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Abstract. For the system of generalized linear ordinary differential equations, the boundary value
problem

de = dA(t) -z + df(t) (tel), £(z)=co

is considered, where I = [a,b] is a closed interval, A : I — R™ "™ and f : I — R™ are, respectively,
the matrix- and vector-functions with components of bounded variation, ¢ is a linear bounded vector-
functional, ¢y € R™. Under a solution of the system is understood a vector-function x : I — R" with
components of bounded variation satisfying the corresponding integral equality, where the integral is
understood in the Kurzweil sense.

Along with a number of questions, such as solvability, construction of solutions, etc., we investigate
the problem of the well-posedness. Effective sufficient conditions, as well as effective necessary and
sufficient conditions, are established for each of these problems.

The obtained results are realized for the above boundary value problem for linear impulsive system

Ccle = Pt)x +q(t), z(n+)—z(n—)=Gn)z(n) +uln) (=1,2,...),

where P and ¢ are, respectively, the matrix- and vector-functions with Lebesgue integrable compo-
nents, 7; (I = 1,2,...) are the points of impulse actions, and G(r;) and u(r;) (I = 1,2,...) are the
matrix- and vector-functions of discrete variables.

Using the well-posedness results, the effective sufficient conditions, as well as the effective necessary
and sufficient conditions, are established for the convergence of difference schemes to the solution of
linear boundary value problem for impulsive systems of differential equations, as well for ordinary
differential equations. The analogous results are obtained for the stability of difference schemes.
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Introduction

In the present monograph, we consider the linear boundary value problems for systems of the so-called
linear generalized ordinary differential equations in the Kurzweil sense. We propose the solvability
and uniqueness conditions for the problems and consider the related questions on the well-posedness
of the problem and the numerical solvability. The obtained results are realized for the the linear
boundary value problem and its particular cases, that is, for the multi-point, Cauchy—Nicolletti,
Cauchy—Nicolletti type and periodic problems, as well as for linear boundary value problems for
linear systems of impulsive differential equations. The results on the well-posedness are used for
the numerical solvability of the corresponding problems for systems of linear impulsive and ordinary
differential equations and for the stability of difference schemes.

Since the middle of the past century, the question on the well-posedness of the initial problem for
ordinary differential equations has become very topical among many mathematicians. In particular,
such a question for the initial problem for linear systems was treated very thoroughly (see, e.g.,
[3,15,46,47,51,63,65,75] and the references therein). The essence of the problem was to investigate
under what conditions the small perturbations of the right-hand sides and the initial data of the given
initial problem affect the nearness (in a uniform sense) of the solutions of the perturbed initial problem
to the solutions of the given one. Note that unprovable sufficient conditions, as well as unprovable
necessary and sufficient conditions were obtained in [3] both for the initial and for the linear boundary
value problems.

The theory of generalized ordinary differential equations has been introduced by the Czech math-
ematician J. Kurzweil in 1957. In [52], he investigated the above problem and constructed an example
of the problem which fails to have any solution in the classical sense, i.e., a “solution” has the points of
discontinuity. The perturbation problems have a classical solution converging to the “solution” of the
given problem only in a pointwise sense. So, in this case, the convergence may not occur in a uniform
sense. In this connection, J. Kurzweil introduced an integral of certain type (see [52-54,61,71,73,74])
known in literature as the Kurzweil-Hanstock integral. He considered the solutions of differential
equations defined as the functions satisfying the corresponding integral equations, where the integral
is understood in the introduced sense. Such differential equations, called as generalized ordinary dif-
ferential equations, may have solutions with the points of discontinuity. For such differential equations
J. Kurzweil has proved the well-posed theorem. In such a case, the convergence takes place only in a
pointwise sense. So, the above-constructed example was in conformity with the theorem.

To a considerable extent, the interest to the theory of generalized ordinary differential equations
has also been stimulated by the fact that this theory enabled one to investigate ordinary differential,
impulsive differential and difference equations from a unified point of view. In particular, all of them
can be rewritten in the form of generalized ordinary differential equations

dx = dA(t) -z + df (t),

where A and f are the matrix- and vector-functions of bounded variation, respectively, for the following
systems : a) the impulsive system

dx
i Pt)x +q(t), z(n+)—xz(n—)=Gm)z(n)+uln) (=1,2,...),
where P and ¢ are, respectively, the matrix- and vector-functions with Lebesgue integrable compo-
nents, 7; (I = 1,2,...) are the points of impulse actions, and G(7;) (I =1,2,...) and u(r) I =1,2,...)
are the matrix- and vector-functions of discrete variables;

b) the difference system

Aylk —1) = Gy (k — Vy(k — 1) + Ga(k)y(k) + go(k) (k = 1,...,mo),

where mg is a fixed natural number, and G;,Gs and gy are, respectively, the matrix- and vector-
functions of discrete variables; the differential-difference systems, etc.

Therefore, we can consider the ordinary differential, impulsive differential and difference equations
as such of the same type. In particular, when for the generalized ordinary differential equations we
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investigate the question of the well-posedness of the linear boundary value problems in the uniform
sense, we obtain, as a particular case, the results dealing with the convergence of difference schemes
to solutions of linear boundary value problems for impulsive differential and ordinary differential
equations. Analogous concept has been used for investigation of the initial problem for linear systems
of ordinary differential equations (see [15,23]).

In the present work, we investigate a general question on the linear boundary value problems for
linear generalized ordinary differential equations. Moreover, such a concept can be used for the initial
and general boundary value problems for nonlinear cases.

Note that another conception of the investigation enabling one to study the continuous and discrete
problems can be found in [30] (see also the references therein).

The initial and boundary value problems for generalized ordinary differential equations are inves-
tigated reasonably satisfactory for linear and nonlinear cases. The questions on the existence and
well-posedness for linear problems are also considered. In particular, one of such questions for the
initial problem for linear systems has been treated very thoroughly, e.g., in [2,4,10,12,15-25,28, 29,
39,40, 44,61, 72-74] (see also the references therein). The same questions for the nonlinear case are
studied in [5-9,11,13,14,52-54,71] (see also the references therein).

The results obtained in the present monograph are new, they make more precise similar results
given in our earlier works.

In particular, we investigate the question on the solvability of the linear boundary value prob-
lem satisfying the following particular cases of the boundary value problem: the general multi-point
boundary problem, the Cauchy—Nicoletti problem, the two-point problem and periodic problem.

We present a short description of the results given in the paper.

The work consists of six chapters.

Chapter 1. Section 1.1 is devoted to the question of solvability of general linear boundary value
problems for systems of linear generalized ordinary differential equations. It is well known that on a
closed interval there does not exist a unified form of a linear functional given on the set of functions
with bounded variations. In this connection, we consider two types of general linear boundary value
problems. The first case considers the linear operator without any restriction to its form. As to the
second case, the linear functional here is of specific form, in particular, of integral form. For each case,
the Green type theorems are proved for the unique solvability of the problems, and the solutions are
represented by the Green formula.

In the same section, we propose the spectral type theorems on the unique solvability of the problem.

Section 1.2 studies the question of the well-posedness of the general linear boundary value problems
for linear systems of generalized differential equations. Here, we establish new effective sufficient
conditions and an effective criterion for the well-posedness of the problem in the uniform sense on the
closed interval. The results obtained in the paper are new for impulsive differential systems and some
of them for ordinary differential case, as well.

Chapter 2. In Section 2.1, the results of Section 1.1 are realized for the general multi-point boundary
value problem. We present here the spectral type theorems on the solvability of the problem under
consideration. The special type existence theorems corresponding to the Cauchy—Nicoletti type and
Cauchy—Nicoletti problems are established in Section 2.2. In Section 2.3, we established the conditions
guaranteeing the existence of nonnegative solutions of the Cauchy—Nicoletti type and Cauchy—Nicoletti
problems. A method for constructing solutions of the Cauchy—Nicoletti type and Cauchy—Nicoletti
problems is established in Section 2.4.

Chapter 3 is devoted to the realization of the results obtained in Chapter 2 for the two-point
boundary value problems for linear systems of generalized ordinary differential equations. In Sections
3.1-3.3, we suggest the results concerning the unique solvability, existence of nonnegative solutions
and also a method for constructing solutions.

In Chapter 4, we consider the periodic problem for systems of generalized ordinary differential
equations.

In Section 4.1 we formulate specific theorems on the existence and uniqueness of solutions. Section
4.2 deals with auxiliary propositions and proofs of the results.

Chapter 5 proposes investigation of linear boundary value problems for systems of linear impulsive
differential equations. In the same chapter, we realize the results of Chapter 1 for the impulsive
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differential systems. Sections 5.1-5.3 consider the general linear boundary value problems, periodic
problem and the numerical solvability of the general linear boundary value problem. Section 5.4
investigates the question on the stability of difference schemes. Some questions involving solvability,
well-posedness, stability in the Lyapunov sense, etc., are studied in earlier works [2, 18,21, 24,26, 27,
32, 33,57, 60, 64, 68,69] (see also the references therein). Unlike another works, in this chapter we
obtain somewhat different necessary and sufficient conditions for the well-posedness and stability of
difference schemes.

The questions on the well-posedness and numerical solvability of the general linear boundary value
problems for systems of ordinary differential equations are considered in Chapter 6. In the same
chapter, we realize the results of Chapter 1 for ordinary differential systems. In particular, in Sections
6.1-6.3, we present the necessary and sufficient conditions guaranteeing the well-posedness of the
problem, convergence of the difference schemes to the solution of the problem and also convergence of
discontinuous vector-functions to the solution of the given problem, respectively. The results, obtained
for this case, generalize our earlier results. Note that for the convergence of difference schemes we have
used the concept that it is possible to consider both continuous and difference problems as generalized
ones and, therefore, the convergence is a particular case of the well-posedness in the uniform sense for
the latter problems.

The problem of numerical solvability of the initial and boundary value problems for the differential
systems is classical one. The questions of solvability, stability and convergence of difference schemes
were studied earlier in [1,2,17,18,23,30,34,35,37,38,42,56,58,66,70] for linear and nonlinear difference
systems. In the above-cited papers, there take place only the sufficient conditions for the convergence
of difference schemes, and it should be noted that neither necessary and, the more so, nor necessary
and sufficient conditions were found therein. As we have noted above, unlike our earlier works, in
the present work, we have obtained the necessary and sufficient conditions (i.e., the criterion) for the
convergence and stability of the difference schemes.

The above-considered difference schemes are of the 1-order type. As to the 2-order type difference
schemes, as in [17], the 2-order n x n-difference linear problem can be reduced to some 1-order
2n x 2n-difference linear problem. Therefore, we can obtain the necessary and sufficient conditions
for the convergence of the corresponding 2-order difference schemes. Analogously, we can consider the
3-order difference problem, etc.

The above-investigated problems are actual for the functional differential equations, as well. Some
related problems are studied in works [31,37,41,48-50] (see also the references therein). Obviously,
the methods used in the present monograph can, likewise, be applied to the study of similar problems
for functional differential equations.



6 Malkhaz Ashordia

Basic notation and definitions

In the present monograph, the use will be made of the following notation and definitions.

N ={1,2,...}, Z is the set of all integers.

R =] — oo, +o0[, Ry = [0,400[; [a,b] and ]a,b] (a,b € R) are, respectively, closed and open
intervals.

I is an arbitrary finite or infinite interval from R. We say that some properties are valid in [ if
they are valid on every closed interval from 1.

[t] is the integer part of ¢t € R.

X, is the characteristic function of the set M C R, i.e., x,,(t) =1 for t € M, and x,,(t) = 0 for
t ¢ M; we use the designation x, (t) = x,, (¢) if M = {a}.

R™*™ is the space of all real n x m matrices X = (x”)?]nil with the norm

n
IX]| = max > |ayl.
j=1,....m P}

Rixm = {(x2])23721 LTy > 0 (Z = 1,...,’]1; ] = 1,,m)}

Opnxm (or O) is the zero n x m matrix. We designate the zero n vector by 0,, (or 0), as well.

If X = (.’13”)2’;21 € R™ ™ then o

| X] = (|xij|)i’,j:1'

X is the matrix transposed to X, i.e., X T = ()" .

R™ = R™*! is the space of all real column n-vectors z = (z;)/; R} = Ri“.

x * y is the scalar product of the vectors x,y € R".

If X € R™*" then X!, det(X) and 7(X) are, respectively, the matrix inverse to X, the determi-
nant of X and the spectral radius of X;

diag(X1,...,Xm), where X; € R™*" (; = 1,...,m), ny + --- + n, = n is a quasidiagonal
n X n-matrix. In particular, if X = (z;)}';_, then diag(X) = diag(z11, ..., Tnn)-

Mo(X) and A°(X) are, respectively, the minimum and maximum eigenvalues of the symmetric
matrix X € R™*"™,

I,, is the identity n X n-matrix; diag(A1,...,\,) is the diagonal matrix with diagonal elements
Alyves Ane

d;; is the Kroneker symbol, i.e., 6;; = 1 and 6;; =0 for i # j (i,j =1,...); Zn = (di11)i j=1-

The inequalities between the real matrices are understood componentwise.

b
V(X)) is the sum of total variations of components x;; (i =1,...,m; j =1,...,m) of the matrix-
a b
function X : [a,b] — R™™, \/(X) = = V(X); V(X)(t) = (v(zi)(t);jZ, for t € [a,b], where
b a

t
v(wig)a) =0, v(zi)(t) = V(wi;).

X (t—) and X (t+) are, respectively, the left and the right limits of X at the point ¢ (X (a—) = X(a)
and X (b+) = X (b)).

i X)) =X()— X({t-), doX(t) = X(t+) — X (¢).

1 X loo = sup{IX @) : € I}, [X]oo = (|ij]o0) 21 -

BV ([a, b]; R™*™) is the set of all matrix-functions X : [a,b] — R"*™ with bounded variation (i.e.,

b
such that \/(X) < 00).

BV ([a, b]; R"*™) is the normed space of all matrix-functions X : [a,b] — R™*™ with bounded
variation with the norm || X||co.

b
BVioc(I; D), where D C R™*™ is the set of all matrix-functions X : I — D for which \/(X) < oo

for every closed interval [a, b] from I.

BV oe(I; R™™) = {X € BVjoo(I;R™*™) : X (t) > Oy for t € I}.
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BV, (R;R™™ ™) where w > 0, is the set of all matrix-functions X : R — R"*™  whose restrictions
on [0,w] belong to BV([0,w],R™*™), and there exists a constant matrix C' € R™*™ such that

X(t+w)=X(t)+C for t €R. (0.0.1)

C(I; R™*™) is the space of all continuous and bounded matrix-functions X : I — R™*™ with the
norm || X ||eo,r = sup{||X(¢)|| : t € I}.

C(I; D), where D C R™*™ _is the set of all continuous and bounded matrix-functions X : I — D.

If X € C([a,b]; R™*™), then || X || = max {|| X (¢)|| : t € [a,b]}.

AC(]a, b]; D) is the set of all absolutely continuous matrix-functions X : [a,b] — D.

AC,c(I; D) is the set of all matrix-functions X : I — D, whose restrictions to an arbitrary closed
interval [a, b] from I belong to AC(]a,b]; D).

ACioe(I\T; D), where T = {m1,72,...}, n €I (Il =1,2,...), 1 # 7 (i # k), is the set of all
matrix-functions X : I — D, whose restrictions to an arbitrary closed interval [a, b] from I\ T belong
to AC([a,b], D).

BVAC,.(I,T;D) = BV(I;D)NACio.(I\ T; D).

B(T;R™ ™) is the set of all matrix-functions G : T — R™*™ such that

+oo
S lG(n)| < +oc.

=1

Bioe(T, R™ ™) is the set of all matrix-functions G : T — R™*™ such that

Z IG(m)|| < 400 for every [a,b] C I.

TIETa,b]

Let w > 0. If the set T = {11, 72,...}, where ;, e R (I = 1,2,...), 7 # 7 (i # k), is such that
nm+weT (I=1,2,...), then by B, (T,R"™"™) we denote the set of all w-periodic matrix-functions

G : T — R™™™ guch that
Z IG(m)| < +o0.

T1€[0,w]

[II€]l| is the usual norm of the linear bounded operator ¢.

A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each of its components
is such.

A matrix-function X = (z45);,_; : [a,b] — R"*™ is quasi-nondecreasing if the functions z;; (i # j;
i,7=1,...,n) are nondecreasing on [a, ].

We say that a matrix-function X : I — R™*™ is nonsingular if det(X (t)) # 0 for every ¢ € I.

If By and By are normed spaces, then an operator g : By — Bs (nonlinear, in general) is positive
homogeneous if

g(Ar) = Ag(x)

for every A € Ry and = € Bj.

An operator ¢ : BV([a,b], R™) — R™ is called nondecreasing if for every z,y € BV([a, b], R™) such
that z(t) < y(t) for t € [a,b], the inequality ¢(z)(t) < ¢(y)(t) holds for ¢ € [a, b].

If o € BV([a,b],R) has no more than a finite number of discontinuity points and m € {1,2},
then Do = {tamls- -« tamna, } (tam1 < ' < tamn,,,) 1S the set of all points from [a,b] for which
dma(t) # 0.

Pom = max{d,a(t) : t € Dom} (m=1,2).

If 8 € BV([a,b],R), then

Vampj = maX{djﬁ(taml) + > d;B(r): 1=1,... 7nam} (J,m=1,2);

tam i4+1—-m <T<tami4+2—-m

here, ta20 = a — 1, tain,, +1 =0+ 1.
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$1, 82, Se : BVioe([;R) — BV, (I;R) are the operators defined, respectively, by

si1(z)(a) = s2(z)(a) =0, sc(z)(a) = z(a)
(somewhere we use the designations sy instead of the operator s.);

si(2)(t) = s1(z)(s)+ D dia(r), sa(2)(t) = sa(z)(s) + > daa(T)

s<T<t s<7t<1t

and

2
Se(2)(t) = se(x)(s) + x(t) — z(s) — Z(s](ac)(t) —s;(x)(s)) for s<t, s,tel,

Jj=1

where a € [ is an arbitrary fixed point.
If g € BV([a,b];R), f : [a,b] = R and a < s <t < b, then we assume

/ #(r) dg(r) = (L — S) / 2(r) dg(r) + F(t) dig(t) + F(s) dag(s),

s Is:t]

where (L — S) [ f(7)dg(r) is the Lebesgue-Stieltjes integral over the open interval |s,¢[. It is
Is;t
known (see [52, Theorem 1.2.1] and [67, Chapter VI, (8.1) Theorem]) that if the integral exists, then

t
the Kurzweil-Stieltjes integral (K — S) [ f(7) dg(7) exists and the right-hand side of the last integral

t t
equality is equal to the Kurzweil-Stieltjes integral and, therefore, [ f(7)dg(r) = (K —S) [ f(7) dg(T).

S
If a = b, then we assume

b
/x(t) dg(t) =0.

Moreover, we put

t+ t+e t— t—e

/x(T) dg(r) = lim x(1) dg(T), /x(T) dg(r) = lim x(7) dg(T).

e—=0,e>0 e—0,e>0
L*°([a,b],R; g) is the space of all u(g)-measurable and p(g)-essentially bounded functions z :
[a,b] = R with the norm

2|00, = esssup {|z(t)|} = inf {r > 0: [z(t)] < r for u(g) almost all ¢ € [a,b] }.
9

L([a,b],R; g), where g(t) = ¢1(t) — g2(¢t) and g; (i = 1,2) are nondecreasing functions, is the set of
all functions x : [a,b] — R, measurable and integrable with respect to the measures u(g;) (i = 1,2),

i.e., such that
b

/|$(t)|d9i(t) <400 (i=1,2).

a

IfG= (gik)i:Zﬂ € BV([a,b];R*") and X = (ki) ey + (@, 0]; — R™ ™, then

(@) = (selga) ) hmys S (@B = (s5(90®) 4, (G =1,2)

and
b b

/dG(T) - X(1) = (zn:/wk](T) dgik(7)>

a k=13
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. ¢
Sometimes we use the designation [ dG(s)- X (s) for the integral [ dG,-X(s) as the vector-function
to the variable . ! ‘

LP([a,b], R™*™; @) is the space of all matrix-functions X = (J;kj)zjm:l : [a, 0] — R™™ gatisfying
w1y € LP([a,b], Rig;x) with the norm

n

[ X]|p,c = Z %5l p,g:1 -

i,k,j=1

If G(t) = diag(t, .. .,t), then we assume ||.X | z» = || X||p,¢ and omit G in the notation containing G.

LP([a,b], D; G), where D C R™ ™ is the set of all matrix-functions X € L ([a,b],R"*™; G) such
that X (t) € D for t € [a,b].

LP (R,R™*™; @) is the set of all matrix-functions X : R — R™ ™ satisfying condition (0.0.1),
whose restrictions on [0,w] belong to L?([0,w], R™*™; G).

L,(R,R™*™) is the set of all w-periodic matrix-functions X : R — R™*™ which are integrable on
[0, w].

We introduce the operators A(X,Y), B(X,Y) and Z(X,Y) in the following way:

(a) if X € BV oo(I;R™™), det(I,, + (—1)7d; X (t)) #0 fort € I (j =1,2), and Y € BV oo (I; R™*™),
then

A(X,Y)(a) = Onxm,
AX,Y)() — AXY)(s) =Y () ~Y(s) + > diX(r) (I, — diX(r) " diY (r)

- Z do X (1) (I, + do X (1))t doY (1) for s <t, s,tel, (0.0.2)

s<T<t

(b) if X € BVipe(I;R™ ™) and Y : I — R"*™, then
B(X,Y)(a) = Onxm,

B(X,Y)(t) = X(1)Y (t) — X(a)Y (a) — / dX(r)-Y(r) for tel, (0.0.3)

(¢) if X € BVyoo(I; R™™), det(X(t)) £ 0, and Y : T — R™ ", then
I(X,Y)(a) = Onxm,

I(X,Y)(t) = / d(X(r) +B(X,Y)(r)) - X }(7) for tel, (0.0.4)

a

where a € I is a fixed point.
In addition, we use the following notation and definitions:
N={0,1,...}.
For | € N, we denote N; = {1,...,1} and N, = {0,1,...,1}.
If J C Z, then E(J; R™*™) is the space of all bounded matrix-functions ¥ : J — R™*™ with the
norm
Y, = max{||Y(k)H c ke J}.

A is the difference operator of the first order, i.e.,
AY(k—1)=Y(k)—=Y(k—1) for Y € E(N,R™™), keN,.

If a function Y is defined on N; or ﬁll,h then we assume Y (0) = Opxm, or Y(I) = Onxm,
respectively, if necessary.
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For m e N, Y € E(Iglm;Rnxm) and i € Ny, 7 = (b — a)/m, Tom = a, Tem = a + k7, and
Iim =17Tk—1m, Tkm[ for m € N and k € N,,,. Moreover, for m € N, we define the function v, by

Um(t) = [Z:Zm} for t € [a, b].

Obviously, Vi, (Tgm) = k for all m € N,,, and k € ﬁlm.
If o« € E(J,Ry), then

N

1V lva = (3 a@IY @) if 1<v < +o0, and [Vl = V]l
keJ

(if a(k) = 1, then we omit « in this notation).
For all m € N, define the operators p,, : BV([a,b];R™) — E(N,,;R™) and ¢, : E(N,;R") —
BV([a, b]; R™), respectively, by
P (@) (k) = 2(Thm) for @ € BV([a,b);R") and k € N,,

and

y(k) if t =Ty, for some k& Nm,

m(y)(t) = 1 1 N
o {y(k) = — Gun(k)y(k) = — gim(k) if ¢ €]7k—1m, Tim| for some k € N
for y € B(N; R™), t € [a,b].

We say that the matrix-function X € BV([a, b]; R"*") satisfies the Lappo—Danilevskii condition
at the point a if the matrices Sq(X)(t) — Sc(X)(a), S1(X)(t) — S1(X)(a) and S2(X)(t) — S2(X)(a)

are pairwise permutable and

/ S.(X)(r) dS.(X)(1) = / dS.(X)(7) - So(X)(r) for t€ [a,b]. (0.0.5)

a

Here, the use is made of the following formulas:

b b
/ F(t)dg(t) = / F(t) dg(t—) + F(b) drg(b), (0.0.6)
ab ab
/ £(t)dg(t) = / F(t) dg(t+) + F(a) dag(a), (0.0.7)
/ 2(r) dg(r) = / £(r) dg(r) — x(t) dy g(1) (0.0.8)
i+ at

z(r)dg(T) = /(L’(T) dg(7) + z(t) dag(t). (0.0.9)

b

b
/ F(t) dg(t) + / ot) df (1)

a

F(b)g(b) = fla)g(a) + Y dif(t)-dig(t

a<t<b

- Z daf(t) - dag(t) (integration-by-parts formula), (0.0.10)

a<t<b
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b

b b
[rra / 0+ [nog@de) - Y hObs)-
;

a a<t<b

t)daf(t) - dog(t) (general integration-by-parts formula), (0.0.11)

b b
/f )dsi(g)(t) = > f(t)dig(t) /f )dsa(g)(t) = > f(t) dag(t) (0.0.12)
a a<t<b a

a<t<b

/b f(t)d< / g(s)dh(s)) = /b F(H)g(t) dh(t) for t e I, (0.0.13)
(/

f(s) dg(s)) = f(t)djg(t) for t eI (j=1,2), (0.0.14)

+Z( Z ) dif(t) - dofFm( Z F™(t) daf(t) dgfkm(t))} (k=1,2,...) (0.0.15)

m=0 a<t<bd a<t<b

/ sen g(t) dg(t) = (b)) — lg(a)]

a

+ > (lgt=) = glt=)seng(t) = > (lg(t+)| — g(t+) seng(t)) (0.0.16)

a<t<b a<t<b

for f,g € BV([a,b];R).

The proof of formulas (0.0.6), (0.0.10), (0.0.12) and (0.0.13) one can find e.g. in [73, Theo-
rems 1.4.25, 1.4.33 and Lemma 1.4.23]. As to formulas (0.0.11), (0.0.15) and (0.0.16), they are proved
in [23, Lemmas 1.1.1 and 1.1.2].



Chapter 1

Linear boundary value problems for
systems of generalized ordinary
differential equations

1.1 General linear boundary value problems.
Unique solvability

1.1.1 Statement of the problem and formulation of the results

Let A € BV([a,b]; R"*™) and f € BV([a,b];R"™), i.e., A : [a,b] — R™*™ and f : [a,b] — R" be, respec-
tively, matrix- and vector-functions with bounded total variation components on the closed interval
[a, b].

Consider a linear system of generalized ordinary differential equations of the form

dx = dA(t) - x + df (t) for t € [a,b]. (1.1.1)

We investigate the problem on the existence and uniqueness of solutions of system (1.1.1) satisfying

the linear boundary condition
l(x) = ¢, (1.1.2)
where ¢ : BV ([a,b]; R™) — R is a linear vector-functional bounded with respect to the norm || - ||s0,
and ¢y € R"™.
In particular, we establish Green’s type theorem on the unique solvability of problem (1.1.1),
(1.1.2) and give the representation of the solution.
Also, we consider the same problem for the generalized system of the form

dx = dA(t) - + dB(t) - q(t) for t € [a,b], (1.1.3)

where B € BV([a,b];R"*™) and q : [a,b] — R™ is a vector-function with integrable components on
the closed interval [a,b] with respect to B in the Kurzweil-Stieltes sense.

The boundary value problem (1.1.1), (1.1.2) is considered without restriction on the form of the
linear functional /. Note that there are no normal forms of presentation of the linear functionals
on BV([a,b]; R™). In this connection, we consider the generalized linear differential system of form
(1.1.3). The same situation for ordinary differential case is considered in [46,47].

In particular, we investigate system (1.1.1) for the following particular cases of the boundary
condition (1.1.2):

(a)

b

/d[i(t) 2(t) = co, (1.1.4)

a

12
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where ¢o = (cg;)1~; € R™ and £ € BV([a, b]; R"*");

(b) the general multi-point boundary condition
no
> Ljx(t;) = co, (1.1.5)
j=1

where t; € [a,b] (j =1,...,n0), Lj € R"*" (j = 1,...,n0) are constant matrixes, and ng is a
fixed natural number;

(¢) the Cauchy—Nicoletti type problem
xi(t;) =Li(x1, ... xn) e (=1,...,n),
where ¢; : BV ([a,b];R") = R (i = 1,...,n) are linear bounded functionals;
(d) the Cauchy—Nicoletti problem
xi(t;) =coi (i=1,...,n), (1.1.6)
where ¢g; € R, and z; is the i-th component of the vector-function z for every ¢ € {1,...,n};

(e) the periodic problem
z(a) = z(b).
Note that condition (1.1.4) is the particular case of (1.1.2), where

b

(@) = /dc(t) 2 (t). (1.1.7)

a

In the present paper, we establish the effective necessary and sufficient conditions for a unique
solvability of the general problem (1.1.3),(1.1.2) (of problem (1.1.1),(1.1.2)). The obtained results
differ from those given in [16,18,72].

The boundary value problems with condition (1.1.6) have been first considered by O. Nicoletti [62]
for systems of ordinary differential equations. The optimal conditions for the solvability and unique
solvability of the problem with the boundary condition (1.1.4) for the linear and nonlinear cases are
established in [46,47,59] (see also the references therein).

The multi-point boundary value problems for functional differential, impulsive differential and
difference equations are investigated in [18,27,37] (see also the references therein).

The multi-point problems for systems of generalized ordinary differential equations were studied
in [6,8,14, 18].

The results presented in the present monograph generalize the results obtained for the linear case
and presented in our last papers.

A vector-function x € BV([a, b]; R™) is said to be a solution of system (1.1.1) if

¢
z(t) —z(s) = /dA(T) ~x(T)+ f(t) — f(s) for a <s<t<b.
S

Under a solution of problem (1.1.1), (1.1.2) we understand a solution x € BV([a, b]; R™) of system
(1.1.1) satisfying condition (1.1.2).

By a solution of the system of generalized ordinary differential inequalities

da(t) < dA(t) - 2(t) + f(t) (=)

we mean a vector-function € BV([a, b]; R™) such that

t

x(t) — xz(s) < /dA(T) ~x(T)+ f(t) = f(s) (=) for a<s<t<b

S
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We assume that '
det (I, + (—1)? d; A(t)) #0 for t € [a,b] (j =1,2). (1.1.8)

Moreover, without loss of generality, we assume A(a) = Opxn and f(a) = 0, for every system of
type (1.1.1).

The above inequalities guarantee the unique solvability of the Cauchy problem for the correspon-
ding systems (see, e.g., [73, Theorem III1.1.4]).

If s € R and § € BV]a,b], R) are such that

14 (-1 diB() £0 for (—1)i(t—s) <0 (j =1,2),
then by vs( -, s) we denote the unique solution of the Cauchy problem
dE(t) = £(1) dB(),  €(s) = 1.
It is known (see [39,44,71]) that

exp(sc(B)(t) — sc(8)(s)) H (1—diB(r) 7" H (14 doB(r)) for t> s,

99(1:5) = {explse(O)(0) ~ 5(A)s) [ (1 -dpr) [T (1 +a8r) " for t<s,  (1L19)
1 - o for t =s.

Alongside with system (1.1.1) and the boundary condition (1.1.2), we consider the corresponding
homogeneous system
dx = dA(t) - x (1.1.19)

and the homogeneous boundary condition
(x) = 0p. (1.1.29)

Definition 1.1.1. Let condition (1.1.8) hold and let B € BV([a, b]; R"*"), B(a) = Opxpn. A matrix-
function Gp : [a,b] x [a,b] — R™ " is said to be the Green matrix of problem (1.1.1p),(1.1.2¢) with
respect to the matrix-function B if:

(a) there exist numbers a; € R and as € R, a3 + s = 1, such that the restrictions of the matrix-
function Gg(-, s) on [a, s[ and ]s, b] satisfy, respectively, the matrix equations

dX = dA(t) - X + andB(t)

and
dX = dA(t) - X — asdB(t)

for every s €la, b[;
(b)
(I, — dlA(zt))*1 (Ga(t—,t) + a1diB(t)) = (I, + d2 A(t)) " (G (t+,t) + asda B(t)) for t €]a,b[;

(¢) Gr(t, -) € BV([a,b];R™*") for every t € [a, b];
b
(d) the vector-function z(t) = [dsGp(t, s)-q(s) satisfies condition (1.1.2) for every g € L([a, b], R™; B).

Below, we prove the existence of a matrix-function H € BV([a, b]; R"*") such that the matrix-
function G defined by the equalities

Y (t)(H(s)+ Qp(s) —a2Qp(t)) for a<s<t<b,
Gp(t,s) = Y(t)(H(s) + 1Qp(t)) for a <t<s<b, (1.1.10)
arbitrary for t=s
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is the Green matrix of problem (1.1.1p),(1.1.2y) with respect to B for every numbers o; € R and
as € R such that ay + ag = 1, where

Qp(t) =Y 1 (t)B(t) —/dY—l(r) - B(1), (1.1.11)

and Y is the fundamental matrix of the homogeneous system (1.1.1g) under the condition
Y(a) =1,

(see the proof of Theorem 1.1.1).

The Green matrix is unique in the following sense. If G5 (¢, s) and Gy p(t, s) are two matrix-functions
corresponding to the common constants «; and «o, satisfying conditions (a)—(c) of Definition 1.1.1,
then

Gp(t,s) — Gip(t,s) =Y (t)Hi(s),
where H, € BV([a,b]; R™*"™) is a matrix-function such that
H,.(s+) = H.(s—) = C = const for s € [a,b],
and C € R"*" is a constant matrix.

We use the following propositions.

Proposition 1.1.1 (Variation-of-constants formula). Let the matriz-function A € BV([a, b]; R™*™) be
such that condition (1.1.8) hold and Y be a fundamental matriz of the homogeneous system (1.1.1p).
Then each solution of system (1.1.1) admits the representation

2(t) = 1(t) — f(s) + Y(t){W(s)x(s) - [ar=e)- ) - f<s>>}

S

YY) + / YY1 (r)dA(A, F)(r) for t,5 € [a,b]. (1.1.12)

Proposition 1.1.2. Let the matriz-function A € BV ([a, b]; R"*™) be such that condition (1.1.8) hold
and Y be a fundamental matriz of the homogeneous system (1.1.1g). Then

Yt =Y 1 (s) =YL )A@) + Y H(s)A(s) + /dy_l(T) - A(7)

S

=Y 1(s) = BY A1) +BY L A)s) for st € [a,b] (1.1.13)
and
d;YHt) = =Y () d;A(t) - (I, + (=1) de(t))’1 for t € [a,b] (j=1,2), (1.1.14)
Y7 Ht) = —diA(t) - Y H(t=), doY THt) = —doA(t) - Y H(t+) for t € [a,b]. (1.1.15)
In addition,
dY ~1(t) = =Y (t) dA(A, A)(t) for t € [a,b], (1.1.16)

where A is the operator defined by (0.0.2).

Theorem 1.1.1. Let condition (1.1.8) hold. Then the boundary value problem (1.1.3),(1.1.2) is
uniquely solvable if and only if the corresponding homogeneous problem (1.1.1p),(1.1.2¢) has only a
trivial solution. If the last condition holds, then the solution x of problem (1.1.3),(1.1.2) admits the

representation
b

z(t) = xo(t) + /dsgB(t,s) -q(s) for t € a,bl, (1.1.17)
where xo is a solution of problem (1.1.1y),(1.1.2), and Gp is the Green matriz of problem (1.1.1p),
(1.1.20) with respect to the matriz-function B.
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Corollary 1.1.1. Let condition (1.1.8) hold. Then the boundary value problem (1.1.1),(1.1.2) is
uniquely solvable if and only if the corresponding homogeneous problem (1.1.1p),(1.1.2¢) has only a
trivial solution. If the last condition holds, then the solution x of problem (1.1.1),(1.1.2) admits the
representation

b
£(t) = 2o(t) + £(t) + / d.Galt,s) - f(s) for t € [a,b],

where zg s the solution of homogeneous system (1.1.20) satisfying the condition
E(.’L‘) =Co — E(f)a
and Ga(t, s) is the Green matriz of problem (1.1.1p), (1.1.2¢) with respect to the matriz-function A.

Below, in the proof of Theorem 1.1.1, we will show that the homogeneous problem (1.1.1¢), (1.1.29)
has only a trivial solution if and only if
det(D) # 0, (1.1.18)

where D = ¢(Y'), and Y is a fundamental matrix of system (1.1.1p).
The following proposition is a simple modification of Lemma 3.3 from [72] related to problem
(1.1.3), (1.1.2).

Proposition 1.1.3. Let the matriz-function A € BV([a,b]; R"*™) be such that condition (1.1.8) hold.
Then the boundary value problem (1.1.3),(1.1.2) is solvable if and only if the condition

(co—LF)yv=0 (1.1.19)

holds for every v € R™ such that
(€(Y)) Ty = 0,

where

F() =Y (1) / Y1(r) dA(A, )(r), and f(t) = / dB(r) - q(7).

So, if condition (1.1.18) holds, then only the vector v = 0,, satisfies the homogeneous system
appearing in Proposition 1.1.3 and, evidently, condition (1.1.19) hold. If condition (1.1.18) is violated,
then problem (1.1.3),(1.1.2) is solvable only for ¢y, that satisfies the conditions of the proposition.

In connection with problem (1.1.1), (1.1.4), we give the following

Definition 1.1.2. Let condition (1.1.8) hold and let £ be an integral operator given by (1.1.7), where
L € BV([a,b]; R"™*™). A matrix-function G : [a,b] x [a,b] — R™*"™ is said to be the Green matrix of
system (1.1.1p) under the condition

b
/dﬁ(t) L2(t) =0, (1.1.40)
if: ’

(a) for every s € [a,b[, the matrix-function G(-,s) satisfies the matrix equation (1.1.1p) both on
[a, s and ]s, b];

(b)  G(t,t+) —G(t,t—) = Y(t)D—l{ /dﬁ(r) Y ()Y )T, — diA(t) T

b
+/dﬁ(T) Y (MY THE) L+ da A1) T =di L(1) - (I —di A(1)) ™! —daL(t) - (In+d2A(t))1}

for t €la,b[,
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where
b
D= /dﬁ(s) ‘Y (s) (1.1.20)

and Y is, as above, the fundamental matrix of system (1.1.1¢) satisfying the condition Y (a) = I;

(c) G(¢t, -) € BV([a,b]; R™*™) for every ¢ € [a, b];

b
(d) the vector-function z(t)= [ dsG(t, s)- f(s) satisfies condition (1.1.4¢) for every f€BV([a,b];R™).

a

Without loss of generality, we will assume that £(b) = Oy xp-
The Green matrix of problem (1.1.1p),(1.1.4g) exists and is unique in the sense given above. In
particular,

~Y(@t)D™! /dc(T) Y(r)Yl(s) for a<s<t<bh,

b (1.1.21)
Y(t)D™* /dﬁ(T) Y(r)Ys)  for a<t<s<b,

an arbitrary for t =s,
where D is the constant matrix defined by (1.1.20) (cf. [72]).

Remark 1.1.1. If £ is an integral operator defined by (1.1.7), where £ € BV([a, b]; R™*™), then for
the matrix-function H appearing in (1.1.10), we have

H(s) = —D_l(/sdﬂ(T)-Y(T)QB(T) +/bd£(7) .Y(T)QB(S)) (1.1.22)

a S

In addition, from (1.1.12), due to (1.1.13), we get Q4 (t) = I,,—Y ~1(¢) and, therefore, from (1.1.22)
we have

b
H(s)=—-I,+D™* (L(s) — L(a) + /dﬁ(T) : Y(T)Y1(8)> (1.1.23)

for B(t) = A(t). Moreover, in this case, (1.1.10) has the form

Y(t)(H(s)+ Y (t) =Y 1(s)) for a<s<t<b,
Ga(t,s) =Y (t)H(s) for a <t<s<b, (1.1.24)

arbitrary for t=s
if 1 =0 and ay = 1.

Corollary 1.1.2. Let condition (1.1.8) hold and let £ be an integral operator given by (1.1.7), where
L € BV([a, b]; R™*™). Then the boundary value problem (1.1.1), (1.1.4) 4s uniquely solvable if and only
if the corresponding homogeneous problem (1.1.1g), (1.1.4¢) has only the trivial solution. If the last
condition holds, then the solution x of problem (1.1.1),(1.1.4) admits the representation

b

x(t) = xo(t) + /dsg(t7s) - f(s) for t € la,b], (1.1.25)

a

where xq is a solution of problem (1.1.1y),(1.1.4) and G : [a,b] X [a,b] = R™*™ is the Green matriz G
of problem (1.1.1p), (1.1.4p) (see (1.1.21)).
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Remark 1.1.2. If problem (1.1.1p), (1.1.2) has a nontrivial solution, then for every f € BV([a, b]; R™)
there exists a vector ¢y € R™ such that problem (1.1.1), (1.1.2) has no solution.

Remark 1.1.3. If problem (1.1.1p), (1.1.2¢) has a nontrivial solution, and ¢ : BV ([a,b]; R") — R"
is a surjective mapping, then for every ¢y € R™ there exists f € BV([a,b];R™) such that problem
(1.1.1),(1.1.2) has no solution.

Remark 1.1.4. Let the matrix-function A satisfy the Lappo—Danilevskii condition at the point a.
Then problem (1.1.1),(1.1.4) is uniquely solvable if and only if

b
det (/dﬁ(t) -exp(So(A)(t)) H (I, + d2 A(T)) H (In_dlA(T))1> # 0.

a<t<t a<t<t
We give here another form of the Green theorem for the following one-dimensional problem:
du(t) = u(t) da(t) + do(t), (1.1.26)
u(a) —u(db) = co, (1.1.27)

where a € BV([a, b];R), ¢ € BV([a,b];R), a(a) = ¢(a) =0 and ¢y € R.
Alongside with (1.1.26), (1.1.27), consider the corresponding homogeneous boundary value problem

du(t) = u(t) da(t), (1.1.26)
u(a) —u(b) = 0. (1.1.27p)
If
L+ (=1)7 dja(t) #0 for t € [a,b] (j=1,2) (1.1.28)
and
Aa)(b) # 1, (1.1.29)
where
Aa)(t) = exp(so(@)(t)) H (1+ dgoz(T))/ H (1 —dya(r)) for t € [a,b], (1.1.30)
then we assume . :
)@= Xe)(®) A @) (b) Ma) ()X Ha)(r) for a <t <7 <D,
go(a)(t,7) = {(1 — M @)(B) A @) (DA () (7) for a<7<t<b; (1.1.31)
g3(0)(t,7) = (1 + (=1 dja(r)) go(@)(t,7) for t £ 7, t,7 € [ah] (j=1,2) (1.1.32)
and
g;(@)(t,t) = (1 + (=1) dja(t)) "N 2(a)(b) - go(a)(t,t) for t € [a,b] (j=1,2). (1.1.33)

Notice that A(«) is the unique solution of system (1.1.265) under the condition u(a) = 1 (see
[39,44]).

Theorem 1.1.17. Let (1.1.28) hold. Then problem (1.1.26), (1.1.27) is uniquely solvable if and only
if the corresponding homogeneous problem (1.1.26¢), (1.1.27¢) has only a trivial solution. If the last
condition holds, then the solution u of problem (1.1.26),(1.1.27) admits the representation

b
u(®) = wo(t) + [ gn()(t,7) dso(i)(7)

+ Z g1()(t, ) dro(T) + Z g2()(t, 7) da(T) for t € la,b], (1.1.34)

a<t<b a<t<b

where ug is a solution of problem (1.1.26¢), (1.1.27), and g;(a) (j = 0,1,2) are defined by (1.1.31)-
(1.1.33), respectively.

The algebraic properties of considered problems are investigated in [72,73].
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1.1.2 The spectral type necessary and sufficient conditions
for the unique solvability of problem (1.1.1),(1.1.4)

In general, it is quite difficult to verify condition (1.1.18) directly even in the case if one is able to
write out the fundamental matrix of system (1.1.1p) explicitly. Therefore, it is important to seek for
effective conditions which would guarantee the absence of nontrivial solutions of the homogeneous
problem (1.1.1p), (1.1.2p). In this subsection, we give the results connected to this topic. Analogous
results for ordinary differential equations have been obtained in [47].

To formulate the results, we use the following designations.

For every matrix-function X € BV([a, b]; R™*") such that det(I,, — d1 X (t)) # 0 for ¢t € [a,b] we
introduce the matrix-functions [X];, (X); and V;(X) (i =0,1,...) by the equalities

[(X]o(t) = (I, — i X (£)) 71,

(X]i(t) = (In—le(t))’l/dX_(T) [X]ia(r) for tefad] (i=1,2,...), (1.1.35)

(X)i+1(t):/dX_(T)~(X)i(T) for tefab] (i=1,2...), (1.1.36,)
and
Vo(X)(t) = X(t), Vi(X)(t) = |(In — di X (1)) V(X_)(2),
Vier (X)(t) = |(In — di X 1]/dv Vi(X)(7) for t € a,b] (i=1,2,...), (1.1.37y)

where X_(t) = X (¢t—); and for every X € BV([a, b]; R"*"™) such that det(I,, +d2 X (t)) # 0 for t € [a, b],
we put

[X]o(t) = (In + d2 X (1)) 7",

[(X1i(t) = (I, +d2X(t))_1/dX+(7-) [X(1)]iy for t€[a,b] (i=1,2,...), (1.1.355)
b

(X)i+1(t):/dXJr(T)-(X)i(T) for t€fab] (i=1,2,...) (1.1.365)
b
and
Vo(X)(t) = X (1), = |(In + da X (£)) 7 (V(X5)(b) = V(X3)(B)],
Vi (X)(t) = |(T + daX ()| /dV X)) VX)) for tefab] (i=1,2,...), (L137)

where X (t) = X (t+).
In this subsection, along with system (1.1.1), we consider the differential system

dz(t) = edA(t) - o(t) + df () (1.1.38)

which depends on a small positive parameter .
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Theorem 1.1.2. The boundary value problem (1.1.1), (1.1.4) is uniquely solvable if and only if there
exist natural numbers k and m such that the matriz

k-1 b
—Z/dﬁ(t) AL (1.1.39)
1=0 a
is nonsingular and
r(Mym) < 1, (1.1.40)
where
m—1 b
My = Vi A)(e) + (D 141, /dV(M,;lﬁ)(t) Vi(A)(), (1.1.41)
1=0 a

the matriz-functions [A]; (i =0,1,...) and V;(4) (i =0,1,...) are defined, respectively, by (1.1.35;)
and (1.1.37;) for somel € {1,2}, and c=b+ (a — b)(I — 1).
Theorem 1.1.2;. Let there exist natural numbers k and m such that the matriz

k

b
M, = /d£ (1.1.42)

|
—

@
Il
=3

is nonsingular and inequality (1.1.40) holds, where

b

Min = (VD + (T + 3 [(4)l) [ aVALL)0 - (VAN (1.1.43)
=0

a

the matriz-functions (A); (1 =0,1,...) and (V(A)); (i =0,1,...) are defined by (1.1.36;) for some
1e{1,2}, andc=b+ (a—b)(I — 1). Then problem (1.1.1), (1.1.4) is uniquely solvable.

Corollary 1.1.3. Let either

det(L(a)) # 0, (1.1.44)
" L(a) = Opnxn, (1.1.45)
and the conditions
b
[ L@ () = O (1 =0,005 =1 (1.1.46)

a

and

det </d1: > £0 (1.1.47)

hold for some natural j, where the matriz-functions (A); (i = 0,...,1) are defined by (1.1.361) or
(1.1.362). Then there exists eg > 0 such that problem (1.1.38), (1.1.4) is uniquely solvable for every
e €]0,¢e0[.

Theorem 1.1.3. Let a matriz-function Ag € BV([a, b]; R"*™) be such that the homogeneous system
dx(t) = dAo(t) - z(t) (1.1.48)

has only the trivial solution satisfying the boundary condition (1.1.4y), and let the matriz-function
A € BV([a, b]; R™*™) admit the estimate

/|Q0(t,r)|dV(A—A0)(T) <M for t€ab], (1.1.49)
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where Go(t,T) is the Green matriz of problem (1.1.48),(1.1.4), and M € R} " is a constant matriz
such that
r(M) < 1. (1.1.50)

Then problem (1.1.1),(1.1.2) is uniquely solvable.

1.1.3 Proof of the main results

Proof of Propositions 1.1.1 and 1.1.2. The first parts of (1.1.12) and (1.1.13) are the well known re-
sults (see [44,73]).

Let us verify the second part of (1.1.12). Using definition of the operator A (see (0.0.2)) and the
integration-by-parts formula (0.0.10), we have

16~ 16+ YO { Y 9a(6) = [ay o) (76 - (50 }

= (1)~ o) + Y(t){W(s)x(s) Sy

(1016 + [0 f0) - X ar o asm+ L ay o) afn)|

s s<t<t s<T<t

=YY ' (s)x(s) + Y(t)/Yfl(T) dA(A, f)(r) for t,s € [a,b].

Similarly, we can show equality (1.1.16). O
Proof of Proposition 1.1.3. Due to (1.1.12), for every solutions of system (1.1.3) we have
x(t) =Y (t)e+ F(t) for t € [a,b],

where ¢ € R™ is a constant vector. So, the vector functions satisfy condition (1.1.2) if and only if ¢ is
a solution of the linear algebraic system

LY )e=1co—UF).
But this system is solvable if and only if the statement of the proposition is valid. O

Proof of Theorem 1.1.1. Let, as above, Y be a fundamental matrix of system (1.1.1p) under the
condition Y (a) = I,. According to (1.1.8), such a matrix exists, and by the variation-of-constant
formula (1.1.12) we find that

xz(t) =Y (t)e+ B(q)(t) (1.1.51)

for every solution z of system (1.1.3), where ¢ = z(a) and

B(q)(t):/dB(T)-q(T)—Y(t)/dY_l(T)~/dB(s)-q(s). (1.1.52)

a a a

It is clear that = satisfies condition (1.1.2) if and only if ¢ is a solution of the system of linear algebraic
equations
() = o — B(g)).

But this system and, consequently, problem (1.1.3), (1.1.2) is uniquely solvable if and only if

det(£(Y)) # 0. (1.1.53)
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On the other hand, it is clear that (1.1.53) is a necessary and sufficient condition for the absence of
the nontrivial solution to problem (1.1.1p), (1.1.29).
If (1.1.53) is fulfilled, then from (1.1.51) and (1.1.52) we get the representation

x(t) = zo(t) + Y (¢)h(q) + B(q)(t) (1.1.54)
for the solution z of problem (1.1.3),(1.1.2), where
hla) = ~[(V)] e(B(0)) (1.1.55)

and
zo(t) = Y (1) [0(Y)]  co. (1.1.56)

In addition, z is a solution of problem (1.1.1p), (1.1.2).
Due to (1.1.52) and (1.1.55), h : L([a,b],R™; B) — R™ is the linear continuous vector-functional.
So, in view of Theorem VII.2.1 from [45], we get

b
h(q) = /dH(T) ~q(7), (1.1.57)

where H = (hi;)7;—, € BV([a,b];R"*™).
By (1.1.52), (1.1.54) and (1.1.57), we have

x(t) = zo(t) + Y (¢t /dH 7) + B(q)(t). (1.1.58)

Using the integration-by-parts formula (0.0.10) and (0.0.14), we conclude

B0 = v Y05 o)

- @Y ) )+ Y Y ) dB() o))

a<t<t a<lt<t

= Y(t)(/td(Y_I(T)B(T)) q(t) — /tdy—l(T) ~B(T)q(7')> for a<t<b

and, consequently,
t

Blo)(t) = Y(t) / Qs (r) - g(r), (1.1.59)

where the matrix-function Qp is defined by (1.1.11). Therefore, due to (1.1.58) and (1.1.59), we find

that
b t

0 :xo(t)+Y(t)/dH(T)~q(7)+Y(t)/dQ3(7)-q(7) for ¢ € [a, ]. (1.1.60)

a a

Let the matrix-function Gg(t,s) be defined by (1.1.10). In view of (0.0.8) and (0.0.9), from (1.1.60)
we have

/ngts /d s) +Qp(s)) - a(s)
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b
+ (Gs(t,t) — G(t,t—))q(t) + Y (t) / dH(s) - q(s) + (Gs(t,t+) — Gu(t,1))q(t)
t+

t

=Y(t) / d(H(s) + Qp(s)) - a(s) = Y () di(H(t) + Qp(1)) - ¢(t) — Gr(t,t—)q(t)
b

LY () / dH(s) - qls) — Y (£) duH(1) - q(t) + G (b, t4)a(t)

t
b t

=Y(t) /dH(S) ~q(s) + Y(t)/dQB(S) ~q(s) = Y(O)(H(t+) = H(l=) + d1@p(1))q(t)

a a

+ Y (t)(H(t+) — H(t—) 4 (a1 + a2)Qp(t) — Qp(t—))q(t) = z(t) — zo(t) for t € [a,b],

ie., (1.1.17) is proved.
Let us show that the matrix-function Gg satisfies the conditions of Definition 1.1.1. To prove this
fact, we use the following

Lemma 1.1.1. The matriz-function Z(t) =Y (t)Qp(t), where Y is the fundamental matriz of system
(1.1.19) under the condition Y (a) = I, and the matriz-function Qp(t) is defined by (1.1.11), satisfies
the generalized differential system

dZ(t) = dA(t) - Z(t) + dB(t) for t € [a,b]. (1.1.61)
Proof. Let a <t; < ta < s. Then, using the equality
dY (t) = dA(t) - Y (t) (1.1.62)
and the integration-by-parts formula (0.0.10), we conclude

t2 t2

Z(ts) — Z(t1) — / dA() - Z(t) = Z(t2) — Z(t) — / dA() Y () Qs (1)

tl tl
to

:Z(tg)—Z(tl)—/dY(t)-QB(t) :Jo—J1+J2 for a§t1 <t2 Sb,
where

Jo—/Y ) dQp(t) = Y dY(t) diQp(t), = > dY(t)-d:2Qp(t).

t1<t<to t1 <t<ts

Moreover, due to (1.1.12), using (0.0.13), (0.0.11) and the general integration-by-parts formula (0.0.11),
we find that

Jo :/Y(t) d(YH(t)B(t)) f/Y(t) dY 1(t) B(t)
=B(t2) = B(t)) — > Y)Y '(t)-diB(t)+ Y Y(t)dY(t)-daB(t),
> Y () (d(YH()B() — diY(t) Z Y ()Y N (t=) diB(t),

Jo= Y dY(t)- (Y ' ()B(t)) - d2Y () B(t)) = Z d2Y () - Y 7L (t4) do B(t).

t1 <t<to t1<t<tz
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Substituting these expressions into (1.1.62), we get
to
Z(tg) — Z(t1) — /dA(t) . Z(t) = B(tg) - B(tl) for a S tl < tg S b,
t1

Y#)diY ) +diY (t) - Y Ht=) = Opsny, Y () doV 1) +doY (1) - Y Ht4) = Opxpn. O

Now we check that the constructed Green’s matrix-function satisfies the conditions of Defini-
tion 1.1.1.

