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Abstract. In this paper, we consider the existence of solutions and some properties of the set
of solutions, as well as the solution operator for a system of differential inclusions with impulse
effects. For the Cauchy problem, under various assumptions on the nonlinear term, we present several
existence results. We appeal to some fixed point theorems in vector metric spaces. Finally, we prove
some characterizing geometric properties about the structure of the solution set such as AR, Ry,
contractibility and acyclicity, with these properties corresponding to Aronszajn—Browder—Gupta type
results.
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1 Introduction

Differential equations with impulses were considered for the first time by Milman and Myshkis [41]
and then followed by a period of active research which culminated with the monograph by Halanay
and Wexler [31]. The dynamics of many processes in physics, population dynamics, biology, medicine,
and so on, may be subject to abrupt changes such as shocks or perturbations (see, e.g., [1, 39, 40]
and the references therein). These perturbations may be seen as impulses. For instance, in the
periodic treatment of some diseases, impulses correspond to the administration of a drug treatment.
In environmental sciences, impulses correspond to seasonal changes of the water level of artificial
reservoirs. Their models are described by impulsive differential equations and inclusions. Important
contributions to the study of the mathematical aspects of such equations have been undertaken in
[25,37,50] among others.

In this work, we consider the following problem:

x'(t) € Fi(t,z(t),y(¢)), a.e. t€10,1],

y'(t) € Fa(t, z(t), y(t)), a.e. t€[0,1],

() = a(ty) + (o) y(te), k=1,...,m, (1.1)
D) =ylty) + Lop(a(ty), y(te), k=1,...,m,

where 0 = tg < t; < -+ <ty <1, F; : [0,1]] x Rx R — P(R), i = 1,2, is a multifunction and
L, Ir € C(R x R,R). The notations z(t]) = hlir(r)l+ x(ty + h) and z(t;) = hli%lJr x(ty, — h) stand for
the right and the left limits of the function y at ¢ = t;, respectively.

For single valued framework, the above system was used to analyze initial value and boundary value
problems for nonlinear competitive or cooperative differential systems from mathematical biology [42]
and mathematical economics [34]; this can be set in the operator form (1.1).

Recently, Precup [48] proved the role of matrix convergence and vector metric in the study of
semilinear operator systems. In recent years, many authors studied the existence of solutions for

systems of differential equations and impulsive differential equations by using vector version of fixed
point theorems (see [11,12,26,32,35,44-46,49] and in the references therein).

In general, for the ordinary Cauchy problems, the uniqueness property does not hold. Kneser [36]
proved in 1923 that the solution set is a continuum, i.e., closed and connected. For differential
inclusions, Aronszajn [7] proved in 1942 that the solution set is, in fact, compact and acyclic, and he
even specified this continuum to be an Rs-set.

An analogous result was obtained for differential inclusions with upper semi-continuous (u.s.c.)
convex valued nonlinearities by several authors (we cite [2-4, 6,24, 30, 33]).

The topological and geometric structure of solution sets for impulsive differential inclusions on
compact intervals, which were investigated in [18,27-29, 53], are a contractibility, AR, acyclicity and
Rs-sets. Also, the topological structure of solution sets for some Cauchy problems without impulses
posed on non-compact intervals were studied by various techniques in [4,10,16,17].

The goal of this paper is to study the existence of solutions and solution sets for systems of impulsive
differential inclusions with initial conditions. The paper is organized as follows. In Section 2, we recall
some definitions and facts which will be needed in our analysis. In Section 3, we prove some existence
results based on a nonlinear alternative of Leray—Schauder type theorem in generalized Banach spaces
in the convex case, and a multivalued version of Perov’s fixed point theorem (Theorem 2.3) for the
nonconvex case. Finally, we present some topological and geometric structures for solution sets of (1.1).

2 Preliminaries

In this section, we introduce notations and definitions which are used throughout this paper.
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Denote by

(X)

(X) ): Y closed};
Py(X) ={Y € P(X): Y bounded};
(X) ): Y convex};
Pep(X) ={Y € P(X): Y compact};

)

Definition 2.1. Let X be a nonempty set. By a vector-valued metric on X we mean a map d :
X x X — R" with the following properties:

(i) d(u,v) >0 for all u,v € X, if d(u,v) = 0 if and only if u = v;
(i) d(u,v) =d(v,u) for all u,v € X;
(iii) d(u,v) < d(u,w) + d(w,v) for all u,v,w € X.
We call the pair (X, d) a generalized metric space. For r = (ry,...,r,) € R, we denote by
B(zg,r) ={z € X : d(zo,x) <1}
the open ball of radius r centered at xy and by
B(xzo,7) = {zeX: dwo,z)<r}

the closed ball of radius r centered at xg.

We mention that for a generalized metric space, the notation of an open subset, closed set,
convergence, Cauchy sequence and completeness are similar to those in usual metric spaces. If,
z,y € R x = (z1,...,2,),y = (Y1,---,Yn), by x < y we mean x; < y; for all i = 1,... ,n. Also,
x| = (|z1],...,|zn]) and max(z,y) = (max(x1,y1),. .., max(T,, yn)). If ¢ € R, then z < ¢ means
x; <cforeachi=1,...,n.

Definition 2.2. A square matrix of real numbers is said to be convergent to zero if and only if its
spectral radius p(M) is strictly less than 1. In other words, this means that all the eigenvalues of M
are in the open unit disc (i.e., |A| < 1 for every A € C with det(M — AI) = 0, where I denotes the
unit matrix of M,,x,(R)).

Theorem 2.1 ( [51]). Let M € Myuxn(Ry). The following assertions are equivalent:
(i) M is convergent towards zero;
(ii) M* -0 as k — oo;

(iii) the matriz (I — M) is nonsingular and

(I-M)y ' =T4+M+M* -+ M-

(iv) the matriz (I — M) is nonsingular and (I — M)~ has nonnegative elements.

Definition 2.3. We say that a non-singular matrix A = (a;j)1<ij<n € Mnxn(R) has the absolute
value property if
ATNA < T,

where
|A| = (|aij|)197j§n € Myuxn(R).
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Definition 2.4. Let (X,d) be a generalized metric space. An operator N : X — X is said to be
contractive if there exists a convergent to zero matrix M such that

d(N(z),N(y)) < Md(z,y), Vz,y € X.

Theorem 2.2 ([23,47]). Let (X,d) be a complete generalized metric space and N : X — X be a
contractive operator with Lipschitz matriz M. Then N has a unique fixed point x, and for each
xog € X we have

d(N*(z0), ) < M*(I — M)~ Yd(zo,n(x0)), VEk €N.

Let (X, d) be a metric space. We denote by H,, the Pompeiu-Hausdorff pseudo-metric distance
on P(X) defined as

Hy, : P(X)xP(X) —RyU{cx}, Hy (A B)= max{ sup dy«(a, B), supd.(A, b)},
acA beB

where d.(A,b) = inf1 d.(a,b) and d.(a, B) = binlg d.(a,b). Then (Pp(X), Hq,) is a metric space and
a€ S

(Pa(X),Ha,) is a generalized metric space. In particular, Hgy, satisfies the triangle inequality.
Let (X, d) be a generalized metric space with

dl ($7 y)
d(z,y) = :
dn (2, y)
Notice that d is a generalized metric space on X if and only if d;, ¢ = 1,...,n, are metrics on X.

Consider the generalized Hausdorff pseudo-metric distance
Hy:P(X) xP(X) — R} U{oo}

defined by
Ha, (A, B)

Hd(AaB) = .
H; (A, B)

Definition 2.5. Let (X, d) be a generalized metric space. A multivalued operator N : X — Py (X)
is said to be contractive if there exists a metrix M € M,,«,(R4) such that

MF 50 as k— oo

and
Hy(N(u), N(v)) < Md(u,v), Yu,v e X.

Theorem 2.3 ([23]). Let (X,d) be a generalized complete metric space, and let N : X — Py(X) be
a multivalued map. Assume that there exist A, B,C € My xn(Ry) such that

Hy(N(z), N(y)) < Ad(z,y) + Bd(y, N(z)) + Cd(z, N(z)), (2.1)
where A+ C converges to zero. Then there exists x € X such that x € N(z).

Definition 2.6. Let E be a vector space on K = R or C. By a vector-valued norm on F we mean a
map || - || : E — R™ with the following properties:

(i) ||z|| > 0 for all x € E; if ||z|| = 0, then = = (0,...,0);
(ii) |[Az]| = |A|||z] for all x € E and X € K;

(i) [lz +yll < [lz]| + [lyll for all z,y € E.
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The pair (E,|| - ||) is called a generalized normed space. If the generalized metric generated by || - ||
(i.e., d(z,y) = ||z — y|) is complete, then the space (E, || - ||) is called a generalized Banach space.

Lemma 2.1 ([43, Theorem 19.7]). Let Y be a separable metric space and F : [a,b] — P(Y) be a
measurable multi-valued map with nonempty closed values. Then F has a measurable selection.

