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STUDY OF STABILITY IN NONLINEAR
NEUTRAL DYNAMIC EQUATIONS USING
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Abstract. Let T be an unbounded above and below time scale such that 0 ∈ T. Let id−τ : [0,∞)∩T
be such that (id−τ)([0,∞)∩T) is a time scale. We use Krasnoselskii–Burton’s fixed point theorem to
obtain stability results about the zero solution for the following nonlinear neutral dynamic equation
with a variable delay:

x∆(t) = −a(t)h(xσ(t)) +Q(t, x(t− τ(t)))∆ +G
(
t, x(t), x(t− τ(t))

)
.

The stability of the zero solution of this equation is provided by h(0) = Q(t, 0) = G(t, 0, 0) = 0. The
Carathéodory condition is used for the functions Q and G. The results obtained here extend the work
of Mesmouli, Ardjouni and Djoudi [21].
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ÒÄÆÉÖÌÄ. ÅÈØÅÀÈ, T ÆÄÌÏÃÀÍ ÃÀ ØÅÄÌÏÃÀÍ ÛÄÌÏÖÓÀÆÙÅÒÄËÉ ÉÓÄÈÉ ÃÒÏÉÓ ÓÊÀËÀÀ, ÒÏÌ
0 ∈ T, áÏËÏ id− τ : [0,∞) ∩ T ÉÓÄÈÉÀ, ÒÏÌ (id− τ)([0,∞) ∩ T) ßÀÒÌÏÀÃÂÄÍÓ ÃÒÏÉÓ ÓÊÀËÀÓ.
ÂÀÍáÉËÖËÉÀ ÛÄÌÃÄÂÉ ÀÒÀßÒ×ÉÅÉ ÍÄÉÔÒÀËÖÒÉ ÃÉÍÀÌÉÊÖÒÉ ÂÀÍÔÏËÄÁÀ ÝÅËÀÃÉ ÃÀÂÅÉÀÍÄÁÉÈ

x∆(t) = −a(t)h(xσ(t)) +Q(t, x(t− τ(t)))∆ +G
(
t, x(t), x(t− τ(t))

)
ÀÌ ÂÀÍÔÏËÄÁÉÓ ÍÖËÏÅÀÍÉ ÀÌÏÍÀáÓÍÉÓ ÌÃÂÒÀÃÏÁÉÓ ÃÀÓÀÃÂÄÍÀÃ ÂÀÌÏÚÄÍÄÁÖËÉÀ ÊÒÀÓÍÏÓÄË-
ÓÊÉ-ÁÀÒÔÏÍÉÓ ÖÞÒÀÅÉ ßÄÒÔÉËÉÓ ÈÄÏÒÄÌÀ. ÍÖËÏÅÀÍÉ ÀÌÏáÓÍÉÓ ÌÃÂÒÀÃÏÁÀÓ ÖÆÒÖÍÅÄËÚÏ×Ó
ÐÉÒÏÁÀ h(0) = Q(t, 0) = G(t, 0, 0) = 0. Q ÃÀ G ×ÖÍØÝÉÄÁÉÓÈÅÉÓ ÂÀÌÏÉÚÄÍÄÁÀ ÊÀÒÀÈÄÏÃÏÒÉÓ
ÐÉÒÏÁÀ. ÌÉÙÄÁÖËÉ ÛÄÃÄÂÄÁÉ ÀÍÆÏÂÀÃÄÁÓ ÌÄÓÌÖËÉÓ, ÀÒãÀÖÍÉÓÀ ÃÀ ãÀÖÃÉÓ [21] ÍÀÛÒÏÌÛÉ
ÌÉÙÄÁÖË ÛÄÃÄÂÄÁÓ.
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1 Introduction
The concept of time scales analysis is a fairly new idea. In 1988, it was introduced by the German
mathematician Stefan Hilger in his Ph.D. thesis [17]. It combines the traditional areas of continuous
and discrete analysis into one theory. After the publication of two textbooks in this area by Bohner
and Peterson [9] and [10], more and more researchers were getting involved in this fast-growing field
of mathematics. The study of dynamic equations brings together the traditional research areas of
differential and difference equations. It allows one to handle these two research areas simultaneously,
hence shedding light on the reasons for their seeming discrepancies. In fact, many new results for
the continuous and discrete cases have been obtained by studying the more general time scales case
(see [1, 4–6,18] and the references therein).

There is no doubt that the Lyapunov method have been used successfully to investigate stability
properties of wide variety of ordinary, functional and partial equations. Nevertheless, the application
of this method to the problem of stability in differential equations with a delay has encountered serious
difficulties if the delay is unbounded or if the equation has an unbounded term. It has been noticed
that some of theses difficulties vanish by using the fixed point technic. Other advantages of fixed point
theory over Lyapunov’s method is that the conditions of the former are average, while those of the
latter are pointwise (see [2–4,6–8,12–15,18–22] and the references therein).