Let, as above, Z(t) = Y (t)Q5(¢).

Let a < t; <te < s. Then, due to (1.1.10) and (1.1.61), we have

Ip(ta,s) — Gp(t,s) = (Y(t2) = Y (1)) H(s) + ar(Z(t2) — Z(t1))

- / dA() - (Y () H(s) + a1 Z(1)) + a1 (Blts) — B(t1)) = / dA(t) - G (t,s) + a1 (B(ts) — B(hr)):

Analogously, we show that the matrix-function Gp satisfies the corresponding equation on the interval
]s, b] of condition (a) of Definition 1.1.1.
Let us show the equality given in condition (b). By definition of Gg and the equalities d;Y (t) =
d;jA(t)-Y(t) (j=1,2) and d; Z(t) = d; A(t) - Z(t) + d;B(t) (j = 1,2), we have
QB(t—,t) = (In - dlA(t))Y(t)(H(t) + OélQB(t)) — aldlB(t),
Gp(t+,t) = (I, + ddA)Y (t)(H(t) + Qp(t) — aa@p(t)) — aadaB(t) for t €]a,b|.
Due to the condition a; + ag = 1, from the last two equalities follows the equality given in condition
(b) of Definition 1.1.1. Conditions (¢) and (d) are obvious.
Let now Gp : [a,b] X [a,b] = R™*"™ and G5 : [a,b] X [a,b] — R™*™ be arbitrary matrix-functions
corresponding to the common constants a; and ao satisfying conditions (a)—(c) of Definition 1.1.1.

Then, by (a), the columns of the matrix-function X (t) = Gg(t, s) — Gis(t, s) satisfy system (1.1.1¢)
for every s € [a,b]. So, there exists a matrix-function H, € BV([a, b]; R™*™) such that

Gp(t,s) — Gip(t,s) =Y (t)H.(s).
b
From this, due to condition (d), the vector-function z(t) = Y (t) [ dH.(s) - q(s) satisfies condition

a

(1.1.2¢) and, therefore,
b
Z(Y)/dH*(s) -q(s) =0.

In addition, owing to (1.1.53), we have

to
/dH*(s) -q(s) =0 for every ¢ € BV([a,b];R"),

a

where H, € BV([a, b]; R"*™). According to Proposition 1.5.5 from [73],
H,(s+) = H.(s—) = C = const for s € [a,b],

where C' € R"*". Consequently, the Green matrix of problem (1.1.1p), (1.1.2¢) is unique in the above
sense. ]
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Proof of Corollary 1.1.1. This corollary immediately follows from Theorem 1.1.1, since the vector-
function = € BV([a, b]; R™) is a solution of problem (1.1.1),(1.1.2) if and only if the vector-function
y(t) = x(t) — f(t) is a solution of system (1.1.2) under the boundary condition ¢(y) = co — £(f), where
B(t) = A(t) and q(t) = f(t). O

Let us check Remark 1.1.1. Let ®(¢ f dL(7) - Y (7) and let the matrix-functions B(g)(¢) and

Qp(t) be defined by(1.1.59) and (1.1.11), respectlvely. Then, by virtue of (0.0.10), (0.0.11) and
(0.0.13), we have

=/b /dQBU a(r)

b
— (s) / Qs (s) - qls) - / d(®(3)Q5(s)) - a(5) + / 4B(s) - Qi (s)q(s)

a

- / (@) - @)l + / 40()- Qa(r)) - 4(s) = ~D / aH(s) - o(s)

a a

where the matrix-function H and the constant matrix D are defined by (1.1.22) and (1.1.20), respec-
tively. From this, according to (1.1.55), we get (1.1.57). The remark is proved.

Proof of Corollary 1.1.2. According to Corollary 1.1.1, we find that
b

w(t) = xo(t) — Y (B[00 7H(f) + F(2) + / d.Ga(t,s) - £(5),

a

where G4(t, s) and zg are defined, respectively, by (1.1.24) and (1.1.56) for B(t) = A(t). From this,

due to the equality
b

16 = [ dGalt.) - 1(5),
where Go(t,s) = Opxn for s <t and Go(t,s) = I, for s > t, it follows that
b
z(t) = xo(t) + /dsg*(t, s) - f(s), (1.1.63)
where
Gu(t,8) = Golt,s) +Galt,s) = Y(t)D 1 (L(s) — L(a)).
Now, using equalities (1.1.23) and (1.1.24), it is not difficult to verify that

Gu(t,s) =1, — Y () + G(¢,3).

Moreover,
b

[ag.t5)- 1) = /b 4,G(t,5) - (s).

a

Therefore, due to (1.1.63), equality (1.1.25) holds. O
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Remark 1.1.2 is evident, since problem (1.1.1p), (1.1.29) has a nontrivial solution if and only if
det(£(Y)) = 0. (1.1.64)
Hence, for every f € BV([a, b]; R™), there exists ¢g € R™ such that the system
(Y )e = co — U(B(f)),

where the operator B(f) is defined by (1.1.52) for B(t) = A(t), is not solvable and, therefore, problem
(1.1.1),(1.1.2) is not solvable, too.
Let us check Remark 1.1.3. In view of (1.1.64), there exists ¢; € R™ such that the system

UY)e=c (1.1.65)

has no solution. Let
£ = olt) = ola) ~ [ dA(r) - (),

where ¢ € BV([a, b]; R™) is such that
Up) =co — 1.

If we assume that problem (1.1.1),(1.1.2) has a solution z, for the above-defined vector-function f,
then the vector-function x(t) = z.(t) — ¢(¢) will be a solution of the homogeneous system (1.1.1p)
under the condition ¢(z) = ¢;. Consequently, we have z(t) = Y ()¢, where ¢ € R™ is a constant
vector satisfying system (1.1.65). But the system is unsolvable. The obtained contradiction proofs
the remark.

By condition (1.1.53), Remark 1.1.4 is evident, since, in the case, the fundamental matrix Y (¢),
Y (a) = I, of system (1.1.1y) has the form

Y(t) = exp(So(A) X)) [ (In+d2A(r)) [ (In —diA(r))™".

a<t<t a<t<t

Proof of Theorem 1.1.1;. As above, according to the variation-of-constants formula (1.1.12) and
(1.1.28), we have

t

)= 90 + X)) (e~ [ ot dr @) (0))

a

= AMa)(t)e + ¢(t) = Ala)(?) <>\1(a)(t)<ﬂ(t) - //\’1(04)(T) de(7)

+ Y AT (Q)(r) dip(T) = Y oA ) - dagp(T ))

a<t<t a<t<t

— Ma)(B)e + Mo (/Al 7) dso(0)(7)
+ > AN Q)() dip(r) + Y ATHa) (1) - da(T)

a<r<t a<r<t
- Z diA"Ha) () - dio(T Z daoA™ (a)(T) - dap(T )) for t € [a,b]
a<r<t a<r<t
and, therefore, ,
u(t) = At)e+ Y B;(t) (1.1.66)
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for every solution u of equation (1.1.26¢), where ¢ = u(0),

t

Aa) (1) / AL (a)(r) dso(a) (7),
> A —) digp(7),

a<t<t

Z A7 (@) (T+) da(T),

a<T<t

Bo(t)

and A(«)(t) is defined by (1.1.30).
The function u satisfies condition (1.1.27) if and only if ¢ is a solution of the equation

2
(Ma)(b) = De=co— > B;(b). (1.1.67)
j=0

But this equation and, consequently, problem (1.1.26),(1.1.27) is uniquely solvable if and only if
condition (1.1.29) holds. On the other hand, this condition is necessary and sufficient for the absence
of the nontrivial solution to problem (1.1.26¢), (1.1.27p).

If (1.1.29) has been fulfilled, then from (1.1.66) and (1.1.67) we obtain

2

u(t) = )\0(003((2‘)) (_t)l B A(Z()ag)(tz : Zﬂj(b) + Zﬂj(t) for t € [a, b].

Moreover,
b t
lt) = Sy 1 = s (M@®) [ A @) dsale)r) + [ A @) dsol)(r) )
b
~ [ w7 dso(o)(r)
A(0)(1) A
( B Y A @) dip(r) £ Y AN @) () dig( ))
t<T<b a<t<t
= Y gi(@)(t,7) dip(r)
a<t<b
and
Aot @)
2O w120 T TN 0w
x <A<a><b> A (@) () dap(r) £ 3 AN (a)(r4) dasp(r >) S go(0)(t,7) doip()
t<rt<b a<t<t a<t<b
for ¢ € [a, b], since
A (@) (r—) = A~

A
A Ha)(r4) = A H @) (T) (L + daa(7))
and, consequently, (1.1.34) holds, where
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Proof of Theorem 1.1.2. Let [ = 1.
We introduce the following sequence of operators: p; : BV([a, b]; R"*™) — BV([a, b]; R"*") (i =
0,1,...):

piX)(t) = (I, — di A /dA (X)) (= 1.2,..). (1.1.68)

To prove the theorem, we have to show that the conditions of the theorem are necessary and
sufficient for the absence of nontrivial solutions to the homogeneous problem (1.1.1p), (1.1.2¢).

Let us show the sufficiency. Let = (z;); be an arbitrary solution of the homogeneous problem
(1.1.1p), (1.1.29). Then

= c—|—/dA ) for t € [a,b], (1.1.69)

where ¢ = z(a). This, by (0.0.6), (1.1.8) and (1.1.68), yields

t

z(t) =c+ /dA(T—) cx(T) + di A(t) - x(t)

and

x(t) = (I, — diA(t)) e+ (I, — di A1) ™! /dA(T—) cz(1) = [A]o(t) - ¢+ p1(2) (1)

= [Alo(t) - ¢+ p1([A]o - ¢+ p1(@))(t) = [Alo(t) - ¢+ p1([Alo - ) (1) + pr(p1(2))(t) =

1(t)) - e+ pa([Alo - ¢+ pa(2))(t) =
Alo - ¢)(t) + p2(p1(2))(t) =
t)) - c+ ps(x)(t) for t € [a,b],

I
B
=
_|_
=
_|_
B

etc. Continuing this process infinitely, we obtain

j—1

(t) = (Z[A]i(t))chpk(:c)(t) for ¢ € [a, 0] (1.1.675)

=0

for every natural number k.
According to (1.1.351), (1.1.371) and (1.1.68), from (1.1.2¢) and (1.1.67j) we find that

b

Mye — / AL () - p(2)(t) = 0.

a

Thus, in view of the fact that M}, is a nonsingular matrix, we have

b
e=M" [ puia)o.

Substituting this value of ¢ into (1.1.67,,), we get

_ b

2(t) = pm(@)(®) + (D [41:(1)) / d(M L)) - pr(@)(t)- (1.1.70)

i

3

Il
<

a
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On the other hand, by (1.1.371) and (1.1.68), we have
pj(x)(t)] < Vi(A)(t) - |#]eo for t€[a,b] (j=1,2,...).
From the latter inequality and from (1.1.41), due to (1.1.70), it follows that
‘x|oo < Mk:,m|$|oo
and
(In — Mim)|2|eo < 0.
Hence, according to (1.1.40), we obtain
|Z|0o < 0.

Consequently, z(t) = 0. Thus the sufficiency of conditions of the theorem is proved for the absence
of nontrivial solutions to the problem (1.1.1p), (1.1.29).

Let us now prove the necessity. Let problem (1.1.1p),(1.1.2g) have no nontrivial solutions. Then
inequality (1.1.53) holds, where Y is an arbitrary fundamental matrix of system (1.1.1p). For defi-
niteness, we mean that Y (a) = I,,.

Assume
k—1

Vi(t) =Y [Ali(t) for t € [a,b] (k=1,2,...). (1.1.71)
i=0
Analogously to (1.1.67%), we show that

k—1
Y(t) = S [AL() + pr(Y)(t) for te[ab] (k=1,2,...). (1.1.72)
=0

We now estimate ||pr(Y)|co- Let 7o = ||Y||oo. It is clear that (I, — diA(t))~! is a bounded
matrix-function on [a, b]. Therefore,

r=sup {||(I, — diA(t))""||: t € [a,b]} < occ.

Taking into account the fact that A_ is a continuous from the left matrix-function and V(A_) is
nondecreasing, by (0.0.15), we have the estimate

lpr (V) O] < |[(1n — dr A 1||/||Y VA @ < rrollV(A-) D,

lp2(Y) (O] < |[(1n — dr A 1||/||101 T dIV(A-) ()]l

ror?
<7 /IIV VA < = VA @)
Using the induction method, we obtain
A_ k A_ k

e g LG S ) g 2 S T A R P
According to (1.1.73), from (1.1.71) and (1.1.72) it follows that

lim ||V — Y|le = 0. (1.1.74)

k—o0

Moreover,

[6(Ys) = £(Y)]| < /I\Yk(t) YOI dIVL)OI < V)OI - Ve = Yoo
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Therefore, by (1.1.74)), we have
klim 0Yy) = £(Y).
—00

But in view of (1.1.39) and (1.1.71),
0(Yy) = — My,
and hence

lim My = —((Y).

k—o0

From the above arguments and (1.1.53), there exist a natural number kg and a positive number «
such that
det(My,) #0, MY <o (k=koko+1,...). (1.1.75)

Moreover, as above, it is easy to verify that

IO < IV for 1€ o)
IVa(A ||</||v1 Dldlv(a /||v V(A
< % IV(A)®)]? for t € [a,b],

and so on. Thus

 (rlv(a HO)* for tefab] (k=1,2,...).

W‘H

VA0 < 37 (VOO <

Taking into account these estimates and (1.1.75), from (1.1.41) we get

—~

lim Mk m — Onxn

k,m—oc0

Hence inequality (1.1.40) holds for some sufficiently large k& and m. The theorem has been proved
for I = 1.
Let now | = 2. For this case we define the operators p; (i =0,1,...) by

instead of (1.1.68).
We use the equality

instead of (1.1.69).
Acting analogously as in proving the case [ = 1, we can easily show that the theorem is likewise
true in this case. O

Proof of Theorem 1.1.2;. The proof is analogous to that of Theorem 1.1.2.
Let I = 1, and let p; : BV([a, b]; R"*™) — BV ([a,b]; R™*™) (i = 0,1,...) be the operators defined
by
¢

P00 = X0, w00 = [ dAE) - pa (00 (=120,

a
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Let = (z;)!_; be an arbitrary solution of problem (1.1.1y), (1.1.29). Then, by virtue of (1.1.69),

t

2(t) = ¢+ pr(@)(t) = e + / dA(T) - (¢ + p1 (@)()

= (In + (A0 (B))e + /dA(T) p1(2)(7) = (In + (A)1(8))c + pa() (1)

— (L4 (A (6)er / dA(r)- / dA(3) (491 (2)(5) = (Tn+(A)1 (O)+(A)a()) e-ps () (1) for t € [a,b],
and so on. Continuing this process infinitely, we obtain

)= (In +Z i) e+ pi(@)(t) for tefab] (G=12...). (1.1.76)

According to (1.1.42) and (1.1.43), from (1.1.2) and (1.1.76) we can find ¢ as above. Substituting
the value of ¢ in (1.1.76) and acting as above, we find that z(¢) = 0. The theorem has been proved
for I = 1.

The proof of the theorem is similar for the case | = 2. We only note that the operators p;
(i=0,1,...) are defined by

po(X)(t) = X (1), pi(X)(t)E/dA(T)~pi,1(X)(T) (i=1,2,...). O
b

Proof of Corollary 1.1.3. Let A_(t) = €A(t). It is evident that
3 — .7 . — 1 ) —
gl_I}(l) (In + (=1)’e d;A(t)) = I,, uniformly on [a,b] (j = 1,2).
Therefore, there exists €1 > 0 such that
det (I, + (=1)7 d;A-(t)) #0 (t € [a,b], j=1,2)

for every e €]0,¢1].
If condition (1.1.44) holds, then we assume k = 1, while if conditions (1.1.45)—(1.1.47) hold, we
assume k = [ + 1. Moreover, we put

k-1 b
My(e) = dL(t i(t)
te 1—0‘/
and
Mya(e) = (V(eA)1(b) + M, I/dV (V(e4))k(t).

In view of condition (1.1.44) (of conditions (1.1.45)7(1.1.47)), we can easily verify that
Myi(e) = e" "My, det(Mi) #0, My1(e) =M1,
where M and My, are the matrices defined by (1.1.42) and (1.1.43), respectively. Let

. 1
€0 —mlH{T(Mk’l) ,61}.

Then we have
r(Mga(e)) <1

for every ¢ €]0,g9[. Therefore, according to Theorem 1.1.27, problem (1.1.38),(1.1.2) has one and
only one solution for every € €]0,¢9]. O
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Proof of Theorem 1.1.5. Tt suffices for the homogeneous problem (1.1.1p),(1.1.2p) to have only the
trivial solution. Let z=(x;)"_; be an arbitrary solution of the problem. Since problem (1.1.48), (1.1.29)
has only the trivial solution, by (1.1.17) and the equality

t

dz(t) = dAg(t) - z(t) + d(/d(A(T) — Ao(7)) x(T)) for t € [a,b],

a

we have the representation

x(t) = /thgo(t,T)/Td(A(s) — Ao(9)) - x(s) = /td</sgo(t,7)d(A(7) AO(T))>:17(5) for t € [a, b],

a a a

where Go(t,7) is the Green matrix of problem (1.1.48), (1.1.2¢).
Therefore, by (1.1.49),

t

() g//|go(t,r)|dV(A—A0)(T)-|:z:(s)| < Mlz|o for t€ [a,b].

a

Hence
(I, — M)|z|s < 0.

From the above, owing to (1.1.50), it follows that x(¢) = 0. Consequently, problem (1.1.1), (1.1.2)
has one and only one solution. O

1.2 The well-posedness of the general linear
boundary value problems

1.2.1 Statement of the problem and formulation of the results

Let Ao € BV([a,b]; R™*™), fo € BV([a,b]; R™). Consider the system

dx = dAy(t) - = + dfo(t) for t € [a,b] (1.2.1)

under the boundary value condition
fo(.’L‘) = Cp, (1.2.2)
where £y : BV ([a,b;R") — R" is a linear bounded (with respect to the norm || - |lo) vector-

functional, and ¢y € R™ is an arbitrary constant vector.
Let xy be a unique solution of problem (1.2.1),(1.2.2).
Along with problem (1.2.1),(1.2.2), consider the sequence of the problems
de = dA,,(t) - © + df (1), 2.1,)

U (2) = Cm 1.2.2,,)

—~~
—_

(m = 1,2,...), where A,, € BV([a,b];R"*™) (m = 1,2,...), fm € BV([a,b];R™) (m = 1,2,...),
lm : BVo([a,b;R™) — R™ (k = 1,2,...) are linear bounded vector-functionals and ¢,, € R (m =

b 25 * )'
Let Ay, = (amin)i=1 and fr = (fru)j=y (m=0,1,...).
Moreover, as above in Section 1.1, without loss of generality we assume A,,(a) = Onxn, and

fm(a) =0, (m=0,1,...).

In this section, we establish the necessary and sufficient and the effective sufficient conditions for
the boundary value problem (1.2.1,,), (1.2.2,,) to have a unique solution x,, for any sufficiently large
m and prove that

lm 2, () = zo(t) (1.2.3)

m——+oo
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uniformly on [a, b].
Along with problems (1.2.1),(1.2.2) and (1.2.1,,,), (1.2.2,,), we consider the corresponding homo-
geneous problems

dx = dAo(t) - z, (1.2.19)

and
dr = dA,,(t) -z, (1.2.1500)
lm(2) =0 (1.2.2m0)

for any natural m.

Definition 1.2.1. We say that the sequence (A,,, fim;m) (m=1,2,...) belongs to the set S(Ay, fo; o)
if for every ¢y € R™ and for a sequence ¢, € R"™ (m = 1,2,...) satisfying the condition

lim ¢, = co, (1.2.4)

m——+oo

problem (1.2.1,,),(1.2.2,,) has the unique solution z,, for any sufficiently large m, and condition
(1.2.3) holds uniformly on [a, b].

We assume that
det (I, + (—=1)7 d;Ao(t)) #0 for t € [a,b] (j=1,2). (1.2.5)

Theorem 1.2.1. Let the conditions

1_1)r_r~_1 L (x) = L(x) for x € BV([a,b];R"), (1.2.6)
lim sup ||| ]| < +00 (1.2.7)
m——+00
hold. Then the inclusion N
((Amafm,;gm))m:]_ € S(Ao,fo;to) (128)

holds if and only if there exists a sequence of matriz-functions Hy, H, € BV([a,b];R™*™) (m =
1,2,...) such that the conditions

b

limsup \/(Hy, + B(Hp, Ap)) < +00 (1.2.9)
m——+oo a
and
inf {| det(Ho(t))| : t € [a,b]} >0 (1.2.10)
hold, and the conditions
mEI}EOO H,,(t) = Ho(t), (1.2.11)
lim_ B(Hu, An) (1) = B(Ho, 40)(2), (12.12)
lim B(Hin, fun) (t) = B(Ho, fo)(1 (12.13)

hold uniformly on [a,b].
Theorem 1.2.2. Let conditions (1.2.6), (1.2.7) and

det (I, + (=1)7 d; A (t)) #0 for t € [a,b] (m=0,1,...) (1.2.14)
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hold. Then inclusion (1.2.8) holds if and only if the conditions

lim X' (t) = X, (t) (1.2.15)

m——+oo

and

lim  B(X,Y fm)(t) = B(X5L (1)

m——+o0 m

hold uniformly on [a,b], where X,,, is the fundamental matriz of the homogeneous system (1.2.1,,0)
for every m € N.

Theorem 1.2.3. Let A5 €BV([a,b; R™*™), fGeBV([a,b];R™), ¢ €R™, and a £f : BV ([a, b]; R"*™)
— R™ be a linear bounded vector-functional such that

det (I, + (—1)7 d; A§(t)) # 0 for t € [a,b] (1.2.16)
and the boundary value problem

do = dAL(L) - + dfi (b), (1.2.1%)
G(z) = (1.2.2%)

has a unique solution xj. Let, moreover, there exist the sequences of matriz- and vector-functions
H,, € BV([a,b;R™"™) (m =1,2,...) and hy, € BV([a,b];R™) (m=1,2,...) such that

inf {| det(H,,(t))| : t € [a,b]} >0 for every sufficiently large m, (1.2.17)
and for the sequences

) =b(Hyty) (m=1,2,...), A(t)=T(Hp, An)(t) (m=1,2,...),

m

fn(®)

B (8) = Bun (@) + B(Ho, fi)(t) — [ dAZ(5) - hun(s) (m=1,2,...)

S .

the conditions

lm_5,() = £(y) for y € BV ([a, B R"), (1.2.18)
limsup |[|£;,]]] < +o0, (1.2.19)
m——+o00

mkg-loo(cm + 05 (hm)) = ¢, (1.2.20)

b
limsup \ /(4},) < 400 (1.2.21)

m——+00 a

hold and the conditions

ml—l)r—r&-loo A () = Aj (1), (1.2.22)
R ACE 1 (12:29)

hold uniformly on [a,b]. Then problem (1.2.1,,), (1.2.2,,) has the unique solution x,, for any sufficiently
large m and
Hm  (Hp ()@ (t) + hin (t)) = 25(t) (1.2.24)

m——+oo

uniformly on [a,b].
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Remark 1.2.1. In Theorem 1.2.3, the vector-function y,, (t) = Hy,(t) £ (t) + hp(t) is a solution of
the problem

dy = dAL (6) -y + df5 (1), (1.2.13,)

Gn(y) = e, (1.2.27,)

for every sufficiently large m, where ¢, = ¢, + €5, (han)-

Corollary 1.2.1. Let conditions (1.2.6), (1.2.7), (1.2.9), (1.2.10) and
lim (¢ — @r(a)) = co (1.2.25)

m——+oo

hold, and conditions (1.2.11), (1.2.12) and

t
(B o= ) 0)+ [ B An)(0) - () ) = B0 )0 (1226)
hold uniformly on [a,b], where Hy,, € BV([a,b];R"*™) (m = 0,1,...), ¢m € BV([a,b];R™) (m =
1,2,...). Then for any sufficiently large m, problem (1.2.1,,),(1.2.2,,) has the unique solution x,,
and

Hm (2, (t) — em(t)) = zo(?) (1.2.27)

m——+00o
uniformly on [a,b].

Theorem 1.2.4. Let conditions (1.2.4)~(1.2.7) and

1 ) <+

;“ii‘?.?\/ x

hold, and the conditions
mgrﬂoo A (t) = Ap(t), (1.2.28)
i f(t) = fol) (1.2:29)

hold uniformly on [a,b]. Then the boundary value problem (1.2.1,,), (1.2.2,,) has the unique solution
T for any sufficiently large m and condition (1.2.3) holds uniformly on [a,b].

Corollary 1.2.2. Let conditions (1.2.6), (1.2.7), (1.2.9) and (1.2.10) hold, and conditions (1.2.11),

t

im [ Hi(s) dAn(s / Ho(s) dAg(s (1.2.30)
¢
lim_d; fm()_djfo(t) (j=1,2) (1.2.33)
hold uniformly on [a,b], where Hy, € BV([a,b]; R"*™) (m =0,1,...). Let, moreover, either
limsup > (|[d;Am @)l + d; fm(D)]]) < +00 (j = 1,2), (1.2.34)
m=H0 e lab]
or
limsup > [|d; Ho ()] < +00 (j =1,2). (1.2.35)
M=t e lab]

Then inclusion (1.2.8) holds.
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Corollary 1.2.3. Let conditions (1.2.6), (1.2.7) and (1.2.9) hold, and conditions (1.2.11), (1.2.28),
(1.2.29),

t

ml—i>1-rs-loo dH,,(8) - A (s) = As(t) — Ax(a) (1.2.36)
and .
im [ dH(9) - fuls) = £.0) - fila) (1.2.37)

a

hold uniformly on [a,b], where Ho(t)=1,, Hy, €BV([a,b); R"™") (m=1,2,...), A.€BV([a, b]; R"*™)
and f. € BV([a,b];R™). Let, moreover, the system

dz = d(Ao(t) — As(1)) - =+ d(fo(t) — fe(t))
has a unique solution satisfying condition (1.2.2). Then
(A fomi b)) sy € S(Ao = Aus fo = fio)-

Corollary 1.2.4. Let conditions (1.2.6) and (1.2.7) hold and let there exist a natural number p and
matriz-functions B; € BVioe([a,b;R™ ™) (j =0,...,u— 1) such that

b

lim sup \ /(Apy) < +00 (1.2.38)
m——+00 a
and the conditions
T (A1) = Ang(a) = Bj(6) = Bj(a) (j=0,...,5— 1), (1.2.39)
i (A (t) = Ay (@) = Ao(0), (1.2.40)
lm  fr,(t) = fo(t) (1.2.41)

m——+o0
hold uniformly on [a,b], where
Amo = Am(t), fmo(t) = fm(t) (m=1,2,...),
Hyo(t) = Iny Hpj(t) = (In — Amj(t) + Apj(a) + Bj(t) — Bj(a)) Hpn j-1(t)
G=1,...,u0—1;,m=1,2,...).
Then inclusion (1.2.8) holds.

If 4 =1, then Corollary 1.2.4 coincides with Theorem 1.2.4.
If p = 2, then Corollary 1.2.4 has the following form.

Corollary 1.2.4;. Let conditions (1.2.6), (1.2.7) and (1.2.9) hold, and the conditions

lim A, (1) = B(t) — B(a),

m—+00
mEg_loo B(Hm, Ap)(t) = Ao(1),
i B(Hy, f)(0) = fo()

hold uniformly on [a,b], where B € BV([a, b]; R"*"™) and
Hnt)=1,— An(t) + B(t) — B(a) (m=1,2,...).

Then inclusion (1.2.8) holds.



The General BVPs for Linear Systems of Generalized ODEs 37

If in Corollary 1.2.4; we choose B(t) = Ag(t), then the corollary has the following simple form.
Corollary 1.2.45. Let conditions (1.2.6), (1.2.7) and

m——+oo

b
limsup\/ (Am - B(A,, — A07Am)) < 400

hold, and the conditions

lim A (t) = Ao(t),

m——+0o0

mE)I—rﬁ-loo d(Am(T) — 4o (T)) “Am (T) = Onxn;

mlirilw (fm(t) = B(Ap — Ag, fm)(t)) = fo(t)

hold uniformly on [a,b]. Then inclusion (1.2.8) holds.

Remark 1.2.2. in particular, in the above corollary, the last limit condition holds if

m——+o00 m——+00

lm fn(t) = fo(t) and lim / d(Ap (1) = Ag(7)) - fin(T) =0,

uniformly on [a, b].

Corollary 1.2.5. Let conditions (1.2.6) and (1.2.7) hold. Then inclusion (1.2.8) holds if and only if
there exist a sequence of matriz-functions By, € BV([a,b; R™*™) (m =0,1,...) such that

b
lim sup \/(Am — Bp) < 00 (1.2.42)
m——00 a
and _
det (I + (—1)? d;jBi(t)) #0 for t€la,b] (j=1,2m=0,1,...), (1.2.43)
and the conditions
. —1/py _ 1
mgrﬂw Z(t) =2y (t), (1.2.44)
lim B(Z,!, An)(t) = B(Z5', Ao) (1) (1.2.45)
and
lm B(Z," fn)(0) = B(Zg " fo) (1) (1.2.46)

hold uniformly on [a,b], where Zy, (Zm(a) =1,) is a fundamental matriz of the homogeneous system
dx = dBp(t) - x (1.2.47)
for every m € N.

Corollary 1.2.6. Let conditions (1.2.6) and (1.2.7) hold and let there exist a sequence of matriz-
functions By, € BV([a,b]; R"™*™) (m =0,1,...) satisfying the Lappo—Danilevskii condition at the point
a such that the conditions

b b b

lim sup (\/(Am — 8¢(Bm)) + \/ (S1(Bm)) + \/(Sg(Bm))) < +00 (1.2.48)

m——+00 a a a
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and

det (I, + (=1)7 d;Bo(t)) #0 for t € [a,b] (j=1,2) (1.2.49)
hold, and the conditions

mlirilm (Sc(Bm(t)) - Sc(Bm(a))) = SC(BO)(t) - SC(BO)(a)’ (1'2'50)
Jlim S;(Ba)() = S5(Bo)(6) (G =1.2) (1:251)
mli%m Z 1 (1) dA(By, A (1) = /Zo_l(r) dA(Bg, Ao)(T) (1.2.52)

and
i [ 230 dAB . 1)) = [ 257 (7) dABo, 1) (7) (1.2.53)

hold uniformly on [a,b], where A is the operator defined by (0.0.2), and Z,, (Z(a) = 1) is a funda-
mental matriz of the homogeneous system (1.2.47) for any sufficiently large m. Then inclusion (1.2.8)
holds.

Remark 1.2.3. In Corollary 1.2.6, due to (1.2.51) and (1.2.49), without loss of generality, we can
assume that condition (1.2.43) holds for every natural m and, therefore, the fundamental matrices
Zm (m=0,1,...) exist. Hence conditions (1.2.52) and (1.2.53) of the corollary are correct.

Remark 1.2.4. In Corollaries 1.2.5 and 1.2.6, if we assume that the matrix functions B, (m =
0,1,...) are continuous, then conditions (1.2.43) and (1.2.49) are, obviously, valid. Moreover, due to
the integration-by-parts formula and definitions of operators A and B, each of conditions (1.2.45) and

(1.2.52) has the form
¢ ¢

lim / ZH (1) dAn (1) = / Zy ' (7) dAo(7),

m——+oo
a a

and each of conditions (1.2.46) and (1.2.53) has the form

t t

fim [ 22 () df(r) = / Z5 M (7) dfol(7).

m——+o0
a to

Remark 1.2.5. If the matrix-function B € BV (I;R"*™) satisfies the Lappo—Danilevskii condition
at the point s € I and det(I,, + (=1)7d;B(t)) # 0 for t € I, (—=1)7(t —s) < 0 (j = 1,2), then the
fundamental matrix Z (Z(s) = I,) of the homogeneous system

dx =dB(t) - x

has the form (see [39,44,71])

exp (So(B)(t) = So(B)(5)) [[ (In—diB(r))™" J[ (n+d2B(r)) for t>s,

Z(t) = § exp (Se(B)(s) — Se(B)(1)) H_(In—dlB(T)) ]‘[_(Iﬁng(T))*l for ¢ <s, (1.2.54)
In ) T for ¢t = s.

In that paper there is given the form of the fundamental matrix of considered system in the general
case, as well, i.e., when the matrix-function B does not satisfy the Lappo—Danilevskii condition. We
could get similar results for the general case, but they would be very laborious.
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In particular, from Corollary 1.2.6 follows the following

Corollary 1.2.7. Let conditions (1.2.6) and (1.2.7) hold and let there exist a sequence of continuous
matriz-functions By, € BV([a,b; R™*™) (m = 0,1,...) satisfying the Lappo—Danilevskii condition at
the point a such that condition (1.2.42) hold, and the conditions

im (B (t)) — Bu(a)) = Bo(t) — Bo(a),

m——+oo

lim exp(_Bm(T) + Bm(a)) dAm(T) = /exp(_B(]<T) + B(](a)) dAO(T)

m——+00
and
ml_ifﬁoo exp(—Bm(T) + Bn(a)) dfm (1) = /exp(—Bo(T) + Bo(a)) dfo(T)

hold uniformly on [a,b]. Then inclusion (1.2.8) holds.
Corollary 1.2.8. Let conditions (1.2.6), (1.2.7) and

limsup > [|djAm(t)]| < +oo (j=1,2) (1.2.55)

MO e lab]

hold. Let, moreover, the matriz-functions Sc(A.,) (m = 0,1,...) satisfy the Lappo—Danilevskii con-
dition at the point a and the conditions

mSe(Am)(t) = Se(Ao)(8), (1.2.56)
im S (An)(t) = 85(Ao)(1) (= 1,2), (1.2.57)
lim / exp( =S (Ap) (7)) dAp (7) = / exp(—Se(Ao) (r)) dAo(7) (1.2.58)
and
mgrﬂoo exp(—Sc(Am) (7)) dfm (1) = /eXp(—Sc(Ao)(T)) dfo(T) (1.2.59)

hold uniformly on [a,b]. Then inclusion (1.2.8) holds.
Corollary 1.2.9. Let conditions (1.2.6), (1.2.7),

n b
lim sup Z \/(amil) < 400
m=+00 11 il a

and
L+ (=1) djagii(t) #0 for t € la,b] (j=1,2;i=1,...,n)

hold, and the conditions

lim amii(t) = aol‘i<t) (Z = 1, N 7’I7,),

m——+0o0

t t
lim / L (7) dA (@it i) (7) = / 2o (r) dA(aom aon)(r) (£ L il =1,...,n)

m——+0o0
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and

t t

lim 2t (T) dA(@mii, fmi) (T) = /z&%(T) dA(agii, foi)(T) (i=1,...,n)

m——+o0
a a

hold uniformly on [a,b], where A is the operator defined by (0.0.2), and z,; defined according to
(1.2.54) is a solution of the initial problem

dz(t) = z(t) damu (), 2(a)=1 (i=1,...,n)
for any sufficiently large m. Then inclusion (1.2.8) holds.

Remark 1.2.6. For Corollary 1.2.8, the remark analogous to Remark 1.2.3 is true, i.e.,
1+ (1) djami;(t) #0 for t€[a,b] (j=1,2i=1,...,n)
for every sufficiently large m and, therefore, all conditions of the corollary are correct.

Remark 1.2.7. In theorems and corollaries given above, as well as in the statements below, we may,
without loss of generality, assume that Hy(t) = I,,. In this case, it is evident that

B(Ho,Y)(t) = Z(Ho, Y)(t) = Y (t) — Y(a) for Y € BV([a,b]; R™*™).

Remark 1.2.8. If for some m the matrix-function A,, is such that A,,(t) = const for t € Iy, where
Iy C [a,b] is an interval, then, due to the proof of the necessity in Theorem 1.2.1, we conclude that
H,,(t) = const for t € Iy, as well, since H,,(t) = X,,}(t), where X,, is the fundamental matrix of the
homogeneous system (1.2.1,,0). Therefore, X,,(t) = const for t € Iy. So, everywhere in the results

given above we can assume that the matrix-function H,, has the described property.

Remark 1.2.9. The following example shows that if condition (1.2.34) is violated, then the statement
of Corollary 1.2.2 is not true, in general.

Example 1.2.1. Let a=0,b=1,n=1, Ag(t) =0, fo(t) =0, {mn(z) = 2(0) (m=0,1,...),

2m?
m~1 for te U Jt2i—1mst2im)s
Am(t) _ =1

2m?

0 for t ¢ U lt2i—1 m, t2i m),

i=1

where t;,, = (2m2+1)71i (i = 0,...,2m?) for every natural m. Then all conditions of Corollary 1.2.2
are fulfilled, except (1.2.34). It is evident that xz¢(f) = 1. On the other hand, the initial problem

(1.2.1,,), (1.2.2,,) has the unique solution x,, and, in addition, z,,(1) = (1 — #)mQ. Therefore,
condition (1.2.3) is not valid, since

lim  2,(1) = exp(—1) # zo(1).

m—+o00o
The examples concerning the importance of some conditions given in the above statements can be

found in [23] (Examples 3.1.1, 3.1.2, 3.1.3).

1.2.2 Auxiliary propositions

Lemma 1.2.1. The following statements are true:
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(a) if X € BV([a,b];R"™™™), Y € BV([a,b]; R™*!) and Z € BV([a, b]; R™*F), then
B(X,B(Y,Z))(t)=B(XY,Z)(t) for te€ a,b] (1.2.60)

and

t

B(X, / dY(s)~Z(s))(t) - / AB(X,Y)(s) - Z(s) for t € [a,b]; (1.2.61)

a

(b) if X € BV([a,b];R"*™), Y € BV([a,b]; R"*") and Z € BV([a,b]; R"*™), then
I(X,Z(Y,2))(t) = Z(X Y, Z)(t) for t € [a,b], (1.2.62)
where the operators B and T are defined by (0.0.3) and (0.0.4), respectively.

Proof. Let us show that (1.2.60) is valid. According to equalities (0.0.10)—(0.0.14), we have
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Let us verify (1.2.61). By (0.0.13) and (1.2.60), it can be easily shown that

B(X, / dy (s) - Z(s)) (t) = B(X,YZ - B(Y, Z))(t) = B(X,Y Z)(t) — B(XY, Z)(t)

a

Finally, using (0.0.13), (1.2.60) and (1.2.61), we have
¢

(X, Z(Y, 2))(1) :/d[ (7) + BX,Z(Y, 2))(7)] - X~ }(7)

+B( /d s)+ B(Y, Z)(s)] - Yl(s)>(7'))-X1(7')

a a a

I
s ®
QU
VR N /;\ N m

Rl \
QU
=

> :

=
» w
‘ S~—
b

—
U
=
<
=
i-<
N
B
=

SN—
g
3

/ A(X ()Y (5)) - Y1 (s) + / dB(XY, Z)(s) .Yl(s)> X(r)

W S e~

= /d(X(T)Y(T) +B(XY,Z)(7)) - Y N 1) X (1) = Z(XY, Z)(¢). O

a

Lemma 1.2.2. Let h € BV([a,b];R™), and H € BV([a,b]; R"*"™) be a nonsingular matriz-function.
Then the mapping
r—y=Hx+h

establishes a one-to-one correspondence between the solutions x and y of systems (1.1.1) and
dy = dA.(t) -y + df.(¢), (1.2.63)
where the matriz- and vector-functions A, and f, are defined, respectively, by

t

A.(t) =I(H, A)(t) and f.(t) = (t)*h(a)JrB(H,f)(t)*/dA*(S)'hk(S)-

a

Besides,
I+ (1) d; A (t) = (H(t) + (—1)7 d;H(t)) (I, + (=1)7 d;A®)H™(t) (5 =1,2). (1.2.64)

Proof. Let x be a solution of system (1.1.1) and let y(t) = H(¢)x(t) + h(t). Due to (1.2.61) and the
definition of a solution, we have

/dBHA — B(H,z— f)(t) for t € [a,b].



The General BVPs for Linear Systems of Generalized ODEs 43

In view of the above said and (0.0.13), we obtain

t t

/dA*(S) “y(s) + fu(t) = fula) = /dA*(S) ~(y(s) = h(s)) + B(H, f)(t) + h(t) — h(a)

a a
t t

~ [a ( [t + s A1) .Hlm) - H(s)(s) + B(H, £)(t) + h(t) — h(a)

_ / d[H(s) + B(H, A)(s)] - 2(s) + B(H, £)(t) + h(t) — h(a)

_ / dH(s) - 2(s) + B(H, = — £)(t) + B(H, £)(t) + h(t) — h(a)

_ / dH(s) - 2(s) + BUH, 2)(t) + h(t) — h(a)

a

= H(t)z(t) — H(a)z(a) + h(t) — h(a) = y(t) — y(a) for t € [a,b],

i.e., y is a solution of system (1.2.63).
Let us prove the converse assertion. It suffices to show that

T(H™Y, A)(t) = A(t) — A(a) for t € [a,b] (1.2.65)
and

— H7Y(t)h(t) + H™ (a)h(a) + Z(H™, f*)(t)

—|—/dI(H*1,A*)(T)-Hfl(T)h(T) = f(t) — f(a) for t € [a,b]. (1.2.66)

Indeed, by (1.2.62), we have

TH AN =T(H ' IT(H,A)(t) = Z(I,A)(t)

= /d[In + B(I,,, A)(s)] = B(I,,, A)(t) = A(t) — f(a) for t € [a,b].

a

Therefore, equality (1.2.65) is proved.
Let us show that (1.2.66) is valid. Let R(t) be the left-hand side of the equality. In view of (1.2.60)
and (1.2.61), it is easy to verify that

t

B(H—l, / dB(H,A)(s)-H‘l(s)h(s))(t) - / dA(s) - H™(s)h(s) for t € [a,0]

a

and

B(H—l, / dH(s)-H—l(s)h(s)>(t) . j dH(s) - h(s) for t € [a,b].

Taking the latter equalities, (0.0.13), (1.2.60), (1.2.61) and (1.2.65) into account, we find that
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R(t) = —H ' (t)h(t) + H *(a)h(a) + B(H ', h)(t) + B(H ', B(H, f))(t)

—B(HR/dA*(s) : h(s))(t) +/tdA(s) - H'(s)h(s)

= B(I, f)(t — / dH(s) - h(s) — B<H1, / dZ(H, A) - h(s))(t)

a

+ / dA(s) - H™ (s)h(s) = () — f(a) — / dHY(s) - h(s)

Hence (1.2.66) is valid.
Equalities (1.2.64) follow from the equalities

djA*(t) = d;j(H(t) + B(H, A)(t))- H'(t) for tel (j=1,2)

and
d;B(H,A)(t) = d;(H(t)A(t)) - djH(t) - A(t) for tel (j=1,2). O

Let ¢ be an arbitrary positive number and ¢ : [a,b] — R be a non-decreasing function. We denote
Dj(a,b,e39) = {t € [a,] : djg(t) > e} (j=1,2).
Let R(a,b,e;g) be a set of all subdivisions {«g, 71, @1, ..., T, @ } of [a,b] such that
(@) a=ap<oy < <am=ba <1 <o < < Ty <y

(b) if 7; € Di(a,b,e; g), then g(r;) — g(ai—1) < &; if 7; € Di(a,b,e;g), then ;1 < 7; and g(r,—) —
glai-1) <&

(c) if 7;€Ds(a,b,e; g), then g(oy)—g(7;) <e; if 7, € Da(a, b, €; g), then 7, <a; and g(a;)—g(ri+) <e.

Lemma 1.2.3. The set R(a,b,e;g) is not empty for an arbitrary positive number ¢ and a non-
decreasing function g : [a,b] — R.

We omit the proof of the lemma because it is analogous to that of Lemma 1.1.1 from [52].

Lemma 1.2.4. Let oy, Bm € BV([a,b];R) (m =0,1,...) be such that

mLHEOO ”ﬂm - 60“00 = 0, (1'2'67)
b
ml—lg-loo sup \/(am) < 400, (1.2.68)
and let the condition
lim  (n(t) — am(a)) = ag(t) — agla) (1.2.69)

m—+400
be fulfilled uniformly on [a,b]. Then

t

lim /tﬂm(T) da, (1) = /50(7') dag(T)

m——+o0
a

is fulfilled uniformly on [a,b], as well.
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Proof. Let € be an arbitrary positive number. By Lemma 1.2.3, the set R(a,b, £), where g(t) =
V(Bo)(t), is not empty.
Let
{ao,ﬁ,al, ceos T am} € R(a,b, %)

be an arbitrary fixed subdivision. We set

Bo(t) for t € {ap, 1,01, T, Qm },
ﬂo(Ti—) for ¢ E]Oél‘,lﬂ'i[, T; € D1(a, b,E;g),
Bo(Ti) for t €)a;_1,7i[, 7 & Di1(a,b,e; g) or for t €1, 4], 71 & Da(a,b,e; g),
Bo(mi+) fort €]m, auf, 7 € Di(a,b,e;9)

(i=1,...,m).

It can be easily shown that n € BV([a, b]; R) and
|Bo(t) — n(t)| < 2¢ for ¢ € [a,b]. (1.2.70)

For every natural m and t € [a, b], we assume

t t

(t) = / B (7) dori (1) — / Bo(r) dao(7)

a a

and
t

Son(t) = / 0(t) d(0n(7) — (7).

a

Tt follows from (1.2.69) that
lim |60 = 0. (1.2.71)

m——+o0

On the other hand, by (1.2.69) and (1.2.70), we have

[¥mlloe < 4re +7)|Bm — Bolloo + 6]l (m=1,2,...).

Hence, in view of (1.2.68) and (1.2.71), we obtain

im |[ymllec =0,

m——+oo
since ¢ is arbitrary. O

Lemma 1.2.5. Let condition (1.2.14) hold and let

lim  Xn(t) = Xo(t) (1.2.72)

m——+oo

uniformly on [a,b], where Xg and X,,, (k =1,2,...) are the fundamental matrices of the homogeneous
systems (1.2.1p) and (1.2.1,,0) (m =1,2,...), respectively. Then

inf {| det(Xo(t))| : ¢ € [a,b]} >0, (1.2.73)
inf {|det(Xy ' (t))| : t € [a,b]} >0 (1.2.74)

and condition (1.2.15) holds uniformly on [a,b], as well.
Proof. According to equalities (0.0.14) and the definition of a solution of system (1.2.1¢), we have
4 Xo(t) = d; Ao(t) - Xo(t) for t € [a,b] (j =1,2).

From this, by (1.2.14) (m = 0), we find that
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det (Xo(t—) . Xo(IH'))

= [det(Xo(t Hdet (I, + (—1)7 d; Ag(t)) #0 for t € [a,b] (j=1,2). (1.2.75)

Let us show that (1.2.73) is valid. Assume the contrary. Then it can be easily shown that there
exists a point ¢y € [a, b] such that

det (Xo(to—) - Xo(to+)) = 0.

But this equality contradicts (1.2.75). Thus inequality (1.2.73) is proved.
The proof of inequality (1.2.74) is analogous.
In view of (1.2.72) and (1.2.73), there exists a positive number r such that

inf {| det(X,,(t))] : t € [a,b]} >7r >0
for any sufficiently large m. From this and (1.2.72), we obtain (1.2.15). O

Lemma 1.2.6. Let the sequences of the matriz-functions B,, € BV ([a,b];R"*™) (m = 0,1,...) be
such that conditions

det (I, + (=1)7 d;Bo(t)) #0 for t € [a,b] (j=1,2) (1.2.76)
and
Jim_sup {[1d; But) = d;Bo(t)]|: t e fab]} =0 (= 1,2) (1277)
hold. Then there exists a positive number ro such that
det (I, + (=1)7 d; By (t)) #0 for t € [a,b] (j =1,2) (1.2.78)
and
| (I, 17 d; Bo(6)) || 4 ||(In + (=1 ;B (1)) || <70 for t € [a,b] (j=1,2)  (1.2.79)

for every sufficiently large m.

b
Proof. Since \/ By < +o00, the series Y ||d;Bo(t)|| (j = 1,2) converge. Thus for any j € {1,2} the

t€la,b]
inequality
1
Id;Bo(t)] > 5
may hold only for some finite number of points ¢;1,...,t;, in I. Therefore,
1
||dJBQ(t)|| < 5 for t € [a, b], t # tji (Z =1,.. .,k’j). (1280)

First, let us consider the case j = 2.
It follows from (1.2.76), (1.2.77) and (1.2.80) that

det (I, + doBp (t2;)) #0 (i=1,...,k2)

and 1
||d2Bm(t)|| < 5 for t € [a,b}, t ;é to; (Z = 1, .. .,kQ)

for every sufficiently large m. The latter inequalities imply that the matrices I,,+ds B, (t) are invertible
for t € [a,b], t # t2; (i = 1,...,k2), too. From this, it is evident that condition (1.2.78) is fulfilled
and there exists a positive number ro for which estimates (1.2.79) hold. Analogously we prove this
estimate for j = 1. O
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1.2.3 Proofs of the results

Proof of Theorem 1.2.3. In view of (1.2.17), €%, : BV ([a,b];R™) — R™ is a linear bounded vector-
functional for every sufficiently large m. Moreover, it is not difficult to see that by the mapping

r—y=Hy,x+hn,

is a one-to-one correspondence between solutions of problem (1.2.1,,),(1.2.2,,) and solutions y of
problem (1.2.1%),(1.2.2% ), where ¢, = ¢, + €5, (hy,). In fact, according to Lemma 1.2.2, it suffices
to show that equality (1.2.2,,) implies equality (1.2.2%). This is obvious by the definition of the
functional £;,.

Let us show that

det (I, + (—=1)7 d; A%, (t)) # 0 for t € [a,b] (1.2.5%)

for any sufficiently large m.
By (1.2.22),
lim dyAL (1) = A (=1,2)
uniformly on [a,b]. Therefore, by virtue of Lemma 1.2.6, there exists a positive number ry such that
condition (1.2.5%,) holds and

[[Ln + (—1)7 d; A%, (5)] || < o for ¢ € [a,b] (j =1,2) (1.2.81)

for any sufficiently large m (i.e., without loss generality, we can assume that for every natural m).

In view of (1.2.16) and (1.2.5},), there exist the fundamental matrices Yy and Yy, (Yo(a) = Yy, (a) =
I,,) of systems

dy = dAg(t) -y
and
dy =dA;,(t)-y (m=1,2,...).

Moreover, Yy ', Yot € BV([a,b; R™*™) (m = 1,2,...).

Let us prove

lin+1 Y. (t) = Yo(t) uniformly on [a,b]. (1.2.82)
m——+00
We set
Zm(t) = Y (t) = Yo(¢t) for t € [a,b] (m=1,2,...)
and

B (t) = Ay, (t—) for t € [a,b] (m=1,2,...).
Due (0.0.6), we have

/d(Bm(T)—A:n(T))-Zm(T) = —di A% () - Zn(t) for t€[a,b] (m=1,2,...).

Consequently,

t

Zn(t) = (1, = o) [ o) - 20y v + / B (1) Z(r)}

a

for t € [a,b] (m=1,2,...).

From this and (1.2.81), we get

1Zn(0)] < 7o (em+ [avEol ||Zm<r>||) for tefab] (m=12...).
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where

Em_Sup{H/td(A:n(T)—A*(T))'Y(T) tte [a,b]} (m=1,2,...).

Hence, according to the Gronwall inequality ([73, Theorem 1.4.30]),

b b
1 Zm ()] < roem exp (ro \/Bm) < roem €xp (ro \/Afn) for t € [a,b] (m=1,2,...).

By (1.2.21), (1.2.22) and Lemma 1.2.4, this inequality implies (1.2.82).
As we have shown in Subsection 1.1.3, problem (1.2.1%)), (1.2.2%,) has the unique solution if and
only if
det(€y,(Ymm)) #0 (1.2.83)

for every natural m.
Since problem (1.2.1*), (1.2.2*) has the unique solution zj, we have

det(£*(Yy)) # 0. (1.2.84)
Besides, by (1.2.18), (1.2.19) and (1.2.82),
lim (V) = €5(Y0). (1.2.85)

m—»+o00

Therefore, in view of (1.2.84), there exists a natural number mg such that condition (1.2.83) is fulfilled
for every m > mg. Thus problem (1.2.1})), (1.2.2¥) has the unique solution y,, for m > mg and

Y (£) = Yo () [eon (Vi) ] (o — Lon(Fon (£1))) + Fon(£5)(t) for ¢ € [a, b], (1.2.86)

where
t

Fn(f3)(#8) = fn(t) = fr(a) = Yin (1) / dY, (1) - (f(7) = f(a)).

According to Lemma 1.2.5, we have

HIE Y, 1(t) = Yy '(t) uniformly on [a,b] (1.2.87)
m——+00
and

p= sup{\|Y7;1(t)H F V@) : t€[ab], m> mo} < foo. (1.2.88)

The equality
Yot =Y, (s) = Yﬁ(S)/dAZ@(T) V(1) Y (1) (t,s € [a,0])

implies

t
1V, 1(t) = Y, 2 (s)l §p3\/A:n for a <s<t<b (m>my).

