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THIN SHELLS WITH LIPSCHITZ BOUNDARY



Abstract. In [58], we have revised an asymptotic model of a shell (Koiter, Sanchez–Palencia, Cia-
rlet, etc.), based on the the calculus of tangent Günter’s derivatives, developed in the papers of
R. Duduchava, D. Mitrea and M. Mitrea [55, 58, 64]. As a result, the 2-dimensional shell equation
on a mid-surface S was written in terms of Günter’s derivatives, unit normal vector field and the
lamé constants. The principal part of the obtained equation coincides with the Lamé equation on the
Hypersurface S investigated in [55,58,64].

The present investigation is inspired by the paper of G. Friesecke, R.D. James and S. Müller [77],
where a hierarchy of Plate Models are derived from nonlinear elasticity by Γ-Convergence. The final
goal of the present investigation is to derive and investigate 2D shell equations in terms of Günter’s
derivatives by Γ-Convergence.

As a first step to the final goal, by T. Buchukuri, R. Duduchava and G. Tephnadze was studied
a mixed boundary value problem for the stationary heat transfer equation in a thin layer around
a surface C with the boundary (see [16]). It was established what happens to the solution of the
boundary value problem when the thickness of the layer converges to zero. In particular, there was
shown that the Γ-limit of a mixed type Dirichlet–Neumann boundary value problem (BVP) for the
Laplace equation in the initial thin layer is a Dirichlet BVP for the Laplace–Beltrami equation on
the surface. The result was derived based on the variational reformulation of the problem using the
Günter’s tangent differential operators on a hypersurface and layers. The similar results were obtained
for the Lamé operator. This approach allows global representation of basic differential operators and of
corresponding boundary value problems in terms of the standard cartesian coordinates of the ambient
Euclidean space Rn.
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ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ [58] Ò. ÃÖÃÖÜÀÅÀÓ, Ã. ÌÉÔÒÄÀÓ, Ì. ÌÉÔÒÄÀÓ ÍÀÛÒÏÌÄÁÛÉ [55,58,64] ÀÂÄÁÖËÉ
ÂÉÖÍÔÄÒÉÓ ÌáÄÁÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÏÐÄÒÀÔÏÒÄÁÉÓ ÀÙÒÉÝáÅÀÆÄ ÃÀÚÒÃÍÏÁÉÈ ÜÅÄÍ áÄËÀáËÀ
ÂÀÃÀÅáÄÃÄÈ ÂÀÒÓÉÓ ÀÓÉÌÐÔÏÔÖÒ ÌÏÃÄËÓ (ÊÏÉÔÄÒÉ, ÓÀÍÜÄÓ-ÐÀËÄÍÓÉÀ, ÓÉÀÒËÄ ÃÀ ÓáÅÀÍÉ).
ÛÄÃÄÂÀÃ, ÂÀÒÓÉÓ 2-ÂÀÍÆÏÌÉËÄÁÉÀÍÉ ÂÀÍÔÏËÄÁÀ ÈáÄËÉ ÓáÄÖËÉÓ ÛÖÀ S ÆÄÃÀÐÉÒÆÄ ÜÀÉßÄÒÀ
ÂÉÖÍÔÄÒÉÓ ÌáÄÁÉ ßÀÌÏÄÁÖËÄÁÉÓ, ÄÒÈÄÖËÏÅÀÍÉ ÍÏÒÌÀËÉÓ ÛÄÓÀÁÀÌÉÓÉ ÅÄØÔÏÒÖËÉ ÅÄËÉÓÀ
ÃÀ ËÀÌÄÓ ÌÖÃÌÉÅÄÁÉÓ ÔÄÒÌÉÍÄÁÛÉ. ÌÉÙÄÁÖËÉ ÂÀÍÔÏËÄÁÉÓ ÌÈÀÅÀÒÉ ÍÀßÉËÉ ÃÀÄÌÈáÅÀ ËÀÌÄÓ
ÂÀÍÔÏËÄÁÀÓ S äÉÐÄÒÆÄÃÀÐÉÒÆÄ, ÒÏÌÄËÉÝ ÛÄÓßÀÅËÉËÉ ÉÚÏ ÍÀÛÒÏÌÄÁÛÉ [55,58,64].

ÀØ ßÀÒÌÏÃÂÄÍÉËÉ ÊÅËÄÅÀ ÛÈÀÂÏÍÄÁÖËÉ ÉÚÏ Â. ×ÒÉÆÄÊÄÓ, Ò. Ã. ãÄÉÌÓÉÓ ÃÀ Ó. Ì. ÌÉÖËÄÒÉÓ
ÍÀÛÒÏÌÉÈ [77], ÓÀÃÀÝ ×ÉÒ×ÉÔÄÁÉÓ ÉÄÒÀÒØÉÖËÉ ÌÏÃÄËÉÓ ÂÀÍÔÏËÄÁÄÁÉ ÂÀÌÏÚÅÀÍÉË ÉØÍÀ 3-
ÂÀÍÆÏÌÉËÄÁÉÀÍÉ ÃÒÄÊÀÃÏÁÉÓ ÀÒÀßÒ×ÉÅÉ ÂÀÍÔÏËÄÁÉÃÀÍ Γ-ÊÒÄÁÀÃÏÁÉÓ ÂÀÌÏÚÄÍÄÁÉÈ. ÌÏÝÄÌÖ-
ËÉ ÊÅËÄÅÉÓ ÓÀÁÏËÏÏ ÌÉÆÀÍÉÀ ÂÀÌÏÅÉÚÅÀÍÏÈ ÃÀ ÛÄÅÉÓßÀÅËÏÈ 2-ÂÀÍÆÏÌÉËÄÁÉÀÍÉ ÂÀÒÓÉÓ
ÂÀÍÔÏËÄÁÀ ÂÉÖÍÔÄÒÉÓ ÌáÄÁÉ ßÀÌÏÄÁÖËÄÁÉÓ ÔÄÒÌÉÍÄÁÛÉ Γ-ÊÒÄÁÀÃÏÁÉÓ ÂÀÌÏÚÄÍÄÁÉÈ.