In this paper, we consider the nonlinear neutral dynamic equations with a variable delay given by
x∆(t) = −a(t)h(xσ(t)) + (Q(t, x(t− τ(t))))∆ +G

(
t, x(t), x(t− τ(t))

)
, (1.1)

with an assumed initial function
x(t) = ψ(t), t ∈ [m0, 0] ∩ T,

where T is an unbounded above and below time scale such that 0 ∈ T.
Our purpose here is to use a modification of Krasnoselskii’s fixed point theorem due to Burton

(see [12, Theorem 3]) to show the asymptotic stability and the stability of the zero solution for equation
(1.1). Clearly, the present problem is totally nonlinear so that the variation of parameters cannot be
applied directly. Then we resort to the idea of adding and subtracting a linear term. As is noted by
T. A. Burton in [12], the added term destroys a contraction already present in part of the equation
but it replaces it with the so-called large contraction mapping which is suitable for the fixed point
theory. During the process we have to transform (1.1) into an integral equation written as a sum
of two mappings; one is a large contraction and the other is compact. After that, we use a variant
of Krasnoselskii’s fixed point theorem to show the asymptotic stability and the stability of the zero
solution for equation (1.1). In the special case T = R, Mesmouli, Ardjouni and Djoudi [21] show that
the zero solution of (1.1) is asymptotically stable by using Krasnoselskii–Burton’s fixed point theorem.
Then the results presented in this paper extend the main results obtained in [21].

The paper is organized as follows. In Section 2, we present some preliminary material that we will
need through the remainder of the paper. We will state some facts about the exponential function on a
time scale. In Section 3, we present the inversion of (1.1) and state the modification of Krasnoselskii’s
fixed point theorem established by Burton (see [10, Theorem 3] and [14]). For details on Krasnoselskii’s
theorem, we refer the reader to [23]. We present our main results on the stability in Section 4.

In this paper, we give the assumptions below that will be used in the main results.
(H1) τ : [0,∞) ∩ T → T is a positive right dense continuous (rd-continuous) function, id − τ :

[0,∞)∩T → T is an increasing mapping such that (id− τ)([0,∞)∩T) is closed, where id is the
identity function. Moreover, there exists a constant l2 > 0 such that for 0 ≤ t1 < t2

|τ(t2)− τ(t1)| ≤ l2|t2 − t1|.

(H2) ψ : [m0, 0] ∩ T → R is a rd-continuous function with m0 = −τ(0).

(H3) a : [0,∞) ∩ T → (0,∞) is a bounded rd-continuous function and there exists a constant l3 > 0
such that for 0 ≤ t1 < t2, ∣∣∣∣

t2∫
t1

a(u)∆u

∣∣∣∣ ≤ l3|t2 − t1|.
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(H4) Q : T× R → R is a Lipschitz continuous function and Q(t, 0) = 0, that is, for t1, t2 ≥ 0 and
x, y ∈ [−R,R], where R ∈ (0, 1], there exist the constants l0, EQ > 0 such that

|Q(t1, x)−Q(t2, y)| ≤ l0|t1 − t2|+ EQ|x− y|.

Also, Q is a bounded function satisfying the Carathéodory condition with respect to L1
∆([0,∞)∩

T) such that ∣∣Q(t, φ(t− τ(t)))
∣∣ ≤ qR(t) ≤

α1

2
R,

where α1 is a positive constant.

(H5) The function G : T×R×R → R satisfies the Carathéodory condition with respect to L1
∆([0,∞)∩

T), G/a is a bounded function and G(t, 0, 0) = 0 such that for t ≥ 0,∣∣G(t, φ(t), φ(t− τ(t)))
∣∣ ≤ g√2R(t) ≤ α2a(t)R,

where α2 is a positive constant.

(H6) There exists a constant J > 3 such that

J(α1 + α2) ≤ 1

and
(EQ + EQl2)l1 + l0 + 3R

(α1

2
+ α2 +

2

J

)
l3 < l1,

where l1 is a positive constant.

(H7) h : R → R is continuous and strictly increasing on [−R,R], h(0) = 0, h is differentiable on
(−R,R) with h′(x) ≤ 1 for x ∈ (−R,R).

(H8) For γ > 0 small enough,

[1 + EQ]γ + (EQ + EQl2)l1 + l0 + 3R
(α1

2
+ α2 +

2

J

)
l3 ≤ l1

and
[1 + EQ]γe⊖a(t, 0) +

3R

J
≤ R.

Also,
max

{
|H(−R)|, |H(R)|

}
≤ 2R

J
,

where H(x) = xσ − h(xσ).

(H9) t− τ(t) → ∞, e⊖a(t, 0) → 0, qR(t) → 0 and g√2R(t)

a(t) → 0 as t→ ∞.

2 Preliminaries
In this section, we consider some advanced topics in the theory of dynamic equations on a time scales.
Again, we remind that for a review of this topic we direct the reader to the monographs of Bohner
and Peterson [9] and [10].

