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Abstract. In this paper, we discuss the existence of solutions for a third-order differential inclusions
with three-point boundary conditions involving convex multivalued maps. The obtained results are
based on a nonlinear alternative of the Leray–Schauder type. Finally, some examples are given to
illustrate our results.
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ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ ÛÄÓßÀÅËÉËÉÀ ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄÁÏÁÀ ÌÄÓÀÌÄ ÒÉÂÉÓ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÜÀ-
ÍÀÒÈÄÁÉÓÈÅÉÓ ÃÀÓÌÖËÉ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÉÓÈÅÉÓ ÓÀÌßÄÒÔÉËÉÀÍÉ ÓÀÓÀÆÙÅÒÏ ÐÉÒÏÁÄÁÉÈ,
ÒÏÌÄËÉÝ ÌÏÉÝÀÅÓ ÀÌÏÆÍÄØÉË ÌÒÀÅÀËÓÀáÀ ÀÓÀáÅÄÁÓ. ÌÉÙÄÁÖËÉ ÛÄÃÄÂÄÁÉ ÄÌÚÀÒÄÁÀ ËÄÒÄÉ-
ÛÀÖÃÄÒÉÓ ÔÉÐÉÓ ÀÒÀßÒ×ÉÅ ÀËÔÄÒÍÀÔÉÅÀÓ. ÍÀÛÒÏÌÉÓ ÁÏËÏÓ, ÛÄÃÄÂÄÁÉÓ ÓÀÉËÖÓÔÒÀÝÉÏÃ,
ÌÏÚÅÀÍÉËÉÀ ÒÀÌÃÄÍÉÌÄ ÌÀÂÀËÉÈÉ.
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1 Introduction
Differential inclusions arising in the mathematical modeling of certain problems in economics, optimal
control, stochastic analysis, and so forth, are widely studied by many authors (see [3–5, 14, 15, 18, 19]
and the references therein). This work is concerned with the existence of solutions for boundary value
problems (BVP, for short). In Section 3, we study the three-point boundary value problems of the
third order differential inclusion, when the right-hand side is convex

−u′′′(t) ∈ F (t, u(t)), t ∈ (0, 1), (1.1)

with the boundary conditions

u(0) = αu′(0), u(1) = βu′(η), u′(1) = γu′(η), (1.2)

where η ∈ (0, 1), α, β, γ ∈ R, with (1+α)γ ≤ β ≤ γ
2 , and F : [0, 1]×R → P (R) is a multivalued map;

and with
u′(0) = u′′(0) = βu(η), u(1) = αu(η), (1.3)

where η ∈ (0, 1), α, β ∈ R, and F : [0, 1]× R → P (R) is a multivalued map.
The present paper is motivated by the recent papers [15], by S. A. Guezane-Lakoud, N. Hamidane,

and [10], by R. Khaldi and D. Liu and Z. Ouyang, where problems (1.1), (1.2) and (1.1), (1.3) with
single valued F ( · , · ), respectively, are considered, and several existence results are obtained by using
fixed point techniques.

The aim of our paper is to extend the study in [10] and [15] to the set-valued framework and to
present some existence results for problems (1.1), (1.2) and (1.1), (1.3). Our results are based on the
nonlinear alternative of Leray–Schauder type [9]. The method used is standard, however, its exposition
in the framework of problems (1.1), (1.2) and (1.1), (1.3) are new. In Section 4, we complete our work
by giving some examples to illustrate the obtained results.

2 Preliminaries
We begin this section by introducing some notation. Let C([0, 1];R) denote the Banach space of all
continuous functions u : [0, 1] → R with the norm

∥u∥ = sup
{
|u(t)| for all t ∈ [0, 1]

}
,

let L1([0, 1];R) be the Banach space of measurable functions u : [0, 1] → R which are Lebesgue
integrable, normed by

∥u∥L1 =

1∫
0

|u(t)| dt,

and ACi([0, 1];R) be the space of i-times differentiable functions u : [0, 1] → R, whose ith derivative
u(i) is absolutely continuous. Let (X, d) be a metric space induced from the normed space (X, ∥ · ∥).
Denote

P0(X) =
{
A ∈ P(X) : A ̸= ∅

}
,

Pcl(X) =
{
A ∈ P0(X) : A is closed

}
,

Pb(X) =
{
A ∈ P0(X) : A is bounded

}
,

Pc(X) =
{
A ∈ P0(X) : A is convex

}
,

Pcomp(X) =
{
A ∈ P0(X) : A is compact

}
.

