Memoirs on Differential Equations and Mathematical Physics
Volume 82, 2021, 117-127

Ali Rezaiguia, Smail Kelaiaia

EXISTENCE OF SOLUTION FOR A THIRD-ORDER DIFFERENTIAL INCLUSION WITH THREE-POINT BOUNDARY VALUE PROBLEM INVOLVING CONVEX MULTIVALUED MAPS

Abstract

In this paper, we discuss the existence of solutions for a third-order differential inclusions with three-point boundary conditions involving convex multivalued maps. The obtained results are based on a nonlinear alternative of the Leray-Schauder type. Finally, some examples are given to illustrate our results.

2010 Mathematics Subject Classification. 34A60, 26 E25.
Key words and phrases. Third-order differential inclusion, three point boundary value problem, fixed point theorem, selection theorem.

1 Introduction

Differential inclusions arising in the mathematical modeling of certain problems in economics, optimal control, stochastic analysis, and so forth, are widely studied by many authors (see $[3-5,14,15,18,19]$ and the references therein). This work is concerned with the existence of solutions for boundary value problems (BVP, for short). In Section 3, we study the three-point boundary value problems of the third order differential inclusion, when the right-hand side is convex

$$
\begin{equation*}
-u^{\prime \prime \prime}(t) \in F(t, u(t)), \quad t \in(0,1) \tag{1.1}
\end{equation*}
$$

with the boundary conditions

$$
\begin{equation*}
u(0)=\alpha u^{\prime}(0), \quad u(1)=\beta u^{\prime}(\eta), \quad u^{\prime}(1)=\gamma u^{\prime}(\eta) \tag{1.2}
\end{equation*}
$$

where $\eta \in(0,1), \alpha, \beta, \gamma \in \mathbb{R}$, with $(1+\alpha) \gamma \leq \beta \leq \frac{\gamma}{2}$, and $F:[0,1] \times \mathbb{R} \rightarrow \mathcal{P}(\mathbb{R})$ is a multivalued map; and with

$$
\begin{equation*}
u^{\prime}(0)=u^{\prime \prime}(0)=\beta u(\eta), \quad u(1)=\alpha u(\eta) \tag{1.3}
\end{equation*}
$$

where $\eta \in(0,1), \alpha, \beta \in \mathbb{R}$, and $F:[0,1] \times \mathbb{R} \rightarrow \mathcal{P}(\mathbb{R})$ is a multivalued map.
The present paper is motivated by the recent papers [15], by S. A. Guezane-Lakoud, N. Hamidane, and [10], by R. Khaldi and D. Liu and Z. Ouyang, where problems (1.1), (1.2) and (1.1), (1.3) with single valued $F(\cdot, \cdot)$, respectively, are considered, and several existence results are obtained by using fixed point techniques.

The aim of our paper is to extend the study in [10] and [15] to the set-valued framework and to present some existence results for problems (1.1), (1.2) and (1.1), (1.3). Our results are based on the nonlinear alternative of Leray-Schauder type [9]. The method used is standard, however, its exposition in the framework of problems $(1.1),(1.2)$ and $(1.1),(1.3)$ are new. In Section 4, we complete our work by giving some examples to illustrate the obtained results.

2 Preliminaries

We begin this section by introducing some notation. Let $C([0,1] ; \mathbb{R})$ denote the Banach space of all continuous functions $u:[0,1] \rightarrow \mathbb{R}$ with the norm

$$
\|u\|=\sup \{|u(t)| \text { for all } t \in[0,1]\}
$$

let $L^{1}([0,1] ; \mathbb{R})$ be the Banach space of measurable functions $u:[0,1] \rightarrow \mathbb{R}$ which are Lebesgue integrable, normed by

$$
\|u\|_{L^{1}}=\int_{0}^{1}|u(t)| d t
$$

and $A C^{i}([0,1] ; \mathbb{R})$ be the space of i-times differentiable functions $u:[0,1] \rightarrow \mathbb{R}$, whose i th derivative $u^{(i)}$ is absolutely continuous. Let (X, d) be a metric space induced from the normed space $(X,\|\cdot\|)$. Denote

$$
\begin{aligned}
\mathcal{P}_{0}(X) & =\{A \in \mathcal{P}(X): A \neq \varnothing\}, \\
\mathcal{P}_{c l}(X) & =\left\{A \in \mathcal{P}_{0}(X): A \text { is closed }\right\}, \\
\mathcal{P}_{b}(X) & =\left\{A \in \mathcal{P}_{0}(X): A \text { is bounded }\right\}, \\
\mathcal{P}_{c}(X) & =\left\{A \in \mathcal{P}_{0}(X): A \text { is convex }\right\}, \\
\mathcal{P}_{\text {comp }}(X) & =\left\{A \in \mathcal{P}_{0}(X): A \text { is compact }\right\} .
\end{aligned}
$$

