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Abstract. In this paper, we consider the existence of solutions and some properties of the set
of solutions, as well as the solution operator for a system of differential inclusions with impulse
effects. For the Cauchy problem, under various assumptions on the nonlinear term, we present several
existence results. We appeal to some fixed point theorems in vector metric spaces. Finally, we prove
some characterizing geometric properties about the structure of the solution set such as AR, Rδ,
contractibility and acyclicity, with these properties corresponding to Aronszajn–Browder–Gupta type
results.
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ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ ÛÄÓßÀÅËÉËÉÀ ÉÌÐÖËÓÖÒÉ Ä×ÄØÔÉÓ ÌØÏÍÄ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÜÀÍÀÒÈÄÁÉÓ
ÓÉÓÔÄÌÉÓ ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄÁÏÁÀ ÃÀ ÀÌÏÍÀáÓÍÈÀ ÓÉÌÒÀÅËÉÓ ÆÏÂÉÄÒÈÉ ÈÅÉÓÄÁÀ, ÀÂÒÄÈÅÄ ÂÀÍ-
áÉËÖËÉÀ ÀÌÏáÓÍÉÓ ÏÐÄÒÀÔÏÒÉ. ÊÏÛÉÓ ÀÌÏÝÀÍÉÓÈÅÉÓ, ÓáÅÀÃÀÓáÅÀ ÃÀÛÅÄÁÄÁÉÈ ÀÒÀßÒ×ÉÅ
ßÄÅÒÆÄ, ÌÏÚÅÀÍÉËÉÀ ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄÁÏÁÉÓ ÒÀÌÃÄÍÉÌÄ ÛÄÃÄÂÉ. ÊÅËÄÅÉÓÀÓ ÂÀÌÏÚÄÍÄÁÖËÉÀ
ÆÏÂÉÄÒÈÉ ÈÄÏÒÄÌÀ ÅÄØÔÏÒÖË ÌÄÔÒÉÊÖË ÓÉÅÒÝÄÄÁÛÉ ÖÞÒÀÅÉ ßÄÒÔÉËÉÓ ÛÄÓÀáÄÁ. ÃÀÁÏËÏÓ,
ÃÀÌÔÊÉÝÄÁÖËÉÀ ÀÌÏÍÀáÓÍÈÀ ÓÉÌÒÀÅËÉÓ ÓÔÒÖØÔÖÒÉÓ ÆÏÂÉÄÒÈÉ ÃÀÌÀáÀÓÉÀÈÄÁÄËÉ ÂÄÏÌÄÔ-
ÒÉÖËÉ ÈÅÉÓÄÁÀ, ÒÏÂÏÒÉÝÀÀ AR, Rδ , ÊÖÌÛÅÀÃÏÁÀ ÃÀ ÀÝÉÊËÖÒÏÁÀ. ÄÓ ÈÅÉÓÄÁÄÁÉ ÛÄÄÓÀÁÀÌÄÁÀ
ÀÉÒÏÍÛÀÉÍ-ÁÒÏÖÃÄÒ-ÂÖ×ÈÀÓ ÔÉÐÉÓ ÛÄÃÄÂÄÁÓ.
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1 Introduction
Differential equations with impulses were considered for the first time by Milman and Myshkis [41]
and then followed by a period of active research which culminated with the monograph by Halanay
and Wexler [31]. The dynamics of many processes in physics, population dynamics, biology, medicine,
and so on, may be subject to abrupt changes such as shocks or perturbations (see, e.g., [1, 39, 40]
and the references therein). These perturbations may be seen as impulses. For instance, in the
periodic treatment of some diseases, impulses correspond to the administration of a drug treatment.
In environmental sciences, impulses correspond to seasonal changes of the water level of artificial
reservoirs. Their models are described by impulsive differential equations and inclusions. Important
contributions to the study of the mathematical aspects of such equations have been undertaken in
[25,37,50] among others.

In this work, we consider the following problem:

x′(t) ∈ F1(t, x(t), y(t)), a.e. t ∈ [0, 1],

y′(t) ∈ F2(t, x(t), y(t)), a.e. t ∈ [0, 1],

x(t+k ) = x(t−k ) + I1,k(x(tk), y(tk)), k = 1, . . . ,m,

y(t+k ) = y(t−k ) + I2,k(x(tk), y(tk)), k = 1, . . . ,m,

x(0) = x0, y(0) = y0,

(1.1)

where 0 = t0 < t1 < · · · < tm < 1, Fi : [0, 1] × R × R → P(R), i = 1, 2, is a multifunction and
I1,k, I2,k ∈ C(R× R,R). The notations x(t+k ) = lim

h→0+
x(tk + h) and x(t−k ) = lim

h→0+
x(tk − h) stand for

the right and the left limits of the function y at t = tk, respectively.
For single valued framework, the above system was used to analyze initial value and boundary value

problems for nonlinear competitive or cooperative differential systems from mathematical biology [42]
and mathematical economics [34]; this can be set in the operator form (1.1).

Recently, Precup [48] proved the role of matrix convergence and vector metric in the study of
semilinear operator systems. In recent years, many authors studied the existence of solutions for
systems of differential equations and impulsive differential equations by using vector version of fixed
point theorems (see [11,12,26,32,35,44–46,49] and in the references therein).

In general, for the ordinary Cauchy problems, the uniqueness property does not hold. Kneser [36]
proved in 1923 that the solution set is a continuum, i.e., closed and connected. For differential
inclusions, Aronszajn [7] proved in 1942 that the solution set is, in fact, compact and acyclic, and he
even specified this continuum to be an Rδ-set.

An analogous result was obtained for differential inclusions with upper semi-continuous (u.s.c.)
convex valued nonlinearities by several authors (we cite [2–4,6, 24,30,33]).

The topological and geometric structure of solution sets for impulsive differential inclusions on
compact intervals, which were investigated in [18, 27–29, 53], are a contractibility, AR, acyclicity and
Rδ-sets. Also, the topological structure of solution sets for some Cauchy problems without impulses
posed on non-compact intervals were studied by various techniques in [4, 10,16,17].

The goal of this paper is to study the existence of solutions and solution sets for systems of impulsive
differential inclusions with initial conditions. The paper is organized as follows. In Section 2, we recall
some definitions and facts which will be needed in our analysis. In Section 3, we prove some existence
results based on a nonlinear alternative of Leray–Schauder type theorem in generalized Banach spaces
in the convex case, and a multivalued version of Perov’s fixed point theorem (Theorem 2.3) for the
nonconvex case. Finally, we present some topological and geometric structures for solution sets of (1.1).

2 Preliminaries
In this section, we introduce notations and definitions which are used throughout this paper.
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Denote by

P(X) =
{
Y ⊂ X : Y ̸= ∅

}
;

Pcl(X) =
{
Y ∈ P(X) : Y closed

}
;

Pb(X) =
{
Y ∈ P(X) : Y bounded

}
;

Pcv(X) =
{
Y ∈ P(X) : Y convex

}
;

Pcp(X) =
{
Y ∈ P(X) : Y compact

}
;

Mn×n(R+) : Designate the set of real nonnegative n× n matrices.

Definition 2.1. Let X be a nonempty set. By a vector-valued metric on X we mean a map d :
X ×X → Rn with the following properties:

(i) d(u, v) ≥ 0 for all u, v ∈ X, if d(u, v) = 0 if and only if u = v;

(ii) d(u, v) = d(v, u) for all u, v ∈ X;

(iii) d(u, v) ≤ d(u,w) + d(w, v) for all u, v, w ∈ X.

We call the pair (X, d) a generalized metric space. For r = (r1, . . . , rn) ∈ Rn+, we denote by

B(x0, r) =
{
x ∈ X : d(x0, x) < r

}
the open ball of radius r centered at x0 and by

B(x0, r) =
{
x ∈ X : d(x0, x) ≤ r

}
the closed ball of radius r centered at x0.

We mention that for a generalized metric space, the notation of an open subset, closed set,
convergence, Cauchy sequence and completeness are similar to those in usual metric spaces. If,
x, y ∈ Rn, x = (x1, . . . , xn), y = (y1, . . . , yn), by x ≤ y we mean xi ≤ yi for all i = 1, . . . , n. Also,
|x| = (|x1|, . . . , |xn|) and max(x, y) = (max(x1, y1), . . . ,max(xn, yn)). If c ∈ R, then x ≤ c means
xi ≤ c for each i = 1, . . . , n.

Definition 2.2. A square matrix of real numbers is said to be convergent to zero if and only if its
spectral radius ρ(M) is strictly less than 1. In other words, this means that all the eigenvalues of M
are in the open unit disc (i.e., |λ| < 1 for every λ ∈ C with det(M − λI) = 0, where I denotes the
unit matrix of Mn×n(R)).

Theorem 2.1 ( [51]). Let M ∈ Mn×n(R+). The following assertions are equivalent:

(i) M is convergent towards zero;

(ii) Mk → 0 as k → ∞;

(iii) the matrix (I −M) is nonsingular and

(I −M)−1 = I +M +M2 + · · ·+Mk + · · · ;

(iv) the matrix (I −M) is nonsingular and (I −M)−1 has nonnegative elements.

Definition 2.3. We say that a non-singular matrix A = (aij)1≤i,j≤n ∈ Mn×n(R) has the absolute
value property if

A−1|A| ≤ I,

where
|A| =

(
|aij |

)
1≤i,j≤n ∈ Mn×n(R).
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Definition 2.4. Let (X, d) be a generalized metric space. An operator N : X → X is said to be
contractive if there exists a convergent to zero matrix M such that

d(N(x), N(y)) ≤Md(x, y), ∀x, y ∈ X.

Theorem 2.2 ([23, 47]). Let (X, d) be a complete generalized metric space and N : X → X be a
contractive operator with Lipschitz matrix M . Then N has a unique fixed point x∗ and for each
x0 ∈ X we have

d(Nk(x0), x∗) ≤Mk(I −M)−1d(x0, n(x0)), ∀ k ∈ N.

Let (X, d) be a metric space. We denote by Hd∗ the Pompeiu–Hausdorff pseudo-metric distance
on P(X) defined as

Hd∗ : P(X)× P(X) −→ R+ ∪ {∞}, Hd∗(A,B) = max
{

sup
a∈A

d∗(a,B), sup
b∈B

d∗(A, b)
}
,

where d∗(A, b) = inf
a∈A

d∗(a, b) and d∗(a,B) = inf
b∈B

d∗(a, b). Then (Pb,cl(X),Hd∗) is a metric space and
(Pcl(X),Hd∗) is a generalized metric space. In particular, Hd∗ satisfies the triangle inequality.

Let (X, d) be a generalized metric space with

d(x, y) :=

d1(x, y)...
dn(x, y)

 .

Notice that d is a generalized metric space on X if and only if di, i = 1, . . . , n, are metrics on X.
Consider the generalized Hausdorff pseudo-metric distance

Hd : P(X)× P(X) −→ Rn+ ∪ {∞}

defined by

Hd(A,B) :=

Hd1(A,B)
...

Hdn(A,B)

 .

Definition 2.5. Let (X, d) be a generalized metric space. A multivalued operator N : X → Pcl(X)
is said to be contractive if there exists a metrix M ∈ Mn×n(R+) such that

Mk → 0 as k → ∞

and
Hd(N(u), N(v)) ≤Md(u, v), ∀u, v ∈ X.

Theorem 2.3 ([23]). Let (X, d) be a generalized complete metric space, and let N : X → Pcl(X) be
a multivalued map. Assume that there exist A,B,C ∈ Mn×n(R+) such that

Hd(N(x), N(y)) ≤ Ad(x, y) +Bd(y,N(x)) + Cd(x,N(x)), (2.1)

where A+ C converges to zero. Then there exists x ∈ X such that x ∈ N(x).

Definition 2.6. Let E be a vector space on K = R or C. By a vector-valued norm on E we mean a
map ∥ · ∥ : E → Rn with the following properties:

(i) ∥x∥ ≥ 0 for all x ∈ E; if ∥x∥ = 0, then x = (0, . . . , 0);

(ii) ∥λx∥ = |λ| ∥x∥ for all x ∈ E and λ ∈ K;

(iii) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ E.
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The pair (E, ∥ · ∥) is called a generalized normed space. If the generalized metric generated by ∥ · ∥
(i.e., d(x, y) = ∥x− y∥) is complete, then the space (E, ∥ · ∥) is called a generalized Banach space.