Consider Hd : P(X)× P(X) → R ∪ {∞} given by

Hd(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}
,
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where
d(a,B) = inf

b∈B
d(a, b) and d(b, A) = inf

a∈A
d(a, b).

Then (Pb,cl(X),Hd) is a metric space and (Pcl(X),Hd) is a generalized metric space (see [12]).
Let E be a separable Banach space, Y be a nonempty closed subset of E and G : Y → Pcl(E)

be a multivalued operator. G has a fixed point if there is x ∈ Y such that x ∈ G(x). G is said to be
completely continuous if G (Ω) is relatively compact for every Ω ∈ Pb(Y ). If the multi-valued map
G is completely continuous with nonempty compact values, then G is upper semicontinuous (u.s.c)
if and only if G has a closed graph, that is, xn → x∗, yn → y∗, yn ∈ G (xn) imply that y∗ ∈ G (x∗).
For more details on the multi-valued maps, see the books by Aubin and Cellina [1], by Aubin and
Frankowska [2], by Deimling [7], by Gorniewicz [8] and by Hu and Papageorgiou [11].

Definition 2.1. A multivalued map F : [0, 1]× R → P(R) is said to be Carathéodory if

(1) t→ F (t, u) is measurable for each u ∈ R,

(2) u→ F (t, u) is upper semicontinuous for almost all t ∈ (0, 1),

and, further, a Carathéodory function F is called L1-Carathéodory if

(3) for each r > 0, there exists Φr ∈ L1((0, 1);R+) such that

∥F (t, u)∥ = sup
{
|v| : v ∈ F (t, u)

}
6 Φr(t)

for all ∥u∥ ≤ r and for a.e. t ∈ (0, 1).

For each u ∈ C((0, 1);R), define the set of selections of F by

SF,u =
{
v ∈ L1((0, 1);R) : v(t) ∈ F (t, u(t)) for a.e. t ∈ (0, 1)

}
.

Lemma 2.1 ([13]). Let E be a Banach space, let F : [0, T ]× → Pcomp,c(E) be an L1-Carathéodory
multivalued map and let Θ be a linear continuous mapping from L1([0, 1], E) to C([0, 1], E). Then the
operator

Θ ◦ SF : C([0, 1], E) → Pcomp,c(C([0, 1], E)), u→ (Θ ◦ SF )(u) = Θ(SF,u)

is a closed graph operator in C([0, 1], E)× C([0, 1], E).

Lemma 2.2. Assume
ξ = 2

(
η(α(γ + 1)− β) + (β − α)

)
− γ − 1 ̸= 0,

then for y ∈ C([0, 1];R), the problem

u′′′(t) + y(t) = 0, t ∈ (0, 1),

u(0) = αu′(0), u(1) = βu′(η), u′(1) = γu′(η) (2.1)

has a unique solution

u(t) =− 1

2

t∫
0

(t− s)2y(s) ds− 1

ξ

[
t2(β − γ − αγ) + (t+ α)(γ − 2β)

] η∫
0

(η − s)y(s) ds

+
1

ξ

1∫
0

(1− s)
[ t2
2
(s− 2α+ 2β − γ − sγ − 1) + (t+ α)(γη − 2βη − s+ sγη)

]
y(s) ds.

Lemma 2.3. Assume
ξ = 1− β

(η2
2

+ η − 3

2

)
− α ̸= 0,
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then for y ∈ C([0, 1];R), the problem

u′′′(t) + y(t) = 0, t ∈ (0, 1),

u′(0) = u′′(0) = βu(η), u(1) = αu(η) (2.2)

has a unique solution

u(t) =− 1

2

t∫
0

(t− s)2y(s) ds+
1

2ξ

(
− β

2
t2 − βt+

(3
2
β − α

)) η∫
0

(η − s)2y(s) ds

+
1

2ξ

(β
2
t2 + βt+ 1− 1

2
βη2 − βη

) 1∫
0

(1− s)2y(s) ds.