Consider $H_{d}: \mathcal{P}(X) \times \mathcal{P}(X) \rightarrow \mathbb{R} \cup\{\infty\}$ given by

$$
H_{d}(A, B)=\max \left\{\sup _{a \in A} d(a, B), \sup _{b \in B} d(b, A)\right\}
$$

where

$$
d(a, B)=\inf _{b \in B} d(a, b) \text { and } d(b, A)=\inf _{a \in A} d(a, b) .
$$

Then $\left(\mathcal{P}_{b, c l}(X), H_{d}\right)$ is a metric space and $\left(\mathcal{P}_{c l}(X), H_{d}\right)$ is a generalized metric space (see [12]).
Let E be a separable Banach space, Y be a nonempty closed subset of E and $G: Y \rightarrow \mathcal{P}_{c l}(E)$ be a multivalued operator. G has a fixed point if there is $x \in Y$ such that $x \in G(x) . G$ is said to be completely continuous if $G(\Omega)$ is relatively compact for every $\Omega \in \mathcal{P}_{b}(Y)$. If the multi-valued map G is completely continuous with nonempty compact values, then G is upper semicontinuous (u.s.c) if and only if G has a closed graph, that is, $x_{n} \rightarrow x_{*}, y_{n} \rightarrow y_{*}, y_{n} \in G\left(x_{n}\right)$ imply that $y_{*} \in G\left(x_{*}\right)$. For more details on the multi-valued maps, see the books by Aubin and Cellina [1], by Aubin and Frankowska [2], by Deimling [7], by Gorniewicz [8] and by Hu and Papageorgiou [11].

Definition 2.1. A multivalued map $F:[0,1] \times \mathbb{R} \rightarrow \mathcal{P}(\mathbb{R})$ is said to be Carathéodory if
(1) $t \rightarrow F(t, u)$ is measurable for each $u \in \mathbb{R}$,
(2) $u \rightarrow F(t, u)$ is upper semicontinuous for almost all $t \in(0,1)$,
and, further, a Carathéodory function F is called L^{1}-Carathéodory if
(3) for each $r>0$, there exists $\Phi_{r} \in L^{1}\left((0,1) ; \mathbb{R}^{+}\right)$such that

$$
\|F(t, u)\|=\sup \{|v|: v \in F(t, u)\} \leqslant \Phi_{r}(t)
$$

for all $\|u\| \leq r$ and for a.e. $t \in(0,1)$.
For each $u \in C((0,1) ; \mathbb{R})$, define the set of selections of F by

$$
S_{F, u}=\left\{v \in L^{1}((0,1) ; \mathbb{R}): v(t) \in F(t, u(t)) \text { for a.e. } t \in(0,1)\right\} .
$$

Lemma 2.1 ([13]). Let E be a Banach space, let $F:[0, T] \times \rightarrow \mathcal{P}_{\text {comp }, c}(E)$ be an L^{1}-Carathéodory multivalued map and let Θ be a linear continuous mapping from $L^{1}([0,1], E)$ to $C([0,1], E)$. Then the operator

$$
\Theta \circ S_{F}: C([0,1], E) \rightarrow \mathcal{P}_{\text {comp }, c}(C([0,1], E)), u \rightarrow\left(\Theta \circ S_{F}\right)(u)=\Theta\left(S_{F, u}\right)
$$

is a closed graph operator in $C([0,1], E) \times C([0,1], E)$.
Lemma 2.2. Assume

$$
\xi=2(\eta(\alpha(\gamma+1)-\beta)+(\beta-\alpha))-\gamma-1 \neq 0,
$$

then for $y \in C([0,1] ; \mathbb{R})$, the problem

$$
\begin{gather*}
u^{\prime \prime \prime}(t)+y(t)=0, \quad t \in(0,1), \\
u(0)=\alpha u^{\prime}(0), \quad u(1)=\beta u^{\prime}(\eta), \quad u^{\prime}(1)=\gamma u^{\prime}(\eta) \tag{2.1}
\end{gather*}
$$

has a unique solution

$$
\begin{aligned}
u(t)= & -\frac{1}{2} \int_{0}^{t}(t-s)^{2} y(s) d s-\frac{1}{\xi}\left[t^{2}(\beta-\gamma-\alpha \gamma)+(t+\alpha)(\gamma-2 \beta)\right] \int_{0}^{\eta}(\eta-s) y(s) d s \\
& +\frac{1}{\xi} \int_{0}^{1}(1-s)\left[\frac{t^{2}}{2}(s-2 \alpha+2 \beta-\gamma-s \gamma-1)+(t+\alpha)(\gamma \eta-2 \beta \eta-s+s \gamma \eta)\right] y(s) d s .
\end{aligned}
$$