Lemma 2.2 ([38]). Let X be a Banach space. Let F : [a,b] x X — Pep cp(X) be an L'-Carathéodory
multifunction with Sg,, # @, and let T be a continuous linear operator from L' ([a,b], X) to C([a,b], X).
Then the operator

ToSk:C([0,0], X) — Pepeu(C(la, 0], X)),
y — (I'oSp)(y) == T(Sry)
has a closed graph in C([a,b], X) x C([a,b],X), where
Spy={veL'([0,0],X): v(t) € F(tyt)); te€lab]}.

Lemma 2.3 ([23,47]). Let X be a generalized Banach space and F : X — Py p(X) be an w.s.c.
compact multifunction. Moreover, assume that the set

A={zeX: zeAN(x) for some X (0,1)}
is bounded. Then N has at least one fized point.

Theorem 2.4 ([23]). Let X be a generalized Banach space and N : X — X be a continuous compact
mapping. Moreover, assume that the set

K={xeX: z=AN(z) for some A€ (0,1)}
is bounded. Then N has a fixed point.

Definition 2.7. Let X be a Banach space. A is called £L® B measurable if A belongs to the o-algebra
generated by all sets of the form I x D, where I is Lebesgue measurable in [a,b] and D is Borel
measurable in X.

Definition 2.8. A subset B C L'([a,b], X) is decomposable if for all u,v € A and for every Lebesgue
measurable set I C [a, b], we have
ux; + X, 0 € B,

where x, stands for the characteristic function of the set I.

Let F': J x X — Py(X) be multi-valued. Assign to F' the multi-valued operator F : C(J, X) —
P(L'([a,b], X)) defined by F(y) = Sg,. The operator F is called the Nemyts’kil operator associated
to F.

Definition 2.9. Let F : J x X — P,,(X) be multi-valued. We say that F' is of lower semi-continuous
type (Ls.c. type) if its associated Nemyts'kil operator F is lower semi-continuous and has nonempty
closed and decomposable values.

Lemma 2.4 ([19]). Let F : [a,b] x R x R — P, (R) be an integrable bounded multi-valued map such
that

(a) (t,x,y) = F(t,z,y) is L ® B measurable;
(b) (z,y) = F(t,z,y) is Ls.c. a.e. t € [a,b].
Then F' is lower semi-continuous.
Next, we state a classical selection theorem due to Bressan and Colombo.

Theorem 2.5 ([13,20]) (Theorem of “Bressan-Colombo” selection). Let X be a metric separable
space, and let E be a Banach space. Then each l.s.c. operator N : X — Py (L ([a,b], X)) which has
a decomposable closed value, also has a continuous selection.
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2.1 o-selectionable multi-valued maps

The following four definitions and the theorem can be found in [22,30] (see also [8, p. 86]). Let (X, d)
and (Y,d’) be two metric spaces.

Definition 2.10. We say that a map F : X — P(Y)) is o-Ca-selectionable if there exists a decreasing
sequence of compact-valued u.s.c. maps Fj, : X — Y satisfying:

(a) F,, has a Carathédory selection for all n > 0 (F,, are called Ca-selectionable);

(b) F(z)= (| Fu(z) for all x € X.

n>0

Definition 2.11. A single-valued map f : [0,a] x X — Y is said to be measurable-locally-Lipschitz
(mLL) if f(-,z) is measurable for every z € X, and for every € X there exist a neighborhood
Vz C X of  and an integrable function L, : [0, a] — [0, c0) such that

d'(f(t,z1), f(t,22)) < Ly(t)d(z1,22) for every t € [0,a], z1,22 € V.

Definition 2.12. A multi-valued mapping F : [0,a] x X — P(Y) is mLL-selectionable if it has an
mLL-selection.

Definition 2.13. We say that a multi-valued map ¢ : [0,a] x E — P(E) with closed values is
upper-Scorza—Dragoni if, given § > 0, there exists a closed subset As C [0,a] such that the measure
1([0,a] \ As) < § and the restriction ¢5 of ¢ to As x E is u.s.c.

Theorem 2.6 (see [22, Theorem 19.19]). Let E, E; be two separable Banach spaces and let F :
[a,b] X E — Pep.cv(Er) be an upper-Scorza—Dragoni map. Then F is o-Ca-selectionable, the maps
F, :]a,b] x E — P(F1), n € N, are almost upper semicontinuous, and we have

Fo(t,e) C @( U F(t,x)).
rck
Moreover, if F' is integrably bounded, then F is o-mLL-selectionable.

Lemma 2.5 ([9]). For an u.s.c. multifunction F: X — P, (Y), we have

Vao € X, lim sup F(x) C F(xo).
Tr—To

Lemma 2.6 ([9]). Let (K,), C K such that K is a compact subset of X, and X is a separable Banach

space. Then
@(nlirréosupK,L> = ﬂ @( U Kn),
N>0 n>N

where co is the convexr envelope.
Lemma 2.7 ([21]). Let X be a metric compact space. If X is Rs-set, then X is an acyclic space.

Theorem 2.7 ([22]). Let E be a normed space, X be a metric space, and let f : X — E be a
continuous map. Then ¥ e > 0 there is a locally Lipschitz function f. : X — E such that

If(z) = fe(z)[| <&, VaeX. (2.2)

Theorem 2.8 (Theorem of Browder and Gupta, [14]). Let (E,|| - ||) be a Banach space, f : X — E
be a proper map, and suppose that for every € > 0, we have a proper map f. : X — E satisfying:

(i) [Ife(z) = f(2)]| <& for allz € X;

(ii) for allu € E such that ||u|| < e, the equation f.(x) =u has a unique solution.

Then the set S = f=1(0) is Rs.
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3 Existence results

Let J :=[0,1]. In order to define a solution for problem (1.1), consider the space PC(J,R) x PC(J,R),
where

PCO(J,R) = {y: JoR, ye CU\{t:},R): k=1,....m,
y(ty) and y(t) exist and satisfy y(t,) = y(tk)}

Endowed with the norm
lylpe = sup {lly(@®)ll: te T},

PC is a Banach space.

3.1 Convex case

Theorem 3.1. Assume there exist a continuous nondecreasing map ¥ : [0,+00) — (0,+00) and
p € LY(J,Ry) such that

| E; (¢, u, )| < p(t)z/J(||u|| + ||v||) a.e. t€J, i€{l,2}, (u,v)€ R2.

Assume also that Fy, Fy : J X R X R — Py o (R) are Carathéodory. Then problem (1.1) has at least
one solution.

Proof. Consider the operator N : PC x PC — P(PC x PC) defined by

$0+/f1 ds—+ Z Il tk tk)) teJ
O<trp<t

ha(t
ho(t

N(z,y)=4 (h1,h2) e PC x PC : (

~— —
\_/

yo+/f2 dS—‘r Z IQ tk tk)) teJ

0<trp<t

where f; € Sp, = {f € LY (J,R) : f(t) € Fi(t,z(t),y(t)), a.e. t € J}. Fixed points of the operator N
are the solutions of problem (1.1).

We are going to prove that N is u.s.c. compact and that N has convex compact values. The proof
is given by the following steps.

Step 1. N(x,y) is convex for all (z,y) € PC x PC.
Let (hy,ha), (hs, ha) € N(x,y). So, there exist f1,f3 € Sp (. a(-)y(-)) and f2, f1 € Spy(- 2()y(-))
such that for all t € J, we have

_LEO—I—/fl ds + Z Il tk tk))

0<tp<t

—yo+/f2 ds+ Y D(a(ty),y(t))

0<tp<t

and

ha(®) =20+ [ fals)ds+ 30 el o),

h4(t)*yo+/f4 )ds + Z Ir(z (tr))-
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Let I € [0, 1]. For each t € J, we have

(s + (1= D) fs)(s) ds S et y(t)

0<tp<t
+

L(x(ty),y(t
Ut D ds | \gom, 200D

T~
N
> >
N =
"
_|_
—~
—
|
=
TN
o> S
~ W
N~
N———
—
—
SN~—
I
TN
< 8
o o
N~
_|_
O\uo\ﬁ

As Sp, and S, are convex (since F; and F» have convex values),

! (Z;) +(1-1) <Zi) € N(z,y).

Step 2. N transforms every bounded set to a bounded set in PC x PC.
It suffices to show that

/0 .= <£1> > (0 such that

Y(ag) € B, i {@c,y)echPc: e pllrexre <a. 0= (%) >o},

if (h,g) € N(z,y), then we have ||(h,g)|lpcxpc <.