The proofs of Lemmas 2.2 and 2.3 are given by integrating three times u′′′(t) + y(t) = 0 over the
interval [0, t]. We obtain

u(t) = −1

2

t∫
0

(t− s)2y(s) ds+A1t
2 +A2t+A3, where A1, A2, A3 ∈ R.

The constants A1, A2 and A3 in Lemmas 2.2 and 2.3 are given by the three-point boundary
conditions (2.1) and (2.2), respectively.

3 Main results
Before presenting the existence result for problem (1.1), (1.2), let us introduce the following hypotheses
which are assumed hereafter:

(H1) F : [0, 1]× R → Pc(R) is Carathéodory;

(H2) there exist a continuous nondecreasing function ψ : [0,∞) → (0,∞) and a function p ∈
L1([0, 1];R+) such that

∥F (t, u)∥P = sup
{
|w| : w ∈ F (t, u)

}
≤ p(t)ψ(∥u∥) for each (t, u) ∈ [0, 1]× R.

Definition 3.1. A function u ∈ AC2((0, 1);R) is called a solution to the BVP (1.1), (1.2) if u satisfies
the differential inclusion (1.1) a.e. on (0, 1) and conditions (1.2).

Theorem 3.1. Assume that (H1), (H2) hold and let the function ψ be bounded satisfying the condition:
there exists a number M > 0 such that(

1

2
+

1
2 + γ + |α− β| − η(β + αγ)

|ξ1|

)
ψ(∥u∥)∥p∥L1 < M.

Then the BVP (1.1), (1.2) has at least one solution on [0, 1].

Proof. Define the operator T : C([0, 1];R) → P(C[0, 1];R) by

T (u) =

{
h ∈ C([0, 1];R) : h(t) = −1

2

t∫
0

(t− s)2f(u) ds

+
1

ξ1

1∫
0

(1− s)
(−t2

2

(
1− s+ 2(α− β) + γ(1 + s)

)
+ (t+ α)

(
η(γ − 2β)− s(1 + γη)

))
f(u) ds

− 1

ξ1

(
t2(β − (1 + α)γ) + (t+ α)(γ − 2β)

) η∫
0

(η − s)f(u) ds

}
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for f ∈ SF,u. It is not difficult to show that T has a fixed point which is a solution of problem
(1.1), (1.2). We show that T satisfies the assumptions of the nonlinear alternative of Leray–Schauder
type. The proof consists of several steps.
Step 1. First, we show that T is convex for each u ∈ C([0, 1];R).

Let h1, h2 ∈ Tu. Then there exist w1, w2 ∈ SF,u such that for each t ∈ [0, 1], we have

hi(t) = −1

2

t∫
0

(t− s)2wi(s) ds

+
1

ξ1

1∫
0

(1− s)
(−t2

2

(
1− s+ 2(α− β) + γ(1 + s)

)
+ (t+ α)

(
η(γ − 2β)− s(1 + γη)

))
wi(s) ds

− 1

ξ1

(
t2(β − (1 + α)γ) + (t+ α)(γ − 2β)

) η∫
0

(η − s)wi(s) ds, i = 1, 2.

Let 0 ≤ µ ≤ 1. So, for each t ∈ [0, 1], we have

µh1(t) + (1− µ)h2(t) =
1

2

t∫
0

(t− s)2
(
µw1(s) + (1− µ)w2(s)

)
ds

+
1

ξ1

1∫
0

(1− s)
(−t2

2

(
1− s+ 2(α− β) + γ(1 + s)

)
+ (t+ α)

(
η(γ − 2β)− s(1 + γη)

))
×
(
µw1(s) + (1− µ)w2(s)

)
ds

− 1

ξ1

(
t2(β − (1 + α)γ) + (t+ α)(γ − 2β)

) η∫
0

(η − s)(µw1(s+ (1− µ)w2(s)) ds.

Since SF,u is convex, it follows that µh1 + (1− µ)h2 ∈ Tu.
Step 2. Here we show that T maps bounded sets into bounded sets in C([0, 1];R).