ÀÌ ÌÉÆÍÉÓ ÌÉÓÀÙßÄÅÀÃ È. ÁÖÜÖÊÖÒÌÀ, Ò. ÃÖÃÖÜÀÅÀÌ ÃÀ Â. ÔÄ×ÍÀÞÄÌ ÐÉÒÅÄË ÒÉÂÛÉ
ÛÄÉÓßÀÅËÄÓ ÓÉÈÁÏÂÀÌÔÀÒÄÁËÏÁÉÓ ÓÔÀÝÉÏÍÀËÖÒÉ ÂÀÍÔÏËÄÁÀ ÓÀÆÙÅÒÉÀÍÉ C äÉÐÄÒÆÄÃÀÐÉ-
ÒÉÓ ÂÀÒÛÄÌÏ ÂÀÍ×ÄÍÉË ÈáÄË ÛÒÄÛÉ (Éá. [16]). ÃÀÃÂÄÍÉËÉÀ, ÈÖ ÒÀ ÌÏÓÃÉÓ ÂÀÍáÉËÖËÉ
ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÉÓ ÀÌÏÍÀáÓÍÓ, ÒÏÃÄÓÀÝ ÛÒÉÓ ÓÉÓØÄ ÌÉÉÓßÒÀ×ÉÓ ÍÖËÉÓÊÄÍ. ÊÄÒÞÏÃ,
ÂÀÍÌÀÒÔÄÁÖËÉÀ ÈáÄË ÛÒÄÛÉ ËÀÐËÀÓÉÓ ÂÀÍÔÏËÄÁÉÓÈÅÉÓ ÃÉÒÉáËÄ-ÍÄÉÌÀÍÉÓ ÛÄÒÄÖËÉ ÔÉÐÉÓ
ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÉÓ Γ-ÆÙÅÀÒÉ, ÒÏÃÄÓÀÝ ÛÒÉÓ ÓÉÓØÄ ÌÉÉÓßÒÀ×ÉÓ ÍÖËÉÓÊÄÍ, ÃÀ ÍÀÜÅÄÍÄÁÉÀ,
ÒÏÌ ÀÓÄÈÉ Γ-ÆÙÅÀÒÉ ÄÌÈáÅÄÅÀ ËÀÐËÀÓ-ÁÄËÔÒÀÌÉÓ ÂÀÍÔÏËÄÁÉÓÈÅÉÓ ÃÀÓÌÖË ÃÉÒÉáËÄÓ
ÀÌÏÝÀÍÀÓ ÓÀßÚÉÓÉ ÛÒÉÓ ÛÖÀ ÆÄÃÀÐÉÒÆÄ. ÛÄÃÄÂÉ ÌÉÙÄÁÖËÉ ÉÚÏ ÈÀÅÃÀÐÉÒÅÄËÉ ÀÌÏÝÀÍÉÓ
ÅÀÒÉÀÝÉÖË ×ÏÒÌÖËÉÒÄÁÀÆÄ ÃÀÚÒÃÍÏÁÉÈ ÃÀ ÂÉÖÍÔÄÒÉÓ ÌáÄÁÉ ßÀÒÌÏÄÁÖËÄÁÉÓ ÂÀÌÏÚÄÍÄÁÉÈ
ÛÒÄÛÉ ÃÀ äÉÐÄÒÆÄÃÀÐÉÒÆÄ. ÀÍÀËÏÂÉÖÒÉ ÛÄÃÄÂÄÁÉ ÌÉÙÄÁÖËÉÀ ÛÒÄÛÉ ËÀÌÄÓ ÏÐÄÒÀÔÏÒÉÓ-
ÈÅÉÓ. ÀÓÄÈÉ ÌÉÃÂÏÌÀ ÓÀÛÖÀËÄÁÀÓ ÉÞËÄÅÀ ßÀÒÌÏÅÀÃÂÉÍÏÈ ÌÀÈÄÌÀÔÉÊÖÒÉ ×ÉÆÉÊÉÓ ÞÉÒÉÈÀÃÉ
ÂÀÍÔÏËÄÁÄÁÉ ÃÀ ÀÌ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÃÀÓÌÖËÉ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÄÁÉ ÂËÏÁÀËÖÒÀÃ,
ÓÔÀÍÃÀÒÔÖËÉ ÂÀÒÄÌÏÌÝÅÄËÉ ÄÅÊËÉÃÖÒÉ Rn ÓÉÅÒÝÉÓ ÊÏÏÒÃÉÍÀÔÈÀ ÓÉÓÔÄÌÉÓ ÓÀÛÖÀËÄÁÉÈ.



Introduction

Modern interest in shell theories arising from the theory of thin films caused by the widespread use
of thin films in science and technology. Thin structures are encountered in engineering applications
more and more often, and there emerged numerous approaches proposed for modeling linearly elastic
flexural shells. Started by the Cosserats pioneering work (1909), Goldenveiser (1961), Naghdi (1963),
Vekua (1965), Novozhilov (1970), Koiter (1970) and many others have introduced and developed
various models of shells. The aforementioned works contributed essentially the development of the
shell theory. Ellipticity of the corresponding partial differential equations was not established initially
and was proved later by Roug’e (1969) for cylindrical shells, by Coutris (1973) for the shell model
proposed by Naghdi, by Gordeziani (1974) for the shell model proposed by Vekua, by Shoikhet (1974)
for the shell model proposed by Novozhilov, by Ciarlet and Miara (1992) for the model proposed by
Koiter (cf. [22–26,28,29,36] for survey and further references).

Inspired by the books and papers of Sanchez–Palencia [121, 122], Miara and Sanchez-Palencia
[111], Ciarlet and Lods [26–28], Ciarlet, Lods and Miara [29] and exposed in details by Ciarlet in
[23, 26, 28, 29]. in [58] we have developed the asymptotic analysis of a linearly elastic shell based on
the formal calculus of tangent Günter’s derivatives, developed in the papers of R. Duduchava with
D. Mitrea and M. Mitrea [55, 58, 64]. The asymptotic analysis of a linearly elastic shell based on the
formal calculus of tangent Günter’s derivatives, was developed in the papers of R. Duduchava with D.
Mitrea and M. Mitrea [55,58,64]. As a result, the 2-dimensional shell equation on a middle surface S
is derived written in terms of Gunter’s derivatives, unit normal vector field and the lamé constants.
It coincides with the Lamé equation on the Hypersurface S investigated in [55,58,64].

The present investigation is inspired by the paper of G. Friesecke, R. D. James and S. Müller [77],
where a hierarchy of Plate Models are derived from nonlinear elasticity by Γ-Convergence. The final
goal of the investigation is to derive 2D shell equations written in terms of Günter’s derivatives by
Γ-Convergence.

Let us consider an example: a surface S be given by a local immersion

Θ : ω → S , ω ⊂ Rn−1, (0.0.1)

which means that the derivatives {gk := ∂kΘ}n−1
k=1 are linearly independent, i.e., the Jacobi matrix

∇Θ has the maximal rank n − 1. Thus {gk}n−1
k=1 is a basis (or a covariant frame if the basis is

enriched with 0) in the space ω(S ) of all tangent vector fields on S . The system {gk}n−1
k=1 which is

biorthogonal, ⟨gj , gk⟩ = δjk, forms the contravariant basis (the contravariant frame) in the same
space ω(S ) of all tangent vector fields on S . Let ν(X ) = (ν1(X ), . . . , νj(X ))⊤ be the outer unit
normal vector (the Gauß mapping) to S at X ∈ S (see Section 1.6 for details). The Gram matrix
GS (X ) = [gjk(X )]n−1×n−1, gjk := ⟨gj , gk⟩, is then positive definite, responsible for the Riemann
metric on S and is called the covariant metric tensor. Moreover, it has the inverse matrix
G−1

S (X ) = [gjk(X )]n−1×n−1, gjk := ⟨gj , gk⟩ (cf. (1.3.1), (0.0.2)), which is called the contravariant
metric tensor.

The Gram determinant

G
(
(∂1Θ(x), . . . , ∂n−1Θ)(x)

)
= detGS (x), x ∈ ω ⊂ Rn−1, (0.0.2)

is responsible for the volume element dσ of the surface, which is the vector product of the tangent
vectors

dσ := |∂1Θ ∧ · · · ∧ ∂n−1Θ| =
√

detGS dx, dx = dx1 · · · dxn−1. (0.0.3)

3
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The surface divergence and the surface gradient are defined in the intrinsic coordinates by the
equalities

divS U :=
[

detGS

]−1/2
n∑
j=1

∂j
{
[detGS ]1/2U j

}
, ∇S f =

n−1∑
j,k=1

(gjk∂jf)∂k (0.0.4)

(see Section 1.1 and [130, Chapter 2, § 3]). Their composition is the Laplace–Beltrami operator

∆S f := divS ∇S f = [detGS ]−1/2
n−1∑
j,k=1

∂j
{
gjk[detGS ]1/2∂k f

}
, f ∈ C2(S ), (0.0.5)

which is self-adjoint

∆∗
S = (∇S divS )∗ = (divS )∗(∇S )∗ = ∇S divS = ∆S . (0.0.6)

The intrinsic parameters enable generalization to arbitrary manifolds, not necessarily immersed in the
Euclidean space Rn.