A time scale T is a closed nonempty subset of R. For t ∈ T, the forward jump operator σ
and the backward jump operator ρ, respectively, are defined as σ(t) = inf{s ∈ T : s > t} and
ρ(t) = sup{s ∈ T : s < t}. These operators allow the elements in the time scale to be classified as
follows. We say t is right scattered if σ(t) > t and right dense if σ(t) = t. We say t is left scattered if
ρ(t) < t and left dense if ρ(t) = t. The graininess function µ : T →[0,∞) is defined by µ(t) = σ(t)− t
and gives the distance between an element and its successor. We set inf∅ = supT and sup∅ = infT.
If T has a left scattered maximum M , we define Tk = T \ {M}. Otherwise, we define Tk = T. If T
has a right scattered minimum m, we define Tk = T \ {m}. Otherwise, we define Tk = T.
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Let t ∈ Tk and let f : T → R. The delta derivative of f(t), denoted by f∆(t), is defined to be the
number (if any) with the property that for each ε > 0, there is a neighborhood U of t such that∣∣f(σ(t))− f(s)− f∆(t)[σ(t)− s]

∣∣ ≤ ε|σ(t)− s|

for all s ∈ U . If T = R, then f∆(t) = f ′(t) is the usual derivative. If T = Z, then f∆(t) = ∆f(t) =
f(t+ 1)− f(t) is the forward difference of f at t.

A function f is rd-continuous, f ∈ Crd = Crd(T,R), if it is continuous at every right dense point
t ∈ T and its left-hand limits exist at each left dense point t ∈ T. The function f : T → R is
differentiable on Tk provided f∆(t) exists for all t ∈ Tk.

We are now ready to state some properties of the delta-derivative of f . Note that fσ(t) = f(σ(t)).

Theorem 2.1 ([9, Theorem 1.20]). Assume f, g : T → R are differentiable at t ∈ Tk and let α be a
scalar.

(i) (f + g)∆(t) = f∆(t) + g∆(t).

(ii) (αf)∆(t) = αf∆(t).

(iii) The product rules

(fg)∆(t) = f∆(t)g(t) + fσ(t)g∆(t),

(fg)∆(t) = f(t)g∆(t) + f∆(t)gσ(t).

(iv) If g(t)gσ(t) ̸= 0, then (f
g

)∆

(t) =
f∆(t)g(t)− f(t)g∆(t)

g(t)gσ(t)
.

The next theorem is the chain rule on time scales (see [9, Theorem 1.93]).

Theorem 2.2 (Chain Rule). Assume v : T → R is strictly increasing and T̃ := v(T) is a time scale.
Let w : T̃ → R. If v∆(t) and w∆̃(v(t)) exist for t ∈ Tk, then

(w ◦ v)∆ = (w∆̃ ◦ v)v∆.

In the sequel, we will need to differentiate and integrate functions of the form f(t−τ(t)) = f(v(t)),
where v(t) := t− τ(t). Our next theorem is the substitution rule (see [9, Theorem 1.98]).

Theorem 2.3 (Substitution). Assume v : T → R is strictly increasing and T̃ := v(T) is a time scale.
If f : T → R is an rd-continuous function and v is differentiable with an rd-continuous derivative,
then for a, b ∈ T,

b∫
a

f(t)v∆(t)∆t =

v(b)∫
v(a)

(f ◦ v−1)(s) ∆̃s.

A function p : T → R is said to be regressive provided 1 + µ(t)p(t) ̸= 0 for all t ∈ Tk. The set of
all regressive rd-continuous functions f : T → R is denoted by R. The set of all positively regressive
functions R+ is given by R+={f ∈R : 1+µ(t)f(t)> 0 for all t ∈ T}.

Let p ∈ R and µ(t) ̸= 0 for all t ∈ T. The exponential function on T is defined by

ep(t, s) = exp
( t∫

s

1

µ(z)
log(1 + µ(z)p(z))∆z

)
.

It is well known that if p ∈ R+, then ep(t, s) > 0 for all t ∈ T. Also, the exponential function
y(t) = ep(t, s) is the solution to the initial value problem y∆ = p(t)y, y(s) = 1. Other properties of
the exponential function are given by the following lemma.
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Lemma 2.1 ([9, Theorem 2.36]). Let p, q ∈ R. Then

(i) e0(t, s) = 1 and ep(t, t) = 1,

(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s),

(iii) 1
ep(t,s)

= e⊖p(t, s), where ⊖p(t) = − p(t)
1+µ(t)p(t) ,

(iv) ep(t, s) =
1

ep(s,t)
= e⊖p(s, t),

(v) ep(t, s)ep(s, r) = ep(t, r),

(vi) e∆p ( · , s) = pep( · , s) and ( 1
ep( · ,s) )

∆ = − p(t)
eσp ( · ,s)

.

Lemma 2.2 ([1]). If p ∈ R+, then

0 < ep(t, s) ≤ exp
( t∫

s

p(u)∆u

)
, ∀ t ∈ T.

Corollary 2.1 ([1]). If p ∈ R+ and p(t) < 0 for all t ∈ T, then for all s ∈ T with s ≤ t we have

0 < ep(t, s) ≤ exp
( t∫

s

p(u)∆u

)
< 1.