This inequality, together with (1.2.21) and (1.2.88), yields

b
lim sup \/ Y, ! < 4oo.
a

m——+oo

By this, (1.2.23) and (1.2.87), it follows from Lemma 1.2.4 that
¢ ¢

lim dY, 1 (1) - (fr(1) — fr(a)) = /dY_l(T) -(f5(r) = f5(a)) uniformly on [a,b]. (1.2.89)

m——+00
a a
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Using (1.2.18)—(1.2.20), (1.2.23), (1.2.82)—(1.2.85) and (1.2.89), from (1.2.86) we get

lim  y,,(¢) = 2(¢) uniformly on [a,b], (1.2.90)

m——+oo

where

2t) = YO [6Y)] ™ (co — LF(f3))) + F(f3)(1),

t

FUR® = £50) - fi@) = Y () [ Y1) (F5(0) - (@),

a

Tt is easy to verify that the vector-function z is a solution of problem (1.2.1*),(1.2.2*). Therefore,
x5(t) = 2(t) for t € [a,b].
This and (1.2.90) allow us to conclude that condition (1.2.24) holds uniformly on [a, b]. O

Proof of Corollary 1.2.1. Verify the conditions of Theorem 1.2.3. Due to (1.2.10) and (1.2.11), con-
ditions (1.2.17) and
lim [|H,,' = Hy oo =0 (1.2.91)

m——+oo

hold.
Put
him(t) = —Hp (t)om(t) for t € [a,b] (m=1,2,...).

Then by (1.2.6), (1.2.7), (1.2.25) and (1.2.91), conditions (1.2.18)—(1.2.20), where ¢ = ¢¢ and £§(y) =
to(Hy'y), are satisfied.

Applying Lemma 1.2.3, from (1.2.9), (1.2.11), (1.2.12) and (1.2.91) we find that (1.2.21) holds and
(1.2.22) is fulfilled uniformly on [a, b], where

On the other hand,
¢
o (t) = B(Hpy frn — ©m)(t) + /dB(Hm,Am)(T) “m(T) for t €la,b] (m=1,2,...).

Consequently, (1.2.26) implies that the condition (1.2.23), where

fo(t) = B(Ho, fo)(1),

is fulfilled uniformly on [a, b].
Taking into account Lemma 1.2.2 and the equalities

6o (Ho o) = Lo(z0) = co,
it is not difficult to see that problem (1.2.1*),(1.2.2*) has a unique solution
x5(t) = Ho(t) zo(t) for t € [a,b].
Moreover, it can be easily shown that inequality (1.2.10) is equivalent to the condition
det (Ho(t+) - Ho(t—)) # 0 for t € [a, b].

Thus, by virtue of (1.2.5) and (1.2.64), condition (1.2.16) is fulfilled.
According to Theorem 1.2.3, condition (1.2.24) holds uniformly on [a,b]. Hence it follows from
(1.2.24) and (1.2.91) that condition (1.2.27) is fulfilled uniformly on [a, b]. O
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Proof of Theorem 1.2.1. The sufficiency follows from Corollary 1.2.1 if we assume @,,(t) =0 (m =
1,2,...) in it.

Let us show the necessity. Let ¢,, € R™ (m = 0,1,...) be an arbitrary sequence of constant
vectors satisfying (1.2.4) and let e; = (6;;)7—;, where §;; =1 and 6;; =0if i #j (i,j =1,...,n) (the
Kroneker symbol).

In view of (1.2.8), without loss of generality, we may assume that problem (1.2.1,,), (1.2.2,,) has
a unique solution z.,, for every natural m.

For any m € {0,1,...} and j € {1,...,n}, let us denote

2m;j () = T (t) — m; (1),
where z,,; is a unique solution of system (1.2.1,,) satisfying the condition
() = cm — €.

Moreover, let X, (t) be a matrix-function with columns z,,1(t), ..., Zmn(t) (m =0,1,...).
It can be easily shown that Xy and X, (m = 1,2,...) satisfy, respectively, the homogeneous
systems (1.2.1p) and (1.2.1,,,0) (m =1,2,...) and

Uzmj) =e€; (m=0,1,...) (1.2.92)

for every j € {1,...,n}.
If we assume

for some m € N and a; €ER (j=1,...,n), then, using (1.2.92), we get

n
E Oéj@j =0
j=1

and, therefore, oy = -+ = a,, = 0, i.e., Xp and X,, (m = 1,2,...) are the fundamental matrices,
respectively, of the homogeneous systems (1.2.1p) and (1.2.1,,0) (m =1,2,...).
Owing to (1.2.8), we conclude that

lim 2,(t) =xo(t) and lim x,;(t) = zo;(t) (j=1,...,n)

m——+o0 m——+o00o

uniformly on [a, b], where x(; is a unique solution of system (1.2.1) satisfying the condition ¢y(x) = co—
e;j. Therefore, condition (1.2.72) holds uniformly on [a,b]. Without loss of generality, we assume that

Xm(a)=1, (m=0,1,...).
Now, according to Lemma 1.2.5, we find that condition (1.2.11) holds uniformly on [a, b], where

Ho(t) = X21(t) (m=0,1,...).

m

Let us verify that conditions (1.2.9) and (1.2.10) hold, and conditions (1.2.12), (1.2.13) are fulfilled
uniformly on [a, b] for the above-defined matrix-functions H,, (m =0,1,...).

Conditions (1.2.9) and (1.2.10) coincide with conditions (1.2.72) and (1.2.73), respectively.

According to Proposition 1.1.2 (see equality (1.1.13)), we have

X ) =1, - B(X,)},An)(t) for tel (m=0,1,...). (1.2.93)

m

Therefore,
H,,(t)+ B(H,,, Ay)(t) =1, for t €[a,b] (m=0,1,...). (1.2.94)

Thus condition (1.2.9) is evident.
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On the other hand, by (1.2.94) and the equalities H,,(a) = I, (m = 0,1,...), according to
Lemma 1.2.1 and the definition of the solutions of system (1.2.1,,), we have

B(H,p, fn)(t) = B(Hm,xm — /dAk(s) ~xm(s)> (t)
= B(Hy ) (1) — B(Hm, / A () xm<s>) (t) = B(Ho ) (1) — / AB(Hos A)(5) - 2 (5)

o (D)2 () — 2 (@) — / AHy (5) - o (s) — / (L, — Hon(s)) - on(5)

= H,,(t)zm(t) — zm(a) for t € [a,b] (m=0,1,...).
Hence
B(Hm>fm)<t) - (HvaO)( )
= Hp,(H)zm(t) — Ho(t)zo(t) — (xm(a) — zo(a)) for ¢ € [a,b] (m=0,1,...). (1.2.95)
By this, (1.2.11) and (1.2.94), conditions (1.2.12) and (1.2.13) hold uniformly on [a, b]. O

Proof of Theorem 1.2.2. As it follows from the proof of Theorem 1.2.1, we may assume that H,,(t) =
X, 4(t) (m=0,1,...). In this case, Theorem 1.2.1 has the form of Theorem 1.2.2. We only note that
in view of (1.2.15) and (1.2.93), condition (1.2.12) holds uniformly on [a, b]. O

Proof of Theorem 1.2.4. The theorem is a particular case of the sufficiency part of Theorem 1.2.1,
where H,,,(t) =1, (m=0,1,...). O

Proof of Corollary 1.2.2. By (1.2.32), (1.2.33) and (1.2.34) (or (1.2.35)), we have

lim Y (diHp(s) - diAm(s) — diHo(s) - d1Ag(s)) = Onsen,

m—r—+00
a<s<t<b
E)IE Z (lem(S) : dlfm(s) - d1H0(S) . dlfo(s)) =0,,
e a<s<t<b
L <Z<b (doHp(s) - doApn(s) — d2Ho(s) - d2Ao(5)) = Onsxn,
a<s<t<

lim Z (doHy(s) - dafin(s) — daHo(s) - dafo(s)) = 0y,
m—s Ooa§5<t§b

uniformly on [a,b]. From this, the integration-by-parts formula, (1.2.30) and (1.2.31), we find that
conditions (1.2.12) and (1.2.13) are fulfilled uniformly on [a,b]. Condition (1.2.13) coincides with
(1.2.26) for p,,(t) =0 (m=1,2,...).

Therefore, the corollary follows from Corollary 1.2.1. O

Proof of Corollary 1.2.3. Using (1.2.11), (1.2.28) and (1.2.36), we conclude that
A (1) = Open (= 1,2).
Hence, in view of (1.2.5), we have
det (I, + (—1)7 d; A§(t)) # 0 for t € [a,b].
On the other hand, from (1.2.11), (1.2.28), (1.2.29), (1.2.36) and (1.2.37) we find that the conditions
lim B(Hyn Au)(6) = By AD(t) and T B(Hu, f)(t) = B, £)(0)

m——+00 m——+00

hold uniformly on [a, b]. Thus, Corollary 1.2.3 is a direct consequence of the sufficiency part of Theo-
rem 1.2.1. O
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Proof of Corollary 1.2.4. By virtue of (1.2.39), we have

lim Cpj(t) =I,, lim Hy(t)=1I, (j=1,....,u—1)

m——+oo m——+oo

uniformly on [a, b], where
Cong (8) = I = (A (t) — Auns@)) + (By(®) — By(@)) (G =1Lvosp—15 m=1,2,...).

Thus, without loss of generality, we can assume that the matrix-functions H,,; (j =1,...,4—1) and
Crj (j=1,...,u— 1) are nonsingular for every natural m. Using now Lemma 1.2.1, we find that

B(Crnjs B(Hum j—1, Am)) (t)
B(Crnjy B(Hu j—1, fn)) (t)

B(Humj, Am)(t),
B(Hmj, fm)(?)

and
I(ij7I(Hmj_1,Am))(t) EI(HmJ7Am)(t) (] = 1, ey U — 1, m = 1,2,. . )

In addition, by conditions (1.2.38)—(1.2.41), according to Lemma 1.2.4 and the definition of the
operator Z, we find that conditions (1.2.11)—(1.2.13) hold uniformly on [a, b], where Hy(t) = I,, and
H,(t) = Hppu-1(t) (m=1,2,...). The corollary follows from Theorem 1.2.1. O

Proof of Corollary 1.2.5. Let us show the sufficiency. Let H,,(t) = Z1(t) (m = 0,1,...) in Theo-

m
rem 1.2.1. In view of (1.2.44), there exists a positive number r such that

1Z2E @) <r for t € [a,b] (m=0,1,...).

Using this estimate, by (1.1.13), the definition of the operator B and the integration-by-parts formula,
we have

|12 (8) + B(Z,' Am) (1) = Z3,'(s) = B(Zt A) (s
= |B(Z"s A = B)(t) = B(Zp"s A — Bi) (5) |

-| [z o ainm - B - S izt aanm - B

s<t<t

+ > daZ, M 1) - da(A(T) — Bm(T))H

s<7t<t

<r\/(Am = Bu) +2r Y [ldi(An(r) = Bu(D))l| +2r Y |ld2(A(r) = Bu(7))]
§5r\t/(Amem) for s<t (k=m,1,...).

S

Consequently,
b b
\/(Hm + B(HmyAm)) <5r \/(Am - Bm) (m =0,1,.. )

and, due to (1.2.42), estimate (1.2.9) holds. Conditions (1.2.12) and (1.2.13) coincide with (1.2.45)
and (1.2.46), respectively. Hence the sufficiency follows from Theorem 1.2.1.

Let us show the necessity. Let By, (t) = A (t) (m =0,1,...). Then Z,,(t) = X,n(t) (m =0,1,...),
where Xy and X,,, (m = 1,2,...) are the fundamental matrices of systems (1.1.1p) and (1.1.1,,0),
respectively. Analogously, just as in the proof of Theorem 1.2.1, conditions (1.2.44) and (1.2.95) are
valid, where H,,(t) = Z,1(t) (m = 0,1,...). In addition, condition (1.2.45) coincides with (1.2.12),

m

and condition (1.2.46) follows from (1.2.95). O
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Proof of Corollary 1.2.6. Let us prove that condition (1.2.44) holds uniformly on [a,b], where Z,,

(Zm(a) = I,) is the fundamental matrix of system (1.2.47) for every m € N. In view of (1.2.54), we
have
Zon(t) = Zine(t) Zom1 (1) Zina(t) for t € [a,b] (m=0,1,...), (1.2.96)

where

Zme(t) = exp (SC(B)(t) - SC(B)(a)), Zm1(t) = H (In — d1B(7)),

Zms(t) = [] (Tn+deB(r)) (m=0,1,...).

It is evident that Z,,9, Z;»1 and Z,,2 are the fundamental matrices of systems
dx = dS.(Bm)(t) -z, dx=dS1(By)(t) -z and dx = dSy(By,)(t) - x,

respectively (m =0,1,...).
Applying Theorem 1.2.4 to these system for the case ¢, (z) = z(a) (the Cauchy problem) (m =
0,1...), we conclude that conditions

lim ch(t) = Zoc(t), lim Zml (t) = Z()l, lim ng(t) = Zog(t)
—

m——+oo m——+o0 m——+oo

hold uniformly on [a,b]. From this and Lemma 1.2.5, we get that condition (1.2.44) holds uniformly
on [a,b].

Let us show that other conditions of Corollary 1.2.4 hold.

We verify condition (1.2.45). Using the integration-by-parts formula, we find that

B(Z5h, An)(t) — B(Zik, Aw)(s) = / 257} (r) dAm(7)

- Z A Z N (7) - dy A (T) + Z doZ 1 (7) - doAp(T) for a<s<t<b (m=0,1,...).

s<r<t s<r<t
In addition, by equalities (1.1.14), we have

d;Z;N(t) = —Z; () di B (t) - (In + (=1Y d; B (1)) ™ (j = 1,2 m=0,1,...).
Consequently, due to (1.1.16), we get

t
B(ZY An)(t) — B(Z,H, Ay)(s) = /Z;Ll(T) dA(Bpm, Ap)(t) (m=0,1,...)
for a < s <t <b. In the same way, we establish the last equalities for the case a <t < s < b.
Analogously, we check the equalities
t
B(Z f) ) = B(ZY, fn)(5) = /Z;ll(T) dA(Bp, fm)(1) for s,t €la,b] (m=0,1,...).

Therefore, equalities (1.2.45) and (1.2.46) coincide with equalities (1.2.52) and (1.2.53), respec-
tively. The corollary follows from Corollary 1.2.5. O

Proof of Corollary 1.2.8. The corollary follows from Corollary 1.2.6 if we assume that B,,(t)
Se(An)(#) (m =0,1,...) in it. In addition, we note that condition (1.2.48) is of the form (1.2.55
condition (1.2.50) is equivalent to conditions (1.2.56) and (1.2.57), and by (1.2.54), conditions (1.2.5
and (1.2.53) coincide with (1.2.58) and (1.2.59), respectively.

o&=

Proof of Corollary 1.2.9. The corollary follows from Corollary 1.2.6 if we assume that B,,(t)
diag(A.,(t)) (m=0,1,...) in it.

o



Chapter 2

Multi-point boundary value
problems for systems of generalized
ordinary differential equations

2.1 General multi-point boundary value problem

In this chapter, we consider a linear system of generalized ordinary differential equations
dx = dA(t) - x + df (t) for t € [a,b]. (2.1.1)
Below, unless otherwise stated, we assume that
A= (ai)er € BV([a, BiR™™), f = (fu)i, € BV([a,b;R"),

We investigate the question on the existence of solutions of system (2.1.1) under the following
general multi-point boundary value condition

> Lja(ty) = co, (2.1.2)

where t; € [a,b] (j = 1,...,v), L; € R"™*™ (j = 1,...,v) are constant matrixes, and v is a fixed
natural number.
In the section, we realize the results given in Subsections 1.1.1 and 1.1.2 to problem (2.1.1), (2.1.2).
Along with problem (2.1.1), (2.1.2), we consider the corresponding homogeneous problem

dx = dA(t) -z, (2.1.1p)
i ij(tj) =0. (2.1.20)

Below, we use the definition of the operators given in Subsection 1.1.2.

Theorem 2.1.1. The boundary value problem (2.1.1),(2.1.2) is uniquely solvable if and only if the
corresponding homogeneous problem (2.1.1p), (2.1.2¢) has only the trivial solution, i.e., if and only if

det (iLjY(tj)) 40, (2.1.3)

where Y is a fundamental matriz of system (2.1.1g). If the latter condition holds, then the solution x
of problem (2.1.1),(2.1.2) admits the representation

b

(1) :xo(t)+/dsg(t,s)~f(s) for t € [a,b],

a

54
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where xg s a solution of problem (2.1.1y),(2.1.2), and G is the Green matriz of problem (2.1.1p),
(2.1.29).

In condition (2.1.2), without loss generality, we can assume that a < t; <ty < --- <t, <b. This
condition is a particular case of condition (1.1.4), where the matrix-function £ is defined as

L(t)=— XV:X]. (t)L; for t € a,b],

where y; is the characteristic function of the interval [a, ;[ (j = 1,...,v).
Tt is evident that £(b) = O, xn. Moreover, it is not difficult to verify that

t v

/dE(T) - X(m) = Z(l —x,(t)L; X(t;) for X € BV([a,b];R"*") (t € [a,]]).

a J=1

Hence, in view of (1.1.21), the Green matrix of problem (2.1.1p), (2.1.2¢) has the form

v

=Y (¢) Z(l —x,(8)Z;Y " (s) for a<s<t<b,
j=1
Gg(t,s) = - 2.14
(t:5) Y(t) ij (8)Z;Y 1(s) for a <t <s <, ( )
j=1
Onxn for a <t=s<b,

where

Z; = (zy:LiY(ti))_leY(tj) G=1,...,0).

Proposition 1.1.3 has the following form for the case under consideration.

Proposition 2.1.1. Let the matriz-function A € BV ([a, b]; R™*™) be such that condition (1.1.8) hold.
Then the boundary value problem (2.1.1),(2.1.2) is solvable if and only if the condition

(e - iLjF(tj))Ty =0 (2.1.5)
j=1

holds for every v € R™ such that

-
(ZLjY(tj)> ¥ = Op,
j=1

where
t

F(t) = Y(t)/Y_l(T) dA(A, f)(1).

a

So, if condition (2.1.3) holds, then only the vector v = 0,, satisfies the homogeneous system
appearing in Proposition 2.1.1 and, therefore, condition (2.1.5) holds evidently. If condition (2.1.3)
is violated, then problem (2.1.1),(2.1.2) is solvable only for cg, that satisfies the conditions of the
proposition.

Remark 2.1.1. Let the matrix-function A satisfy the Lappo—Danilevskii condition at the point a.
Then problem (2.1.1), (2.1.2) is uniquely solvable if and only if

det (ZLJ eXp(Sc(A)(t]‘)) H (In + dQA(T)) H (In _ dlA(T))1> £ 0.

a<t<t; a<t<t;
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Theorem 2.1.2. The boundary value problem (2.1.1), (2.1.2) is uniquely solvable if and only if there
exist natural numbers k and m such that the matriz

k=1 v
My=3 > Li[ALt;)
i=0 j=1
is nonsingular and the inequality
r(Mpm) <1 (2.1.6)
holds, where
m—1 v
My = O+ (D0 1ALl ) D 1M Ly V(A) (),
i=0 j=1

and the operators [A]; (i =0,1,...) and V;(A) (i =0,1,...) are defined, respectively, by (1.1.35;) and
(1.1.37;) for somel € {1,2}, and c=b+(a—-0b)(l - 1).

Theorem 2.1.2;. Let there exist natural numbers k and m such that the matriz
=3 (S 1)
=0

is monsingular and inequality (2.1.6) holds, where
m—1 v
M = (V(AD(0) + (L + 3 A0l ) 32 1M L (VAN (1),
i=0 j=1

the operators (A); (i = 0,1...) and (V(A)); (i = 0,1,...) are defined by (1.1.36;) and (1.1.37)),
respectively for somel € {1,2}, and ¢ = b+ (a — b)(I — 1). Then problem (2.1.1),(2.1.2) is uniquely
solvable.

The following corollary is a special case of Theorem 2.1.21, where k =1 and m = 1.

Corollary 2.1.1. Let

det (;LJ») £0 (2.1.7)
and ,

r(LoV(4)) <1,
where

v

LO:In_F‘( Lj>7

Jj=1

Then problem (2.1.1),(2.1.2) is uniquely solvable.

For the system
dx(t) = e dA(t) - z(t) + df (t) (2.1.8)
with small parameter ¢, from Theorem 2.1.2 it follows

Corollary 2.1.2. Let either condition (2.1.7) hold, or there exist a natural number k such that the

conditions
ZL — O, det(ZL ) 0 (=0, .. k-1)
and

det (iLj(A)k(tj)) £0

hold. Then there exists g > 0 such that problem (2.1.8), (2.1.2) is uniquely solvable for everye €]0,g¢] .

The results of this subsection are the particular cases of those given above in the previous section.
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2.2 The Cauchy—Nicoletti type multi-point
boundary value problems
In this section, we consider a linear system of generalized ordinary differential equations
dx = dA(t) - x 4+ df (t) for ¢ € [a,b]. (2.2.1)
Below we assume that
A= (ag)er € BV([a, (i R™™), f = (fu)i_y € BV([a, b R").

We investigate the question on the existence of solutions of system (2.2.1) under the following
boundary value conditions:

(i) the Cauchy—Nicoletti type problem
() =i(x1,...,xn) +coi (i=1,...,n), (2.2.2)
where ¢; : BV ([a,b;R") = R (i = 1,...,n) are linear bounded functional.
(if) the Cauchy-Nicoletti problem
xi(t;) =cop (1=1,...,m), (2.2.3)
where ¢p; € R, and z; is the i-th component of the vector-function x for every i € {1,...,n}.

Along with problems (2.2.1), (2.2.2) and (2.2.1), (2.2.3), we consider the corresponding homoge-
neous system

de = dA(t) - x (2.2.1p)
under the homogeneous boundary value conditions
xi(t;) = li(x1,...,xn) (i=1,...,n), (2.2.29)
and
zi(t;)) =0 (i=1,...,n). (2.2.30)

Before we proceed to formulate the results, we introduce the following

Definition 2.2.1. Let t1,...,t, € [a,b]. We say that a pair (C,{y) consisting of a matrix-function
C = (ca)} 1= € BV([a,];R"*") and a bounded vector-functional £y = (£o;)7-; : BVoo([a, b; RY"™) —
R” belongs to the set U(ty,...,t,) if:

(i) the matrix-function C' is quasi-nondecreasing, i.e., the functions ¢;; (¢ # l; 4,0 = 1,...,n) are
nondecreasing on [a, b];

(ii) ¢y is a positive homogeneous, bounded and nondecreasing vector-functional;

(iii) the system of generalized differential inequalities

sgn(t — t;)da;(t) <Zml Ydeg(t) for t€[a,b], t#t; (i=1,...,n),

(2.2.4)
(—1) d;z; <le Ydjea(t;) (j=1,24i=1,...,n)
has no nontrivial, nonnegative solution satisfying the condition
xi(ti) S&)i(l‘l,...,ﬁcn) (Z: 1,...,71). (225)

The set U(ty, . .., t,) was introduced by I. Kiguradze for ordinary differential equations (see [46,47]).
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2.2.1 Formulation of the results
Theorem 2.2.1. Let the conditions
(sc(aii)(t)—sc(aii)(s)) sgn(t—s) <sc(ci) (t) —se(cii)(s) for (t—s)(s—t;)>0 (i=1,...,n), (2.2.6)
’sc(ail)(t) - sc(ail)(s)’ < selea)(t) — se(ei)(s) for s<t (i#1; 4,l=1,...,n), (2.2.7)
|dja“»(t)| S |djcii(t)|, \djail(t)| S djcil(t) (j = 172; ) 7é l; i,l = 1, N ,n) (228)
hold on [a,b], and
[li(x1, ... zn)] < fol»(|x1|, ol |acn|) for z; € BV([a,b];R) (i,l=1,...,n), (2.2.9)

where a matriz-function C' = (cqa)i—; € BV([a,b; R"*") and a vector-functional ly = (lo;)j-, are
such that
(Cyly) € Uty ..., tn). (2.2.10)

Then problem (2.2.1),(2.2.2) has one and only one solution.

Theorem 2.2.2. Let the conditions

(se(ais)(t)—sc(ai)(s)) sgn(t—s) < /hii(r) dsc(a;)(T) for (t—s)(s—t;)>0 (i=1,...,n), (2.2.11)

|sc(au)(t) — sclai)(s)| < /hil(r) dsc(au)(T) for s<t (i#1 4,l=1,...,n) (2.2.12)

and

dja; ()] < |hii(D)|djeu(t), |djau(t)] < ha(t)djeu(t) (j=1,23i#1dl=1,...,n)  (2.2.13)

hold on [a,b], where oy (I = 1,...,n) are the functions nondecreasing on [a,b] and having not more
than a finite number of discontinuity points, hy; € L*([a,b],R;«;), hy € L*([a,b],Ry;q) (i # I;
l=1,...,n), 1 <pu<+oc0. Let, moreover,

n

2
[i(x1, ... 2n)] < Z Imik |7kl ,50 (ar) for zx € BV([a,b;R) (i,k=1,...,n) (2.2.14)
m=0k

=1

and
r(H) <1, (2.2.15)

where by € Ry (m=0,1,2;4,k=1,...,n),
is defined by

+% =1, and the 3nx3n-matriz H = (H ;41 m+1)?)m:0

==

Hittme1 = (Gijlmin + )\kmij||hik:||,u,Sm(ozi))Zk:1 (j,m=0,1,2),
l . .
€ij = (S](al)(b) - Sj(ai)(a)) v (] = 07 ]-7 23 ;L= ]-7 cee 7”);
4NT 5 . B
v = L (G2) G0 500 (1) = se(n) 1),

&ro&io if se(a)(t) Z sc(ag)(t) (i,k=1,...,n);
Nemij = &em&ij if m*+42>0, mj=0 (jym=0,1,2; i,k=1,...,n),

1

); (Jym=1,2; i,k =1,...,n).

™

1 .
Ny = ( Voo ™

Then problem (2.2.1),(2.2.2) has one and only one solution.
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Remark 2.2.1. The 3nx 3n-matrix ‘H appearing in Theorem 2.2.2 can be replaced by the n x n-matrix

(1w {

Corollary 2.2.1. Let conditions (2.2.11)—(2.2.13) hold on [a,b], where oy (I = 1,...,n) are the
functions nondecreasing on [a,b] and having not more than a finite number of discontinuity points,
hii € L*([a,b],R; ), hy € LF([a, b, Rysaq) (i # 14,0 =1,...,n), 1 <u < +oo. Let, moreover,

r(Ho) < 1, (2.2.16)

n

2
(&ijlmik + Nemij1Pik |l s, (@) = m=0,1, 2})
—0

J i,k=1

where Ho = (()\kmij||hik7||H,Sm(ai))2k:l)gn,ji0 is a 3n x 3n-matriz, and Ngmij, &G (J,m = 0,1,2;
i,k=1,...,n) and v are defined as in Theorem 2.2.2. Then problem (2.2.1), (2.2.3) has one and only
one solution.

Remark 2.2.2. The 3n x 3n-matrix Hy appearing in Corollary 2.2.1 can be replaced by the n x n-

matrix )
(max { Z)‘kmij||hik”u,5m(ak) :m=0,1, 2})

=0

By Remark 2.2.2, Corollary 2.2.1 has the following form for h;(t) = hy = const (i,l = 1,...,n)
and p = +o00.

n

ik=1

Corollary 2.2.2. Let the conditions
(se(aii)(t) — scl(aii)(s)) sgn(t — s) < hyg|sc(@)(t) — sc(a)(s)| for (t—s)(s—t;) >0
’sc(ail)(t) — sc(ail)(s)’ < hil(sc(a)(t) — sc(a)(s)) for s<t (i#1l;4,l=1,...,n)

and
|djas(t)| < higdja(t), |djaq(t)| < hgdja(t) (j=1,2;i# 1 4,0l=1,...,n)

hold on [a,b], where o is a function nondecreasing on [a,b] and having not more than a finite number
of discontinuity points, hy; € R, hy € Ry (i #1; 4,01 =1,...,n). Let, moreover,

por(H) <1, (2.2.17)

where

2
H= (ha)iers po=max{ Y An;: m=0,1,2},

don = 2 (5:(0)0) ~ sc()(@)),
Aoj = Ajo = (se(a)(b) — sc(a)(a))%(sj(a)(b) - sj(a)(a))% (j=1,2),
Amj = % (,uocml/amozj)% sin™! m (m,j=1,2).

Then problem (2.2.1),(2.2.3) has one and only one solution.

Remark 2.2.3. Condition (2.2.17) is optimal in the sense that it cannot be replaced by the nonstrict
inequality
por(H) < 1.

The corresponding example is constructed for ordinary differential equations in [47]. For the sake
of completeness, we present here this example.
Consider the problem

7 PN — (2.2.18)



60 Malkhaz Ashordia

z1(a) =0, x2(b) =0. (2.2.19)
In this case,
n = 2, tl =a, tQ = b, all(t) = agg(t) = O, alg(t) = t, agl(t) = 74(bi7a)2 t,
and conditions (1.2.31)—(1.2.34) are fulfilled for
72
hi1 =hoe =0, hia=1, hoy = — ty=t
11 22 , 12 , N2l A(b—a)?’ a(t)
Moreover,
2(b—a
Po = ( ) )
7
and
A = and Ay u
'T 20 —a) 2(b—a)
are the eigenvalues of the matrix
0 1
H = 2
4(b — a)?
Therefore,
por(H) = 1. (2.2.20)

Thus for problem (2.2.18), (2.2.19) all conditions of Corollary 2.2.2 are fulfilled except for condition
(2.2.17), instead of which equality (2.2.20) is fulfilled. On the other hand, the problem is not uniquely
solvable, since it has a nontrivial solution

m(t —a) o m(t —a)
2b—a)’ xo(t) = cos

21 (t) = sin

along with the trivial one.

Theorem 2.2.3. Let conditions (2.2.6)—(2.2.8),

L+ (=1 djei(t) >0 (j=1,2;i=1,...,n), (2.2.21)
[0i(z1, ..., zn)| < |wil |zi(7:)| for z € BV([a,b];R) (i,1=1,...,n) (2.2.22)
and
lwilvi(r) <1 (i=1,...,n) (2.2.23)
hold on [a,b], where the functions c¢;; (i = 1,...,n) are non-increasing on [a,b], u; € R, 7 € [a,b],

t; (1 =1,...,n); ANi(t) = va,(t, t;), the function ~,,(t,t;) is defined according to (1.1.9), and
( ) = (ci ) c”( i))sgu(t —t;) (i = 1,...,n). Let, moreover, the functions c¢;; € BV([a,b];R)
(i#1;4,l=1,...,n) be such that

r(M) <1, (2.2.24)

where M = (pi1)} 11,
pii =0, prir = pi(1 = () " fa(m) = fat)] + (fu(b) — fa(ts),
fu®) = \(selea) + D ldiea(m)|+ Y ldoca(r)| (i #£L i l=1,...,n).

a<t<t a<t<t
Then problem (2.2.1), (2.2.2) has one and only one solution.

Remark 2.2.4. In particular, the statement of Theorem 2.2.3 is true for the boundary value condition

.’E(ti) = uixi(n) + co;i (Z =1,... ,n). (2.2.25)
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Theorem 2.2.4. Let conditions (2.2.6)—(2.2.8), (2.2.22) and (2.2.23) hold on [a,b], where u; > 0,
Ti € [a,b], i #t; (1 =1,...,n), and let the functions ¢;; (i = 1,...,n) be such that the functions
Ai(t) = e, (8, t:) (i =1,...,n), defined according to (1.1.9), are monotone on the intervals [a,t;[ and
Jti,b]. Let, moreover, the functions c¢;; € BV([a,b];R) (i #1; i,1 =1,...,n) be nondecreasing on [a, b]
and condition (2.2.24) hold, where M = (i)},

ti

(i = max { \/(sz ,\b/ (cit }

a i

vi = (1= pidi(73) " illoos mi = SUP{\)\i () =1]: t €a,b]},

t
fu(t) = \/ se(cit)) Z |dicy(T)] + Z |daca(T)| (i £ i,l=1,...,n).

a<t<t a<t<t

pie =0, pir = Ca(1+ &) + v (14 [Ni(m) — ‘\/C”

Then problem (2.2.1),(2.2.25) has one and only one solution.

Below, we give a general theorem on the unsolvability of problem (2.2.1),(2.2.2) in the case where
condition (2.2.10) is violated.

Theorem 2.2.5. Let {y; : BVo([a,b];RY) — Ry (i = 1,...,n) be linear bounded functionals, the
matriz-function C = (ca)ji—; € BV([a,b];R"*™) be such that the functions c; (i # I; i,l =1,...,n)
are nondecreasing on [a,b] and problem (2.2.4),(2.2.5) has a nontrivial nonnegative solution x =
()P, i.e., condition (2.2.10) is violated. Let, moreover,

djcii(t) >0 for t€la,b] (j=1,2;i=1,...,n). (2.2.26)
Then there exist a matriz-function A = (au)i,—; € BV([a,b; R"*™), linear bounded functionals
l; : BVo([a,b;R™) — R (i = 1,...,n) and numbers co; € R (i = 1,...,n) such that conditions
(2.2.6)—(2.2.9) hold, but problem (2.2.1p), (2.2.2) is unsolvable. In addition, if the matriz-function
C = (Cil)?,l:1 1s such that
det (1,, + (1) diag(sgn(t — 1), ..., sgn(t — t,)) d;C(t)
x diag(eh...,sn)) £0 for telad] (j=1,2), (2.2.27)
where €; € [0,1] (i =1,...,n), then the matriz-function A = (ay)},_, satisfies condition (1.1.8).

Remark 2.2.5. Condition (2.2.27) holds, for example, if either

Z\d ca(t) <1 for tefab] (j=1,2,i=1,...,n), (2.2.28)
or ]
djcii(t) <1 for (=1)7(t—t;) <0 (j=1,2i=1,...,n) (2.2.29)
and
Z |djca(t)] < |1+ (=1)7 sgn(t — t;) djcii(t)| for t € [a,b] (j=1,2;i=1,...,n)
1=1, l1#i
( Z djci ()] < |1+ (=1)7 sgn(t — t;) djcii(t)| for t € [a,b] (j=1,2;i=1,...,n) > (2.2.30)
1=1, 14

2.2.2 Auxiliary propositions

We give here the following lemma dealing with the differential inequalities.
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Lemma 2.2.1. Let ty,...,t,, B = (bil)ﬁlzl € BV([a,b; R"*"™), ¢ = (¢;)", € BV([a,b;R"), C =
(ci)i1=1 € BV([a,bl;R"™ ™) be such that the functions cysgn(t —t;) (i # 1; 4,0 = 1,...,n) are
nondecreasing on [a,b] and the conditions

(5c(bi) () = sc(bis)(s)) sgu(t — ;) < se(cii)(t) — secii)(s) for (t—s)(s—1t;) >0 (2.2.31)
(i=1,...,n),
‘Sc(bil)(t) - Sc(bzl)(8)| < Sc(cil)(t) - sc(cil)(s) fO?” s <t (Z 7é Lal=1,... 7”) (2232)
and
|dibii ()] < |djcu(t)], |dsbu(t)] < djea(t) (j=1,2i#1; i,0=1,...,n) (2.2.33)

hold on [a,b]. Then every solution x = (x;)7, of the system
dx =dB(t) - x + dq(t) for t € [a,b) (2.2.34)
will be a solution of the system of generalized differential inequalities

sgn(t — ti) dla; ()] < Y fai(t)] dealt)

=1
+sgna;(t) dsc(q:)(t) + djgi(t) for t€lab] (i=1,...,n), (2.2.35)

(—1) dj|z4(t; \<Z|xl N djea(ts) +djgi(ts) G=1,2i=1,...,n),

where

Proof. Let i € {1,...,n} be fixed. Using (0.0.16) for [sgnz;(7)dz;(7) (s < t) and the definition of
the solution of system (2.2.34), it can be easily shown that

s<T<t

lzi(t)| — 2i(s)| = Z/xl(T) sgnzi(7) dse(ba) (1) + Y (Jws(7)| = |2i(7—)])
=17

t

+ Z (Jzi(T+)| = |z (T)]) + /sgnxi(T) dsc(qi)(7) for ¢; <s<t<b (2.2.36)

s<T<t s

By (2.2.31) and (2.2.32), from the above equality we have

js()] — as(s)] < / ()] dse(esr) (7 / () dselea)) + 3 (Jai(o)] = fa(r—)))

l;ﬁz =1 s<t<t

+ Z (Jzi(T+)| = |zi(7)]) + /sgnxi(T) dsc(qi)(7) for t; <s<t<b (2.2.37)

s<T<t s
Moreover, it is evident that

t

/le( )|d80 Czl /|$1 |dczl

- Z |z (7)) dyea (T Z |z (7)| daciy(T) for t; <s<t<b (I=1,...,n). (2.2.38)

s<t<t s<t<t
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In addition, due to (2.2.31)—(2.2.33), it is not difficult to verify the inequalities

(1) = l2i(r=)] < | Yo ai(r) dibu(r) + diai(7)

=1

< Z\xl M dica ()| + |digs(r)| for t; <t <b (2.2.39)
and

2:(r0)] = (7)) < | > () dabia(r) + g (7

Z ) |daca (7)] + |dags (1) for t; <t <b. (2.2.40)

Inserting (2.2.38)—(2.2.40) into (2.2.37) and using (2.2.33), we get

t

124(8) \<Z / (1)) dein(t) + / sgn 24(7) dse(g:)(7) + g:(t) — 01 (5)

for t; <s<t<hb.

Similarly, we show

t

(s (8)] — [z (s Z / (0 deat) + [ sgns(r) dsela)(7) + 95(0) - ()

S

for a<s<t<t.

Therefore, the first estimate of (2.2.35) holds. As to the second estimate, it follows from the first
one. O

Lemma 2.2.2. Let t1,...,ty; by,q € BV([a,b;R) (i,1 = 1,...,n) be such that the functions
bisgn(t —t;) (i #1; i,1 = 1,...,n) are nondecreasing on [a,b]. Then every solution x = (x;)},
of the system

dx; (¢ le ) dbii(t) +dg;(t) for t€la,b] (i=1,...,n)

will be a solution of the system of generalized differential inequalities

segn(t —t;) d|z;(t)| < Z |z (t)] dby (t) + sgnx;(t) dsc(q;)(t) + dg;(t) for t € [a,b] (i=1,...,n),
=1

(=1)7d|a;(t;)] <Z|xl ) dbii(t;) +sgnai(t;) dse(q:)(t:) +dgi(t;) (j=1,2;i=1,...,n),

where the functions g; (i =1,...,n) are defined as in Lemma 2.2.1.
Proof. The lemma follows from Lemma 2.2.1 if we assume therein that c;(t) = b;(¢) (i,1 =1,...,n).
In this case, conditions (2.2.31)—(2.2.33) are fulfilled automatically. O

Lemma 2.2.3. Let g € BV([a,b]; R*) and let C € BV([a, b]; R***) be such that
L+ (=1)7 d;C(t) #0 for t € [a,b]. (2.2.41)
Let, moreover, £ € BV([a,b];R™) be a solution of the system

dx =dC(t) -z + dg(t). (2.2.42)
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Then
YL (0)E() - YL (s)e(s) = BV 0)(t) — BY "L, g)(s) for a<s<t<b, (2.2.43)
where Y € BV([a, b]; R"*™) is a fundamental matriz of the system
dx =dC(t) - x. (2.2.42)

Proof. By (2.2.41), the fundamental matrix of system (2.2.42¢) exists.
Let a < s <t <b. Due to (1.1.13),(2.2.42) and the integration-by-parts formula, we have

YHB8() = Y ()4(

t

:/ /g )dY ™ Z dY 7N r) - dig(r Z dzY ~H(7) - d2g(7)

- / Y1 (r)(r) / YI(r) dg(r) + / £(r) dy !
— Z 1Y ( )d1C(7) + drg(T Z daY ( )d20(7)+d29(7)>

+ Z diY o) -diC(o) — Z dyY (o) - dyC(0) for s <7 <t.

s<o<T s<o<T

By the latter equality,

/tdy_l(T) E(T) = —/ty—l(r) dC(r) - &(7)

+ Z d Y 7) - diC(1) - £(1) — Z doY (1) - doC(7) - £(7) for s < t.

s<t<t s<T<t

From this, using the integration-by-partes formulae, we conclude that

Y (0e(t) - YN (s)(s) = / y-!

= > Y N1) dig(r)+ Y daY (7)) dag(r) for a<s <t <D
s<t<t s<T<t
So, by definition of the operator B, equality (2.2.43) holds. O

We use the following lemma which is a particular case of Theorem 1.1.9 from [23]. For the
completeness, we give some modification of the proof of the lemma.

Lemma 2.2.4. Let tg € [a,b], C = (cir)}'y=; € BV([a,b]; R"*™) be such that the conditions

det (I, + (=1)7 d;C(t)) #0 for (=1)7(t—to) <0 (j =1,2), (2.2.44)
L+ (=1 djcii(t) > 0 for (=1)(t—to) >0 (j=1,2; i=1,...,n) (2.2.45)
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and
(I + (=1 d;C(1)) ™" > Opsen for (=1)7(t — 1) <0 (j = 1,2). (2.2.46)

hold on [a,b]. Let, moreover, for every j € {1,2}, the functions (—1)7T1cy (i #1; 4,0 =1,...,n) be
non-decreasing on the set J; = {t € [a,b] : (=1)7(t — to) < 0}. Then

U(t,s) >0 for t <s<ty or to <s<t, (2.2.47)
where U (U(s, s) = I,,) is the Cauchy matriz of system (2.2.42¢).

Proof. Let s € [a,b] (s # to) be fixed and j € {1,2} be such that s € J;. Let k € {1,...,n} be fixed
and let ug(t, s) = (ui(t, s))", be the k-th column of the matrix U(t, s).

Assume
y(t) = (yi(t))iz, for t € [a,b],

where y; () = v; H(t, ) uir(t,8) (i = 1,...,n), i(t, s) = 7i(t)7; ' (s), and ~; is a solution of the Cauchy
problem dy(t) = (t) dei;(t), v(s) = 1, here, in view of (1.1.9) and (2.2.45), v;(t) > 0 for ¢ € [a, ]
(i=1,...,n).

Since U(t,s) = (wir)j =, is the Cauchy matrix of system (2.2.42), we conclude that for every
i € {1,...,n}, the function w; is a solution of the equation

dx = deii(t) -« + dg,(t),

where

) = Z /ulk ) dea(r

I#i;1=1",
So, according to Lemma 2.2.3 and the integration-by-parts formula, we find that

yi(t) —yi(r) = B(v; ', 90)(t) — B(yvi *, g4) ()

t

Z/VZ (7,5) dgi(7 Z dyy; (7, 8) digi(r Z doy; (7, 8) dagi(7)

= TN s)uk(T, 8) dse(cia)(T)
#;_1 (T/’Y Ik l
+ Z v (=, s)uk (T, 8) dyca (T Z v (T4, s)ugk (T, 8) daci (T ))
-3 ( / A7 s () dselea)(r) + 3 4 s sy ) drea(r)

+ Z v (T4, )y ()l ) dgcﬂ(T)) for a<r<t<b (i=1,...,n).

r<r<t
Hence y = (y;)4 is a solution of the Cauchy problem
dy =dC*(t) -y, y(s) = e,

where e = (0ik )iy, C*(t) = (¢} ())F=y, ¢i3(t) = 0 and

i (rs)m(T,8)(7) dse(ca)(7)

o
=%
~—~
~
=
Il
D\“
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+ Z v =, 8)vi(T, 8) dica(r) + Z v (4 )T, 8) daca () (i # 1 i1 =1,...,n).

a<t<t a<lt<t
In view of the conditions of the lemma, the functions (—1)7*'¢ (i # ;4,1 = 1,...,n) are non-
decreasing on J; (j =1,2).
Let

As<t) = diag('yl <t7 S)’ ce ”Yn(tv S))
and
Q(t) = diag(c11(t), ..., cnn(t)) for t € [a,b].
Using (1.1.14), we have
I, + (1) d;C*(t) = I, + (=17 (AJ(t) + (=1)7 d; A (1)) (d;C(t) — d;Q(1))As(t)
= (A7) + (-1 40T ) ((Fn + (-1 Q)AL + (~1 (4,C(1) - d, Q) A1)
for t € a,b] (j=1,2)
and
I, + (=1)7 d;C*(t)
= (A7) + (1) diA; (1)) (In + (1) d;C(t)As(t) for t € [a,b] (j=1,2).
Hence, due to (2.2.44) and (2.2.45), we obtain
det (I, + (—1)7 d;C*(t)) #0 for t € [a,b]\ {to} (j=1,2)

and
(I + (=17 d;C*()) ™" > Opup for (=1)7(t — 1) <0 (j =1,2), (2.2.48)

since

As(t) > Opxp for t € a,b]. (2.2.49)
According to Theorem 1.1.8 from [23],

lim 2z, (t) = y(¢) uniformly on [a,b], (2.2.50)

m——+oo
where

Zm(s) =er (m=0,1,...),

20(t) = (In + (—=1)7 d;C*(£)) ey for (1) (t—s) <0 (j=1,2),

Zm(t) = (In + (—1) cle*(lf))_1 (e;€ + /dC*(T) “Zm—1(T)

S

H(—1)7 de’*(t)~zm_1(t)) for (—=1)7(t—s)<0 (j=1,2 m=12...). (2.251)
From (2.2.48), (2.2.50) and (2.2.51) we get

2m(t) > (I, + (=17 d;C* (1)) ex for (~1)1(t—s) <0 (j=1,2 m=0,1,...)

and
y(s) > e, y(t) > (I + (=1)7 d;C*(t)) " 'ey, for (=1)(t—s) <0 (j=1,2). (2.2.52)

On the other hand, equalities

y(t) = Ay (Hug(t,s) for te J; (j=1,2)
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and inequalities (2.2.52) imply that

wg(t, ) > My(8) (In 4 (=1)7 d;C* (1)) ey, for (—=1)7(t—s) <0, (=1)/(t—to) <0 (j = 1,2).

Since the latter inequalities are fulfilled for every k € {1,...,n}, we have
Ul(t,s) > As(t) (In + (=1)7 ale*(t))i1 for (—=1)7(t—s) <0 (j=1,2). (2.2.53)
By (2.2.48) and (2.2.49), condition (2.2.53) implies (2.2.47). O

Remark 2.2.6. In fact, we have proved estimate (2.2.53) which is stronger than (2.2.47). Note also
that the condition
J,C(0)] <1 for t € [ab] (j=1,2)

guarantees conditions (2.2.44), (2.2.45).

Lemma 2.2.5. Let tg € [a,b], co € R", g € BV([a,b];R™), and a matriz-function C = (cix)}'y—; €
BV([a, b]; R™"*™), where ¢, (i # k; i,k =1,...,n) are nondecreasing functions on [a,b], be such that
the conditions

det(I, — d;C(t)) # 0 for (=1)7(t —to) <0 (j =1,2), (2.2.54)
L+djcii(t) >0 for (1) (t—ty) >0 (j=1,2i=1,...,n) (2.2.55)

and
(I, — d;C(t)) ™" > Opxn for (=1 (t—1to) <0 (j =1,2). (2.2.56)

hold on [a,b]. Let, moreover, a vector-function x € BVi,c([a, to[; R™) N BV ee(Jto, b]; R™) be a solution
of the system of linear differential inequalities

sgn(t — to) de < dC(t) - x + dg(t) (2.2.57)
on the intervals [a,to[ and ]to,b] satisfying the condition
z(to) + (—1) djz(te) < co + d;C(to) - co + djiq(te) (5 =1,2). (2.2.58)
Then the estimate

z(t) < y(t) for t € fa,b]\ {to} (2.2.59)
holds, where y € BV([a,b]; R™) is a solution of the system

sgn(t —to) dy = dC(t) - y + dq(t) (2.2.60)
on the intervals [a,to[ and ]to,b] satisfying the conditions
(=1) dyy(to) = d;Cto) - y(to) + djalto) (j =1,2) (2:2.61)
and
y(to) = co. (2.2.62)

Proof. Assume to < b and consider the closed interval [tg,b]. Then problem (2.2.60)—(2.2.62) has the
form

dy(t) = dC(t) - y(t) + dq(t), y(to) = co-

Let Z (Z(ty) = I,) be a fundamental matrix of system (2.2.42y). Then, by the variation-of-
constants formula, we have

t

y(t) = q(t) —q(s) + Z(t){Z_l(s)y(s) — /dZ_l(T) . (q(T) — q(s))} for s, t € [to,b]. (2.2.63)

S



68 Malkhaz Ashordia

Put
t

g(t) = —w(t) + x(to) + /dC’(T) ~x(7) + q(t) — q(to) for t € [to,b)]. (2.2.64)
Evidently,
dx(t) = dC(t) - x(t) + d(q(t) — g(t)) for t € [to,b].

Let € be an arbitrary positive number. Then
z(t) = q(t) — q(to +€) — g(t) + g(to + €) + Z(t){Z_l(to +e)z(to +¢)

- / dZ7' (1) (q¢(r) — q(to + ) — g(1) + g(to + 5))} for t € [to+¢,b].

to+e

Hence, by (2.2.63), we get
z(t) =yt)+ Z(t)Z  (to + ) (x(to + &) —y(to +€)) + g=(t) for t € [to +¢,b], (2.2.65)

where
t

g:(t) = —g(t) + g(to +¢) + Z(t) / dZ7 (1) - (g(1) — g(to + €)).
to+e

Using the integration-by-parts formula, we have

t

ge(t) = — / U(t, ) dse(g)(7)
to+e

- > Ut,m—)dig(r) = Y U(t,74)dag(r) for t € [to+e,b], (2.2.66)

tote<t<t to+elr<t

where U(t,7) = Z(t)Z~1(7) is the Cauchy matrix of system (2.2.42¢).
On the other hand, conditions (2.2.54)—(2.2.56) guarantee conditions (2.2.44)—(2.2.46). Hence,
according to Lemma 2.2.4, estimate (2.2.47) holds, and by (2.2.66),

g:(t) <0 for t € [tg +¢,b],

since by (2.2.57) and (2.2.64) the function ¢ is nondecreasing on Jtg,b]. From this and (2.2.65), we
conclude

x(t) <y(t) + Ut to +e)(x(to +€) —y(to +¢)) for t € [to +¢€,0b].

Passing to the limit as ¢ — 0 in the latter inequality and taking into account (2.2.47) and (2.2.58),
we get

z(t) <y(t) for t €lto,b),

since, by (2.2.61) and (2.2.62),
y(to+) = co + d2C(to) - co + daq(to)-

Analogously, we can show the validity of inequality (2.2.59) for ¢ € [a, to] . O

Lemma 2.2.5 has the following form for n = 1.
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Lemma 2.2.6. Let tg € [a,b], a and ¢ € BV,([a, to[; R) N BVoe(Jto, b]; R) be such that
L —dja(t) #0 for (—1)7(t—ty) <0 (j=1,2),
1+ d;a(t) >0 for t €la,b]\ {to} (j=1,2).

Let, moreover, x € BV pc([a, to[; R) N BViee(Jto, b]; R) satisfy the linear generalized differential inequ-
ality
sgn(t —to) de < zda(t) + dq(t)

on the intervals [a, to| and to,b], and
z(to+) < y(to+) and x(to—) < y(to—),
where y € BVioe([a, to[; R) N BV oe(Jto, b]; R) is a solution of the general differential equality
sgn(t — to) dy = yda(t) + dq(t).

Then
x(t) < y(t) for t € [a,to[U]to,b].
The following lemma is analogous to the Wirtinger inequality (see [43,58]) for the discontinuity

case.

Lemma 2.2.7. Let a and 8 be nondecreasing functions on [a,b], and let o have not more than a
finite number of discontinuity points. Then the estimates

/b(/tv(T) dsc(a>(7'))2dsc(a)(t) < fyo/bUQ(t) dse(a)(t) (2.2.67)
and
/b(/v(r) dsm(a)(7)>2d8j(5)(t) < ij/bUQ(t) dsm(a)(t) (j,m = 1,2) (2.2.68)

hold for every v € BV([a,b];R) and ty € [a,b], where

s

2 ? 1 o .
Yo = <7r (sc(a)(b) - Sc(a)(a))> y  Ymj = 1 HamVamp; S ? m (]7m = 172)'

In addition, these estimates are unimprovable.

Proof. Obviously, it suffices to verify inequalities (2.2.67) and (2.2.68) for to = a and tg = b. Assume
to = b. Let us show (2.2.67). Without loss of generality, we may assume that

se(@)(t) < se(a)(b) for a <t <b.

Put

u(t) = /v(T) ds.(a)(1), aft)= % (sc(a)(t) - sc(a)(b)) for t € [a,b].
b

Let € be a small positive number. It is easily seen that

b—e
/ (u(t) ctg a(t) — Ao v(t)) ds.(a) (1)

b—e b—e

= / u?(t) dse(@)(t) + A0 / V2 (t) dse()(t) — /o u?(b —¢) ctga(b — ).

a a
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Consequently,

b—e
/uQ(t)dsc( <\/70/ 1) dse(0)(t) — /s u2(b — &) ctg @b — e).

a

Passing in the latter inequality to the limit as & — 0, we obtain (2.2.67).
Let us show (2.2.68). We have

t

/b ([ asnt@i) as, o = ( / () dsn0))) (310

a b ==

am

z(m ottt 4 500 )W)

=1 tamk1—1<t<tamkil

Nam+1
<Ymi Y W) (Gom=1,2), (2.2.69)
=1
where
wm(l) = Z U(tamk) dsm<tamk) (l — ]., ey nam), wm(nam —+ ]_) =0 (m — ]_’ 2)
k=l

According to the discrete analogue of the Wirtinger inequality [58], we obtain

Nam+1 1 . Nam—+1 )
§ 2 s —2 E
=1 =1
1 T Nam+1 9
< - sinT?——W— E tamki—1) ASm(tamki1—
=g g2 £ (v(tamk 1) dsm (tamk 1-1))

1 Nam+1

-2 -
< 1 sin 4nam 2 IZ; / t)dsm(a)(t) (m=1,2),

Using this, from (2.2.69) we deduce (2.2.68). The proof of (2.2.67) and (2.2.68) is similar for ¢y = a.
Finally, it should be noted that equality (2.2.67) transforms into the equality for t = a and

v(t) = 7 tcos(yo(se(a)(t) — se(a)(a))). As for inequality (2.2.68), it transforms into the equality

ifa=to=0b=1alt)=8t) =k-—1fork—1<t<k(k=1..,0),al) = () =

v(k) = sin ﬁ sin ngtll) and v(t) =0 for t € [0,]]\ {1,...,m}. O

2.2.3 On the set U(ty,...,t,). The lemmas on the a priory estimates

The following lemmas make more precise the ones given in [18] (see Lemma 6.3).