Lemma 2.1 ([43, Theorem 19.7]). Let Y be a separable metric space and F : [a, b] → P(Y ) be a
measurable multi-valued map with nonempty closed values. Then F has a measurable selection.

Lemma 2.2 ([38]). Let X be a Banach space. Let F : [a, b]×X → Pcp,cv(X) be an L1-Carathéodory
multifunction with SF,y ̸= ∅, and let Γ be a continuous linear operator from L1([a, b], X) to C([a, b], X).
Then the operator

Γ ◦ SF : C([0, b], X) −→ Pcp,cv(C([a, b], X)),

y −→ (Γ ◦ SF )(y) := Γ(SF,y)

has a closed graph in C([a, b], X)× C([a, b], X), where

SF,y =
{
v ∈ L1([0, b], X) : v(t) ∈ F (t, y(t)); t ∈ [a, b]

}
.

Lemma 2.3 ([23, 47]). Let X be a generalized Banach space and F : X → Pcp,cv(X) be an u.s.c.
compact multifunction. Moreover, assume that the set

A =
{
x ∈ X : x ∈ λN(x) for some λ ∈ (0, 1)

}
is bounded. Then N has at least one fixed point.

Theorem 2.4 ([23]). Let X be a generalized Banach space and N : X → X be a continuous compact
mapping. Moreover, assume that the set

K =
{
x ∈ X : x = λN(x) for some λ ∈ (0, 1)

}
is bounded. Then N has a fixed point.

Definition 2.7. Let X be a Banach space. A is called L⊗B measurable if A belongs to the σ-algebra
generated by all sets of the form I × D, where I is Lebesgue measurable in [a, b] and D is Borel
measurable in X.

Definition 2.8. A subset B ⊂ L1([a, b], X) is decomposable if for all u, v ∈ A and for every Lebesgue
measurable set I ⊂ [a, b], we have

uχ
I
+ vχ

[a,b]\I ∈ B,

where χ
I

stands for the characteristic function of the set I.

Let F : J ×X → Pcl(X) be multi-valued. Assign to F the multi-valued operator F : C(J,X) →
P(L1([a, b], X)) defined by F(y) = SF,y. The operator F is called the Nemyts’kiĭ operator associated
to F .

Definition 2.9. Let F : J×X → Pcp(X) be multi-valued. We say that F is of lower semi-continuous
type (l.s.c. type) if its associated Nemyts’kiĭ operator F is lower semi-continuous and has nonempty
closed and decomposable values.

Lemma 2.4 ([19]). Let F : [a, b]× R× R → Pcp(R) be an integrable bounded multi-valued map such
that

(a) (t, x, y) → F (t, x, y) is L ⊗ B measurable;

(b) (x, y) → F (t, x, y) is l.s.c. a.e. t ∈ [a, b].

Then F is lower semi-continuous.

Next, we state a classical selection theorem due to Bressan and Colombo.

Theorem 2.5 ( [13, 20]) (Theorem of “Bressan–Colombo” selection). Let X be a metric separable
space, and let E be a Banach space. Then each l.s.c. operator N : X → Pcl(L1([a, b], X)) which has
a decomposable closed value, also has a continuous selection.



Existence and Solution Sets for Systems of Impulsive Differential Inclusions 7

2.1 σ-selectionable multi-valued maps
The following four definitions and the theorem can be found in [22,30] (see also [8, p. 86]). Let (X, d)
and (Y, d′) be two metric spaces.

Definition 2.10. We say that a map F : X → P(Y ) is σ-Ca-selectionable if there exists a decreasing
sequence of compact-valued u.s.c. maps Fn : X → Y satisfying:

(a) Fn has a Carathédory selection for all n ≥ 0 (Fn are called Ca-selectionable);

(b) F (x) =
∩
n≥0

Fn(x) for all x ∈ X.

Definition 2.11. A single-valued map f : [0, a] ×X → Y is said to be measurable-locally-Lipschitz
(mLL) if f( · , x) is measurable for every x ∈ X, and for every x ∈ X there exist a neighborhood
Vx ⊂ X of x and an integrable function Lx : [0, a] → [0,∞) such that

d′(f(t, x1), f(t, x2)) ≤ Lx(t)d(x1, x2) for every t ∈ [0, a], x1, x2 ∈ Vx.

Definition 2.12. A multi-valued mapping F : [0, a] × X → P(Y ) is mLL-selectionable if it has an
mLL-selection.

Definition 2.13. We say that a multi-valued map ϕ : [0, a] × E → P(E) with closed values is
upper-Scorza–Dragoni if, given δ > 0, there exists a closed subset Aδ ⊂ [0, a] such that the measure
µ([0, a] \Aδ) ≤ δ and the restriction ϕδ of ϕ to Aδ × E is u.s.c.

Theorem 2.6 (see [22, Theorem 19.19]). Let E, E1 be two separable Banach spaces and let F :
[a, b] × E → Pcp,cv(E1) be an upper-Scorza–Dragoni map. Then F is σ-Ca-selectionable, the maps
Fn : [a, b]× E → P(E1), n ∈ N, are almost upper semicontinuous, and we have

Fn(t, e) ⊂ co
( ∪
x∈E

F (t, x)
)
.

Moreover, if F is integrably bounded, then F is σ-mLL-selectionable.

Lemma 2.5 ([9]). For an u.s.c. multifunction F : X → Pcp(Y ), we have

∀x0 ∈ X, lim
x→x0

supF (x) ⊆ F (x0).

Lemma 2.6 ([9]). Let (Kn)n ⊂ K such that K is a compact subset of X, and X is a separable Banach
space. Then

co
(

lim
n→∞

supKn

)
=
∩
N>0

co
( ∪
n≥N

Kn

)
,

where co is the convex envelope.

Lemma 2.7 ([21]). Let X be a metric compact space. If X is Rδ-set, then X is an acyclic space.

Theorem 2.7 ( [22]). Let E be a normed space, X be a metric space, and let f : X → E be a
continuous map. Then ∀ ε > 0 there is a locally Lipschitz function fε : X → E such that

∥f(x)− fε(x)∥ ≤ ε, ∀x ∈ X. (2.2)

Theorem 2.8 (Theorem of Browder and Gupta, [14]). Let (E, ∥ · ∥) be a Banach space, f : X → E
be a proper map, and suppose that for every ε > 0, we have a proper map fε : X → E satisfying:

(i) ∥fε(x)− f(x)∥ < ε for all x ∈ X;

(ii) for all u ∈ E such that ∥u∥ ≤ ε, the equation fε(x) = u has a unique solution.

Then the set S = f−1(0) is Rδ.
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3 Existence results
Let J := [0, 1]. In order to define a solution for problem (1.1), consider the space PC(J,R)×PC(J,R),
where

PC(J,R) :=
{
y : J → R, y ∈ C(J \ {tk},R) : k = 1, . . . ,m,

y(t−k ) and y(t+k ) exist and satisfy y(t−k ) = y(tk)
}
.

Endowed with the norm
∥y∥PC = sup

{
∥y(t)∥ : t ∈ J

}
,

PC is a Banach space.

3.1 Convex case
Theorem 3.1. Assume there exist a continuous nondecreasing map ψ : [0,+∞) → (0,+∞) and
p ∈ L1(J,R+) such that

∥Fi(t, u, v)∥ ≤ p(t)ψ
(
∥u∥+ ∥v∥

)
a.e. t ∈ J, i ∈ {1, 2}, (u, v) ∈ R2.

Assume also that F1, F2 : J × R × R → Pcp,cv(R) are Carathéodory. Then problem (1.1) has at least
one solution.

Proof. Consider the operator N : PC × PC → P(PC × PC) defined by

N(x, y)=


(h1, h2)∈PC × PC :

(
h1(t)
h2(t)

)
=


x0+

t∫
0

f1(s) ds+
∑

0<tk<t

I1(x(tk), y(tk)), t∈J

y0+

t∫
0

f2(s) ds+
∑

0<tk<t

I2(x(tk), y(tk)), t∈J




,

where fi ∈ SFi
= {f ∈ L1(J,R) : f(t) ∈ Fi(t, x(t), y(t)), a.e. t ∈ J}. Fixed points of the operator N

are the solutions of problem (1.1).
We are going to prove that N is u.s.c. compact and that N has convex compact values. The proof

is given by the following steps.

Step 1. N(x, y) is convex for all (x, y) ∈ PC × PC.
Let (h1, h2), (h3, h4) ∈ N(x, y). So, there exist f1, f3 ∈ SF1( · ,x( · ),y( · )) and f2, f4 ∈ SF2( · ,x( · ),y( · ))

such that for all t ∈ J , we have

h1(t) = x0 +

t∫
0

f1(s) ds+
∑

0<tk<t

I1(x(tk), y(tk)),

h2(t) = y0 +

t∫
0

f2(s) ds+
∑

0<tk<t

I2(x(tk), y(tk))

and

h3(t) = x0 +

t∫
0

f3(s) ds+
∑

0<tk<t

I1(x(tk), y(tk)),

h4(t) = y0 +

t∫
0

f4(s) ds+
∑

0<tk<t

I2(x(tk), y(tk)).
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Let l ∈ [0, 1]. For each t ∈ J , we have

(
l

(
h1
h2

)
+ (1− l)

(
h3
h4

))
(t) =

(
x0
y0

)
+



t∫
0

(lf1 + (1− l)f3)(s) ds

t∫
0

(lf2 + (1− l)f4)(s) ds

+


∑

0<tk<t

I1(x(tk), y(tk))∑
0<tk<t

I2(x(tk), y(tk))

 .

As SF1
and SF2

are convex (since F1 and F2 have convex values),

l

(
h1
h2

)
+ (1− l)

(
h3
h4

)
∈ N(x, y).

Step 2. N transforms every bounded set to a bounded set in PC × PC.
It suffices to show that

∃ ℓ :=
(
ℓ1
ℓ2

)
> 0 such that

∀ (x, y) ∈ Bq :=

{
(x, y) ∈ PC × PC : ∥(x, y)∥PC×PC ≤ q, q =

(
q1
q2

)
> 0

}
,

if (h, g) ∈ N(x, y), then we have ∥(h, g)∥PC×PC ≤ ℓ.

Let (h, g) ∈ N(x, y), then there exist f1 ∈ SF1( · ,x( · ),y( · )) and f2 ∈ SF2( · ,x( · ),y( · )) such that for all
t ∈ J ,

h(t) = x0 +

t∫
0

f1(s) ds+
∑

0<tk<t

I1(x(tk), y(tk)),

g(t) = y0 +

t∫
0

f2(s) ds+
∑

0<tk<t

I2(x(tk), y(tk)),

∥(h, g)∥PC×PC =

(
∥h∥PC
∥g∥PC

)
.

For all t ∈ J , we have

∥h(t)∥ ≤ ∥x0∥+
t∫

0

∥f1(s)∥ ds+
∑

0<tk<t

∥∥I1(x(tk), y(tk))∥∥
≤ ∥x0∥+

1∫
0

∥∥F1(s, x(s), y(s))
∥∥ ds+ m∑

k=1

sup
(x,y)∈Bq

∥I1(x, y)∥

≤ ∥x0∥+ ψ(q1 + q2)∥p∥L1 +

m∑
k=1

sup
(x,y)∈Bq

∥I1(x, y)∥ := ℓ̃

and

∥g(t)∥ ≤ ∥y0∥+
t∫

0

∥f2(s)∥ ds+
∑

0<tk<t

∥∥I2(x(tk), y(tk))∥∥
≤ ∥y0∥+

b∫
0

∥F2(s, x(s), y(s))∥ ds+
m∑
k=1

sup
(x,y)∈Bq

∥I2(x, y)∥
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≤ ∥y0∥+ ψ(q1 + q2)∥p∥L1 +

m∑
k=1

sup
(x,y)∈Bq

∥I2(x, y)∥ :=
˜̃
ℓ.