3 The inversion and the fixed point theorem
We begin this section with the following

Lemma 3.1. x is a solution of equation (1.1) if and only if

x(t) =
[
ψ(0)−Q(0, ψ(−τ(0)))

]
e⊖a(t, 0) +

t∫
0

a(s)e⊖a(t, s)H(x(s))∆s+Q(t, x(t− τ(t)))

+

t∫
0

e⊖a(t, s)
[
− a(s)Qσ(s, x(s− τ(s))) +G

(
s, x(s), x(s− τ(s))

)]
∆s, (3.1)

where
H(x) = xσ − h(xσ). (3.2)

Proof. Let x be a solution of (1.1). Rewrite equation (1.1) as

(
x(t)−Q(t, x(t− τ(t)))

)∆
+ a(t)

[
xσ(t)−Qσ(t, x(t− τ(t)))

]
= a(t)

[
xσ(t)− h(xσ(t))

]
− a(t)Qσ(t, x(t− τ(t))) +G

(
t, x(t), x(t− τ(t))

)
.

Multiplying both sides of the above equation by ea(t, 0) and then integrating from 0 to t, we obtain

t∫
0

(
(x(s)−Q(s, x(s− τ(s))))ea(s, 0)

)∆
∆s =

t∫
0

a(s)
[
xσ(s)− h(xσ(s))

]
ea(s, 0)∆s

+

t∫
0

[
− a(s)Qσ(s, x(s− τ(s))) +G

(
s, x(s), x(s− τ(s))

)]
ea(s, 0)∆s.
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As a consequence, we arrive at[
x(t)−Q(t, x(t− τ(t)))

]
ea(t, 0)− ψ(0) +Q(0, ψ(−τ(0)))

=

t∫
0

a(s)[xσ(s)− h(xσ(s))]ea(s, 0)∆s

+

t∫
0

[
− a(s)Qσ(s, x(s− τ(s))) +G

(
s, x(s), x(s− τ(s))

)]
ea(s, 0) ,∆s.

By dividing both sides of the above equation by ea(t, 0), we obtain

x(t)−Q(t, x(t− τ(t)))−
[
ψ(0)−Q(0, ψ(−τ(0)))

]
e⊖a(t, 0)

=

t∫
0

a(s)[xσ(s)− h(xσ(s))]e⊖a(t, s)∆s

+

t∫
0

[
− a(s)Qσ(s, x(s− τ(s))) +G

(
s, x(s), x(s− τ(s))

)]
e⊖a(t, s)∆s. (3.3)

The converse implication is easily obtained and the proof is complete.

Now, we give some definitions which will be used in this paper.

Definition 3.1. The map f : [0,∞) ∩ T×Rn → R is an L1
∆-Carathéodory function if it satisfies the

following conditions:

(i) for each z ∈ Rn, the mapping t 7→ f(t, z) is ∆-measurable,

(ii) for almost all t ∈ [0,∞) ∩ T, the mapping z 7→ f(t, z) is continuous on Rn,

(iii) for each r > 0, there exists αr ∈ L1
∆([0,∞) ∩ T,R+) such that for almost all t ∈ [0,∞) ∩ T and

for all z such that |z| < r, we have |f(t, z)| ≤ αr(t).

T. A. Burton studied the theorem of Krasnoselskii (see [14] and [23]) and observed (see [11]) that
Krasnoselskii’s result may be more interesting in applications with certain changes, and formulated
Theorem 3.1 below (see [11] for its proof).

Definition 3.2. Let (M, d) be a metric space and assume that B : M → M. B is said to be a large
contraction if for φ, ϕ ∈ M, with φ ̸= ϕ, we have d(Bφ,Bϕ) < d(φ, ϕ), and if ∀ ε > 0, ∃ δ < 1 such
that [

φ, ϕ ∈ M, d(φ, ϕ) ≥ ε
]

=⇒ d(Bφ,Bϕ) < δd(φ, ϕ).

It is proved in [11] that a large contraction defined on a closed bounded and complete metric space
has a unique fixed point.

Theorem 3.1 (Krasnoselskii–Burton). Let M be a closed bounded convex nonempty subset of a
Banach space (χ, ∥ · ∥). Suppose that A and B map M into M such that

(i) A is continuous and AM is contained in a compact subset of M,

(ii) B is large contraction,

(iii) x, y ∈ M, implies Ax+By ∈ M.

Then there exists z ∈ M with z = Az +Bz.

Here we manipulate the function spaces defined on infinite t-intervals. So, for the compactness,
we need an extension of Arzela–Ascoli’s theorem. This extension is taken from [14, Theorem 1.2.2,
p. 20] and is presented as follows.
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Theorem 3.2. Let q : [0,∞) ∩ T → R+ be an rd-continuous function such that q(t) → 0 as t → ∞.
If {φn(t)} is an equicontinuous sequence of Rm-valued functions on [0,∞) ∩ T with |φn(t)| ≤ q(t) for
t ∈ [0,∞)∩T, then there is a subsequence that converges uniformly on [0,∞)∩T to an rd-continuous
function φ(t) with |φ(t)| ≤ q(t) for [0,∞) ∩ T, where | · | denotes the Euclidean norm on Rm.

4 The stability by Krasnoselskii–Burton’s theorem
From the existence theory, which can be found in [14] or [16], we conclude that for each rd-continuous
initial function ψ ∈ Crd([m0, 0]∩T,R), there exists an rd-continuous solution x(t, 0, ψ) which satisfies
(1.1) on an interval [0, σ)∩T for some σ > 0 and x(t, 0, ψ) = ψ(t), t ∈ [m0, 0]∩T. We refer the reader
to [14] for the stability definitions.