Lemma 2.3. Assume

$$
\xi=1-\beta\left(\frac{\eta^{2}}{2}+\eta-\frac{3}{2}\right)-\alpha \neq 0,
$$

then for $y \in C([0,1] ; \mathbb{R})$, the problem

$$
\begin{gather*}
u^{\prime \prime \prime}(t)+y(t)=0, \quad t \in(0,1) \\
u^{\prime}(0)=u^{\prime \prime}(0)=\beta u(\eta), \quad u(1)=\alpha u(\eta) \tag{2.2}
\end{gather*}
$$

has a unique solution

$$
\begin{aligned}
u(t)= & -\frac{1}{2} \int_{0}^{t}(t-s)^{2} y(s) d s+\frac{1}{2 \xi}\left(-\frac{\beta}{2} t^{2}-\beta t+\left(\frac{3}{2} \beta-\alpha\right)\right) \int_{0}^{\eta}(\eta-s)^{2} y(s) d s \\
& +\frac{1}{2 \xi}\left(\frac{\beta}{2} t^{2}+\beta t+1-\frac{1}{2} \beta \eta^{2}-\beta \eta\right) \int_{0}^{1}(1-s)^{2} y(s) d s
\end{aligned}
$$

The proofs of Lemmas 2.2 and 2.3 are given by integrating three times $u^{\prime \prime \prime}(t)+y(t)=0$ over the interval $[0, t]$. We obtain

$$
u(t)=-\frac{1}{2} \int_{0}^{t}(t-s)^{2} y(s) d s+A_{1} t^{2}+A_{2} t+A_{3}, \text { where } A_{1}, A_{2}, A_{3} \in \mathbb{R}
$$

The constants A_{1}, A_{2} and A_{3} in Lemmas 2.2 and 2.3 are given by the three-point boundary conditions (2.1) and (2.2), respectively.

3 Main results

Before presenting the existence result for problem (1.1), (1.2), let us introduce the following hypotheses which are assumed hereafter:
$\left(H_{1}\right) F:[0,1] \times \mathbb{R} \rightarrow \mathcal{P}_{c}(\mathbb{R})$ is Carathéodory;
$\left(H_{2}\right)$ there exist a continuous nondecreasing function $\psi:[0, \infty) \rightarrow(0, \infty)$ and a function $p \in$ $L^{1}\left([0,1] ; \mathbb{R}^{+}\right)$such that

$$
\|F(t, u)\|_{\mathcal{P}}=\sup \{|w|: w \in F(t, u)\} \leq p(t) \psi(\|u\|) \text { for each }(t, u) \in[0,1] \times \mathbb{R}
$$

Definition 3.1. A function $u \in A C^{2}((0,1) ; \mathbb{R})$ is called a solution to the BVP (1.1), (1.2) if u satisfies the differential inclusion (1.1) a.e. on $(0,1)$ and conditions (1.2).

Theorem 3.1. Assume that $\left(H_{1}\right),\left(H_{2}\right)$ hold and let the function ψ be bounded satisfying the condition: there exists a number $M>0$ such that

$$
\left(\frac{1}{2}+\frac{\frac{1}{2}+\gamma+|\alpha-\beta|-\eta(\beta+\alpha \gamma)}{\left|\xi_{1}\right|}\right) \psi(\|u\|)\|p\|_{L^{1}}<M
$$

Then the BVP (1.1), (1.2) has at least one solution on $[0,1]$.
Proof. Define the operator $T: C([0,1] ; \mathbb{R}) \rightarrow \mathcal{P}(C[0,1] ; \mathbb{R})$ by

$$
\begin{aligned}
& T(u)=\left\{h \in C([0,1] ; \mathbb{R}): \quad h(t)=-\frac{1}{2} \int_{0}^{t}(t-s)^{2} f(u) d s\right. \\
& +\frac{1}{\xi_{1}} \int_{0}^{1}(1-s)\left(\frac{-t^{2}}{2}(1-s+2(\alpha-\beta)+\gamma(1+s))+(t+\alpha)(\eta(\gamma-2 \beta)-s(1+\gamma \eta))\right) f(u) d s \\
& \left.-\frac{1}{\xi_{1}}\left(t^{2}(\beta-(1+\alpha) \gamma)+(t+\alpha)(\gamma-2 \beta)\right) \int_{0}^{\eta}(\eta-s) f(u) d s\right\}
\end{aligned}
$$

for $f \in \mathcal{S}_{F, u}$. It is not difficult to show that T has a fixed point which is a solution of problem (1.1), (1.2). We show that T satisfies the assumptions of the nonlinear alternative of Leray-Schauder type. The proof consists of several steps.
Step 1. First, we show that T is convex for each $u \in C([0,1] ; \mathbb{R})$.
Let $h_{1}, h_{2} \in T u$. Then there exist $w_{1}, w_{2} \in \mathcal{S}_{F, u}$ such that for each $t \in[0,1]$, we have

$$
\begin{aligned}
& h_{i}(t)=-\frac{1}{2} \int_{0}^{t}(t-s)^{2} w_{i}(s) d s \\
& +\frac{1}{\xi_{1}} \int_{0}^{1}(1-s)\left(\frac{-t^{2}}{2}(1-s+2(\alpha-\beta)+\gamma(1+s))+(t+\alpha)(\eta(\gamma-2 \beta)-s(1+\gamma \eta))\right) w_{i}(s) d s \\
& \quad-\frac{1}{\xi_{1}}\left(t^{2}(\beta-(1+\alpha) \gamma)+(t+\alpha)(\gamma-2 \beta)\right) \int_{0}^{\eta}(\eta-s) w_{i}(s) d s, \quad i=1,2
\end{aligned}
$$