Let (h,g) € N(x,y), then there exist fi € Sp (. 2(.)y(.)) and fo € Sp,(. 2(.).y(.)) such that for all
teJ,

ht) =0+ [ Ailo)dst Y Dl uitn),
0

0<trp<t

0<tp<t

h
(s g) e = (” PC) |

o) =+ [ fals)ds+ 37 Da(alt)y).
0

lgllpc

For all t € J, we have

0<trp<t

[R()] < ||a?o||+/||f1(8)||d5+ Y (i) y(t)]
0

< Jlaoll + / |Fu(s,2(5), y(s) | ds + 3 sup ()]
0

k=1 (z,y)€Bq

< lzoll +v(ar +g)lplles + Y sup |1z y)ll =¢

k=1 (z,y)€Bq

and

Lol < llvoll + / 1@ lds+ 3 [Ea), yw)]
0

0<tr<t

k=1 (xvy)qu

b m
<Ml + [ 1FaCs.os)p(s)lds + Y sup La(e.w)]
0
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< lwoll + (@ + @)llplr + > sup  [La(z,y)]| = L.

k=1 (z,y)€B,

(llhllpc> (Z)

<[=]|: ="~

lgllpc ¢

Step 3. N transforms every bounded set to an equicontinuous set in PC x PC.

Let 71,72 € J, 71 < T2, and let B, be as above in Step 2. For each (x,y) € B, and (h,g) € N(z,y),
there exist f1 € Sp (. 2(.),y(-)) and f2 € Spy(. 2(.),y(.)) such that for all ¢ € J, we have

Then

71’0+/f1 )ds + Z I g (z(tn), y(te)),

O<tr<t

*yoJr/fz ) ds + Z I (x(tr), y(tr)).

0<tp<t

Then

(=) — h(r)ll < / @+ Y Rty

T <t <To
T2

< Y(q —|—q2)/p(s) ds + Z sup |1 k(z,y)]] — 0 as 7o = 7

n T1 <t <T2 (z.y)€B,

and

T2

lg(72) — g(m1)l S/Hfz(S)IIdSJr Y zwa(tn), ytn)]]

- 71 <tp<T2

T2

<vlata) [po)dst 3 s ()] 0 as o

" T1 <t <T2 (z.y)€B,

So, by Step 2 and Step 3, N is compact.

Step 4. The graph of N is closed.
Let (xn,yn) = (@x,Ys)y (hnygn) € N(Tpn,yn), and h, — h, and g, — g.. It suffices to show that
there exist f1 € Sp (. 2.(.)y.(-)) and f2 € Sp,(. 2.(.),y.(.)) such that for all ¢t € J, we have

t
h.(t) = xo +/f1(8) ds + Z I g (4 (th), y+ (tr)),
0 0<tp<t

0.0 =w+ [ folo)ds+ 3 Lanlen).vn)

With (hn, gn) € N(zn,yn), there exist fi , € SF1(~7wn(-)7yn(-)) and fo, € SF2(';$n('),yn(')) such that
forall t € J,

hat) _xo+/f1n ds+ S Ta(wn(t) v (te)),

0<tp<t
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an® =0+ [ Fen)ds+ 37 Taplon(te)mtr)).
0

O<tp<t

Since I; 1, k=1,...,m, i = 1,2, are continuous,

— 0
PC

0<tp<t 0<tp<t

[CACEETED S FCH TSRS B (XURERD S AR SRR )
and

(@030 3 Do) = (00 -0 Ym0

0<tp <t 0<tp <t PC
as n — 0o.
Let T' be a continuous linear operator defined as
I:LY(J,R) — PC(J,R),
r— T'(r)

such that ,

P(r)(t) = / r(s)ds, Vte .
0
By Lemma 2.2, the operator I" o Sp has a closed graph and, moreover, we have

(hn(t) —xo— Y Il,k(:cn(tk),yn(tk))) € L(Sh (- an()wn())
O<tp<t

and
(gn(t) — Yo — Z I2,k(xn(tk)7yn(tk))> € F(SFz(wa’n('),yn(')))'

0<tp <t
So,

t

(hett) =20~ 3 Batanltn)vn) = [ fi(5)ds

0<tp<t 0
t

(60 -w = Y Boaloatt)(t)) = [ alo) s,

0<ty<t 0

and then f; € Spl(.yr*(.))y*(.)) and fy € SFQ(.yz*(.),y*(.)).

Step 5. A priori estimation.
Let (x,y) € PC(J,R) such that (z,y) € AN(z,y), and 0 < A < 1. So, 3 f1 € Sp (. o(-),y(.)) and
dfs € SFz(»,w(~),y(~)) such that for all t € [O,tl],

x(t) = Axg + )\/fl(s,x(s),y(s)) ds,
0

u(t) = Mo + A / fols,2(s), 4(s)) ds.

Then

@I < llzoll + /p(S)@b(l\w(S)H +lly())) ds, t € 10,1],
0
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lyI < llyoll +/p(8)w(||(fc(8)\| +lly())) ds, t € [0,14].
0

Consider the functions ¢, W, defined by

t

D1 (t) = |lzoll +/p(5)1/1(||(x(8)|\ +ly(s)Il) ds, t €0, ta],
0

Wi(t) = IIyoH+/p(8)¢(ll(x(8)ll+Hy(5))ll)d& t€0,t1].
0

So,
(91(0),W1(0)) = (llzoll. llyoll). @ < 91(t), Iy <Wa(t), te[0,t],

and
Wi (t) = 91(t) = p)¢ (Il )] + ly®)), t € [0,t].
As 1 is a nondecreasing map, we have

91(t) < p(t)Y(91(1)), Wi(t) < p()p(WL(E)), t € [0,1a].

This implies that for every t € [0, t1],

91(t) d t1 Wi (t) d ty
u u
—— < [ p(s)ds, —— < [ p(s)ds.
P(u / Y(u /
91(0) () 0 W1 (0) ) 0
The maps Tg(z) = [ % and I'3(z) = [ % are continuous and increasing. Then (I'})~! and
91(0) Wi (0)

(I'2)~1 exist and are increasing, and we get

ty1 t1

o)< @) [aas) =, it <@ ([ ois)as) =t

0
As for every t € [0, 1], ||z(¢)]] < 91(¢) and ||y(t)]] < Wi (t), so,

sup [ly(t)|| <o,  sup [z(t)]| < Mo.

te(0,t1] te[0,t1]
Now, for t € (t1, 2], we have
@) < ([T (e(t), y(t)|| + x| < _sup (e B)|[ + Mo = Ny,
(a,B)EB(0,Mo)x B(0,£0)
lyEDI < [[T2,1(2(t2), y(t0) || + ly(E)| < sup (12,1 (cx, B)|| + Lo == Dx.

(a, B)EB(0,Mo) x B(0,£0)

Also,

t

2(t) = Ma(tr) + Lo (@(t), y(t))) + A/fl(syilf(S),y(S))d&

y(t) = Ay(tr) + T (2(t1), y(12)) + A / fols,2(s), 4(s)) ds,

t1
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and so,

t

le@)] < Ny + / p(s))

t1
t

()l + ly(s)l) ds, ¢ € [ta, ta],

Iy < Dy + /p(S)w(II(l‘(S)H +ly())) ds, t € [t1, t2].

ty

Let us consider the maps ¥ and W- defined by

t

02(0) =N+ [P0 ()] + )] ds,

t1

Then

and
Da(t) = p) (@) + ly @)
As 1 is nondecreasing,

Da(t) < p(t)e(Va(t)),
This implies that for every ¢ € [t1, t2],

t

Wa(t)= Dy + / p(s)% (|2 (3)[|+ [y (s)Il) ds

t1

@ < 02(t), t € [tr,ta],
[y <Wa(t), € [t,ta],
Wa(t) = p&)¢ (I @) + ly0))]), te

[t1, t2].

Wh(t) < p(t)p(Wa(t)), t € [tr,ta].

F2(t) 12 Wa(t)
s.
[ s from [ / Sk
92(tF) Wa ()
z z
If we consider the maps I'}(z) = [ W and I'{(z) = [ JEZ) , we get
Da2(t]) Wa(t])
Va(t) < (T (/ ) = My,
09 ) o
For all t € [t1,ta], |lz(t)]] < 92(¢t) and ||y(t)]] < Wh(t), and then
sup =) <My, sup [ly(@)]| < 41
te[tl,tQ] tE[tl,tz]

We continue the process to the interval (¢,

1

()] < (1% ([roras):

m

1]. We get the existence of M, and £, such that

o 0] < (1) ( / o) ds ) = b,

M,

m

As we chose y arbitrarily, then for all solutions of problem (1.1), we get

M *
||(x7y)||PC><PC Smax{ (gkk> : kzoala"'am} =b"

€ [thtg}.
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Then the set
A= {(x,y) € PC x PC: (z,y) € AN(z,y), A€ (0,1)}

is bounded. So, N : PC x PC — P.,(PC x PC) is compact and u.s.c. Then, by Lemma 2.3, we
obtain that problem (1.1) has at least one solution. O

3.2 Nonconvex case

Assume that the following conditions hold:
(H1) Fi: J xRXxR = Pg,(R), t = Fi(t,u,v) are measurable for each u,v € R, i =1,2.
(Hz2) There exist the functions I; € L'(J,R*), i = 1,...,4, such that

Hy(Fi(t,u,v), Fi(t,5,0) <L (0)||u—a| +Lt)|v—7], teJ, YVuuvveR,
Hy(Fa(t,u,v), Fo(t,u,0)) < I3(t)||u — | + Lu(t)||lv -1, t€J, YVuuv,veR

and

Hy(0, Fy(t,0,0)) <14(t) forae. teJ, Hg0,Fy(t,0,0)) <lI3(t) for ae. t€J.