We introduce a different curvilinear system of coordinates. It differs from the covariant and
contravariant metric tensors described above and used intensively by P. Ciarlet in [22, 23] for the
derivation of shell equations. Moreover, the system of curvilinear coordinates introduced below is
linearly dependent but, surprisingly, many partial differential equations are expressed in this system
in a simple form (see [64]) including Laplace–Beltramy and shell equations on a hypersurface (see
below).

Our idea is to record these operators in Cartesian coordinates. To set the conditions for precise
formulations, let us consider the natural basis

e1 := (1, 0, . . . , 0)⊤, . . . , en := (0, . . . , 0, 1)⊤ (0.0.7)

in the Euclidean space Rn ({ej}nj=1 is also called the Cartesian basis. Each point x = (x1, . . . , xn)
⊤

in the Euclidean space Rn is represented in the Cartesian basis x =
n∑
j=1

xje
j in a unique way.

The operator (the matrix)

πS : Rn → ω(S ), πS (t) = I − ν(t)ν⊤(t) =
[
δjk − νj(t)νk(t)

]
n×n, t ∈ S , (0.0.8)

represents the canonical orthogonal projection π2
S = πS onto the space of tangent vector fields to S

at the point t ∈ S :

(ν, πS v) =
∑
j

νjvj −
∑
j,k

ν2j νkvk = 0 for all v = (v1, . . . , vn)
⊤ ∈ Rn.

It turns out that the surface gradient is nothing but the collection of the weakly tangent Günter’s
derivatives (cf. [54, 86,101])

∇S = DS := (D1, . . . ,Dn)
⊤, Dj := ∂j − νj(X )∂ν = ∂d j , (0.0.9)

where ∂ν :=
n∑
j=1

νj∂j denotes the normal derivative. The first-order differential operators

Dj = ∂d j , 1 6 j 6 n, (0.0.10)

are the directional derivatives along the vector fields d j := πS ej , j = 1, . . . , n.
Moreover, the surface divergence coincides with the operator

divS U =

n∑
j=1

DjU
0
j for U =

n∑
j=1

U0
j ∂j ∈ ω(S ) (0.0.11)
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and the Laplace–Beltrami operator coincides with (see also [109, pp. 2ff and p. 8])

∆S φ := divS ∇Sφ =

n∑
j=1

D2
j φ, φ ∈ C2(S ). (0.0.12)

Relatively simple form of recorded operators enables simplified treatment of corresponding bound-
ary value problems, which require proofs of Korn’s inequalities or similar.

Calculus of Gunter’s derivatives on a hypersurface, which is the main tool, together with the
Γ-convergence, in the our investigation, allows representation of the most basic partial differential
operators (PDO’s), as well as their associated boundary value problems, on a hypersurface C in
global form, in terms of the standard spatial coordinates in Rn. Such BVPs arise in a variety of
situations and have many practical applications. See, for example, [87, §72] for the heat conduction
by surfaces, [7, §10] for the equations of surface flow, [22], [5] for the vacuum Einstein equations
describing gravitational fields, [131] for the Navier-Stokes equations on spherical domains, as well as
the references therein.

The Laplace–Beltrami operator (0.0.12) is the natural operator associated with the Euler-Lagrange
equations for a variational integral

E [u] = −1

2

∫
S

∥Du∥2 dS. (0.0.13)

A similar approach, based on the principle that, at equilibrium, the displacement minimizes the
potential energy (Koiter’s model), leads to the following form of the Lamé operator LS on S (cf. [64])

LSU = µπS divS ∇SU + (λ+ µ)∇S divS U + µH 0
S WSU (0.0.14)

(cf. (0.0.8) for the projection πS ). Here U is an arbitrary (tangent) vector fields on S , λ, µ ∈ R are
the Lamé moduli, whereas

H 0
S = −divS ν := −

n∑
j=1

Djνj = Tr WS , WS = −
[
Djνk

]
n×n. (0.0.15)

Note that HS := (n − 1)−1H 0
S and WS represent, respectively, the mean curvature and the

Weingarten mapping of S . This identification ensures that the boundary-value problem{
LSU = 0 in S ,

U
∣∣
Γ
= f ∈ Hs(∂S ), f · ν = f · νΓ = 0 on Γ := ∂S ,

(0.0.16)

where U =
n∑
j=1

U0
j d

j ∈ ω(S ) ∩ Hs+1/2(∂S ) is the generalized displacement vector field, tangent to

the elastic hypersurface S , is well-posed, whenever µ > 0, 2µ+λ > 0, and 0 6 s 6 1. Here Hs stands
for the usual L2-based Sobolev space, ν is the normal vector to S and νΓ(t) is the unit tangent vector
to S at the boundary point t ∈ Γ := ∂S and outer normal vector to the boundary Γ = ∂S .



Chapter 1

Auxiliary

In the present chapter, we have collected, for the readers convenience, some auxiliary information,
mostly from [21–23,25,64,77,129].

1.1 Auxiliary from the operator theory
The results exposed in the present section will be applied to complex-valued matrices, which are
identified with operators in the finite-dimensional space Cn of complex values n-vectors. Nevertheless,
we will formulate results in general setting of operators in a Hilbert space.

Throughout this section we assume that H is a Hilbert space with respect to some continuous
scalar product, a bilinear form ( · , · ) : H× H → C, i.e.,

(λu+ µw, v) = λ(u, v) + µ(w, v), (u, λ v + µ z) = λ(u, v) + µ(u, z),∣∣(u, v)
∣∣ 6 C∥u∥H∥v∥H, ∀u,w ∈ H, ∀ v, z ∈ H,

(φ,ψ) = (ψ,φ), ∀φ,ψ ∈ H.

Denote by L (H,H) or L (H) the space of linear operators A : H → H. Recall that the dual operator
(A∗φ,ψ) = (φ,Aψ) maps continuously the same space A∗ : H → H and A ∈ L (H) is self-adjoint
operator if

(Aφ,ψ) = (φ,Aψ), ∀φ,ψ ∈ H. (1.1.1)

A ∈ L (H,H) is positive definite (or coercive) if the inequality

(Aφ,φ) > C
∥∥φ | H

∥∥2 (1.1.2)

holds for some constant C > 0 and all φ ∈ H.

Lemma 1.1.1. Let A ∈ L (H). The inequality∥∥Aφ | H
∥∥ > C

∥∥φ | H
∥∥ (1.1.3)

with some constant C > 0 holds if and only if the operator A is normally solvable (i.e., has the closed
image ImA = ImA) and injective, KerA = {0}.

Proof. If inequality (1.1.3) holds, then Aφ = 0, φ ∈ H, implies φ = 0 and KerA = {0}. Now let
ψj = Aφj → ψ0 (convergence in the norm). The inequality (1.1.3) implies the convergence φj → φ0.
Due to continuity of A this implies Aφ0 = ψ0 ∈ ImA and the image ImA is closed.

Vice versa, let A be normally solvable and KerA = {0}. Then ImA is a Hilbert space, subspace
of H and the operator A : H → ImA is bijective. Due to the Banach Inverse mapping theorem, A
is invertible: there exists B ∈ L (ImA) such that ABx = x and BAy = y for all x ∈ ImA and all
y ∈ H. Inserting in ∥Bψ

∣∣H∥ 6 C∥ψ
∣∣ImA∥ := ∥ψ

∣∣H∥ the equality ψ = Aφ, φ ∈ H, we get (1.1.3).

6
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Definition 1.1.1. For an operator A ∈ L (H) the closed set

Σ(A) :=
{

(Aφ,φ) : φ ∈ H
}
, (1.1.4)

where the overbar denotes closing of the set, is called the spectral set of A.

Lemma 1.1.2. If the spectral set Σ(A) of an operator A ∈ L (H) is real-valued Σ(A) ⊂ R, then A
is self-adjoint.