Then (
∥h∥PC
∥g∥PC

)
≤

(
ℓ̃˜̃
ℓ

)
:= ℓ.

Step 3. N transforms every bounded set to an equicontinuous set in PC × PC.
Let τ1, τ2 ∈ J , τ1 < τ2, and let Bq be as above in Step 2. For each (x, y) ∈ Bq and (h, g) ∈ N(x, y),

there exist f1 ∈ SF1( · ,x( · ),y( · )) and f2 ∈ SF2( · ,x( · ),y( · )) such that for all t ∈ J , we have

h(t) = x0 +

t∫
0

f1(s) ds+
∑

0<tk<t

I1,k(x(tk), y(tk)),

g(t) = y0 +

t∫
0

f2(s) ds+
∑

0<tk<t

I2,k(x(tk), y(tk)).

Then

∥h(τ2)− h(τ1)∥ ≤
τ2∫
τ1

∥f1(s)∥ ds+
∑

τ1≤tk<τ2

∥∥I1,k(x(tk), y(tk))∥∥
≤ ψ(q1 + q2)

τ2∫
τ1

p(s) ds+
∑

τ1≤tk<τ2

sup
(x,y)∈Bq

∥I1,k(x, y)∥ −→ 0 as τ2 → τ1

and

∥g(τ2)− g(τ1)∥ ≤
τ2∫
τ1

∥f2(s)∥ ds+
∑

τ1≤tk<τ2

∥∥I2,k(x(tk), y(tk))∥∥
≤ ψ(q1 + q2)

τ2∫
τ1

p(s) ds+
∑

τ1≤tk<τ2

sup
(x,y)∈Bq

∥I2,k(x, y)∥ −→ 0 as τ2 → τ1.

So, by Step 2 and Step 3, N is compact.

Step 4. The graph of N is closed.
Let (xn, yn) → (x∗, y∗), (hn, gn) ∈ N(xn, yn), and hn → h∗ and gn → g∗. It suffices to show that

there exist f1 ∈ SF1( · ,x∗( · ),y∗( · )) and f2 ∈ SF2( · ,x∗( · ),y∗( · )) such that for all t ∈ J , we have

h∗(t) = x0 +

t∫
0

f1(s) ds+
∑

0<tk<t

I1,k(x∗(tk), y∗(tk)),

g∗(t) = y0 +

t∫
0

f2(s) ds+
∑

0<tk<t

I2,k(x∗(tk), y∗(tk)).

With (hn, gn) ∈ N(xn, yn), there exist f1,n ∈ SF1( · ,xn( · ),yn( · )) and f2,n ∈ SF2( · ,xn( · ),yn( · )) such that
for all t ∈ J ,

hn(t) = x0 +

t∫
0

f1,n(s) ds+
∑

0<tk<t

I1,k(xn(tk), yn(tk)),
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gn(t) = y0 +

t∫
0

f2,n(s) ds+
∑

0<tk<t

I2,k(xn(tk), yn(tk)).

Since Ii,k, k = 1, . . . ,m, i = 1, 2, are continuous,∥∥∥∥(hn(t)− x0 −
∑

0<tk<t

I1,k(xn(tk), yn(tk))
)
−
(
h∗(t)− x0 −

∑
0<tk<t

I1,k(x∗(tk), y∗(tk))
)∥∥∥∥

PC

−→ 0

and∥∥∥∥(gn(t)− y0 −
∑

0<tk<t

I2,k(xn(tk), yn(tk))
)
−
(
g∗(t)− y0 −

∑
0<tk<t

I2,k(x∗(tk), y∗(tk))
)∥∥∥∥

PC

−→ 0

as n→ ∞.
Let Γ be a continuous linear operator defined as

Γ : L1(J,R) −→ PC(J,R),
r −→ Γ(r)

such that

Γ(r)(t) =

t∫
0

r(s) ds, ∀ t ∈ J.

By Lemma 2.2, the operator Γ ◦ SF has a closed graph and, moreover, we have(
hn(t)− x0 −

∑
0<tk<t

I1,k(xn(tk), yn(tk))
)
∈ Γ(SF1( · ,xn( · ),yn( · )))

and (
gn(t)− y0 −

∑
0<tk<t

I2,k(xn(tk), yn(tk))
)
∈ Γ(SF2( · ,xn( · ),yn( · ))).

So,

(
h∗(t)− x0 −

∑
0<tk<t

I1,k(x∗(tk), y∗(tk))
)
=

t∫
0

f1(s) ds,

(
g∗(t)− y0 −

∑
0<tk<t

I2,k(x∗(tk), y∗(tk))
)
=

t∫
0

f2(s) ds,

and then f1 ∈ SF1( · ,x∗( · ),y∗( · )) and f2 ∈ SF2( · ,x∗( · ),y∗( · )).
Step 5. A priori estimation.

Let (x, y) ∈ PC(J,R) such that (x, y) ∈ λN(x, y), and 0 < λ < 1. So, ∃ f1 ∈ SF1( · ,x( · ),y( · )) and
∃ f2 ∈ SF2( · ,x( · ),y( · )) such that for all t ∈ [0, t1],

x(t) = λx0 + λ

t∫
0

f1(s, x(s), y(s)) ds,

y(t) = λy0 + λ

t∫
0

f2(s, x(s), y(s)) ds.

Then

∥x(t)∥ ≤ ∥x0∥+
t∫

0

p(s)ψ
(
∥x(s)∥+ ∥y(s))∥

)
ds, t ∈ [0, t1],
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∥y(t)∥ ≤ ∥y0∥+
t∫

0

p(s)ψ
(
∥(x(s)∥+ ∥y(s))∥

)
ds, t ∈ [0, t1].

Consider the functions ϑ1, W1 defined by

ϑ1(t) = ∥x0∥+
t∫

0

p(s)ψ
(
∥(x(s)∥+ ∥y(s))∥

)
ds, t ∈ [0, t1],

W1(t) = ∥y0∥+
t∫

0

p(s)ψ
(
∥(x(s)∥+ ∥y(s))∥

)
ds, t ∈ [0, t1].

So,
(ϑ1(0),W1(0)) =

(
∥x0∥, ∥y0∥

)
, ∥x(t)∥ ≤ ϑ1(t), ∥y(t)∥ ≤ W1(t), t ∈ [0, t1],

and
Ẇ1(t) = ϑ̇1(t) = p(t)ψ

(
∥(x(t)∥+ ∥y(t))∥

)
, t ∈ [0, t1].

As ψ is a nondecreasing map, we have

ϑ̇1(t) ≤ p(t)ψ(ϑ1(t)), Ẇ1(t) ≤ p(t)ψ(W1(t)), t ∈ [0, t1].

This implies that for every t ∈ [0, t1],

ϑ1(t)∫
ϑ1(0)

du

ψ(u)
≤

t1∫
0

p(s) ds,

W1(t)∫
W1(0)

du

ψ(u)
≤

t1∫
0

p(s) ds.

The maps Γ1
0(z) =

z∫
ϑ1(0)

du
ψ(u) and Γ2

0(z) =
z∫

W1(0)

du
ψ(u) are continuous and increasing. Then (Γ1

0)
−1 and

(Γ2
0)

−1 exist and are increasing, and we get

ϑ1(t) ≤ (Γ1
0)

−1

( t1∫
0

p(s) ds

)
:=M0, W1(t) ≤ (Γ2

0)
−1

( t1∫
0

p(s) ds

)
:= ℓ0.

As for every t ∈ [0, t1], ∥x(t)∥ ≤ ϑ1(t) and ∥y(t)∥ ≤ W1(t), so,

sup
t∈[0,t1]

∥y(t)∥ ≤ ℓ0, sup
t∈[0,t1]

∥x(t)∥ ≤M0.

Now, for t ∈ (t1, t2], we have

∥x(t+1 )∥ ≤
∥∥I1,1(x(t1), y(t1))∥∥+ ∥x(t1)∥ ≤ sup

(α,β)∈B(0,M0)×B(0,ℓ0)

∥I1,1(α, β)∥+M0 := N1,

∥y(t+1 )∥ ≤
∥∥I2,1(x(t1), y(t1))∥∥+ ∥y(t1)∥ ≤ sup

(α,β)∈B(0,M0)×B(0,ℓ0)

∥I2,1(α, β)∥+ ℓ0 := D1.

Also,

x(t) = λ
(
x(t1) + I1,1(x(t1), y(t1))

)
+ λ

t∫
t1

f1(s, x(s), y(s)) ds,

y(t) = λ
(
y(t1) + I2,1(x(t1), y(t1))

)
+ λ

t∫
t1

f2(s, x(s), y(s)) ds,
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and so,

∥x(t)∥ ≤ N1 +

t∫
t1

p(s)ψ
(
∥(x(s)∥+ ∥y(s))∥

)
ds, t ∈ [t1, t2],

∥y(t)∥ ≤ D1 +

t∫
t1

p(s)ψ
(
∥(x(s)∥+ ∥y(s))∥

)
ds, t ∈ [t1, t2].

Let us consider the maps ϑ2 and W2 defined by

ϑ2(t)=N1+

t∫
t1

p(s)ψ
(
∥(x(s)∥+∥y(s))∥

)
ds, W2(t)=D1+

t∫
t1

p(s)ψ
(
∥(x(s)∥+∥y(s))∥

)
ds, t∈ [t1, t2].

Then

ϑ2(t
+
1 ) = N1, ∥x(t)∥ ≤ ϑ2(t), t ∈ [t1, t2],

W2(t
+
1 ) = D1, ∥y(t)∥ ≤ W2(t), t ∈ [t1, t2],

and
ϑ̇2(t) = p(t)ψ

(
∥(x(t)∥+ ∥y(t))∥

)
, Ẇ2(t) = p(t)ψ

(
∥(x(t)∥+ ∥y(t))∥

)
, t ∈ [t1, t2].

As ψ is nondecreasing,

ϑ̇2(t) ≤ p(t)ψ(ϑ2(t)), Ẇ2(t) ≤ p(t)ψ(W2(t)), t ∈ [t1, t2].

This implies that for every t ∈ [t1, t2],

ϑ2(t)∫
ϑ2(t

+
1 )

du

ψ(u)
≤

t2∫
t1

p(s) ds,

W2(t)∫
W2(t

+
1 )

du

ψ(u)
≤

t2∫
t1

p(s) ds.

If we consider the maps Γ1
1(z) =

z∫
ϑ2(t

+
1 )

du
ψ(u) and Γ2

1(z) =
z∫

W2(t
+
1 )

du
ψ(u) , we get

ϑ2(t) ≤ (Γ1
1)

−1

( t2∫
t1

p(s) ds

)
:=M1,

W2(t) ≤ (Γ2
1)

−1

( t2∫
t1

p(s) ds

)
:= ℓ1.

For all t ∈ [t1, t2], ∥x(t)∥ ≤ ϑ2(t) and ∥y(t)∥ ≤ W2(t), and then

sup
t∈[t1,t2]

∥x(t)∥ ≤M1, sup
t∈[t1,t2]

∥y(t)∥ ≤ ℓ1.

We continue the process to the interval (tm, 1]. We get the existence of Mm and ℓm such that

sup
t∈[tm,1]

∥x(t)∥ ≤ (Γ1
m)−1

( 1∫
tm

p(s) ds

)
:=Mm, sup

t∈[tm,1]

∥y(t)∥ ≤ (Γ2
m)−1

( 1∫
tm

p(s) ds

)
:= ℓm.

As we chose y arbitrarily, then for all solutions of problem (1.1), we get

∥(x, y)∥PC×PC ≤ max
{(

Mk

ℓk

)
: k = 0, 1, . . . ,m

}
:= b∗.
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Then the set
A =

{
(x, y) ∈ PC × PC : (x, y) ∈ λN(x, y), λ ∈ (0, 1)

}
is bounded. So, N : PC × PC → Pcv(PC × PC) is compact and u.s.c. Then, by Lemma 2.3, we
obtain that problem (1.1) has at least one solution.

3.2 Nonconvex case
Assume that the following conditions hold:

(H1) Fi : J × R× R → Pcp(R), t→ Fi(t, u, v) are measurable for each u, v ∈ R, i = 1, 2.