(H3) There exist the constants a;,b; > 0, i = 1,2, such that
HIl(’U,,U) - Il(ﬂ 76” < al‘lu 7ﬂH + a2||’U 7§H’ Vu,ﬁ,v,@ eR

and
T2 (u, v) = Ix(@ — ]| < bilu =@l + bellv =7, Yu,@, 0,7 €R.

Theorem 3.2. Assume that (H1)—(Hs) are satisfied and the matriz

3 <||11||L1 +ar ol +a2>

sl +01 |llallzr + b2
converges to zero. Then problem (1.1) has at least one solution.

Proof. Consider the operator N : PC x PC — P(PC x PC) defined by

x0—|—/f1 dS—l— Z I(x tk tk)) teJ

N(2,y)={ (1, ha) € PC x PC (Zlgg) ot 7
yo+/f2 ds+ > D(a(ty),y(t)), teJ
0<tp<t
where

fi€Sp = {f LY (JR): f(t) € Fit,z(t),y(t)), ae. te J}.

Fixed points of the operator N are the solutions of problem (1.1).
Let, for i = 1,2,

Ni(x,y):{hePC: h(t) /fz yds+ 3 I y(te), teJ},

O<tp<t

where r1 = ¢ and x5 = yg. We show that IV satisfies the assumptions of Theorem 2.3.
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Let (z,y),(Z,7) € PC x PC and (hy,h2) € N(z,y). Then there exist f; € Sg,,i = 1,2,, such that

xo—l—/fl ds + Z Il tk tk)) teJ
hi(t) 0<tr<t
() =

y0+/f2 d5+ Z IQ tk tk)) teJ

0<tp<t
(H2) implies that

Ha, (Fu(t,2(t), y(t)), Fr(t,2(8),5(1))) < L()|z(t) — (@) + L)]y(t) -], teJ,

and
Ha, (Fa(t, x(t),y(t)), Fa(t,2(t), 5(t))) < l3(t)|z(t) — T(t)| + La(®)]y(t) —y(@t)|, teJ
Yy

Hence, there is some (w,@) € F1(¢,Z(t),5(t)) x Fo(t,Z(t),y(t)) such that

[f1(t) = wl <L (@)z(t) —Z(0)] + 0)]y(@) = Y1), e,

and
|fa(t) — @l < Is(t)|x(t) —2()] + La(@)]y(t) —y(t)], teJ
Consider the multi-valued maps U; : J — P(R), i = 1,2, defined by

U1(t) = {w e A3, 50) : 1A(t) - wl < L@)e(t) - 5] + LOWE - 5@, ae te}
and

Ua(t) = {w € Bt (0, 5() + 1/1(t) = wl < L(®)]a(t) = 7(0)] + LOy() =T, ae. te ).
Then each U, (t) is a nonempty set and Theorem I11.4.1 in [15] implies that U; is measurable. Moreover,

the multi-valued intersection operator V;(-) := U;(- )N F;(-,%(-),y(-)) is measurable. Therefore, for
each i = 1,2, by Lemma 2.1, there exists a function ¢ — f,(¢), which is a measurable selection for V;,

that is, f,(t) € F;(¢,2(t),5(t)) and

) = T2 ()] < L0t - 30 + LEOlyE) - 5@, ae. ted,
and
|f2(t) = Fo(t)] < Ia(t)]2(t) — (1) + La()|y(t) = H(t)], ae. teJ.
Define h; and hsy by
Tt = / syds+ Y L(@t),5t), te
0 0<tp <t
and .
ha(t) = / s)ds+ > LT (tr), te ..
4 0<tp<t

Then for ¢t € J,

[P (t) = ()] < (1]l + a1)le = Z|pe + (llallzr + a2)lly — Tl pe-

Thus ~
[h1 = hallpe < (o + a1)lx =T pe + (ll2]l2r + a2)lly — Fllpo-
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By an analogous relation, obtained by interchanging the roles of y and 7, we finally arrive at the
estimate

Ha, (Mi(2,9), Ni(@,7)) < (llller +ar)llz = Zl|pe + (llallzr + az2)lly = Fllpe-
Similarly, we get
Ha, (N2(2,y), N2(7, 7)) < (Ilsller + b1)lle = Zllpc + (llallpr + b2)ly — 7l pe-
Therefore,
Hd(N($7y)7N(jay>) < M(HJJ _fllPCH Hy _y”PC)a V(Q?,y), (E7y) € PC x PC.
Hence, by Theorem 2.3, the operator N has at least one fixed point which is a solution of (1.1). O

Theorem 3.3. Assume, for each i = 1,2, that there exist a continuous nondecreasing map V; :
[0, +00[— (0, +00) and p; € L*(J,Ry) such that

1Fs(t,u,0)| < pi(O)vi(lull + [[v]]) ace. teJ, (u,v) € R
Assume also that Fi, Fy : J X R X R = Pgp oo (R) are Carathéodory, and
(a) (t,z,y) = Fi(t,x,y) is L® B measurable fori=1,2.
(b) (x,y) = Fi(t,x,y) is Ls.c. a.e. t € J.
Then problem (1.1) has at least one solution.

Proof. For each i = 1,2, since F; is l.s.c., by Theorem 2.5, there exists a continuous function f; :
PC — L'(J,R) such that f;(z,y) € Sp,(. 4, for all (z,y) € PC(J,R) x PC(J,R). Consider the
impulsive system

2 (t) = fi1(t, 2, y), ae. t el

y'(t) = fat,z,y), a.e. t € J,

z(t)) —z(ty) = Li(x(te),y(te)), k=1,2,...,m, (3.1)
y(ty) —y(ty) = L(z(te),y(tr), k=1,2,...,m,

2(0) = zo, ¥(0) = yo.

It is clear that if (z,y) is a solution of problem (3.1), then (x,y) is also a solution of problem (1.1).
When the proof of Theorem 3.1 is applied to the operator N, : PC' x PC — P(PC x PC) defined by

l‘o—i—/fl )ds+ Z Ii(x tk tk)) teJ

N.(z,y)={ (h1,h2) €PC x PC : (218 - ostist :
1/0+/f2 ds+ > D(a(ty),y(ts)), teJ
0<trp<t
there is a solution of problem (1.1). O

4 Structure of solutions sets

Consider the first-order impulsive single-valued problem

2'(t) = f1(t, z(t), y(¢)), a.e. t€l0,1],

y/(t) :fQ(t7z(t)7y(t))7 a.e. te [07 ]-L

f(tﬁ) - x(t];) = Il(x(tk)’y(tk))» k= L, , T, (4'1)
D) = y(ty) = La(te),y(te), k=1,...,m,
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where f1, fo € L'(J x R?,R) are te given functions and 0 = tg < t; < -+ < t;y < tyy1 = 1. Then
(z,y) is a solution of (4.1) if and only if (z,y) is a solution of the impulsive integral system

J:(t):x0+/f1(s,x(s),y(s))ds+ Z I(z(tg),y(tk)), a.e. teEJ,
0

0<ty<t (4 2)
y(t) :y0+/f2(57$(8),y(8))ds+ > L(z(t) ytr), ae. tel.
0 O<tr<t

Denote by S(f1,2, (x0,yo)) the set of all solutions of problem (4.1).
Theorem 4.1. Suppose that there are the functions {; € L*(J,R,), i = 1,2, such that

|filtsxr,y1) = filtswa,y2)| < La(t)(Jor — 22| + |y1 — v2]), ¥ (21,01), (22,2) € R
Then problem (4.1) has a unique solution.

Proof.
1. The existence:

e We consider problem (4.1) on [0, 4],

a'(t) = filt,z(t),y(t), ' (t) = falt,2(t),y(t), ae te[0,t],

2(0) = 20, 3(0) = yo. (43)

We consider the operator Ny defined by
Ny : C([0,t1],R) x C([0,t1],R) — C([0,#1],R) x C([0,t1],R),
—

t

Ni(z,y)(t) = (wo+/f1(8,w(3),y(8))d8;yo+/f2(8,x(8),y(8))d8>, t € [0,t1].
0

0

Let (xlayl)v ($27y2) € C([Oatl}aR) X C([Ovtl}’R)a te [O’tl]a and

Mo, 10)(6) — Moz )0 = ||—<:'§:|>7
where .