Proof. We proceed as follows:

(Aφ,ψ) =
1

4

{
(A[φ+ ψ], φ+ ψ)−(A[φ− ψ], φ− ψ)+i(A[φ+ iψ], φ+ iψ)−i(A[φ− iψ], φ− iψ)

}
=

1

4

{
(A[φ+ ψ], φ+ ψ)−(A[φ− ψ], φ− ψ)+i(A[φ+ iψ], φ+ iψ)−i(A[φ− iψ], φ− iψ)

}
=

1

4

{
(φ+ ψ,A[φ+ ψ])−(φ− ψ,A[φ− ψ])+i(φ+ iψ,A[φ+ iψ])−i(φ− iψ,A[φ− iψ])

}
= (φ,Aψ), φ, ψ ∈ H,

since (Au, u) = (Au, u) by the condition Σ(A) ⊂ R and (Au, u) = (u,Au) by the definition.

Corollary 1.1.1. If an operator A ∈ L (H) is positive definite, it is self-adjoint and invertible.

Proof. If A is positive definite, its spectral set is real-valued and A is self-adjoint.
From (1.1.2) we get ∥∥Aφ | H

∥∥ ∥∥φ | H
∥∥ > (Aφ,φ) > C

∥∥φ | H
∥∥2

and, further, ∥∥Aφ | H
∥∥ ∥∥ > C

∥∥φ | H
∥∥, φ ∈ H. (1.1.5)

Due to Lemma 1.1.1, inequality (1.1.2) implies that A is normally solvable and has a trivial kernel
KerA = {0}. Being self-adjoint A∗ = A, the operator has the trivial cokernel dim CokerA =
dim KerA = 0 (due to (1.1.2), Aφ = 0 implies that φ = 0). Therefore, A is invertible.

Let SO(H) denote the set of orthogonal (unitary) operators: R ∈ SO(H) if and only if R∗ =
R−1. Note that SO(H) is a group and the set R(SO(H)) coincides with SO(H) for arbitrary R ∈ SO(H).

Let A ∈ L (H) and A = RHA be its left polar decomposition, where R ∈ SO(H) is orthogonal
and HA is positive, self-adjoint (Hermitian) operator

⟨HAφ,φ⟩ > C0∥φ∥2, C0 > 0, H∗
A = HA, ∀φ ∈ H.

Let us check that HA =
√
A∗A. Indeed, if A = RHA, then A∗ = H∗

AR∗ = HAR−1 and
√
A∗A =√

HAR−1RHA =
√

H2
A = HA.

Similarly, for the right polar decomposition A = H′
AR′ we get H′

A =
√
AA∗.

Note that if A is positive definite (or, at least, has a real-valued spectral set), then A is self-adjoint
A∗ = A and the polar decomposition is trivial HA = H′

A =
√
AA = A, R = R′ = I.

The next Lemma 1.1.3 generalizes essentially the statement formulated in [77], §2.

Lemma 1.1.3. For A ∈ L (H) and R ∈ SO(H) the norm has the following property:

∥RAR∥ = ∥RA∥ = ∥AR∥ = ∥A∥. (1.1.6)

Moreover, if A = RHA is the left polar decomposition of A ∈ L (H), then

dist
(
A,SO(H)

)
= dist

(
HA,SO(H)

)
, (1.1.7a)

dist
(
A,SO(H)

)
= ∥HA − I∥ if A is positive definite, (1.1.7b)

dist
(
A,SO(H)

)
6 ∥HA − I∥ otherwise. (1.1.7c)
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Proof. To prove (1.1.6) we proceed as follows:

∥RA∥ = inf
φ∈H

√
((RA)∗RAφ,φ) = inf

φ∈H

√
(A∗R∗RAφ,φ) = inf

φ∈H

√
(A∗Aφ,φ) = ∥A∥.

By using the obtained equality and recalling that ∥A∥ = ∥A∗∥ and R ∈ SO(H) implies R∗ ∈ SO(H),
we prove the following

∥AR∥ = ∥(AR)∗∥ = ∥R∗A∗∥ = ∥A∥.

Equalities (1.1.6) are proved and, due to them,

dist
(
A,SO(H)

)
= inf

V ∈SO(H)
∥RHA − V ∥ = inf

V ∈SO(fH)
∥R∗(RHA − V )∥

= inf
V ∈SO(H)

∥HA − R∗V ∥ = dist
(
HA,SO(H)

)
6 ∥HA − I∥,

since I,R∗V ∈ SO(H) and the set {R∗V : V ∈ SO(H)} coincides with the orthogonal group SO(H).
Equality (1.1.7a) and inequality (1.1.7c) are proved.
To prove equality (1.1.7b) we can assume A is non-negative, i.e., also self adjoint (see Lemma

1.1.2). Then, due to (1.1.7a), we can take A = HA. Then the spectral set of A is non-negative

0 6 m(A) := inf
∥x∥=1

(Ax, x).

It follows from the spectral theorem that

m(A) = inf
∥x∥=1

∥Ax∥. (1.1.8)

Moreover, it is well known that for every self-adjoint operator A the spectral radius coincides with
the norm:

∥A∥ = sup
∥x∥=1

|(Ax, x)| .

It is easy to see that

∥A− I∥ = sup
∥x∥=1

|((A− I)x, x)| = sup
∥x∥=1

|(Ax, x) − 1|

= max
{

sup
∥x∥=1

(Ax, x) − 1, 1− inf
∥x∥=1

(Ax, x)
}

= max {∥A∥ − 1, 1−m(A)} . (1.1.9)

For any R ∈ SO(H), one has

∥A− R∥ = sup
∥x∥=1

∥(A− R)x∥ ≥ sup
∥x∥=1

(∥(Ax∥ − ∥Rx∥) = sup
∥x∥=1

(∥Ax∥ − 1) = ∥A∥ − 1,

∥A− R∥ = sup
∥x∥=1

∥(A− R)x∥ ≥ sup
∥x∥=1

(∥Rx∥ − ∥Ax∥)

= sup
∥x∥=1

(1− ∥Ax∥) = 1− inf
∥x∥=1

∥Ax∥ = 1−m(A)

(see (1.1.8)) and, therefore (cf. (1.1.9)),

∥A− R∥ > max {∥A∥ − 1, 1−m(A)} = ∥A− I∥. (1.1.10)

Now it follows from (1.1.10) that

dist
(
A,SO(H)

)
= inf

R∈SO(H)
∥A− R∥ > ∥A− I∥

and, together with (1.1.7c) proved above, this proves (1.1.7b).
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Let H be a Hilbert space and consider a linear Variational problem

a(φ,ψ) = L(ψ) ∀ψ ∈ H , (1.1.11)

where φ ∈ H is unknown and

a(·, ·) : H× H → R, L(·) : H → R (1.1.12)

are, respectively, a continuous bilinear form and a continuous linear form (a functional) on H.

Definition 1.1.2. We say Variational problem (1.1.11) is well-posed if, and only if, for all ψ ∈ H,
it has one and only one solution φ ∈ H∗, with continuous dependence ∥φ|H∗∥ 6 M∥ψ|H∥ for some
constant M > 0.

Next, we expose the simple but very powerful Lax-Milgram Lemma with the elegant proof of these
authors (see [102]).

Lemma 1.1.4 (Lax-Milgram). Let the continuous bilinear form a(·, ·) : H × H → R in (1.1.11) be
coercive (cf. (1.1.2)).