Let $0 \leq \mu \leq 1$. So, for each $t \in[0,1]$, we have

$$
\begin{aligned}
& \mu h_{1}(t)+(1-\mu) h_{2}(t)=\frac{1}{2} \int_{0}^{t}(t-s)^{2}\left(\mu w_{1}(s)+(1-\mu) w_{2}(s)\right) d s \\
&+\frac{1}{\xi_{1}} \int_{0}^{1}(1-s)\left(\frac{-t^{2}}{2}(1-s+2(\alpha-\beta)+\gamma(1+s))+(t+\alpha)(\eta(\gamma-2 \beta)-s(1+\gamma \eta))\right) \\
& \quad \times\left(\mu w_{1}(s)+(1-\mu) w_{2}(s)\right) d s \\
&-\frac{1}{\xi_{1}}\left(t^{2}(\beta-(1+\alpha) \gamma)+(t+\alpha)(\gamma-2 \beta)\right) \int_{0}^{\eta}(\eta-s)\left(\mu w_{1}\left(s+(1-\mu) w_{2}(s)\right) d s\right.
\end{aligned}
$$

Since $\mathcal{S}_{F, u}$ is convex, it follows that $\mu h_{1}+(1-\mu) h_{2} \in T u$.
Step 2. Here we show that T maps bounded sets into bounded sets in $C([0,1] ; \mathbb{R})$.
For a positive number r, let $B_{r}=\{u \in C([0,1] ; \mathbb{R}):\|u\| \leq r\}$ be a bounded ball in $C([0,1] ; \mathbb{R})$. So, for each $h \in T u, u \in B_{r}$, there exists $w \in \mathcal{S}_{F, u}$ such that

$$
\begin{aligned}
& h(t)=-\frac{1}{2} \int_{0}^{t}(t-s)^{2} w(s) d s \\
& +\frac{1}{\xi_{1}} \int_{0}^{1}(1-s)\left(\frac{-t^{2}}{2}(1-s+2(\alpha-\beta)+\gamma(1+s))+(t+\alpha)(\eta(\gamma-2 \beta)-s(1+\gamma \eta))\right) w(s) d s \\
& \\
& \quad-\frac{1}{\xi_{1}}\left(t^{2}(\beta-(1+\alpha) \gamma)+(t+\alpha)(\gamma-2 \beta)\right) \int_{0}^{\eta}(\eta-s) w(s) d s
\end{aligned}
$$

If $(1+\alpha) \gamma \leq \beta \leq \frac{\gamma}{2}$, we obtain

$$
\begin{aligned}
|h(t)| \leq & \frac{\psi(\|u\|)}{2} \int_{0}^{1} p(s) d s+\frac{\psi(\|u\|)}{\left|\xi_{1}\right|}\left[\frac{1}{2}+|\alpha-\beta|+|\gamma|-\beta \eta\right] \int_{0}^{1} p(s) d s \\
& \quad-\frac{\psi(\|u\|)}{\left|\xi_{1}\right|} \gamma \eta\left(\frac{1}{2}+\alpha\right) \int_{0}^{\eta} p(s) d s
\end{aligned}
$$

Thus

$$
\begin{aligned}
&\|h\| \leq \frac{\psi(\|u\|)}{2} \int_{0}^{1} p(s) d s+\frac{\psi(\|u\|)}{\left|\xi_{1}\right|}[1+|\alpha-\beta|+2 \gamma-\beta \eta] \int_{0}^{1} p(s) d s \\
&-\frac{\psi(\|u\|)}{\left|\xi_{1}\right|} \gamma \eta\left(\frac{1}{2}+\alpha\right) \int_{0}^{\eta} p(s) d s
\end{aligned}
$$