Lemma 2.2.8. Let conditions (2.2.14), (2.2.15) and

t

|cz-l(t) - cil(s)| < /hil(T) day(1) for s<t (i,l=1,...,n) (2.2.70)

S

hold on [a,b], where ¢;; € BV([a,b];R) (i,1=1,...,n), oy (I =1,...,n) are the functions nondecreasing
on [a,b] and having not more than a finite number of dzscontmuzty points; hy € L*([a,b],Ry;aq)
(i #1), hij € L*([a,b],R;oq) (5,01 =1,...,n), 1 < p < 4005 lmix € Ry (m=0,1,2; i,k =1,...,n),
i—i—% =1, andH = (Hj+17m+1)?7m:0 is the 3n x 3n-matriz defined as in Theorem 2.2.2. Then problem
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(2.2.4),(2.2.5) has no nontrivial non-negative solution. In addition, if ¢y (i #1; 4,1 =1,...,n) are
the functions nondecreasing on [a, b], then condition (2.2.10) holds for C' = (ci1)};—; and by = (Loi)i-y,

2 n

Loi(T1y ..o xy) = Z ZlmikaHu,m(ak) for x = (x;);-; € BV([a,b;R") (i=1,...,n).

m=0 k=1

Proof. Let x = (z;)7_, be an arbitrary solution of problem (2.2.4), (2.2.5). By (2.2.70) and Holder’s
inequality, we have
)

for t €la,b] (i=1,...,n). (2.2.71)

2 n

<y (%mﬁhmmw+Mﬁmmmm

m=0 k=1

/uuﬂﬁ@mmwv>

This, in view of Minkovski’s inequality, implies

2
||x||VSJ(O¢k < Z
m=0

+Mmmmm{/Lﬂm 1% disp(c0)(7)

On the other hand, by virtue of Holder’s inequality in the case m? + j2 + (i — k)% > 0, j = 0, and
by (2.2.67) and (2.2.68) in the other cases, we have

e

b 1
< Nemij [/ |a:k(7')2dsm(ak)(7')} (Jym=1,2; i,k=1,...,n).
The latter inequality and (2.2.72) yield

2 n
[2illus; @) < D> (Gijlmin + Memigl1Bikllv.s ) ) T8 by (G=0,1,2 i=1,...,n).

m=0 k=1

HM:

<mk%amm%mmwﬁ

v

de(ai)(T):| > for t € a,b] (i=1,...,n). (2.2.72)

2

v

| dss(a) o)

Therefore
(I3n — H)r < 035, (2.2.73)

where r € R3™ is the vector with components

TZ"F”] ||mk||l/ SJ(OQ) (.] - Oa 1527 1= 1 )

From (2.2.73), we find that r = 03,,, since the module of the characteristic value of the matrix # is less
than 1. Using (2.2.71), we can see that x;(¢t) =0 (i = 1,...,n). Consequently, problem (2.2.4), (2.2.5)
has no nontrivial nonnegative solution. O

Lemma 2.2.9. Let conditions (2.2.6)(2.2.8), (2.2.21) and (2.2.23) hold on [a,b], where the functions
¢ (1 =1,...,n) are nonincreasing on [a,b], p; > 0, 7, € [a,b], 7, # t; (1 = 1,...,n); N(t) =
Ya; (t,t;), the function vq,(t,t;) is defined according to (1.1.9), and a;(t) = (ci(t) — cii(t;)) sen(t — t;)
(¢t = 1,...,n). Let, moreover, the functions ¢; BV([a,b];R) (i # I; 4,1 = 1,...,n) be such that
condztzon (2.2.24) hold, where the constant matriz M is defined as in Theorem 2.2.3. Then problem
(2.2.4), (2.2.5), where

Loi(x1,. .. ) = pizi(m) for x € BV([a,b;Ry) (i,1=1,...,n), (2.2.74)

has no nontrivial nonnegative solution.



72 Malkhaz Ashordia

Proof. Let (z;)!_; be an arbitrary nonnegative solution of problem (2.2.4),(2.2.5). Let i € {1,...,n}
be fixed. Due to (2.2.4), it is evident that

sen(t — t;) da; < x;(t) dey () + dfi(t) for t € [a,b], t#t;,
(1) djai(ts) < i(ts) djea(ts) + dsfi(t) (G =1,2),
where
) = 2y (1) dey (1
l;ézzl: 1/ l !

So, by (2.2.21), the function x; satisfies the conditions of Lemma 2.2.6, where a(t) = c¢;(t),

q(t) = fi(t), t() = ti.
According to the lemma and (2.2.74), the estimate

x;(t) < y;(t) for t € [a,b] (2.2.75)
holds, where y; € BV([a, b];R) is a solution of the system
sgn(t — t;) dy = yda(t) + dq(t) (2.2.76)
on the intervals [a,t;][ and ]¢;, b] satisfying the conditions
(=1) djy(t:) = y(ts) djolts) + djq(t:) (5 =1,2) (2.2.77)
and
y(ti) = piz(r). (2.2.78)
Problem (2.2.76)—(2.2.78) is equivalent to the initial problem
dy = yda;(t) + dfi(t), y(ti) = pix(ri) for t € [a,b].
Let us show that

n

zi(t) < phi®zi(m) + Y [ fult) = fu(td)| o for t € [a,b], (2.2.79)
l#£4;1=1

where
pr =sup {|z;(t)]: t € la,b]} (1=1,...,n).

First, consider the case t €t;,b]. According to the variation-of-constant and integration-by-parts
formulaes, we have

) = 50+ 20 e /fz yax;? } Ni(t)wi(t)

t

+ Ni(t) Zn: {/Ail( Jai(r)dea(T) = Y diA; m)dica(r) + > oA (T)ai(r) dacalr )}

I =1 ti<r<t ti<r<t
for t € [ti7 b]
and, later, by (0.0.12), we can conclude that

t

R 0) < M)+ A0 D { / AT o) dselean) (7
I£i1=1 V]
+ Z )\ 7)dicu(r Z A YrH) a(r )dQCil(T)} for t € [t;,b]. (2.2.80)

t; <7<t t, <1<t
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The function \; ' (t) is nondecreasing on Jt;,b], since the function ¢;; is nonincreasing on the same
interval. So, by (2.2.78), from (2.2.80) follows estimate (2.2.79).

Analogously, we verify inequality (2.2.79) for ¢ € [a, t;], as well.

In view of (2.2.79) due to (2.2.23), we find that

n

vi(r) < (L= mXi(m) ™" Y0 faln) = falt)] o

l#£4;1=1
and, consequently,
n
Pi < Z Hi1 Pt (Z: 1,...,”)-
1#i; 1
Thus the constant vector p = (p;)I, satisfies the system
From this, using (2.2.24), we obtain p = 0,,. Consequently, z;(t) =0 (i=1,...,n). O

Lemma 2.2.10. Let conditions (2.2.6)—(2.2.8) and (2.2.23) hold on [a,b], where p; > 0, 7; € [a,b],
i £t (i=1,...,n); and let the functions ¢;; (i = 1,...,n) be such that the functions X\;(t) = ve,, (¢, t;)
(i =1,...,n) defined according to (1.1.9) be monotone on the intervals [a,t;] and ]t;,b]. Let, moreover,
the functions ¢;; € BV([a,b];R) (i #1; 4,1 =1,...,n) be such that condition (2.2.24) hold, where the
constant matriz M is defined as in Theorem 2.2.4. Then problem (2.2.4),(2.2.5), where functionals
lo; (i=1,...,n) are defined by (2.2.74), has no nontrivial nonnegative solution.

Proof. Here we use the designations given in the proof of Lemma 2.2.9. As in that proof we show the

estimate
t

yz(t) = fi(t) + /\z(t){yz(tz) — /fz(T) d/\z_l(T)} for t e [a,b].

From this, by (2.2.75) and (2.2.78), we obtain

xi () < fi(t) + pidi()zi(73) /ﬂ )dA; (1) for t € [a,b]. (2.2.81)

Therefore, using (2.2.23), we conclude that

zi(1) < (1 — phi(m))~ <fl ) — Ni(Ti /f, )dA; )forte[a,b].

Substituting the obtained estimate into (2.2.81), we get

i(t) < filt) + pa(l — padi(m)) " it )(fz 7i) = Ai(Ti) /fz dX; ) —Ai(t)/tfi(T)d)\il

Jo

)pl for t € [a,b].

< Z (1+|/\ —1|’\/ch

1#4;1=1

+I/7,(1+‘)\ (1) —1| ‘\/ cit)

n

<y (@(H@HW( T alm) - ’\/Cu

115 1=1

So,
n
pi < Z papr (1=1,...,n).
1#i;1
Later, as in Lemma 2.2.9, we conclude that z;(t) =0 (i = 1,...,n). O
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Lemma 2.2.11. Let ty, ..., tgn € [a,] (k =1,2), lori : BV([a, B R?) - Ry (k=1,2;i=1,...,n)
be linear bounded functionals, and Cy; = (ckjir)i 1=, € BV([a,b]; R"™™™) (k,j = 1,2) be such that the
system

sgn(t—ty;) dry;(t <Z£E11 Yderra(t -l-ZJL‘gl Ydei2i(t) for te€la,b], t#ty (i=1,...,n),

(—1)7 djw1i(tis) SZ 1(t1s) djcrna(ta +Z$2l ti) djcrza(tu) (7=1,2; i=1,...,n),  (2.2.82)
=1 =1

d{EQZ Z 11 dCQIZl +Zw2l dCQQZl fOT’ te [a b] (i: 17 ce ,n)

has a nontrivial nonnegative solution satisfying the condition
xki(tli) S lom‘(l‘u, ey LIy L2y e v vy xgn) (k = ].7 2; 1= 1, ey TL) (2283)

Then there exist a matriz-function A€BV([a,b]; R"*™), linear bounded functionals £; :BV o ([a, b];R?*™)
=R (i=1,...,2n) and numbers co; € R (i =1,...,2n) such that the 2n-system

dz(t) = dA(t) - z(t) (2.2.84)
under the 2n-condition (1.1.4) is unsolvable, here t; = t1; (i =1,...,n), thes =t (i=1,...,n), and
~ A(t)  Cia(t)
A(t) = . 2.2.85
( ) (CQl(t) 022 (t) ( )

Proof. Let © = (z)i_,, xk = (zr:i)?; (k = 1,2) be the nonnegative solution of problem (2.2.82),
(2.2.83).
Let o, q; € BV([a,b];R) (i = 1,...,n) be the functions defined by

@i(t) = (sc(c114i)(t) — se(crrii)(s)) sgn(t — ;) (i=1,...,n)
and

t

(é </t.r1l(7') deiya(T) +/x21(7) dCl2il(T)> _/txli(T) dsc(cllii)(T)) (i=1,...,n).

tii tii tii

()

It is evident that the Cauchy problem

dy(t) = y(t) do(t) + dai 1), (2.2.56)
y(tli) = xli(tli) (2287)
has a unique solution y; for every i € {1,...,n}.

Moreover, it is easy to verify that the function z(t) = z;(t),
zi(t) = 215(t) — yra(t),
satisfies the conditions of Lemma 2.2.6 and the problem
du(t) = u(t) dey(t), u(ty;)) =0

has only the trivial solution for every i € {1,...,n}.
According to this lemma, we have

Jili(t) < yli(t) for t e [a, b] (Z =1,... ,’I’L)
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and, therefore,
3;‘11‘(25) = ni(t)yli(t) for t e [CL, b] (’L =1,... ,’I’L),
where, by Theorem 1.4.25 from [73], n; : [a,b] — [0,1] (i = 1,...,n) are the functions such that the
¢
integrals [ n;(7) dci14(7) (i, =1,...,n) exist for every t € [a,b].
t.

Let us introduce the notation
t

CL“(t) = al(t) + Sgn(t — th)/m(T) d(cllii(T) — sc(cllii)(T)) (Z = ]., e ,n),

t14

; (2.2.88)
ai(t) = sgn(t — t1;) /771(7) dena(r) (1#1 i,l=1,...,n).
tyi
Due to (2.2.83), (2.2.86) and (2.2.87), the vector-function y = (y;)?%;, vi(t) = z1:(t) (i = 1,...,n),
Ynti(t) = x2;(t) (i =1,...,n), is a nontrivial nonnegative solution of the 2n-problem
dy(t) = dA(t) - y(t), (2.2.89)

where §; € [0,1] (i = 1,...,n), dppi =1 (i = 1,...,n), A(t) = (aa(t))})—;,

Loi(y1, -+, y2n) = loki(Y1, - - - Y2n)
for (y)7", € BV([a,b];R*") (k=1,2; i = (k—V)n+1,...,kn).

Let 4; : BVoo([a,b]; R?") — R (i = 1,...,2n) be linear functionals defined by

Ei(xl, ey afgn) = (Si (601‘([371]—1-’ ceey [l‘gn]+) — ém([ﬂ}ﬂ_, ey [.13271]_))
for (z)7", € BV([a,b;R*™) (i=1,...,2n), (2.2.91)

where
e (1) = 3 ()] + 2:(0) and ] (1) = 5 ()] — s(0)) (= 1,...,20)

are the positive and negative parts of the function z;, respectively.

By (2.2.88)—(2.2.90), y = (y;)?", is a nontrivial, nonnegative solution of system (2.2.84) under the
boundary condition (2.2.2y).

On the other hand, by Remark 1.1.2, there exist numbers co; € R (i = 1,...,2n) such that problem
(2.2.84), (2.2.2) is unsolvable, where the matrix-function A(t) is defined by (2.2.85), (2.2.88), and the
linear functionals ¢; (i =1,...,2n) are defined by (2.2.91). O

2.2.4 Proof of the main results

Proof of Theorem 2.2.1. According to Corollary 1.1.1, to prove the theorem it suffices to verify that
the homogeneous problem (2.2.1), (2.2.2¢) has only the trivial solution.
Let (x;)_; be an arbitrary solution of the problem. We assume

Ti(t) = |zi(t)| (i=1,...,n).

Let i € {i=1,...,n} be fixed.
Due to (2.2.36),

s ()] = |@i(s) =) / (1) sgn xi (1) dsc(ai) (1)

+ Z (|a:,»(7')|—|a:i(7'—)|)—|— Z (|xi(7+)|—\xi(7')|) for a<s<t<hb.

s<t<t s<t<t
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From this it follows that

= Z 2 (7) sgna; (1) d(sgn(r — t;) sc(aq) (7)) + Z sgn(t — t;) (|zs(7)| — |z (7))

=1 s<t<t

+ Z sgn(r — t;) (|xl(7'+)| — |x7(7')|) for (t —s)(s—t;) > 0.

s<t<t

Then, by (2.2.6)—(2.2.8) and Lemma 2.2.1, we have
sgn(t —t;) dT Z t)dei(t) for t €la,b], t#i; (i=1,...,n)

and

(-1 dxl i) Ddica(t) (j=1,2;i=1,...,n).

HM:

In addition, (2.2.9) yields
fi(ti> < EOi(Eh R ,Tn) (7, =1,..., n)
Hence (7;)!_; is a nonnegative solution of problem (2.2.4), (2.2.5). Therefore, by (2.2.10), Z;(t) = 0
(i=1,...,n) and
2(t) =0 (i=1,...,n). O

Proof of Theorem 2.2.2. By Lemma 2.2.8, condition (2.2.10) holds for C' = (c;)7;,—; and £o = (foi)jq,

where
t

ci(t) = /hil(T)dal(T) for t € la,b] (i,1=1,...,n)

a

and
2 n
loi(T1,. . xn) = Z Zlmikﬂxkﬂy,sm(ak) for (z;)j=; € BV([a,b];R") (i=1,...,n).
m=0 k=1
Therefore, the theorem follows from Theorem 2.2.1. O

Remark 2.2.1 follows from the fact that Lemma 2.2.8 is likewise true for the n x n-matrix described
in this remark.
Corollary 2.2.1 is a particular case of Theorem 2.2.2, when l,,5; =0 (m =0,1,2; i,k =1,...,n).

Proof of Theorem 2.2.3. By Lemma 2.2.9, condition (2.2.10) holds for C' = (c;1)7;—; and £ = (fo;)74,
where the functionals fo; (i = 1,...,n) are defined by (2.2.74). Therefore, the theorem follows from
Theorem 2.2.1. O

Proof of Theorem 2.2.4. By Lemma 2.2.10, condition (2.2.10) holds for C' = (c;1)7;—; and £ = (fo;)i4,
where the functionals ¢y, (i = 1,...,n) are defined by (2.2.74). Therefore, the theorem follows from
Theorem 2.2.1. O

Proof of Theorem 2.2.5. Note that problem (2.2.4),(2.2.5) is a particular case of problem (2.2.82),
(2283) if we assume in it C11(t) = C(t), Clg(t) = Ogl(t) = ng(t) = Onxn and éOli(-le . .xgn) =
ZOi(xl,...,zn) (Z = 1,...,71), 6022'(581,...71’2”) =0 (’L = 17...,71).

By Lemma 2.2.11, there exist a matrix-function A = (a;);—; € BV([a,b];R"*") and linear
bounded functionals ¢; (i =1,...,2n) defined by (2.2.88) and (2.2.91), respectively, and numbers co;
(i=1,...,2n) such that the 2n-system (2.2.84) is unsolvable under the 2n-condition (2.2.2) (defined
in Lemma 2.2.11), and A(t) is defined by (2.2.85) and (2.2.88). Moreover, it is evident that system
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(2.2.84) is equivalent to system (2.2.1g). Therefore, the problem (2.2.1p), (2.2.2) is unsolvable for the
matrix-function A and linear functionals ¢; (i = 1,...,n).

Due to (2.2.26), (2.2.88) and (2.2.91), it is not difficult to verify that conditions (2.2.6)—(2.2.9) are
fulfilled.

Let now condition (2.2.27) hold. By (2.2.88), we get
d;A(t) = diag (sgn(t — t1),...,sgn(t — t,,)) d;C(t) diag(m1 (t), ..., m(t)) for t € [a,b] (j =1,2).

Therefore, in view of (2.2.27), condition (1.1.8) holds. O

Consider Remark 2.2.5. The first case is evident. Indeed, by (2.2.88),
dja;(t) =sgn(t —t;)m(t) djcqa(t) for t € la,b] (j=1,2;4,l=1,...,n)

and
djaa(®)] < |djea(®)] for ¢ € [a,b] (= 1,% 3,1 =1,...,n).

Taking this into account, by (2.2.28), we have
> ldjau(t)| <1 for t€fa,b] (j=1,2i=1,..,n)
=1

Hence condition (1.1.8) holds.
Let now conditions (2.2.29) and (2.2.30) be valid. Then from (2.2.30) we have

n

Z |sgn(t —t;) - &; djcq(t)]

I=1,1#i
< e+ (1) sgn(t —t;) - e djc(t)| for t€[a,b] (j=1,2;i=1,...,n). (2.2.92)

Using (2.2.29), we obtain
‘51‘ + (—1)j sgn(t — ti) o djcii(t)|
<1+ (=1 sgn(t —t;) - ;djcii(t) for t € [a,b] (j=1,2;i=1,...,n).
This and (2.2.92) yield
Z | sgn(t — tl) oy djcil(t)|
=1, l#i

<1+ (=1 sgn(t —t;) - eidjci(t) for t € [a,b] (j=1,2;i=1,...,n).

Therefore, by Hadamard’s theorem (see [36, p. 382]), condition (1.1.8) holds. Remark 2.2.5 is
proved analogously for the second case of (2.2.30).

2.3 Nonnegativity of solutions of the Cauchy—Nicoletti type
multi-point boundary value problems

In this section, we give some propositions on the existence of nonnegative solutions of problems (2.2.1),
(2.2.2) and (2.2.1),(2.2.3).
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2.3.1 Formulation of the results

Theorem 2.3.1. Let the matriz-function A = (ai)i;—, € BV([a,b];R"™™) be such that the functions

ay(t)sgn(t —t;) (1 #£1; 4,0l =1,...,n) are nondecreasing, the conditions
(au(t) —au(s))sgn(t —s) < (cu(t) —cu(s)) for (t—s)(s—t;) >0 (i,l=1,...,n), (2.3.1)
and
fi(t)sgn(t — t;) are nondecreasing, co; >0 (i=1,...,n) (2.3.2)

hold on [a,b], and
0</li(z1,...,2n) < Loi(z1,...,2y) for xz; € BV([a,b;Ry) (4,1=1,...,n), (2.3.3)

where a matriz-function C = (cq)f 1=, € BV([a,b]; R™™™) and a vector-functional Lo = (Loi)j, are
such that

(C,Eo) S U(tl,...,tn). (234)
Then problem (2.2.1),(2.2.2) has one and only one solution and it is nonnegative.

From the results of Subsection 2.2.1 we have the following results.

Corollary 2.3.1. Let the matriz-function A = (au)i;—; € BV([a,b]; R"*") be such that the functions
a;(t)sgn(t —t;) (i #1; 4,0 =1,...,n) are nondecreasing and conditions (2.3.2) and

(air(t) — au(s))sgn(t —s) < /hil(T) da; (1) for (t—3s)(s—t;) >0 (i,l=1,...,n) (2.3.5)

hold on [a,b], where o; (i = 1,...,n) are the functions nondecreasing on |a,b] and having not more
than a finite number of discontinuity points, h;; € L*([a,b],R;a;), hy € L*([a,b],Ry;0q) (i # 1;
l=1,...,n), 1 <pu<+oc0. Let, moreover, condition (2.2.15) hold and

2 n
0</li(x1,...,25) < Z ZlmikakHu,sm(ak) for xr, € BV([a,b;Ry) (i,k=1,...,n),

m=0 k=1

where the constant matriz H is defined as in Theorem 2.2.2. Then problem (2.2.1),(2.2.2) has one
and only one solution and it is nonnegative.

Corollary 2.3.2. Let the matriz-function A = (au)i;—; € BV([a,b]; R"*") be such that the functions
ay(t)sgn(t —t;) (i #1; 4,0l =1,...,n) are nondecreasing and conditions (2.3.2) and (2.3.5) hold on
[a,b], where oy (I =1,...,n) are the functions nondecreasing on [a,b] and having not more than a finite
number of discontinuity points, h;; € L*([a,b],R;«;), hy € L*([a,b],Ry;0q) (2 £ 1; 4,0 =1,...,n),
1 < pu < +o00. Let, moreover, condition (2.2.16) hold, where Ho = ((Mkmil|Pik |l 5, (00) )i k=1) 0, j=0 5
a 3n x 3n-matriz, and Agmij, &ij (J,m =0,1,2;4,k =1,...,n) and v are defined as in Corollary 2.2.1.
Then problem (2.2.1),(2.2.3) has one and only one solution and it is nonnegative.

By Remark 2.2.2; Corollary 2.3.2 has the following form for h;;(t) = hy = const (i,1 =1,...,n)
and p = +o0.

Corollary 2.3.3. Let the matriz-function A = (aq)};—, € BV([a,b]; R"*™) be such that the functions
ay(t)sgn(t —t;) (i £1; 4,0l =1,...,n) are nondecreasing and the conditions (2.3.2) and

(ai)(t) — aii(s)) sgn(t — s) < hy(a(t) — a(s)) for (t—s)(s—t;)>0 (i=1,...,n)

hold on [a,b], where « is a function nondecreasing on |a,b] and having not more than a finite number
of discontinuity points, hy; € R, hy € Ry (i #1; i,l = 1,...,n). Let, moreover, condition (2.2.17)
hold, where py and a constant matrix H = (hik)ﬁkzl are defined as in Corollary 2.2.2. Then problem
(2.2.1),(2.2.3) has one and only one solution and it is nonnegative.
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Corollary 2.3.4. Let the matriz-function A = (aq)};—, € BV([a,b]; R"*™) be such that the functions
ay(t)sgn(t —t;) (i #1; 4,0l = 1,...,n) are nondecreasing, the conditions (2.2.21), (2.2.23), (2.3.1),
(2.3.2) and

0</li(z1,...,2n) < pizi(m) for x; € BV([a,b;Ry) (4,1 =1,...,n) (2.3.6)

hold on [a,b], where the functions c¢;; (i = 1,...,n) are nonincreasing on [a,b], p; € R, 7 € [a,b],
T Et (=1,...,n); N(t) = 74, (), the function ~,,(t,t;) is defined according to (1.1.9), and
a;(t) = (ci(t) — ciui(ty))sen(t — ¢;) (i = 1,...,n). Let, moreover, the functions c¢; € BV([a,b];R)
(t#1;4,l=1,...,n) be nondecreasing on [a,b] and condition (2.2.24) hold, where M = (p;)?,_, is
the constant matriz defined as in Theorem 2.2.3. Then problem (2.2.1),(2.2.2) has one and only one
solution and it is nonnegative.

Remark 2.3.1. In particular, the statement of Corollary 2.3.4 is true for the boundary value condition
(2.2.25).

Corollary 2.3.5. Let the matriz-function A = (au)i;—; € BV([a,b]; R"*") be such that the functions
ay(t)sgn(t —t;) (i #1; 4,1 =1,...,n) are nondecreasing, conditions (2.2.21), (2.2.23), (2.3.1), (2.3.2)
and (2.3.6) hold on [a,b], where pu; € R, 7, € [a,b], 73 # t; (i = 1,...,n); and the functions c;;
(i=1,...,n) are such that the functions X\;(t) = v.,,(t,t;) (i =1,...,n), defined according to (1.1.9),
are monotone on the intervals [a,t;[ and |t;,b]. Let, moreover, the functions c¢;; € BV([a,b;R) (i # I;
i,l = 1,...,n) be nondecreasing on [a,b] and condition (2.2.24) hold, where M = (uq)j,—, is the
constant matriz defined as in Theorem 2.2.3. Then problem (2.2.1),(2.2.25) has one and only one
solution and it is nonnegative.

Remark 2.3.2. Let problem (2.2.1),(2.2.2) have a unique solution, the functions a;(t)sgn(t — ;)
(i #1;4,1=1,...,n) be nondecreasing, condition (2.3.2) and the inequalities

0</ti(z1,...,2y) for x € BV([a,b;R;) (5,0=1,...,n)

hold. These conditions solely fail to imply that the solutions of the problem, in general, are non-
negative (a corresponding example is given below).

2.3.2 Proof of the results

Proof of Theorem 2.3.1. Due to (2.3.1), conditions (2.2.6)—(2.2.8) hold. Moreover, from (2.3.3) follows
estimate (2.2.9), since {y; (¢ = 1,...,n) are nondecreasing functionals. So, in view of Theorem 2.2.1,
problem (2.2.1), (2.2.2) is uniquely solvable.

Let « = (z;)I, be the solution of problem (2.2.1),(2.2.2) and let ¢ € {1,...,n} be fixed. Due to
(2.2.36), we have

|z ()] = [i(s)] =Z/xz(7) sgn;(7) dse(an) (1) + Y (Ji(7)] = |za(7-)])
=17 s<T<t

+ Z (Jzi(T4)] = |z (7)]) + /sgnxi(T) ds.(fi)(r) for a <s<t<b. (2.3.7)

s<7t<t s

From the definition of solutions of system (2.2.1), properties of the integral and the equalities

djx(t) = djAt) - =(t) + d; f(t) (5 =1,2)

result in

x;i(t) — zi(s Z/xl )dsc(ai)(T) + Z (zi(1) — zi(7—))
1=1

s<t<t

+ Z xi(T+) — 1‘1(7)) + (fi(t) = fi(s)) for a<s<t<b (j=1,2).

s<T<t
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Subtracting the last equality from (2.3.7), we can conclude that

wt) = 3i(s) = Y [ (anr)sena(r) = alr)) dsclaa() + 3 (as(r) = (7))
=17

s<T<t
t

+ Z (ya(T+) —yil(7)) + /Sgnxi(T) dsc(fi)(1) — (fi(t) — fi(s)) for a <s <t <b,

s<7T<t s

where
yi(t) = i) — i (2).

From this, using conditions of Lemma 2.2.6, just as in the proof of Lemma 2.2.1, we obtain

n
yi( Z/ t)dey(t) for (t—s)(s—t;) > 0. (2.3.8)
In addition, by (2.3.2) and (2.3.3), we have
@i (t:)| < G|z, .. on]) +coi (i=1,...,n),
From this, because ¢; (i =1,...,n) are linear functionals, and (2.3.8), it is clear that

sgn(t — t;)dy;(t) Zyl dey(t) for t €la,b], t#£t; (i=1,...,n),

n

( Jyz z Z dczl (]:1,2,7,:1,,71,),

=1
yi(t:) < Loi(y1,-- - yn) (E=1,...,n).

So, since y; (i = 1,...,n are the nonnegative functions, according to condition (2.3.4), we conclude
that

Consequently,
|x;(t)] = z:(t) > 0 for t € [a,b] (i=1,...,n). O

Corollaries 2.3.1-2.3.5 follow from Theorem 2.3.1 by virtue of Lemmas 2.2.8-2.2.10.

In connection to Remark 2.3.2, for the completeness, we give the corresponding example from [47]
for ordinary differential case.

Consider the problem

d.’IIl d.’l?g

hiadL e e — 1 = = 2.3.
T, prrr —1; z1(a) =0, 22(b) =0, (2.3.9)

where .
p=gb-a’
For this example, the conditions of Remark 2.3.2 are valid for
n=2 t;=a, ta=">0; a11(t) = axn(t) =0, a2(t)=t, an(t)= —p2t,
fit) =0, fot) = —t; li(z1,22) =0 (i=1,2)
and problem (2.3.9) has the unique solution

z1(t) = p*(2cosp(b—a) — 1), @1(t) =2u" " sinp(b— a).

In addition, the values of functions x; and x5 at the point tg = b — 371'(2mu)_1 are negative.
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2.4 On a method for constructing solutions of
the Cauchy—Nicoletti type multi-point
boundary value problems

In this section, we give a method for constructing solutions of the system
dx(t) = dA(t) - x(t) + df (t) for t € [a, b (2.4.1)

satisfying one of the conditions

Qii(ti) = &(.’171, ey mn) +co (1=1,... ,n), (2.4.2)
and

where ¢,; € R, p; € Rand 7; € [a,b] (i =1,...,n).

As the zero approximation to the solution of problem (2.4.1),(2.4.2), we choose an arbitrary
function (zg;)7~, € BV(I;R™). If the (m — 1)-th approximation (z,—1,)]~, is constructed, then by
the m-th approximation we take (,i)j—;, i-th component of which is defined by

xmi(ti) = Ei(wmfl Tyee- ,.’Iﬁmfln) + co;i (Z =1,... ,n), (2.4
xmi(t) = 'Vi(tati)xmi(ti) + Wi(l'mfl 15+ s Tm—1n, fz)(t) for ¢ € [CL, b] (7’ =1,... 7n)7 (2 4
where the operators w; : BV(I;R"™!) — BV(L;R) (i = .,n) are defined as
t
wilyns ) (0) = 9i(o - yne) (1) — e, 1) /gl Y- yne)(s) (s, 1),
(2.4.7)

9i(Y1, - Yn+1)( Z/yz d(ai(s) = 6uai(s)) + yn+1(t) = Ynt1(ts)

=1}
for t € [a,b] (i=1,...,n);
’}/i(tﬂfi) :’7@(15,%)7 Ez(t) = Sc(a“‘)(t) for t € [a,b] (Z = 1,...,’17,)7

and the function 4 (¢,¢;) is defined by (1.1.9).

2.4.1 Formulation of the results

Theorem 2.4.1. Let conditions (2.2.6)~(2.2.9) hold on [a,b], where a matriz-function C' = (ci)ij—, €
BV([a, b]; R™*™) and a vector-functional by = (Lo;)P_; are such that condition (2.3.4) hold. Then
problem (2.4.1),(2.4.2) has one and only one solution and there exist py > 0 and § €0, 1[ such that

n
Dz = milloo < pod™ (m=1,2...), (2.4.8)
i=1
where the vector-functions (Tmi)j—; (m = 1,2,...) are defined by (2.4.5)—(2.4.7).

Remark 2.4.1. The described above process of constructing a solution of problem (2.4.1),(2.4.2) is
stable in the sense given below.

Corollary 2.4.1. Let the conditions of Theorem 2.2.2 hold. Then the statement of Theorem 2.4.1 is
true.
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Corollary 2.4.2. Let the conditions of Theorem 2.2.4 hold. Then problem (2.4.1),(2.4.3) has the
unique solution (z;)"_, and for an arbitrary function (xo;)?_, € BV([a,b]; R™) estimate (2.4.8) holds,
where

Tmi(t) = piYi (6 t)Tm—1i(7) + coi + Wi(Tm—11,-- s Tm—1n, fi)(t) for t €la,b] (i=1,...,n),

the operators w; : BV([a,b]; R" ™) — BV([a,b];R) (i = 1,...,n) are defined by (2.4.7), and py > 0
and § €10, 1] are the constants that do not depend on m.

Corollary 2.4.3. Let the conditions of Corollaries 2.2.1 or 2.2.2 hold. Then problem (2.4.1), (2.4.4)
has the unique solution (z;)i—, and for an arbitrary function (zo;)i~, € BV([a,b];R™) estimate (2.4.8)
holds, where

Ti(t) = it ti)coi + wi(@m—11,. .., Tm—1n, fi)(t) for t €a,b] (i=1,...,n),
the operators w; : BV([a,b]; R" ™) — BV([a,b];R) (i = 1,...,n) are defined by (2.4.7), and py > 0

and ¢ €]0,1[ are the constants that do not depend on m.

2.4.2 Auxiliary propositions

Lemma 2.4.1. Let y,y; € BV([a,b];R™) (k=1,2,...) be vector-functions such that the conditions

lim y(t) = y(t) for t € [a,b)

k——+oo

and

lye () — yr(s)|| <lp + |lg(t) —g(s)|| for a<s<t<b (k=1,2,...) (2.4.9)

hold, where lj; > 0, Il — 0 as k — +o00, and g : [a,b] = R™ is a nondecreasing vector-function. Then
li — =0.
e =l

Proof. Let ¢ be an arbitrary positive number, and let R(a,b,e;9) and Dj(a,b,e;9) (j = 1,2) be
the sets defined in Subsection 1.2.2. Due to Lemma 1.2.3, the set R(a,b,e;g) is not empty. Let

{ap, 71,01, -, T, m } € R(a,b,e/5;g), and let n. be a natural number such that
€ € .
l; < E and |y (1) — yk(7)| < E for 7 € {ag, 1,01, s T, (4,6 > ne).
Assume that oj_1 <t <7; (j=1,...,m). Then, in view of (2.4.9), we have

i () =y O < [lvi®) = vi(T) | + Nyi(75) = ye(THI + Nlye(75) — ye @)l
<UL+l +2[lg(t) — g(m)ll + lyi(m5) — yr ()l

3e € .
<5 +2[lg(75) — g(aj_1)|| < e for 7; & Dy (a,b, 5 ;9) (i, k > ne)

and
lyi () = ye@® < lyi(t) — yiloy—)l + lyileg—1) = yr(a—)[ + llye(aj—1) — g @)l
< i+ U+ 2)|g(t) — g(aj—0)l| + [lyi(ej—1) — yrlo-1)]

3e € .
< 5 +2|lg(1j—) — g(aj—1)|| <€ for 7; € Dy (a,b, 5 ;g) (1,k > ng).

The case 7; <t < a; (j =1,...,m) is considered analogously, where we use the set Dy (a,b,e;g). O
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Lemma 2.4.2. Let the matriz-function C' = (cu)i =, € BV([a,b;R"*") and a vector-functional
by = (Lo;)?_, be such that conditions (2.3.4) and

14djcii(t) >0 for t€fa,b] (j=1,2;i=1,...,n) (2.4.10)
hold. Then there exists a positive number p, such that every solution of the problem
sgn(t — t;) dla; (t)] < |an(t) dea(t) + dug(t) for t € [a,b] (i=1,...,n),

=t (2.4.11)
(—1) dj|z4(t; |<Z|xl ) dea(ts) + djui(t;) (G=1,24=1,...,n);

\Iz( 1)| <loi(lal,- o lzal) +9 ((=1,...,n) (24.12)

admits an estimate .
S @illoo < oo (3 + lu(+) = u(@)lloo), (2.4.13)

i=1

where v € Ry and u = (u;)7, are an arbitrary number and a nondecreasing vector-function, respec-
tively.

Proof. Let x = (z;)1_, be an arbitrary solution of problem (2.4.11),(2.4.12). In view of (2.4.11), we
conclude that

n

sen(t — t;) dla; (8)] < |2 (8) desi(t) + Y ()| dea(t) + dui(t) for t € [a,b] (i =1,...,n),
i (2.4.14)
(=1 dylai(ta)] < Jaa(ta) dews(t:) + Yt dea(ts) + dywi(t) (G=1,2; i =1,...,n).
145 1=1
According to Lemma 2.2.6, from (2.4.14) it follows that
|z; ()] < yi(t) for t € [a,b] (i=1,...,n),
where y;, for every i € {1,...,n}, is a solution of the Cauchy problem
sgn(t — t;) dy; () = y(t) dey (¢) + Z |z ()] deqy(t) + dug(t) for ¢ € [a,b],
I#i; 1=1 (2.4.15)

y(ti) = |zi(t:)]-

If along with this we take into account that fy; is a nondecreasing functional and ¢;; and w; (i # I;

i,1=1,...,n) are nondecreasing functions, from (2.4.12) and (2.4.15) we find that
|dyi (t) =y (t) da(t)| < Z yi(t) dey (t) + duy(t) for t € [a,b] (1=1,...,n),
I£i; 1=1 (2.4.16)
yl(tl) < KOi(yla s 7yn) + (’L = 17 s ,Tl),
where
a;(t) = cii(t)sgn(t —t;) (i=1,...,n). (2.4.17)

Thus, for the proof of the lemma, it suffices to prove the existence of a positive number p such
that every nonnegative solution of problem (2.4.16) would admit an estimate

D Mwilloo < pe(y+ () = u(@)oo)-

i=1



84 Malkhaz Ashordia

Let us say the opposite, i.e., there does not exist such a number p. Then for every natural m
there exists a vector-function ug = (ugim )i~ (nondecreasing on [a,b]), vm € Ry and (yim), €
BV([a, b]; R™) such that

n

|dYirm (£) = Yim (D) doi(D)] <D g () dea(t) + duoim (t) for t € [a,b] (i=1,....n),
I#4;1=1

and .
> lgimlloo > m (3 + luom () = uom (@) o).
=1
If we put
n 1
Uim (t) = (Z\kam\lm) Yim(t) (i=1,...,n)
k=1
and

ﬂOim(t) = (Z ”ykm”oo)il uOim(t) (’L =1,... 7n)a
k=1

then, taking into account that ¢y; is positive homogeneous, we get

]dyl-m(t)—yim(t) dai(t)| < Z Y () deii () + dugim (t) for t € a,b] (i=1,...,n), (2.4.18)

I4; 1=1
1 .
1. -
woim (0) = Toim(a) < — (i=1,... 1), > i lloo =1 (2.4.20)
=1

and .
S imlloo = 1. (2.4.21)

=1

According to (2.4.18), (2.4.20) and (2.4.21), there exists a positive number r such that
b
\ Ui <7 (i=1,...,m; m=1,2,...). (2.4.22)

Therefore, due to the Hally choice theorem, without loss of generality, we may assume that

ml_l)r_[i_loo Uim() =yi(t) <r for t €[a,b] (i=1,...,n),

Y(i=1,...,n).
4.22), there exists nondecreasing vector-function g such that condition (2.4.9)
1,2,...). Using Lemma 2.4.1, we get

By (2.4.18) and

where y; € BV([a,b];R
2.
holds for I, =0 (m =

lim |7, —yille =0 (i=1,...,n). (2.4.23)

m——00

Consequently, by this, (2.4.19) and (2.4.21), we have

yi(ti) Sfoz‘(yl,...,yn) (i: 1,...,71)7 (2424)

S llyilloe = 1. (2.4.25)
=1
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Let us put
qu(t) = fzm(t) +ﬂ01m(t) — ﬁol‘m(a) (Z = ]., ey m o= ]., 2, e ),

where

fim(t) = Z /ylm Ydeu(t) (i=1,...,n; m=1,2,...).

l#4;1=1

By virtue of (2.4.18), Lemma 2.2.6 and the variation-of-constants formula (1.1.12), we have

Tim () < Vit t6) i (L ‘/7 (t,7) dA(vi, @i ) (T)| for t € [a,b] (i=1,...,n), (2.4.26)

where v;(t,7) = 74, (t, 7) is defined by (1.1.9).
Due to (2.4.20) and (2.4.26), we find that

yzm( ) < %(t t; )yzm ‘/% t T dA(azafzm ‘/% t T dA(amuim)( )
n t
< ’Yl(tatl)?zm(tl) + ‘ Z Vl(tv’r)ylm(t) dA(Oéi,Cil)(T) +% for te [CL, b] (’L:17 B 777‘)’
l;ﬁi;l:lti

where r is some positive number.
If in the last inequality we pass to the limit as m — +o0, then by (2.4.23) we conclude that

yi(t) < x(t) for t€[a,b] (i=1,...,n), (2.4.27)
where
zi(t) = it ti)yi(ti) + Z /’Yi(t,T)yl(T) dA(ai, ca)(T)| (i=1,...,n). (2.4.28)
I#i;1=1 s
Put

gi(t) = Z /’Yi(ti,T)yl(T) dA(cvi,cqy)(T)| for t € [a,b] (i=1,...,n).

1#i;1=1 i

Then by (2.4.28) we have
x;(t) = vi(t, t) (yi(ts) + gi(t)) for t € [a,b] (i=1,...,n). (2.4.29)
Using the equalities
Yiltys) =it ti)vi(tins), dvit,ti) = vi(t ) day(t)

and

dj’)/i(t,ti) = ’yi(t,ti) djozi(t) (] = 1,2; 7 = 1, .. .,n),
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the general integration-by-parts formulas (0.0.11) and (2.4.17), from (2.4.29) we conclude that

t

oilt) = ai(s) = [ dos(r)

s
t t

:/(yi(ti)"_gi(T))d%(Ta tz‘)+/%‘(7,t )dgi(T)— Y diyi(7t:) digi(T)+ Y dail,ti) dagi(7)

s s s<T<t s<tt

t
:/ ) dov; (T Z /yz ) dA(a;, ci)( Z Zdwv (7,t:) - vi(ts, )y (1) di A, i) ()

s I#£i;1=1% 1#4;1=1 s<7<t
n
+ > > davi(rt) it Tun(r) de A, ca)(r) for a<s<t<b (i=1,...,n).
l#1;1=1 s<7<t

Hence

t

xi(t)—xi(s):/ 7)doy (1) + Z / T)dey(T) for s,t €la,b] (i=1,...,n).

p Ii; =1

Consequently, owing to (2.4.27), we have

_xz S

t
/xl )dci(t) for s,t € la,b] (1=1,...,n).
!

n
=1

By virtue of this, (2.4.24), (2.4.25) and (2.4.27), we obtain

n
D llzillo = 1
=1

and thus the function (x;); is a nonnegative nontrivial solution of problem (2.2.4),(2.2.5), which
contradicts condition (2.2.10). O

Lemma 2.4.3. Let the matriz-function C' = (cu)ij—; € BV([a,b;R"*") and a vector-functional
by = (Lo;)T—q be such that conditions (2.2.10) and (2.4.10) hold. Then there exists a number § €10, 1]
such that

(C,l) € U(ty, ... tn), (2.4.30)
where 5 = (Eil)?,lzlf Z() = (ZOi)?:p
and )
Coi(yrs -+ yn) = sloiyr - yn) (=1,...m). (2.4.32)

Proof. According to Lemma 2.4.2, there exists a positive number p, such that every solution of problem
(2.4.11),(2.4.12) admits estimate (2.4.13), where v € Ry and u = (u;)!; are an arbitrary number
and a nondecreasing vector-function, respectively.

Let
7022501(17~-~71), U/Ol = Z czl _ch )) (i:17"'an)7
=1
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d €]0,1[ be a number such that
p*(o+§ i ) <liuz1 o n (2.4.33)
6 2 ) i

and let ¢;; and Zol' (i, =1,...,n) be, respectively, the functions and the functionals given by (2.4.31)
and (2.4.32).
Consider an arbitrary nonnegative solution z = (z;)_; of the problem

sgn(t — t;) dx;(t) SZ dey(t) for t €la,b] (i=1,...,n),
=1 (2.4.34)
(—1)7 djai(t;) Z Ddea(t) (G=1,2i=1,...,n);
xi(t;) < E (T, xn) (=1,...,n). (2.4.35)

It is not difficult to verify that (z;)7_; will be the solution of problem (2.4.11),(2.4.12), where

6 n
0 Y Il uilt) = 2 gyt lewzlloo (i=1,...,n).
=1

By the choose of p,, estimate (2.4.13) holds, which, in view of (2.4.33), implies

n 1 n
S el < 5 3 Il
=1 =1

Consequently, z;(¢) =0 (i = 1,...,n). So, condition (2.4.30) holds. O

Lemma 2.4.4. Let the matriz-function C' = (cu)ij—; € BV([a,b;R"*") and a vector-functional
by = (bo;)7_1 be such that conditions (2.2.10) and

L+ (=1)7sgn(t — t;) djcii(t) >0 for (1) (t—t;) <0 (j=1,2i=1,...,n) (2.4.36)

hold Then there exist a positive number p and § €10,1] such that for an arbitrary (yo;,)j; €
BV([a,b];R}) and any sequences of numbers v, € Ry (m =1,2,...), the vector-functions (ym:)i2, €
BV([a,b];RY) (m = 1,2,...) and nondecreasing vector-functions w, = (um;)jz; € BV([a,b];R™)

(m=1,2,...) satisfying the inequalities
sgn(t — ;) dymi(t) < yma(t) dci(t)

“Fiymfll(t) d(ca(t) = 0uti(t)) + dumi(t) for t € a,0] (i=1,...,n), (2.4.37)

( Jd]ymz z Z Ym— 1l dCZl( 2)+djuml(t2) (]:1,2, i:l,...,n),
y,m( i) < Loi(Wm—11s--sYm—1n) +¥m (E=1,...,n) (2.4.38)
for every natural m, the estimates

> Wl < o 3077+ ) = @)} + 7 S ol p (0 =1.200) (2439)
=1 =1 =1

hold.
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Proof. By Lemma 2.4.3, there exists a number § €0, 1] such that the functions ¢;; and the functionals
lo; (1,01 =1,...,n) given, respectively, by (2.4.31) and (2.4.32), satisfy condition (2.4.30).
On BV ([a, b]; R" ), we introduce the operators

wi(zl,...,zn)(t):'yi(t){%i(zl,...7zn)+ En: (’/tyil(T)zl(T)dal(T)

I#4; 1=1

+ Y M r)am dica(n + ) %1(7+)zl(r>d2al(f))} (i=1,...,n),

b <T<t: b <T<E]
where t.; = min{t;,t}, t¥ = max{t;,t} (i =1,...,n), and ;(¢) is a solution of the problem
dyi(t) = vi(t) da(t), vi(t;) =1.
By (2.4.36), the latter problem has the unique solution which is strongly positive on the whole

[a, b].
Let

2it) =1 (i=1...,n), n=Y |illo(t+nllv ")

i=1

and (zmi)", (m =1,2,...) be a sequence of vector-functions defined by
Zmi(t) = wi(Zm—11,- s Zm-1n)&) +n (G=1,....,n; m=1,2,...). (2.4.40)
Clearly, w;(-) (i =1,...,n) are nondecreasing operators and, therefore,
1< zm—1i(t) < zmi(t) for t €fa,b] (i=1,...,n; m=1,2,...).
Consequently,

Pm = Z IZmillc (Mm=1,2,...)
i=1

is a nondecreasing sequence of positive numbers.
Let us show that

p= lim p, < oc. (2.4.41)

m—o0

Assuming to the contrary that p,, — oo as m — oo, we put

Zmi t —
Tmi(t) = ®) Foni (1) = Wi(Zime11s s Tt n)(E)y T = & (m=1,2,...).
Pm Pm
Then
lim n,, =0, (2.4.42)
m—r 00
D tmille =1 (m=1,2,...). (2.4.43)
=1

Taking into account the Hally choice theorem and Lemma 2.4.1, it is not difficult to verify that

lim sup @ (t) = 7;(t) uniformly on [a,b] (i=1,...,n), (2.4.44)

m— oo

where (7;)7, is a vector-function from BV ([a,b]; R"). On the other hand, from (2.4.40) we have

Timi(t) < Tpi(t) + 9, for t € fa,b] (i=1,...,n; m=1,2,...)
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and

Timi(t) < wi(@Tm—11 + Mm-1,

3 Tm—1n + Mm—1)(t) for t € [a,b] (i=1,
By

Lnym=1,2,...).
(2.4.42)—(2.4.44) and the latter inequalities, it follows that

n
Z ”EZHOO >1
i=1

and
T;(t) < a;(t) for t €la,b] (i=1,...,n),
where
i(t) = wi(Ty, ..., Tp)(t) (i =1, n).
Now, for every i € {1

n}, using the integration-by-parts formula (1.1.12), from definition of
the function w; we get

t t
n 1 n
sgn(t — t;)(z;(t) — /xl dey (T =5 /(El(r) —ay(7))dey () <0
1=1 I#i;1=1",
for a<s<t<t; and t; <s<t<b (i=1,...,n),
(=1 djai(t;) <> mi(ts) dicaults) (G=1,2i=1,...,n);
1=1

,’I)i(ti) = fol‘(fl, R ,fn) < Zm(l‘l, R ,S(,'n) (’L =1,... ,n).

So, (z;)I is nonnegative nonzero (due to (2.4.43)) solution of problem (2.4.34),(2.4.35). But this
contradicts condition (2.4.30). The obtained contradiction proves inequality (2.4.41)
Let

(yOZ) -1 € BV([CL b Rn Z ||y01||oo > O

and v, € Ry, (Ymi)iz; € BV([a,b];RY}) and wy, = (ums)j; € BV([a,b;R") (m = 1,2,...) be
arbitrary sequences satisfying conditions (2.4.37) and (2.4.38) for every natural m
Put

g Ly e

G = 0™ (ke + [|u(b) — up

(a)ll) +5mz l90i [l 0o+
k=1 =1
o) =1, Ti(t) = y’zf) Gi=1,....n).

Regarding the inequalities

Cm > 5Cm717 <m > Yms Ym > ||um(b)
from (2.4.37) and (2.4.38) we discover that

um(a)l]] (m=1,2,...),
sgn(t — t;) dy,; (t) < Y, (t) dei(t)

+Zymll

dcy(t) + dtm,(t) for t € [a,b] (i=1,...,n),
1£i; 1=1 (2.4.45)
(=17 dj¥mi(ti) < D Um—11(ti) djca(ts) + djumi(t;) (j=1,2;i=1,...,n),
=1

ymi(ti) S EOi(ym—lh N ’ym—ln) +1 (7’ = 1’ te 7n) (2446)
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for every natural m, where Ty (t) = wmi(t)/Gn-
Let now

Ui (1) = @i Um—115 - Um—10) () + Ui () — Ui ()] (0 =1,...,n)
and
Ymi(t) = Umi(t) = @i(t) (i=1,...,n)
for every natural m.
Then, by (2.4.45), (2.4.46) and the equalities

djOti<ti) = (—1)j djcii(ti), djqu(ti) = (—1)j djﬂmi(ti> (j = 1,2; 1= 1, . ,n),
we find that
sgn(t — i) dym;(t) < (Ynmi(t) + @i (1)) dei(t) for t € [a,b] (i=1,...,n),
(1) djymi(ts) < (Ymi(ti) + @ri(ts) djcis(ti) (G=1,2; i=1,...,n)
and
ymz( )<COZ (.7: 1,2 Z':L...,TL),
where _
Coi = EOi(ym—l 1o e 7ym—1n) +1 (j = 172’ L= 1a cee 7”)

for every natural m.
By Lemma 2.2.6, we have

yri(t) <y (t) for t€la,b] (i=1,...,n; m=1,2,...), (2.4.47)

where x*

r.i is a solution of the problem

i (8) = (@i () + @i (1) dei(t), 5y (8:) = coir

Due to condition (2.4.36), the latter problem has the unique solution z,, and by the variation-of-
constant formula (1.1.12), this solution is given by the equality

w%@%=j@mﬁﬂmhﬁ+%®{%ri/(]%%@M%@Od%lﬁ%

for t€la,b] (i=1,...,n; m=1,2...).

Hence, by the integration-by-parts formula and equalities (0.0.13) and (0.0.14), we conclude that

mx>vxﬁm+/%x><>mx>

C Y gumda) da 0+ Y q;n<r>d2ai<r>d2vil<r>}

ti<r<t t;<T<t

:yi(t){c0i+/tq;i(r)d(] s)doi(s)— > diai(s)diy; H(s)+ Y daci(s) day; (s ))}

ti<s<T t;i<s<t

i 7

:'yi(t){cori—/tqu(T)d(ai(T)'yi1(7‘)—/0@-(5) d%l(s))} for t>t; (i=1,...,n; m=1,2,...).