(H2) There exist the functions li ∈ L1(J,R+), i = 1, . . . , 4, such that

Hd

(
F1(t, u, v), F1(t, u, v)

)
≤ l1(t)∥u− u∥+ l2(t)∥v − v∥, t ∈ J, ∀u, u, v, v ∈ R,

Hd

(
F2(t, u, v), F2(t, u, v)

)
≤ l3(t)∥u− u∥+ l4(t)∥v − v∥, t ∈ J, ∀u, u, v, v ∈ R

and

Hd(0, F1(t, 0, 0)) ≤ l1(t) for a.e. t ∈ J, Hd(0, F2(t, 0, 0)) ≤ l3(t) for a.e. t ∈ J.

(H3) There exist the constants ai, bi ≥ 0, i = 1, 2, such that∥∥I1(u, v)− I1(u− v
∥∥ ≤ a1∥u− u∥+ a2∥v − v∥, ∀u, u, v, v ∈ R

and ∥∥I2(u, v)− I2(u− v
∥∥ ≤ b1∥u− u∥+ b2∥v − v∥, ∀u, u, v, v ∈ R.

Theorem 3.2. Assume that (H1)–(H3) are satisfied and the matrix

M =

(
∥l1∥L1 + a1 ∥l2∥L1 + a2

∥l3∥L1 + b1 ∥l4∥L1 + b2

)

converges to zero. Then problem (1.1) has at least one solution.

Proof. Consider the operator N : PC × PC → P(PC × PC) defined by

N(x, y)=


(h1, h2)∈PC × PC :

(
h1(t)
h2(t)

)
=


x0+

t∫
0

f1(s) ds+
∑

0<tk<t

I1(x(tk), y(tk)), t∈J

y0+

t∫
0

f2(s) ds+
∑

0<tk<t

I2(x(tk), y(tk)), t∈J




,

where
fi ∈ SFi

=
{
f ∈ L1(J,R) : f(t) ∈ Fi(t, x(t), y(t)), a.e. t ∈ J

}
.

Fixed points of the operator N are the solutions of problem (1.1).
Let, for i = 1, 2,

Ni(x, y) =

{
h ∈ PC : h(t) = xi(t) +

t∫
0

fi(s) ds+
∑

0<tk<t

Ii(x(tk), y(tk)), t ∈ J

}
,

where x1 = x0 and x2 = y0. We show that N satisfies the assumptions of Theorem 2.3.
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Let (x, y), (x, y) ∈ PC ×PC and (h1, h2) ∈ N(x, y). Then there exist fi ∈ SFi , i = 1, 2,, such that

(
h1(t)
h2(t)

)
=


x0 +

t∫
0

f1(s) ds+
∑

0<tk<t

I1(x(tk), y(tk)), t ∈ J

y0 +

t∫
0

f2(s) ds+
∑

0<tk<t

I2(x(tk), y(tk)), t ∈ J

 .

(H2) implies that

Hd1

(
F1(t, x(t), y(t)), F1(t, x(t), y(t))

)
≤ l1(t)|x(t)− x(t)|+ l2(t)|y(t)− y(t)|, t ∈ J,

and
Hd2

(
F2(t, x(t), y(t)), F2(t, x(t), y(t))

)
≤ l3(t)|x(t)− x(t)|+ l4(t)|y(t)− y(t)|, t ∈ J.

Hence, there is some (ω, ω) ∈ F1(t, x(t), y(t))× F2(t, x(t), y(t)) such that

|f1(t)− ω| ≤ l1(t)|x(t)− x(t)|+ l2(t)|y(t)− y(t)|, t ∈ J,

and
|f2(t)− ω| ≤ l3(t)|x(t)− x(t)|+ l4(t)|y(t)− y(t)|, t ∈ J.

Consider the multi-valued maps Ui : J → P(R), i = 1, 2, defined by

U1(t) =
{
ω ∈ F1(t, x(t), y(t)) : |f1(t)− ω| ≤ l1(t)|x(t)− x(t)|+ l2(t)|y(t)− y(t)|, a.e. t ∈ J

}
and

U2(t) =
{
ω ∈ F2(t, x(t), y(t)) : |f1(t)− ω| ≤ l1(t)|x(t)− x(t)|+ l2(t)|y(t)− y(t)|, a.e. t ∈ J

}
.

Then each Ui(t) is a nonempty set and Theorem III.4.1 in [15] implies that Ui is measurable. Moreover,
the multi-valued intersection operator Vi( · ) := Ui( · )∩Fi( · , x( · ), y( · )) is measurable. Therefore, for
each i = 1, 2, by Lemma 2.1, there exists a function t→ f i(t), which is a measurable selection for Vi,
that is, f i(t) ∈ Fi(t, x(t), y(t)) and

|f1(t)− f1(t)| ≤ l1(t)|x(t)− x(t)|+ l2(t)|y(t)− y(t)|, a.e. t ∈ J,

and
|f2(t)− f2(t)| ≤ l3(t)|x(t)− x(t)|+ l4(t)|y(t)− y(t)|, a.e. t ∈ J.

Define h1 and h2 by

h1(t) = x0 +

t∫
0

f1(s) ds+
∑

0<tk<t

I1(x(tk), y(tk)), t ∈ J,

and

h2(t) = y0 +

t∫
0

f2(s) ds+
∑

0<tk<t

I2(x(tk), y(tk)), t ∈ J.

Then for t ∈ J ,

|h1(t)− h1(t)| ≤
(
∥l1∥L1 + a1

)
|x− x|PC +

(
∥l2∥L1 + a2

)
∥y − y∥PC .

Thus
∥h1 − h1∥PC ≤

(
∥l1∥L1 + a1

)
|x− x|PC +

(
∥l2∥L1 + a2)∥y − y∥PC .
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By an analogous relation, obtained by interchanging the roles of y and y, we finally arrive at the
estimate

Hd1

(
N1(x, y), N1(x, y)

)
≤
(
∥l1∥L1 + a1

)
∥x− x∥PC +

(
∥l2∥L1 + a2

)
∥y − y∥PC .

Similarly, we get

Hd2

(
N2(x, y), N2(x, y)

)
≤
(
∥l3∥L1 + b1

)
∥x− x∥PC +

(
∥l4∥L1 + b2

)
∥y − y∥PC .

Therefore,

Hd

(
N(x, y), N(x, y)

)
≤M

(
∥x− x∥PC , ∥y − y∥PC

)
, ∀ (x, y), (x, y) ∈ PC × PC.

Hence, by Theorem 2.3, the operator N has at least one fixed point which is a solution of (1.1).

Theorem 3.3. Assume, for each i = 1, 2, that there exist a continuous nondecreasing map ψi :
[0,+∞[→ (0,+∞) and pi ∈ L1(J,R+) such that

∥Fi(t, u, v)∥ ≤ pi(t)ψi
(
∥u∥+ ∥v∥

)
a.e. t ∈ J, (u, v) ∈ R2.

Assume also that F1, F2 : J × R× R → Pcp,cv(R) are Carathéodory, and

(a) (t, x, y) → Fi(t, x, y) is L ⊗ B measurable for i = 1, 2.

(b) (x, y) → Fi(t, x, y) is l.s.c. a.e. t ∈ J .

Then problem (1.1) has at least one solution.

Proof. For each i = 1, 2, since Fi is l.s.c., by Theorem 2.5, there exists a continuous function fi :
PC → L1(J,R) such that fi(x, y) ∈ SFi( · ,x,y) for all (x, y) ∈ PC(J,R) × PC(J,R). Consider the
impulsive system 

x′(t) = f1(t, x, y), a.e. t ∈ J,

y′(t) = f2(t, x, y), a.e. t ∈ J,

x(t+k )− x(t−k ) = I1(x(tk), y(tk)), k = 1, 2, . . . ,m,

y(t+k )− y(t−k ) = I2(x(tk), y(tk)), k = 1, 2, . . . ,m,

x(0) = x0, y(0) = y0.

(3.1)

It is clear that if (x, y) is a solution of problem (3.1), then (x, y) is also a solution of problem (1.1).
When the proof of Theorem 3.1 is applied to the operator N∗ : PC ×PC → P(PC ×PC) defined by

N∗(x, y)=


(h1, h2)∈PC × PC :

(
h1(t)
h2(t)

)
=


x0+

t∫
0

f1(s) ds+
∑

0<tk<t

I1(x(tk), y(tk)), t∈J

y0+

t∫
0

f2(s) ds+
∑

0<tk<t

I2(x(tk), y(tk)), t∈J




,

there is a solution of problem (1.1).

4 Structure of solutions sets
Consider the first-order impulsive single-valued problem

x′(t) = f1(t, x(t), y(t)), a.e. t ∈ [0, 1],

y′(t) = f2(t, x(t), y(t)), a.e. t ∈ [0, 1],

x(t+k )− x(t−k ) = I1(x(tk), y(tk)), k = 1, . . . ,m,

y(t+k )− y(t−k ) = I2(x(tk), y(tk)), k = 1, . . . ,m,

x(0) = x0, y(0) = y0,

(4.1)
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where f1, f2 ∈ L1(J × R2,R) are te given functions and 0 = t0 < t1 < · · · < tm < tm+1 = 1. Then
(x, y) is a solution of (4.1) if and only if (x, y) is a solution of the impulsive integral system

x(t) = x0 +

t∫
0

f1(s, x(s), y(s)) ds+
∑

0<tk<t

I1(x(tk), y(tk)), a.e. t ∈ J,

y(t) = y0 +

t∫
0

f2(s, x(s), y(s)) ds+
∑

0<tk<t

I2(x(tk), y(tk)), a.e. t ∈ J.

(4.2)

Denote by S(f1,2, (x0, y0)) the set of all solutions of problem (4.1).

Theorem 4.1. Suppose that there are the functions ℓi ∈ L1(J,R+), i = 1, 2, such that∣∣fi(t, x1, y1)− fi(t, x2, y2)
∣∣ < ℓi(t)

(
|x1 − x2|+ |y1 − y2|

)
, ∀ (x1, y1), (x2, y2) ∈ R2.

Then problem (4.1) has a unique solution.

Proof.
1. The existence:

• We consider problem (4.1) on [0, t1],

x′(t) = f1(t, x(t), y(t)), y′(t) = f2(t, x(t), y(t)), a.e. t ∈ [0, t1],

x(0) = x0, y(0) = y0.
(4.3)

We consider the operator N1 defined by

N1 : C([0, t1],R)× C([0, t1],R) −→ C([0, t1],R)× C([0, t1],R),
(x, y) −→ N1(x, y),

N1(x, y)(t) =

(
x0 +

t∫
0

f1(s, x(s), y(s)) ds; y0 +

t∫
0

f2(s, x(s), y(s)) ds

)
, t ∈ [0, t1].

Let (x1, y1), (x2, y2) ∈ C([0, t1],R)× C([0, t1],R), t ∈ [0, t1], and

∥∥N1(x1, y1)(t)−N1(x2, y2)(t)
∥∥ =

∥∥(α, β)∥ =

(
∥α∥
∥β∥

)
,

where

α =

t∫
0

(
f1(s, x1(s), y1(s))− f1(s, x2(s), y2(s))

)
ds

and

β =

t∫
0

(
f2(s, x1(s), y1(s))− f2(s, x2(s), y2(s))

)
ds.

Then

∥α∥ ≤
t∫

0

ℓ1(s)
∥∥(x1(s), y1(s))− (x2(s), y2(s))

∥∥ ds
≤ 1

τ

t∫
0

τℓ(s)eτL(s) ds

∥∥∥∥(x1 − x2
y1 − y2

)∥∥∥∥ |BC ≤ 1

τ
eτL(t)

∥∥∥∥(x1 − x2
y1 − y2

)∥∥∥∥
BC

=
1

τ
eτL(t)

∥∥∥∥(x1 − x2
y1 − y2

)∥∥∥∥
BC

=
1

τ
eτL(t)

(
∥x1 − x2∥+ ∥y1 − y2∥

)
= eτL(t)

(1
τ
∥x1 − x2∥+

1

τ
∥y1 − y2∥

)
,
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where

L(t) =

t∫
0

ℓ(s) ds, and τ > 2.