Then Variational problem (1.1.11), is well posed: has a unique solution φ ∈ B for all ψ ∈ B.
This unique solution of Variational problem (1.1.11) also is the unique solution to the following

Minimization problem: find ψ ∈ H such that

min
ψ∈B

[
1

2
a(ψ,ψ)− L(ψ)

]
=

1

2
a(φ,φ)− L(φ), (1.1.13)

i.e., which minimizes the functional

F (ψ) :=
1

2
a(ψ,ψ)− L(ψ) . (1.1.14)

Proof. From coerciveness (1.1.2) and the continuity of the bilinear form in (1.1.11) follows

C∥φ
∣∣H∥2 6 a(φ,φ) 6M∥φ

∣∣H∥2 ;
hence the equality

φ 7→ ∥φ
∣∣H∥0 := [a(φ,φ)]

1/2
, φ ∈ H, (1.1.15)

defines an equivalent norm on H. Moreover, a(φ,ψ) defines an alternative scalar product on a Hilbert
space H. According the Riesz representation theorem for a given ψ ∈ H there exists one and only one
element φ ∈ H such that (1.1.11) holds. Thus, we have found the unique solution to linear equation
(1.1.11) with a prescribed ψ ∈ H.

Returning to the Minimization problem: a direct verification shows that

F (φ+ ψ) = F (φ) +
[
a(φ,ψ)− L(ψ)

]
+

1

2
a(ψ,ψ) . (1.1.16)

The obtained equality can be interpreted as the Taylor expansion of the functional F (φ + ψ) (note
that F ′(ψ)φ =

[
a(φ,ψ)− L(ψ)

]
and F ′′(ψ)(φ,φ) = 1

2a(ψ,ψ)). Then

a(φ,ψ)− L(ψ) = 0 for all ψ ∈ H

implies
F (φ+ ψ)− F (φ) =

1

2
a(ψ,ψ) > C

2
∥ψ

∣∣H∥2 ∀ψ ∈ H

and, thus, φ ∈ H is the minimizer of the functional F under the asserted condition a(φ,ψ)−L(ψ) = 0.
Conversely: Let φ ∈ H be the minimizer of F and ψ ∈ H be arbitrary. The inequality (cf. (1.1.16))

0 6 F (φ+ θψ)− F (φ) = θ
{
a(φ,ψ)− L(ψ)

}
+
θ2

2
a(ψ,ψ) ∀ θ ∈ R

implies that a(φ,ψ) = L(ψ), since the first summand in the right-hand side of the equality dominates
for small θ and the second is non-negative. Indeed, if a(φ,ψ) ̸= L(ψ) the difference F (φ+ θψ)−F (φ)
would become negative for certain small θ, which is a contradiction.
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In conclusion of the present section, we expose definitions an propositions about Fredholm oper-
ators. We drop the proofs since the results are well known and exposed, for example, in [83, 89, 130]
and also in many other books.

Further, we assume that B1 and B2 are Banach spaces.
For a linear operator A : B1 → B2 by Ker A is denoted the kernel, i.e., the linear space of all

solutions of homogeneous equation Aφ = 0, φ ∈ B1.
By ℑA := AB1 is denoted the image (the range) of A.
By Coker A := B2/ℑA (or Coker AB1→B2

) is denoted the dimension of the quotient space
B2/ℑA in the algebraic sense, i.e., regardless of a topology.

Definition 1.1.3. An operator A ∈ L (B1,B2) is said to be Fredholm (or have the Fredholm
property, and we write A ∈ F (B1,B2), if A has finite-dimensional kernel and cokernel

dim Ker A <∞, dim Coker A <∞ .

We say A is normally solvable if the image ℑA is a closed subspace in B2.
The index

Ind A = IndB1→B2
A := dim Ker A− dim Coker A = dim Ker A− dim Ker A∗ (1.1.17)

(see below Proposition 1.1.2) maps the set of Fredholm operators into the group of integers Ind :
F (B1,B2) → Z.

Proposition 1.1.1. A linear operator A ∈ L (B1,B2) is normally solvable if and only if the equation
Aφ = ψ has a solution φ ∈ B1 only for those ψ ∈ B2 for which the following orthogonality condition
holds:

F (ψ) = 0 for all solutions A∗F = 0,

i.e., dim Coker A = dim Ker A∗.

Proposition 1.1.2. Let A ∈ L (B1,B2) and dim Coker A < ∞. Operator A is normally solvable
if and only if dim Coker A <∞ and, then, dim Coker A = dim Ker A∗.

Moreover, Coker A can be identified (is isomorphic) with a linear space MA which is complemen-
tary to the image

ℑA⊕MA = B2 . (1.1.18)

Proposition 1.1.3. If A ∈ L (B1,B2) is a Fredholm operator, then the adjoint operator A∗ ∈
L (B∗

2,B
∗
1) is Fredholm and

Ind A = dim Ker A− dim Ker A∗ = − Ind A∗ . (1.1.19)

Proposition 1.1.4. Let A ∈ B(B1,B2) be a Fredholm operator between Banach spaces. There
exists a small ε > 0 such that a perturbation A + B + T by arbitrary operator B ∈ L (B1,B2)
with a small norm ∥B∥ < ε and by arbitrary compact operator T ∈ C (B1,B2) remains Fredholm
A+B + T ∈ F (B1,B2). Moreover, such a perturbation has a stable index

Ind (A+B + T ) = Ind A . (1.1.20)

Corollary 1.1.2. For a compact operator T ∈ C (B) in a Banach space B, the sum with the identity
operator is Fredholm I + T ∈ F (B) and

Ind (I + T ) = 0 . (1.1.21)

Proposition 1.1.5. A linear operator A ∈ F (B1,B2) is Fredholm if and only if there exists an
operator R ∈ F (B2,B1), called regularizer, such that

RA = I − T1, AR = I − T2, (1.1.22)

where I is the identity operator in the corresponding space and T1 ∈ L (B1), T2 ∈ L (B2) are compact
operators
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The set of linear operators L (B) is a Banach algebra with respect to the standard operator norm:
if A,B ∈ L (B), then the compositions AB,BA also belong to L (B) and C (B) is an ideal in L (B)
and ∥AB∥ 6 ∥A∥∥B∥, ∥BA∥ 6 ∥A∥∥B∥.

The subset of compact operators C (B) ⊂ L (B) is an ideal in L (B):

AT, TA ∈ C (B) for all A ∈ L (B), T ∈ C (B) .

Therefore, the quotient L (B)/C (B) represents a Banach algebra and is known as the Calkin alge-
bra. The norm in the Calkin algebra, the usual quotient norm

∥|A∥| := inf
T∈C (B)

∥A+ T∥ (1.1.23)

is called the essential norm of A.
Note that definition (1.1.23) of the essential norm extends, obviously, to more general setting of

all operators A ∈ L (B1,B2).

Corollary 1.1.3. A ∈ L (B) is a Fredholm operator A ∈ F (B) if and only if the coset (the quotient
class) [A] is invertible in the Calkin algebra L (B)/C (B).

Proposition 1.1.6. Let B1, B2 and B3 be Banach spaces and A ∈ F (B1,B2), B ∈ F (B2,B3) be
Fredholm operators. Then the composition BA ∈ F (B1,B3) is a Fredholm operator and

Ind BA = Ind B + Ind A . (1.1.24)

We will expose proofs of the next assertions, because they are not well known.
Let Coker ABk→Dk

denote a direct complement to the image ℑABk→Dk
, which is not unique in

general.

Theorem 1.1.1. Let
A ∈ F (B1,D1) ∩ F (B2,D2),

where B1, D1, B2 and D2 are Banach spaces and the first embedding

B1 ⊂ B2, D1 ⊂ D2 (1.1.25)

holds, while the second embedding is dense. If the indices of A in both pairs of spaces coincide

Ind AB1→D1 = Ind AB2→D2 , (1.1.26)

then the corresponding kernels and the cokernels coincide as well:

Ker AB1→D1
= Ker AB2→D2

,

Coker AB1→D1 = Coker AB2→D2 .
(1.1.27)

Proof. Due to the first embedding in (1.1.25)

α1 6 α2, where αk := dim Ker ABk→Dk
. (1.1.28)

Since
dim Coker ABk→Dk

= dim Ker A∗
D∗

k→B∗
k

(see Proposition 1.1.2), the density of the second embedding in (1.1.25) yields D∗
2 ⊂ D∗

1. Indeed, any
functional F ∈ D∗

2 is automatically included in D∗
1: we get |(F, u) 6 ∥F∥∥u

∣∣D2∥ 6 C ∥F∥∥u
∣∣D1∥ and,

therefore, F ∈ D∗
1.