Definition 4.1. The zero solution of (1.1) is said to be stable at t = 0 if for each ε > 0, there exists
δ > 0 such that ψ : [m0, 0] ∩ T → (−δ, δ) implies that |x(t)| < ε for t ≥ m0.

Definition 4.2. The zero solution of (1.1) is said to be asymptotically stable if it is stable at t = 0
and there exists δ > 0 such that for any rd-continuous function ψ : [m0, 0]∩T → (−δ, δ), the solution
x with x(t) = ψ(t) on [m0, 0] ∩ T tends to zero as t→ ∞.

To apply Theorem 3.1, we need to define a Banach space χ, a closed bounded convex subset M
of χ and construct two mappings; one large contraction and the other a compact operator. So, let
ω : [m0,∞) ∩ T → [1,∞) be any strictly increasing and rd-continuous function with ω(m0) = 1,
ω(t) → ∞ as t → ∞. Let (S, | · |ω) be the Banach space of rd-continuous φ : [m0,∞) ∩ T → R for
which

|φ|ω = sup
t≥m0

∣∣∣φ(t)
ω(t)

∣∣∣ <∞.

Let R ∈ (0, 1] and define the set

M :=
{
φ ∈ S : φ is l1-Lipschitzian,

|φ(t)| ≤ R, t ∈ [m0,∞) ∩ T and φ(t) = ψ(t) if t ∈ [m0, 0] ∩ T
}
.

Clearly, if {φn} is a sequence of l1-Lipschitzian functions converging to some function φ, then

|φ(t)− φ(s)| =
∣∣φ(t)− φn(t) + φn(t)− φn(s) + φn(s)− φ(s)

∣∣
≤ |φ(t)− φn(t)|+ |φn(t)− φn(s)|+ |φn(s)− φ(s)|
≤ l1|t− s|

as n → ∞, which implies that φ is l1-Lipschitzian. It is clear that M is closed convex and bounded.
For φ ∈ M and t ≥ 0, we define by (3.1) the mapping P : M → S as follows:

(Pφ)(t) =
[
ψ(0)−Q(0, ψ(−τ(0)))

]
e⊖a(t, 0) +

t∫
0

a(s)e⊖a(t, s)H(φ(s))∆s+Q(t, φ(t− τ(t)))

+

t∫
0

e⊖a(t, s)
[
− a(s)Qσ(s, φ(s− τ(s))) +G

(
s, φ(s), φ(s− τ(s))

)]
∆s. (4.1)

Therefore, we express mapping (4.1) as

Pφ = Aφ+Bφ,
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where A,B : M → S are given by

(Aφ)(t) = Q(t, φ(t− τ(t)))

+

t∫
0

e⊖a(t, s)
[
− a(s)Qσ(s, φ(s− τ(s))) +G

(
s, φ(s), φ(s− τ(s))

)]
∆s, (4.2)

(Bφ)(t) =
[
ψ(0)−Q(0, ψ(−τ(0)))

]
e⊖a(t, 0) +

t∫
0

a(s)e⊖a(t, s)H(φ(s))∆s. (4.3)

By applying Theorem 3.1, we need to prove that P has a fixed point φ on the set M, where
x(t, 0, ψ) = φ(t) for t ≥ 0 and x(t, 0, ψ) = ψ(t) on [m0, 0]∩T, x(t, 0, ψ) satisfies (1.1) and |x(t, 0, ψ)| ≤ R
with R ∈ (0, 1].

By a series of steps we will prove the fulfillment of (i), (ii) and (iii) of Theorem 3.1.

Lemma 4.1. For A defined in (4.2), suppose that (H1)–(H6) hold. Then A : M → M and A is
continuous and AM is contained in a compact subset of M.

Proof. Let A be defined by (4.2). Then for any φ ∈ M, we have

|(Aφ)(t)| ≤ |Q(t, φ(t− τ(t)))|

+

t∫
0

e⊖a(t, s)
[
a(s)|Qσ(s, φ(s− τ(s)))|+

∣∣G(s, φ(s), φ(s− τ(s))
)∣∣ ]∆s

≤ qR(t) +R

t∫
0

e⊖a(t, s)
(
a(s)

qR(s)

R
+
g√2R(s)

R

)
∆s ≤ α1

2
R+

α1

2
R+ α2R ≤ R

J
< R.

That is, |(Aφ)(t)| < R. Second, we show that for any φ ∈ M, the function Aφ is l1-Lipschitzian. Let
φ ∈ M, and let 0 ≤ t1 < t2, then

∣∣(Aφ)(t2)− (Aφ)(t1)
∣∣ ≤ ∣∣∣Q(t2, φ(t2 − τ(t2)))−Q(t1, φ(t1 − τ(t1)))

∣∣∣
+

∣∣∣∣
t2∫
0

e⊖a(t2, s)
[
− a(s)Qσ(s, φ(s− τ(s))) +G

(
s, φ(s), φ(s− τ(s))

)]
∆s

−
t1∫
0

e⊖a(t1, s)
[
− a(s)Qσ(s, φ(s− τ(s))) +G

(
s, φ(s), φ(s− τ(s))

)]
∆s

∣∣∣∣. (4.4)