@ = [ (a6 (s) = filssma(s). 2 (5)) ds
and Ot

5= [ (falos.oa(6)n(9)) ~ Fols,a(s).pals) d.
Then 0

1
_ = e‘rL(t)
T

(“‘“) () Gi=3)
Y1 — Y2 Y1 =92/ ||gc Y1 —Y2) ||gc

1 /1 1
= = mEO ((lay — | + llys = 3ell) = 75O (= s = wall + = yn — wall ),

0
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where .
L(t) = /ﬁ(s) ds, and T > 2.
0
Similarly,
1 1
181 < €0 (= oy = wall + = s — ell).
T T
Thus L1
_r ; ; €Tl — T2
€ L(t)HNl(xl?yl)(t) - N1($27y2)(t)H < H ! || , t € [O,tl}.
11 U el
T T
Then
1 /1 1\ [llz1— a2
Ni(z1,91) — Ni(z2,y2) < - ( ) ,
H HBC T 1 1 Hy1 o y2||
where
|G, = zm | GEDI
Y/ e teo.t] y(?)
Let

1 /1 1
B_T(l 1)'

det(B — AI) = (1 - )\)2 L

b
T T2

Then we have

hence p(B) = % . For 7 € (2,4+00), N; is contractive, so there exists a unique
(2%, y%) € C([0,t1],R) x C([0,1],R) such that Ni(z%4%) = (2%, ¢%).
Then (2°,4°) is the solution of (4.3).
e We consider problem (4.1) on (¢y, t3],
a'(t) = fi(t,z(t),y(t), o' (t) = falt,x(t),y(t), ae te€ 1= (ts,ta],
a(t]) = 2"(t) + Li(2°(t), 5 (1), y(t) =" (t) + Li(2°(t), 5° (1)

Consider the space C, = {(z,9) € C(J1,R) x C(J1,R) : (x(t]),y(t])) exist}, (Cs, || - ||.1,) is a
Banach space.

(4.4)

Let
N2 : C* — C*,
(l',y) —>N2(:c,y)7

t

No(z,y)(t) = (300(751) + I(2°(t1), 4" (1)) +/f1(87$(8)7y(8))d3a

yO(t1) + Lo (2°(t), 4" (1)) + /f2(57$(3)7y(3))d5), t € (t,t2].
ty
Let (z1,y1), (x2,y2) € Cy x Oy, and t € (t1, 2],

HN2(3:1,:U1)(75) — N2($2,y2)(t)” = ||(a, B)|| = <||01||> 7
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where

ol < / £06) 151, (5)) = (za(s) () s < - / rtge s (527 )

BC
1

1 T —T
< L 7L (1 2) :eTL(t)( 21 — 2ol 4 = llyy — )
<z ’ —l [y — 22| Hy1 yo
and \
:/E(s)ds
t1
Similarly,
181 < O (2l — wall + -l — 3l ).
So,
T 1 T1— X2
L@ ||N2 (x1,91)(t) — Na(z2,12)(t)]| < ( 1) | | , t e (t1,ta].
ly1 — w2l
Then
1 /1 1 21 — 22
Na(z1,y1) — Na(22,92) < - ( ) .
| e 7\ 1)\l = well
Then for 7 € (2,4+00), Na is a contraction and, so, there exists a unique (z',y') € C((t1,t2],R) such
that
NQ(:Eluyl) = (‘r17y1)'
We have

(@) = Nalal o) = (29(0) + Ba2(e0).0”00) + Jimp [ s a(e).a9) s,

(t) + B (00),°(00)) + Jmm [ fals.o(5), () ds).

Then (2!, y') is the solution of problem (4.4). As a consequence, arguing inductively, the solution of
problem (4.1) is given by

(@, y")(t), te€(0,t],

(@' y")(t), e (tta],

2. The uniqueness:
Let (z*,y*), (z**,y**) be two solutions of problem (4.1). We are going to show that

(=%, y")(t) = (=™, y™)(t), VieJ=][0,1].

Again, the process is inductive.

If t € Jo = [0,¢1], then (z*,y*)(t) = (z* 7y**)(t), Vit e [0,t1].

Now, suppose that if t € J; = (tz,tHl] then (z*,y*)(t) = (2™, y*)(t), Vt € (ti, ti+1]. It is enough
to show that (z*,y*)(t{) = (=**,y**)(t{), k € {1,2,...,m}. To that end, we have

(@ y") () = (", y") () = (Tua(@™ (t:), " (), Taa (@™ (1), " (1)),
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which implies that
(@, y") () = (=", y") (&) + D" (), y* (1))
and

Log(a*(t:), 4" (t:)) = (@™, y* ) (t:) + (Lis (@™ (t:), ™ (t3)), Los(2* (:), y** (t:))) = (™, ") (). O

Theorem 4.2. Suppose there exist a continuous function v : [0,00) — (0, 00) which is nondecreasing,
and a function p € L*(J,R,) such that

177t 2 )l < p@¢(llll + lyll), Vte, Yoy eR,

with .
d
/p(s) ds < / WZ)
0 llzoll

Then problem (4.1) has at least one solution.

Proof. For the proof we use “the nonlinear alternative of Leray—Schauder”. Consider the operator
N : PC(J,R) x PC(J,R) — PC(J,R) x PC(J,R)
defined by

t

Ni@p)(t) = <x + [ Aol ds+ 3 hate(n).u).

0 O<tp<t

nt [ Rtsa@ae)ds+ Y Bl ).
0

O<tp<t

The fixed points of N are the solutions of problem (4.1). It is enough to prove that N is completely
continuous. This is established in the following steps.

Step 1. N is continuous.
Let (zn,Yn)n be a sequence in PC(J,R) x PC(J,R) such that (z,,yn) — (z,y). It is enough to
prove that N(z,,y,) = N(z,y). For all t € J, we have

0<tp<t

N (0, y) (8) = (xo+ [ Alson@ () ds+ Y Duloat) on(b),
0

t

nt [ Rasen( s+ ¥ Tanlen(t) (o).

/ o<t <t
Then

et Misaol = ol = (1),
where

”O‘”H JU106:2006), a6 o (6), D) s+ Y- (Il,mn(tk),yn(tk))Il,k<x<tk>,y<tk>>)H

0 O<tr<t
t

0 O<tp<t
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As I, k =1,...,m, are continuous functions, and f! and f? are L'-Carathéodory functions, by the
Lebesgue dominated convergence theorem, we have

b
ol < [ 113652050 30(5)) = Fa(s,(5).w() s
0
) Ik @n (), yn(tr) = Lok(@(t), y(t:))|| — 0 as n — oo,
k=1
Similarly,
b
181 < [ 120500 (5).0m (5) = fals, (). () ds
0
+ Z "IQ}k(.’I/'n(tk), Yn(tr)) — Ig’k(x(tk),y(tk))H — 0 as n — co.
k=1
So,

1N (20, y0) = Nz, p)|| — (8) as 1 o0,

Then N is continuous.

Step 2. N transforms every bounded set into a bounded set in PC(J,R) x PC(J,R).
It suffices to show that

Vq= (Ch) >0, 3/ = <€1> > 0 such that
q2 lo

V(z,y) € By = {(z,y) € PCx PC: ||(2,y)| < q}, wehave [|N(z,y)|| < ¢
Let (z,y) € B;. We have

3Gl < (Jlool + / (s, (). (s s+ 3 1o t) wte))
k=1

b
lyoll + / | fals.2(s), y ||d8+2||12k tk»n) ~ (@, 8),
0

where

b m
[l < ol +/p(t)w(||$||pc +llyllpe) dt+ Y I (e(te), y(te)l

k=1

b m
< [|zo| +/p(t)w(||prc +lyllpe) dt+ Y sup L,y = 6.
0 k=1 (z,y)€Bq

Similarly,

b
181 < Hyoll+/p() (lzlpc + Iyl pc) dt+z sup |12, 5 (2, y)[| = La.
0 —1 (z,y)€B,

Step 8. N transforms every bounded set into an equicontinuous set to PC(J,R) x PC(J,R).
Let 71, 72 € J, 71 < 72 and let B, be as in Step 2.
Let (z,y) € By. Then:
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1. If 7y # t (or 2 #t), VE € {1,2,...,m}, we have

T2

[N (,5)(r2) = N(z,y)(r)]| < (/p(S)w(ql ta)ds+ Y s |yl

T1 71 <t <T2 (z,y)€Bq

T2

[rvaraast 3 sw lsenl) — (g) w0

- T <trp<T2 (:Jc,y)GB

2. If ™ = t.
we have

we consider 61 > 0 such that {tx, &k £ i} N [t; — 61,8t + 01] = &, so, for 0 < h < 4y,

7 )

IV (@, ) (ts) = N(a,y) (1 = b)|

<( [ st + a)as / et +an)ds) — () as hvo.

ti—h t;—h

3. If 79 = t;, we consider d; > 0 such that {tx, k # i} N [t; — 82,t; + 2] = @, so, for 0 < h < 5o,
we have

IN (2, y) (¢ + h) = Nz, ) () |

ti+h ti+h
< ( / p()(q1 + g2) ds, / p(s>w(q1+q2>ds> . (8) as I 0.
t; t;

So by Steps 1, 2 and 3, and by Arzela-Ascoli’s theorem, N is completely continuous.