Step 3. Now we show that T maps the bounded sets into equicontinuous sets of $C([0,1] ; \mathbb{R})$.
Let $t_{1}, t_{2} \in[0,1]$ with $t_{1}<t_{2}$ and let B_{r} be a bounded set of $C([0,1] ; \mathbb{R})$. Then, for each $h \in T u$, we obtain that the bounded sets of $C([0,1] ; \mathbb{R})$ are mapped into the equicontinuous sets,

$$
\begin{aligned}
& \left|h\left(t_{2}\right)-h\left(t_{1}\right)\right| \leq \frac{1}{2} \int_{t_{1}}^{t_{2}}\left(t_{2}-s\right)^{2}|w(s)| d s+\frac{1}{2} \int_{0}^{t_{1}}\left(\left(t_{1}-s\right)^{2}-\left(t_{2}-s\right)^{2}\right)|w(s)| d s \\
& +\frac{1}{\left|\xi_{1}\right|} \int_{0}^{1}(1-s)\left(\frac{-\left(t_{2}^{2}-t_{1}^{2}\right)}{2}(1-s+2(\alpha-\beta)+\gamma(1+s))+\left(t_{2}-t_{1}\right)(\eta(\gamma-2 \beta)-s(1+\gamma \eta))\right)|w(s)| d s \\
& \quad+\frac{1}{\left|\xi_{1}\right|}\left(\left(t_{2}^{2}-t_{1}^{2}\right)(\beta-(1+\alpha) \gamma)+\left(t_{2}-t_{1}\right)(\gamma-2 \beta)\right) \int_{0}^{\eta}(\eta-s)|w(s)| d s, \\
& \quad \leq \frac{\psi(\|u\|)}{2} \int_{t_{1}}^{t_{2}}\left(t_{2}-s\right)^{2} p(s) d s+\frac{\psi(\|u\|)}{2} \int_{0}^{t_{1}}\left(\left(t_{1}-s\right)^{2}-\left(t_{2}-s^{2}\right) p(s) d s\right. \\
& +\frac{\psi(\|u\|)}{\left|\xi_{1}\right|} \int_{0}^{1}(1-s)\left(\frac{-\left(t_{2}^{2}-t_{1}^{2}\right)}{2}(1-s+2(\alpha-\beta)+\gamma(1+s))+\left(t_{2}-t_{1}\right)(\eta(\gamma-2 \beta)-s(1+\gamma \eta))\right) p(s) d s \\
& \quad+\frac{\eta \psi(\|u\|)}{\left|\xi_{1}\right|}\left(\left(t_{2}^{2}-t_{1}^{2}\right)(\beta-(1+\alpha) \gamma)+\left(t_{2}-t_{1}\right)(\gamma-2 \beta)\right) \int_{0}^{\eta} p(s) d s .
\end{aligned}
$$

Obviously, the right-hand side of the above inequality tends to zero independently of $u \in B_{r}$ as $t_{2}-t_{1} \rightarrow 0$. Since T satisfies the above three assumptions, it follows by the Ascoli-Arzelèa theorem that $T: C([0,1] ; \mathbb{R}) \rightarrow P(C[0,1] ; \mathbb{R})$ is completely continuous.
Step 4. We show that T has a closed graph.
Let $u_{n} \rightarrow u_{*}, h_{n} \in T\left(u_{n}\right)$ and $h_{n} \rightarrow h_{*}$. Then we need to show that $h_{*} \in T u_{*}$.
Associated with $h_{n} \in T\left(u_{n}\right)$, there exists $w_{n} \in \mathcal{S}_{F, u_{n}}$ such that for each $t \in[0,1]$, we have

$$
\begin{aligned}
& h(t)=-\frac{1}{2} \int_{0}^{t}(t-s)^{2} w_{n}(s) d s \\
& \quad+\frac{1}{\xi_{1}} \int_{0}^{1}(1-s)\left(\frac{-t^{2}}{2}(1-s+2(\alpha-\beta)+\gamma(1+s))+(t+\alpha)(\eta(\gamma-2 \beta)-s(1+\gamma \eta))\right) w_{n}(s) d s \\
& \\
& \quad-\frac{1}{\xi_{1}}\left(t^{2}(\beta-(1+\alpha) \gamma)+(t+\alpha)(\gamma-2 \beta)\right) \int_{0}^{\eta}(\eta-s) w_{n}(s) d s
\end{aligned}
$$

Thus we have to show that there exists $w_{*} \in \mathcal{S}_{F, u_{*}}$ such that for each $t \in[0,1]$,

$$
\begin{aligned}
& h_{*}(t)=-\frac{1}{2} \int_{0}^{t}(t-s)^{2} w_{*}(s) d s \\
& +\frac{1}{\xi_{1}} \int_{0}^{1}(1-s)\left(\frac{-t^{2}}{2}(1-s+2(\alpha-\beta)+\gamma(1+s))+(t+\alpha)(\eta(\gamma-2 \beta)-s(1+\gamma \eta))\right) w_{*}(s) d s \\
& \\
& \quad-\frac{1}{\xi_{1}}\left(t^{2}(\beta-(1+\alpha) \gamma)+(t+\alpha)(\gamma-2 \beta)\right) \int_{0}^{\eta}(\eta-s) w_{*}(s) d s
\end{aligned}
$$