On the other hand, any non-trivial functional F ∈ D∗
2, F ̸= 0, restricted to D1, does not vanish

F
∣∣
D1

̸= 0. Otherwise, the dense embedding D1 ⊂ D2 implies F = 0. This completes the proof that
the embedding D∗

2 ⊂ D∗
1 holds.

Analogously to (1.1.28) we get

β2 6 β1, where βk := dim Coker ABk→Dk
. (1.1.29)
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From (1.1.28), (1.1.29) and (1.1.26), which can yet be written as follows

α1 − β1 = α2 − β2,

we obtain
0 > β1 − β2 = α1 − α2 6 0.

The latter relations show that α1 = α2, β1 = β2. These equalities and embedding (1.1.25) entail
(1.1.27).

Lemma 1.1.5. Let H be a Hilbert space. If A ∈ L (H,H∗) is coercive, then A is an invertible operator.

Proof. Due to the coerciveness (see (1.1.2)), from Aφ = 0, φ ∈ H, it follows ∥φ∥ = 0. Therefore,
Ker A = {0}.

Again, due to coerciveness (1.1.2), the convergence ψn → ψ, where

{ψn = Aφn}∞n=1 ⊂ ℑA, ψ ∈ H, {ψn = Aφn}∞n=1 ⊂ H,

implies the convergence φn → φ ∈ H, since

∥ψn − ψk∥ = ∥Aφn −Aφk∥ > C∥φn − φk∥

with some fixed constant C independent of A. Then, due to the continuity of A, we conclude that
ψ = limn→∞ Aφn = Aφ ∈ ℑA and, therefore, ℑA is closed (i.e., A is normally solvable).

From the coerciveness inequality (1.1.2) we also get

|(φ,A∗φ)| = (Aφ,φ) > C∥φ∥2

and, as above, conclude that Ker A∗ = {0}.
Due to the inverse mapping theorem A is invertible.

Corollary 1.1.4. If H is a Hilbert space, A ∈ L (H) is a linear, T ∈ C (H) is a compact operator and
A+ T ∈ L (H) is coercive

| ((A+ T)φ,φ) | > γ∥φ∥2 ∀φ ∈ H,

then A is a Fredholm operator and Ind A = 0.

Proof. Due to Lemma 1.1.5, A + T is invertible, while, due to Proposition 1.1.4, the difference A =
(A+ T)− T is Fredholm and Ind A = Ind (A+ T) = 0.

Lemma 1.1.6. Let H be a Hilbert space and A ∈ L (H). If the inequality

|(Aφ,φ)| > C∥φ∥2 − ∥Tφ∥2 ∀φ ∈ H (1.1.30)

holds for some constant C > 0 and a compact operator T ∈ C (B,D), then A is a Fredholm operator.

Proof. From (1.1.30) it follows that

∥φ∥ 6 1√
C

∥Tφ∥ ∀φ ∈ Ker A. (1.1.31)

Then, due to the compactness of T, from a bounded sequence {φk}∞k=1 ⊂ Ker A we can always select a
convergent subsequence. That means Ker A ⊂ H is a locally compact subspace and dim Ker A <∞
(only finite dimensional spaces are locally compact).

Since dim Ker A < ∞, the linear closed set Ker A has a complemented space H0 ⊕ KerA = H
for some H0 ⊂ H.

Assume that the operator A is not normally solvable. Then the operator A : H0 → H is not as
well because they have the same ranges A(H0) = A(H) =: ℑA. Then there exists a sequence (φj)

∞
1

in H0 such that ∥φj∥ = 1, ∥Aφj∥ → 0 as j → ∞. Taking into account that T is compact, we can
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choose a subsequence which is transformed by T into a convergent sequence. For brevity, we assume
that this subsequence is again the same sequence {φj}∞1 . By applying (1.1.30) we proceed as follows

C∥φj − φk∥2 6 ∥T(φj − φk)∥2 + |(A(φj − φk), φj − φk)|

6 ∥Tφj − Tφk∥2 + ∥Aφj −Aφk∥∥φj − φk∥

6 ∥Tφj − Tφk∥2 + (∥Aφj∥+ ∥Axk∥) ( ∥φj − φk∥). (1.1.32)

For sufficiently large j and k the right–hand side of (1.1.32) becomes arbitrarily small and the sequence
{φj}∞j=1 converges in H0: lim

j→∞
φj = φ0 ∈ H0. Obviously, Aφ0 = lim

j→∞
Aφj = 0 and since φ0 ∈

H0 ∩ Ker A = {0}, we get φ0 = 0. This contradicts the equality ∥φ0∥ = lim
j→∞

∥φj∥ = 1 and the
obtained contradiction proves that the operator A has the closed range ℑA.

Let us rewrite inequality (1.1.30) in the form

|(φ,A∗φ)| > C∥φ∥2 − ∥Tφ∥2, ∀φ ∈ H. (1.1.33)

We already know that if the operator has the closed range ℑA, inequality (1.1.33) implies

dim Coker A = dim Ker A∗ <∞

and, thus, A is a Fredholm operator.

1.2 Differentiation and implicit function theorem
In the present section, we expose implicit and inverse function theorems, which are applied later.

Let us recall some standard notation: N := {1, 2, . . . }, N0 := {0, 1, . . . }. For a natural number
n ∈ N let Rn and Cn denote the n-dimensional spaces of vectors x = (x1, . . . , xn)

⊤ with real xj ∈ R
and complex xj ∈ C entries and standard metrics, based on the scalar product

⟨x, y⟩ := x1y1 + · · ·+ xnyn for x, y ∈ Cn,

⟨x, y⟩ := x1y1 + · · ·+ xnyn for x, y ∈ Rn.

Nn and Nn0 denote the sets of n-tuples multi-indices α = (α1, . . . , αn) with components from the
corresponding sets and we use the notation

∂αu(x)=∂αx u(x) :=
∂|α|u(x)

∂xα1
1 · · · ∂xαn

n
, ∂j :=

∂

∂ xj
, j=1, 2, . . . , n, α∈Nn0 , |α| := α1+· · ·+αn. (1.2.1)

Let Ω ⊂ Rn be an open domain. A continuous function Φ : Ω → Rm is called differentiable at a
point x ∈ Ω with derivative DΦ(x) : Rn → Rm if DΦ(x) is a linear mapping (i.e., a matrix) and

Φ(x+ y) = Φ(x) +DΦ(x)y +R(x, y), R(x, y) = O(|y|) as |y| → 0 (1.2.2)

for small y ∈ Rn.
With respect to the standard bases in Rn and Rm, the derivative DΦ(x) is the matrix of partial

derivatives
DΦ(x) =

(
[∂jΦk(x)]n×m

)⊤ (1.2.3)

and transforms a column vector U = (u1, . . . , un)
⊤ into the new column vector

DΦ(x)U =
( n∑
j=1

∂jΦ1(x)uj , . . . ,

n∑
j=1

∂jΦm(x)uj

)⊤
.

The matrix DΦ in (1.2.3) is called the Jacobi matrix. If n = m, the corresponding determinant
is called Jacobi determinant or Jacobian.
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Φ is differentiable whenever all the partial derivatives exist.
Let Ω ⊂ Rn be an open domain (Ω can be non-compact, e.g., Ω = Rn). For r,m ∈ N0, by

Cr(Ω,Rm) (or by Cr(Ω)) it is denoted the set of r-times continuously differentiable mappings Φ :

Ω → Rm and C∞(Ω,Rm) :=
∞∩
r=1

Cr(Ω,Rm).