Step 4. A Priori Estimates.
Let (z,y) € PC(J,R) x PC(J,R) such that (x,y) = AN(z,y), and 0 < A < 1. Then for all
t € [0,t1], we have

z(t) = Axo + )\/fl(s,m(s)w(s)) ds,
0

y(t) = Ayo + A / fols,2(s), y(s)) ds,
0

and so,

1z, y)( ||<<||wo||+/p (lz()lI+lly(s)ll) ds, IIyo||+/p(s)w(||:c(s)|+||y(s)|)ds)7 te0,t].

Consider the map ¥ = (¥1,92) such that

t

D1 (t) = Jlzoll + /p(S)w(llw(S)ll +lly(s)ll) ds, € [0, 1],
0

Da(t) = llyoll +/p(8)¢(\|ﬂf(8)|| +ly(s)ll) ds, t € [0, 1]

0
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Then we have

9(0) = (llzoll, llvoll), (=, m) (Bl < 9(t), ¢ € [0,t],
and

9i(t) = pw(les)l + ly®), ¥Yi=12, te0,t].
As 1 is a nondecreasing map, we have

ﬁz(t) Sp(t)¢(191(t))7 Vi= 1727 te [O,tl],

which implies that for every ¢ € [0, 1],

197,(t) d t1
u
— < s)ds, Yi=1,2.
'(/)(U) — /p( ) ) ¢ 9
9:(0) 0
z
The map [ 0(2) = [ %, 1 =1, 2, is continuous and increasing. Then F;& exists and is increasing,
9;(0)
and we get
t1

9i(t) < F;&(/p(s) ds> = Mo, i=1,2.
0
As for all ¢t € [0,1], ||(z,y)(t)|| < I(t), and so,

Mi o
sup z,y)()| < ( ’ )
N CHICTES G

Now, for ¢ € (t1,t2], we have

2O < 17 (@(t), y(@)) | + 2@ < sup [Tz, y)] + Mo == Ny,

ly(t)| < Mo ((t), y(t)] + ly(t)] < :SZ))E): 12,1 (%, y)|| + M2, := Na,
where
o= ()
y(t) = Ma(t) + I (z(t), y(t))) + )\/tfl(sax(s),y(S)) ds,
y(t) = AMy(tr) + L (x(t1),y(t1))) + )\/tfz(8793(5)7y(5)) ds.
Then |

t

()]l < N +/p(8)¢(||x(5)ll +lly(s)ll) ds, t € [ta, 2],

t1

ly(D)I < N2 +/p(8)¢(||$(8)|| +lly()l) ds, t € [t ta]-
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Consider the map W = (W7, Wa) such that

t

Wi(t) = N+ /p(S)l/)(lll‘(S)ll +lly(s)ll) ds, t € [tr, 2],

¥%®=M+/MWMWM+M@W®tGM@L

So,
W(t) = (N1, Na),  [[(z,9) ()] S W (1), te ft,ta],

and

Wit) = p) (lz(s) | + ly@)), Vi=1,2, te [t ta].

Since 1) is nondecreasing, we get

Wi(t) < p(t)p(Wi(t)), Vi=1,2, t€ [t1,t2],

what implies that for every t € [t1,t2], we have

Wi(t) d to
u
—— < [ p(s)ds, i=1,2.
i =</
Wi () 2

If we consider the map T';1(z) = [ d(':L) ,1=1,2, we get

W
LAC)
Wi(t) < r;%( p(s) ds) =My, i=1.2
For all t € [t1,1s],
ot — (1O~ (m
) <mw><a%w)
S0,
M4
el < ()

We continue this process to the interval (¢, 1], and (2,%)],,,1] is the solution of the problem (z,y) =
AN (z,y) for 0 < A < 1. There exists M; ,,, i = 1,2, such that

b
Su)M%M@ISUE</M@%>:Aﬁm
tE[tm,b]

As we choose (z,y) arbitrarily, for all solution of problem (4.1) we have

M
i < (S 1),
’ - k:{)nla.)s m<M27k) b2

Thus, the set
K ={(z.y) € PCx PC: (2,y) = \N(z.y), A€ (0,1)}.

Since N : PC x PC — PC x PC' is completely continuous and the set K is bounded, from Theorem
2.4, N has a fixed point (x,y) € PC x PC which is the solution of problem (4.1). O
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Theorem 4.3. Suppose that the conditions of Theorem 4.2 hold. Then the set of all solutions of
problem (4.1) is nonempty, compact, Rs, and acyclic. Moreover, the solution operator S is u.s.c.,
where

S:RxR— P, (PC x PC),
(w0, 90) — S(x0,%0),

S(xo,yo):{(a:,y) €PCxPC : (z,y) is a solution of problem (4.1) with (x(0)7y(0)):(x0,y0)}.

Proof.
e The solution set is compact.
Let (a,b) e R x R,
S(a,b)= {(:107 y) € PCx PC : (x,y) is a solution of problem (4.1) with (x(0),y(0))=(a, b)}
1. S(a,b) is a closed set.
Let (x4,y4)q be a sequence in S(a,b) such that
Jim (2g,9¢) = (2,9)-

Let

Zi(t) =a+/f1(saw(8),y(8))d8+ Y D), y(t), te0,1],
0 0<trp<t

Z2(t):b+/f2(8ﬂx(8)7y(s))d8+ Z IZ,k(x(tk)ﬂy(tk))7 te [07 1]
0 0<tp<t

For ¢ € [0, 1], we have
lzq(t) = Z1 ()|
t

S/Hfl(saxq(s)qu(s))—f1(87$(5)7y(5))Hd3+ > k(g(tn), v (1) — T (@ (te), y(te)) |
0

0<ty<t

1 m
< / [ £1(s,24(5), yq () = fr(s,a(s), y(s)) || ds + D [T (@q(tr), ya (1)) = T (i), y(tn)|
0 k=1
By the Lebesgue dominated convergence theorem, we have
llzq(t) — Z1(t)|| — 0 as ¢ — oo.

Similarly,
194(t) = Z2(8)]]| — 0 as g — oo,

So, qﬁ%(xmyq) = (z,y) = (Z1, Z2) € S(a,b).

2. S(a,b) is bounded uniformly.
Let (z,y) € S(a,b); then (x,y) is a solution of problem (4.1) and hence, 3b* > 0 such that

Iz, y)|| < (6%, 07).

3. S(a,b) is equicontinuous.
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Let r1,m € [0,1], 71 < ry and (z,y) € S(a,b). Then

r1<tp<r2

1z, y)(r1) = (@, y)(r2)[| < (/Ilfl(svﬂ?(S),y(S))lldS+ Yo ), y@)l;

JIECECRCE S S RO

r1<tp<rg

and

[InGs.ahu)lds+ Y It o)]

ry<tp<ro

T2

S/p(S)%D(III(S)H+||y(8)||)ds+ Y sup (L)l

r1 r <tp<rs (T,y)EBpx

r2

< /p(s)w(b*{—l-b;)ds—i— Z sup L1 k(z,y)| — 0 as 1 — ra.

- r1<tp<rz (T,¥)EBpx
Then S(a,b) is compact.
e The solution set S(a,b) is Rs.

Let N : PC x PC — PC x PC be defined by

Nz, y)(t) = (a+ / Fils,a(s)y() ds+ Y Dalt) y(te)),
0

0<tp<t

t
v+ [ Ras.as) v ds+ 3 12,k<x<tk>7y<tk>>), te
0 0<trp<t
Then Fix N = S(a,b), and by Step 4 of the proof of Theorem 4.2, 3b* > 0 such that
(@, )| < (b",b%), V(z,y) € S(a,b).

For i = 1,2, we define

3 AEORTON it [ p)(0)] < (7,0°).
(e T 1@ »Oleewe 2 67,6)
and
(1), y(1) i () (0)] < (07, 5°),

)i @] = 070,

Since the functions f;, i = 1,2, are L!-Carathéodory, f' are also L'-Carathéodory, and Ik € L'(J,R,)
such that

I1fi(t, 2, y)|| < h(t), Vi=1,2, ae. teJ, and (z,y) € R x R. (4.5)
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Consider the problem

1)), t €10,1],
t)), t €10,1],
k 5 5 k:1,2,...,m,
—y(ty) = L(z(te),yt,)), k=12,...,m,
b

We can easily prove that Fix N = Fix N, where N : PC' x PC — PC x PC is defined by

0<tp<t

N = (ot [ Fssahao)ds+ 3 Tata(t.u(w),
0

bt [ Flsals)u(e)ds + 3 Bale(t)(v). te
0

0<trp<t

By inequalities (4.5) and the continuity of I; x,7 = 1,2, we get

[N (z,y)| < <a|| A+ sup_ [y k(2 y)ll,
k=1 (=.¥)€EB,

I+ Dl + 3 sup. ||12,k<x,y>) = (rir) = .
k=1 (z,y)€B,

Then N is bounded uniformly. B
We can easily prove that the function M defined by M(z,y) = (z,y) — N(z,y) is well defined,
and since N is compact, by the Lasota—Yorke theorem (Theorem 2.7), it is easy to prove that the

conditions of Theorem 2.8 are satisfied. Then the set M~1(0) = Fix N = S(a,b) is the Rs-set and,
by Lemma 2.7, it is also acyclic.

e The solution operator is wu.s.c.