Let us consider the continuous linear operator $\Theta: L^{1}([0,1] ; \mathbb{R}) \rightarrow C([0,1] ; \mathbb{R})$ given by

$$
\begin{aligned}
w & \longrightarrow \Theta w(t)=-\frac{1}{2} \int_{0}^{t}(t-s)^{2} w(s) d s \\
+ & \frac{1}{\xi_{1}} \int_{0}^{1}(1-s)\left(\frac{-t^{2}}{2}(1-s+2(\alpha-\beta)+\gamma(1+s))+(t+\alpha)(\eta(\gamma-2 \beta)-s(1+\gamma \eta))\right) w(s) d s \\
& -\frac{1}{\xi_{1}}\left(t^{2}(\beta-(1+\alpha) \gamma)+(t+\alpha)(\gamma-2 \beta)\right) \int_{0}^{\eta}(\eta-s) w(s) d s
\end{aligned}
$$

Observe that

$$
\begin{aligned}
&\left\|h_{n}(t)-h_{*}(t)\right\|=\|-\frac{1}{2} \int_{0}^{t}(t-s)^{2}\left(w_{n}(s)-w_{*}(s)\right) d s \\
&+\frac{1}{\xi_{1}} \int_{0}^{1}(1-s)\left(\frac{-t^{2}}{2}(1-s+2(\alpha-\beta)+\gamma(1+s))+(t+\alpha)(\eta(\gamma-2 \beta)-s(1+\gamma \eta))\right)\left(w_{n}(s)-w_{*}(s)\right) d s \\
& \quad-\frac{1}{\xi_{1}}\left(t^{2}(\beta-(1+\alpha) \gamma)+(t+\alpha)(\gamma-2 \beta)\right) \int_{0}^{\eta}(\eta-s)\left(w_{n}(s)-w_{*}(s)\right) d s \|
\end{aligned}
$$

then $\left\|h_{n}(t)-h_{*}(t)\right\| \rightarrow 0$ as $n \rightarrow \infty$.
Thus, it follows by Lemma 2.1 that $\Theta \circ \mathcal{F}$ is a closed graph operator.
Further, we have $h_{n}(t) \in \Theta\left(S_{F, u_{n}}\right)$. Since $u_{n} \rightarrow u_{*}$, we get

$$
\begin{aligned}
& h_{*}(t)=-\frac{1}{2} \int_{0}^{t}(t-s)^{2} w_{*}(s) d s \\
& \quad+\frac{1}{\xi_{1}} \int_{0}^{1}(1-s)\left[\frac{-t^{2}}{2}(1-s+2(\alpha-\beta)+\gamma(1+s))+(t+\alpha)(\eta(\gamma-2 \beta)-s(1+\gamma \eta))\right] w_{*}(s) d s \\
& \\
& \quad-\frac{1}{\xi_{1}}\left(t^{2}(\beta-(1+\alpha) \gamma)+(t+\alpha)(\gamma-2 \beta)\right) \int_{0}^{\eta}(\eta-s) w_{*}(s) d s
\end{aligned}
$$

for some $w_{*} \in S_{F, u_{*}}$.
Step 5. We discuss a priori bounds on solutions.
Let u be a solution of (1.1), (1.2). So, there exists $w \in L^{1}([0,1] ; \mathbb{R})$ with $w \in S_{F, u}$ such that for $t \in[0,1]$, we have

$$
\begin{aligned}
& u(t)=-\frac{1}{2} \int_{0}^{t}(t-s)^{2} w(s) d s \\
& +\frac{1}{\xi_{1}} \int_{0}^{1}(1-s)\left(\frac{-t^{2}}{2}(1-s+2(\alpha-\beta)+\gamma(1+s))+(t+\alpha)(\eta(\gamma-2 \beta)-s(1+\gamma \eta))\right) w(s) d s \\
& \\
& \quad-\frac{1}{\xi_{1}}\left(t^{2}(\beta-(1+\alpha) \gamma)+(t+\alpha)(\gamma-2 \beta)\right) \int_{0}^{\eta}(\eta-s) w(s) d s
\end{aligned}
$$

In view of $\left(H_{2}\right)$, for each $t \in[0,1]$, and $(1+\alpha) \gamma \leq \beta \leq \frac{\gamma}{2}$, we obtain

$$
\begin{aligned}
|u(t)| & \leq \frac{\psi(\|u\|)}{2} \int_{0}^{1} p(s) d s+\frac{\psi x(\|u\|)}{\left|\xi_{1}\right|} \int_{0}^{1}\left(\frac{1}{2}+|\alpha-\beta|+\gamma+\frac{1}{2} \eta(\gamma-2 \beta)\right) \int_{0}^{1} p(s) d s \\
& -\frac{1}{2} \gamma \eta \frac{\psi(\|u\|)}{\left|\xi_{1}\right|}((2 \alpha+1)) \int_{0}^{1} p(s) d s .
\end{aligned}
$$

Consequently,

$$
\frac{\|u\|}{\left(\frac{1}{2}+\frac{\frac{1}{2}+\gamma+|\alpha-\beta|-\eta(\beta+\alpha \gamma)}{\left|\xi_{1}\right|}\right) \psi(\|u\|)\|p\|_{L^{1}}} \leq 1
$$

So, there exists M such that $\|u\| \neq M$. Let us set $U=\{u \in C([0,1] ; \mathbb{R}):\|u\|<M+1\}$. Note that the operator $T: \bar{U} \rightarrow \mathcal{P} C([0,1] ; \mathbb{R})$ is upper semicontinuous and completely continuous. From the choice of U, there is no $u \in \partial U$ such that $u \in \lambda T x$ for some $\lambda \in(0,1)$.