In addition, by Proposition 1.1.2 (see equality (1.1.13)), we get

0 =197 a0 + [ el 6) for tefat] (=1 m)
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and, therefore, we obtain
t
() =5i(t) (cm - /q:m.(T) d%l(T)) for t>t; (i=1,....,n; m=1,2,...). (2.4.48)

The inequality (2.4.48) for ¢ < ¢; can be verified analogously.
By definitions of ¥, ¢,;, wi and n;, from (2.4.47) and (2.4.48) it follows that

ymz(t) < w; (ym—lh ce 7ym—ln)(t) + 'yl(t)

Y ) dT) + Y w<r+>d2umi<f>}

t
0] [ dsmie)
i tai <TSEY tai ST

S Wilm-115- -+ Um—10) () + [[illoo

+ ”%”00”%'_1”00(SC(ﬂmi)(b) - SC(ﬂmi)(a)) + Z d1Tmi(T) + Z AT (T)

a<r<b a<r<b
< WiTm-115- - Tmo1n) () + illoo (14 197 oo (i (b) = Timi(a))).-
So,
Ui (1) S wWi(U_11s -+ Jm_1n)(t) +1n for t €la,b] (i=1,...,n; m=1,2,...).
This, according to (2.4.41), implies
Upmi(t) < z2mi(t) for t€a,b] (i=1,...,n; m=1,2,...)

and N N

> Nmilloe <D zmille = pm < p (m=1,2,...).

i=1 i=1

Hence, estimates (2.4.39) are valid. Since p does not depend on (yg;);, these estimates will be also
valid if yo; =0 (i = 1,...,n). O
2.4.3 Proof of the results

Proof of Theorem 2.4.1. According to Theorem 2.2.1, problem (2.4.1), (2.4.2) has the unique solution
(;)"_1. On the other hand, due (2.4.6) and (2.4.7), for every i € {1,...,n} and every natural m, by
variation-of-constant formula (1.1.12), the function x,,; is a solution of the Cauchy problem

dxm,- (t) = Tmi (t) d’dt(t) —+ Z Tm—1 l(t) d(azl(t) — 5zlal(t)) + dfz(t),
=1

Tmi(ti) = Li(Tm—11,- -, Tm—1n) + Coi
and, therefore,
(i (t) = Tmi(t) = (2i(t) — Tmi(t)) dai(t) + > (@1(t) = Tm-12(t)) d(aa(t) — duds(t)),  (2.4.49)
=1
.Tl(tl) — Iml(tl) = &(Zl —Tm—11y+-sLpn — ZL’m_ln). (2450)

Put
Ymi(t) = |Tmi(t) —2;(t)] (i=1,...,n; m=1,2,...).
Then with regard for (2.2.6)—(2.2.8), from (2.4.49) and (2.4.50), by Lemma 2.2.1, it follows that for
every natural m the functions y,,; (¢ = 1,...,n) satisfy the inequalities

sgn(t — ;) dymi(t) < ymi(t) dei(t) + Zym—u(t) d(cu(t) — 6uci(t)) for t €la,b] (i=1,...,n),
=1
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( 1 Jyml i <Zym 1l dcll( )(t) (]:1a27 i:L'-'an)a
ymz( i)§€0i(ym—1la"'aym—ln) (Z:].,,Tl)

Thus, by virtue of Lemma 2.4.4, we find that

> llymillse < 0™ lloilloe (m=1,2,...),
i=1 i=1

where p > 0 and 6 €]0,1[ are the constants independent of m and (yo;)?_,. Hence estimate (2.4.8)
holds, where po = p >~ [[yoi[oc- O
i=1

Corollary 2.4.1 immediately follows from Theorems 2.2.2 and 2.4.1.

Corollary 2.4.2 follows from Theorems 2.2.3,2.4.1 and Remark 2.2.4.

Corollary 2.4.3 follows from Theorem 2.4.1 and Corollaries 2.2.1 or 2.2.2.

Now, consider Remark 2.4.1. Let the conditions of Theorem 2.4.1 be fulfilled. Let ~v,,; € R
and A,,; € BV([a,b;R) (i = 1,...; m = 1,2,...) be arbitrary sequences of numbers and functions
satisfying the condition

lim e, =0, (2.4.51)

m——+oo

where

n b
en =3 (sl + V/(A0n).
i=1 a
Let (ZTo;)!_; € BV([a,b]; R™) be arbitrary. Consider the sequence

fm'L(th) = gi(fmfl 1y--- 7fm71n) + Coi + Ymi (7' = ]-7 e 7n)7
frnz(t) = PYZ(t?t’L)fm’L(t’L) + wi(fm—l 1r- s Tm—1n, fz + Aml)(t) for ¢ € [CL, b] (Z - 17 s 7”)3
where the operators w; : BV([a, b]; R"™1) — BV([a,b];R) (i = 1,...,n) are defined by (2.4.7).

As above, in proving of Theorem 2.4.1, we can conclude that the function Z,,; is a solution of the
Cauchy problem

dZmi(t) = Tmi(t )+ Z Tm—11(t) d(au(t) — duai(t)) + d(fi(t) + Ami(t)),
Tmi(t;) = éi(xm,l Lyee s Tme1n) + Coi + Ymi
for every i € {1,...,n} and natural m. From this we find that
A(Trni(t) — wmi(t)) = (Tmi(t) — 2mi(t)) dag (t)

+ Z(fm—u(t) — Tm—11(t)) d(aq(t) — diai(t)) + dAnyi(t),

=1

!
Ti(ti) — Tmi(ts) = 4; (fm—n — XTm—11y-++,Tm—1n — l"m—ln) + Mmi

for every i € {1,...,n} and every natural m.
If we put

Ui () = Tmi(t) — ()] =1,...,n; m=1,2,...),
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then, as above, for every natural m, we find that
sgn(t — ;) dymi(t) < ymi(t) dc;i(t)

+Zym,1l(t) d(cii(t) — duci(t)) + dumi(t) for ¢t €la,b] (i=1,...,n),
=1

ym—ll(ti) djcil(ti) + djumi(t,-) (] = 1, 2, L= 1, . ,TL);

ymz(tz) S gOi(ymflb e uymfln) +’Ym (Z = 17 e 7n>7

where U, (t) = V(Ami) and 9 = > [9mil (E=1,...,n).
a i=1
By this and Lemma 2.4.4, there exists a positive number p and ¢ €]0, 1] such that

n m
Z ”fmi — xmi”oo < nglém—l (m =1,2,... ),
i=1 =0

where g9 = Y ||Toi — %0il|oo- Thus, in view of (2.4.51), we obtain
i=1

n
lim > " [|2; = Tmillee = 0.
m—o0 i—1

Consequently, the sequence (Zp,;)"; (m = 1,2,...) approximates the solution (x;)_,, as well.



Chapter 3

Two-point boundary value
problems for systems of generalized
ordinary differential equations

3.1 Statement of the problem. Unique solvability

This section is devoted to the investigation of the problem of existence of solutions of a linear system
of generalized ordinary differential equations

dz = dA(t) - x + df(t) for t € [a,b] (3.1.1)
satisfying the two-point boundary value condition
Liz(a) + Loz (b) = co (3.1.2)
and, in particular, the condition
xi(a) = pixi(b) + o (i=1,...,n). (3.1.3)
Below, unless otherwise stated, we assume

A= (air)ir=1 € BV([a,0;R™™), f = (fi)i=1 € BV([a,0];R");
Li, Lo e R™" g €R"”, ¢ €ER, ;; €R (i=1,...,n).

Along with problem (3.1.1), (3.1.2), we consider the corresponding homogeneous problem

dx = dA(t) - x, (3.1.1p)
Lixz(a) 4+ Loz(b) = 0. (3.1.29)

In this section we realize the results given in Chapter 2 to problems (3.1.1),(3.1.2) and (3.1.1),
(3.1.3).

3.1.1 Formulation of the results

Theorem 3.1.1. The boundary value problem (3.1.1), (3.1.2) is uniquely solvable if and only if the
corresponding homogeneous problem (3.1.1p), (3.1.2¢) has only the trivial solution, i.e., if and only if

det (L1Y (a) + L2Y (b)) # 0, (3.1.4)

94
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where Y is a fundamental matriz of system (3.1.1p). If the latter condition holds, then the solution x
of problem (3.1.1), (3.1.2) admits the representation

b
x(t) = zo(t) + /dsg(t,s) - f(s) for t € a,b],

where xg s a solution of problem (3.1.1g),(3.1.2), and G is the Green matriz of problem (3.1.1p),
(3.1.20).

Hence, in view of (2.1.4), the Green matrix of problem (3.1.1p), (3.1.2¢) has the form

=Y (t)(L1Y (a) + L2Y (b ) Y(a)Y71(s) for a<s<t<b,
G(t,s) =LY () (L1Y(a) + LQY(b))7 LgY(b)Yﬁl(s) for a <t<s<b,
Onxn for a<t=s<b.

Proposition 2.1.1 for the case under consideration has the following form.

Proposition 3.1.1. Let the matriz-function A € BV ([a, b]; R™*™) be such that condition (1.1.8) hold.
Then the boundary value problem (3.1.1), (3.1.2) is solvable if and only if the condition

(co— L2 F(b)) 'y =0
holds for every v € R™ such that
(LQ F(b))T’Y = 0p,

where

/Y ) dA(A, £)(7).

So, if condition (3.1.4) holds, then only the vector v = 0,, satisfies the homogeneous system
appearing in Proposition 3.1.1 and, therefore, condition (1.1.18) holds evidently. If condition (3.1.4)
is violated, then problem (3.1.1),(3.1.2) is solvable only for ¢, which satisfies the conditions of the
proposition.

Remark 3.1.1. Let the matrix-function A satisfy the Lappo-Danilevskii condition at the point a.
Then problem (3.1.1), (3.1.2) is uniquely solvable if and only if

det <L1+L2exp(Sc(A)(b)) H (I, + d2 A(T)) H (In — d1A(T))” )7'50

a<t<b a<t<b

Theorem 3.1.2. The boundary value problem (3.1.1), (3.1.2) is uniquely solvable if and only if there
exist natural numbers k and m such that the matriz

k—1 k—1
M, =L+ ZLQ[A]Z(b) ( My = Lo + ZLl[A},(a) )

i=0 i=0
is nonsingular and the inequality
T(Mk,m) <1 (3.1.5)

holds, where

,_.

m—

My = + | [Ali| |M,; " La| Vi (A) (b)
=0
—1

S m

(mm:mww+ H%um;mwww)

i=0
the operators [A]; (i = 0,1,...) and V;(4) (i = 0,1,...) are defined, respectively, by (1.1.351) and
(1.1.372) (resp. (1.1.353) and (1.1.372)).
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Theorem 3.1.2;. Let there exist natural numbers k and m such that the matriz

k—1 k—1
My =—-L1+ L2(Z(A)i(b) - 1) ( My =—Ls + Ll(Z(A)i(a) - 1) )
i=0 =0
is nonsingular and inequality (3.1.5) holds, where
M = (VAN w8 + (L + 3 (Al ) (M Lal(V(A))e(0)
i=0

(Mt = V) + (1 3 1) 1V EalVCAa) )

=0

the matriz-functions (A); (i = 0,1...) and (V(A)); (¢ = 0,1,...) are defined by (1.1.361) (resp.
(1.1.362)). Then problem (3.1.1),(3.1.2) is uniquely solvable.

Corollary 3.1.1. Let
det(Ly + La) #0 (3.1.6)

and
b
r(LO\/(A))) <1, (3.1.7)
where
Lo = Iy + |(Ly 4 La) ' (|1 L] + | L2)-
Then problem (3.1.1), (3.1.2) is uniquely solvable.

For the system
dx(t) = edA(t) - z(t) + df (¢) (3.1.8)

with a small parameter ¢ from Theorem 3.1.2 follows

Corollary 3.1.2. Let either condition (3.1.6) hold, or there exist a natural number k such that the
conditions

Li+ Ly = Opxpn, det (Ll(A),(a) + LQ(A)z(b)) =0 (Z =0,...,k— 1)

and
det (Ll(A)k(a) + LQ(A)k-(b)) #0

hold. Then there exists g > 0 such that problem (3.1.8), (3.1.4) is uniquely solvable for every e €]0,g] .

The results given above are the particular cases of the results given in the previous section.
Let us consider the specific theorems for the case v = 2 in (2.1.2).

Theorem 3.1.3. Let conditions (3.1.6), (3.1.7) and
|(Ly+ Lg) ™ 'Li] < Ly (i=1,2) (3.1.9)
hold, where Ly € R™*™. Then problem (3.1.1),(3.1.2) is uniquely solvable.

Definition 3.1.1. Let m,ry,...,ry, and ny,..., 0y (0 = ng < ng < -+ < n, = n) be natural
numbers; A = (alj);fj’;nl, where ay; (I =1,...,7rj; j =1,...,m) be nondecreasing on [a, b] functions;
and let P = (BJ)?JZ, where Pj = (pijir)ip=y (! = 1,...,75; j = 1,...,m) be such that py €
L([a,b],R;aq;) (i, k =mnj_1+1,...,n;). Then by Q.,(2,P) we denote the set of all matrix-functions
A € BV([a, b]; R"*™) such that

a;x(t) =0 for t €la,b] (i=nj_1+1,...,n53 k=n;+1,...,n; j=1,...,m) (3.1.10)
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and
'I"]‘ t
bk (t Z/plj,k T)dayj(t) for t € la,b] (i #k; i,k=n;_1+1,....n5 j=1,...,m), (3.1.11)
1=1
where
by (t) = ase(1) ( Y Y den) dan- Y S duan(r) .dzark<7>)
a<t<tr=n;_1+1 a<t<tr=n;_1+1
(t,k=nj_1+1,...,n5; j=1,...,m).
Theorem 3.1.4. Let there exist o € {1,2}, natural m,ry,..., 7y and ny,...,ny, (0 =np < Ny <

- <y =n) such that A = (aik)} =, € Qm(P,2),

(—-1)° <bj“- bjii( Z/plﬂ“ 7) doy; (T )) <0 fora<s<t<b (j=1,...,m), (3.1.12)

and
nj nj
(Y om0 Y e?) <0
i k=n;_1+1 i=ny_1+1
for t €la,b], (z;)iz; eR" (I=1,...,r55 j=1,...,m), (3.1.13)

where hoij € L([a,b),Ry;ay5). Let, moreover, Ly € R™™ be a nonsingular matriz such that the
conditions

(-1)7(Loz *x —l, (xxx)) <0 for z € R", (3.1.14)
L4+ (=D)'d1B,j(t) > 0 for t€fa,b] 1=1,2;j=1,...,m) (3.1.15)

and
(=17 (Ioyg,, (bya) = 1) <0 (j=1,...,m) (3.1.16)

hold, where Lo = (L7 'Lo) "Ly Ly, 1, > 0,

5os(t) =2 [ haty(7)day(s) (5= L.,
=1

and the functions g, (t,a) (j = 1,...,m) are defined by (1.1.9). Then problem (3.1.1),(3.1.2) is
uniquely solvable.

If m =1 and 7, = 1, we use designation Q(P, «) instead of @Q,,,(P,2). In this case we have the
following

Definition 3.1.2. Let a be a function nondecreasing on [a,b], and P = (pi)}y—,, where pix €
L([a,b]);Ry;a) (i,k = 1,...,n). Then by Q(P;«) we denote the set of all matrix-functions A =
(aik)i =1 € BV([a,b]; R™*") such that

t

bir(t) = /pik(T) da(r) for t €la,b] (i #k; i, k=1,...,n),

where

n

bik = alk — %Z ( Z dla“ dlalk Z dga“ dgalk(7)> (Z,k = 1, e ,n). (3117)

=1 a<7<t a<t<t
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In this case Theorem 3.1.4 takes the following form.

Theorem 3.1.41. Let there exist o € {1,2} such that A = (a;x)}}—, € Q(P;a),

(—1)° (bii(t) — bis(s) — /tp“(f) da(f)> <0 for a<s<t<b,

S

n

07 (3 paltman —ho(0)DaF) <O for t€ ab], (@i €

ik=1 i=1

where v is a function nondecreasing on [a,b], pi. € L([a,b];R;a) (i,k =1,...,n); hy € L([a,b;R;; ).
Let, moreover, L1 € R™ ™ be a nonsingular matriz such that conditions (3.1.14),

14+ (=1)!'diB,(t) > 0 for t € [a,b] (I =1,2)
and
(=1)7 (lovs, (b,a) — 1) <0
hold, where Lo = (Ly*La)" L7 Lo, 1, > 0, B,(t) = 2fh da(r), and the function s, (t,a) is
defined by (1.1.9). Then problem (3.1.1),(3.1.2) is umquely solvable.

Under A\g(H) and \°(H) we understand, respectively, the minimum and maximum eigenvalues of
the symmetric matrix H € R™**™,

Corollary 3.1.3. Let A = (ai)j -, € Q(P;a), P = (pik)ffk:l and a nonsingular matriz L; € R"*"
be such that the conditions

L+ (=1)72X0(C (1)) dja(t) > 0 for t € [a,b] (j =1,2) and Ao(Lo) s, (b,a) > 1

or
L+ (=1)72X°(C(t)) dja(t) > 0 for t € [a,b] (j =1,2) and A°(Lo) 7, (b,a) < 1
hold, where « is a function nondecreasing on [a b] pir € L([a, b} R;a) (i,k = 1,...,n), C(t) =
¢
P(t)+PT(t), L= (L7'Ly)" LT Lo, Bi(t) = 2fA0 7)) de(T) ) =2 [ A(C(1))da(r), and the
0

functions vg, (t,a) (I =1,2) are defined by (1.1.9) Then problem (3 1.1),(3.1.2) is umquely solvable.

We assume that neither the matrix L, nor L is nonsingular.
We consider the case det(Lq) # 0. The second case will be considered analogously.
Let L7! = (Bi)i=, and (L7 Ly = (@ir)ij=- In this case, the two-point boundary value
problem (3.1.1), (3.1.2) is equivalent to the following Cauchy—Nicoletti type problem:
dxr = dA(t) -z + df (t) for t € [a,b],

3.1.18
$l(tl)=£r(l‘1,,l‘n)+cal (i:l,...,n), ( )

where © = (z;)4,
n n
ti=a, £(x1,...,0,) = Zauzl(b), chi = Zﬁilcm (i=1,...,n).
=1 =1

For the case under consideration Definition 2.2.1 takes the following form.

Definition 3.1.3. We say that a pair (C,fo) consisting of a matrix-function C' = (cu)jj=; €
BV([a, b]; R™*™) and a positive homogeneous nondecreasing bounded vector-functional £y = (£g;)"_; :
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BV ([a,b; R} ™) — R% belongs to the set U(a) if the functions ¢; (i # I; 4,0 = 1,...,n) are
nondecreasing, and the system

dri(t) <Y ay(t)dey(t) for te€lab], t#1t; (i=1,...,n),

~
—

dywi(a) < wi(a)daca(a) (i=1,...,n)

N
Il
—

has no nontrivial, nonnegative solution satisfying the condition
zi(a) < Lloi(21,...,zn) (i=1,...,m).

Remark 3.1.2. In the case where the matrix L, is nonsingular, we can assume
n
Coi(wr, .. wn) = D el |z (D).
k=1

Similarly, we can construct the functionals £y;(z1,...,2,) (i = 1,...,n) when the matrix Lo is non-
singular. In the latter case we define the set U(b).

So, we can use the results of Section 2.2. They have the following forms.
Theorem 3.1.5. Let the conditions
Se(aii)(t) — se(ai)(s) < se(eii)(t) — se(ciw)(s) for a<s<t<b (i=1,...,n), (3.1.19)
|sc(ail)(t) — sc(ail)(s)| < selea)(t) — se(ca)(s) for a<s<t<b (i#li,l=1,...,n), (3.1.20)
|djaii(t)] < |djci()]; |djaa(t)] < djea(t) t€la,b] (G=1,2 i1 il=1,...,n) (3.1.21)
and

‘Zailacl(b)‘ < Loi(|z1l, -, |zal) for m € BV([a,b];R) (i,l=1,...,n)
=1

hold, where a matriz-function C = (cq)j—; € BV([a,b];R"") and a vector-functional by = (Loi);;
are such that

(C,ty) € U(a).
Then problem (3.1.1),(3.1.2) is uniquely solvable.
Corollary 3.1.4. Let the conditions

Se(ai)(t) = se(ai)(s) < /hii(r) dsc(a;)(T) for a<s<t<b (i=1,...,n),

|sc(au)(t) — sclai)(s)] < /hil(T) dsc(au)(T) for a<s<t<b (i#1lil=1,...,n)

S

and

|d]CL“(t)| < |h“(t)‘ djOél(t), |djau(t)\ § hzl(t) djOél(t) fO'f' te [a,b] (] = 1,2, 1 # l; Z,l = ].,. .. ,n)

hold, where ay (I =1,...,n) are functions nondecreasing on [a,b] and having not more than a finite
number of discontinuity points, hy; € L*([a,b],R;;), hy € LF([a,b],Ry;aq) (0 #1; 1 =1,...,n),
1 < pu < +oo. Let, moreover,

‘Zailxl(b)‘ < Z Zlmikak|
=1

m=0 k=1

vism(ar) Jor xr € BV([a,b];R) (i,k=1,...,n)
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and
r(H) <1, (3.1.22)

where lypix € Ry (m=0,1,2;4,k=1,...,n), 142 =1, and the 3nx3n-matriz H = (41 m+1)?)m:0
is defined as in Theorem 2.2.2. Then the statement of Theorem 3.1.5 is true.

Corollary 3.1.5. Let conditions (3.1.19)—(3.1.21),

1+ (=1 djcii(t) >0 for t€[a,b] (j=1,2;i=1,...,n), (3.1.23)
and
lpilyi(b) <1 (i=1,...,n) (3.1.24)

hold, where ¢;; (i = 1,...,n) are nonincreasing functions and ¢; (i # 1; i,l = 1,...,n) are non-
decreasing functions; () = v, (t,a), the function ~,,(t,a) is defined according to (1.1.9), and
a;(t) = cii(t) — cii(a) (i =1,. ) Let, moreover,

rM) <1, (3.1.25)

where M = (wi)}—, is the constant matriz defined as in Theorem 2.2.3. Then problem (3.1.1), (3.1.3)
is uniquely solvable.

Remark 3.1.3. The results similar to Theorems 3.1.4 and 3.1.4;, Corollary 3.1.3, and so on, are
likewise true for the case where the matrix Lo is nonsingular.

3.1.2 Proof of the results

Proof of Theorem 3.1.3. Sinve the matrix L; 4+ Lg is nonsingular, the system
drx = dO,xn - T (3.1.26)

has only the trivial solution satisfying the boundary value condition (3.1.2g). So, the Green matrix of
problem (3.1.26), (3.1.2) has the form

7(L1 + Lg)ilLl for a<s<t< b,
G(t,s) =< (L1 + L) 1Ly for a <t<s<b,
Onxn for a<t=s<b.

Now, taking into account (3.1.7) and (3.1.9), we obtain

b
/\g(t,7)|dV(A)(7') <M for t € Ja,b],

where
b

M=ILy\/(A) and r(M)<1.

a

These conditions, due to Theorem 1.1.3, guarantee the unique solvability of problem (3.1.1),
(3.1.2). O

Proof of Theorem 3.1.4. Due to Theorem 3.1.1, it suffices to show that problem (3.1.1p), (3.1.2¢) has
only the trivial solution. Assume the contrary, i.e., the problem has nontrivial solution x = (z;)?_;.
We put

ny
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Then by the definition of the solution of system (3.1.1p), taking into account (3.1.10) and using
(0.0.12), we conclude

wr(t) — >§j(z/ (M dzi(r)— Y ()2 + Y (dzmr))g)

+ > (2 () =} (r=) = 2wi(r) duai(7)) + D (xf(7+)x3(T)Qxi(T)dei(T)))

=2 (/aﬁi(T)CL'k(T) dair(r) = Y wi(T)aw(r) diain(t) = Y wi(r)wk(r) dzaik(T))

i,k=1 s<T<t s<T<t

ik=1 =1

On the other hand,
D () (0) = (1))
_Z( Z dyxi (1) (22i (1) — dai(T Z do; () (2 ( )—l—dgl‘i(T)))

i=1  s<7t<t s<7<1t
=2 Z < Z 1‘1’(7' ( )(dlazk - = Z dlalz dlalk(7)>
i,k=1 “s<7<t
+ Z (dgazk - = ngah dgalk(T))) for a <s<t<b.
s<T<t

Thus, due to (3.1.17), we get

uy (t) —uy (s _22/ ) dbysi (T Z /x Va2 (7) dbyir (1) for a <s <t <b.

i#£k; i,k=1

Let us consider the case 03 = 1. Then from the last equalities, taking into account (3.1.11) and
(3.1.12), we find that

ul(t) _ul Z/pllu dall Z /-’171 xk dblzk( )

I=11i=1 i#k;i,k=1"%

1 t

= 22 Zl /pllik(T)xi(T)l'k(T) dogi (1) for a <s<t<b

I=1ik=1"
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and, consequently, due to (3.1.13),

t

uy (t) — uy(s) > 22/@1(7) > ai(r)dan(r) = /ul(T) dB11(7) for a <s<t<b.
=17 i=1

S

From this, it is evident that the function v(¢) = uq(t) satisfies the conditions of Lemma 2.2.6,
where tg = a and a(t) = (11(t), which is nondecreasing. Thus, by the lemma, we have

ui(a)ys,, (t,a) <wuq(t) for t € [a,b].
If we observe that by (3.1.15) the function vgs,, is positive, we get
ur(a) < 75} (b, a)ur (b).
We show in the same way that
uj(a) < vﬁ_li (b,a)u;(d) (j=1,...,m). (3.1.27)
Let
Zu] ) for t € [a,b].
It is evident that u(t) = z(¢) * 2(¢). In addition, due (3.1.2¢), we get
u(a) = Loxz(b) * z(b),
and, due to (3.1.14), we find that
I (z(b) * 2(b)) < Loxz(b) * x(b).
Therefore, using (3.1.16), we conclude
< (v, (b,a) "ty (b). (3.1.28)
j=1

From this, in view of (3.1.16), we obtain u(b) = 0. Indeed, in the opposite case, u;(b) # 0 for some
jeA{l,...,m}. So, due to (3.1.16), from (3.1.28) we get the contradiction u(b) < u(b).

Thus, 2 will be a solution of system (3.1.1p) satisfying the Cauchy condition z(b) = 0,,. But this
Cauchy problem has only the trivial solution. The obtained contradiction proves the theorem. Hence
z(t) = 0,.

Similarly, we establish that z(t) = 0,, in the case o = 2, as well. We only note that we have the
inequalities

uj(a) =75, (b,a)u;(b) (j=1,...,m)
instead of (3.1.27). O
We use the following lemma from [47, Lemma 1.9].
Lemma 3.1.1. Let H € R™"*" be the symmetric matriz. Then

M(H) (zxz) <Hrxz for t € R" (Hzxz < X°(H)(zx2) for x €R™).

Proof of Corollary 3.1.3. It is evident that

(C(t)xxx) for ¢ € [a,b], x €R"™

N

Z pik(t)rizy = P(t)r * 2 =
ik=1
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Due to Lemma 3.1.1,

M (Ct) (zxz) < Ct)xxx for t € a,b], z€R"
(Ct)zxz < X(C(t) (z xz) for t €[a,b], z€R™)
and
Mo(Lo) (z+ ) < Loz xx for € R* ( Loz xx < X°(Lo) (x* ) for z € R™).

So, conditions (3.1.13) and (3.1.14) are fulfilled for hy(t) = 3 Ao(C(t)), ha(t) = $ A°(C(t)) and I; =
Xo(Lo), la = X°(Lg), respectively. As to the other conditions of Theorem 3.1.4, they are fulfilled
evidently. Therefore, the corollary follows from the theorem. O

Finally, we note that the algebraic properties of problem (3.1.1), (3.1.2) are investigated in [73].

3.2 Nonnegativity of solutions of two-point
boundary value problems

In this section, we consider the question on the existence of nonnegative solutions of problems (3.1.1),
(3.1.2) and (3.1.1),(3.1.3). We assume that the suppositions of the previous section are valid. In
particular, we assume that the matrix L; is nonsingular, LT' = (Bi)i=, and (L7 Ly = (Qit)f1=1-
As above, each of these problems can be rewritten in the form (2.2.1),(2.2.2).

We realize the results of Section 2.3 for the considered two-point boundary value problems.

Theorem 3.2.1. Let the matriz-function A = (ai)i;—, € BV([a,b]; R"*") and the matrices L1 and

Lo be such that the functions a; (1 #1; 4,0 =1,...,n) are nondecreasing, and the conditions
ay(t) —au(s) <ecu(t) —cu(s) for a<s<t<b (i,l=1,...,n), (3.2.1)
n
fi are nondecreasing, Zailcm >0 (i=1,...,n) (3.2.2)
1=1
and

0< Zailxl(b) < loi(x1,...,2pn) for x € BV([a,b;Ry) (i,01=1,...,n)
=1

hold, where a matriz-function C = (cq)j—; € BV([a,b];R"*") and a vector-functional lo = (Loi);;
are such that

(C, o) € U(a).
Then problem (3.1.1),(3.1.2) has one and only one solution and it is nonnegative.

Corollary 3.2.1. Let the matriz-function A = (au)i;—; € BV([a,b]; R"*") be such that the functions

ay; (i #1;4,0l=1,...,n) are nondecreasing and conditions (3.2.2) and
t
a;(t) —aqy(s) < /hil(T) doi(T) for a<s<t<b (i,l=1,...,n) (3.2.3)
hold, where o; (i = 1,...,n) are functions nondecreasing on [a,b] and having not more than a finite

number of discontinuity points, hy; € L*([a,b],R;e;), hy € L*([a,b],Ry;aq) (4 £ 1; 1 =1,...,n),
1 < u < +oo. Let, moreover, condition (3.1.22) hold and the matrices L1 and Lo be such that

n

2 n
0< Zaﬂxl(b) < Z Zlmiknxk

=1 m=0 k=1

lv,smm(an) for xn € BV([a,b];Ry) (i,k=1,...,n),

where the constant matric H is defined as in Theorem 2.2.2. Then problem (3.1.1),(3.1.2) has one
and only one solution and it is nonnegative.
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Corollary 3.2.2. Let the matriz-function A = (aq)};—, € BV([a,b]; R"*™) be such that the functions
ay (1 #1; 4,1 = 1,...,n) are nondecreasing and conditions (3.2.2) and (3.2.3) hold, where oy (I =
1,...,n) are the functions nondecreasing on [a,b] and having not more than a finite number of
discontinuity points, hi; € L*([a,b],R; «;), hy € L*([a, b, Ry ;) (1 £ ;4,0 =1,...,n), 1 < pu < 4o0.
Let, moreover,

r(Ho) < 1,

where Ho = ((Akmijl Rk M,S,”(ai))ﬁk:l)%j:o is a 3n x 3n-matriz, and Agmij, &i; (5,m=0,1,2; 4,k =
1,...,n) and v are defined as in Corollary 2.2.1. Then problem (3.1.1), (3.1.2), where Ly = Oy xn,
has one and only one solution and it is nonnegative.

By Remark 2.2.2) Corollary 3.2.2 has the following form for h;(t) = hy = const (i, =1,...,n)
and p = +o0.

Corollary 3.2.3. Let the matriz-function A = (aq)};—, € BV([a,b]; R"*™) and the matriz Ly be such
that the functions ay (i #£1; 1,1 =1,...,n) are nondecreasing and conditions (3.2.2) and

aii(t) — aii(s) < hy(a(t) —a(s)) for a<s<t<b (i=1,...,n)

hold, where a is a function nondecreasing on [a,b] and having not more than a finite number of
discontinuity points, h;; € R, hy € Ry (i #1; 4,1 =1,...,n). Let, moreover,

pOT(H) < 17

where po and the constant matric H = (hik)?,kd are defined as in Corollary 2.2.2. Then problem
(3.1.1),(3.1.2), where Ly = Opxn, has one and only one solution and it is nonnegative.

Corollary 3.2.4. Let the matriz-function A = (ai)j;—, € BV([a,b];R"*") and the matrices L1 and
Ly be such that the functions ay (i #1; 4,1 = 1,...,n) are nondecreasing, the conditions (3.1.23),
(3.1.24), (3.2.1), (3.2.2) and

0< Zailﬂcl(b) < |\wi|lzi(r) for x; € BV([a,b];Ry) (i,1=1,...,n)
1=1

hold, where the functions c¢; (i = 1,...,n) are nonincreasing, and ¢y (i # 1; 1,1 = 1,...,n) are
nondecreasing; p; € R, 7, € [a,b], 7o # a (i = 1,...,n); A(t) = 74, (¢,a), the function v, (¢, a)
is defined according to (1.1.9), and a;(t) = ¢;;i(t) — ¢i(a) (i = 1,...,n). Let, moreover, condition

(3.1.25) hold, where M = (pi1)},—, is the constant matriz defined as in Theorem 2.2.5. Then problem
(3.1.1),(3.1.2) has one and only one solution and it is nonnegative.

Remark 3.2.1. In particular, the statement of Corollary 3.2.4 is true for condition (3.1.3).

Corollary 3.2.5. Let the matriz-function A = (au)}j—; € BV([a,b]; R"*") be such that the functions
ay; and f; (i #1; i,1 = 1,...,n) are nondecreasing, conditions (3.1.23), (3.1.24) and (3.2.1) hold,

where ¢;; (i =1,...,n) are nonincreasing functions, and ¢ (i #1; i,1 =1,...,n) are nondecreasing
ones; 1 € R, the functions \;i(t) = v.,,(t,a) (i =1,...,n) defined according to (1.1.9) are monotone
on the intervals [a,t;[ and ]t;,b] (i =1,...,n). Let, moreover,

CoiZO (i=1,...,n)

and condition (3.1.25) hold, where M = (wi1)i;—, is the constant matriz defined as in Theorem 2.2.4.
Then problem (3.1.1), (3.1.3) has one and only one solution and it is nonnegative.

3.3 On a method for constructing solutions
In this section, we present a method for constructing solutions of problems (3.1.1),(3.1.2) and (3.1.1),

(3.1.3).
We assume that neither the matrix L1, nor Ly is nonsingular.
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We consider the case det(L;) # 0. The second case will be considered analogously.

Let L1 = (Bu)! =y and (—Li") Ly = (c)—;. In this case, as in Section 3.1, the two-point
boundary value problem (3.1.1),(3.1.2) is equivalent to the Cauchy—Nicoletti type problem (3.1.18),
where

n n
ti=a, £(x1,...,2,) = Zaﬂxl(b), i = Zﬁilcm (i=1,...,n).
=1 =1
As in Section 3.1, we use the set U(a) and if the matrix L; is nonsingular, we can assume

boi(z1y .. xn) = Z |evit] |z (b))
k=1

Similarly, we can construct the functionals fp;(x1,...,2,) (i = 1,...,n) when the matrix Lo is
nonsingular. In the latter case, we define the set U(b).

So, we can use the results of Section 3.1.

As the zero approximation to the solution of problem (3.1.1),(3.1.2), we choose an arbitrary
function (zg;)7~, € BV([a,b];R™). If the (m — 1)-th approximation (x,,—1)" ; is constructed, then
by the m-th approximation we take (2.,)j;, i-th components of which are defined by

Tmi(a) = Zailatm_u(b) + Zﬁilcm (i=1,...,n), (3.3.1)
=1 =1

Tmi(t) = 7i(t, a)Tmi(a) + wi(Tm—11,- s Tm—1n, fi)({t) for t€a,b] (i=1,...,n), (3.3.2)
where the operators w; : BV([a, b]; R"*1) — BV([a,b];R) (i = 1,...,n) are defined as
¢
Wi (Y1, -+ Ynt1)(8) = gi (Y1, -+ Ynt1) (1) _'Yi(t7a)/gi(y17~-~7yn+1)(s) dy; (s, a)

a

for t € [a,b] (i=1,...,n); (3.3.3)

n t
gi(y17 .. 7Z/n+1)(t) = Z / yl(s) d(ail(s) - 51laz(s)) + yn-‘rl(t) - yn-i-l(a)
=1
for t €la,b] (i=1,...,n);
vi(t,a) = vg, (t,a), a;(t) = sc(ain)(t) (i=1,...,n),
and the function ~4; (¢, a) is defined by (1.1.9).

Theorem 3.3.1. Let the conditions of Theorem 3.1.5 hold. Then problem (3.1.1),(3.1.2) has the
unique solution x = (x;)f_; and there exist po > 0 and ¢ €]0,1[ such that

D Iz = Zmilloo < pod™ (m=1,2...), (3.3.4)
i=1

where the vector-functions (xm;)j—; (m =1,2,...) are defined by (3.3.1), (3.3.2).

Corollary 3.3.1. Let the conditions of Corollary 3.1.4 hold. Then the statement of Theorem 3.3.1
1s true.

Corollary 3.3.2. Let the conditions of Corollary 3.1.5 hold. Then problem (3.1.1),(3.1.3) has the
unique solution x = (x;)7_; and for an arbitrary function (zo;)i—, € BV([a,b];R") estimate (3.3.4)
holds, where

Tmi(t) = pivi(t, a)rm—14(b) + coi + Wi(Tm_11,. .., Tm_1n, fi)(t) for t €[a,b] (i=1,...,n),
the operators w; : BV([a,b]; R" ™) — BV([a,b];R) (i = 1,...,n) are defined by (3.3.3), and py > 0
and § €10, 1[ are the constants independent of m.

Remark 3.3.1. The above process of constructing the solutions of problems (3.1.1),(3.1.2) and
(3.1.1), (3.1.3) is stable in the sense given above, in Section 2.4.



Chapter 4

The periodic problem for systems
of generalized ordinary differential
equations

4.1 Statement of the problem. Formulations of the theorems
on the existence and uniqueness of solutions

In this section, we investigate the solvability for the linear generalized system
dz(t) = dA(t) - z(t) + df (t) for t e R (4.1.1)
with the w > 0-periodic condition
z(t+w)=x(t) for t e R, (4.1.2)
where w is a fixed positive number, A= (a;x){';—; € BV,(R;R™ ™) and f=(f;)iL; €BVL(R;R"), ie.,
At +w) =A(t)+ C and f(t+w)= f(t)+c for t R, (4.1.3)

where C' € R™*"™ and ¢ € R™ are, respectively, some constant matrix and constant vector.
Moreover, we assume that

det (I, + (—1)7 d;A(t)) #0 for te R (j =1,2). (4.1.4)

We establish a Green type theorem on the solvability of problem (4.1.1),(4.1.2) and represent
a solution of the problem. In addition, we give the effective necessary and sufficient conditions (of
spectral type) for the unique solvability of the problem.

Along with (4.1.1), we consider the corresponding homogeneous system

dx(t) = dA(t) - z(t). (4.1.1p)
Moreover, along with condition (4.1.2), we consider the condition
z(0) = z(w). (4.1.5)

Definition 4.1.1. Let condition (4.1.4) hold and there exist a fundamental matrix Y of problem
(4.1.1¢), (4.1.5) such that

det(D) # 0, (4.1.6)
where D = Y (w) — Y(0). A matrix-function G : [0,w] X [0,w] — R™*™ is said to be the Green matrix
of problem (4.1.1g), (4.1.5) if:

106
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(a) the matrix-function G( -, s) satisfies the matrix equation
dX(t) = dA(t) - X(¢)
on both [0, s[ and |s,w] for every s €]0,w];

(b) for t €]a, b,
G(t, t+) = G(t,1=) = Y (0D Y (@)Y (O)(Iy + d2 A1) F = Y(O)Y T ()T — diA) ™ };

(¢) G(t, -) € BV([0,w],R™*™) for every t € [0,w];

(d) the equality
/ 04(G(w,3) — G(0.8)) - f(5) = 0,
0

holds for every f € BV([0,w],R™).

The Green matrix of problem (4.1.1¢), (4.1.5) exists and is unique in the following sense. If G(¢, s)
and G (¢, s) are two matrix-functions satisfying conditions (a)—(d) of Definition 4.1.1, then

g(tv S) -G1 (ta 5) = Y(t)H*(S)a
where H, € BV([0,w],R™*"™) is a matrix-function such that
H.(s+) = H.(s—) = C = const for s € [0,w],

and C € R™*™ is a constant matrix.
In particular,
Y(t) DY (0)Y~1(s) for 0 <s<t<w,
G(t,s) = Yt) DY (w)Y1(s) for 0<t<s<w,

arbitrary for t =s.

Theorem 4.1.1. System (4.1.1) has a unique w-periodic solution x if and only if the corresponding
homogeneous system (4.1.1g) has only the trivial solution satisfying condition (4.1.5), i.e., when
condition (4.1.6) holds, where Y is a fundamental matriz of system (4.1.1p). If the last condition
holds, then the solution x can be written in the form

x(t) = /dsg(t,s) - f(s) for t €[0,w], (4.1.7)
0

where G : [a,b] X [a,b] — R™ ™ is the Green matriz of problem (4.1.1y), (4.1.5).

Corollary 4.1.1. Let conditions (4.1.3) and (4.1.4) hold, and the matriz-function A satisfy the
Lappo—Danilevskii condition at the point 0. Then system (4.1.1) has a unique w-periodic solution if
and only if

det (eXp(S’C(A)(w)) H (I, + d2 A(T)) H (I, —dA(T))" ! — In) # 0. (4.1.8)
0<7<w 0<7<w

Note that if the matrix-function A satisfies the Lappo—Danilevskii condition at the point 0, then
the matrix-function Y defined by Y (0) = I,, and

Y(t) = exp(Se(A) () [[ Un+deA®) T (Lo — drAlr) ™" for t €]0,w] (4.1.9)

o<r<t 0<7<t

is the fundamental matrix of system (4.1.1¢).
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Remark 4.1.1. Let system (4.1.1p) have a nontrivial w-periodic solution. Then there exists f €
BV, (R,R™) such that system (4.1.1) has no w-periodic solution (see Remark 1.1.2).

In general, it is rather difficult to verify condition (4.1.6) directly even in the case if the fundamental
matrix of system (4.1.1¢) is written explicitly. Therefore, it is important to look for effective conditions
which would guarantee the absence of nontrivial w-periodic solutions of the homogeneous system
(4.1.1¢). Below, we will give the results dealing with this question. Analogous results for ordinary
differential equations have been obtained in [47].

Theorem 4.1.2. System (4.1.1) has a unique w-periodic solution if and only if there exist natural
numbers k and m such that the matriz

k—1
My ==Y ([Al(w) - [41,(0))
=0
is nonsingular and
r(Mym) <1, (4.1.10)
where -
M = Vin(A)(e) + (30 [14Li] ) 1M ] (Ve(A) (@) — Vi(4)(0)),
i=0

the functions [A]; (i =0,...,m—1) and V;(A) (i =0,...,m—1) are defined, respectively, by (1.1.35;)
l

and (1.1.37;) for somel € {1,2}, and c = (2 —

Corollary 4.1.2. System (4.1.1) has a unique w-periodic solution if and only if there exist natural
numbers k and m such that the matriz

is nonsingular and inequality (4.1.10) holds, where

Mo = (VD@ + (B 30 (1) 1M ((V(ADl) — (V(A))e(0).
i=0
the functions (A); (i=10,...,m—1) and (V(A)); (i=0,...,m —1) are defined by (1.1.36;) for some
le{l,2}, and c= (2 — Nw.

Corollary 4.1.3. Let there exist a natural number j such that

(A);(0)=(A)i(w) (i=1,...,5-1)
and
det ((A);(w) — (4);(0)) #0,

where the functions (A); (i =0,...,7) are defined by (1.1.36;) for some l € {1,2}. Then there exists
€o > 0 such that the system
dx(t) = edA(t) - x(t) + df (¢)

has one and only one w-periodic solution for every e €]0,&q] .
Theorem 4.1.3. Let a matriz-function Ag € BV, (R;R™*™) be such that
det (I, + (—=1)7 d; Ao(t)) #0 for t € [0,w] (j=1,2)

and the homogeneous system
dz(t) = dAg(t) - z(t) (4.1.11)
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has only the trivial w-periodic solution. Let, moreover, the matriz-function A € BV, (R;R™ ™) admit

the estimate
w

/|Qo(t,7-)\dV(A—Ao)(7-) <M for t€0,u],
0

where Go(t,T) is the Green matriz of problem (4.1.11), (4.1.5), and M € R}™™ is a constant matriz
such that
r(M) < 1.

Then system (4.1.1) has one and only one w-periodic solution.

Formula (4.1.7) can be written in a simpler form if we introduce the concept of the Green matrix
for problem (4.1.1p), (4.1.2).

Definition 4.1.2. A matrix-function G, : R x R — R™*" is said to be the Green matrix of problem
(4.1.1p), (4.1.2) if:

(a)
Go(t+w, 7+ w)=G,(t, 1), Gu(t,t+w)—G,(tt)=1I, for t,7 €R; (4.1.12)

(b) the matrix-function G, (-,7) : R — R™ " is a fundamental matrix of system (4.1.1¢) for every
TeR.

Theorem 4.1.4. Let conditions (4.1.3),
det (I, = d;A(t)) #0 for teR (j =1,2) (4.1.13)

hold and system (4.1.1¢) have only the trivial w-periodic solution. Then system (4.1.1) has a unique
w-periodic solution x and it is written in the form

t+w

t) = / Go(t,7) dA(A, A(=A, ))(1) for t € R, (4.1.14)

where G, is the Green matriz of problem (4.1.1p), (4.1.2).

For the periodic problem, we give the definition of the set Q,, (2, P) analogous to the set Q. (2, P)
(see Definition 3.1.1).

Definition 4.1.3. Let m,rq,...,7y, and nq,...,n, (0 = ng < ny < -+ < ny = n) be natural
numbers; A = (ozlj)l”]’ 1» where oy; € BV, (R;R) (I = 1,...,7r5; j = 1,...,m) be the functions
nondecreasing on [0,w]; and let P = (Pl7)zg 1, Where Pl] = (pijik)ip=r (=1,...om53 5 =1,...,m)
be such that pyjik € L, (R;R; uy) (6,6 =n;—1+1,...,n;). Then by Qum (2, P) we denote the set of

all matrix-functions A € BV, (R; R"*¢") such that

a;x(t) =0 for teR (i=n;—1+1,....,n5 k=n;+1,...,n; j=1,...,m),

and
bjir(t f:/plﬂk T)day(t) for teR (i # ks i k=nj_1+1,....n5 j=1,...,m),
=1
where
bjik(t) = aix(t) ( Z Z dyapi(T) - diag(T Z Z d2ari(7)'d2ark(7')>

o<r<tr=n;_1+1 o<r<tr=n;_1+1

(bk=mnj_14+1,...,n5 j=1,...,m).
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If m =1 and r,,, = 1, we use the designation Q, (P, «) instead of Q. (P, ). In this case, we have
the following

Definition 4.1.4. Let a € BV,(R;R) be a function nondecreasing on [0, w] and P = (p;)};—;, Where
pir € Lu(R;Ry;a) (4,6 = 1,...,n). Then by Q. (P;«) we denote the set of all matrix-functions
A = (air)} =1 € BVo(R;R™ ") such that

/pm ) for teR (i #£k; i,k=1,...,n),

0
where

1o ‘
bik = a;x(t) — 5 Z ( Z dray; (1) - dyage (T Z doay; (T dgalk(T)) (i,k=1,...,n).
= a<t<t a<t<t
Theorem 4.1.5. Let there exist natural numbers m, ri,...,7m and ni,..., Ny, (0 = ng < np <
- < ny =n); o5 € {=1,1} (j = 1,...,m); nondecreasing on [0,w] functions a;; € BV, (R;R)

(I=1,....,r5; = 1,....,m) and matriz-functions Pij = (pijir)i =y (0 =1,...,15; j = 1,...,m),

Pijik € Lo(R; Ry aq5) (i,k =n;—1+1,...,nj), such that A = (aik)ﬁkzl € Qum (P, ),

0; (b,m bjii( Z/plm 7) dou; ( )) <0 for s<t; s,teR (j=1,....,m)  (4.1.15)

and
Uj( Z Prjik(t)Tiwr — hoj15(t) Z x?) <0
i,k=nj_1+1 i=n;_1+1
for teR, (x)i; €R® (I=1,...,r5; j=1,...,m), (4.1.16)
where ho,1; € Ly(R;Ry;aq5) (j=1,...,m). Let, moreover,

L4+ (=)' >0 for t€[0,w] (1=1,2,;55=1,...,m) (4.1.17)

and
Vg, (W —tj,t5) <1 (j=1,...,m), (4.1.18)

where t; = 3 (1+ 0j)w, the functions vg,(t,t;) (j =1,...,m) are defined by (1.1.9), and

B;(t _QUJZ/ o;15(T) dagj(T) for te[0,w] (j=1,...,m).

=17
Then system (4.1.1) has a unique w-periodic solution.
Remark 4.1.2. In the above theorem, due to (1.1.9), inequality (4.1.18) is equivalent to

eXlD(Sc(ﬂj)(W))>*1 ((1+0j) II a-asim) II a+digio)

2
0<7<w 0<T<w

+-0) [ O+dsi)™" ] (1d25j(7))> for te0,w] (j=1,...,m).

0<7<w 0<T<w
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If m =1 and r,, = 1, then Theorem 4.1.5 has the following form.
Theorem 4.1.51. Let there exist 0 € {—1,1} such that A = (air)}y— € Qu(P;a),

t

U(bii(t) —bii(s) — /pii(T) da(7’)> <0 for s<t, steR,

O'( Z pik(O)xix) — he (1) fo) <0 for teR, (x;)i—, € R",

ik=1 i=1

where a € BV, (R;R) is a nondecreasing function on [0,w], pir € Lyo(R;R;a) (i,k = 1,...,n);
he € L,(R; Ry ;). Let, moreover,

14+ (=1D)!diB, >0 for t € [0,w] (I=1,2)

and
755 (w - tJth) < ]-7

where
t

/ he(T) daf(T),

0

to =5 (1+0o)w, Bo(t)

[\D\H

and the function va, (t,t5) is defined by (1.1.9). Then system (4.1.1) has a unique w-periodic solution.

Corollary 4.1.4. Let the conditions of Theorem 4.1.5 hold, where hy;15(t) = Xo(H )(t) and hU]lJ( )=
NO(H)(t) if 5 € {1,...,m} is such that 0; = —1 and oj = 1, respectively, and P*(t) = P(t) + P (t).
Then system (4.1.1) has a unique w-periodic solution.

Definition 4.1.5. Let 0; € {—1,1} (i = 1,...,n). We say that a matrix-function C = (c;1)};_; €
BV, (R; R™ ™) belongs to the set U2t if it is quasi-nondecreasing on [0, w],

1+ (=1)Y0;djci(t) >0 for teR (j=1,2; i=1,...,n) (4.1.19)
and the system

o; dx;(t Z t)dey(t) for teR (i=1,...,n) (4.1.20)

has no nontrivial, nonnegative w-periodic solution.

One of the relations between U7t and U(ty,...,t,) (see Subsection 2.2.1) is given below, in
Subsection 4.2.1.

Theorem 4.1.6. Let the conditions

oi(scaii)(t) — se(aii)(s)) < selcii)(t) — selcii)(s) for (t—s)o; >0 (i=1,...,n), (4.1.21)
|sc(au)(t) — sclai)(s)] < sc(ca)(t) — sclcu)(s) for s <t (i#1li,l=1,...,n), (4.1.22)
|dja;i(t)] < |djci(t)], |djau(t)| <djea(t) (j=1,2; i1 i,l=1,...,n) (4.1.23)

hold on [0,w], and
C = (cu)iy= € U7 (4.1.24)

Then system (4.1.1) has a unique w-periodic solution.

Corollary 4.1.5. Let conditions (4.1.19), (4.1.21)—(4.1.23) and

ai)\(oicii)(w) <1 (’L =1,... ,n)
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hold on [0,w], where o; € {—1,1} (i = 1,...,n), a matriz-function C = (cy);;—; € BV, (R;R™*™) is
quasi-nondecreasing on [0,w], and the functions A(o;ci;)(t) (¢ = 1,...,n) are defined by (1.1.30) for
t € [0,w]. Let, moreover,

r(S) <1,

where the matriz S = (sil)?lzl is defined by

2 w
=0, s;= bup{Z/O’ng 0icii)(t,7)ds;(ca)(T): t € [O,o.z}} (G#Li,l=1,...,n), (4.1.25)
00

J=

under the operator sy we understand the operator s., and g; (j =0,1,2) are the operators defined by
(1.1.31)—(1.1.33), respectively. Then the conclusion of Theorem 4.1.6 is true.

Corollary 4.1.6. Let conditions (4.1.19), (4.1.21)—(4.1.23) hold, where
ci(t) =naa;(t) for teR (,l=1,...,n), (4.1.26)

o; € {— 171}, ny € Ry (i # L4l =1,...,n), a; (ay(w) # 0; i = 1,...,n) are the functions
nondecreasing on [0,w]. Let, moreover,

N <0 (i=1,...,n) (4.1.27)
and
r(H) <1, (4.1.28)
where H = (h“)Zl:D
hii =0, hy = —% G#L i l=1,...,n). (4.1.29)

Then the conclusion of Theorem 4.1.6 is true.

Corollary 4.1.7. Let conditions (4.1.19), (4.1.21)—(4.1.23) hold, where 014 = 09 = -+- = 0, = 0y,
oo € {—1;1}, and a matriz-function C = (cq)j;—; € BV, (R,R"™") is quasi-nondecreasing on [0,w].
Let, moreover, the module of every multiplicator of the system

dy(t) = dCoy(t) - y(t), (4.1.30)

where Cyy (t) = 00C (oot + 2522 w), be less than 1. Then the conclusion of Theorem 4.1.6 is true.

4.2 Auxiliary propositions and proof of the results

Lemma 4.2.1. The following statements are valid:

(a) if z is a solution of system (4.1.1), then the vector-function y(t) = z(t +w) (¢t € R) is a solution
of system (4.1.1), as well;

(b) problem (4.1.1), (4.1.2) is solvable if and only if system (4.1.1) has, on the closed interval [0, w],
a solution satisfying the boundary condition (4.1.5). Moreover, the set of restrictions of the solu-
tions of problem (4.1.1), (4.1.2) on [0, w] coincides with that of solutions of problem (4.1.1), (4.1.5).