Similarly,
∥β∥ ≤ eτL(t)

(1
τ
∥x1 − x2∥+

1

τ
∥y1 − y2∥

)
.

Thus

e−τL(t)
∥∥N1(x1, y1)(t)−N1(x2, y2)(t)

∥∥ ≤


1

τ

1

τ

1

τ

1

τ


(
∥x1 − x2∥
∥y1 − y2∥

)
, t ∈ [0, t1].

Then ∥∥N1(x1, y1)−N1(x2, y2)
∥∥
BC

≤ 1

τ

(
1 1
1 1

)(∥x1 − x2∥
∥y1 − y2∥

)
,

where ∥∥∥∥(xy
)∥∥∥∥

BC

= sup
t∈[0,t1]

e−τL(t)
∥∥∥∥(x(t)y(t)

)∥∥∥∥ .
Let

B =
1

τ

(
1 1
1 1

)
.

Then we have
det(B − λI) =

(1
τ
− λ

)2
− 1

τ2
,

hence ρ(B) = 2
τ . For τ ∈ (2,+∞), N1 is contractive, so there exists a unique

(x0, y0) ∈ C([0, t1],R)× C([0, t1],R) such that N1(x
0, y0) = (x0, y0).

Then (x0, y0) is the solution of (4.3).

• We consider problem (4.1) on (t1, t2],

x′(t) = f1(t, x(t), y(t)), y′(t) = f2(t, x(t), y(t)), a.e. t ∈ J1 = (t1, t2],

x(t+1 ) = x0(t1) + I1(x
0(t1), y

0(t1)), y(t+1 ) = y0(t1) + I1(x
0(t1), y

0(t1)).
(4.4)

Consider the space C∗ = {(x, y) ∈ C(J1,R)× C(J1,R) : (x(t+1 ), y(t
+
1 )) exist}, (C∗, ∥ · ∥J1) is a

Banach space.

Let
N2 : C∗ −→ C∗,

(x, y) −→ N2(x, y),

N2(x, y)(t) =

(
x0(t1) + I1(x

0(t1), y
0(t1)) +

t∫
t1

f1(s, x(s), y(s)) ds,

y0(t1) + I2(x
0(t1), y

0(t1)) +

t∫
t1

f2(s, x(s), y(s)) ds

)
, t ∈ (t1, t2].

Let (x1, y1), (x2, y2) ∈ C∗ × C∗, and t ∈ (t1, t2],

∥∥N2(x1, y1)(t)−N2(x2, y2)(t)
∥∥ = ∥(α, β)∥ =

(
∥α∥
∥β∥

)
,
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where

∥α∥ ≤
t∫

t1

ℓ(s)
∥∥(x1(s), y1(s))− (x2(s), y2(s))

∥∥ ds ≤ 1

τ

t∫
t1

τℓ(s)eτL(s) ds

∥∥∥∥(x1 − x2
y1 − y2

)∥∥∥∥
BC

≤ 1

τ
eτL(t)

∥∥∥∥(x1 − x2
y1 − y2

)∥∥∥∥
BC

= eτL(t)
(1
τ
∥x1 − x2∥+

1

τ
∥y1 − y2∥

)
and

L(t) =

t∫
t1

ℓ(s) ds.

Similarly,
∥β∥ ≤ eτL(t)

(1
τ
∥x1 − x2∥+

1

τ
∥y1 − y2∥

)
.

So,

e−τL(t)
∥∥N2(x1, y1)(t)−N2(x2, y2)(t)

∥∥ ≤ 1

τ

(
1 1
1 1

)(∥x1 − x2∥
∥y1 − y2∥

)
, t ∈ (t1, t2].

Then ∥∥N2(x1, y1)−N2(x2, y2)
∥∥
BC

≤ 1

τ

(
1 1
1 1

)(∥x1 − x2∥
∥y1 − y2∥

)
.

Then for τ ∈ (2,+∞), N2 is a contraction and, so, there exists a unique (x1, y1) ∈ C((t1, t2],R) such
that

N2(x
1, y1) = (x1, y1).

We have

(x1, y1)(t+1 ) = N2(x
1, y1)(t+1 ) =

(
x0(t1) + I1(x

0(t1), y
0(t1)) + lim

t→t1

t∫
t1

f1(s, x(s), y(s)) ds,

y0(t1) + I1(x
0(t1), y

0(t1)) + lim
t→t1

t∫
t1

f2(s, x(s), y(s)) ds

)
.

Then (x1, y1) is the solution of problem (4.4). As a consequence, arguing inductively, the solution of
problem (4.1) is given by

(x∗, y∗)(t) :=


(x0, y0)(t), t ∈ [0, t1],

(x1, y1)(t), t ∈ (t1, t2],
...

(xm, ym)(t), t ∈ (tm, 1].

2. The uniqueness:
Let (x∗, y∗), (x∗∗, y∗∗) be two solutions of problem (4.1). We are going to show that

(x∗, y∗)(t) = (x∗∗, y∗∗)(t), ∀ t ∈ J = [0, 1].

Again, the process is inductive.
If t ∈ J0 = [0, t1], then (x∗, y∗)(t) = (x∗∗, y∗∗)(t), ∀ t ∈ [0, t1].
Now, suppose that if t ∈ Ji = (ti, ti+1], then (x∗, y∗)(t) = (x∗∗, y∗∗)(t), ∀ t ∈ (ti, ti+1]. It is enough

to show that (x∗, y∗)(t+k ) = (x∗∗, y∗∗)(t+k ), k ∈ {1, 2, . . . ,m}. To that end, we have

(x∗, y∗)(t+i )− (x∗, y∗)(t−i ) =
(
I1i(x

∗(ti), y
∗(ti)), I2i(x

∗(ti), y
∗(ti))

)
,
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which implies that
(x∗, y∗)(t+i ) = (x∗, y∗)(t−i ) + I1i(x

∗(ti), y
∗(ti))

and

I2i(x
∗(ti), y

∗(ti)) = (x∗∗, y∗∗)(ti) +
(
I1i(x

∗∗(ti), y
∗∗(ti)), I2i(x

∗∗(ti), y
∗∗(ti))

)
= (x∗∗, y∗∗)(t+i ).

Theorem 4.2. Suppose there exist a continuous function ψ : [0,∞) → (0,∞) which is nondecreasing,
and a function p ∈ L1(J,R+) such that

∥f i(t, x, y)∥ ≤ p(t)ψ
(
∥x∥+ ∥y∥

)
, ∀ t ∈ J, ∀x, y ∈ R,

with
1∫

0

p(s) ds <

∞∫
∥x0∥

du

ψ(u)
.

Then problem (4.1) has at least one solution.

Proof. For the proof we use “the nonlinear alternative of Leray–Schauder”. Consider the operator

N : PC(J,R)× PC(J,R) −→ PC(J,R)× PC(J,R)

defined by

N(x, y)(t) =

(
x0 +

t∫
0

f1(s, x(s), y(s)) ds+
∑

0<tk<t

I1,k(x(tk), y(tk)),

y0 +

t∫
0

f2(s, x(s), y(s)) ds+
∑

0<tk<t

I2,k(x(tk), y(tk))

)
.

The fixed points of N are the solutions of problem (4.1). It is enough to prove that N is completely
continuous. This is established in the following steps.
Step 1. N is continuous.

Let (xn, yn)n be a sequence in PC(J,R) × PC(J,R) such that (xn, yn) → (x, y). It is enough to
prove that N(xn, yn) → N(x, y). For all t ∈ J , we have

N(xn, yn)(t) =

(
x0 +

t∫
0

f1(s, xn(s), yn(s)) ds+
∑

0<tk<t

I1,k(xn(tk), yn(tk)),

y0 +

t∫
0

f2(s, xn(s), yn(s)) ds+
∑

0<tk<t

I2,k(xn(tk), yn(tk))

)
.

Then ∥∥N(xn, yn)(t)−N(x, y)(t)
∥∥ =

∥∥(α, β)∥∥ =

(
∥α∥
∥β∥

)
,

where

∥α∥=
∥∥∥∥

t∫
0

(
f1(s, xn(s), yn(s))−f1(s, x(s), y(s))

)
ds+

∑
0<tk<t

(
I1,k(xn(tk), yn(tk))−I1,k(x(tk), y(tk))

)∥∥∥∥
≤

t∫
0

∥∥f1(s, xn(s), yn(s))− f1(s, x(s), y(s))
∥∥ ds+ ∑

0<tk<t

∥∥I1,k(xn(tk), yn(tk))− I1,k(x(tk), y(tk))
∥∥.
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As Ik, k = 1, . . . ,m, are continuous functions, and f1 and f2 are L1-Carathéodory functions, by the
Lebesgue dominated convergence theorem, we have

∥α∥ ≤
b∫

0

∥∥f1(s, xn(s), yn(s))− f1(s, x(s), y(s))
∥∥ ds

+

m∑
k=1

∥∥I1,k(xn(tk), yn(tk))− I1,k(x(tk), y(tk))
∥∥ −→ 0 as n→ ∞.

Similarly,

∥β∥ ≤
b∫

0

∥∥f2(s, xn(s), yn(s))− f2(s, x(s), y(s))
∥∥ ds

+

m∑
k=1

∥∥I2,k(xn(tk), yn(tk))− I2,k(x(tk), y(tk))
∥∥ −→ 0 as n→ ∞.

So, ∥∥N(xn, yn)−N(x, y)
∥∥ −→

(
0
0

)
as n→ ∞.

Then N is continuous.
Step 2. N transforms every bounded set into a bounded set in PC(J,R)× PC(J,R).

It suffices to show that

∀ q =
(
q1
q2

)
> 0, ∃ ℓ =

(
ℓ1
ℓ2

)
> 0 such that

∀ (x, y) ∈ Bq =
{
(x, y) ∈ PC × PC : ∥(x, y)∥ ≤ q

}
, we have ∥N(x, y)∥ ≤ ℓ.

Let (x, y) ∈ Bq. We have

∥N(x, y)∥ ≤
(
∥x0∥+

b∫
0

∥f1(s, x(s), y(s))∥ ds+
m∑
k=1

∥I1,k(x(tk), y(tk))∥,

∥y0∥+
b∫

0

∥f2(s, x(s), y(s))∥ ds+
m∑
k=1

∥I2,k(x(tk), y(tk))∥
)

= (α, β),

where

∥α∥ ≤ ∥x0∥+
b∫

0

p(t)ψ
(
∥x∥PC + ∥y∥PC

)
dt+

m∑
k=1

∥I1,k(x(tk), y(tk))∥

≤ ∥x0∥+
b∫

0

p(t)ψ
(
∥x∥PC + ∥y∥PC

)
dt+

m∑
k=1

sup
(x,y)∈Bq

∥I1,k(x, y)∥ := ℓ1.

Similarly,

∥β∥ ≤ ∥y0∥+
b∫

0

p(t)ψ
(
∥x∥PC + ∥y∥PC

)
dt+

m∑
k=1

sup
(x,y)∈Bq

∥I2,k(x, y)∥ := ℓ2.

Step 3. N transforms every bounded set into an equicontinuous set to PC(J,R)× PC(J,R).
Let τ1, τ2 ∈ J , τ1 < τ2 and let Bq be as in Step 2.
Let (x, y) ∈ Bq. Then:
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1. If τ1 ̸= tk (or τ2 ̸= tk), ∀ k ∈ {1, 2, . . . ,m}, we have

∥∥N(x, y)(τ2)−N(x, y)(τ1)
∥∥ ≤

( τ2∫
τ1

p(s)ψ(q1 + q2) ds+
∑

τ1≤tk<τ2

sup
(x,y)∈Bq

∥I1,k(x, y)∥,

τ2∫
τ1

p(s)ψ(q1 + q2) ds+
∑

τ1≤tk<τ2

sup
(x,y)∈Bq

∥I2,k(x, y)∥
)

−→
(
0
0

)
as τ1 → τ2.

2. If τ1 = t−i , we consider δ1 > 0 such that {tk, k ̸= i} ∩ [ti − δ1, ti + δ1] = ∅, so, for 0 < h < δ1,
we have∥∥N(x, y)(ti)−N(x, y)(ti − h)

∥∥
≤
( ti∫
ti−h

p(s)ψ(q1 + q2) ds,

ti∫
ti−h

p(s)ψ(q1 + q2) ds
)
−→

(
0
0

)
as h→ 0.