By hypotheses (H1), (H3) and (H4), we have∣∣∣Q(t2, φ(t2 − τ(t2)))−Q(t1, φ(t1 − τ(t1)))
∣∣∣

≤ l0|t2 − t1|+ EQl1
∣∣(t2 − t1)− (τ(t2)− τ(t1))

∣∣ ≤ (l0 + EQl1 + EQl1l2)|t2 − t1|, (4.5)

where l1 is the Lipschitz constant of φ. In the same way, by (H3)–(H5), we have

∣∣∣∣
t2∫
0

e⊖a(t2, s)
[
− a(s)Qσ(s, φ(s− τ(s))) +G

(
s, φ(s), φ(s− τ(s))

)]
∆s

−
t1∫
0

e⊖a(t1, s)
[
− a(s)Qσ(s, φ(s− τ(s))) +G

(
s, φ(s), φ(s− τ(s))

)]
∆s

∣∣∣∣
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≤
∣∣∣∣

t1∫
0

[
− a(s)Qσ(s, φ(s− τ(s))) +G

(
s, φ(s), φ(s− τ(s))

)]
∆s · e⊖a(t1, s)(e⊖a(t2, t1)− 1)∆s

∣∣∣∣
+

∣∣∣∣
t2∫

t1

e⊖a(t2, s)
[
− a(s)Qσ(s, φ(s− τ(s))) +G

(
s, φ(s), φ(s− τ(s))

)]
∆s

∣∣∣∣
≤

(α1

2
+ α2

)
R|e⊖a(t2, t1)− 1|

t1∫
0

a(s)e⊖a(t1, s)∆s

+

t2∫
t1

e⊖a(t2, s)
(
a(s)qR(s) + g√2R(s)

)
∆s

≤
(α1

2
+ α2

)
R

t2∫
t1

a(s)∆s+

t2∫
t1

a(s)e⊖a(t2, s)

( s∫
t1

(
a(r)qR(r) + g√2R(r)

)
∆r

)∆

∆s

≤
(α1

2
+ α2

)
R

t2∫
t1

a(s)∆s+

[
e⊖a(t2, s)

s∫
t1

(
a(r)qR(r) + g√2R(r)

)
∆r

]t2
t1

+

t2∫
t1

a(s)e⊖a(t2, s)

s∫
t1

(
a(r)qR(r) + g√2R(r)

)
∆r∆s

≤
(α1

2
+ α2

)
R

t2∫
t1

a(s)∆s+

t2∫
t1

(
a(s)qR(s) + g√2R(s)

)
∆s

(
1 +

t2∫
t1

a(s)e⊖a(t2, s)∆s

)

≤
(α1

2
+ α2

)
R

t2∫
t1

a(s)∆s+ 2

t2∫
t1

(
a(s)qR(s) + g√2R(s)

)
∆s

≤
(α1

2
+ α2

)
R

t2∫
t1

a(s)∆s+ 2
(α1

2
+ α2

)
R

t2∫
t1

a(s)∆s ≤ 3R
(α1

2
+ α2

)
l3|t2 − t1|. (4.6)

Thus, by substituting (4.5) and (4.6) into (4.4), we obtain∣∣(Aφ)(t2)− (Aφ)(t1)
∣∣ ≤ (l0 + EQl1 + EQl1l2)|t2 − t1|+ 3R

(α1

2
+ α2

)
l3|t2 − t1| ≤ l1|t2 − t1|.

This shows that Aφ is l1-Lipschitzian if φ is. This completes the proof that A : M→ M.
Since Aφ is l1-Lipschitzian, we have that AM is equicontinuous, which implies that the set AM

resides in a compact set in the space (S, | · |ω).
Now, we show that A is continuous in the weighted norm letting φn ∈ M, where n is a positive

integer such that φn → φ as n→ ∞. Then

∣∣∣ (Aφn)(t)− (Aφ)(t)

ω(t)

∣∣∣ ≤ ∣∣∣Q(t, φn(t− τ(t)))−Q(t, φ(t− τ(t)))
∣∣∣
ω

+

t∫
0

a(s)e⊖a(t, s)
∣∣∣Qσ(s, φn(s− τ(s)))−Qσ(s, φ(s− τ(s)))

∣∣∣
ω
∆s

+

t∫
0

e⊖a(t, s)
∣∣∣G(s, φn(s), φn(s− τ(s))

)
−G

(
s, φ(s), φ(s− τ(s))

)∣∣∣
ω
∆s.
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By the dominated convergence theorem, lim
n→∞

|(Aφn)(t)− (Aφ)(t)|ω = 0. Then A is continuous. This
completes the proof that A : M → M is continuous and AM is contained in a compact subset
of M.

Now, we state an important result implying that the mappingH given by (3.2) is a large contraction
on the set M. This result was already obtained in [1] and for convenience we present below its proof.

Theorem 4.1. Let h : R → R be a function satisfying (H7). Then the mapping H in (3.2) is a large
contraction on the set M.

Proof. Let φσ, ϕσ ∈ M with φσ ̸= ϕσ. Then φσ(t) ̸= ϕσ(t) for some t ∈ T. Let us denote the set of
all such t by D(φ, ϕ), i.e.,

D(φ, ϕ) =
{
t ∈ T : φσ(t) ̸= ϕσ(t)

}
.