The set of complex-valued mappings will be denoted by Cr(Ω, Cm) (or by Cr(Ω)).
The subspace C∞

0 (Ω) consists of infinitely differentiable functions on Ω with compact supports.
A composition of functions

F = Ψ ◦ Φ : Ω → Rk, Φ : Ω → M ⊂ Rm, Φ : M → Rk,

where Φ is differentiable at a point x ∈ Ω and Ψ is differentiable at a point z = Φ(x) ∈ M , is
differentiable at a point x and the following chain rule holds:

D(Ψ ◦ Φ)(x) = (DΨ)(Φ(x))DΦ(x). (1.2.4)

Let us recall that Ω ⊂ Rn is called a star-like domain with respect to the point x0 ∈ Ω if y ∈ Ω
implies x0 + t(y − x0) ∈ Ω for all 0 6 t 6 1.

The fundamental theorem of calculus, applied to φ(t) = Φ(x + ty) in a star-like domain with
respect to x ∈ Ω, gives the Lagrange formula

Φ(x+ y) = Φ(x) +

1∫
0

DΦ(x+ ty)y dt = Φ(x) +DΦ(x+ t0y)y (1.2.5)

for Φ ∈ C1(Ω), all y ∈ Ω and some 0 ≤ t0 < 1.
Let us consider a function

Φ : Ω → Rn, Φ ∈ Ck, (1.2.6)

which maps a domain Ω ⊂ Rn to the same Euclidean space and Φ(x0) = y0. It is important to know
the conditions ensuring the existence of the inverse mapping

Φ−1 : V → U ⊂ Ω, Φ(Φ−1(y)) ≡ y, y ∈ V , (1.2.7)

and its smoothness properties, at least locally, in a neighborhood of some y0. The next inverse function
theorem provides such conditions and, together with the implicit function theorem (cf. Theorem 1.2.2),
represents most fundamental results of multivariable analysis.

Theorem 1.2.1 (Inverse function theorem). Let Ω be a domain in Rn, k ∈ N and Φ ∈ Ck(Ω,Rn).
Let the differential DΦ(x) be an invertible matrix at x0 ∈ Ω and Φ(x0) = y0 ∈ Rn.

There exist neighborhoods U ⊂ Ω of x0 and V ⊂ Rn of y0 such that the mapping Φ : U → V is
one-to-one and the inverse mapping Φ−1 : V → U is Ck-smooth (i.e., Φ−1 is a Ck-diffeomorphism).

Proof. Let
Ψ(x) := (DΦ)(x0)]

−1[Φ(x0 + x)− y0]. (1.2.8)

Then, obviously,
Ψ(0) = 0 and (DΨ)(0) = I.

Thus, the case reduces to Φ(0) = 0, (DΦ)(0) = I, 0 ∈ Ω, which we suppose fulfilled. Then we have to
solve the equation Φ(u) = v for small v. Due to formula (1.2.2), this can be written as an equation

u+R(u) = v, R(0) = 0, (DR)(0) = 0, where R(u) = O(|u|), (1.2.9)

with the mapping R ∈ Ck−1(Ω,Rn). Solving (1.2.9) is equivalent to solving

Tv(u) = u, Tv(u) = v −R(u). (1.2.10)
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Thus, we look for a fixed point u = K(v) = Φ−1(v) and show that (DK)(0) = I or, equivalently,
K(v) = v + O(|v|). The latter implies that for all x close to the origin (small enough),

(DK)(x) = (DΨ(K(x)))−1 (1.2.11)

and, taking further derivatives, by induction it follows that K ∈ Ck. To implement this idea we
consider a metric space

Mv :=
{
u ∈ Ω : |u− v| 6 Av

}
,

where (cf. (1.2.2) and (1.2.9))

Av := sup
|w|62|v|

|R(w)| = O(|w|) = O(|v|). (1.2.12)

Let us check that Mv is invariant under the mapping

Tv : Mv → Mv (1.2.13)

provided that v is small enough. Indeed, since Tv(u) − v = −R(u), we only need to check that
|R(u)| 6 Av for all u ∈ Mv provided that v is small enough. Indeed, if u ∈ Mv, then, due to (1.2.12),
|u| 6 |v|+ Av 6 2|v| for v small enough and

|R(u)| 6 sup
|w|62|v|

|R(w)| = Av.

This completes the proof of the mapping property (1.2.13).
Due to the Lagrange formulae (1.2.5) and the property (DR)(0) = 0 (see (1.2.5), by taking v

sufficiently small, mapping (1.2.13) becomes a contraction

|Tv(u)− Tv(w)| = |R(u)−R(w)| = |(DR)(u+ t0(w − u))(u− w)| 6 r|u− w|, 0 < r < 1.

Then, by virtue of the fixed point theorem, there exists a unique fixed point u = K(v) ∈ Mv.
Moreover, from u ∈ Mv we conclude that

|K(v)− v| = |u− v| 6 Av = O(|v|).

This completes the proof.

Theorem 1.2.2 (Implicit function theorem). Let Ω ⊂ Rm, E ⊂ Rn be domains and k = 1, 2, . . . . Let
Ψ(x, y) : Ω× E → Rn be a Ck-mapping, Ψ(x0, y0) = 0 and the partial n× n Jacobi matrix DyΨ(x, y)
be invertible at (x0, y0) ∈ Ω× E .

There exists a neighborhood U0 ⊂ Ω of x0 and a Ck-smooth mapping y = ψ(x), ψ : U0 → E (called
the implicit function) such that Ψ(x, ψ(x)) ≡ 0.

The function ψ(x) is unique: if there exists another continuous implicit function ψ1 : U1 → E , the
functions coincide ψ1(x) = ψ(x) in the common neighborhood x ∈ U0 ∩ U1 of x0.

Proof. Consider the mapping Φ : Ω× E → Rm × Rn defined by

Φ(x, y) :=
(
x,Ψ(x, y)

)
. (1.2.14)

The corresponding differential (the Jacobi matrix)

(D(x,y)Φ) =

(
I DxΨ
0 DyΨ

)
(1.2.15)

is, obviously, invertible. Therefore, by virtue of the foregoing Theorem 1.2.1, there exists the inverse
function Φ−1 : V 0 × U0 → Rm × Rn and at the point (x, y0) acquires the form

Φ−1(x, y0) = (x, ψ(x, y0)).

The function ψ(x) = ψ(x, y0) is the desired implicit function.
The uniqueness of the implicit function follows since, according to Theorem 1.2.1, there exists only

the unique inverse function to Φ(x, y) = (x,Ψ(x, y)).
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1.3 Calculus of tangent differential operators
The content of the present section follows from [64, § 4] with a slight modification.

