 ωt

(
ω cosωt+

(
δ +

1

2
ω
)

sinωt
)
.

Thus
T1∫
0

div(Γ1(t)) dt =

π
ω∫

0

−ω dt+

1.7926∫
π
ω

dt = 1.7926− π

ω
− π,

T2∫
0

div(Γ2(t)) dt =

π
ω∫

0

−ω dt+

2.8745∫
π
ω

dt = 2.8745− π

ω
− π.

Since ω > 1.7525, we have π
ω < 1.7926, thus

T1∫
0

div(Γ1(t)) dt ̸= 0 and
T2∫
0

div(Γ2(t)) dt ̸= 0, so we obtain

two hyperbolic non-algebraic crossing limit cycles.
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Example 5.1. When µ = 2, β = −1, ω = 2 and δ = 1, system (3.1) reads as

ẋ = −3x− y, ẏ = 8x+ y in Σ+,

ẋ = 3x− y − 1, ẏ = 6x− 2y − 5 in Σ−.
(5.2)

This system has exactly two explicit hyperbolic and non-algebraic crossing limit cycles Γi, i = 1, 2.
The smallest one Γ1 intersects the switching line Σ at two points

y01 = −4.4522, y11 = 0.92558

and is given by

Γ1 =
{
(x, y) ∈ Σ+ : (8x2 + 4xy + y2)e− arctan 2x

2x+y = 19.825
}

∪
{
(x, y) ∈ Σ− : (3x− y + 2)e

1
3 y− 2

3 x = 1.4627
}
.

The biggest limit cycle Γ2 intersects the switching line Σ at two points

y02 = −7.1392, y12 = 1.4841.

and the expression of this limit cycle is given by

Γ2 =
{
(x, y) ∈ Σ+ : (8x2 + 4xy + y2)e− arctan 2x

2x+y = 50.971
}

∪
{
(x, y) ∈ Σ− : ((1 + µ)x− y + 2)e

1
3 y−µ

3 x = 0.84603
}

(see Figure 5.2).

Figure 5.2. The two crossing non-algebraic limit cycles of the discontinuous piecewise linear differ-
ential systems (5.2).

6 Proof of Proposition 3.2
We consider the planar piecewise linear system (3.2), for this system it is easy to check that the left
linear differential system has neither real nor virtual equilibria and the right linear differential system
is a focus with eigenvalues −1± ωi, ω > 0. In order to prove that the discontinuous piecewise linear
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differential system (3.2) has exactly one hyperbolic non-algebraic limit cycle, we use the first integrals
for the right and the left side systems of (3.2).

The first integrals of the two linear differential systems of (3.2) are

H1(x, y) =
(
(ω2 + (δ + ω)2)x2 − 2β(δ + ω)xy + β2y2

)
e2 arctan( ωx

(δ+ω)x−βy
),

H2(x, y) = (x+ y − xµ+ 13)e
µ
10 x− 1

10 y

in Σ+ and Σ−, respectively. The solution (x+(t), y+(t)) of right half-system of (3.2) such that
(x+(0), y+(0)) = (0, y0) with y0 < 0 is

x+(t) =
β

ω
y0e

−ωt sinωt,

y+(t) =
1

ω
y0e

−ωt
(
ω cosωt+ (δ − λ) sinωt

)
.

The time t+ that the solution (x+(t), y+(t)) contained in Σ+ needs to reach the point (0, y1) is t+ = π
ω .

Therefore,
y1 = y(t+) = −y0e

−π.

Then, for the discontinuous piecewise linear differential system (3.2), the function (4.5) becomes

f(y) = −(e−πy − 13)e
1
10 (e

−π+1)y − y − 13.

The graphic of this function is given in Figure 6.1.

Figure 6.1. The graphic of the function f(y).

The unique solution y0 ̸= 0 of the equation f(y) = 0 is y0 = −5.6657. From this value of y0, we get
the value of y1 = 0.24484.

Thus, the solution passing through the crossing points (0, y0) and (0, y1) corresponds to

Γ =
{
(x, y) ∈ Σ+ :

(
((ω + δ)2 + ω2)x2 − 2β(ω + δ)xy + β2y2

)
e−2 arctan( ωx

(δ+ω)x−βy
) = 32.1β2

}
∪
{
(x, y) ∈ Σ− : (x+ y − µx+ 13)e

µ
10 x− 1

10 y = 12.925
}
.

Moreover, Γ is non-algebraic and travels in a counterclockwise sense around the sliding segment
Σrs = {(0, y) ∈ Σ : −3 ≤ y ≤ 0}.

Using the form parametric (x−(t), y−(t)) of the curve H2(x, y) = (y1 + 2)e
−1
10 y1 starting at the

point (0, y1) in the half-plane Σ−

x−(t) = 10t− y1 + e−t(y1 + 13)− 13,

y−(t) = y1 − 13µ+ 10(µ− 1)t− µy1 + µ(13 + y1)e
−t,
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where y1 = −y0e
−π, it is easy to check that the periodic orbit Γ has period T = 0.59108.

Then, for the discontinuous piecewise linear differential system (3.2), we have

Γ :
{
(x+(t), y+(t)), t ∈

[
0,

π

ω

]}
∪
{
(x−(t), y−(t)), t ∈

[π
ω
, T

]}
,

and
T∫

0

div(Γ(t)) dt =

π
ω∫

0

−2ω dt−
0.59108∫

π
ω

dt =
π

ω
− 2π − 0.59108.

Since ω > 5.315, π
ω < 0.59108 which leads to

T∫
0

div(Γ(t)) dt < 0, hence the non-algebraic crossing

periodic orbit Γ is a stable and hyperbolic limit cycle. This completes the proof of Proposition 3.2.