1. S has a closed graph.
To see this, first we note that the graph of S is the set

G = {((a,b), (z,y)) € (R x R) x (PC x PC) : (z,y) € S(a,b)}.
Let ((aq,bq), (zq,Yq))q be a sequence in Gg, and let ((aq,bq), (24,¥q))q = ((a,b), (z,y)) as ¢ — oo.

Since (x4, yq) € S(aq,by), we have
¢
2q(t) = aq +/f1(8’33q(8),yq(8))d8+ D Lulg(s), yg(tn), te .
0 0<trp<t
¢

) =ty + [ falsiayl) (D ds+ 3 Taula(s) ), t€ T
0 O<trp<t

Let

t

(a+ [t u)ds+ 3 natels)uin)

0 0<tp<t

Z(t) = (Z1(1), Z2(1))

t

b+/f2(s,x(s),y(s))ds+ > 127k(x(s),y(tk))>, te .

0 0<tp<t
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Let t € J, then

1(zq, yq) (t) = Z(#)]|

b
< (llaq—a||+/Hfl(svxq(S)qu(S)) fi(s,x( |\dS+ZHhk 2q (), yq () =Tk (@ (), y(1)],
. 0
[[bg — bl +/Hf2(8=$q(8)7yq(8)) fa(s,2( HdSJrZ ([ L2, (24 (), yq (1)) —fz,k(ﬂc(t)ay(t))H)
0

and, by the Lebesgue dominated convergence theorem, we have
(g, 49)(t) = Z(t)]| — 0 as ¢ — oc.

Then

which implies that (z,y) € S(a,b).
2. S transforms every bounded set into a relatively compact set.

Let r = (:1> >0 and B, := {(z,y) € PC x PC : ||(z,y)| <r}.
2

(a) S(B,) is bounded uniformly.

Let (z,y) € S(B,), then there exists (a,b) € B, such that

t

x()—a—i—/fl(sx( ))ds + Z I g (x y(te)), t € J,
0 0<tp<t
t

y()—b+/f2(5$( d8+ Z IQk tk)) teJ
0 0<ty<t

By the same method detailed in Step 4 of the proof of Theorem 4.2, we find that there exists b* > 0
such that
(@, y)llpcxpc < (b7,0%).

(b) S(B,)is an equicontinuous set.

Let 71,72 € J, 71 < T2, and (z,y) € S(B,). Then

(. 9)(m2) — (. 9) ()
( / (s z(s)yDlds + S st ut)

71 <tp<T2

/||f2 s,a(s),y(s))llds + Y IIIz,k(x(tk),y(tk)H)

T1<tp<T2

T2

< (/p(S)w(le(S)ll +ly()lhds+ > ITuela(te), y(t)ll,

- T1<tp<T2

T2

/p(S)w(llm(S)ll+IIy(S)II)d8+ > IIIz,k(x(tk),y(tk))H)

- T1<tp<T2
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T2

<< [rewi+mds e 3 s hnl,

T1<tp<to (T,y)EBpx

T1
T2

/p(s)d;(bi—l—b%)ds—i— Z sup||12,k(x,y)|) — 0 as 71 — 7.

'r1 71 <ty <72 (Z,Y)EBy=

Thus the set S(B,) is compact.
The operator S is locally compact and has a closed graph, so, S is u.s.c. O

Theorem 4.4. Assume that the conditions of Theorem 3.1 hold, where Fy, Fy : J XRXR — Py o (R)
are Carathédory, u.s.c. and mLL-sectionnable. Then the set of all solutions of problem (1.1) is
contractible.

Proof. Let fi € Sk, be a locally Lipschitzian measurable selection of F;, i = 1,2. Let us consider the
problem

' (t) = f1(t, z(t),y(t)), a.e. te€J,

y'(t) = fa(t, 2(t), y(t)), a.e. t€J,

m(tg) —x(ty) = Lig(x(te), y(tr)), k=1,...,m, (4.6)
y(th) —y(ty) = L(x(te), y(tr), k=1,...,m,

z(0) = z0, y(0)=wo

By Theorem 4.1, problem (4.6) has a unique solution.
Consider a homotopy function h : S(zg,yo) X [0,1] = S(zo, yo) defined by

(z,9)(t) if 0<t<a,
(x*y")(t) if a<t <1,

h((z,y), a)(t) = {
where (2*,y*) is the solution of problem (4.6), and S(z, yo) is the set of all solutions of problem (1.1).

In particular
z,9Y), if =1,
h((w)a) = { 0
(x*,y*), if a=0.

Thus to prove that S(xg,yo) is contractible, it is enough to show that the homotopy h is continuous.
Let (2, yn),an) € S(xo,y0) % [0, 1] be such that ((xn,yn), an) = ((x,y), @) as n — co. We have

(Tn,yn)(t) if 0 <t <y,
(" y")(t) if a, <t <1,

h((Zn, yn), an)(t) = {

(a) If lim a,, =0, then
n—oo

h((x,y),0)(t) = (x*,y")(t) forall ¢t e J.

Thus
||h((xn,yn),an) - h((z,y),a)”oo < (@n,yn) — ($*;y*)||[o,an] — 0 as n — oo.

(b) If lim a, =1, then
n—oo

h((z,y),1)(t) = (z,y)(t) forall ¢t e J.

Thus
Hh((xnvyn)aan) - h((l‘,y),&)”oo < ”(x’myn) - (xay)”[o,an] — 0 as n — oo.

(¢) If 0 < limy, 00 ap, = @ < 1, then we distinguish the following two cases.
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(1) If t € [0, a], we have (2, yn) € S(o,yo), thus there exists (v1,,, v2,) € Sk, X Sk, such that for
all £ € [0, o),

wn(t) =0+ [ vin(s)ds+ > Tig(@n(te) yn(tr)),

0<tp<t

Ugn(S)d8+ Z I2,k(mn(tk)’yn(tk))'

O<trp<t

Yn(t) = yo +

|
/

By Step 5 of the proof of Theorem 3.1, we have
" b1
|(zn, yn)llPoxPc < b = pe |
2
and, by hypothesis, we get
* * 1 * *\ 10
(o1, 02O < (000005 +85) (1) o all 1€ N = (o1, 12,)(0) € p(00(5 + 33)B(0.1)

The sequences {v1,(-),v2,(+)}nen are integrably bounded. By the Dunford—Pettis theorem [52],
there are subsequences, still denoted by (v1,,)nen, (Van)neny Which converge weakly to elements vy (-) €

L' and vy(-) € LY, respectively. Mazur’s Lemma implies the existence of o > 0,i = n, ..., k(n), such
k(n) , k(n)

that > i’ =1 and the sequence of convex combinations g,,(-) = >_ ajv;;(+), i = 1,2, converges
i=1 j=1

strongly to v; in L'. Since I} and F, take convex values, using Lemma 2.6, we obtain

vi(t) € ﬂ {gi,(t)}, ae teJ,

n>1
C m co{vig(t), k>n} C ﬂ @{ U Fi(t’xk(t)’yk(t))} (4.7)
n>1 n>1 k>n
= @(HmsupFi(t, l‘k(t),yk(t)))-
k—o00

Since F' is u.s.c. with compact values, by Lemma 2.5, we have

ligsotip Fi(t,zn(t), yn(t)) C F;(t,z(t),y(t)) for a.e. t €[0,al.

This, together with (4.7), imply that
v;(t) € Co Fy(t, z(t),y(t)), i=1,2.

Hence, for every ¢ € [0, o],

2(t) = 20 + / ols)ds + > Iia(a(te) y(t)
0

0<tp<t

and

0<trp<t

w0 =un+ [oa)dst 3 Tanlaltn) yite).
0

(2) If t €]y, 1], then

h(@n, yn), an)(t) = (2, y), )(t) = (=", y")(1).

Thus
”h((xnvyn)aan) - h((ﬂ?,y),oz)“ — 0 as n — oo.

Hence, h is continuous, so, the set S(zg,yo) is contractible. O
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Theorem 4.5. Suppose the conditions of Theorem 3.1 hold, and F1,Fy : J X R X R — Pgp oo (R X R)
are Carathéodory, u.s.c. and o-Ca-selectionnable. Then the set of all solutions of problem (1.1) is
Rs-contractible and acyclic.

Proof. Let f* € Sk, be a Carathéodory selection of F;, i = 1,2. Consider the homotopy multifunction
IT: S(xo,y0) % [0,1] = P(S(zo,y0)) defined by

S t if 0<t<
((r,y),0) = { 5100 EOSE=a
where
e S(xo,yo0) is the set of all solutions of problem (1.1);

o S(f,,(x,y)) is the set of all solutions of the problem

z1(t) = fi(t, 21(2), 22(1)), ae. t€a,l],

z3(t) = f2(t, 21(1), 22(¢)), a.e. t € [a,1],

Zl(t:) — 21ty ) = I k(21 (te), 22(te)), k=1,...,m, (4.8)
2(th) — 2(ty) = Li(zi(te), 22(tk), k=1,...,m,

z1(e) = z(a),  2(a) =y(a)

By the definition of II, for all (x,y) € S(zo,v0), (z,y) € II((z,y),1) and II((x,y),0) = S(f,0, (z,y)),
which is an Rs-set by Theorem 4.3.