3. If τ2 = t+i , we consider δ2 > 0 such that {tk, k ̸= i} ∩ [ti − δ2, ti + δ2] = ∅, so, for 0 < h < δ2,
we have∥∥N(x, y)(ti + h)−N(x, y)(ti)

∥∥
≤
( ti+h∫

ti

p(s)ψ(q1 + q2) ds,

ti+h∫
ti

p(s)ψ(q1 + q2) ds

)
−→

(
0
0

)
as h→ 0.

So by Steps 1, 2 and 3, and by Arzelà-Ascoli’s theorem, N is completely continuous.

Step 4. A Priori Estimates.
Let (x, y) ∈ PC(J,R) × PC(J,R) such that (x, y) = λN(x, y), and 0 < λ < 1. Then for all

t ∈ [0, t1], we have

x(t) = λx0 + λ

t∫
0

f1(s, x(s), y(s)) ds,

y(t) = λy0 + λ

t∫
0

f2(s, x(s), y(s)) ds,

and so,

∥(x, y)(t)∥≤
(
∥x0∥+

t∫
0

p(s)ψ
(
∥x(s)∥+∥y(s)∥

)
ds, ∥y0∥+

t∫
0

p(s)ψ
(
∥x(s)∥+∥y(s)∥

)
ds

)
, t∈ [0, t1].

Consider the map ϑ = (ϑ1, ϑ2) such that

ϑ1(t) = ∥x0∥+
t∫

0

p(s)ψ
(
∥x(s)∥+ ∥y(s)∥

)
ds, t ∈ [0, t1],

ϑ2(t) = ∥y0∥+
t∫

0

p(s)ψ
(
∥x(s)∥+ ∥y(s)∥

)
ds, t ∈ [0, t1].
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Then we have
ϑ(0) =

(
∥x0∥, ∥y0∥

)
, ∥(x, y)(t)∥ ≤ ϑ(t), t ∈ [0, t1],

and
ϑ̇i(t) = p(t)ψ

(
∥x(s)∥+ ∥y(t)∥

)
, ∀ i = 1, 2, t ∈ [0, t1].

As ψ is a nondecreasing map, we have

ϑ̇i(t) ≤ p(t)ψ(ϑi(t)), ∀ i = 1, 2, t ∈ [0, t1],

which implies that for every t ∈ [0, t1],

ϑi(t)∫
ϑi(0)

du

ψ(u)
≤

t1∫
0

p(s) ds, ∀ i = 1, 2.

The map Γi,0(z) =
z∫

ϑi(0)

du
ψ(u) , i = 1, 2, is continuous and increasing. Then Γ−1

i,0 exists and is increasing,

and we get

ϑi(t) ≤ Γ−1
i,0

( t1∫
0

p(s) ds

)
:=Mi,0, i = 1, 2.

As for all t ∈ [0, t1], ∥(x, y)(t)∥ ≤ ϑ(t), and so,

sup
t∈[0,t1]

∥(x, y)(t)∥ ≤
(
M1,0

M2,0

)
.

Now, for t ∈ (t1, t2], we have

∥x(t+1 )∥ ≤ ∥I1,1(x(t1), y(t1))∥+ ∥x(t1)∥ ≤ sup
(x,y)∈Bq

∥I1,1(x, y)∥+M1,0 := N1,

∥y(t+1 )∥ ≤ ∥I2,1(x(t1), y(t1))∥+ ∥y(t1)∥ ≤ sup
(x,y)∈Bq

∥I2,1(x, y)∥+M2,0 := N2,

where

q =

(
M1,0

M2,0

)
,

y(t) = λ
(
x(t1) + I1,1(x(t1), y(t1))

)
+ λ

t∫
t1

f1(s, x(s), y(s)) ds,

y(t) = λ
(
y(t1) + I2,1(x(t1), y(t1))

)
+ λ

t∫
t1

f2(s, x(s), y(s)) ds.

Then

∥x(t)∥ ≤ N1 +

t∫
t1

p(s)ψ
(
∥x(s)∥+ ∥y(s)∥

)
ds, t ∈ [t1, t2],

∥y(t)∥ ≤ N2 +

t∫
t1

p(s)ψ
(
∥x(s)∥+ ∥y(s)∥

)
ds, t ∈ [t1, t2].
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Consider the map W = (W1,W2) such that

W1(t) = N1 +

t∫
t1

p(s)ψ
(
∥x(s)∥+ ∥y(s)∥

)
ds, t ∈ [t1, t2],

W2(t) = N2 +

t∫
t1

p(s)ψ
(
∥x(s)∥+ ∥y(s)∥

)
ds, t ∈ [t1, t2].

So,
W (t+1 ) = (N1, N2), ∥(x, y)(t)∥ ≤W (t), t ∈ [t1, t2],

and
Ẇi(t) = p(t)ψ

(
∥x(s)∥+ ∥y(t)∥

)
, ∀ i = 1, 2, t ∈ [t1, t2].

Since ψ is nondecreasing, we get

Ẇi(t) ≤ p(t)ψ(Wi(t)), ∀ i = 1, 2, t ∈ [t1, t2],

what implies that for every t ∈ [t1, t2], we have

Wi(t)∫
Wi(t

+
1 )

du

ψ(u)
≤

t2∫
t1

p(s) ds, i = 1, 2.

If we consider the map Γi,1(z) =
z∫

Wi(t
+
1 )

du
ψ(u) , i = 1, 2, we get

Wi(t) ≤ Γ−1
i,1

( t2∫
t1

p(s) ds

)
:=Mi,1, i = 1, 2.

For all t ∈ [t1, t2],

∥(x, y)(t)∥ =

(
∥x(t)∥
∥y(t)∥

)
≤
(
W1(t)
W2(t)

)
,

so,
sup

t∈[t1,t2]

∥(x, y)(t)∥ ≤
(
M1,1

M2,1

)
).

We continue this process to the interval (tm, 1], and (x, y)|(tm,1] is the solution of the problem (x, y) =
λN(x, y) for 0 < λ < 1. There exists Mi,m, i = 1, 2, such that

sup
t∈[tm,b]

∥(x, y)(t)∥ ≤ Γ−1
i,m

( b∫
tm

p(s) ds

)
:=Mi,m.

As we choose (x, y) arbitrarily, for all solution of problem (4.1) we have

∥(x, y)∥ ≤

 max
k=0,1,...,m

(M1,k)

max
k=0,1,...,m

(M2,k)

 :=

(
b∗1
b∗2

)
.

Thus, the set
K =

{
(x, y) ∈ PC × PC : (x, y) = λN(x, y), λ ∈ (0, 1)

}
.

Since N : PC × PC → PC × PC is completely continuous and the set K is bounded, from Theorem
2.4, N has a fixed point (x, y) ∈ PC × PC which is the solution of problem (4.1).
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Theorem 4.3. Suppose that the conditions of Theorem 4.2 hold. Then the set of all solutions of
problem (4.1) is nonempty, compact, Rδ, and acyclic. Moreover, the solution operator S is u.s.c.,
where

S : R× R −→ Pcp(PC × PC),

(x0, y0) −→ S(x0, y0),

S(x0, y0)=
{
(x, y)∈PC×PC : (x, y) is a solution of problem (4.1) with (x(0), y(0))=(x0, y0)

}
.

Proof.

• The solution set is compact.

Let (a, b) ∈ R× R,

S(a, b)=
{
(x, y)∈PC×PC : (x, y) is a solution of problem (4.1) with (x(0), y(0))=(a, b)

}
.

1. S(a, b) is a closed set.
Let (xq, yq)q be a sequence in S(a, b) such that

lim
q→∞

(xq, yq) = (x, y).

Let

Z1(t) = a+

t∫
0

f1(s, x(s), y(s)) ds+
∑

0<tk<t

I1,k(x(tk), y(tk)), t ∈ [0, 1],

Z2(t) = b+

t∫
0

f2(s, x(s), y(s)) ds+
∑

0<tk<t

I2,k(x(tk), y(tk)), t ∈ [0, 1].

For t ∈ [0, 1], we have

∥xq(t)− Z1(t)∥

≤
t∫

0

∥∥f1(s, xq(s), yq(s))− f1(s, x(s), y(s))
∥∥ ds+ ∑

0<tk<t

∥∥I1,k(xq(tk), yq(t))− I1,k(x(tk), y(tk))
∥∥

≤
1∫

0

∥∥f1(s, xq(s), yq(s))− f1(s, x(s), y(s))
∥∥ ds+ m∑

k=1

∥∥I1,k(xq(tk), yq(t))− I1,k(x(tk), y(tk))
∥∥.

By the Lebesgue dominated convergence theorem, we have

∥xq(t)− Z1(t)∥ −→ 0 as q → ∞.

Similarly,
∥yq(t)− Z2(t)∥ −→ 0 as q → ∞.

So, lim
q→∞

(xq, yq) = (x, y) = (Z1, Z2) ∈ S(a, b).

2. S(a, b) is bounded uniformly.
Let (x, y) ∈ S(a, b); then (x, y) is a solution of problem (4.1) and hence, ∃ b∗ > 0 such that

∥(x, y)∥ ≤ (b∗, b∗).

3. S(a, b) is equicontinuous.
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Let r1, r2 ∈ [0, 1], r1 < r2 and (x, y) ∈ S(a, b). Then

∥(x, y)(r1)− (x, y)(r2)∥ ≤
( r2∫
r1

∥f1(s, x(s), y(s))∥ ds+
∑

r1<tk<r2

∥I1,k(x(t), y(t))∥,

r2∫
r1

∥f2(s, x(s), y(s))∥ ds+
∑

r1<tk<r2

∥I2,k(x(t), y(t))∥
)

and

r2∫
r1

∥f1(s, x(s), y(s))∥ ds+
∑

r1<tk<r2

∥I1,k(x(t), y(t))∥

≤
r2∫
r1

p(s)ψ
(
∥x(s)∥+ ∥y(s)∥

)
ds+

∑
r1<tk<r2

sup
(x,y)∈Bb∗

∥I1,k(x, y)∥

≤
r2∫
r1

p(s)ψ(b∗1 + b∗2) ds+
∑

r1<tk<r2

sup
(x,y)∈Bb∗

∥I1,k(x, y)∥ −→ 0 as r1 → r2.

Then S(a, b) is compact.

• The solution set S(a, b) is Rδ.

Let N : PC × PC −→ PC × PC be defined by

N(x, y)(t) =

(
a+

t∫
0

f1(s, x(s), y(s)) ds+
∑

0<tk<t

I1,k(x(tk), y(tk)),

b+

t∫
0

f2(s, x(s), y(s)) ds+
∑

0<tk<t

I2,k(x(tk), y(tk))

)
, t ∈ J.

Then FixN = S(a, b), and by Step 4 of the proof of Theorem 4.2, ∃ b∗ > 0 such that

∥(x, y)∥ ≤ (b∗, b∗), ∀ (x, y) ∈ S(a, b).

For i = 1, 2, we define

f̃i(t, y(t)) =


fi(t, x(t), y(t)), if ∥(x, y)(t)∥ ≤ (b∗, b∗),

fi

(
t,
b∗x(t)

∥x(t)∥
,
b∗y(t)

∥y(t)∥

)
, if ∥(x, y)(t)∥PC×PC ≥ (b∗, b∗)

and

Ĩi,k(x(t), y(t)) =


Ii,k(x(t), y(t)) if ∥(x, y)(t)∥ ≤ (b∗, b∗),

Ii,k

( b∗1x(t)
∥x(t)∥

,
b∗2y(t)

∥y(t)∥

)
if ∥(x, y)(t)∥ ≥ (b∗, b∗).