For all t ∈ D(φ, ϕ), we have

|(Hφ)(t)− (Hϕ)(t)| ≤
∣∣φσ(t)− ϕσ(t)− h(φσ(t)) + h(ϕσ(t))

∣∣
≤ |φσ(t)− ϕσ(t)|

∣∣∣1− h(φσ(t))− h(ϕσ(t))

φσ(t)− ϕσ(t)

∣∣∣. (4.7)

Since h is a strictly increasing function, we have

h(φσ(t))− h(ϕσ(t))

φσ(t)− ϕσ(t)
> 0 for all t ∈ D(φ, ϕ). (4.8)

For each fixed t ∈ D(φ, ϕ), we define the interval It ⊂ [−R,R] by

It =

{
(φσ(t), ϕσ(t)) if φσ(t) < ϕσ(t),

(ϕσ(t), φσ(t)) if ϕσ(t) < φσ(t).

The Mean Value Theorem implies that for each fixed t ∈ D(φ, ϕ) there exists a real number ct ∈ It
such that

h(φσ(t))− h(ϕσ(t))

φσ(t)− ϕσ(t)
= h′(ct).

By (H7), we have

0 ≤ inf
s∈(−R,R)

h′(s) ≤ inf
s∈It

h′(s) ≤ h′(ct) ≤ sup
s∈It

h′(s) ≤ sup
s∈(−R,R)

h′(s) ≤ 1. (4.9)

Hence, by (4.7)–(4.9), we obtain

|(Hφ)(t)− (Hϕ)(t)| ≤ |φσ(t)− ϕσ(t)|
∣∣∣1− inf

s∈(−R,R)
h′(s)

∣∣∣ (4.10)

for all t ∈ D(φ, ϕ). This implies a large contraction in the supremum norm. To see this, choose a
fixed ε ∈ (0, 1) and assume that φ and ϕ are two functions in M satisfying

ε ≤ sup
t∈(−R,R)

|φ(t)− ϕ(t)| = ∥φ− ϕ∥.

If |φσ(t)− ϕσ(t)| ≤ ε
2 for some t ∈ D(φ, ϕ), then we get by (4.9) and (4.10) that∣∣(Hφ)(t)− (Hϕ)(t)

∣∣ ≤ 1

2
|φσ(t)− ϕσ(t)| ≤ 1

2
∥φ− ϕ∥. (4.11)

Since h is continuous and strictly increasing, the function h(s+ ε
2 )− h(s) attains its minimum on the

closed and bounded interval [−R,R]. Thus, if ε
2 ≤ |φσ(t)− ϕσ(t)| for some t ∈ D(φ, ϕ), then by (H7)

we conclude that
1 ≥ h(φσ(t))− h(ϕσ(t))

φσ(t)− ϕσ(t)
> λ,
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where
λ :=

1

2R
min

{
h
(
s+

ε

2

)
− h(s) : s ∈ [−R,R]

}
> 0.

Hence, (4.7) implies ∣∣(Hφ)(t)− (Hϕ)(t)
∣∣ ≤ (1− λ)∥φ− ϕ∥. (4.12)

Consequently, combining (4.11) and (4.12) we obtain∣∣(Hφ)(t)− (Hϕ)(t)
∣∣ ≤ δ∥φ− ϕ∥,

where
δ = max

{1

2
, 1− λ

}
.

The relations of (H8) will be used below in Lemma 4.2 and Theorem 4.2 to show that if ε = R
and ∥ψ∥ < γ, then the solution satisfies |x(t, 0, ψ)| < ε.

Lemma 4.2. Let B be defined by (4.3). Suppose that (H1)–(H3), (H7) and (H8) hold. Then B :
M → M and B is a large contraction.

Proof. Let B be defined by (4.3). Obviously, B is continuous with the weighted norm. Let φ ∈ M,

|(Bφ)(t)| ≤
∣∣ψ(0)−Q(0, ψ(−τ(0)))

∣∣e⊖a(t, 0) +

t∫
0

a(s)e⊖a(t, s)|H(φ(s))|∆s

≤ [1 + EQ]γe⊖a(t, 0) +

t∫
0

a(s)e⊖a(t, s)max
{
|H(−R)|, |H(R)|

}
∆s ≤ R,

and we use a method like in Lemma 4.1 and deduce that for any φ ∈ M, the function Bφ is l1-
Lipschitzian, which implies B : M → M.

By Theorem 4.1, H is a large contraction on M, then for any φ, ϕ ∈ M with φ ̸= ϕ and for any
ε > 0, from the proof of that theorem, we have found that δ < 1 such that

∣∣∣Bφ(t)−Bϕ(t)

ω(t)

∣∣∣ ≤ t∫
0

a(s)e⊖a(t, s)
∣∣H(φ(s))−H(ϕ(s))

∣∣
ω
∆s ≤ δ|φ− ϕ|ω.

Theorem 4.2. Assume that (H1)–(H8) hold. Then the zero solution of (1.1) is stable.