It remains to show that IT is u.s.c. and II((z,y), @) is an Rs-set for all ((x,y), &) € S(zg, yo) % [0, 1].
The proof is given by the following steps.

Step 1. II is locally compact.
(a) The multifunction S : [0,1] x R x R — P(PC(J,R) x PC(J,R)) defined by

S(t, (7)) = S(f.1.(,7))

is u.s.c. where S(f,t,(%,7)) is the set of all solutions of the problem

21(t) = fi(t, z1(1), 22(1)), ae. t €[t 1],

z(t) = f2(t, 21(1), z2(¢)), ae. t€t1],

z(ty) — z1(ty) = Iur(z1(te), 22(t), k=1,...,m, (4.9)
22(t2r — Zg(t];) = Iy p(z1(tk), 22(tk)), k=1,...,m,

2(t) =7, z() =7

Assume the opposite, i.e., S is not w.s.c. Then for some point (£, (Z, 7)), there is an open neighborhood
U of S(t,(Z,7)) in PC(]0,1],R) x PC([0,1],R) such that for any open neighborhood V' of (t, (Z,7))
in [0,1] x R x R, there exists (t1, (Z1,71)) € V such that S(t, (z1,91)) ¢ U.

Let

Vo= q(t(2,9) € [0, xR xR d((t, (z,9), (t,(Z,9))) <

1
n
l , neN,
n
1

n
where d is the generalized metric of the space [0,1] x (R x R). Then for each n € N we take

(tn, (Xn,yn)) € Vi, and (2, yn) € §(tn, (Tn,Yn)) such that (z,,y,) ¢ U. We define the functions

G . PC([0,1],R) x PC([0,1],R) — PC([0,1],R) x PC([0,1],R)

@ tEp
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t

Fram@n® = (54 [ Al oo s+ 3 huln).on)

j+ / fols, (2(s),y(s)) ds + 3 f%(x(tk),y(tk))), teff 1,

T t<tp<t
G;;)(Eyg)(x,y) = (x,y) — F'tj@@(x,y) for t €[0,1], (x,y) € PC(J,R) x PC(J,R).

Then for (z,y) € PC(J,R) x PC(J,R),t,t € [0,1], and (Z,7) € R x R, we have

Fr g5 (@ y)(t) = (2,9) — Fo,@5 (@ y) () + Fo,a,5(@,y)(0).
Consequently,
GZ(EE,Q]) (.’IJ, y) (t) = _(%7 @ + FO,(E,@) (.’IJ, y) (t) + GO,(E,;E) (.’L‘, y) (t)
Then, we obtain

S, (%,7)) = Gr . (0) forall (7,(2,7)) €[0,1] x R x R.

Since FE(E,g) is compact (see the proof of Theorem 4.3), Gi(i,m is proper. And as (z,,yn) €
g(tnv (xnayn)), we have

wn(t)=fcn(tn)+/f1(87xn(8),yn(8))ds+ Y Dupzalte)syalte)), t € [ta, 1],

tn <tRp <t

0 = valtn) + [ Falss2a(6) (@) ds+ Y Lanlealt)gn(te)), €€ fin 1,

tn<tp<t
which in turn gives

0= th,(gc,,,,yn)(xnayn)(t) = _(xnayn)(tn) + FO,(acn,yn)(xmyn)(tn) + GO,(zn,yn)(‘rnvyn)(t)

and

G7 @ (@Tns Yn)(t) = (T, 9) + Fo,@.5) (@n, Yn) (1) + Go,@5) (@, Yn) (1)
Then

"Ga(i,g)(mn’yn)(t) - th,(zn,yn)(xnvyn)(t)H = HGE(i,’g)(xnayn)(t)H

=l = @9+ @n, ) (tn) + Fo ) (@0 yn)E) = Fo o) (2, ) (1) = H <§> H B <”|Z||> ’

where

t

a=—T+ x,(tn) + <5§—|— /fl(s,mn(s),yn(s)) ds + Z Ilﬁk(acn(tk),yn(tk))>

0 0<tr<t
tTL

() + [ Assallm(eD st 30 Dialonltn).n(®)))
0

0<tp<tn
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Therefore,
t
o] S/||f1(5,£€n(8),yn(8))||d8+ > Mk(@n(te), yn ()]
tn tn<tk<t~
t
< /p(8)¢(bT+b§)d8+ > k(@n(te), yn ()]l
tn tn <t <t
Similarly,
t
5=—wwwm+@+/h@m@@w»@+}j&ﬂmwmmmﬁ
0 0<ty<t
tn
= () + [ Relsan oD ds 3D Taatann) ) ).
0 0<t<tn
t
81 < [t + 51 ds+ Y Marlan(t) ()]
tn Ly <tp<t
Now, B
nIL%(mn,yn) = (7,y) and nh—>120 t, =1
imply that

lim GE(E@(xmyn) =0.

n—00

Then the set A = {Gg ;7 (zn,yn)} is compact, thus th(lg 7 (A) is also compact. It is clear that

{(Zn,yn)} T A. As li_>m (Tn,yn) = (Z,7), it follows (z,7) € 5(%: (Z,9)) C U, so we have a contradic-
tion to the hypothesis (x,,y,) € U for every n.
(b) II is locally compact.

r .
For r = rl > 0, consider the set
2

Bx1={((z.9).0) € S(xo.30) x 0.1+ ()] <r}.

and let {u,} € II(B x I). Then there exists ((n,Yn),an) € B x I such that

) (Tn,yn) if 0<t<ay,
up(t) =
U (1) if a, <t<1, vy, €S(f,n, (Tn,yn)).

Since S(zg,yo) is compact, there exists a subsequence of (z,, ), which converges to ((z,y), a).
S is w.s.c. implies that for all & > 0, there exists ng(¢) such that v, (t) € S(¢, (z,y)) = S(f, o, (z,y))
for all n > ng(e), and by the compactness of S(f, «, (z,y)), it is concluded that there is a subsequence
of {v,} which converges towards v € S(f,a, (z,y)). Hence II is locally compact.

Step 2. II has a closed graph.

Let ((Zn,yn)san) = (Tw,Ys), @), b € (X, Yn, ) and h, — hy as n — 4o0o. We are go-
ing to prove that h. € II((x.,y«),a). Now, h, € II((Zn,¥Yn), ®,) implies that there exists z, €
S(f%, an, (Tn,yn)) such that for all t € J,

o (t) = (Tn,yn) if 0<t<ay,
) za(t) if ap <t<1.
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Therefore, it is enough to prove that there exists z, € S(f%, , (z«,y«)) such that for all t € J,

Ky Yk if Stﬁ )
ha(t) = o) IEOSE<a
2« (t) if a<t<l1.

It is clear that (an, (Tn,Yn)) = (@, (4, yx)) as n — oo, and it can easily be proved that there exists
a subsequence of {z,} which converges to z.. So, we can handle the cases @« = 0 and o = 1 as we did
in the proof of Theorem 4.4, and we obtain finally that z. € S(f, o, (z«, y«))-

Step 3. II((x,y),a) is an Rg-set for all ((x,y), ) € S(xo,yo) X [0, 1].
Since F is o-Ca-selectionnable, there is a decreasing sequence of multifunctions Fy, : [0,0] x RxR —
Pep.cv(R x R), k € N, which admit Carathéodory selections and

Fiy1(t,u) C Fi(t,u) forall t€[0,1],u € R x R,

and

o0

F(t,u) = ﬂ Fi(t,u), ueRxR.

k=0

Then -
((z,y),a) = [ ] S(Fk, (x,y))-
k=0

By Theorem 4.3, the sets II((x,y), «) and S(Fy, (z,y)) are compact. Furthermore, by Theorem 4.4,
the set S(Fy, (x,y)) is contractible. Thus, II((x,y), ) is an Rs-set. O

Lemma 4.1. Suppose that the multifunction F : J X R X R = Pgp o (R) is Carathéodory and wu.s.c.
of the type of Scorza—Dragoni. Then the set of all solutions of problem (1.1) is Rs-contractible.

Proof. By Theorem 2.6, we have that F' is 0-Ca-selectionnable. Thus we have the same conditions of
the last theorem. O

5 Summary/Conclusion

In this paper, we investigate the existence of a solution for the system of differential inclusions under
various assumptions on the multi-valued right-hand side nonlinearity. Also, we have studied some
properties of solution sets of those results, such as topological properties (compactness), acyclicity
properties, geometric topological properties, Rs, etc. Theorem 4.3 is a major result entailing some of
the topological properties, while Section 4 is devoted to geometric topological properties.
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