For a positive number r, let Br = {u ∈ C([0, 1];R) : ∥u∥ ≤ r} be a bounded ball in C([0, 1];R).
So, for each h ∈ Tu, u ∈ Br, there exists w ∈ SF,u such that

h(t) = −1

2

t∫
0

(t− s)2w(s) ds

+
1

ξ1

1∫
0

(1− s)
(−t2

2

(
1− s+ 2(α− β) + γ(1 + s)

)
+ (t+ α)

(
η(γ − 2β)− s(1 + γη)

))
w(s) ds

− 1

ξ1

(
t2(β − (1 + α)γ) + (t+ α)(γ − 2β)

) η∫
0

(η − s)w(s) ds.

If (1 + α)γ ≤ β ≤ γ
2 , we obtain

|h(t)| ≤ ψ(∥u∥)
2

1∫
0

p(s) ds+
ψ(∥u∥)
|ξ1|

[1
2
+ |α− β|+ |γ| − βη

] 1∫
0

p(s) ds

− ψ(∥u∥)
|ξ1|

γη
(1
2
+ α

) η∫
0

p(s) ds,
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Thus

∥h∥ ≤ ψ(∥u∥)
2

1∫
0

p(s) ds+
ψ(∥u∥)
|ξ1|

[
1 + |α− β|+ 2γ − βη

] 1∫
0

p(s) ds

− ψ(∥u∥)
|ξ1|

γη
(1
2
+ α

) η∫
0

p(s) ds.

Step 3. Now we show that T maps the bounded sets into equicontinuous sets of C([0, 1];R).
Let t1, t2 ∈ [0, 1] with t1 < t2 and let Br be a bounded set of C([0, 1];R). Then, for each h ∈ Tu,

we obtain that the bounded sets of C([0, 1];R) are mapped into the equicontinuous sets,

|h(t2)− h(t1)| ≤
1

2

t2∫
t1

(t2 − s)2|w(s)| ds+ 1

2

t1∫
0

(
(t1 − s)2 − (t2 − s)2

)
|w(s)| ds

+
1

|ξ1|

1∫
0

(1−s)
(−(t22−t21)

2

(
1−s+2(α−β)+γ(1+s)

)
+(t2−t1)

(
η(γ−2β)−s(1+γη)

))
|w(s)| ds

+
1

|ξ1|
(
(t22 − t21)(β − (1 + α)γ) + (t2 − t1)(γ − 2β)

) η∫
0

(η − s)|w(s)| ds,

≤ ψ(∥u∥)
2

t2∫
t1

(t2 − s)2p(s) ds+
ψ(∥u∥)

2

t1∫
0

(
(t1 − s)2 − (t2 − s2

)
p(s) ds

+
ψ(∥u∥)
|ξ1|

1∫
0

(1−s)
(−(t22−t21)

2
(1−s+2(α−β)+γ(1+s))+(t2−t1)

(
η(γ−2β)−s(1+γη)

))
p(s) ds

+
ηψ(∥u∥)

|ξ1|
(
(t22 − t21)(β − (1 + α)γ) + (t2 − t1)(γ − 2β)

) η∫
0

p(s) ds.

Obviously, the right-hand side of the above inequality tends to zero independently of u ∈ Br as
t2 − t1 → 0. Since T satisfies the above three assumptions, it follows by the Ascoli–Arzelèa theorem
that T : C([0, 1];R) → P (C[0, 1];R) is completely continuous.
Step 4. We show that T has a closed graph.

Let un → u∗, hn ∈ T (un) and hn → h∗. Then we need to show that h∗ ∈ Tu∗.
Associated with hn ∈ T (un), there exists wn ∈ SF,un such that for each t ∈ [0, 1], we have

h(t) = −1

2

t∫
0

(t− s)2wn(s) ds

+
1

ξ1

1∫
0

(1− s)
(−t2

2

(
1− s+ 2(α− β) + γ(1 + s)) + (t+ α)(η(γ − 2β)− s(1 + γη))

)
wn(s) ds

− 1

ξ1

(
t2(β − (1 + α)γ) + (t+ α)(γ − 2β)

) η∫
0

(η − s)wn(s) ds.