Proof. By Lemmas 4.1 and 4.3, A : M → M is continuous and AM is contained in a compact set.
Also, from Lemma 4.2, the mapping B : M → M is a large contraction. First, we show that if
φ, ϕ ∈ M, we have ∥Aφ+Bϕ∥ ≤ R. Let φ, ϕ ∈ M with ∥φ∥, ∥ϕ∥ ≤ R, then

∥Aφ+Bϕ∥ ≤ (1 + EQ)γe⊖a(t, 0) + (α1 + α2)R+
2R

J
≤ (1 + EQ)γe⊖a(t, 0) +

R

J
+

2R

J
≤ R.

Next, we prove that for any φ, ϕ ∈ M, the function Aφ + Bϕ is l1-Lipschitzian. Let φ, ϕ ∈ M, and
let 0 ≤ t1 < t2, then∣∣(Aφ+Bϕ)(t2)− (Aφ+Bϕ)(t1)

∣∣
≤

(
[1 + EQ]γ + (EQ + EQl2)l1 + l0 + 3R

(α1

2
+ α2 +

2

J

)
l3

)
|t2 − t1| ≤ l1|t2 − t1|.

Clearly, all the hypotheses of the Krasnoselskii–Burton theorem are satisfied. Thus there exists a fixed
point z ∈ M such that z = Az + Bz. By Lemma 3.1, this fixed point is a solution of (1.1). Hence,
the zero solution of (1.1) is stable.
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Remark 1. When T = R, Theorem 4.2 reduces to Theorem 4 of [21]. Therefore, Theorem 4.2 is a
generalization of Theorem 4 of [21].

Now, for the asymptotic stability, define M0 by

M0 :=
{
φ ∈ S : φ is l1-Lipschitzian, |φ(t)| ≤ R, t ∈ [m0,∞) ∩ T,

φ(t) = ψ(t) if t ∈ [m0, 0] ∩ T and |φ(t)| → 0 as t→ ∞
}
.

All calculations in the proof of Theorem 4.2 hold with ω(t) = 1, when | · |ω is replaced by the supremum
norm ∥ · ∥.

Lemma 4.3. Let (H1)–(H6) and (H9) hold. Then the operator A maps M into a compact subset
of M.

Proof. First, we deduce by Lemma 4.1 that AM is equicontinuous. Next, we notice that for an
arbitrary φ ∈ M, we have

|(Aφ)(t)| ≤ qR(t) +

t∫
0

e⊖a(t, s)a(s)
(
qR(s) +

g√2R(s)

a(s)

)
∆s := q(t).

We see that q(t) → 0 as t→ ∞ which implies that the set AM resides in a compact set in the space
(S, ∥ · ∥) by Theorem 3.2.

Theorem 4.3. Assume that (H1)–(H9) hold. Then the zero solution of (1.1) is asymptotically stable.

Proof. Note that all of the steps in the proof of Theorem 4.2 hold with ω(t) = 1 when | · |ω is replaced
by the supremum norm ∥ · ∥. It suffices to show that for φ ∈ M0 we have Aφ→ 0 and Bφ→ 0. Let
φ ∈ M0 be fixed, we will prove that |(Aφ)(t)| → 0 as t→ ∞. As above, we get

|(Aφ)(t)| ≤
∣∣Q(t, φ(t− τ(t)))

∣∣
+

t∫
0

e⊖a(t, s)
[
a(s)

∣∣Qσ(s, φ(s− τ(s)))
∣∣+ ∣∣G(s, φ(s), φ(s− τ(s))

)∣∣ ]∆s.
First of all, we have ∣∣Q(t, φ(t− τ(t)))

∣∣ ≤ qR(t) → 0 as t→ ∞.

Second, let ε > 0 be given. Find T such that |φ(t− τ(t))|, |φ(t)| < ε for t ≥ T . Then we have

t∫
0

e⊖a(t, s)
[
a(s)

∣∣Qσ(s, φ(s− τ(s)))
∣∣+ ∣∣G(s, φ(s), φ(s− τ(s))

)∣∣ ]∆s
= e⊖a(t, T )

T∫
0

e⊖a(T, s)
[
a(s)

∣∣Qσ(s, φ(s− τ(s)))
∣∣+ ∣∣G(s, φ(s), φ(s− τ(s))

)∣∣ ]∆s
+

t∫
T

e⊖a(t, s)
[
a(s)

∣∣Qσ(s, φ(s− τ(s)))
∣∣+ ∣∣G(s, φ(s), φ(s− τ(s))

)∣∣ ]∆s
≤ e⊖a(t, T )

(α1

2
+ α2

)
R+

(α1

2
+ α2

)
ε.

By (H9), the term e⊖a(t, T )(
α1

2 + α2)R is arbitrarily small as t → ∞. In the same way, we obtain
Bφ → 0. Then, by the Krasnoselskii–Burton theorem, there exists a fixed point z ∈ M0 such that
z = Az +Bz. By Lemma 3.1, this fixed point is a solution of (1.1). Hence, the zero solution of (1.1)
is asymptotically stable.
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Remark 2.

1) When T = R, Theorem 4.3 reduces to Theorem 5 of [21]. Therefore, Theorem 4.3 is a general-
ization of Theorem 5 of [21].

2) The sufficient conditions (H1)–(H9) of Theorem 4.3 are essential for applying Theorems 3.1 and
3.2.
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