Since the functions fi, i = 1, 2, are L1-Carathéodory, f̃ i are also L1-Carathéodory, and ∃h ∈ L1(J,R+)
such that

∥f̃i(t, x, y)∥ ≤ h(t), ∀i = 1, 2, a.e. t ∈ J, and (x, y) ∈ R× R. (4.5)
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Consider the problem 

ẋ(t) = f̃1(t, x(t), y(t)), t ∈ [0, 1],

ẏ(t) = f̃2(t, x(t), y(t)), t ∈ [0, 1],

x(t+k )− x(t−k ) = Ĩ1,k(x(tk), y(t
−
k )), k = 1, 2, . . . ,m,

y(t+k )− y(t−k ) = Ĩ2,k(x(tk), y(t
−
k )), k = 1, 2, . . . ,m,

x(0) = a, y(0) = b.

We can easily prove that FixN = Fix Ñ , where Ñ : PC × PC → PC × PC is defined by

Ñ(x, y)(t) =

(
a+

t∫
0

f̃i(s, x(s), y(s)) ds+
∑

0<tk<t

Ĩ1,k(x(tk), y(tk)),

b+

t∫
0

f̃2(s, x(s), y(s)) ds+
∑

0<tk<t

Ĩ2,k(x(tk), y(tk))), t ∈ J.

By inequalities (4.5) and the continuity of Ii,k, i = 1, 2, we get

∥Ñ(x, y)∥ ≤
(
∥a∥+ ∥h∥L1 +

m∑
k=1

sup
(x,y)∈B∗

b

∥I1,k(x, y)∥,

∥b∥+ ∥h∥L1 +

m∑
k=1

sup
(x,y)∈B∗

b

∥I2,k(x, y)∥
)

:= (r1, r2) = r.

Then Ñ is bounded uniformly.
We can easily prove that the function M defined by M(x, y) = (x, y) − Ñ(x, y) is well defined,

and since Ñ is compact, by the Lasota–Yorke theorem (Theorem 2.7), it is easy to prove that the
conditions of Theorem 2.8 are satisfied. Then the set M−1(0) = Fix Ñ = S(a, b) is the Rδ-set and,
by Lemma 2.7, it is also acyclic.

• The solution operator is u.s.c.

1. S has a closed graph.
To see this, first we note that the graph of S is the set

GS =
{
((a, b), (x, y)) ∈ (R× R)× (PC × PC) : (x, y) ∈ S(a, b)

}
.

Let ((aq, bq), (xq, yq))q be a sequence in GS , and let ((aq, bq), (xq, yq))q → ((a, b), (x, y)) as q → ∞.
Since (xq, yq) ∈ S(aq, bq), we have

xq(t) = aq +

t∫
0

f1(s, xq(s), yq(s)) ds+
∑

0<tk<t

I1,k(xq(s), yq(tk)), t ∈ J,

yq(t) = bq +

t∫
0

f2(s, xq(s), yq(s)) ds+
∑

0<tk<t

I2,k(xq(s), yq(tk)), t ∈ J.

Let

Z(t) = (Z1(t), Z2(t)) =

(
a+

t∫
0

f1(s, x(s), y(s)) ds+
∑

0<tk<t

I1,k(x(s), y(tk)),

b+

t∫
0

f2(s, x(s), y(s)) ds+
∑

0<tk<t

I2,k(x(s), y(tk))

)
, t ∈ J.
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Let t ∈ J , then

∥(xq, yq)(t)− Z(t)∥

≤
(
∥aq−a∥+

b∫
0

∥∥f1(s, xq(s), yq(s))−f1(s, x(s), y(s))∥∥ ds+ m∑
k=1

∥∥I1,k(xq(t), yq(t))−I1,k(x(t), y(t))∥∥,
∥bq − b∥+

b∫
0

∥∥f2(s, xq(s), yq(s))− f2(s, x(s), y(s))
∥∥ ds+ m∑

k=1

∥∥I2,k(xq(t), yq(t))− I2,k(x(t), y(t))
∥∥)

and, by the Lebesgue dominated convergence theorem, we have

∥(xq, yq)(t)− Z(t)∥ −→ 0 as q → ∞.

Then
(x, y)(t) = Z(t),

which implies that (x, y) ∈ S(a, b).

2. S transforms every bounded set into a relatively compact set.
Let r =

(
r1
r2

)
> 0 and Br := {(x, y) ∈ PC × PC : ∥(x, y)∥ ≤ r}.

(a) S(Br) is bounded uniformly.

Let (x, y) ∈ S(Br), then there exists (a, b) ∈ Br such that

x(t) = a+

t∫
0

f1(s, x(s), y(s)) ds+
∑

0<tk<t

I1,k(x(tk), y(tk)), t ∈ J,

y(t) = b+

t∫
0

f2(s, x(s), y(s)) ds+
∑

0<tk<t

I2,k(x(tk), y(tk)), t ∈ J.

By the same method detailed in Step 4 of the proof of Theorem 4.2, we find that there exists b∗ > 0
such that

∥(x, y)∥PC×PC ≤ (b∗, b∗).

(b) S(Br)is an equicontinuous set.

Let τ1, τ2 ∈ J , τ1 < τ2, and (x, y) ∈ S(Br). Then

∥(x, y)(τ2)− (x, y)(τ1)∥

≤
( τ2∫
τ1

∥f1(s, x(s), y(s))∥ ds+
∑

τ1<tk<τ2

∥I1,k(x(tk), y(tk))∥,

τ2∫
τ1

∥f2(s, x(s), y(s))∥ ds+
∑

τ1<tk<τ2

∥I2,k(x(tk), y(tk))∥
)

≤
( τ2∫
τ1

p(s)ψ(∥x(s)∥+ ∥y(s)∥) ds+
∑

τ1<tk<τ2

∥I1,k(x(tk), y(tk))∥,

τ2∫
τ1

p(s)ψ(∥x(s)∥+ ∥y(s)∥) ds+
∑

τ1<tk<τ2

∥I2,k(x(tk), y(tk))∥
)



Existence and Solution Sets for Systems of Impulsive Differential Inclusions 29

≤
( τ2∫
τ1

p(s)ψ(b∗1 + b∗2) ds+
∑

τ1<tk<τ2

sup
(x,y)∈Bb∗

∥I1,k(x, y)∥,

τ2∫
τ1

p(s)ψ(b∗1 + b∗2) ds+
∑

τ1<tk<τ2

sup
(x,y)∈Bb∗

∥I2,k(x, y)∥
)

−→ 0 as τ1 → τ2.

Thus the set S(Br) is compact.
The operator S is locally compact and has a closed graph, so, S is u.s.c.

Theorem 4.4. Assume that the conditions of Theorem 3.1 hold, where F1, F2 : J×R×R → Pcp,cv(R)
are Carathédory, u.s.c. and mLL-sectionnable. Then the set of all solutions of problem (1.1) is
contractible.

Proof. Let f i ∈ SFi
be a locally Lipschitzian measurable selection of Fi, i = 1, 2. Let us consider the

problem 

x′(t) = f1(t, x(t), y(t)), a.e. t ∈ J,

y′(t) = f2(t, x(t), y(t)), a.e. t ∈ J,

x(t+k )− x(t−k ) = I1k(x(tk), y(tk)), k = 1, . . . ,m,

y(t+k )− y(t−k ) = I2k(x(tk), y(tk)), k = 1, . . . ,m,

x(0) = x0, y(0) = y0.

(4.6)

By Theorem 4.1, problem (4.6) has a unique solution.
Consider a homotopy function h : S(x0, y0)× [0, 1] → S(x0, y0) defined by

h((x, y), α)(t) =

{
(x, y)(t) if 0 ≤ t ≤ α,

(x∗, y∗)(t) if α < t ≤ 1,

where (x∗, y∗) is the solution of problem (4.6), and S(x0, y0) is the set of all solutions of problem (1.1).
In particular

h((x, y), α) =

{
(x, y), if α = 1,

(x∗, y∗), if α = 0.

Thus to prove that S(x0, y0) is contractible, it is enough to show that the homotopy h is continuous.
Let ((xn, yn), αn) ∈ S(x0, y0)× [0, 1] be such that ((xn, yn), αn) → ((x, y), α) as n→ ∞. We have

h((xn, yn), αn)(t) =

{
(xn, yn)(t) if 0 ≤ t ≤ αn,

(x∗, y∗)(t) if αn < t ≤ 1.

(a) If lim
n→∞

αn = 0, then
h((x, y), 0)(t) = (x∗, y∗)(t) for all t ∈ J.

Thus ∥∥h((xn, yn), αn)− h((x, y), α)
∥∥
∞ ≤ ∥(xn, yn)− (x∗, y∗)∥[0,αn] −→ 0 as n→ ∞.

(b) If lim
n→∞

αn = 1, then
h((x, y), 1)(t) = (x, y)(t) for all t ∈ J.

Thus ∥∥h((xn, yn), αn)− h((x, y), α)
∥∥
∞ ≤ ∥(xn, yn)− (x, y)∥[0,αn] −→ 0 as n→ ∞.

(c) If 0 < limn→∞ αn = α < 1, then we distinguish the following two cases.
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(1) If t ∈ [0, α], we have (xn, yn) ∈ S(x0, y0), thus there exists (v1n, v2n) ∈ SF1 ×SF2 such that for
all t ∈ [0, αn],

xn(t) = x0 +

t∫
0

v1n(s) ds+
∑

0<tk<t

I1,k(xn(tk), yn(tk)),

yn(t) = y0 +

t∫
0

v2n(s) ds+
∑

0<tk<t

I2,k(xn(tk), yn(tk)).

By Step 5 of the proof of Theorem 3.1, we have

∥(xn, yn)∥PC×PC ≤ b∗ =

(
b∗1
b∗2

)
,

and, by hypothesis, we get

∥(v1n, v2n)(t)∥ ≤ p(t)ψ(b∗1 + b∗2)

(
1
1

)
for all n ∈ N =⇒ (v1n, v2n)(t) ∈ p(t)ψ(b∗1 + b∗2)B(0, 1).

The sequences {v1n( · ), v2n( · )}n∈N are integrably bounded. By the Dunford–Pettis theorem [52],
there are subsequences, still denoted by (v1n)n∈N, (v2n)n∈N which converge weakly to elements v1( · ) ∈
L1 and v2( · ) ∈ L1, respectively. Mazur’s Lemma implies the existence of αni ≥ 0, i = n, . . . , k(n), such

that
k(n)∑
i=1

αni = 1 and the sequence of convex combinations gin( · ) =
k(n)∑
j=1

αnj vij( · ), i = 1, 2, converges

strongly to vi in L1. Since F1 and F2 take convex values, using Lemma 2.6, we obtain

vi(t) ∈
∩
n≥1

{gin(t)}, a.e. t ∈ J,

⊂
∩
n≥1

co
{
vik(t), k ≥ n

}
⊂
∩
n≥1

co
{ ∪
k≥n

Fi(t, xk(t), yk(t))
}

= co
(

lim sup
k→∞

Fi(t, xk(t), yk(t))
)
.

(4.7)

Since F is u.s.c. with compact values, by Lemma 2.5, we have

lim sup
n→∞

Fi(t, xn(t), yn(t)) ⊆ Fi(t, x(t), y(t)) for a.e. t ∈ [0, α].

This, together with (4.7), imply that

vi(t) ∈ co Fi(t, x(t), y(t)), i = 1, 2.

Hence, for every t ∈ [0, α],

x(t) = x0 +

t∫
0

v1(s) ds+
∑

0<tk<t

I1,k(x(tk), y(tk))

and

y(t) = y0 +

t∫
0

v2(s) ds+
∑

0<tk<t

I2,k(x(tk), y(tk)).

(2) If t ∈ ]αn, 1], then

h((xn, yn), αn)(t) = h((x, y), α)(t) = (x∗, y∗)(t).

Thus ∥∥h((xn, yn), αn)− h((x, y), α)
∥∥→ 0 as n→ ∞.

Hence, h is continuous, so, the set S(x0, y0) is contractible.
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Theorem 4.5. Suppose the conditions of Theorem 3.1 hold, and F1, F2 : J ×R×R → Pcp,cv(R×R)
are Carathéodory, u.s.c. and σ-Ca-selectionnable. Then the set of all solutions of problem (1.1) is
Rδ-contractible and acyclic.