Thus we have to show that there exists w∗ ∈ SF,u∗ such that for each t ∈ [0, 1],
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h∗(t) = −1

2

t∫
0

(t− s)2w∗(s) ds

+
1

ξ1

1∫
0

(1− s)
(−t2

2

(
1− s+ 2(α− β) + γ(1 + s)

)
+ (t+ α)(η(γ − 2β)− s(1 + γη))

)
w∗(s) ds

− 1

ξ1

(
t2(β − (1 + α)γ) + (t+ α)(γ − 2β)

) η∫
0

(η − s)w∗(s) ds.

Let us consider the continuous linear operator Θ : L1([0, 1];R) → C([0, 1];R) given by

w −→ Θw(t) = −1

2

t∫
0

(t− s)2w(s) ds

+
1

ξ1

1∫
0

(1− s)
(−t2

2

(
1− s+ 2(α− β) + γ(1 + s)

)
+ (t+ α)

(
η(γ − 2β)− s(1 + γη)

))
w(s) ds

− 1

ξ1

(
t2(β − (1 + α)γ) + (t+ α)(γ − 2β)

) η∫
0

(η − s)w(s) ds.

Observe that

∥hn(t)− h∗(t)∥ =

∥∥∥∥− 1

2

t∫
0

(t− s)2(wn(s)− w∗(s)) ds

+
1

ξ1

1∫
0

(1− s)
(−t2

2

(
1−s+2(α−β)+γ(1+s)

)
+(t+α)

(
η(γ−2β)−s(1+γη)

))
(wn(s)−w∗(s)) ds

− 1

ξ1

(
t2(β − (1 + α)γ) + (t+ α)(γ − 2β)

) η∫
0

(η − s)(wn(s)− w∗(s)) ds

∥∥∥∥,
then ∥hn(t)− h∗(t)∥ → 0 as n→ ∞.

Thus, it follows by Lemma 2.1 that Θ ◦ F is a closed graph operator.
Further, we have hn(t) ∈ Θ(SF,un

). Since un → u∗, we get

h∗(t) = −1

2

t∫
0

(t− s)2w∗(s) ds

+
1

ξ1

1∫
0

(1− s)
[−t2

2

(
1− s+ 2(α− β) + γ(1 + s)

)
+ (t+ α)

(
η(γ − 2β)− s(1 + γη)

)]
w∗(s) ds

− 1

ξ1

(
t2(β − (1 + α)γ) + (t+ α)(γ − 2β)

) η∫
0

(η − s)w∗(s) ds

for some w∗ ∈ SF,u∗ .
Step 5. We discuss a priori bounds on solutions.

Let u be a solution of (1.1), (1.2). So, there exists w ∈ L1([0, 1];R) with w ∈ SF,u such that for
t ∈ [0, 1], we have
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u(t) = −1

2

t∫
0

(t− s)2w(s) ds

+
1

ξ1

1∫
0

(1− s)
(−t2

2

(
1− s+ 2(α− β) + γ(1 + s)

)
+ (t+ α)

(
η(γ − 2β)− s(1 + γη)

))
w(s) ds

− 1

ξ1

(
t2(β − (1 + α)γ) + (t+ α)(γ − 2β)

) η∫
0

(η − s)w(s) ds.

In view of (H2), for each t ∈ [0, 1], and (1 + α)γ ≤ β ≤ γ
2 , we obtain

|u(t)| ≤ ψ(∥u∥)
2

1∫
0

p(s) ds+
ψx(∥u∥)

|ξ1|

1∫
0

(1
2
+ |α− β|+ γ +

1

2
η(γ − 2β)

) 1∫
0

p(s) ds

− 1

2
γη

ψ(∥u∥)
|ξ1|

((2α+ 1))

1∫
0

p(s) ds.

Consequently,
∥u∥(

1
2 +

1
2+γ+|α−β|−η(β+αγ)

|ξ1|
)
ψ(∥u∥)∥p∥L1

≤ 1.