Consequently, by the nonlinear alternative of Leray-Schauder type [19], we deduce that T has a fixed point $u \in \bar{U}$ which is a solution of problem (1.1), (1.2). This completes the proof.

The next result concerns the four-point BVP (1.1), (1.3). Before stating and proving this result, we give the definition of a solution of the four-point BVP (1.1), (1.3).
Definition 3.2. A function $u \in A C^{2}((0,1) ; \mathbb{R})$ is called a solution to the BVP (1.1), (1.3) if u satisfies the differential inclusion (1.1) a.e. on $(0,1)$ and conditions (1.3).
Theorem 3.2. Assume that $\left(H_{1}\right),\left(H_{2}\right)$ hold and let the function ψ be bounded satisfying the condition: there exists a number $M>0$ such that

$$
\left(\frac{1}{2}+\frac{1}{2|\xi|}\left(\eta^{2}|\alpha|+\left(\frac{7}{2} \eta^{2}+\eta+\frac{3}{2}\right)|\beta|+1\right)\right) \psi(\|u\|)\|p\|_{L^{1}}<M
$$

Then the BVP (1.1), (1.3) has at least one solution on $[0,1]$.
Proof. Define the operator $T: C([0,1] ; \mathbb{R}) \rightarrow \mathcal{P}(C[0,1] ; \mathbb{R})$ by

$$
\left.\left.\left.\begin{array}{l}
T(u)=\left\{h \in C([0,1] ; \mathbb{R}): h(t)=-\frac{1}{2} \int_{0}^{t}(t-s)^{2} f(u) d s\right. \\
+\frac{1}{2 \xi}\left(-\frac{\beta}{2} t^{2}-\beta t\right.
\end{array}\right)+\left(\frac{3}{2} \beta-\alpha\right)\right) \int_{0}^{\eta}(\eta-s)^{2} f(u) d s\right\}
$$

for $f \in \mathcal{S}_{F, u}$. We can easily show that T has a fixed point which is a solution of problem (1.1), (1.3), following the steps of Theorem 3.1. We omit the details.

4 Examples

Example 4.1. Consider the boundary value problem

$$
\begin{gather*}
-u^{\prime \prime \prime}(t) \in F(t, u(t)), \quad t \in(0,1) \\
u(0)=-u^{\prime}(0), \quad u(1)=\frac{1}{3} u^{\prime}\left(\frac{1}{3}\right), \quad u^{\prime}(1)=u^{\prime}\left(\frac{1}{3}\right), \tag{4.1}
\end{gather*}
$$

where $F:[0,1] \times \mathbb{R} \rightarrow \mathcal{P}(\mathbb{R})$ is a multivalued map given by

$$
F(t, u)=\left[\frac{\exp (u)}{3+\exp (u)},-2 \log (t+1)+t^{3}+t+1\right]
$$

For $f \in F$, we have

$$
|f| \leqslant \max \left(\frac{\exp (u)}{3+\exp (u)},-2 \log (t+1)+t^{3}+t+1\right) \leqslant 2, \quad u \in \mathbb{R}
$$

Thus

$$
\|F(t, u)\|_{\mathcal{P}}=\sup \{|w|: w \in F(t, u)\} \leq 2=p(t) \psi(\|u\|), \quad u \in \mathbb{R}
$$

with $p(t)=\frac{1}{2}, \psi(\|u\|)=4$. Further, using the condition

$$
\left(\frac{1}{2}+\frac{\frac{1}{2}+\gamma+|\alpha-\beta|-\eta(\beta+\alpha \gamma)}{|\xi|}\right) \psi(\|u\|)\|p\|_{L^{1}}<M
$$

we find that $M>\frac{63}{8}$. By Theorem 3.1, the boundary value problem (4.1), has at least one solution on $[0,1]$.