Proof. Let f i ∈ SFi
be a Carathéodory selection of Fi, i = 1, 2. Consider the homotopy multifunction

Π : S(x0, y0)× [0, 1] → P(S(x0, y0)) defined by

Π((x, y), α) =

{
S(x0, y0)(t) if 0 ≤ t ≤ α,

S(f, α, (x, y)) if α < t ≤ 1,

where

• S(x0, y0) is the set of all solutions of problem (1.1);

• S(f, α, (x, y)) is the set of all solutions of the problem

z′1(t) = f1(t, z1(t), z2(t)), a.e. t ∈ [α, 1],

z′2(t) = f2(t, z1(t), z2(t)), a.e. t ∈ [α, 1],

z1(t
+
k )− z1(t

−
k ) = I1,k(z1(tk), z2(tk)), k = 1, . . . ,m,

z2(t
+
k )− z2(t

−
k ) = I2,k(z1(tk), z2(tk)), k = 1, . . . ,m,

z1(α) = x(α), z2(α) = y(α).

(4.8)

By the definition of Π, for all (x, y) ∈ S(x0, y0), (x, y) ∈ Π((x, y), 1) and Π((x, y), 0) = S(f, 0, (x, y)),
which is an Rδ-set by Theorem 4.3.

It remains to show that Π is u.s.c. and Π((x, y), α) is an Rδ-set for all ((x, y), α) ∈ S(x0, y0)×[0, 1].
The proof is given by the following steps.
Step 1. Π is locally compact.

(a) The multifunction S̃ : [0, 1]× R× R → P(PC(J,R)× PC(J,R)) defined by

S̃
(
t̃, (x̃, ỹ)

)
= S

(
f, t̃, (x̃, ỹ)

)
is u.s.c. where S(f, t̃, (x̃, ỹ)) is the set of all solutions of the problem

z′1(t) = f1(t, z1(t), z2(t)), a.e. t ∈ [t̃, 1],

z′2(t) = f2(t, z1(t), z2(t)), a.e. t ∈ [t̃, 1],

z1(t
+
k )− z1(t

−
k ) = I1,k(z1(tk), z2(tk)), k = 1, . . . ,m,

z2(t
+
k )− z2(t

−
k ) = I2,k(z1(tk), z2(tk)), k = 1, . . . ,m,

z1(t̃) = x̃, z2(t̃) = ỹ.

(4.9)

Assume the opposite, i.e., S̃ is not u.s.c. Then for some point (t̃, (x̃, ỹ)), there is an open neighborhood
U of S̃(t̃, (x̃, ỹ)) in PC([0, 1],R) × PC([0, 1],R) such that for any open neighborhood V of (t̃, (x̃, ỹ))
in [0, 1]× R× R, there exists (t̃1, (x̃1, ỹ1)) ∈ V such that S̃(t̃1, (x̃1, ỹ1)) ̸⊂ U .

Let

Vn =


(t, (x, y)) ∈ [0, 1]× R× R : d

(
(t, (x, y)), (t̃, (x̃, ỹ))

)
<



1

n

1

n

1

n




, n ∈ N,

where d is the generalized metric of the space [0, 1] × (R × R). Then for each n ∈ N we take
(tn, (xn, yn)) ∈ Vn and (xn, yn) ∈ S̃(tn, (xn, yn)) such that (xn, yn) /∈ U . We define the functions

Gt̃,(x̃,ỹ), Ft̃,(x̃,ỹ) : PC([0, 1],R)× PC([0, 1],R) −→ PC([0, 1],R)× PC([0, 1],R)
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by

Ft̃,(x̃,ỹ)(x, y)(t) =

(
x̃+

t∫
t̃

f1(s, (x(s), y(s))) ds+
∑

t̃<tk<t

I1k(x(tk), y(tk)),

ỹ +

t∫
t̃

f2(s, (x(s), y(s))) ds+
∑

t̃<tk<t

I2k(x(tk), y(tk))

)
, t ∈ [t̃, 1],

Gt̃,(x̃,ỹ)(x, y) = (x, y)− Ft̃,(x̃,ỹ)(x, y) for t ∈ [0, 1], (x, y) ∈ PC(J,R)× PC(J,R).

Then for (x, y) ∈ PC(J,R)× PC(J,R), t, t̃ ∈ [0, 1], and (x̃, ỹ) ∈ R× R, we have

Ft̃,(x̃,ỹ)(x, y)(t) = (x̃, ỹ)− F0,(x̃,ỹ)(x, y)(t̃) + F0,(x̃,ỹ)(x, y)(t).

Consequently,
Gt̃,(x̃,ỹ)(x, y)(t) = −(x̃, ỹ) + F0,(x̃,ỹ)(x, y)(t) +G0,(x̃,ỹ)(x, y)(t).

Then, we obtain
S̃(t̃, (x̃, ỹ)) = G−1

t̃,(x̃,ỹ)
(0) for all (t̃, (x̃, ỹ)) ∈ [0, 1]× R× R.

Since Ft̃,(x̃,ỹ) is compact (see the proof of Theorem 4.3), Gt̃,(x̃,ỹ) is proper. And as (xn, yn) ∈
S̃(tn, (xn, yn)), we have

xn(t) = xn(tn) +

t∫
tn

f1(s, xn(s), yn(s)) ds+
∑

tn<tk<t

I1,k(xn(tk), yn(tk)), t ∈ [tn, 1],

yn(t) = yn(tn) +

t∫
tn

f2(s, xn(s), yn(s)) ds+
∑

tn<tk<t

I2,k(xn(tk), yn(tk)), t ∈ [tn, 1],

which in turn gives

0 = Gtn,(xn,yn)(xn, yn)(t) = −(xn, yn)(tn) + F0,(xn,yn)(xn, yn)(tn) +G0,(xn,yn)(xn, yn)(t)

and
Gt̃,(x̃,ỹ)(xn, yn)(t) = −(x̃, ỹ) + F0,(x̃,ỹ)(xn, yn)(t̃) +G0,(x̃,ỹ)(xn, yn)(t).

Then∥∥Gt̃,(x̃,ỹ)(xn, yn)(t)−Gtn,(xn,yn)(xn, yn)(t)
∥∥ =

∥∥Gt̃,(x̃,ỹ)(xn, yn)(t)∥∥
=
∥∥− (x̃, ỹ) + (xn, yn)(tn) + F0,(x̃,ỹ)(xn, yn)(t̃)− F0,(xn,yn)(xn, yn)(tn)

∥∥ =

∥∥∥∥(αβ
)∥∥∥∥ =

(
∥α∥
∥β∥

)
,

where

α = −x̃+ xn(tn) +

(
x̃+

t̃∫
0

f1(s, xn(s), yn(s)) ds+
∑

0<tk<t̃

I1,k(xn(tk), yn(tk))

)

−
(
xn(tn) +

tn∫
0

f1(s, xn(s), yn(s)) ds+
∑

0<tk<tn

I1,k(xn(tk), yn(tk))

)
.
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Therefore,

∥α∥ ≤
t̃∫

tn

∥f1(s, xn(s), yn(s))∥ ds+
∑

tn<tk<t̃

∥I1,k(xn(tk), yn(tk))∥

≤
t̃∫

tn

p(s)ψ(b∗1 + b∗2) ds+
∑

tn<tk<t̃

∥I1,k(xn(tk), yn(tk))∥.

Similarly,

β = −ỹ + yn(tn) +

(
ỹ +

t̃∫
0

f2(s, xn(s), yn(s)) ds+
∑

0<tk<t̃

I2,k(xn(tk), yn(tk))

)

−
(
yn(tn) +

tn∫
0

f2(s, xn(s), yn(s)) ds+
∑

0<tk<tn

I2,k(xn(tk), yn(tk))

)
,

∥β∥ ≤
t̃∫

tn

p(s)ψ(b∗1 + b∗2) ds+
∑

tn<tk<t̃

∥I2,k(xn(tk), yn(tk))∥.

Now,
lim
n→∞

(xn, yn) = (x̃, ỹ) and lim
n→∞

tn = t̃

imply that
lim
n→∞

Gt̃,(x̃,ỹ)(xn, yn) = 0.

Then the set A = {Gt̃,(x̃,ỹ)(xn, yn)} is compact, thus G−1

t̃,(x̃,ỹ)
(A) is also compact. It is clear that

{(xn, yn)} ⊂ A. As lim
n→∞

(xn, yn) = (x̃, ỹ), it follows (x̃, ỹ) ∈ S̃(t̃, (x̃, ỹ)) ⊂ U , so we have a contradic-
tion to the hypothesis (xn, yn) ̸∈ U for every n.

(b) Π is locally compact.

For r =
(
r1
r2

)
> 0, consider the set

B × I =
{
((x, y), α) ∈ S(x0, y0)× [0, 1] : ∥(x, y)∥ ≤ r

}
,

and let {un} ∈ Π(B × I). Then there exists ((xn, yn), αn) ∈ B × I such that

un(t) =

{
(xn, yn) if 0 ≤ t ≤ αn,

vn(t) if αn < t ≤ 1, vn ∈ S(f, αn, (xn, yn)).

Since S(x0, y0) is compact, there exists a subsequence of (xn, αn)n which converges to ((x, y), α).
S̃ is u.s.c. implies that for all ε > 0, there exists n0(ε) such that vn(t) ∈ S̃(t, (x, y)) = S(f, α, (x, y))
for all n ≥ n0(ε), and by the compactness of S(f, α, (x, y)), it is concluded that there is a subsequence
of {vn} which converges towards v ∈ S(f, α, (x, y)). Hence Π is locally compact.

Step 2. Π has a closed graph.
Let ((xn, yn), αn) → ((x∗, y∗), α), hn ∈ Π(xn, yn, αn) and hn → h∗ as n → +∞. We are go-

ing to prove that h∗ ∈ Π((x∗, y∗), α). Now, hn ∈ Π((xn, yn), αn) implies that there exists zn ∈
S(f i, αn, (xn, yn)) such that for all t ∈ J ,

hn(t) =

{
(xn, yn) if 0 ≤ t ≤ αn,

zn(t) if αn < t ≤ 1.
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Therefore, it is enough to prove that there exists z∗ ∈ S(f i, α, (x∗, y∗)) such that for all t ∈ J ,

h∗(t) =

{
(x∗, y∗) if 0 ≤ t ≤ α,

z∗(t) if α < t ≤ 1.

It is clear that (αn, (xn, yn)) → (α, (x∗, y∗)) as n → ∞, and it can easily be proved that there exists
a subsequence of {zn} which converges to z∗. So, we can handle the cases α = 0 and α = 1 as we did
in the proof of Theorem 4.4, and we obtain finally that z∗ ∈ S(f, α, (x∗, y∗)).

Step 3. Π((x, y), α) is an Rδ-set for all ((x, y), α) ∈ S(x0, y0)× [0, 1].
Since F is σ-Ca-selectionnable, there is a decreasing sequence of multifunctions Fk : [0, b]×R×R →

Pcp,cv(R× R), k ∈ N, which admit Carathéodory selections and

Fk+1(t, u) ⊂ Fk(t, u) for all t ∈ [0, 1], u ∈ R× R,

and
F (t, u) =

∞∩
k=0

Fk(t, u), u ∈ R× R.

Then
Π((x, y), α) =

∞∩
k=0

S(Fk, (x, y)).

By Theorem 4.3, the sets Π((x, y), α) and S(Fk, (x, y)) are compact. Furthermore, by Theorem 4.4,
the set S(Fk, (x, y)) is contractible. Thus, Π((x, y), α) is an Rδ-set.

Lemma 4.1. Suppose that the multifunction F : J × R × R → Pcp,cv(R) is Carathéodory and u.s.c.
of the type of Scorza–Dragoni. Then the set of all solutions of problem (1.1) is Rδ-contractible.

Proof. By Theorem 2.6, we have that F is σ-Ca-selectionnable. Thus we have the same conditions of
the last theorem.

5 Summary/Conclusion
In this paper, we investigate the existence of a solution for the system of differential inclusions under
various assumptions on the multi-valued right-hand side nonlinearity. Also, we have studied some
properties of solution sets of those results, such as topological properties (compactness), acyclicity
properties, geometric topological properties, Rδ, etc. Theorem 4.3 is a major result entailing some of
the topological properties, while Section 4 is devoted to geometric topological properties.
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