Proof. Let x be an arbitrary solution of system (4.1.1). Assume y(t) = z(t + w) for t € R. Then by
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(4.1.3) we have

y(t) = x(0) + [ dA(7) - z(7) + f(t +w) — f(0)

t+w

dA(T)'x(T)+f(w)—f(0)+/dA(T)'x(T)+f(t+w)—f(w)
=z(w)+ [ dA(T+w) - z(t+w)+ ft+w) — f(w)

—4(0) + / dA(T) - y(7) + f(£) — F(0) for 1€ R.
0

Therefore, y is a solution of system (4.1.1), as well. Statement (a) of the lemma is proved.

Let us show statement (b). It is evident that the restrictions of every solution of problem (4.1.1),
(4.1.2) on the interval [0,w] will be a solution of problem (4.1.1), (4.1.5). Consider now an arbitrary
solution z of problem (4.1.1), (4.1.5). Any continuation of this solution we also denote by z. According
to statement (a), the vector-function y(t) = x(t +w) is a solution of system (4.1.1), too. On the other
hand, in view of (4.1.5), we have

y(0) = w(w) = 2(0).

This implies that the functions x and y are the solutions of system (4.1.1) under the common initial
value condition. Thus z(t) = y(t). Therefore, x is a solution of problem (4.1.1),4.1.2. O

Lemma 4.2.2. An arbitrary fundamental matriz Y of system (4.1.1¢) satisfies the identity
Yt+w)=Y{H)M for t €R, (4.2.1)
where M =Y ~1(0)Y (w) is the monodromy matriz of system (4.1.1g).

Proof. By Lemma 4.2.1, the columns of the matrix-function Z(t) = Y (¢ + w) are the solutions of
system (4.1.1¢). Therefore, there exists a constant matrix C' € R such that

Z(t)=Y({#)C for t €R.

Obviously,

Thus equality (4.2.1) holds. O

Lemma 4.2.3. Let problem (4.1.1g), (4.1.2) have only the trivial solution. Then there exists a unique
Green matriz of the problem having the form

-1

Gu(t, ) =Y () (Y " (w)Y(0) = I,) Y (1) for t, 7 €R, (4.2.2)

where Y is a fundamental matriz of system (4.1.1¢).

Proof. Let Y be an arbitrary fundamental matrix of system (4.1.1¢). Then, by Lemma 4.2.1, condition
(4.1.6) holds, since the lemma guarantees the validity of Theorem 4.1.1 (see the proof of Theorem 4.1.1
below). According to Definition 4.1.2, the matrix-function G, : R x R — R™*™ is a Green matrix if

and only if
Gu(t,7) =Y ()C(r) for t,7 € R,

where the matrix-function C' : R — R™*" is such that equalities (4.1.12) hold, i.e.,

Y(t+w)C(r+w)=Y({)C(r), Y)(Ct+w)—C(t)) =1, for t,7 €R. (4.2.3)
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By equality (4.2.1), equalities (4.2.3) hold if and only if
Y H0)Y(w)C(T+w) =C(7) and C(r+w)—C(r) =Y (1) for 7 €R.
Clearly, this implies that
(I, =Y H0)Y (w))C(r) = Y H0)Y (w)Y " !(7) for 7 €R.
Therefore, taking into account condition (4.1.6), we conclude that
C(r) = (Y Hw)Y(0) = I,) 'Y (7) for 7 €R.
Putting the obtained value of C'(¢) in (4.2.3), we obtain equality (4.2.2). O

Lemma 4.2.4. If X € BV,(R,R"*") and Y € BV, (R,R"™*™), then:

(a)
diX(t+w)=d;X(t) for teR (j=1,2); (4.2.4)

(b)
A(X,Y) € BV,(R,R™™) e, AX,Y)(t+w)=AX,Y)({t)+C for teR,  (4.2.5)

where C is some constant n X n-matriz.

Proof. Consider equality (4.2.4). Let j = 1. Then, by the definition of the set BV, (R, R"*™), we
have

i X(t+w)= lim (X(t+w) —X({t+w—c¢))

e—0,e>0
= lim (X()—X(t—¢))=d1 X(t) for teR.
e—0,e>0
Analogously, we show equality (4.2.4) for j = 2.

Let us now show (4.2.5). From the definition of the operator A and equalities (4.2.4), we conclude
that

AX,Y)(t+w) = Y( +w) -Y(0)

+ Y X)) (In—diX(7) T Y () = Y daX (1) (In + do X (7)) doY (1)

o< r<t+w 0<r<t4w

=Y(t+w)-Y(0)+Cot+ Y. dX(7)(In—diX(r) " diY(r)
w<T<t4w
= Y BX(T+w) - (In+ X (1 +w) 7 doY (7 + w)
o<r<t
=Y(t+w) -Y(0)+Co+ > diX(r+w) (In—dX(r+w) ' dY(r+w)
o<r<t
— > X(1) (In+ 2 X (1 +w)) ' doY (1 +w) = A(X,Y)(t) + C for tER,
o<r<t
where

Z d1 X (I, —d1 X ()) Z da X (I, + do X ()) 1d2Y(T),

0<T<w 0<7t<w

and C' is some constant matrix. O
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4.2.1 On the set UZtn
Lemma 4.2.5. Let condition (4.1.24) hold. Then

cii(w) — 0; Z (ln(l —0; dlcii(r)) +0; d1C”‘(T))

0<7<w

+o; Z (In(1 + 03 dacii (1)) — 05 dicii(7)) <0 (i=1,...,n). (4.2.6)

0<T<w
Proof. Suppose the contrary that condition (4.2.6) is violated. Let k € {1,...,n} be such that
u(cgr)(w) >0, (4.2.7)
where the operator v : BV([0,w]; R) — BV(]0,w]; R) is defined by

u(e)(t) = c(t) —ox Y (In(1 = o die(r)) + o dic(r))

0<r<t

+0; Z (In(1 + o dac(1)) — o) dac(7)).

0<r<t
Let v; : [0,w] = R (j = 1,2) be the nondecreasing functions such that
v1(0) =0 and vy (t) — va(t) = u(cgr)(t) for t € [0,w]. (4.2.8)
By (4.2.7), we have
v1(w) —v2(w) > 0. (4.2.9)
Consider the functions

v1 (t)va(w) — v1(w)va(t)

&) =0 if vj(w) =0 and &;(t) = if gj(w)#0 for te[0,w] (j=1,2)

g5(w)
and
i(t) = &) = Y any(1)+ D ag;(r) for te[0,w] (j=1,2),
0<r<t 0<r<t
where

() = (=)™ dim&;(t) — or (1 = exp((=1)" dm&;(1))) (m,j = 1,2).
Note that by the inequalities

| (8)] < Mdm€&;(t)] for t € [0,0] (m,j=1,2),

where M is a constant independent of ¢, we have

] 3 amj(t)‘<+oo (m,j =1,2).

0<t<w
From (4.1.24) and (4.2.8), we conclude ¢;(0) =0 (j = 1,2). Moreover,
In(1 + (=1)"0 dme;(t)) — (1) 0ok dme;(t) = —ogam;(t) for t € [0,w] (m,j=1,2).
Therefore,
u(c)(w) =0 (j=1,2). (4.2.10)
On the other hand, by (4.2.8), (4.2.9) and the definition of ¢;, we have

sc(cs)(t) — se(cj)(s) < se(crr)(t) — se(crr)(s) =0 for 0<s<t<w (j=1,2) (4.2.11)
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and
dmc;(t) < dpmepr(t) =0 for t € [0,w] (m,j=1,2). (4.2.12)

Thus
170’kd10j(t) >0 for t € [O,W] (j = 1,2)

and, consequently, the Cauchy problem
dy = oy deci(t), y(0) =1

has the unique solution 7, ¢, (t,0) defined according to (1.1.9). In addition, by virtue of (4.2.10), we
find that y; is the positive and w-periodic function for every j € {1,2}. Hence, in view of (4.2.11) and
(4.2.12), the vector-function (y;)?_;, where

yi(t) =0, yr(t) = Yo, (1,0) (i £k i=1,...,n),

is a nontrivial, nonnegative w-periodic solution of system (4.1.20) for every j € {1,2}. But this
contradicts (4.1.24). O

Lemma 4.2.6. Condition (4.1.24) holds if and only if the matriz-function C is w-periodic and

(C,Ly) € Ulty,...,tn) (4.2.13)

on the closed interval [0,w], where
tizlgaiw (i=1,...,n) (4.2.14)
bo(z1,. . zn) = (boilar, ... ,9cn))?:17 oi(z1, .. yxn) =xi(w—1) (i=1,...,n). (4.2.15)

Proof. Let (4.1.24) hold. Then, according to Lemma 4.2.5, inequality (4.2.6) is fulfilled. From this
and (4.1.19), the w-periodic problem

du = o;udey(t), u(0) =u(w) (4.2.16)

has only the trivial solution and
0igj(0icii)(t,7) >0 for t,7€[0,w] (=0,1,2; i =1,...,n), (4.2.17)
where g; (j = 0,1,2) are the operators defined by (1.1.31)—(1.1.33), and A(a)(t) = va(¢,0), a(t) =

0;¢ii(t), is defined due to (1.1.9) for i € {1,...,n}.
Assume now the contrary that condition (4.2.13) is violated, i.e., the problem

sgn(t — t;) di(t) <Y xy(t)dea(t) for t € [0,w], t#t; (i=1,...,n),

=1
. (4.2.18)
(=1 djzi(ts) < ) am(t)djealts) (G =12 i=1,...,n);
=1
has a nontrivial nonnegative solution (x;)}_;.
Put
n t
ai(t) = oi(wi(t;) — @i(t)) + Z/Il(T) deg(r) (i=1,...,n) (4.2.20)
=17,
and

(677 :xi(w—ti) —J}i(ti) (Z = 1,...,n). (4.2.21)
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By (4.2.18), the functions ¢; (¢ = 1,...,n) are nondecreasing on [0,w] and problem (4.2.18),(4.2.19)
can be rewritten in the form

dx;(t —lexl Ydey(t) —o;dgi(t) for t € [0,w] (i=1,...,n),

xi(ti) = xi(w — ti) — Q5 (Z = 1, e ,n).

So, according to Theorem 1.1.1y, with regard for (4.1.19), (4.2.17), (4.2.20), and (4.2.21), we have

xz(t) = sz — 03 /gj Uzcu t T dsj (QZ)(T) +yi(t)
=0

J

<wmio(t) +yi(t) for te0,w] (i=1,...,n), (4.2.22)

where

yi(t) = aiz Z /gj(aicii)(t,T)xl(T) dsj(cir)(T)

and xg; is a solution of the problem
dui; = o u(t) de;(t), ut;) =ulw—t;)—a; (i=1,...,n).

On the other hand, it is not difficult to verify that

0iQ;

o = TN @)

Aei)(t) <0 for te[0,w] (i=1,...,n).

Consequently, in view of (4.2.22),
zi(t) < yi(t) for te[0,w] (i=1,...,n). (4.2.23)
In addition, by Theorem 1.1.14, it follows from (4.2.23) that

t

1)~ i) = [ i) dets Z_ / ) dea(r)

S

n b

<>

=17

yi(T)dey(r) for 0<s<t<w (i=1,...,n)

v~

and
yi(0) =y (w) (i=1,...,n).

Therefore, the w-periodic continuation on R of (y;)_; is a nontrivial nonnegative w-periodic solution
of system (4.1.20). The obtained contradiction proves that (4.2.13) follows from (4.1.24).

Finally, it is evident that from (4.1.24) follows (4.2.13), since the restriction on [0, w] of an arbitrary
w-periodic solution of system (4.1.20) is a solution of problem (4.2.18), (4.2.19), as well. O

Lemma 4.2.7. Leto; € {—1,1} (i=1,...,n), ci € BV,(R,R) (i,] =1,...,n) and the functions c;
(i # 1) be nondecreasing on [0,w]. Let, moreover, conditions (4.1.19) and (4.2.6) hold and the module
of every characteristic value of the matriz S = (su);'j—, be less then 1, where sy (i,l =1,...,n) are
defined by (4.1.25), and g; (j = 0,1,2) are the operators defined by (1.1.31)—~(1.1.33). Then condition
(4.1.24) holds.
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Proof. Let (y;)!_; be an arbitrary nonnegative w-periodic solution of system (4.1.20).
Put

:Z/yl Ydey (1) —ouyi(t) for teR (i=1,...,n).
=1

Then ¢; € BV, (R;R) (i =1,...,n) and due to (4.1.20) they are nondecreasing on [0, w].
It is clear that

dy; (¢ —UZZyg Ydey(t) —oiqi(t) for teR (i=1,...,n).

Therefore, owing to Theorem 1.1.1;, we have

2 n w
Yi(t) = yoi(t) + o3 Z > /gj(JiCii)(t»T)yl(t) ds;j(ci)(T)
: 0

2 w

- Ulz/gj 0icii)(t,7)ds;(q;)(T) for t € [0,w] (i=1,...,n), (4.2.24)
1= 00

where yp; is a w-periodic solution of problem (4.2.16).
On the other hand, by condition (4.1.19), problem (4.2.16) has only the trivial w-periodic solution.
So, yoi(t) = 0. Besides, estimate (4.2.17) holds. Due to the above-said, from (4.2.24) follows

w

W <oy / 93 (aicis) (&, Py (1) dsj (ca) (7)
g=( il

- 0

<0 Z ||yl||oo

9j(0icis)(t,7)dsj(cy)(T) for t € [0,w] (t=1,...,n).

\

Consequently,

(”yZHOO)l 1> (”yZHOO)l 1°
Thus we get ||yi]lcc =0 (¢ =1,...,n), because the module of every characteristic value of the matrix
S is less than 1. So, condition (4.1.24) holds. O

Lemma 4.2.8. Let conditions (4.1.19) and (4.1.26) hold, where o; € {—1,1}, n; € R, 0 € Ry
(I#£44l=1,....,n); a; € BV,(R,R) (aj(w) #0; i = 1,...,n) be nondecreasing on [0,w]. Then
condition (4.1.24) holds if and only if conditions (4.1.27) and (4.1.28) are fulfilled, where the matriz
H = (nu)i =y s defined by (4.1.29).

Proof. First, we show the necessity. Let (4.1.24) hold. Then, according to Lemma 4.2.5,

Miise(i)(w) —oi > In (1= o diou(r))
0<7<w
> In(1+oimidaci(r)) <0 (i=1,...,n). (4.2.25)
0<T<w

Let us show (4.1.27). Assume the contrary, i.e., ngr > 0 for some k € {1,...,n}. Then from
(4.2.25) it follows that

Ok Z In (1 — OkNkk dlak(T)) > Ok Z In (1 + OkMkk dgak(T)), (4.2.26)

0<7<w 0<r<w
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since agy, is nondecreasing on [0, w] and nggse(ag)(w) > 0. On the other hand, it is easy to show the
inequalities

o In (1 — RNk dlak(T)) <0 and oiln (1 + oM dQOék(T)) >0 for te€[0,w].

But this contradicts (4.2.26). Thus (4.1.27) is proved.
Let us show (4.1.28). Assume the contrary, i.e.,

ro=7r(5) > 1.

By Theorem XIII.3.3 from [36], there exists a nonnegative eigenvector (y;)!"_; corresponding to the
characteristic value rg. It is clear that

1< - .
0 =mnuy: + — Z Uizylﬁzmlyl (i=1,...,n).
"0 =1 =1

Therefore, (y;)!_, is a nontrivial nonnegative w-periodic solution of system (4.1.20), since «; (i =
1,...,n) are nondecreasing on [0,w]. But this contradicts (4.1.24). Consequently, the necessity is
proved.

Let us proof the sufficiency. Due to (4.1.27), we have

(=10 In(1 + (=1)oymis djei(7)) <0 for t € [0,w] (j=1,2;i=1,...,n). (4.2.27)

Moreover, by inequality a;(w) # 0, it is not difficult to see that if s.(c;)(w) = 0, then there exist
j €41,2} and 7 € [0,w] such that the inequality (4.2.27) is strict. Consequently, (4.2.25) holds.
Let now ¢ € [0,w] and 4,1 € {1,...,} be fixed. Put

Al(t) = exp (Uznusc(az)(t))xz (t),
Ai(t) = H (1 + oimidaci (7)) H (1- sz‘idmz'(T))il

0<r<t 0<r<t
and "
I(t) = o0 / g5 (o) (t,7) ds;(en) for t € [0,w] (j=0,1,2),
0

where g; (j = 0,1,2) are the operators defined by (1.1.31)-(1.1.33).
By virtue of the equalities

— 04154 djai (t)

d:x Tt = : X, “H¢) for te o, i =0,1,2),
! () 1+ (=1)7oini; djci(T) (8) for t€[0,0] (5=0,1,2)

we conclude

OiMii

b
[ 0@ = <A;1<b>A;1<a> S A R () d )

7o) = 2220 (30 dslann) + 06 [ 30 dselan()

— ml)\i(t) LT NN i(w LN (T X Nr
L) =~ 50 (0<§TS:tA,- OAOBR T M) 3 AR )),

— ml)\i(t) (T NN i(w YN (7) dox; “Hr
Ir(t) = = @) ( Y AT ONE) daX THE) + Aiw) DY AT N dadi T ))

<7<t t<T<w
for ¢t € [0, w].
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These equalities imply that

2 w
cr,;z gj(oimiia)(t, 7) dsj(cy) = /I sy for te0,w] (1 £ 4,l=1,...,n).
]:O O (X3
Therefore, according to Lemma 4.2.7, condition (4.1.24) holds. O
Lemma 4.2.9. Let oy = ...0, = 09, 09 € {—1, 1}, a matriz-function C = (Cil)?,z=1 € BV, (R,R"*™)

be quasi-nondecreasing on [0,w]. Then condition (4.1.24) holds if and only if the module of every
multiplicator of system (4.1.30), where Cy, (t) = 0oC(oot + 3 (1 — 09)w), is less than 1.

Proof. Let ty = 1_2‘70 w and let Y(t,¢€), Yto,e) = I, be the fundamental matrix of the system
dy = dC(t,e) - y, (4.2.28)

where C(t,e) = eC(t)+ (1 —¢) diag(ca1(t), . . ., cnn(t)), and let r(g) be the spectral radius of the matrix
Y. (w) for every e € [0,1]. In view of Lemma 2.2.4,

Yt,e) > Opxn for t e 0,w]

and r : [0,1] —]0, +o0[ is the continuous function.

First, consider the case o9 = 1. Then ¢t = 0 and C,,(t) = C1(t) = C(t) = C(¢t, 1) for ¢t € [0,w]. So,
Y(t) = Y(t,1), where Y, Y(0) = I, is the fundamental matrix of system (4.1.30). In addition, the
monodromy matrix of the system has the form M = Y ~1(0)Y (w) = Y;(w, 1). Therefore, the condition
imposed on multiplicators means that

r(1) < 1. (4.2.29)

Let us show the sufficiency. Let (4.2.29) hold. Consider an arbitrary nonnegative w-periodic
solution y = (y; )7, of system (4.1.20). By Lemma 2.2.5, we have

y(t) <Y(t,1)y(0) for t € [0,w]
and
y(0) < Y(w, 1)y(0).

By virtue of (4.2.29), it follows from the latter two estimates that y(¢) = 0. Therefore, condition
(4.1.24) holds.
Now we show that (4.1.24) implies (4.2.29). Assume the contrary, i.e., (4.1.24) holds, but

r(1) > 1.

According to Lemma 4.2.5. condition (4.2.6) holds and
Ailw) <1 (i=1,...,n),

where A;(t) = v.,, (t, to) is defined by (1.1.9), From this

r(0) < 1,

since
Y (w,0) = diag (A1 (w), ..., An(w)).
Therefore, there exists ¢ €]0, 1] such that
r(e) = 1.

Let c. € R} be an eigenvector corresponding to the characteristic value 1, i.e., Y (w,¢)ce = ce.
Then the vector-function
y(t) =Yt e)ce
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is a nontrivial nonnegative solution of system (4.2.28). Obviously, it is w-periodic and satisfies system
(4.1.20), as well, since 0 < & < 1. But this contradicts (4.1.24).
Finally, we note that if (y;)7; is an arbitrary solution of system (4.1.20), then (z;), where

zit) =yilw—1) (i=1,...,n),

is a solution of the system

—0idzi(t) < zu(t)d(—ca(w—1t)) for teR (i=1,...,n)
=1

and, conversely, if (z;)!_; is an arbitrary solution of the last system, then the (y;)?_;, where

yi(t) = zi(w—1t) (i=1,...,n),

is a solution of system (4.1.20). In addition, (y;)_; is w-periodic if and only if (2;)_; has the same
property. So, the case g = —1 is reduced to the case g = —1. O

4.2.2 Proof of the results

By Lemma 4.2.1, Theorem 4.1.1 immediately follows from Theorem 1.1.1, and Theorems 4.1.2, 4.1.3
and Corollaries 4.1.1-4.1.3 immediately follow from Theorems 1.1.2-1.1.3 and Corollaries 4.1.1-4.1.3,
respectively, if we assume that the linear functional £ appearing there is of the form ¢(x) = z(0) —z(w).
Note that condition (4.1.6) has form (4.1.8) when the fundamental matrix of system (4.1.1p) is given
by (4.1.9) in Corollary 4.1.1.

Proof of Theorem 4.1.4. By Theorem 1.1.1 and Lemma 4.2.3, problem (4.1.1), (4.1.2) is uniquely sol-
vable, and problem (4.1.1p), (4.1.2) has a unique Green matrix G,,. Therefore, for the proof it suffices
to verify that the vector-function given by (4.1.14) is the w-periodic solution of system (4.1.1).

Assume

o(t) = A(—A, f)(t) for t € R.

Let us show that the vector-function x defined by (4.1.14) satisfies condition (4.1.2). By Lem-
ma 4.2.4, it is evident that A(A4, ¢) € BV, (R,R™) and, therefore,

A(A, o)t +w) = A(4,9)(t) + ¢ for t R, (4.2.30)

where ¢ is some constant n-vector. Taking into account (4.2.30) and (4.1.14), we have

t4+2w ttw
r(t+w) = / Gut+w,7)dAA, p) (1) = / Gu(t +w, 7+ w)dA(A, ¢)(T +w) = z(t) for t € R.
tw t

Let us verify that the vector-function z satisfies system (4.1.1). By equality (4.2.2),
Gu(t, ) =Y ()C,Y (1) for t, T €R,
where Y is a fundamental matrix of system (4.1.1p), and

Co =YY w)Y(0)-1,)""
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Thus, using the general integration-by-parts formula, we find that

£(t) — 2(s) = / di(r) = / o 7wgw<n 0 A )0))
- / a(vine. T/WY*(n) U ) = / aY(r) - C. TY*(n) dA(A, ) (1)
¥ / Y(r)Cod( TY%n) AL D) = 3 @) Coa( TYI@) 4P
+ > dY(7)-C, d2< 7wY—1(n) dA(A, (p)(n)) for s <t, s,t€R. (4.2.31)
On the other hand, (;ue fo (4.2.1), T
Yt +w) - Y ) =Y (). (4.2.32)

By (4.2.30), we conclude that

T+w

/ Y1) dA(4, ) (1) = / Y1) dA(A, ) (1) + / Y () dA(4, ) (1)

w
T

/ Y1 () dA(A, 9)(n) + / Y+ w) dA(A, ) (1 + w)

T 0

/ Y1 () dA(A, ) () + / (V1 (n+w) — Y1 (1) dA(A, 9)(n) for 7 € R.
0 0

From this, taking into account (4.2.32), we get

T+w T

Y1 () dA(A, ) (1) = / Y (n) dA(A, 9)(n) + €5 / Y =1() dA(A, 9)(1).
0

T 0

Due to the last equality and the general integration-by-parts formula, taking into account the equalities
dY (t) = dA(t) - Y (t) and d;Y(t) =d;At)-Y(t) for teR (j=1,2),
from (4.2.31) it follows that

t T+w

£(t) — x(s) = / dA(r) - Y(r)C, / Y1 (n) dA(A, 9)(n) + F(s.1)

= /dA(T) ~x(T)+ F(s,t) for s<t, s,t€R, (4.2.33)

where

F(s,t) = A(A, ) (t) — A(A,9)(s)
- Z A A(T) - di A(A, ) (T) + Z doA(T) - do A(A, p)(7) for s,teR, s<t.

s<t<t s<T<t
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Moreover, taking into account condition (4.1.13), according to the definition of the operator A and
the function ¢, we conclude that

dip(t) =dif(r) = > diA(r) - (I, + diA(r)) " dy f(7) for T €R,
s<t<t

dop(7) = dof(T) + D daA(7) - (In — d2A(7)) " daf (7) for T €R.
s<t<t

Using the last equalities, we can easily show that

F(s,t) = + > diA(r) - (I, — di A7) dap(T)
s<t<t
= Y dA(T) - (In + d2 A7) dap(7) = D (d1A(7))? - (In — dr A(7)) ™ dap(7)
s<T<t s<t<t
- ) (daA (In + d2A(7)) ™ dap(7)
s<T<t
= + > diA(r) - dip(T) = Y daA(r) - dap(r) = f(t) — f(s) for s,tER, s<t
s<t<t s<t<t
Consequently, due to (4.2.33), the vector-function z satisfies system (4.1.1). O

Proof of Theorem 4.1.5. According to Theorem 4.1.1, for the proof of the theorem it suffices to show
that the homogeneous system (4.1.1¢) has only the tr1V1al w-periodic solution. Let z = (z;)!; be an
arbitrary solution of the latter problem. Assume
n;
u;i(t) = Z z3(t) for t€0,w] (j=1,...,m).
i=n;_1+1
As in the proof of Theorem 3.1.4, we find that
t
o1(ug(t) —ui(s)) > /ul(T) dBy(r) for 0<s<t<w

and

(t) (5% (tl)’)/gl (t, tl) for t € [O,W]. (4234)
Due to (4.1.5), we have u1(0) = uy(w). Thus, from (4.2.34) it follows that

u(w—t1) <ui(ty) vp, (w—t1,t1) = ur(w —t1) v8, (W — t1,t1).

Therefore, due to (4.1.18),
ut1) = u1(0) = uy(w) = 0,
so, by (4.2.34), we have
ui(t) = 0.
Using this identity and also (4.1.15)—(4.1 ) by induction we prove u;(t) =0 (j = 2,...,m). Con-
sequently, x;(t) =0 for t € [0,w] (i =1,...,n). O

Proof of Corollary 4.1.4. It is evident that

n 1 n
; pir(D)ziy = 5 _;lmk(t) + pri(8) i

From this, by Lemma 3.1.1, we have

Zac < Z pir ()i, < AO(P*(t Zx for p(g)-almost all t € [0,w], (z;)i,; € R™.
i,k=1 i=1

Therefore, the corollary immediately follows from Theorem 4.1.54. O
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Proof of Theorem 4.1.6. By Lemma 4.2.6, condition (4.1.24) holds, where ¢; (¢ = 1,...,n) and ¢y are
given by (4.2.14) and (4.2.15). Assume

Li(yty.yyn) =ylw—1t;) (i=1,...,n).
Then condition (4.1.5) has the form
xl(tl) :Ki(l‘l,...,l‘n) (Z = 1,...,’/1). (4235)

On the other hand, in view of conditions (4.2.14), (4.2.15), (4.1.21)—(4.1.23), the conditions of Theorem
2.2.1 and condition (4.2.13) guarantee the uniquely solvability of problem (4.1.1), (4.2.35). Therefore,
problem (4.1.1), (4.1.5) has the unique solution, as well. Hence, due to Lemma 4.2.1, we conclude that
system (4.1.1) has the unique w-periodic solution. O

Corollaries 4.1.5,4.1.6 and 4.1.7 follow immediately from Theorem 4.1.6 due to Lemmas 4.2.7,4.2.8
and 4.2.9, respectively.

4.2.3 Nonnegativity of solutions of w-periodic problem

In this subsection, we consider the question on the existence of nonnegative w-periodic solutions of
system (4.1.1). We realize the results of Section 2.3 for w-periodic problem under consideration.

Theorem 4.2.1. Let the matriz- and vector-functions A = (air);'j—; € BVL,(R;R™™) and f =
(fi)i=1 € BV, (R;R™) be such that the functions o;ay(t) (i # 1; i, = 1,...,n) are nondecreasing on
[0,w], the conditions

oi(ay(t) —au(s)) < (cu(t) —cu(s)) for oi(t—s) >0 (i,l=1,...,n) (4.2.36)
and
o;:fi(t) are nondecreasing on [0,w] (i=1,...,n) (4.2.37)
hold on [0,w], where o; € {=1,1} (i =1,...,n), and
C = (cqa)ij=y € UL,
Then system (4.1.1) has one and only one w-periodic solution and it is nonnegative.
Due to Lemmas 4.2.7 and 4.2.8, from Theorem 4.2.1 follows the following

Corollary 4.2.1. Let the matriz- and vector-functions A = (ai)} =y € BV (R;R"™™™) and f =
(fi)i=1 € BVL(R;R™) be such that the functions o;ay(t) (i # 1; i,0 = 1,...,n) are nondecreasing on
[0,w], conditions (4.1.19), (4.2.6), (4.2.37) and

t

oi(ai(t) —aqu(s)) < /hil(T) doy (1) for oi(t—s) >0 (i,i=1,...,n)

S

hold on [0,w], where a; (i =1,...,n) are functions nondecreasing on [0,w] and having not more than
a finite number of discontinuity points, h;; € LE(R,R;;), hy € LE(R,Ry;aq) (1 £ L 1=1,...,n),
1 < pu < +o00. Let, moreover,

r(S) <1,

where the matriz S = (5“)?1:1 is defined by (4.1.25) and g; (j = 0,1,2) are the operators defined by
(1.1.31)—(1.1.33), respectively. Then the conclusion of Theorem 4.2.1 is true.
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Corollary 4.2.2. Let the matriz- and vector-functions A = (air)}p—; € BV, (R;R"™™) and f =
(fi)i—, € BV,(R;R"™) be such that the functions o;a;(t) (i #1; 4,1 =1,...,n) are nondecreasing on
[0,w], conditions (4.1.19), (4.2.6), (4.2.37) and

oi(au(t) —aul(s)) < nuloy(t) — ai(s)) for oi(t—s)>0 (i,l=1,...,n)

hold on [0,w], where o; € {—-1,1}, ny € Ry (i £ 1;4,0l=1,...,n), a; (;(w) #0;i=1,...,n) are
nondecreasing on [0,w]. Let, moreover,

i <0 (i=1,...,n)
and
r(H) <1,

where H = (ni1){ 1=, hii = 0, hy = 7:77?1' (i #£1;i,0=1,...,n). Then the conclusion of Theorem 4.2.1
s true.

Corollary 4.2.3. Let the matriz- and vector-functions A = (aix)j'y—, € BVL,(R;R™™) and f =
(fi)ieq € BV, (R;R™) be such that the functions o;a;(t) (i #1; i,l =1,...,n) are nondecreasing on
[0,w], conditions (4.1.19), (4.2.6), (4.2.36) and (4.2.37) hold on [0,w], where 01 = 09 =+ -+ = 0, = 0y,
oo € {—1;1}, a matriz-function C = (cu)i 1=y € BVu(R,R"™") ds quasi-nondecreasing on [0,w]. Let,
moreover, the module of every multiplicator of the system (4.1.30), where Cy,(t) = 0oC (oot + 152 w)
be less than 1. Then the conclusion of Theorem 4.2.1 is true.

Remark 4.2.1. The fulfilment only of the conditions
o;a;(t) are nondecreasing on [0,w] (i #1; i,1=1,...,n), (4.2.38)

(4.2.37) and the existence of the unique w-periodic solution of system (4.1.1) does not guarantees the
positiveness of the solution. For the completeness, we give the corresponding example from [47].

Let n = 2, a11(t) = as2(t) =0, a12(t) = —an(t) = t, fi(t) =t and fo(t) = 5 (cos2t — 1). Then
conditions (4.2.37) and (4.2.38) hold for oy = 1, 0o = —1. On the other hand, the corresponding
system has the unique solution

1 1
z1(t) = 5 (1 —cost)?, my(t) == § (sin2t — 2sint)

with period 7. It is evident that the solution is not nonnegative.

4.2.4 On a method for constructing the periodic solutions

In this subsection, we give a method for constructing the solutions of problems (4.1.1), (4.1.2).

We use the results of Section 2.4.

In case the conditions of Theorem 4.1.6 are fulfilled, for the construction of the w-periodic solution
of system (4.1.1) we can use the algorithm described in Section 2.4 for the construction of the solution
of the multi-point boundary value problem.

Let

o 1-— ag;

ti=—5—w (i=1...n). (4.2.39)

As the zero approximation to the solution of problem (4.1.1),(4.1.2), we choose an arbitrary
function (x0;)"; € BV, (R;R™). If the (m — 1)-th approximation (x,,—1;); is constructed, then by
the m-th approximation we take (z,;)"; € BV, (R;R™), whose i-th components are defined by

Timi(ti) = Tm—1i(w — t5),

.’Emi(t) = ’Yi(t, ti)xm_li(w—ti)—i—m(mm_l 1y+-+9yLm—1mn, fz)(t) fOI‘ te [O,Ld] (izl, e ,’I’L), (4240)
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where the operators ; : BV, (R,R""1) — BV, (R;R) (i = 1,...,n) are defined as

¢
Yi(Y1s - Y1) (E) = gi(y, - - ynga) () — %(tti)/gi(yh conrn)(8) dyy (s, ),
ti

. (4.2.41)

s o) = Y [ wils) daa(s) - duti(s)
=17
+ Ynt1(t) = yns1(t;) for t€0,0] (i=1,...,n);
’yi(t,ti) = Ya; (tﬂfi), Ei,(t) = sc(aii)(t) (Z = 1, . 7n),

and the function v, (¢,¢;) is defined by (1.1.9).
Theorem 4.2.2. Let the conditions of Theorem 4.1.6 hold. Then system (4.1.1) has one and only
one w-periodic solution x = (x;)"_; € BV,(R;R™) and there exist pg > 0 and § €]0, 1] such that

n

Z |2 (t) — i (t)| < pod™ for t €[0,w] (m=1,2...), (4.2.42)

where the vector-functions (Tmi)'—y (m =1,2,...) are defined by (4.2.40), (4.2.41).

Corollary 4.2.4. Let the conditions from Corollaries 4.1.5-4.1.7 be fulfilled. Then system (4.1.1)
has one and only one w-periodic solution x = (z;)7; € BV,(R;R™) and estimate (4.2.42) holds,
where pg > 0 and 6 €]0,1[ are the constants independent of m, and the vector-functions (Tm:),
(m=1,2,...) are defined by (4.2.40), (4.2.41).

Remark 4.2.2. Using Lemma 4.2.6, we can show that the above process of constructing the w-
periodic solution of system (4.1.1) is stable in the sense given above (see Remark 2.4.1 and its proof
in Subsection 2.4.3).

Remark 4.2.3. In view of (4.2.40) and (4.2.41), according to the variation-of-constant formula
(1.1.12), the function x;, is a solution of the Cauchy problem

AT mi(t) = Tpmi(t) da;(t) + i Tp—11(t) d(ag(t) — daa;(t)) + df;(t), (4.2.43)
=1

Tmi(ti) = Tm—1i(w —t;) (4.2.44)

for i € {1,...,n} and every natural m.

Here, the fact that the points t; (¢ = 1,...,n) are defined by (4.2.39) is of special importance.
If, for example, for every ¢ € {1,...,n} and every natural m, we replace condition (4.2.44) by the
condition

Z‘WM(O) = xm_li(w), (4245)
then the process may be nonconvergent. In this connection, consider the example [47]

It is evident that the conditions of Theorem 4.1.6 are fulfilled for A(t) = diag(t,...,t), f(t) = Oy,
o;,=—-1(i=1,...,n) and C(t) = diag(t,...,t). The system has only the trivial w-periodic solution.
Due to (4.2.39), t;, =w (i = 1,...,n). Let z¢;(t) =1 (i = 1,...,n). Then if x,,; is the solution of
problem (4.2.43), (4.2.44), we have

Tmi(t) = exp(t — w)xm—1i(0) = exp(t —mw) for t € [0,w] (i=1,...,n; m=1,2,...),

ml_l}lrfrlOO ZTmi(t) = 0 uniformly on [0,w] (i=1,...,n).

If we replace condition (4.2.44) by condition (4.2.45), then
Tmi(t) = exp(t)rm—_1:(w) =exp(t+ (m — Nw) for t € [0,w] (i =1,...,n; m=1,2,...),
hI}E Tmi(t) = +o0 for t € [0,w] (1=1,...,n).

m—r—+0Q0



Chapter 5

Systems of linear impulsive
differential equations

5.1 General linear boundary value problems

5.1.1 Unique solvability

In this chapter, some results of Chapter 1 for the general linear boundary value problem we realize
for the following impulsive differential systems

Z—j = P(t)x +q(t) fora.a. t€ I\ T, (5.1.1)
z(n+) —x(n—) = G(n)z(n) +u(n) (=1,2,...); (5.1.2)
E(z) = ¢y, (513)

where P € L(I;R™"), ¢ € L(I;R"), G € B(T;R™"), u € B(T;R"), T = {r,m,...}, n € I
(l=12...),n#nifl £k (,k=12,...),¢: BVo([;R") = R" is a linear bounded vector-
functional, and ¢y € R".

Everywhere we assume that I = [a, b].

Definition 5.1.1. Under a solution of the impulsive differential system (5.1.1), (5.1.2) we understand
a continuous from the left vector-function 2 € BVAC,.(I,T;R") satisfying both the system

2/ (t) = P(t)x(t) + q(t) fora.a. teI\T
and relation (5.1.2) for every [ € {1,2,...}.

Quite a number of issues of the theory of linear systems of differential equations with impulsive
effect have been studied sufficiently well (for survey of the results on impulsive systems see the ref-
erences in Introduction). But the above-mentioned works do not contain the results analogous to
those obtained in [46,47] for ordinary differential equations. Using the theory of generalized ordinary
differential equations, we extend these results to the systems of impulsive differential equations.

We assume that the condition

det(I, + G(7)) £0 (1=1,2,...) (5.1.4)

holds.
To establish the results dealing with the boundary value problems for the impulsive differential
system (5.1.1), (5.1.2), we use the following conception.

Remark 5.1.1. A vector-function x is a solution of the impulsive system (5.1.1),(5.1.2) if and only

if it is a solution of the system
dv = dA(t) - = + df (t),

127
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where

/P dT—i—Z (r;) for tel,

melet (5.1.5)
ft) = / )dr + Z ) for tel.
a Ti€lat[

It is evident that these matrix- and vector-functions A and f have the following properties:

1A(t) = Onxn, dif(t) =0, for tel,

dg ( )= Onxn, dof(t)=0, for teI\T, (5.1.6)
da A(T ) G(n), daof(m)=u(n) (1=1,2,...);

Sc(A)(t) — S.(A)(s) = /P(T) dr, sc(f)(t) —sc(f)(s) = /q(T) dr for s,t € I'\T,

s

Sl(A)S(t) = Onxn, s1(f)(t) =0, for t € I'\T,
Sa(A)(t)=52(A)(s)+ Z G(m), s2(f)(t)=s2(f)(s)+ Z u(m) for s,tel; s<t

s<T<t s<tT <t

(in particular, they are continuous from the left everywhere).

So, condition (5.1.4) is equivalent to condition (1.1.8). Moreover, due to the conditions imposed on
P, G, q and u, we have A € BV(I; R"*") and f € BV(I;R"). Therefore, system (5.1.1) is a particular
case of system (1.1.1).

We say that the pair (X,Y") consisting of the matrix-functions X € L(I;R"*™)and Y € B(T;R"*™)
satisfies the Lappo—Danilevskii condition at the point a if

X(t) /tX(T) dr = /txm dr- X (1),

/X(T)dT- Z Y(n)= Z Y(Tl)-/X(T)dT for teI.

1€[a,t] T1€a,t]

Remark 5.1.2. By Definition 5.1.1, under a solution of the impulsive system (5.1.1),(5.1.2) we
understand the continuous from the left vector-function. If under a solution we understand the
continuous from the right vector-function, then we have to require the condition

det(l, —G(n)) #0 (I=1,2,...)
instead of (5.1.4). In this case, the matrix A(¢) and vector f(t) will be defined such that

dlA(t) = Oan, dlf(t) =0, for tel \ T,
d1A(Tl) ZG(TI), dlf(Tl) Zu(Tl) (12172,...),
dgA(t) = Onxn, dgf(t) =0, for tel

instead of (5.1.6). In particular, A(t) and f(¢) can be defined similarly as in (5.1.5) modifying the
second component. The results corresponding to this case are analogous to the results corresponding
to the first case given in Sections 5.1-5.3 below, if we replace the expressions of type I, + G(7;) by
I, — G(7;), the intervals [s,t[ by ]s,t], and the right limits by the left ones.

We will need the forms of operators defined by means of (1.1.351), (1.1.352) and (1.1.361), (1.1.362).
First of all, we note that the operators defined by (1.1.351) ((1.1.352)) and (1.1.361) ((1.1.362)) coincide
among themselves if X is a continuous from the left (from the right) matrix-function.
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For every matrix-function X € L(I; R™*"™) and a sequence of constant matrices Y, € R"*" (k =
0,1,...) we put

(X AYa}21) ], (t) = I, for a <t <b;
(X, {%:3321)],(a) = Onun (i=1,2,...),

[
[
[0 Vg0 ] /X (X, {Ye}2)] () dr+

+ Z Vi (X, {Ye}321) ], () for a <t <b (i=1,2,...).

TREa,t[

Note that in this case for the operators V; (i = 1,2,...) defined by (1.1.371), we have

Vi(X, (Vi) () = [(IX]AAYRR2)],(0) for a<t<b (i=1,2,...).

Using the above-described properties the matrix- and vector-functions A and f corresponding to
the impulsive system (5.1.1), (5.1.2), we obtain the results for the solvability of the impulsive boundary
value problem (5.1.1)—(5.1.3). We do not cite here these results. They can be found in [18].

Our aim is to establish the necessary and sufficient conditions for the convergence of the difference
schemes corresponding to linear impulsive boundary value problems. To this end, below we present
only the results concerning the well-posedness of general linear boundary value problems.

As to the existence of nonnegative solutions of multi-point boundary value problems constructed by
a method of solutions of the latest problem for the impulsive case and other results, they immediately
follow from the case of corresponding results for the generalized ordinary differential equations.

5.1.2 The well-posedness of the general linear boundary value problems

Let x¢ be a unique solution of problem (5.1.1)—(5.1.3).

Here, as above, we will assume that I = [a, b].

Along with the impulsive general boundary initial problem (5.1.1)—(5.1.3), consider the sequence
of the problems

Cfl—f = Pn(t)x + qn(t) fora.a. t €I\ {n}2,, (5.1.1,,)
z(n+) —z(n-) = Gu(n)z(n) + un(n) (=1,2,...); (5.1.2,,)
b (2) = cm (5.1.3,0)

(m = 1,2,...), where P,, € L(L;R™™) (m = 1,2,...), ¢m € L(I;R") (m = 1,2,...), G, €
B(T;R™™™) (m =1,2,...), Uy € B(T;R™), T = {m1,72,... }, bm : BVo(I;R") > R™ (m=1,2,...)
are linear bounded vector-functionals, and ¢, € R™ (m =1,2,...).
We assume that P, = (pmij)i ;=1 (m=0,1,...), ¢m = (gmi)izy (m=0,1,...); G = (gmij)i j=1
(m=0,1,...), Um = (Ums)Py (m=0,1,...).
Here, under the matrix- and vector-functions Py, qo, Go, ug and functional {3 we understand P,
q, G, u and /¢, respectively.
We establish the necessary and sufficient and effective sufficient conditions for the boundary value
problem (5.1.1,,)—(5.1.3,,) to have a unique solution x,, for any sufficiently large m and
lim ||zm — Zolleo = 0. (5.1.7)
m——+oo
Remark 5.1.3. If we consider the case where for every natural m, the impulses points depend on m
in the impulsive system (5.1.1,,), (5.1.2,,), in particular, the linear algebraic system (5.1.2,,) has the
form
x(nm+) — :L'(Tlmf) = Gm(nm)x(nm) + um(nm) (l =1,2,... ),

where 71, € I (I =1,2,...), then the last general case will be reduced to case (5.1.2,,) by using the
following concept.
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Let T =ToUTy UTyU. .., where T, = {T1m, Tam,.-. } (m=0,1,...),and o =7, (I = 1,2,...).
The set T is countable. Therefore, T' = {7{,75,...}, where 7;* € I (I =1,2,...). For every m € N
and | € N, we set G, (1) = G5, (11m,) and (7)) = wh,(nx) if 7, € Ty, where I,,, € N is such that
T = Tiom, and G5, (7°) = Opxpn and u), (1) = 0 if 7 & T, So, the last general case is equivalent to
the impulsive system (5.1.1,,), (5.1.2,,), where 7 = 7 (1 =1,2,...), G(m) = G (7)) (1=1,2,...)
and un, (1) = ul () (1=1,2,...).

Below, we assume that T = {7y, 7,... }.
Along with systems (5.1.1), (5.1.2) and (5.1.1,,,), (5.1.2,,), we consider the corresponding homoge-
neous systems

dx

= Rt foraa tel\T, (5.1.10)
2(n+) — a(n—) = Go(m)z(n) (1=1,2,...) (5.1.20)
and
‘(%’ — Po(t)r foraa. teI\T, (5.1.11m0)
x(n+) —z(n—) = Gu(n)z(n) (=1,2,...) (5.1.2,m0)
(m=1,2,...).

Definition 5.1.2. We say that the sequence (P, Gm; Gm, Um;€m) (m =1,2,...) belongs to the set
S(Py, qo0; Go, ug; £o) if for every ¢y € R™ and a sequence ¢,, € R™ (m = 1,2,...) satisfying condition

lim ¢, = cg,
m——+00

problem (5.1.1,,)—(5.1.3,,) has a unique solution ., for any sufficiently large m, and condition (5.1.7)
holds.

As above, the impulsive systems (5.1.1),(5.1.2) and (5.1.1,,),(5.1.2,;,) (m = 1,2,...) are the
particular cases, respectively, of the general systems (1.2.1) and (1.2.1,,) (m =1,2,...) if we set
¢
An(t) = /Pm(T) dr + Z Gun(m) for tel (m=0,1,...),
a T €la,t]
t

fm(t):/qm(T)dT+ > t(n) for tel (m=0,1,...).

a T €[a,t]

(5.1.8)

To realize and formulate the well-posed results of Section 1.2, we use the following forms of the
operators B(X,Y) and Z(X,Y) (see (0.0.3) and (0.0.4)) for the impulsive case, in particular, when the
matrix-functions X and Y are continuous from the left on I. Using the integration-by-parts formulas
(0.0.10), (0.0.12) and the definition of the Kurzweil integral, we find that

B(X,Y)(t)z/ (MY'(r)dr+ > X(m+)d2Y(7) (5.1.9)
a T1€la,t]
if X € BV(I;R™) and Y € BVAC,,.(I,T;R7*™), and
T Y)W = [ (CO+XEOY )X D drt Y (@X(m)+X (1) daY (7)) X () (5:1.10)
T E[a,t]

a

if XY € BVAC,.(I, T; R™*™), det X (¢) # 0. In addition, if

Q()E/ Tydr+ Y Z

s Ti€lat[
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where Y € Lioe(I;R™™) and Z € Bjoe(T; R ™), we set

B.(X:;Y,Z)(t) =

Consequently,
t

B(XY.2)(0) = [ X(r)

a

Note that if X (¢) = I,,, then

/Y ydr+ > Z

T €la,t]

B,(I.;Y, Z)(t

It is clear that, by (5.1.8),
An(t)

Theorem 5.1.1. Let the conditions

= BL(In; Pm; Gm)(t)v

lim ¢,(x)

m——+00

B(X,Q)(t) and Z,(X;Y,Z)(t) =

T)dT + Z

T E€la,t]

(), In,YZ)()E/Y(T

fm(t) =B

={(z) for x € BV(I;R"),

limsup |||/, ]]] < 400
m——+0o0o

hold. Then

((Pmu qm; Gms Ums gm)):zzl

€ S(Po, qo; Go, uo; lo)

(X, Q)().

(n+)Z (5.1.11)

t

)dT + Z ng(Tl).

a T €la,t]

(L Gy un ) (8) (m=0,1,...).

(5.1.12)

(5.1.13)

(5.1.14)

if and only if there exists a sequence of matriz-functions H,, € BVAC,.(I,T;R"*™) (m = 0,1,...)

such that the conditions
b

Elrgilg\/ (Hp + B(Hp; P, Gin)) < 400, (5.1.15)
and
inf {|det(Ho(t))|: t €I} >0, (5.1.16)
hold, and the conditions
ml_ifﬂoo Hp,(t) = Ho(t), (5.1.17)
mgrgoo B,(Hp; P, Gp)(t) = B,(Ho; Po, Go) (1) (5.1.18)
and
mgrilooB (Hum; @ms um ) () = B,(Ho; qo, wo)(t)
hold uniformly on I.
Note that in Theorem 5.1.1, due to (5.1.9), (5.1.10) and (5.1.11), we have
¢
By (Hi s ) (£) = / w(D)an(T)dr+ S Hu(nt)um(n) (m=0,1,...)  (5.1.19)
a m€lat]
and
¢
L (Hi Pons G (0) = [ (Hiu () + Hin(7) P () Hy (1)
+ > (deHm (1) + Ho(114+) G (7)) Hyy' (1) (m=0,1,...).  (5.1.20)

T €la,t]
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Theorem 5.1.2. Let conditions (5.1.12), (5.1.13) and
det(I, + Gm(m)) #0 (I=1,2,...; m=0,1,...)
hold. Then inclusion (5.1.14) holds if and only if the conditions
: —1() — yv—1
leIEoo X (1) =X (1)

and

mlirilm</t ") gm(T)dr + Y X () um(n)>

a T €la,t]

:/Xal( T)dr + Z Xy (=) uo(m)

T €la,t]

hold uniformly on I, where X, is the fundamental matriz of the homogeneous system (5.1.1,0),
(5.1.2,5,0) for any m € N.

Theorem 5.1.3. Let Py € L(I;R" ™), ¢f € L(I;R™), G§ € B(T;R" "), u§ € B(T;R"), ¢ € R",
and a £§ : BV (I;R™™) — R™ be a linear bounded vector-functional such that

det(I, + Gi(m)) # 0 (1=1,2,...)

and the boundary value problem

Z—f = Pl (t)x + q3(t) for a.a. t € I\T, (5.1.1%)
z(n+) —x(n—) = Gi(n)z(n) +uy(n) (1=1,2,...); (5.1.2%)

G(x) = cf (5.1.3%)

has a unique solution x§. Let, moreover, there exist the sequences of matriz- and vector-functions
H,, € BVACjoc(I, T;R™™ ™) (m=1,2,...) and hy, € BVACjo.(I, T;R™) (m =1,2,...) such that

inf {|det(H,,(t))| : t €1} >0 for every sufficiently large m,
the conditions
im (cm+ 65 (hw)) =c5,  lim €5 (y) = €5(y) for y € BV(I;R™),

m——+oo m——+00
b

limsup [||€; ||| < 400 and hmsup\/I Hy,; P, G) < 00

m——+oo m——+o0

hold and the conditions
t

i Z(Hi P Go)(t) = [ Pi(r)ar s Y Gy,
a Tle[a,t[
t

lim (hm(t)—h ( )+B( manaum)(t)_/dIL(Hm;vaGm)(S)'hm(8)>

m—+o00o
a

t

~ [amar+ 3 i)

a T1€a,t]

hold uniformly on I, where €%, (y) = €y (H,, y) (m =1,2,...), and the operators B, and Z, are defined
by (5.1.19) and (5.1.20), respectively. Then problem (5.1.1,,)~(5.1.3,,) has the unique solution x, for
any sufficiently large m and

lim ||Hp @ + by, — 25|00 = 0.

m——+o0
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Remark 5.1.4. In Theorem 5.1.3, the vector-function z}, (t) = Hy, ()T () + A (t) is a solution of
the problem

% =P (t)x+q,(t) fora.a. t €la,b\T
w(n+) —z(n—) = G, (n)x(n) + up,(n) (=1,2,...);

() = ¢y

for every sufficiently large m, where

P (t) = (Hp(t) + Hin () P (8)) Hy, (1),

Gr,(1) = (d2H, (n)+H (n+ Gm(m)) HyN( m=0,1,...; 1=1,2,...);

G (1) = i (8) + Hi (8) g (£) — P;(t)hm(t)( —12 )

wr, (1) = doh (1) + Hp (1) un (11) — G (1) b (1) (m=1,2,...51=1,2,...).

Corollary 5.1.1. Let conditions (5.1.12), (5.1.13), (5.1.15), (5.1.16) and

lim (¢ — ¢om(a)) = co

m——+oo
hold, and conditions (5.1.17), (5.1.18) and

t
lim (BL<Hm;qm () + / AT, (Hons P Gon) - gamm) — B.(Hos a0, u0)(¢)

m——+oo
a

hold uniformly on I, where Hy,, € BVAC,c(I,T;R™*™) (m = 0,1,...), vm € BVAC,,.(I,T;R")
(m =1,2,...), and the operators B, and I, are defined by (5.1.19) and (5.1.20), respectively. Then
problem (5.1.1,,)—(5.1.3,,,) has the unique solution x,, for any sufficiently large m and

Il — o — 7olloe =0,

Remark 5.1.5. Note that the condition

lim sup (/HH’ )+ Hp, Hdt—l—ZHdz () + Hp, (Tl+)Gm(Tl)H> < 400

m——+o0o

guarantees the fulfilment of condition (5.1.15).
Now we give some effective sufficient conditions guaranteeing inclusion (5.1.14).