Example 6.1. When µ = −2, β = −1, δ = 1 and ω = 8, system (3.2) reads as

ẋ = −17x− y, ẏ = 145x+ y in Σ+,

ẋ = −3x− y − 3, ẏ = 6x+ 2y − 4 in Σ−.
(6.1)

Then, this system has exactly one explicit hyperbolic and non-algebraic crossing limit cycle Γ. This
limit cycle intersects the switching line Σ at two points

y0 = −5.6657, y1 = 0.24484

and is given by

Γ =
{
(x, y) ∈ Σ+ : (145x2 + 18xy + y2)e−2 arctan( 8x

9x+y ) = 32.1
}

∪
{
(x, y) ∈ Σ− : (x+ y + 2x+ 13)e

−1
5 x− 1

10 y = 12.925
}
.

Figure 6.2. The unique crossing non-algebraic limit cycle of system (6.1).

7 Proof of Proposition 3.3
Suppose that we have a discontinuous piecewise linear differential system (3.3). It is easy to see that
the left half-system is Hamiltonian without equilibrium points and, since − 1

2 ± iω, ω > 0 are the
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eigenvalues of the matrices of the right half-system, this system has its equilibria as focus type at
the origin. In order for the piecewise linear differential system (3.3) to have exactly one hyperbolic
non-algebraic limit cycle, it must intersect the discontinuous curve Σ at two points. Let (0, y0) with
y0 < 0, and (0, y1) with y1 > 0 be two intersecting points. Then, taking into account that

H1(x, y) =
((

δ2 + δω +
5

4
ω2

)
x2 − β(2δ + ω

)
xy + β2y2)earctan( −2xω

(2δ+ω)x−2βy
),

H2(x, y) = −µ2x2 + 2µxy + 2(1 + 3µ)x− y2 − 6y

are first integrals of the two linear differential systems of (3.3) in Σ+ and Σ−, respectively, these two
points satisfy equations (4.1).

The solution of the right half-system of (3.3) starting at the point (0, y0), y0 < 0 when t = 0, is

x+(t) =
β

ω
y0e

−ω
2 t(sinωt),

y+(t) =
1

ω
y0e

−ω
2 t
(
ω cosωt+

(
δ +

ω

2

)
sinωt

)
.

The time t+ that the solution (x+(t), y+(t)) contained in Σ+ needs to reach the point (0, y1) is t+ = π
ω .

Since the orbits starting at the point (0, y0) go into the left zone Σ− under the flow of the left linear
differential systems and since these orbits can reach Σ again at some point (0, y1) after the time
t+ = π

ω , we have
y1 = y(t+) = −y0e

−π
2 .

This proves that H1(0, y0) − H1(0, y1) = 0. Then, for the discontinuous piecewise linear differential
system (3.3), equation (4.2) becomes(

(e−π − 1)y0 − 6(1 + e
−π
2 )

)
y0 = 0.

The unique solution y0 ̸= 0 of this last equation is

y0 =
6(e−

π
2 + 1)

e−π − 1
= −7.5746.

From this value of y0, we get the value of y1 = 1.5746.
Therefore, the solution passing through the crossing points (0, y0) and (0, y1) is written as

Γ =

{
(x, y) ∈ Σ+ :

((
δ2 + δω +

5

4
ω2

)
x2 − β(2δ + ω)xy + β2y2

)
earctan( −2xω

(2δ+ω)x−2βy
) = 57.375β2

}
∪
{
(x, y) ∈ Σ− : −µ2x2 + 2µxy + 2(1 + 3µ)x− y2 − 6y = −11.927

}
.

Moreover, Γ is non-algebraic and travels in a counterclockwise sense around the sliding segment
Σrs = {(0, y) ∈ Σ : −3 ≤ y ≤ 0}.

Now, we prove that this non-algebraic crossing periodic orbit is a hyperbolic limit cycle. From the
analytical form (x−(t), y−(t)) of the curve H2(x, y) = −(6 + y1)y1 starting at the point (0, y1) in the
half-plane Σ−, we have

x−(t) = −1

2
t2 − t(y1 + 3),

y−(t) =
1

2
µt2 − (3µ+ 1)t+ y1,

where y1 = −y0e
−π, it is easy to check that the periodic orbit Γ has period T = 9.1492.

Then, for the discontinuous piecewise linear differential system (3.3), we have

Γ :
{
(x+(t), y+(t)), t ∈

[
0,

π

ω

]}
∪
{
(x−(t), y−(t)), t ∈

[π
ω
, T

]}
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and
T∫

0

div(Γ(t)) dt =

π
ω∫

0

−ω dt = −π < 0,

hence, the non-algebraic crossing periodic orbit Γ is a stable and hyperbolic limit cycle. This completes
the proof of Proposition 3.3.

Example 7.1. When β = −1, µ = −2, δ = 1 and ω = 1, system (3.3) reads as

ẋ = −2x− y, ẏ =
13

4
x+ y in Σ+,

ẋ = −2x− y − 3, ẏ = 4x+ 2y + 6 in Σ−.
(7.1)

Then, this system has exactly one explicit hyperbolic, non-algebraic crossing limit cycle Γ. This limit
cycle intersects the switching line Σ at two points

y0 = −7.5746, y1 = 1.5746

and is given by

Γ =
{
(x, y) ∈ Σ+ :

1

4
(13x2 + 12xy + 4y2)e− arctan( 2x

3x+2y ) = 57.375
}

∪
{
(x, y) ∈ Σ− : −4x2 − 4xy − y2 − 10x− 6y = −11.927

}

Figure 7.1. The unique crossing non-algebraic limit cycle of system (7.1).
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