So, there exists M such that ∥u∥ ̸= M . Let us set U = {u ∈ C([0, 1];R) : ∥u∥ < M + 1}. Note that
the operator T : U → PC([0, 1];R) is upper semicontinuous and completely continuous. From the
choice of U , there is no u ∈ ∂U such that u ∈ λTx for some λ ∈ (0, 1).

Consequently, by the nonlinear alternative of Leray–Schauder type [19], we deduce that T has a
fixed point u ∈ U which is a solution of problem (1.1), (1.2). This completes the proof.

The next result concerns the four-point BVP (1.1), (1.3). Before stating and proving this result,
we give the definition of a solution of the four-point BVP (1.1), (1.3).

Definition 3.2. A function u ∈ AC2((0, 1);R) is called a solution to the BVP (1.1), (1.3) if u satisfies
the differential inclusion (1.1) a.e. on (0, 1) and conditions (1.3).

Theorem 3.2. Assume that (H1), (H2) hold and let the function ψ be bounded satisfying the condition:
there exists a number M > 0 such that(

1

2
+

1

2|ξ|

(
η2|α|+

(7
2
η2 + η +

3

2

)
|β|+ 1

))
ψ(∥u∥)∥p∥L1 < M.

Then the BVP (1.1), (1.3) has at least one solution on [0, 1].

Proof. Define the operator T : C([0, 1];R) → P(C[0, 1];R) by

T (u) =

{
h ∈ C([0, 1];R) : h(t) = −1

2

t∫
0

(t− s)2f(u) ds

+
1

2ξ

(
− β

2
t2 − βt+

(3
2
β − α

)) η∫
0

(η − s)2f(u) ds

+
1

2ξ

(β
2
t2 + βt+ 1− 1

2
βη2 − βη

) 1∫
0

(1− s)2f(u) ds

}

for f ∈ SF,u. We can easily show that T has a fixed point which is a solution of problem (1.1), (1.3),
following the steps of Theorem 3.1. We omit the details.
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4 Examples
Example 4.1. Consider the boundary value problem

−u′′′(t) ∈ F (t, u(t)), t ∈ (0, 1),

u(0) = −u′(0), u(1) =
1

3
u′
(1
3

)
, u′(1) = u′

(1
3

)
,

(4.1)

where F : [0, 1]× R → P(R) is a multivalued map given by

F (t, u) =

[
exp(u)

3 + exp(u) ,−2 log(t+ 1) + t3 + t+ 1

]
.

For f ∈ F , we have

|f | 6 max
(

exp(u)
3 + exp(u) ,−2 log(t+ 1) + t3 + t+ 1

)
6 2, u ∈ R.

Thus
∥F (t, u)∥P = sup

{
|w| : w ∈ F (t, u)

}
≤ 2 = p(t)ψ(∥u∥), u ∈ R,

with p(t) = 1
2 , ψ(∥u∥) = 4. Further, using the condition(

1

2
+

1
2 + γ + |α− β| − η(β + αγ)

|ξ|

)
ψ(∥u∥)∥p∥L1 < M.

we find that M > 63
8 . By Theorem 3.1, the boundary value problem (4.1), has at least one solution

on [0, 1].

Example 4.2. Consider the boundary value problem

−u′′′(t) ∈ F (t, u(t)), t ∈ (0, 1),

u′(0) = u′′(0) = −u
(1
7

)
, u(1) = −2u

(1
7

)
,

(4.2)

where F : [0, 1]× R → P(R) is a multivalued map given by

F (t, u) =
[

sin(u), u

expu + t
]
.

For f ∈ F , we have
|f | 6 max

(
sin(u), u

expu + t
)
6 1 + t, u ∈ R.

Thus
∥F (t, u)∥P = sup

{
|w| : w ∈ F (t, u)

}
≤ 1 + t = p(t)ψ(∥u∥), u ∈ R,

with p(t) = 1 + t, ψ(∥u∥) = 1. Further, we use the condition(
1

2
+

1

2|ξ|
(η2|α|+

(7
2
η2 + η +

3

2

)
|β|+ 1)

)
ψ(∥u∥)∥p∥L1 < M

with M > 2. By Theorem 3.2, the boundary value problem (4.2) has at least one solution on [0, 1].
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