Theorem 5.1.4. Let conditions (5.1.12), (5.1.13) and

hmsup(/HP Hdt—|—ZHG TI) > < 400

=1

hold, and the conditions

mgr—ri-loo</P dT+ Z G ’7'[) /.P() dT+ Z G() Tl

1€ [at] T E[a,t]
and

lim </tqm(7)d7+ Z um(n)> =/th0(T)dT+ Z uo(71)

a T €[a,t] a T €[a,t]

hold uniformly on I. Then inclusion (5.1.14) holds.
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Corollary 5.1.2. Let conditions (5.1.12), (5.1.13), (5.1.15) and (5.1.16) hold, and conditions (5.1.17)

lim [ Hy(r)Po(r) dr = / Ho(r) Py(7) dr

m——+o0o
a

and

m——+oo

lim H (7) g (7) dT = /HO(T) qo(T)dt

hold uniformly on I, and

lim Gp(r) =Go(r) and lm (1) = uo(m)

m——+00 m—+oo
hold uniformly on T, where H,, € BVAC,,.(I,T;R"*"™) (m =0,1,...). Let, moreover, either

hmsupz G (7)) + lum (7)) < +o00, or hmsupZHH (m+) — Hp ()| < +00.

m—>+ool 1 —>+ool 1

Then inclusion (5.1.14) holds.
Corollary 5.1.3. Let conditions (5.1.12), (5.1.13), (5.1.15) and (5.1.16) hold, and conditions (5.1.17)

mmloo(/ff dT-i—ZHTH— ) /P dT-i—ZGTl

and

ml_lgrloo(/H T)qm (7) d7 + Z m(T1+) um(n)> Z/tq*(r) dr + Z u(7)

T €la,t] a T €la,t]

hold uniformly on I, where H,, € BVAC;,.(I, T;R"*") (m = 1,2,...), P, € L(I;R"™"), q, €
L(I;R™), G, € B(T;R™"), u, € B(T;R™). Let, moreover, the system

X — (Rolt) ~ Pu(t) + (a0(t) — (1)) Jor a.a 1€ T\T,

w(nt) —x(n—) = (Go(n) = Gu(m))x(n) + (wo(t) —uu(n)) (1=1,2,...)

have a unique solution satisfying condition (5.1.3). Then

o0

((Pma qm; Gm, um§€m))m

S(
Corollary 5.1.4. Let conditions (5.1.12), (5.1.
matriz-functions B; € BVAC,.(I, T;R™ ™) (5

Py — Py, q0 — g+ Go — Gy, ug — us; bp).

hold and let there exist a natural number p and

13)
=0,...,4— 1) such that the conditions

hmsup\/ (Hm -1+ B.(Hpm y—15 P, Gi)) < +00

m—r+0Q0
+ a

holds, and the conditions

lim  B,(In; P, G )(t) = Bo(t) — Bo(a),

m——+00
i (Hy 1)+ By 15 Pos Gon) (1)) = 1+ By(0) = Byfa) G = 1. 1)
lim (Hmu_l(t)—|—BL(HmM_1;Pm,G,,L)(t)):In+/PO(T)dT+ S Goln)

m——+oo
to T E€la,t]
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and

mngrrlooB( mu— 1,qm,um)()=/qo(7')dr+ Z uo(m)

T E€[a,t]
hold uniformly on I, where

Hno(t) = In, Hij(t) = = (Hm j—1(7)(t) + Bu(Hum j—15 Py G)(8) — B;(t) + Bj(a)) Hm j—1(t)
G=1,...,p—1m=12...).

Then inclusion (5.1.14) holds.

If 4 =1, then Corollary 5.1.4 coincides with Theorem 5.1.4.
If g = 2, then Corollary 5.1.4 has the following form.

Corollary 5.1.4;. Let conditions (5.1.12), (5.1.13) and (5.1.15) hold, and the conditions

t

i (/Pm(r) ar+ 3 Gm(n)) — B(t) - Ba),

a Ti€[a,t]

lim (/H rydr+ Y (B(n+) — (n+))Gm(n)) :/tp()(T)dT-i- > Go(n)

m—+oo
T1€la,t] w Ti€lat|

and

t

lim (/Hm(T T)dr+ Y (B(m+) - (n+))um(n)) Z/QO(T)dT+ > uoln)

m——+oo
T E[a,t] to T1€a,t]

hold uniformly on I, where B € BVAC,.(I,T;R™*™) and

t

Hm(t)EIn—/Pm(T)dT— S Gu(n)+ B(t) - Bla) (m=1,2,...).

a T €la,t]
Then inclusion (5.1.14) holds.

Corollary 5.1.5. Let conditions (5.1.12) and (5.1.13) hold. Then inclusion (5.1.14) holds if and only
if there exist matriz-functions Q,, € L(I;R™*™) and W,,, € B(T;R"*™) (m =0,1,...) such that

b
lim sup </||Pm( —Qm(t Hdt+Z||G ) (Tl)||> < 400 (5.1.21)
m——+00
and
det(Iy + Wi (7)) #£0 (m=0,1,...; 1=1,2,...), (5.1.22)

and the conditions

-1
mgrilmz ( ) =2, (1), (5.1.23)
m——+0o0
and
i B,(Z,b G, um) () = B.(Z5 5 g0, w0) (t) (5.1.25)

m——+o0
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hold uniformly on I, where Z,, (Zm(a) = 1I,,) is a fundamental matriz of the homogeneous system

CC%C =Qm(t) foraa tel\T, (5.1.26)
z(m+) —x(n—) =Wp(n)z(n) (=1,2,...) (5.1.27)

for every m € N.

Corollary 5.1.6. Let conditions (5.1.12) and (5.1.13) hold and let there exist sequences of matriz-
functions Qum, € L(I;R™™) (m =0,1,...) and W, € B(T;R"*™) (m =0,1,...) such that the pairs
(Qm, W) (m =1,2,...) satisfy the Lappo—Danilevskii condition at the point a, conditions (5.1.21)
and

det(l, + Wo(m)) #0 (I=1,2,...) (5.1.28)
hold, and the conditions
t t
mglilm/Qm(T) dr = /QO(T) dr, (5.1.29)
i D Wnlm) = Y. Won), (5.1.30)
T E€a,t] T E€a,t]
t
: -1
a Tl a,

t

= / Zy (MPo(r)dr+ > Zy () (In + Wo(n) "'Go(m)  (5.1.31)

a T1€la,t]

and

mEﬁoo(/Z (Dam()dr+ 37 251 (0) L+ W7 >>1um<n>)

a T €[a,t]

:/ Hao(r)dr+ Y 2y ()T + Wo(m) " Hun(n)  (5.1.32)

a T Ea,t]

hold uniformly on I, where Z,, (Zy(a) = I,,) is a fundamental matriz of the homogeneous system
(5.1.26), (5.1.27) for any sufficiently large m. Then inclusion (5.1.14) holds.

Remark 5.1.6. In Corollary 5.1.6, due to (5.1.30), it follows from (5.1.28) that condition (5.1.22)
holds for every sufficiently large m and, therefore, conditions (5.1.31) and (5.1.32) of the corollary are
correct.

Remark 5.1.7. In Corollaries 5.1.5 and 5.1.6, if we assume that W,,(7) = Onxn (m = 0,1,...;
l=1,2,...), then conditions (5.1.22) and (5.1.28) are valid, obviously. Moreover, due to the definition
of the operator B,, each of conditions (5.1.24) and (5.1.31) has the form

t

Jn [z @pandr s 3 23 mGm) - / R+ Y 2 m)Goln)

T1€la,t| T1€la,t]

and each of conditions (5.1.25) and (5.1.32) has the form

t

ml_if_{loo(/ NOam(T)dr+ Y Z ()um( Tz))zj Yoy dr+ > Z5  (m)ue(n).

a T €la,t] T €la,t]
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Remark 5.1.8. If a pair (P, G) satisfies the Lappo—Danilevskif condition at the point s and det(7,, +
G(m)) # 0 for 7; < s, then, due to (1.2.54), the fundamental matrix Z (Z(s) = I,,) of the homogeneous
system

dx
i P(t) foraa. teI\T,
.%‘(TH—) - x(Tl_) = G(Tl)x(ﬂ) (l =12,.. )

has the form
t

exp </P(T) dT) H (In + G(m)) for t > s,

s<T<t

Z(t) = (5.1.33)
exp (/P ) (I, + G(m))™* for t <s,
t<m<s
I, for t =s.
Corollary 5.1.7. Let conditions (5.1.12), (5.1.13) and
lim sup Gm(m)| < 400
imsup lZ |G (0]
hold. Let, moreover, the matriz-functions P, (m =0,1,...) satisfy the Lappo—Danilevskii condition

at the point a and the conditions

mlirilw P, (r)dr = /PO(T) dr

Jim Z Gm(n)= Y Go(n),

T €[a,t] T €[a,t]
t T t T
LHE exp (— /Pm(s) ds) P, (r)dr = /exp (— /Po(s) ds) Py(1)dr,
t T t T
1_1)r_r~_1 /exp(—/Pm(s) ds)qm(r) dr = /eXp (—/Po(s) ds)qo(r) dr
and
Tl Tl
i, 3 o (= [ Putsrds Jun(r = > o (- [ Poe)as Jual)
TIE|a,t a TI€a,t a

hold uniformly on I. Then inclusion (5.1.14) holds.

Corollary 5.1.8. Let Py, = (pmij)i ;=1 € LULER™ ™), g = (qmi)iey € LILR™), Gy = (gmij)} =1 €
R™)

=
B(T;R™ ™) and ty, = (gmi)j—y € B(T}; (m=0,1,...) and let the conditions (5.1.12), (5.1.13),

lim sup Z </|pm” \dt+Z|gm” (1) ><+oo

m—>+oozj 1 itj

and
1+g0“‘(7'l)7é0 (i:l,...,n; 1=1,2,...)
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hold. Let, moreover, the conditions

t

ml_i}}rloo (/pmii(T) dr + Z gmii(Tl)) = /tpo¢i(r) dr + Z goii(m) (i=1,...,n),

a T€[at] Ti€lat|

lim ( [k @pmsrrar+ S zmmn)(l+gmu-<n>>-1gm-j<n>)
a T Ela,t]
t

:/Zo_i%(T)pou(T)dTJr Yz () + goi(m)Mgoi(n) (0455 .5 =1,...,m)

a TIE[a,t]
and

t

i (/Zmzl'i(T)Qmi(T) dr + ; [Zm%i(/rl)(l+gmii(7—l))_1umi(7—l))
a Ti1€|a,t

t

:/Z&%(T)QOi(T)dT+ Z Z&}(Tl)(l+90ii(Tl))71u0i(Tl) (i=1,...,n)

a Ti€[at[

hold uniformly on I, where

Zmii(t) = exp (/tpm“-(T) dT) H (In 4+ gmii(n)) (i=1,...,n)

. a<T <t

for any sufficiently large m. Then inclusion (5.1.14) holds.

Remark 5.1.9. For Corollary 5.1.8, the remark analogous to Remark 1.2.3 is true, i.e.,
1+gmu(7-l) 7&0 (7’: ]-7"'377’; l= 1723)
for every sufficiently large m and, therefore, all conditions of the corollary are correct.

Remark 5.1.10. In Theorem 5.1.1 and Corollaries 5.1.1,5.1.2, without loss of generality, we can
assume that Hy(t) = I,,.

5.1.3 Nonnegativity of solutions of the Cauchy—Nicoletti type
multi-point boundary value problems

In this subsection, for the impulsive case we realize some propositions on the existence of nonnegative
solutions of multi-point boundary value problems.

We investigate the question on the existence of nonnegative solutions of the impulsive system
(5.1.1), (5.1.2) satisfying the following boundary value conditions:

Jii(ti) = gi(l‘l, - ,mn) + Co; (Z =1,... ,n), (5134)

or

where ¢; : BV (I;R") = R (i = 1,...,n) are linear bounded functionals; ¢o; € R, and z; is the i-th
component of the vector-function z for every i € {1,...,n}.
We assume that I = [a, b].
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Definition 5.1.3. We say that the triple (Q, H, £y) consisting of matrix-functions Q = (qik);szl €
L(I;R™ ™) and H = (hi)} =y € B(T;R™") and a positive homogeneous nondecreasing bounded
vector-functional £y = (fo;)j=; : BV (I;R}) — R7 belongs to the set U(ty,...,t,;71,72,...) if
gix(t) >0 (i £k;i,k=1,...,n) forae. t €I, hip(r) >0 (i £ k;i,k=1,...,n;1=1,2,...), and
the system

NE

~
Il

1

NE

ri(n+) —zi(n—) <Y hap(m)a(n) Gi=1,...,n;1=1,2,...)

=~
Il
_

has no nontrivial nonnegative solution satisfying the condition
Iz(tz) < gOi(zla s 7xn) (7’ = 17 ceey n)

Below, we give the general results on the existence of the nonnegative solution of system (5.1.1),
(5.1.2) satisfying conditions (5.1.34), or (5.1.35). The particular cases follow from the corresponding
results of Section 2.3 and the results obtained in [18].

Theorem 5.1.5. Let there exist matriz-functions Q = (qu)ij=y € L(;R™ ™) and H = (hik)} =, €
B(T;R™™™) and a positive homogeneous nondecreasing bounded vector-functional £y = (Lo;)i— :
BV (I;R}) — R satisfying the condition

(Q7H7€0) € U(t177tn7 Tl7T27"')
such that

ii(t), 0 <piu(t) <q(t) fortel (i#k;i,k=1,...,n),
(1), 0<gi(m) <hg(m) (i#£k i,k=1,....n; 1 =1,2,...),
for tel, ui(m)sgn(m—t;)>0 (i=1,...,n;1=1,2,...),

ci >0 (i=1,...,n)

pn( )Sgn(t —t; ) <gq
gii(n)sgn(n —t; ) S h
q:(t)sgn(t —t;) >0

and
0<Vli(w1,...,2,) < loi(21,...,2n), 1€ BV([5Ry) (3,0 =1,...,n).

Then problem (5.1.1),(5.1.2);(5.1.34) has one and only one solution and it is nonnegative.

The theorem immediately follows from Theorem 2.4.1.

5.1.4 On a method for constructing solutions of the Cauchy—Nicoletti type
multi-point boundary value problems

In this subsection, we present a method for constructing solutions of the impulsive system (5.1.1),
(5.1.2) satisfying one of the conditions (5.1.34), (5.1.35), or

zi(ti) = pixi(G) +coi (i=1,...,n),

where co; ER, p; ERand ; €1, #7 (i=1,...,n).

We use the designations given in Section 2.4 and realize them for the impulsive system under
consideration.

As the zero approximation to the solution of problem (5.1.1),(5.1.2); (5.1.34), we choose an arbi-
trary function (z¢;)"; € BV(I;R™). If the (m — 1)-th approximation (2,,—1;)f; is constructed, then
by the m-th approximation we take ()i, i-th components of which are defined by

xmz( l) E (an—l 15y Tm—1 n) + Coq (Z = 17 sy n)7
xmz(t) Yi (t7tz)xmz(tz) +Wi($m71 1y--- »wmflnaqivui)(t) for tel (Z = 17 o 7”)7
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where the operators w; : BV(I;R"*2) — BV(I;R) (i = 1,...,n) are defined as

Wi(Y1s- - Ynt2) () = Gi(Y1s - - Yns2) (1) + /pii(s) Gi(Y1s - - Ynt2)(s) exp (/pu‘(T) dT) ds,

n t t

G i) = S / wi(s)pas) ds + / Ynia () ds

I 1=17, e

t .
+ Z (gil(Tk)-l-ynJrz(Tk))L. for tel (i=1,...,n).

Tr€la,s(

As above, we give general results on the method for constructing solutions of system (5.1.1), (5.1.2)
satisfying condition (5.1.34), or (5.1.35). Particular cases follow from the corresponding results of
Section 2.3 and the results obtained in [18].

Theorem 5.1.6. Let there exist matriz-functions Q = (qu); =y € L(L;R™ ™) and H = (hi)} =y €
B(T;R™ ™) and a positive homogeneous nondecreasing bounded vector-functional by = (Lo;)_q :
BV (I;R}) — R satisfying the condition

(Q,H; L) € Uty ... tn; 71,72, .. )
such that

pii(t) sgn(t

—t) < qi(t), |pik®)| < qix(t) for tel (i#k;ik=1,...,n),
gii(m) sgn(m — t;) < hy

i), gin(m)| < hie(m) (G# ks ik=1,...,n51=1,2,...)

and
[i(x1,. .. xn)| < Loi(x1,...,2y) for x; € BV(I;Ry) (i,1=1,...,n)

Then problem (5.1.1),(5.1.2);(5.1.34) has one and only one solution and there exist po > 0 and
§ €10, 1] such that

Z i = Tmilloc < pod™ (m=1,2...),

=1

where the vector-functions (rm;)j—y (m =1,2,...) are defined by (2.4.5), (2.4.6).

5.2 Periodic problem

In this section, we consider the impulsive system

fl—f = P(t)z +q(t) for a.a. t € R\ T, (5.2.1)
x(n+) —z(n—) = G(n)z(n) +uln) (1=1,2,...) (5.2.2)

with the w > 0-periodic condition
z(t+w)=x(t) for t R, (5.2.3)

where P = (pik)Zkzl € LZOC(R;Rnxn)a q = (qk)z € Lioc (R Rn) G = (gik)Zk::I € Bloc(T; Rnxn)’
u:(uk)zzlEB[OC(T;RH),T:{Tl,TQ,...}, 1eER ( = 2,...), Tl#Tk 1fl7ék'(l,k:172,),
and w is a fixed positive number.
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As we have noted in Section 5.1, a vector-function z is a solution of the impulsive system (5.2.1),
(5.2.2) if and only if it is a solution of the generalized system (1.1.1), where

t
At) = / P(r)dr+ Y G(m) for teR,
0 T €[0,¢]
t

£(t) :/q(f) dr+ Y u(n) for t€R.

0 T €[0,t]

(5.2.4)

Since P, G and ¢, u are w-periodic matrix- and vector-functions, from (5.2.4) it follows that
At +w) = A(t) + Alw) and  f(t+w) = f(t) + f(w).
We assume that
det(l, + G(m)) #0 (I=1,2,...).

We realize only specific results corresponding to the w-periodic problem, i.e., the above-established
results obtained for generalized differential case.
Along with system (5.2.1), (5.2.2), we consider the corresponding homogeneous system

CC% = P(t)x for a.a. t € R\ T, (5.2.1p)
r(n+) —z(n—) = G(n)x(n) (=1,2,...). (5.2.20)

Moreover, along with condition (5.2.3), we consider the condition
z(0) = z(w).

Definition 5.2.1. A matrix-function G, : R x R — R™*" is said to be the Green matrix of problem
(5.2.19), (5.2.20); (5.2.3) if:

(a)
Got+w,m+w)=0u(t,7), Gult,it+w)—Gu(tt)=1I, for t,7 €R;

(b) the matrix-function G, (-,7) : R — R™*™ is a fundamental matrix of system (5.2.1¢), (5.2.29)
for every 7 € R.

To use formulae (4.1.14) it is necessary to consider the expression A(A, A(—A4, f)) for the case
under consideration. Using (5.2.4) and the definition of the operator A, we find that

A=A, ) () = A=A, f)(s) = f(8) = f(s) + D d2A(T) (I — doA(7)) " da f(7)
TE[s,t]

:/q(T)dT+ S um+ Y Gl - Gln)tuln)

TIEs,t] T E[s,t[

TIE[s,t]

Z/Q(T)dT-l- Z (I, — G(1)) " tu(r) for s <t

and

A(A, A(=A, 1)) — A(A, A(=A4, 1)) (s)
= A=A, (1) = A=A, )(s) = D doA(7)(In + d2A(7)) " da2A(= A4, f)(7)

TE[s,t]
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t

Z/Q(T) dr+ Y (In=G@m) u(n) = Y Gn)In+G(n) " (I — G(n)) u(n)
s TE[s, TIE[s,t]

:/q(T)dT+ S (I + Gn) " (I — G(m)) " ulr) for s<t, s,teR,

s TIE[s,t]
Thus, we have the following
Theorem 5.2.1. Let the condition
det(l, + G(m)) #0 (I=1,2,...)

hold, and system (5.2.1p), (5.2.29) have only a trivial w-periodic solution. Then system (5.2.1), (5.2.2)
also has the unique w-periodic solution x and it is written in the form

t+w
w(t) = / Gu(t. g dr+ S (Ln+G(m) (I — G(n)"u(n) for t € R,
t T E[t,t4w|

where G, is the Green matriz of problem (5.2.1p), (5.2.29);(5.2.3).

Definition 5.2.2. Let 0; € {-1,1} (i = 1,...,n). We say that a pair (Q,H) consisting of the

matrix-functions @ = (gix)}'—; € Lo (R;R™") and H = (h)}y—y € Bu(T;R™ ™) belongs to the set

Uoron if g1 (¢) > 0 for t € [0,w] and hiy(m) >0 (i £ k;i,k=1,...,n;1=1,2,...),
1+0ihii(Tl)>0 (i=17...,n;l:1,2,...) (525)

and the system of impulsive inequalities

NE

oixi(t) <Y qk(t)zk(t) for teR (i=1,...,n),

S
Il

1

M=

zi(n+) —zi(n—) < hi(m)ze(n) (=1,...,n;1=1,2,...)

E
Il
—

has no nontrivial, nonnegative w-periodic solution.

Theorem 5.2.2. Let the conditions
oipii(t) < ¢ii(t), |pie(t)] < qin(t) for teR (il i l=1,...,n); (5.2.6)
lgii(T)| < |his(m)], Nga(m)| < ha(n) (G=1,25 i#L i l=1,...,n) (5.2.7)

hold on [0,w], and
(Q,H) e Uz’)l,...,o'n’

where Q = (k)i =1 and H = (hiy)}y—,- Then system (5.2.1),(5.2.1) has the unique w-periodic
solution.

Corollary 5.2.1. Let conditions (5.2.5)~(5.2.7) and
ai)\i(w) <1 (’L = 1,...,n)

hold, where o; € {—1,1} (i=1,...,n), qi(t) >0 fort € [0,w] and hy (1) >0 (i £ k; i,k=1,...,n;
1=1,2,...), and

Ai(t) = exp(oiqii(t)) [ (14 hii(r)) for t€0,0] (i=1,...,n).

o< <t
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Let, moreover,
r(S) <1,

where the matric S = (sil)?lzl 1s defined by

55 =0, sy = Sup{ oigoi(t, 7)qir () dT

S~

+ Z O'Z(In —+ aihii(n))flgm(t, Tl)hik(’r[) te [O,UJ]} (Z # l; Z,l = ].7 - ,TL),
7 E€[0,w]

where goi(t,7) = (1 — Ni(w)) "IN (O (T)&(t, 7), and &(t,7) = Ni(w) if t < 7 and &(t,7) = 1 if
T < t. Then the conclusion of Theorem 5.2.2 is true.

Corollary 5.2.2. Let conditions (5.2.5)—(5.2.7) hold, where

pik(t) = niai(t) for a.a. teR (i,k=1,...,n),
qir (1) = nipdeci (1) (Lk=1,...,n; 1=1,2,...),

o e{-1,1},nueRy (i £ i,l=1,...,n), a; (;(w) #0;i=1,...,n) are nondecreasing on [0, w]
functions. Let, moreover,

N <0 (i=1,...,n)

and
r(H) <1,
where H = (hit)}1—y,
hii =0, hy = i (i#£14,0=1,...,n).
MNii

Then the conclusion of Theorem 5.2.2 is true.

Corollary 5.2.3. Let conditions (5.2.5), (5.2.6), (5.2.7) hold, where 01 = 09 = --- = 0, = 0y,
oo € {~=1L;1}, Q@ = (qir)}r=1 € Lo(R;R™") and H = (hi)} y—1 € Bu(T;R" ") are nondecreasing on
[0, w] matriz-functions. Let, moreover, the module of every multiplicator of the system
dy
i Qoo (t)y for a.a. t e R\ T,
y(Tl+) - y(Tl_) = Ho’g (Tl)y(Tl) (l = 17 2) v )7

where Qq,(t) = 00Q(oot + 1522 w) and Hyy (1) = ooH(oom + 1522 w), be less than 1. Then the
conclusion of Theorem 5.2.2 is true.

5.3 The numerical solvability of the general linear
boundary value problem

5.3.1 Statement of the problem

In this section, we construct the difference schemes for the problem

Z—f = P(t)x +q(t) fora.a. teI\T, (5.3.1)

x(m+) —x(n—) = G(n)z(n) +u(n) 1=1,2,...); (5.3.2)
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£(x) = co, (5.3.3)
where I = [a,b], P € L(I;R™"), q € L( ,R”) G € B(T;R™™), uw € B(T;R™), T = {r1,72,...},
nel(l=12...),7# 1fl7é (l,k=1,2,...), £ : BVs(I;R™) — R" is a linear bounded

vector-functional and ¢y € R”.

Throughout this section, we will assume that the vector-function xg : I — R™ is the unique solution
of problem (5.3.1), (5.3.2); (5.3.3).

Along with the problem, we consider the difference scheme

Ay(k—1) = % (Gim (k) y(k)+Gam(k — 1) y(k— 1)+ gim (k) +gom (k—1)) (k=1,...,m), (5.3.1,,)
L (Y) = Ym, (5.3.2,,)

where m € N and G, and g, (j = 1, 2) are, respectively, mappings of the set Ny, = {0,...,m} into
R™ ™ and R"™, 7, € R". Furthermore, for a given m € Ny, £, is a linear bounded functional of the
space of vector-functions from N,,, into R™ and with values in R™.

In this section, we will present the effective necessary and sufficient (also, the effective sufficient)
conditions for the convergence of the difference scheme (5.3.1,,), (5.3.2,;,) to xo. Moreover, a criterion
is obtained for the stability of the difference scheme (5.3.1,,), (5.3.2,,).

It should be noted that no necessary and, the more so, no necessary and sufficient conditions were
found in the earlier works.

Finally, we note that just as in [17], the 2-order n x n-difference linear problem can be reduced to
some 1-order 2n x 2n-difference linear problem of type (5.3.1,,), (5.3.2,,) and, therefore, we can obtain
the necessary and sufficient conditions for the convergence of the corresponding 2-order difference
schemes. Analogously, we can consider the 3-order difference problem, and so on.

We assume that G, € E(N ;R (5=1,2), gjm € E(N,,; R") and L,, (Nm,R") — R"™ i
given linear bounded vector-functional for m € N and j € {1,2}. In addition, suppose

G1m(0) = Gopm(m) = Opxn and g1, (0) = gom(m) =0, for m € N.
Moreover, we assume that

det(I, + G(n)) #0 (1=1,2,...).

5.3.2 The necessary and sufficient conditions for the convergence
of the difference schemes. Formulation of the results

The proofs of the results of this chapter will be given below, in Subsection 5.3.3. We assume that
I = [a,b].

Definition 5.3.1. We say that a sequence (G1pm, Gam, 91ms Gom; Lm) (m = 1,2,...) belongs to the set
CS(P, q; G, u;0) if for every cg € R™ and the sequence 7, € R™ (m = 1,2,...) satisfying the condition

lim TYm = Co
m—+oo

the difference problem (5.3.1,,), (5.3.2,,) has a unique solution y,, € E(N,,;R") for any sufficiently
large m and

hmoo ”ym - pm(xo)HNm =0.

m—+

Theorem 5.3.1. Let the conditions

lim L, (pm(x)) =L(z) for x € BV(I;R"), (5.3.4)

m——+oo

limsup ||| Lm]]] < +o0 (5.3.5)
m——+oo
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hold. Then
“+o0

m=1

((Gl’rmG27rugl7na92m;£m)) € CS(PaQ7 G,U,E) (536)

if and only if there exist a matriz-faction H € BVAC oo (I, T; R™ ™) and a sequence of matriz-functions
Him, Hom € E(Npp; R™*™) (m € N) such that the conditions

hmsupz (HHzm(k) — Hypm(k)+ %Hlm(k) Glm(k)H

m~>+oo

+HH1m(k) — Hom(k—1) + %Hlm(k) G (k — 1)”) < 4oo,  (5.3.7)

inf {|det(H(t))|: t€ I} >0, (5.3.8)
i ([P (F) = Himn) [} =0 (G=1,2) (539)
hold, and the conditions
’/m(t)
S Hu(R) (Gan(k) + Gan(k— 1) / HOP(r)dr+ Y Hn)Gn), (53.10)
k=1 T[E[a,t[
Vm(t
i — Z Him (k) (g1m (k) + gom(k — 1)) /H ) dT + z{:t[ (+)u (5.3.11)
TIE|Q

hold uniformly on I.

Remark 5.3.1. The limit equalities (5.3.10) and (5.3.11) hold uniformly on I if and only if the
conditions

i 1 Tim
. 1 ,
lim  max {’m;ZOHlm(k) Gj+1m(k—])—/H(T)P(T) dr— ; [H(T,+)G(Tl) } = Onxn;
=1j= a TiI€la,T;

Tim

lim max {'m Z Z Him(k) gjs1im(k —j) — / H(r)q(r)dr — Z H(m+)u(m)

m—+o0 ieN,, P 0
Jj=

a Ti€la,i[
hold, respectively.
Let X be the fundamental matrix of the system

dr
dt
z(n+) —xz(n—) =G(n)x(n) (1=1,2,...)

P(t)x fora.a. teI\T,

such that X (a) = I,, and let Y,,, for any m € N be the fundamental matrix of the system
1
Ay(k 1) = = (Gun(K) y(k) + G (k — 1)yl — 1)) (k € Ny) (5.3.12)

such that Y;,,(0) = I,,.
Theorem 5.3.2. Let conditions (5.3.4), (5.3.5) and

det (In + (1) %Gjm(k)) 40 (j=1,2 k€N,y; meN) (5.3.13)

hold. Then inclusion (5.3.6) holds if and only if the conditions

I {1 () = X )1} =
s, OBX 1Y (K) (Tkm)l| ;=0
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and
1 J
. L -1 _ g
i e DX @ et
k=1 j=0
- [ x-S x| =0,
° T €la,7i]
hold.
Remark 5.3.2.

(a) If a pair (P, G) satisfied the Lappo-Danilevskii condition at the point s and det(I,, + G(7;)) # 0
for 7, < s, then, due to (1.2.54), the fundamental matrix X (X (s) = I,,) of the above-given
homogeneous system has form (5.1.33).

(b) By (5.3.13), we conclude
Yk =] (In - %Glm(i))_l (In + %sz(i - 1)) (k € Npy) (5.3.14)

for every natural m.

(¢) In Theorem 5.3.2, condition (5.3.8) holds automatically, since Y, is the fundamental matrix of
the homogeneous system (5.3.12) for every natural m.

Theorem 5.3.3. Let conditions (5.3.4), (5.3.5) and

m

. 1
limsup — 3 (|G (k)[| + | Gam (k = D) < +o00

m——+00 1

hold and let the conditions

Vi () t

MEIEOO% S (Grm(k) + Gl — 1)) = / P(rydr+ 3 Gn) (5.3.15)
k=1 “ T Ela,t]
and
v (1) t
lm > (g1m (k) + gom(k — 1)) = /q(T) dr+ Y q(n) (5.3.16)

k=1 p T E[a,t]
hold uniformly on I. Then inclusion (5.3.6) holds.
Proposition 5.3.1. Let conditions (5.3.4), (5.3.5), (5.3.7)~(5.3.9) and

m——+oo M, keN

im - max { G (R + lgm B} =0 (= 1,2) (5.3.17)

hold and let conditions (5.3.10) and (5.3.11) hold uniformly on I, where H € AC(I; R™*™), Hyp,, Hapm, €
E(N,,; R**™) (m € N). Let, moreover, either

1 m
li — Gim(k ok i =1,2),
imaup (223 (1G58 + losn(R)l)) <400 (G =1.2)
or

timsup > (11 Ham (k) = Him ()] + | Him(k) = Ha (k = 1)]]) < +oc.

m——+00 k—0

Then inclusion (5.3.6) holds.
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Theorem 5.3.4. Let conditions (5.3.4), (5.3.5), (5.3.7)=(5.3.9) and (5.3.17) hold and let conditions
(5.3.15), (5.3.16),

lim l Z Hlm(k) (Glm( )+G2m —]. /P dT+ Z G Tl

and

Vi, () t

lim Z Hip (k) (91m (k) + gam(k — 1)) = /q*(T) dr + Z us(71)

m——+o0o M
a T1E[a,t|
hold uniformly on I, where P, € L(I;R™™™), ¢, € L(I;R™), G. € B(T;R"*"), u, € B(T;R"),
H € AC(I; R™™), Hipm, Hopm € E(Np,; R™*™) (m € N). Let, moreover, the system

B (P(t) ~ P*()e +4(1) — 0u(0) foraa tET\T,

z(n+) —x(n—) = (G(TZ) — G*(Tl))x(n) + (U(Tl) — u*(n)) (l=12,...)
have a unique solution satisfying the boundary value condition (5.3.3). Then

((Glma G2ma 9im, g2m; ﬁm));m

Corollary 5.3.1. Let conditions (5.3.4) and (5.3.5) hold and let there exist a natural p and matriz-
functions Bj € E(N,,,; R"*"™), B;(0) = Opxn (j =0,...,0— 1) such that

€CS(P — Pi,q — ;G — Guyu — uy; £).

1
hm sup Z <HH2m# Hlm/t(k) + E Hlmﬂ(k) Glm/t(k)H

m~>+oo

%HMMML&W@1H7;HMAMG%W@1M><+m,

lim  max {||Hpmu(k) — L)} =0 (1=1,2,...),

m—+00 keN,,

and let the conditions

U, ()
. 1 ‘
P 2 G+ G5 = 1) = By(wa) (1= 0.1,
1 v (t) L
ml_lg_looa Z (Grmu (k) + Gamp(k /P )dr + Z
k=1 T E€la,t]
1 v (t)
ml_lffrlooa Z (g1mu(k) + g2mpu(k = 1)) = /q T)dr + Z u(m)
k=1 a ni€lat]

hold uniformly on I, where

Gimo(k) = Gim(k), Gamo(k) = Gam(k),
Gimjr1(k) = Himj(k)Gim(k),  Gamjr1(k) = Himj(k +1)Gom(k),
9im j+1(k) = Himj(k)g1m(k),  g2m j+1(k) = Hamj(k + 1)g2m (k)
Himo(k) = Homo(k) = I,
Hlmj+1(k) = (% Hlmj(k) Glm(k) + Ql(Hlmjy G1m7 GQm)(k) + Bj+1(k))Hlmj(k)a
Hopy jy1(k) = (Q2(Himj, Gim, Gam) (k) + Bji1(k)) Hamj (k)
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Ql(Hlmja Glma GQm)(k) = QITL - nm] - ZHQm] Glm( ) + GQm(Z - 1))
(1=1,2 j:O,...,u—l; m=1,2,...).
Then inclusion (5.3.6) holds.

If p =1 and Bjo(0) = Onxn (j =1,2), then Corollary 5.3.1 has the form of Theorem 5.3.3.
If p = 2, then Corollary 5.3.1 has the following form.

Corollary 5.3.1y. Let conditions (5.3.4), (5.3.5) and (5.3.7) hold, and the conditions

Vi, ()

1
ml_ig_loo E kZZI (Glm(k) + G2m(k - 1)) = B(Vm(t))7

U ()

mLH_EOC Z Hp (k) (Gim (k) + Gam(k — 1)) /Po dT+Tl€§[;t[G() )

and
Vi (1) :
mgr}rloo Z H glm )+92m(k - ]-)) = /QO(T) dT+ z[: [HO(TZ)
to T E|a,t

hold uniformly on I, where B € E(Ny; R™™), B(0) = Oy, and
=
Hop (k) = In — — ; (Gim (i) + Gom(i — 1)) + B(k) (m=1,2,...).

Then inclusion (5.3.6) holds.

Corollary 5.3.2. Let conditions (5.3.4) and (5.3.5) hold. Then inclusion (5.3.6) holds if and only if
there exist matriz-functions Q., € L(I;R"*™) (m =0,1,...) and W,,, € B(T;R™*") (m =0,1,...)
such that the conditions (5.1.22) and

b 0o -1
limsup </ 1Qm ()] dt + k; H;’Z‘) (G (i) + Gam (i) — Wm(m)”> < 400 (5.3.18)

hold, and the conditions (5.1.23),

im -3 (23 (0)Gn ) + 2 ()Gl - 1)

m——+oo M

l: 1 Ela,t]
t
= [ @ em@ar s Y 4 a6 6319
a T E€la,t]
and
im =S (2 o0 + 2 (1) gan(l— D)
m—+oco m m m m m

l: 11 €la,t]
t

:/Zal(T)po(T)dT+ S Zit(m)go(n) (5.3.20)

a Ti€[at[
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hold uniformly on I, where Z,, (Zm(a) = 1I,,) is a fundamental matriz of the homogeneous system

d
d—f = Qu(t) for aa. teI\T, (5.3.21)
z(n+) —x(n—) = Wp(n)z(n) (=1,2,...) (5.3.22)
for any sufficiently large m.
Corollary 5.3.3. Let conditions (5.3.4) and (5.3.5) hold and let there exist sequences of matriz-
functions Qm, € L(I;R™™) (m = 0,1,...) and W,, € B(T;R™"™) (m = 0,1,...; Il = 1,2,...)
such that the pairs (Qm, W) (m = 1,2,...) satisfy the Lappo—Danilevskii condition at the point a,
conditions (5.1.28), (5.3.18) hold, and conditions (5.1.23), (5.1.29), (5.3.19), (5.3.20) hold uniformly

on [a,b], where Zy, (Zy(a) = 1,,) is a fundamental matriz of the homogeneous system (5.3.21), (5.3.22)
for any sufficiently large m. Then inclusion (5.3.6) holds.

Corollary 5.3.4. Let Gim = (Gimig)}j—1 € ENmiR™™) and grm = (grmi)ey € BN RY) (k =
1,2, m=0,1,...) and let conditions (5.3.4), (5.3.5),

limsupi > (Z (lg1mij ()| + |92mij(7'l)|)) < +00

moteo M 2 Tiss =1
and
1+gOzz(Tl) #0 (Z: ]-avnv l:1727)
hold. Let, moreover, the conditions

vm (1) t

im  — > (gumii(k) + goamii (k) = /pom‘(T) dr+ > goi(n) (i=1,...,n),

m——+oco m

k=0 a T E€la,t]
. 1 _ _
im — ( > i @him () = Y qulii(Tl)thij(l)>
m oo m
l: 7 €]a,t] l: T €la,t]

t
:/Z&}(T)pom(ﬂ dr+ Y 250 (m)(1+ gois(n)'gois(m) (i #j; 6,5 =1,...,n)

T €la,t]
and
. 1 -1 -1
Jim (8 - X k)

l: 7€ a,t] l: i €la,t]
t

:/Z&%(T)QOi(T)dT+ >z (M)A + gois(n) Muei(m) (i=1,...,n)

a 7€ a,t]

hold uniformly on I, where

Mionis )= (14 (D8 T i) gimig @ i) = (14 (D ginis) im0

(k:1a27 i)j:17"'an)7
-1

Zmai(T1) = H(l + gmii(Tk)) (1=1,...,n)

k=0
for any sufficiently large m. Then inclusion (5.3.6) holds.
Remark 5.3.3. For Corollary 5.3.4, the remark analogous to Remark 1.2.3, is true, i.e.,
1+gmii(Tl> #0 (i: 1,....,n; 1 = 1,2,...)

for every sufficiently large m and, therefore, all conditions of the corollary are correct.
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Remark 5.3.4. In Theorems 5.3.1, 5.3.4, Proposition 5.3.1 and Corollary 5.3.1, if condition (5.3.13)
holds, we may assume that H,,(t) =Y, 1(t), where Y, is the fundamental matrix of the homogeneous

system (5.3.12) defined by (5.3.14) for every natural m. Moreover, condition (5.3.1) and analogous
conditions hold automatically everywhere in the above results, as well.

5.3.3 Auxiliary propositions and proofs of the results

The proofs of the results are based on the following concept. We rewrite problems (5.3.1), (5.3.2);
(5.3.3) and (5.3.1,,),(5.3.2,) (m € N) as the linear boundary value problem for the systems of
generalized ordinary differential equations. So, the impulsive system (5.3.1),(5.3.2), as well as the
discrete systems (5.3.1,,) (m € N) are, really, the same type equations. Therefore, the convergence
of difference scheme (5.3.1,,),(5.3.2,,) (m € N) to the solution of problem (5.3.1),(5.3.2);(5.3.3) is
equivalent to the well-possed question for the boundary value problem for the last systems. So, using
the results of Section 1.2, we established the present results.

As above, in Subsection 5.1.1, we rewrite the boundary value problem (5.3.1),(5.3.2);(5.3.3) as
the boundary value problem

50(1‘) = Cp,

where Ay € BV(I;R™™*™), fo € BV(L;R"), ¢y : BVo(I;R") — R™ is a linear bounded vector-
functional and ¢y € R™ is a constant vector.

Consider now the difference boundary value problem (5.3.1,,), (5.3.2,,), where m € N.

For every natural m, we define the matrix- and vector-functions A,, € BV([;R"*") and f,, €
BV(I;R"™) and the bounded vector-functional ¢, : BV, (I; R™) — R™, respectively, by the equalities

k
Ap(a) = A (Tom) = Onxny  Am(Tem) = (ZGM )+ZG2m(i—1)), (5.3.23)
%(Zalm )+ZG%(¢—1)) for ¢ €17kt m:Teml (k € Npn);

k k
fm(a) = f(TOm) =0y, fm Tkm = % (me + ZQQm(i — 1)), (5324)
1=0 1=1

1 )
E (Zglm + Z;QZm(Z - 1)) for t G]Tk—lmaTkm[ (k S Nm)a
U () = Lo (pm(z)) for x € BV(I;R"), ¢ = Ym. (5.3.25)

It is not difficult to verify that the defined matrix- and vector-functions have the following prop-
erties:

1 1
A1 A (Tiem) = o Gim(k), doAn(Tim) = - Gom(k) (E=1,...,m), (5.3.26)
djAm(t) = Onxp for t € I\ {Tim,.. ., Tkm} (1 =1,2);
1 1
dlfm(Tkm) = E glm(k)a d?fm(Tkm) = E g2m(k) (k = ]-, ey m)» (5327)

djfm(t) =0, for t € I\ {Tim,...,7em} (1 =1,2)
for every m € N.

Lemma 5.3.1. Let m be an arbitrary natural number. Then the vector-function y € E(Iglm;R”) s
a solution of the difference problem (5.3.1,,),(5.3.2,,) if and only if the vector-function v = g, (y) €
BV(I;R™) is a solution of the generalized problem

dx = dAn,(t) - x + dfm(¢),
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() = e,

where the matriz- and vector-functions A,, € BV(I;R™*") and f,, € BV(I;R™) and the bounded
vector-functional £,, are defined by (5.3.23)—(5.3.25), respectively.

Proof. Let y € E(N,,; R™) be a solution of the difference system (5.3.1,,,) (m € N). Then by (0.0.12),
(0.0.13) and the equality z(7gm) = ¢m (V) (Tem) = y(k) (k € N,,,), we get

/ dAm(T)Im(T) + f(Tkm) - f(Tk:—l m)
o 1 1 1 1
= ooy Glm(k)xm(Tkm) + m G2m(k - 1)33m(7'k—1 m) + m glm(k) + m 92m(k - 1)

=~ G (B + - Gam(h = Dyl = 1)+ — g1 (k) + - gamn(h = 1)

= Ay(k’ — ].) = xm(Tkm) - z7n(Tk—1 m)

and

dlmm(Tkm) = xm(Tkm) - mm(Tkm_) = %Glm(k)y(k) + %glm(k)
= dlAm(Tkm) + dlfm(Tkm) (k € Nm);
1

A0 (T m) = (et 4) = (1) = () ~ 9k = 1) = — G (R)y(8) — — gam (k)

1 1
== E GQm(k - ]-)y(k - ]-) + E me(k - ]-) = dQAm(Tk—l m) + dem(Tk—l m)
for every m € N and k € N,,,. O

Analogously, we show that if the vector-function z € BV(I;R") is a solution of the generalized
problem defined above, then the vector-function y(k) = p,,(z)(k) (k= 1,...,m) will be a solution of
the difference problem (5.3.1,,), (5.3.2,,) for every natural m.

So, we show that the convergence of the difference scheme (5.3.1,,), (5.3.2,,) (m € N) is equivalent
to the well-posed question for the corresponding linear generalized boundary value problem given at
the beginning of the subsection.

Moreover, in view of Definition 1.2.1, the following lemma is true.

Lemma 5.3.2. Inclusion (5.3.6) holds if and only if the inclusion
“+o0
(A, fins b)) oy € S(A, £30)

holds, where the n X n-matriz-functions A, Ap,, n-vector-functions f, f,, and n-vector-functionals £,
by, (m=1,2,...) are defined as above by (5.3.23)—(5.3.25), respectively.

Remark 5.3.5. In view of (5.3.23) and (5.3.24), we have A,,(t) = const and f,,(t) = const for
t€lmhe1m,Tem| (k=1,...,m; m =1,2,...), ie., they are the break matrix- and vector-functions.
So, all the solutions of system (5.3.1,,,) (m = 1,2,...) have the same property. Such property have also
matrix-functions H,, (m = 1,2,...) in the results of Section 1.2. So, they are also break functions.
Therefore,

Hpy (Th—1m+) = Hp(Tem—) = const (k=1,...,m; m=1,2,...). (5.3.28)

Below we realize some results from Chapter 2. To this end, we use the following

Lemma 5.3.3. Let the matriz-functions A,, € BV(L;R™ ") (m = 1,2,...) and the vector-functions
fm € BV(L;R™) (m = 1,2,...) be defined by (5.3.23) and (5.3.24), respectively, and Q,, € BV(I; R™*"™)
(m =1,2,...). Then there exist discrete matriz-functions Q1m,Qam € E(Nm;R"X") (m=1,2,...)
such that Q1 (k) = Qam(k — 1) and

Vm (t)

B(Qm, Am)(t) = % Z (le(k) Gim(k) + Qom(k — 1) Gop (k — 1)) (m=1,2,...)  (5.3.29)
k=1
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and

B(Q, fr) () = — Z (Qun (k) g1 (k) + Qo (k = 1) gom (k= 1)) (m=1,2,...).  (53.30)

Proof. By the definition of the operator B(H, A), the integration-by-parts formula and equalities
(0.0.12), we have

B(Qus An) / Qn(P)dAn() = 3 Q) diAn(r) + S daQ(r) dAn(7)
a<t<t o<r<t
Z Qm Tk:m Tkm Z Qm Tkm+) dZA (Tkm)
a<Trm <t a<TEm<t

v (t) vm (t)—1

- Z Qm(Tkm_) dl 7—km Z Qm Tkm+) d2A (Tkm)
k=1

k=0
Z (Qu(Thom =) i A (Thom) + Qun(Ti- 1 m+) doAm(Ti-1m) ) for tE T (m=1,2,...). (53.31)

Owing to (5.3.26), from (5.3.31) we get presentation (5.3.29), where Q1;m(k) = Qum(Tem—) and
Q2m(k) = Qm(Tkm~+) (m = 1,2...). Analogously, using (5.3.27), we obtain presentation (5.3.30).
Due to (5.3.23) and (5.3.24), the lemma is proved. O

Proof of Theorem 5.3.1. Let us show the sufficiency.
Let the matrix-functions H,,, € BV(I;R"™) (m =1,2,...) be defined by the equalities

Hm(t):Hlm(k) for Th—1m <t < Thm, Hm(Tkm):HQm(k) (kzl,...,m; m:172,...).

It is evident that H,, (m =1,2,...) are the break matrix-functions and they are constant on the
intervals |7,—1m, Tkm|. Hence equalities (5.3.28) hold and

lem(Tkm):HQm(k)—Hlm(k)7 dsz(Tkm):Hlm(k’-i-1)—H2m(]€) (k:L...,m; m:l,?,...).

By Lemma 5.3.3, Remark 5.3.5 and equalities (5.3.28), we get

Vm(t)
1
B(Hom, Am)(t) = — Z Him (k) (Gim (k) + Gam(k — 1)) (m=1,2,...)
and
Vi (t)
B(Hyp, frn)(t) = — Z Him (k) (g1m(k) + gom(k — 1)) (m=1,2,...).

On the other hand, condition (1.2.9) is equivalent to condition (5.3.7). So, conditions (5.3.8)—(5.3.11)
guarantee the fulfilment of the condition of Theorem 1.2.1. The sufficiency is proved.

Let us show the necessity. Inclusion (5.3.6) is equivalent to inclusion (1.2.8), where A,, and fy,
(m=1,2,...) are defined as above. Due to Theorem 5.3.1, there exists the sequence H,, € BV(I;R"™)
(m =1,2,...) satisfying the conditions given in the theorem. Let

Hip (k) = Ho(Tim—),  Hom(k) = Hp(Tem) (m=1,2,...).

According to Remark 5.3.5, equality (5.3.28) holds. Using Lemma 5.3.3, we easily show that the defined
discrete matrix-functions Hy,, and Ha,, (m = 1,2,...) satisfy the condition of Theorem 5.3.1. O

Due to the above lemmas and remark, we conclude that Theorems 5.3.2 and 5.3.3 are the particular
cases of Theorems 1.2.2 and 1.2.4, respectively. Moreover, Proposition 5.3.1, Theorem 5.3.4 and
Corollary 5.3.1 are the particular cases of Corollaries 1.2.2, 1.2.3 and 1.2.4, respectively, etc.
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5.4 The stability of difference schemes

5.4.1 Statement of the problem and formulation of the results

In this section, we consider the question on the stability of a solutions of the difference linear boundary
value problem

Ag(k = 1) = Ca(k) y(k) + Galk — Dy(k — 1) + g1 (k) + galk = 1) (k € Nyny), (5.4.1)
L) =Y HEWH) = 0 (5.4.2)
k=0

where mg > 2 is a fixed natural number, G; € E(ﬁmO;R”X") (1=12),9;€ E(NmO;R") (j=12),
H € E(N,,,,;R™), and 79 € R™.
Along with problem (5.4.1), (5.4.2), consider the sequence of the problems

Ay(k —1) = Grm(k)y(k) + Gam(k — 1)y(k — 1) + gim (k) + gom(k — 1) (k € Npy),  (5.4.1,)

Lolr) =S Ho(B)y(k) = (5.4.2,)
k=0

and 7, € R" for every natural m.
We assume that
Gl(o) = Glm(o) = Onxna 91(0) = g1m(0) =0, (m S N),
Ga(mo) = Gam(mo) = Onxn,  g2(mo) = gam(mo) = 0, (m € N)
and problem (5.4.1), (5.4.2) has the unique solution 40 € E(N,,,;R™) (the necessary and sufficient

conditions are given, e.g., in [18]).
Besides, we assume that G1o(k) = G1(k) and g19(k) = g1(k), if necessary.

Definition 5.4.1. We say that a sequence (G1m, Gam, 91m, Gom; Lm) (m = 1,2,...) belongs to the
set S(G1, G2, q1,92; L) if for every 79 € R™ and the sequence v, € R® (m = 1,2,...) satisfying the
condition

I =

the difference boundary value problem (5.4.1,,), (5.4.2,,,) has a unique solution y,, € E(ﬁlmo;R”) for
any sufficiently large m and

Sy = ol = 0.

Theorem 5.4.1. Let

det (I, + (=1)7G;(k)) #0 for k€N, (j=1,2) (5.4.3)
and _
HIE H,, (k) = H(k) for k € Np,. (5.4.4)
m——-+00
Then .
((Gim, Gom, g1m, g2m; Lm)), —, € S(G1,G2,91, 92; L) (5.4.5)

if and only if

lim  (Gipn (k) + Gom(k — 1)) = Gy (k) + Go(k — 1) for k € Ny,

m—+o00o

lim (glm(k) +92m(k - 1)) = gl(k) + 92(k - 1) fOT‘ ke Nmo'

m——+oo
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Proposition 5.4.1. Let conditions (5.4.3), (5.4.4),
im  Gjm(k) = G;(k) for k€ Nm, (j=1,2),

m——+00

hmoo gjm(k) = gj(k) for k € Ny, (j=1,2)

m—+

hold. Then inclusion (5.4.5) holds.

Corollary 5.4.1. Let conditions (5.4.3) and (5.4.4) hold and there exist a natural p and matriz-
functions By € E(Ny,; R"*™), Bi(0) = Opxn (I=0,..., 0 — 1) such that the conditions

lim sup (HHgmu(k) — Hipp (k) + Hipp (k) Glmu(i)H

m——+00
+||Himpu (k) = Hamp(k — 1) + Hump (k) Gomy(k — 1)\]) < +oo for k € N,
lim  Hjpu(k) =1, for k€N, (j=1,2),

m——+00

lim_(Grma(K) + Gk — 1)) = Bu(k)  for k€ Npy (1=0,...50~ 1),
hmoo (Glmu(k) + Ggmu(k — 1)) =Gy (k’) + GQ( ) fO’I" ke Nmo

and
Hm  (gimp (k) + gamu(k — 1)) = g1(k) + g2(k — 1) for k € Ny,

m——+0o0

hold, where
Gimo(k) = Gim(k), Gamo(k) = Gam(k),
Gimit1(k) = Himi(k)Gim(k),  Gamit1(k) = Himu(k + 1)Gam (K),

glml—i-l(k) = H’rnl(k)glm(k')a g2ml+1(k) = Hml(k + I)QQm(k)a
Himo(k) = Hamo(k) = I,

Himiy1(k) = (Himi(k)Gim (k) + Q1 (Himis Gim, Gom) (k) + Big1(k)) Hipu (k),
Homi11(k) = (Q2(Himi, Gim, Gam) (k) + Bl+1(k))H2ml(k)a

Qj(Hlmla Glma G2m)(k) = QIn jml ZHlml Glm( ) + CJQ?n(Z - 1))

(j :1,2, l:O,..., —1L,m=1,2,...).
Then inclusion (5.4.5) holds.

If p =1 and By(k) = Opxn, then Corollary 5.1.1 coincides with the sufficient part of Theorem
5.4.1.
If p = 2, then Corollary 5.4.1 has the following form.