Example 4.2. Consider the boundary value problem

$$
\begin{align*}
-u^{\prime \prime \prime}(t) & \in F(t, u(t)), \quad t \in(0,1) \\
u^{\prime}(0)=u^{\prime \prime}(0) & =-u\left(\frac{1}{7}\right), \quad u(1)=-2 u\left(\frac{1}{7}\right) \tag{4.2}
\end{align*}
$$

where $F:[0,1] \times \mathbb{R} \rightarrow \mathcal{P}(\mathbb{R})$ is a multivalued map given by

$$
F(t, u)=\left[\sin (u), \frac{u}{\exp u}+t\right]
$$

For $f \in F$, we have

$$
|f| \leqslant \max \left(\sin (u), \frac{u}{\exp u}+t\right) \leqslant 1+t, u \in \mathbb{R}
$$

Thus

$$
\|F(t, u)\|_{\mathcal{P}}=\sup \{|w|: w \in F(t, u)\} \leq 1+t=p(t) \psi(\|u\|), u \in \mathbb{R}
$$

with $p(t)=1+t, \psi(\|u\|)=1$. Further, we use the condition

$$
\left(\frac{1}{2}+\frac{1}{2|\xi|}\left(\eta^{2}|\alpha|+\left(\frac{7}{2} \eta^{2}+\eta+\frac{3}{2}\right)|\beta|+1\right)\right) \psi(\|u\|)\|p\|_{L^{1}}<M
$$

with $M>2$. By Theorem 3.2, the boundary value problem (4.2) has at least one solution on $[0,1]$.

References

[1] J.-P. Aubin and A. Cellina, Differential Inclusions: Set-Valued Maps and Viability Theory. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984.
[2] J.-P. Aubin and H. Frankowska, Set-Valued Analysis. Systems \& Control: Foundations \& Applications, 2. Birkhäuser Boston, Inc., Boston, MA, 1990.
[3] E. O. Ayoola, Quantum stochastic differential inclusions satisfying a general Lipschitz condition. Dynam. Systems Appl. 17 (2008), no. 3-4, 487-502.
[4] M. Benaïm, J. Hofbauer and S. Sorin, Stochastic approximations and differential inclusions. II. Applications. Math. Oper. Res. 31 (2006), no. 4, 673-695.
[5] Y.-K. Chang, W.-T. Li and J. J. Nieto, Controllability of evolution differential inclusions in Banach spaces. Nonlinear Anal. 67 (2007), no. 2, 623-632.
[6] H. Covitz and S. B. Nadler, Jr., Multi-valued contraction mappings in generalized metric spaces. Israel J. Math. 8 (1970), 5-11.
[7] K. Deimling, Multivalued Differential Equations. De Gruyter Series in Nonlinear Analysis and Applications, 1. Walter de Gruyter \& Co., Berlin, 1992.
[8] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings. Mathematics and its Applications, 495. Kluwer Academic Publishers, Dordrecht, 1999.
[9] A. Granas and J. Dugundji, Fixed Point Theory. Springer Monographs in Mathematics. SpringerVerlag, New York, 2003.
[10] A. Guezane-Lakoud, N. Hamidane and R. Khaldi, On a third-order three-point boundary value problem. Int. J. Math. Math. Sci. 2012, Art. ID 513189, 7 pp.
[11] S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol. I. Theory. Mathematics and its Applications, 419. Kluwer Academic Publishers, Dordrecht, 1997.
[12] M. Kisielewicz, Differential Inclusions and Optimal Control. Mathematics and its Applications (East European Series), 44. Kluwer Academic Publishers Group, Dordrecht; PWN-Polish Scientific Publishers, Warsaw, 1991.
[13] A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 781-786.
[14] W.-S. Li, Y.-K. Chang and J. J. Nieto, Solvability of impulsive neutral evolution differential inclusions with state-dependent delay. Math. Comput. Modelling 49 (2009), no. 9-10, 1920-1927.
[15] D. Liu, and Z. Ouyang, Solvability of third-order three-point boundary value problems. Abstr. Appl. Anal. 2014, Art. ID 793639, 7 pp.
[16] S. K. Ntouyas, Neumann boundary value problems for impulsive differential inclusions. Electron. J. Qual. Theory Differ. Equ. 2009, Special Edition I, No. 22, 13 pp.
[17] A. Rezaiguia and S. Kelaiaia, Existence results for third-order differential inclusions with threepoint boundary value problems. Acta Math. Univ. Comenian. (N.S.) 85 (2016), no. 2, 311-318.
[18] J. Simsen and C. B. Gentile, Systems of p-Laplacian differential inclusions with large diffusion. J. Math. Anal. Appl. 368 (2010), no. 2, 525-537.
[19] G. V. Smirnov, Introduction to the Theory of Differential Inclusions. Graduate Studies in Mathematics, 41. American Mathematical Society, Providence, RI, 2002.
(Received 03.03.2019)

Authors' addresses:

Ali Rezaiguia

Department of Computer Science and Mathematics, Mouhamed Cherif Messadia University, Souk Ahras, Algeria.

E-mail: ali_rezaig@yahoo.fr

Smail Kelaiaia

Department of Mathematics, Faculty of Sciences, University of Annaba, P.O. Box 12 Annaba, Algerie.

E-mail: kelaiaiasmail@yahoo.fr