Corollary 5.4.1;. Let conditions (5.4.3), (5.4.4),
LHE (Gim (k) + Gam(k — 1)) = B(k) for k € Ny,
HIEOO (Hm (k) (Gim (k) + Gam(k — 1)) = G1(k) + G2(k — 1) for k € Ny,

m—
and
ml_ig_loo (Hm(k) (91m (k) + g2m (k — 1))) 91(k) + g2(k — 1) for k € Ny,
hold, where B € B(Np,,; R"™™), B(0) = Opxn and
k—1
Hyp(k) =1, =Y (Gim(i) + Gom (i — 1)) + B(k) (m=1,2,...).
=1

Then inclusion (5.4.5) holds.
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Corollary 5.4.2. Let conditions (5.4.3) and (5.4.4) hold. Then inclusion (5.4.5) holds if and only

if there exist matriz-functions Wy, € E(Np, ; R™™), Wi, (0) = Opxn (m = 0,1,...) such that the
conditions
det(I, + Wi (k)) #0 (m=0,1,...),
lim Z,'(k) = Z; ' (k),

m——+00

lim (Z,;l(k)Glm(k) + Z. (k= 1)Gaom(k — 1)) = Zy (k)G1(k) + Zy Mk — 1)Ga(k — 1) (5.4.6)

m——+00

and

lim (2., (B)gun (k) + Z," (k= Dgam(k = 1)) = 25 (R)gu (k) + Z5 (k= Dga(k — 1) (5.4.7)

m——+oo

hold for k € ﬁmo, where

k

Zm(k) = H(In +Win(k —i)) (m=0,1,...).

Corollary 5.4.3. Let conditions (5.4.3) and (5.4.4) hold and let there exist sequences of matriz-

functions Wy, € E(Npyo; R?*™), Wi, (0) = Onxn (m =0,1,...) such that conditions (5.4.6), (5.4.7),
det(I, + Wy(k)) #0
and
i Wi (k) = Wl

hold for k € Iglmo, where the matriz-functions Z,, (m = 0,1,...) are defined as in Corollary 5.5.2.
Then inclusion (5.4.5) holds.

Corollary 5.4.4. Let Grm = (gkmij)i j—1 € B(T;R™™) and grm = (grmi)i=; € B(T;R") (k= 1,2;
m=0,1,...) and let conditions (5.4.3), (5.4.4),

imsup > (g1 (0)] + lgamis(R)]) ) < +o0 for k € Nop,

MO =15 i

and
1+g0ii(k)7é0 for k€ Np, (i:1,...,n)

hold. Let, moreover, the conditions

Hm  (gimai (k) + gomii (k) = gris(k) + g20i(k) (i=1,...,n),

m——+o00
Hm  (2,5:(k) (himij (k) — hamij (k) = 2g51 (k) (haoij (k) — haoij (k) (i # j; i,5=1,...,n)

m——+oo

and

Hm (2,0 (k) (Rimi (k) — hami(k))) = 205 (k) (haoi (k) — hoos(k)) (i=1,...,n)

m——+oo

hold for k € ﬁmo, where

himij (k) = (1 + (_1)lglmii(k))7lglmij(k)a himi(k) = (1 +
1

| =
and
k—1
Zmii(k) = [+ gmas() (i=1,...,)
=0

for any sufficiently large m. Then inclusion (5.4.5) holds.
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Remark 5.4.1. In this section, we consider the case where the limit problem (5.4.1),(5.4.2) and
the approximate problems (5.4.1,,),(5.4.2,,) (m = 1,2,...) are given on the same (constant) sets
Nmo. The method considered below enables one to investigate the same problem for the general case,
i.e., when the approximate problems (5.4.1,,), (5.4.2,,,) are given on different sets N,,, (m = 1,2,...)
differing from Nmo.

5.4.2 Proofs of the results

As in the previous section, the proofs of the results are based on the following concept. We rewrite
problems (5.4.1), (5.4.2) and (5.4.1,,), (5.4.2,5,) (m € N) as the linear boundary value problem for the
systems of generalized ordinary differential equations.

We assume that

Lo(y) = L(y), Gjo(k) =Gj(k) and gjo(k) = g;(k) (J=1,2).

For every m € N, we define the matrix- and vector-functions A,, € BV([0, mg]; R™*™) and f,, €
BV([0, m]; R™) and the bounded vector-functional ¢, : BV ([0, mo]; R™) — R, respectively, by the
equalities

k k
A (0) = Onxny  Am(k) = Gim(i) + Y Gam(i — 1),
1=0 1=1

k—1 k
Ap(t) = Gim(i) + Y Gom(i — 1) for t €]k —1,k[ (k € Np,); (5.4.8)
1=0

i=1

k k
S (0) = 0n fin (k) =D g (i) + D _ gam(i = 1),

1=0

k—1 k

Fu® =3 g1m (@) + Y gam(i — 1) for t €]k — L k[ (k € Np,); (5.4.9)
i=0 i=1

b () = Lo (pm(2)) for x € BV([0,mo]; R"™), ¢m = Yim. (5.4.10)

Analogously, as in the pervious section, the following lemmas are true.

Lemma 5.4.1. Let m € N be arbitrary. Then the vector-function y € E(Nm;R") s a solution of the
difference problem (5.4.1,,), (5.4.2,,) if and only if the vector-function x = ¢, (y) € BV([0, mg]; R™) is
a solution of the generalized problem

dr = dA,,(t) -  + dfp (1),
b () =

where the matriz- and vector-functions A, € BV([0,mo]; R™"*™) and f,, € BV([0,mo];R™) and the
vector-functional £y, are defined by (5.4.8)—(5.4.10), respectively.

Lemma 5.4.2. Inclusion (5.4.5) holds if and only if the inclusion

((Amv Im; ém));icl e S(A, f;0)

holds, where the matriz-functions A, A,,, vector-functions f, f.. and vector-functionals ¢, £,, (m =
1,2,...) are defined as above by (5.4.8)—(5.4.10), respectively.

So, the discrete systems (5.4.1),(5.4.1) and (5.4.1,,), (5.4.2,,) (m € N) are the particular cases of
the generalized linear boundary value problems.

Therefore, the convergence of solutions of the difference problems (5.4.1,,), (5.4.2,,) (m € N) to
the solution of problem (5.4.1), (5.4.2) is equivalent to the well-posed question for the boundary value
problem for the latter systems.

Due to the lemmas, we conclude that Theorem 5.4.1, Proposition 5.4.1 and Corollary 5.4.1 are the
particular cases of Theorem 1.2.1, Corollary 1.2.2 and Corollary 1.2.4, respectively, etc.



Chapter 6

The well-posedness and the
numerical solvability of the general
linear boundary value problems for
systems of ordinary differential
equations

In this chapter, we realize the results of Sections 5.1 and 5.3 for the general linear boundary value
problem for the following differential systems of ordinary differential equations.
Below:

(a) in Section 6.1, we give the conditions guaranteeing the approximation of the solution of the
considered problem by solutions of the nearly problems of the same type, i.e., by absolutely
continuous vector-functions;

(b) in Section 6.2, we give the conditions guaranteeing the approximation of the solution of the
considered problem by solutions of the nearly difference problems, i.e., by piecewise constants
vector-functions;

(¢) in Section 6.3, we give the conditions guaranteeing the approximation of the solution of the
considered problem by solutions of the nearly impulsive problems, i.e., by piecewise continuous
vector-functions.

6.1 The necessary and sufficient conditions
for the well-posedness

Consider the problem

d
. Py(t)x + qo(t) for a.a. t €1, (6.1.1)

dt
60(1‘) = Cp, (612)

where I = [a,b], Py € L(I;R"*"), qo € L(I;R™), ¢y : C(I;R™) — R" is a linear vector-functional,
bounded with respect to the norm || - ||, and ¢y € R™.
Note that by the Hahn—Banach theorem there exists a linear bounded vector-functional ¢, €
BV (I;R™) — R™ such that
Lo (z) = Lo(x) for z € C(I,R™)

157
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and the norm of ¢, on BV, (I;R™) equals to the norm of ¢y on C(I;R™), i.e., |||4]|| = |||¢]]|- So we
can assume, without loss of generality, that the vector-functional £y is given on BV, (I; R"™).
Along with the boundary initial problem (6.1.1), (6.1.2), consider the sequence of problems

% = P, (t)x + gn(t) for a.a. tel, (6.1.1,,)
() = e, (6.1.2,,)

where P,, € L(I;R™"™) (m = 1,2,...), gm € L(I;R™) (m = 1,2,...), {p : C(;R"™™) —» R"
(m =1,2,...) are linear bounded vector-functionals, and ¢, € R™ (m =1,2,...).

We assume that P, = (pmij)i =1 (m=0,1,...), ¢m = (gmi)i=y (M =0,1,...).

In this section, we establish the necessary and sufficient as well as effective sufficient conditions for
the boundary value problem (6.1.1,,), (6.1.2,,) to have a unique solution x,, for any sufficiently large
m and

lim ||, — zolle = 0. (6.1.3)

m——+00

Along with systems (6.1.1) and (6.1.1,,), we consider the corresponding homogeneous systems

d

d—? = Py(t)z foraa. tel (6.1.1p)
and

dx

i P, (t)xz fora.a. tel, (6.1.1,,0)
(m=1,2,...).

Definition 6.1.1. We say that the sequence (P, Gm; lm) (m=1,2,...) belongs to the set S(Py, qo; o)
if for every ¢p € R™ and a sequence ¢, € R™ (m =1,2,...) satisfying condition

lim ¢, =c
m——+oo

problem (6.1.1,,), (6.1.2,,) has a unique solution z,, for any sufficiently large m and condition (6.1.3)
holds.

Systems (6.1.1) and (6.1.1,,) (m = 1,2, ...) are particular cases of impulsive systems (5.1.1), (5.1.2)
and (5.1.1,,), (5.1.2y,) (m = 1,2,...), respectively, where G(7;) = G, (71) = Opnxn, u(T) = um(m) =
0, (m=1,2,...).

To realize and formulate the well-posed results of Section 5.3, we use the following forms of the
operators B(X,Y) and Z(X,Y") (see (0.0.3) and (0.0.4)) for the ordinary differential case, in particular,
when the matrix-functions X and Y are continuous on I. Using the integration-by-parts formula
(0.0.10), (0.0.12) and the definition of the Kurzweil integral, we find that

B(X,Y)(t) = /X(T)Y’(T) dr

if X € BV(I;R") and Y € AC(I;R7*™), and
I(X,Y)(t) = / (X'(r)+ X(r)Y'(r)) X '(r)dr

a

it X,Y € AC(I;R™*"), det X (t) # 0. In addition, if

v = [



The General BVPs for Linear Systems of Generalized ODEs 159

where Y € L(I; R"*™), we set
B,(X;Y,Onxn)(t) = B(X,Q)(t) and Z,(X;Y,Onxn)(t) = Z(X, Q)(2).
Consequently,

B(X:Y, Onen)(t) = /X(T)Y(T) dr,

Z(X;Y,Onxn)(t) = / (X/(T) +X(T)Y(T))X_1(T) dr.

Thus we obtain the following results.

Theorem 6.1.1. Let the conditions

1_1}111 Lo () = bo(x) for x € C(I;R™), (6.1.4)
lin sup [[[£] | < +o0 (6.1.5)
m—+—+00

hold. Then

((Pmyqrn;em))j::l GS(PqumgO) (616)
if and only if there exists a sequence of matriz-functions H,, € AC(I;R™*™) (m =0,1,...) such that
the conditions

b
limsup/ | Hy, () + Hyp (t) Po(t)|] dt < +00 (6.1.7)
m——+oo
and
inf {|det(Ho(t))|: t €I} >0, (6.1.8)
hold, and the conditions
ml_l}’iloo H,,(t) = Hy(t), (6.1.9)
t t
tim [ Ho(6)Po(r) dt = / Ho(t)Po(t) dt (6.1.10)
and
t t
i [ (g (0) di = / Ho(t)go(t) dt

hold uniformly on I.

Theorem 6.1.2. Let conditions (6.1.4) and (6.1.5) hold. Then inclusion (6.1.6) holds if and only if
the conditions

lim X,M(t) = X5'(t)

m——+00
and

lim X N7 gm(T)dr = /Xo_l(T)qo(T) dr

m——+00
a

hold uniformly on I, where X,, is the fundamental matriz of the homogeneous system (6.1.1,,0) for
every m € N.
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Theorem 6.1.3. Let Py € L(I;R"*™), ¢5 € L(I;R™), ¢§ € R™, and a {§ : C(L;R™™") — R" be a
linear bounded vector-functional such that the boundary value problem

d
Ptz + @ (t) for aca. te, (6.1.1%)

dt
0 (z) = (6.1.2%)

has a unique solution xjy. Let, moreover, there exist sequences of matriz- and vector-functions H,, €
AC(I;R™™) (m=1,2,...) and h,, € AC(I;R™) (m =1,2,...) such that

inf {|det(Hp,(t))| : t €1} >0 for every sufficiently large m,
the conditions

i (em + £, (hm)) = 5, lim£5,(y) = & (y) for y € C(LR),

m——+oo m——+oo

m——+oo m——+oo

b
limsup |||6;,]|| < +00  and limsup/HP;;l(t)Hdt < +o00

hold, and the conditions

m——+o0

t t
lim Pr(r)dr = /PS(T) dr,
a a

t t

lim (hm(t) — hpm(a) + / (Hin(7) g (1) = P (T) hin (7)) d7> = /qS(T) dr

m——+oo
a a

hold uniformly on I, where P, (t) = (H.,(t)+ Hp(t) P () H L (E) (m=1,2,...), €5 (y) = € (H, y)
(m=1,2,...). Then problem (6.1.1,,), (6.1.2,,) has the unique solution x,, for any sufficiently large
m and

mLHEoo ||Hm T + B — 'ISHC = 0.

Remark 6.1.1. In Theorem 6.1.3, the vector-function 7}, (t) = Hy, (t)Tm (t) + hm(t) is a solution of
the problem

d
o _ Py (t)x+q,,(t) foraa. tel,

dt
(@) = ¢,
for every sufficiently large m, where
G (£) = D, (£) + Hin (t) g (8) = P, (D (1) (m = 1,2,...).
Corollary 6.1.1. Let conditions (6.1.4), (6.1.5), (6.1.7), (6.1.8) and

mgrﬂm(cm —pm(a)) = co

hold, and conditions (6.1.9), (6.1.10) and

tin [ (Hon(1)an(r) = (D) + Pir)on() dr = [ Ho(r)ao(r) dr

m——+o0
a

hold uniformly on I, where H,, € AC(I;R™*") (m =0,1,...), pm € AC(I;R") (m=1,2,...). Then
problem (6.1.1,,), (5.1.2,,,) has the unique solution x,, for any sufficiently large m and

mgr_?oo |Zm — @m — 2ol = 0.
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Now we give some effective sufficient conditions guaranteeing inclusion (6.1.6).

Theorem 6.1.4. Let conditions (6.1.4), (6.1.5) and

b
limsup/||Pm(t)||dt< o0

m——+o0

hold, and the conditions

t t
ml_i)rﬂoo P, (r)dr = /PO(T) dr (6.1.11)
a a
and
t ¢
mll)IEOO Gm(T)dT = /qo(T) dr

hold uniformly on I. Then inclusion (6.1.6) holds.
Corollary 6.1.2. Let conditions (6.1.4), (6.1.5), (6.1.7) and (6.1.8) hold, and conditions (6.1.9)

lim H,, (1) Py (7)dr = /P* (r)dr

m——+oo
a

and

lim Hp, (T)gm (1) dT = /q* (r)dr

m——+o0o
a

hold uniformly on I, where Hy, € AC(I;R™"*™) (m =1,2,...), P, € L(I;R"*"), ¢, € L(I;R"™). Let,
moreover, the system

‘C%" = (Po(t) — Pu(t))z + (qo(t) — qu(t) for aa. teT

have a unique solution satisfying condition (6.1.2). Then
((Pm7Qm§€m))?no:1 € S(PO — Pi,qo0 — Q*§ZO)-

Corollary 6.1.3. Let conditions (6.1.4), (6.1.5) hold and let there exist a natural number p and
matriz-functions B; € AC(I;R™™) (7 =0,...,u— 1) such that

m——+o0

b
limsup/ | Hp o1 (8) 4 Hy o1 () Pra (8) || dit < 400,

and conditions
t

im [ P(r)dr = Bo(t) = Bola),
a

m——+oo

lim (Hmj_l(t)+/Hmj_1(T)Pm(T)dT) :Inﬁ*Bj(t)*B](a) (jzl,...,,ufl),

t

Jim (Hmu_l(t)—i— ] Hop 1 (7) P (7) dT> — I+ / Py(r) dr,

m—+o00o
to
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t t

lim Hop 1 (7)) g (1) dT = /qo(T) dr

m——+oo
a a

hold uniformly on I, where

Hypo(t) = In, Hpmj(t) = <Hmj—1(7)(t) + /Hmj—l(T)Pm(T) dr — B;(t) + Bj(a))Hmj—l(t)

G=1,...,u—1;,m=1,2,...).
Then inclusion (6.1.6) holds.

If 4 =1, then Corollary 6.1.3 coincides with Theorem 6.1.4.
If p = 2, then Corollary 6.1.3 has the following form.

Corollary 6.1.31. Let conditions (6.1.4), (6.1.5) and (6.1.7) hold, and the conditions

lim [ P(r)dr = B(t) - B(a),

mE)IEOO H,,(1)Py,(7)dr = /PO(T) dr

and

t t
lim Hm(T) dm (7-) dr = /qO(T) dr
to

m——+o0
a

hold uniformly on I, where B € AC(I;R"*™) and

H(t) = I, — /Pm(T) dr + B(t) — B(a) (m=1,2,...).

a

Then inclusion (6.1.6) holds.
In Corollary 6.1.31, if we choose

B(t) = / Po(r) dr,

then the corollary has the following simple form.

Corollary 6.1.35. Let conditions (6.1.4), (6.1.5) and

b
limsup/ (I, = Hpn(t)) P (t)] dt < 400

m——+oo

hold, and the conditions

lim B (t) = Onxn,

m——+0o0

t T
lim B .(T) (/Pm(s) ds> dT = Onxn,

m——+00
a
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lim (I, = B (7)) g (7) dT = /qo(T) dr

m——+oo
a a
¢
hold uniformly on I, where By, (t) = [(Pn(t) — Po(7))dr (m = 1,2,...). Then inclusion (6.1.6)
holds. ’

Remark 6.1.2. In this corollary, the last limit condition holds, in particular, if

t

lim / 4o (7) d = j w(r)dr and lim | B;n(r)< / 4o (5) ds) dr =0,

m——+00 m——+00
a a

uniformly on .

Corollary 6.1.4. Let conditions (6.1.4) and (6.1.5) hold. Then inclusion (6.1.6) holds if and only if
there exist matriz-functions Qum, € L(I;R™ ™) (m =0,1,...) such that

b
limsup/ |1 P (t) — Qum(t)]] dt < 400, (6.1.12)
m——+o0
and the conditions
. 1 =1
mLHEoo Z(t) = Zy " (t), (6.1.13)
t
lim Z () P () dr = / Zy M (1) Po(T) dr (6.1.14)
m——+00
and
t t
LIIE anl(T) Gm(T)dT = /Zo_l(T) qo(T)dr (6.1.15)

hold uniformly on I, where Zy, (Zy,(a) = I,,) is a fundamental matriz of the homogeneous system

j—j =Qn(t) foraa tel (6.1.16)

for every m € N.

Corollary 6.1.5. Let conditions (6.1.4) and (6.1.5) hold and let there exist the sequence of matriz-
functions Qu, € L(I;R™™) (m =0,1,...) such that Q,, (m =1,2,...) satisfies the Lappo—Danilevskii
condition at the point a, condition (6.1.12) holds, and conditions (6.1.14), (6.1.15) and

m——+oo

lim /tQm(T) dr = /th(T) dr

hold uniformly on I, where Z,, (Zy(a) = 1I,,) is a fundamental matriz of the homogeneous system
(6.1.16) for every m € N. Then inclusion (6.1.6) holds.

Corollary 6.1.6. Let conditions (6.1.4), (6.1.5) and (6.1.11) hold and let the matriz-functions Py,
(m=0,1,...) satisfy the Lappo—Danilevskii condition at the point a and conditions (6.1.11),

dim | exp (_ / Pon(s) ds> Pp(7) dr = j exp (— / Po(s) ds) Po(r)dr

a
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and

i fon (= [ ruraYantrrar = fom (- [ o) Jatryar

a a a a

hold uniformly on I. Then inclusion (6.1.6) holds.

Corollary 6.1.7. Let Py = (pmij)ij=1 € LILGR™™) (m = 0,1,...), ¢m = (gmi)i=1 € L(I;R")
(m=0,1,...), and let conditions (6.1.4), (6.1.5) and

n b
lim sup Z (/|pmij(t)|dt> < 400

—4oo
MOy =105 N,
hold. Let, moreover, the conditions

t t
lim DPmii(T) dT = /pou-(T)dT i=1,...,n),

m——+oo
a a

t T t T
dim / exp (— / Prmii(s) d8>pmij(7) dr = / exp < - / pon(S)dS)pmj(T) dr
(i#7g;4,j=1,...,n)

and

t T t T
lim exp(— / P (5) dS)sz‘(T) dr = / exp<— / pon(s)dS)QOi(T) dr (i=1,....n)

a a a a

hold uniformly on I. Then inclusion (6.1.6) holds.

Remark 6.1.3. In Theorem 6.1.1 and Corollary 6.1.1, we can assume, without loss of generality, that
HO (t) = In.

Corollary 6.1.35 follows from Corollary 1.2.45. The other results immediately follow from the
corresponding results concerning the impulsive problems.

6.2 The necessary and sufficient conditions
for the convergence of difference schemes

In this section, we construct the difference schemes for our problem.
Throughout the section, we assume that the vector-function zg : I — R™ is a unique solution of
the problem

z—f = P(t)x +q(t) fora.a. tel, (6.2.1)
0(z) = co, (6.2.2)

where I = [a,b], P € L(I;R"™™), ¢ € L(I;R"), ¢ : C(I;R™) — R" is a linear bounded vector-
functional, and ¢y € R™.
Along with the problem, we consider the difference scheme

Ay(k=1)= = (G (k)y(k) + Gom (k= D)y (k = 1)+ gim (k) +gam(k=1)) (k=1,...,m),  (6.2.1,)

1
m
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Lon(Y) = Yms (6.2.2,,)

where m € N and G, and gjm, (j = 1,2) are, respectively, the mappings of the set N,, = {1,...,m}
into R™*"™ and R", 7, € R". Furthermore, for a given m € N,,, £, is a linear bounded mapping of
the space of vector-functions from N,,, into R™ with values in R".

In this section, we present the effective necessary and sufficient (moreover, the effective sufficient)
conditions for the convergence of the difference schemes (6.2.1,,), (6.2.2,,,) to xo.

The problem analogous to the one under consideration, for the initial problem is investigated
in [23].

We assume that G, € E(N,,; R"™") (j = 1,2), 9jm € E(N,,;R") and £,,, : E(N,,;R") — R™ is a
given linear bounded vector-functional for m € N and j € {1, 2}; in addition, assume

G1m(0) = Gom(m) = Onxns  91m(0) = gam(m) =0, for m € N.

Definition 6.2.1. We say that a sequence (G1m, Gam, G1m, g2m; Lm) (m = 1,2,...) belongs to the
set CS(P,g; ¢) if for every ¢y € R™ and the sequence v,, € R" (m =1,2,...) satisfying the condition

lim v, =c¢
m——+oo

the difference problem (6.2.1,,), (6.2.2,,,) has a unique solution y,, € E(N,,;R") for any sufficiently
large m and

Iy~ p(no)l, =0
Theorem 6.2.1. Let the conditions
mng L (pm(2)) = €(x) for z € BV(I;R"), (6.2.3)
limsup ||| Lm]]] < +o0 (6.2.4)
m—+oo
hold. Then
((Grm, G2, gim, g2ms L)) ) € CS(P, ¢; €) (6.2.5)

if and only if there exist a matriz-faction H € AC(I;R™ ™) and a sequence of matriz-functions

Him, Hom € E(N,pp; R™*™) (m € N) such that the conditions

m——+00 | __

limsupi <HH2m(k) — Hipm(k) + %Hlm(k) Glm(k)H
k=1

[ ) — Ho (1) + %Hlm(k) Gom (I — 1)H> < too,  (6.2.6)

inf {|det(H(t))|: t€ I} >0, (6.2.7)
i max {1 Hjm (k) = H(mm)l|} =0 (G =1,2) (6.2.8)
hold, and the conditions
1 Vm(t) t
hm S Hy (k) (G (R) + G (k1) = / H(r)P(r) dr), (6.2.9)

Vi () t
lim = 3 Hip () (g1m (k) + gam(k — 1)) = / H(7)q() dr) (6.2.10)

a

hold uniformly on I.
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Remark 6.2.1. The limit equalities (6.2.9) and (6.2.10) are fulfilled uniformly on I if and only if the

conditions
} = On><na

|

Tim

S5 Hin() Gk =)~ [ H)P(r)dr)

k=1j=0

1
lim max<{|—
m——+00 1€N,,, m

Tim

lin {’;iiﬂlmu@) eim(k )~ [ B dr

(V%
m—+00 (€N, ;
k=17=0

hold, respectively.
Let X be the fundamental matrix of the system

dx
— = P(t
o (t)x

such that X (a) = I, and, for any m € N, let Y;,, be the fundamental matrix of the system
1
Ay(k—1) = — (Glm(k) (k) + Gam(k — 1) y(k — 1)) (k € Nyy) (6.2.11)

such that Y;,(0) = I,.

Theorem 6.2.2. Let conditions (6.2.3), (6.2.4) and
o1
det (In + (-1 — Gjm(k)) £0 (j=1,2, k€ Np; meN) (6.2.12)
hold. Then inclusion (6.2.5) holds if and only if the conditions

lim max {||Yrgl(k) - X*l(mm)u} =0

m—=+00 keN,,
and
lim max {‘1 Z zljy,;l(k) Gjt1m(k—j)— 7”)(1(7)(1(7) dr } =0, (6.2.13)
moteoieNy | |m = = J
hold.
Remark 6.2.2.

(a) If P satisfies the Lappo—Danilevskii condition at the point s, then the fundamental matrix X
(X (s) = I,,) of the given above homogeneous system has the form

()~ [ 2oy

(b) By (6.2.12), we conclude that

Yu(k) =[] (In - %Glm(i))_l (In + %Ggm(i - 1)) (k € Npy) (6.2.14)

for every natural m.

(¢) In Theorem 6.2.2, condition (6.2.6) holds automatically, since Y, is the fundamental matrix of
the homogeneous system (6.2.11) for every natural m.
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Now we present a method of constructing discrete real matrix- and vector-functions, respectively,
Gjm and gjm (j = 1,2; m € N) for which the conditions of Theorem 6.2.2 hold.

Toward this end, we use the inductive method. Let &, : N,, — R™*™ and Em N,, — R (m e N)
be discrete matrix-and vector-functions, respectively, such that

m1_1}13{100 [€mllg, =0 and ml_l)ri_loom||§m\\ﬁ7n =0.

Let
Py = X (Tim) + Em(l) for 1€N,, and m € N.

Let m be an arbitrary natural number and let G1,,(1) and G, (0) be such that
Y (1) = Pry,.

According to (6.2.14), we get

1 -1 1
(1=~ GinV) (Lo + — Con(0)) = Pin.
Therefore, G1,,,(1) and Ga,,(0) will be arbitrary matrices such that
Gim(1) =m(IL, — Pp,p) = Gam(0) Py,

Thus the matrices G (k), Gam(k — 1) and Y, (k) (k = 1,...,1 — 1) are constructed. To construct
Gim(l) and Gy, (I — 1), we use the equalities

Yin(l) = Pim
" Y (l) = (In L Glm(l))_l (In + Lo - 1))Ym(l —1).
m m
As above, we obtain the relation
Gim()) =m(I, — P_1m P, ) — Gom(l— 1) Py P

So, G1m (1) and Gy, (I — 1) will be arbitrary matrices satisfying the latter equality.
Construct the discrete vector-functions g1, and ga,, (m € N). As ¢g1,,(1) and ga,, (I — 1) we choose
arbitrary vectors satisfying the equalities

%Yrgl(l) (glm(l) + g2m(l - 1)) = dim (l c Nm),

where

Tim

Gim = Em (D) + / X Yr)q(r)dr (1 €N,,)

for every natural m. Therefore, we have
g1m (D) + gom (I — 1) = mY, (D@ (I € Ny, m € N)

for the definition of the vector-functions gi,, and g, (m € N).

It is evident that the constructed vector-functions satisfy condition (6.2.13).

Realization of above-constructed discrete matrix- and vector-functions are illustrated by the fol-
lowing

¢
Example 6.2.1. Let X (t) = exp ( J P(r) dT) be the fundamental matrix of the homogeneous system
corresponding to system (6.2.1) and let &,, = O, xn and &, = 0,, for m € N. Then

le:exp(/P(T)m') for 1 €N,, and m € N.

a
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If we choose

Tim

Gom(l—1) = lePljllm = exp ( / P(7) dT) for 1 € N,,,
Til—1m
then
Tlm
Gim(l) = (m — 1)1, — mexp ( / P(7) dT) for 1 € Ny,

m €N,

m € N.

For the definition of the discrete vector-functions gi,, and gs,,, we have the relations

Tim

gm(D) + gam(l—1) =m / U(Tim,7)q(T)dr for 1 € N,,, meN,

a

where U(t,7) is the Cauchy matrix of system (6.2.1).
In particular, we can take

Tlm Tim

am(l) =am / U(Tim,7)q(T)dT, gom(l—1)=(1—a)m / U(Tim,7)q(T)dT 1 €N,p,, m €N,

a a

where « is some number.

Moreover, we can choose these discrete vector-functions in connection with the Cauchy formula

for system (6.2.1).
Theorem 6.2.3. Let conditions (6.2.3), (6.2.4) and

hmsupz( (IG1m (B + 1 Gam (ks = 1)) < +o0

m——+00 ; _
hold, and let the conditions

1 Vi (t) t

lim = 3 (Gum(k) + Gam(k— 1) z/P(T)dT

m——+o00 M,
k=1 a

and

Vi (t) t
. 1 _
A 3 ml®) om0 = fatrar

a

hold uniformly on I. Then inclusion (6.2.5) holds.
Proposition 6.2.1. Let conditions (6.2.3), (6.2.4), (6.2.6)—(6.2.8) and

lim max {chm(k)n +lgm} =0 (i =1,2)

hold and let conditions (6.2.9) and (6.2.10) hold uniformly on I, where H € AC(

E(N,,; R"*") (m € N). Let, moreover, either

m——+00

tinsup (= 2 (16581 + lgsn(R)1)) < o0
k=

(6.2.15)

(6.2.16)

(6.2.17)

I;Rnxn)y H1m7 HQm S

=1,2),
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or

hmsupz (12 () = Ha ()| + | Ha (k) = Hom (k = 1)) < +o0.

m——+0o0 k—0

Then inclusion (6.2.5) holds.

Theorem 6.2.4. Let conditions (6.2.3), (6.2.4), (6.2.6)—(6.2.8) and (6.2.17) hold and let conditions
(6.2.15), (6.2.16),

Vi (t) t

lim Z Hu (k) (G (k) + G (k — 1)) :/P*(T) dr

m—-+oo M
a

and
Vi, () t

lim Z Hyp (K 91m (k) + gam (k — 1)) = /(I*(T) dr

m—+o0 M,
a

hold uniformly on I, where P. € L(I;R™*"™), ¢q. € L(I;R™), H € AC(I;R"*"), Hy,,, Hoy €
E(N,,; R™™) (m € N). Let, moreover, the system

i (P(t) — P*(t))x + q(t) — q«(t) for a.a. tel
have a unique solution satisfying the boundary value condition (6.2.2). Then

((G1m7G2maglma92m;£m)):loo € CS(P — P*;q_Q*§Z)-

Corollary 6.2.1. Let conditions (6.2.3) and (6.2.4) hold and let there exist a natural p and matriz-
functions Bj; € E(N,,; R"*™), Bji(a) = Opxn (j =1,2;1=0,...,p—1) such that

m—)—&-oo

hmbupz <HH2"W — Himp(k) + % Hypp(k) Glmu(k)H

[ (8) — B = 1) 4 - F (6) Gl 1)”) < +o0,

lim max{” Jmu( )_InH}:O (j:1a2))

and let the conditions

Vi ()

t
1
i ]; (Cronga(k) + Gy (k — 1)) = / P(r) dr,
L m® !
ml_lg_loo m ; (glmu(k) + gomu(k — 1)) = /q(T) dr

hold uniformly on I, where

Gimo(k) = Gim(k), Gaomo(k) = Gam(k),
Gimiy1(k) = Himu(k)Gim(k), Gomir1(k) = Hip(k +1)Gom(k),
Gimi1+1(k) = Hpu(k)gim (k),  gami41(k) = Hpu(k + 1)gam (k),
Hypmo(k) = Homo(k) = Iy,
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Himipi(k) = (7:1 Hipi(k) Gim (k) + Q1(Himi, Gim, Gam) () + B1z+1(k)) Hyp(k),

Hopi41(k) = (Q2(Himi, Gim, Gom) (k) + Bzz+1(k‘))H2ml(k)
Qj(Hlmh G1m7 GQm)(k) =2I, — ]ml - ZHlml Glm( ) + sz(l - 1))
(]:1,2;120,..., —-1;,m=1,2,...).

Then inclusion (6.2.5) holds.

If u=1and Bjo(t) = Opnxn (j =1,2), then Corollary 1.2.1 has the form of Theorem 6.2.3.
If p = 2, then Corollary 6.2.1 has the following form.

Corollary 6.2.1;. Let conditions (6.2.3), (6.2.4) and (6.2.6) hold, and the conditions

Vi (t)
lim = 3 (Gun(k) + Gam(k — 1)) = Blvm (1),

m—+o0 M,
k=1

) t

and

Vi (t) £

to
hold uniformly on I, where B € E(Nm;R"X"), B(0) = Opxn and

k—1
Ho(k) = I, — % S (Gamli) + Gam(i = 1) + B(k) (m=1,2,...).

i=1
Then inclusion (6.2.5) holds.

Corollary 6.2.2. Let conditions (6.2.3) and (6.2.4) hold. Then inclusion (6.2.5) holds if and only if
there exist matriz-functions Q., € L(I;R"™™) (m =0,1,...) and W,,, € B(T;R™") (m =0,1,...)
such that

limsup (/an \dt+ZH— Glm )+ Gam (i) Wm(m)\D < 400, (6.2.18)

det(I, + Wi (73 ))750 (m=1,2,...;1=1,2,...), (6.2.19)

and the conditions (6.1.13),

o - -
mg%al z{: [<Zm1(n—)G1m(l)+Zm1(n_1+)G2m(l—1))
‘T1E|a,t

/Zgl(T)Po(r)dT (6.2.20)

and

t

o _ . .
A ;‘ t[ (Zs ) ) + ZiH (i D)o~ 1) :/Zol(T)PO(T) dr (6.2.21)
T €|a, a
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hold uniformly on I, where Z,, (Zm(a) = 1I,,) is a fundamental matriz of the homogeneous system

d—f =Qun(t) foraa teI\T, (6.2.22)
z(n+) —z(n=) = Wn(n)z(n) (=1,2,...) (6.2.23)
for every m € N.

Corollary 6.2.3. Let conditions (6.2.3) and (6.2.4) hold and let there exist sequences of matriz-
functions Q, € L(I;R™™) (m = 0,1,...) and W, € B(T;R™™") (m = 0,1,...; 1l = 1,2,...)
such that the pairs (Qm, W) (m = 1,2,...) salisfy the Lappo—Danilevskii condition at the point a,
conditions (6.2.18) and

det(l, + Wo(m)) #0 (I=1,2,...)
hold, and conditions (6.2.20), (6.2.21),

t
Jin [ Qu(rydr= [Qur)dr and tw 3T Wam = Y W)

TZEat[ T1€la,t|

hold uniformly on I, where Z,, (Zm(a) = I,) is a fundamental matriz of the homogeneous system
(6.2.22), (6.2.23) for any sufficiently large m. Then inclusion (6.2.5) holds.

Corollary 6.2.4. Let Grm = (gkmij)ij=1 € B(T;R™™) (b = 1,2, m = 0,1,...) and gkm =
(gkmi)_y € B(T;R™) (k=1,2; m=0,1,...) and let conditions (6.2.3), (6.2.4) and

o0

hmsupl Z (Z |g1miz ()] + |g2mu(Tl)|)) < +o0

m
mortee i,j=Li#j =1
hold. Let, moreover, the conditions
Vi (t) t

lim — Z (g1mii (k) + gamii(k)) = /pon‘(T) dr (i=1,...,n),

a

t

lim *( > i @him () = Y Zn_ﬁi(ﬂ)%mij(l)):/Zo_nl(T)pom(T)dT

l: 1€ ]a,t] l: 7 €la,t] a

(i#4;i,j=1,...,n)
and
t

lim 1( > ai@him() = Y zm“(n)hgmz(z)) / 2o (T)qoi(T) dr (i =1,...,n)

m——+o0 M,
l: 1€ Ja,t] l: 1 €la,t|

hold uniformly on I, where

1 -1 1
Pimig () = (14 (1 = gimis ) gomis 01 i) = (14 (-1 — gimis()) gomi()
(k=1,2;4,j=1,...,n),

and

-1

Zmii(T1) = H(l + gmii(m)) (i=1,...,n)

k=0

for any sufficiently large m. Then inclusion (6.2.5) holds.

Remark 6.2.3. In Theorems 6.2.1, 6.2.4, Proposition 6.2.1 and Corollary 6.2.1, if condition (6.2.12)

holds, we can assume that H,,(t) = Y,,!(t), where Y,, is the fundamental matrix of the homogeneous

system (6.2.11) defined by (6.2.14) for every natural m. Moreover, condition (6.2.6) and analogous
conditions hold automatically everywhere in the above results, as well.
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6.3 The necessary and sufficient conditions
for the convergence of discontinuous vector-functions

Let xg be a unique solution of the problem

Z—f = Py(t)x + qo(t) fora.a. tel, (6.3.1)
Eo(x) = Cp (632)

where I = [a,b], Py € L(I;R"™"), qo € L(I;R"™), ¢y : BVy([;R") — R™ be a linear bounded
vector-functionals, and ¢y € R"™.
Along with the problem, consider the impulsive boundary initial problems
dx oo
i P,(t)x + gn(t) for a.a. t € I\ {n}2,,
z(n+) —xz(n-) = Gu(n)z(n) +un(n) ((=1,2,...);

b (z) = (6.3.2,,)

(6.3.1,,)

(m = 1,2,...), where P,, € L(L;R™™) (m = 1,2,...), ¢m € L(I;R™) (m = 1,2,...), G, €
B(T;R™ ™) (m=1,2,...), uym € B(T;R™), T ={71,72,... }, bm : BVoo([; R") - R" (m=1,2,...)
are linear bounded vector-functionals, and ¢,, € R® (m =1,2,...).

We assume that P, = (pmij)i =1 (m=0,1,...), ¢m = (@mi)i=1 (m =0,1,...); G = (gmij )i j=1
(m=1,2,...), Uy = (Umi)lqy (Mm=1,2,...).

In this section, we establish the necessary and sufficient and effective sufficient conditions for the
boundary value problem (6.3.1,,), (6.3.2,,) to have a unique solution ., for any sufficiently large m
and

lim ||Zm — 2o]lco = 0. (6.3.3)

m—+oo

Along with systems (6.3.1) and (6.3.1,,), we consider the corresponding homogeneous systems

dx

i Py(t)r fora.a. teI\T (6.3.1p)
and
d—x—P (t)x for a.a. t € I\ {m}2
a " - Hi=1 (6.3.1,n0)
x(m+) —x(n-) = Gu(n)z(n) 1=1,2,...)
(m=1,2,...).

Definition 6.3.1. We say that the sequence (P, Gm; Gm, Um;€m) (m =1,2,...) belongs to the set
S(Po, qo; Lo) if for every ¢p € R™ and a sequence ¢,,, € R™ (m = 1,2,...) satisfying the condition

lim ¢, =c
m——+00

problem (6.3.1,,), (6.3.2,,) has a unique solution z,, for any sufficiently large m and (6.3.3) holds.

As in Subsection 5.1.2, we use the following forms of the operators B(X,Y") and Z(X,Y):

T1€a,t]

BL(X;Y,Z)(t)E/X(T)Y(T)dT—F > X(m+)Z(n),

L(X;Y,Z)(t)z/(X’(T)+X(T)Y(T))X*1(T)dr+ Z (2 X (1) + X (m+) doZ(1)) X1 (7))

a Ti€[a,t]

for the corresponding X € BV(I;R"™7), Y € BVAC,.(I, T; RI*™) and Z € Byoe(T; R™*™).
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Theorem 6.3.1. Let the conditions
lir}rl U (z) = Lo(x) for x € BV([;R"), (6.3.4)
m—r+00

lim sup ||| ||| < +o0 (6.3.5)
m——+oo

hold. Then

((Pmyq”z;vaum;gm)):j:l € S(FPo; qo3 bo) (6.3.6)
if and only if there exists a sequence of matriz-functions H,, € BVAC,.(I,T;R"*") (m = 0,1,...)
such that the condition

hmsup\/ Hyy 4 B,(Hm; P, Gy)) < +00 (6.3.7)
m——+00 a
holds, and the conditions
mgquw H,(t) = I,, (6.3.8)
t
lim B, (Hui Pons Go(0) = [ Fo(r) dr (6.3.9)

a

and

m——+o00

lim B m,qm,umxt):/qo(f)df

hold uniformly on I.
Theorem 6.3.2. Let conditions (6.3.4), (6.3.5) and

det(In + Gm(m)) #0 (I=1,2,...; m=1,2,...)
hold. Then inclusion (6.3.6) holds if and only if the conditions

lim XM (t) = X571 (t)

m——+oo

and

t
i ([X 0@ X e ) = / X5 (F)aolr) dr(m)

T E€la,t]

hold uniformly on I, where X,, is the fundamental matriz of system (6.3.1,0) for every m € N.

Theorem 6.3.3. Let Pj € L(I;R™™), ¢f € L(I;R™), ¢ € R", and a £ : BV ([;R"*™) = R"™ be a
linear bounded vector-functional such that the boundary value problem

dx

i Py(t)z + ¢5(t) fora.a tel,

(@) = ¢

has a unique solution xj. Let, moreover, there exist sequences of matriz- and vector-functions H,, €
BVAC,,.(I, T;R™™) (m=1,2,...) and h,, € BVACj,o(I,T;R™) (m=1,2,...) such that

inf{ |det(H(t))|: t € I} >0 for every sufficiently large m,



174 Malkhaz Ashordia

the conditions

lim (¢ + £, (hm)) = 5, lim £, (y) = £5(y) for y € BV(I;R"™),

m—+00 m—+00
b
hmsup|||€ [l| < +o00 and hmsup\/ (Hp; Py Gr) < 400

m——+oo

hold, and the conditions

lim Z,(Hp; P, Gm) /Po
m——+oo

i (B 0) = @)+ Bu (o 10,)(0) ~ / A, (i P Gon)(5) () = / gy(r) dr

m——+o0
a a

hold uniformly on I, where €%,(y) = m(Hty) (m = 1,2,...). Then problem (6.3.1,,), (6.3.2,,) has

the unique solution x,, for any sufficiently large m and

lim ||Hp, @ + b — 2500 = 0.

m——+0o

Remark 6.3.1. In Theorem 6.3.3, the vector-function z%,(t) = H,, (t)2m (t) + hm(t) is a solution of
the problem

% =P (t)x+q,(t) fora.a. te€a,b\T
x(n+) —x(n—) =G, (n)x(n) +uy,(n) (=1,2,...);
O () = cp,

for every sufficiently large m, where

P (t) = (Hy, (t) + Ho(8) P (1)) H,, (1),

G (1) = (deHpm (1) + Ho(mH) G (0))Hi () (m=1,2,...5 1=1,2,...);

@ (t) = R (t) + H(t) g (t) — P (t)hin (t) ( _12...)

W (1) = dohun (1) + Ho (1)t (1) — G (1) (1) (m=1,2,...; 1=1,2,...).

Corollary 6.3.1. Let conditions (6.3.4), (6.3.5), (6.3.7) and

lim (¢ — @m(a)) =co

m—+o0o

hold, and conditions (6.3.8), (6.3.9) and

t

i (Bt — ) 1)+ / AL (i P Go) - o)) = [ i)

m—-+00
hold uniformly on I, where Hy,, € BVAC,.(I,T;R™*"™) (m = 0,1,...), om € BVAC,,.(I,T;R")
(m=1,2,...). Then problem (6.3.1,,), (6.3.2,,) has the unique solution x,, for any sufficiently large
m and

m1—1>r—r-100 ||x7n — Pm — xOHoc =0.

Remark 6.3.2. Note that the condition

b too
lim sup (/ [, () + Ho (8) P (8) || dt + > || Hon(04) — Hn (1) + Hm(n+)Gm(n)||> < +00
m——+oo o =1

guarantees the fulfilment of condition (6.3.7).



The General BVPs for Linear Systems of Generalized ODEs 175

Now we give some effective sufficient conditions guaranteeing inclusion (6.3.6).

Theorem 6.3.4. Let conditions (6.3.4), (6.3.5) and

hmsup(/HP |dt—|—ZHG ) > < 400

=1

hold, and the conditions

t t

lim (/Pm(T) dr+ Y Gm(n)) = /PO(T) dr

a Ti€[a,t] a
and
t
A ([anrrir s 52 unim) = f s
a T €la,t] m

hold uniformly on I. Then inclusion (6.3.6) holds.
Corollary 6.3.2. Let conditions (6.3.4), (6.3.5) and (6.3.7) hold, and conditions (6.3.8)

lim H,(1)P,,(1)dr = /PO(T) dr

m——+o0
a

and

t t

lim [ Hp(7) (1) dr = /(IO(T) dr

m——+oo
a a

hold uniformly on I, and
lim Gu(71) = Onxn, lim  wu,(n) =0,

m——+oo m——+oo

hold uniformly on T, where Hy, € BVAC (I, T; R ™) (m =0,1,...). Let, moreover, either

hmsupz |G (7)) + llum (7)) < +o00, or hmsupZHH (i+) — Hp ()| < +00.

m—)-‘rool 1 m—>+ool 1

Then inclusion (6.3.6) holds.
Corollary 6.3.3. Let conditions (6.3.4), (6.3.5) and (6.3.7) hold, and conditions (6.3.8),

mﬁ@(/ff nar+ Y H, n+)Gk(n)) Z/tP*(T)dT,

T]G[at[ a
t

Jm / A ir+ 3 Hnd (4 )un() = [ () e
Ti1€|a,t a

hold uniformly on I, where H, € BVAC,.(I,T;R"™™™) (m = 1,2,...), P, € L(I;R™"), q. €
L(I;R™), G, € B(T;R" "), u, € B(T;R™). Let, moreover, the system

T (Bt~ Pt + (@l0) ~ 0.(0)) Jor aca. te

have a unique solution satisfying condition (6.3.2). Then

(Pos @ G i b)) oy € S(Po = Puyqo — i o).
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Corollary 6.3.4. Let conditions (6.3.4), (6.3.5) hold and let there exist a natural number p and
matriz-functions B; € BVAC(I, T;R™™) (j =0,...,pu — 1) such that

hmsup\/ mp—1 + Bu( mp,—l;PTme)) < +oo

m——+0o0 a

holds, and the conditions

lim  B,(I; P, Gm)(t) = Bo(t) — Bo(a),

m——+o0

tim (Ho 1 (8) + Bu(Hynj 35 P G (8)) = L+ Bj(6) = By(a) (=1, = 1),

m——+o0
t

lim (Hmu,l(t) + B,(Hp i1 P, Gm)(t)> =1, + / Po(7) dr,

m——+oo
to

m——+oo

t
lim B( mp— lanvum)(t):/QO(T)dT

hold uniformly on I, where
Hpo(t) = In,  Hmj(t) = —<Hmj71(7)(’5) + B(H j—1; P, G (8) — B (1) + Bj(a))Hmj,l(t)
G=1,...,0—-1,m=1,2,...).
Then inclusion (6.3.6) holds.

If p =1, then Corollary 6.3.4 coincides with Theorem 6.3.4.
If 4 = 2, then Corollary 6.3.4 has the following form.

Corollary 6.3.4,. Let conditions (6.3.4), (6.3.5) and (6.3.7) hold, and the conditions

Jim (/tpm(r) dr+ > Gm(n)) = B(t) — B(a),

a T E€la,t]
t

lim (/H Tdr+ Y Hy(n+)Gm(n )) :/PQ(T)dﬂ

m——+o00
T Ela,t] a
t
mlirﬂw (/H T)dr + Z H,, Tl—i—)um(n)) = /qo(T) dr
T1€a,t] to

hold uniformly on I, where B € BVAC (I, T;R™™ ™) and

Hm(t)EIn—/Pm(T)dT— S Gu(n)+ B(t) - Bla) (m=1,2,...).

T€a,t]
Then inclusion (6.3.6) holds.

Corollary 6.3.5. Let conditions (6.3.4) and (6.3.5) hold. Then inclusion (6.3.6) holds if and only if
there exist matriz-functions Qn, € L(I;R™ ™) (m =1,2,...) and W,,, € B(T;R™"™) (m = 1,2,...)
such that the conditions (6.2.19) and

m——+00

b
lim sup (/HPm( —Qm(t Hdt—i—ZHG ) (Tl)”) < 400 (6.3.10)
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hold, and the conditions (6.1.13),

t

mEIEOOBL(Z;f;Pm,Gm)(t) = /Z(;l(T)PO(T) dr, (6.3.11)
im B(Zy, ,qmvum)():/Zal(T)qo(T)dT (6.3.12)

a

hold uniformly on I, where Z,, (Zy(a) = I,,) is a fundamental matriz of the homogeneous system
(6.2.22), (6.2.23) for any m € N.
Corollary 6.3.6. Let conditions (6.3.4) and (6.3.5) hold and let there exist sequences of matriz-
functions Qum, € L(I; R™™) (m =1,2,...) and W, € B(T;R"*™) (m =1,2,...) such that the pairs
(Qm, W) (m = 1,2,...) satisfy the Lappo—Danilevskii condition at the point a, condition (6.3.10)
holds and the conditions

t

t
ml_ii?oo/Qm(T) dr = /QO(T) dr

ml_i>r£OO Z Wi (11) = Onxn,s (6.3.13)
T E€la,t]
t

lim (/tz (1) P(r) dr+ > Z (1) (In+ Win (7 ))_1Gm(n)> :/Zgl(T)PO(T)dT, (6.3.14)

m——+oo
a TlE[a 1‘[ a

lim (/tz L) gm (1) dT + Z Z(1) (I + Win(1 ))1um(7'l)) /tzo—l(f)qo(f)dT (6.3.15)

m——+oo
a T Ea,t] a

hold uniformly on I, where Z,, (Z,(a) = I,,) is a fundamental matriz of the homogeneous system
(6.2.22),(6.2.23) for any sufficiently large m. Then inclusion (6.3.6) holds.

Remark 6.3.3. In Corollary 6.3.6, due to (6.3.13), condition (6.2.19) holds for every sufficiently large
m and, therefore, conditions (6.3.14) and (6.3.15) of the corollary are correct.

Remark 6.3.4. In Corollaries 6.3.5 and 6.3.6, if we assume that W,,(7) = Onxn (m = 1,2,...;
l=1,2,...), then condition (6.2.19) holds. Moreover, due to the definition of the operator B,, each
of conditions (6.3.11) and (6.3.14) has the form

t t

Jn ([ zi@ramar e X 2 m6nm) = [z @me)ar

P T1E€[a,t] p
and each of conditions (6.3.12) and (6.3.15) has the form

t

im (/tz (Ngm(r)dr+ > Z (1) ( n)) :/Zgl(T)qO(T)dT.

a T €[a,t] p

Corollary 6.3.7. Let conditions (6.3.4), (6.3.5) and

lim sup Z |G (T1)]| < 400
1=1

m——+oo [

hold. Let, moreover, the matriz-functions P, (m =0,1,...) satisfy the Lappo—Danilevskii condition
at the point a and the conditions



178 Malkhaz Ashordia

'rnl—lg-r&-loo Z Gm(Tl) :Onxn’

Ti€la,t]
Jen (- [ mera) i

a

i [en(~ [ Patas) Putoran

m——+oo
a a
r

i | exp ( - / Pon(s) ds) G (7) dr = j exp ( - / Po(s) ds) g0(7) dr,

Tl
3 e (= [ R ds )~ 0,
T Ea,t] a

hold uniformly on I. Then inclusion (6.3.6) holds.

Corollary 6.3.8. Let Py, = (pmij)ij=1 € LILR™ ™), ¢ = (qmi)iey € LILR™), Gy = (gmij)}j=1 €
B(T;R™ ™) and tpy = (gmi)i—q € B(T;R™) (m =1,2,...) and let conditions (6.3.4), (6.3.5) and

n b oo
lim sup Z </ |pmij ()] dt + Z |gmij(7'l)> < 400
=1

MU =tiA Ny,
hold. Let, moreover, the conditions

t

¢
m1—1>r-Ii-10<> (/Pmii(T)dT+ ;t[gmn‘(ﬂ)) = /Pon‘(T) dr (i=1,...,n),
a nicla, a

t

i (/%Z(T)Pmm(ﬂ dr + z[: [Zmzl'i(Tl)(]' +gmii(Tl))_1gmij(Tl)>
a T € |a,t

t

:/Z()_izl(T)pOij(T)dT (17&]’ iajzla'-'vn)a

a

t

] -1 . -1 .. -1 . — —1 .

ml—l>r-Ii-1oo (/Zmii(T)sz(T) dr + z[:t[zmii (7)) (L + Gmii (7)) ™ Umi (Tl)) = /ZOii (1)qoi(7) dr
a T IE|Q, a

hold uniformly on I, where

Zmii(t) = exp </tpmii(7) dT) [T O+ gmis(n)), i€{1,....,n}

a s<T<t

for any sufficiently large m. Then inclusion (6.3.6) holds.
Remark 6.3.5. For Corollary 6.3.8, the remark analogous to Remark 1.2.3 is true, i.e.,
1+ gmi(m) #0 (i=1,....,n; I =1,2,...)

for every sufficiently large m and, therefore, all conditions of the corollary are correct.
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