Throughout the present section we keep the convention similar to that in Introduction: Let S be
a hypersurface given by a collection of charts {(Sj ,Θj)}Mj=1, where

Θj : ωj → Sj , S =

M∪
j=1

Sj , ωj ⊂ Rn−1, j = 1, . . . ,M. (1.3.1)

The corresponding differentials

DΘj(p) := matr
[
∂1Θj(p), . . . , ∂n−1Θj(p)

]
(1.3.2)

have the full rank
rankDΘj(p) = n− 1, ∀ p ∈ Ω, j = 1, . . . ,M,

i.e., all points of Ω are regular for Θj .
The derivatives

gk = ∂kΘj , k = 1, . . . , n− 1, (1.3.3)

are tangent vector fields on Sj and this system is a basis in the space of tangent vector fields ω(S )j .
The symmetric Gram matrix

GS (x) :=
[
⟨gk(X ), gm(X )⟩

]
n−1×n−1

=
[
⟨∂kΘj(x), ∂mΘj(x)⟩

]
n−1×n−1

, x ∈ ωj ⊂ Rn−1, (1.3.4)

defines the natural metric on the space of tangent vector fields ω(Sj), which is inherited from the
ambient space Rn. Namely, for arbitrary tangent vectors

uk(x) = α1
k∂1Θj(x) + · · ·+ αn−1

k ∂n−1Θj(x) ∈ ω(Sj), αmk ∈ R, k = 1, 2,

the inner product is defined by the bilinear first fundamental form

⟨u1, u2⟩ = ⟨GS a1, a2⟩, ak = (α1
k, . . . , α

n−1
k )⊤, k = 1, 2. (1.3.5)

The system of tangent vectors {gk}n−1
k=1 to S (cf. (1.3.3)) is known as the covariant basis. There

exists the unique system {gk}n−1
k=1 , biorthogonal to it – the contravariant basis:

⟨gj , gk⟩ = δjk, j, k = 1, . . . , n− 1.

The contravariant basis is defined by the formula

gk =
1

detGS
g1 ∧ · · · ∧ gk−1 ∧ ν ∧ gk+1 ∧ · · · ∧ gn−1, k = 1, . . . , n− 1, (1.3.6)

where GS (X ) is the Gram matrix (see (1.3.4)).
νΓ(t) is the outer normal vector field to the boundary Γ, which is tangent to S and ν(X ) is the

outer unit normal vector field to S , which has the most important role in the calculus of tangent
differential operators we are going to apply. The unit normal vector field to the surface S , also
known as the Gauß mapping, is defined by the vector product of the covariant basis

ν(X ) := ±
g1(X ) ∧ · · · ∧ gn−1(X )

|g1(X ) ∧ · · · ∧ gn−1(X )|
, X ∈ S . (1.3.7)

The choice of sign in this formula determines the orientation of the hypersurface. In what follows, we
will choose the orientation corresponding to the plus sign in (1.3.7).

Next, we expose yet another definition of a hypersurface – an implicit one.
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Figure 1.1.

Definition 1.3.1. Let k ≥ 1 and ω ⊂ Rn be a compact domain. An implicit Ck-smooth (an implicit
Lipschitz) hypersurface in Rn is defined as the set

S =
{

X ∈ ω : ΨS (X ) = 0
}
, (1.3.8)

where ΨS : ω → R is a Ck-mapping (or Lipschitz mapping) which is regular: ∇Ψ(X ) ̸= 0.

Note that that the definition of a hypersurface S by charts in (1.3.1) and Definition 1.3.1 are
equivalent and by taking a single function ΨS for the implicit definition of a hypersurface S we do
not restrict the generality (see, e.g., [55]).

It is well known that using implicit surface functions gradient (see (1.3.8)) we can write an alter-
native definition of the unit normal vector field on the surface (see (1.3.7)):

ν(t) := lim
x→t

(∇ΨS )(x)

|(∇ΨS )(x)|
, t ∈ S . (1.3.9)

In applications it is necessary to extend the vector field ν(t) in a neighborhood of S , preserving
some important features. Here is the precise definition of such extension.

Definition 1.3.2. Let S be a surface in Rn with the unit normal vector field ν. A vector field
N ∈ C1(ΩS ) in a neighborhood ΩS of S will be referred to as a proper extension if N

∣∣
S

= ν,
it is unitary (|N | = 1) in ΩS and if N satisfies the condition

∂jNk(x) = ∂kNj(x) for all x ∈ ΩS , j, k = 1, . . . , n. (1.3.10)

Such extension is needed, for example, to define correctly the normal derivative (the derivative
along normal vector fields, outer or inner). It turned out that the “naive” extension (cf. (1.3.9))

ν(t) :=
(∇ΨS )(x)

|(∇ΨS )(x)|
, x ∈ ΩS , (1.3.11)

is not proper. Indeed (see [66]), let n = 2 and S be the ellipse{
x = (x1, x2) ∈ R2 : ΨS (x1, x2) := x21 + 2x22 − 1 = 0

}
.

Then

N (x) :=
(∇ΨS )(x)

|(∇ΨS )(x)|
=

(x1, 2x2)√
x21 + 4x22

,

∂1N2(x) = − 2x2x1
(x21 + 4x22)

3/2
, ∂2N1(x) = − 4x1x2

(x21 + 4x22)
3/2

.
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Hence ∂1N2(x) ̸= ∂2N1(x), unless x1 = 0 or x2 = 0.
For the proof of the next Proposition 1.3.1 and Corollary 1.3.1 on extension of the normal vector

field we refer to [66].
Proposition 1.3.1. Let S ⊂ Rn be a hypersurface given by an implicit function

S =
{

X ∈ Rn : ΨS (X ) = 0
}
.

Then the gradient ∇ΦS (x) of the function

ΦS (X + tν(X )) := t, X + tν(X ) ∈ ΩS , (1.3.12)

defined in the parameterized neighborhood

ΩS :=
{
x = X + tν(X ) : X ∈ S , −ε < t < ε

}
represents a unique proper extension of the unit normal vector field on the surface

ν(X ) = lim
x→X

∇ΦS (x), X ∈ S .

Corollary 1.3.1. For any proper extension N (x), x ∈ ΩS ⊂ Rn, of the unit normal vector field ν
to the surface S ⊂ ΩS the following equality holds:

∂N N (x) = 0 for all x ∈ ΩS . (1.3.13)

In particular, for the derivatives

Dk = ∂k − Nk∂N , k = 1, . . . , n, (1.3.14)

which are extensions into the domain ΩS of Günter’s derivatives Dk = ∂k − νk∂ν on the surface S ,
the following equalities are valid:

DkNj = ∂kNj − Nk∂N = ∂kNj , DkNj = DjNk, for all j, k = 1, . . . , n. (1.3.15)

In the sequel, we dwell on a proper extension and apply the properties of N listed above.
Lemma 1.3.1 (see [64]). For an arbitrary unitary extension N (x) ∈ C1(ΩS ), |N (x)| ≡ 1, of ν(X ),
in a neighborhood ΩS of S , the following conditions are equivalent:

(i) ∂N N
∣∣
S

= 0, i.e., ∂N Nj(x) → 0 for x→ X ∈ S and j = 1, 2, . . . , n;

(ii) [∂kNj − ∂jNk]
∣∣
S

= 0 for k, j = 1, 2, . . . , n.
The second fundamental form of S has the form

II(U(X ),V (X ))ν(X ) := ∂UV (X )− ∂S
U V (X )

= (I − πS )∂UV (X ) = ⟨ν(X )∂UV (X )⟩ν(X ), ∀X ∈ S , U ,V ∈ ω(S ) (1.3.16)

and the Weingarten matrix (or the Weingarten mapping)

WS : ω(S ) → ω(S ) (1.3.17)

is defined uniquely by the requirement that

⟨WSU ,V ⟩ = II(U ,V ) = ⟨ν, ∂UV ⟩ = −⟨∂Uν,V ⟩ = −⟨∂S
U ν,V ⟩, ∀U ,V ∈ ω(S ). (1.3.18)

In the last equality in (1.3.18) we have applied the following: for a tangent vector field V ∈ ω(S )
there holds ⟨ν(X ),V (X )⟩ ≡ 0, X ∈ S , and, by differentiating,⟨

∂Uν(X ),V (X )
⟩
+
⟨
ν(X ), ∂UV (X )

⟩
≡ 0, X ∈ S , j = 1, . . . , n, (1.3.19)

for all U =

n∑
j=1

Ujdj , V =

n∑
j=1

Vjdj , d j = πS ej , ∂S
U :=

n∑
j=1

UjDj .

We can extend the Weingarten matrix WS (x) from the surface S to a neighbourhood as follows:

WS (x) := −∇N (x) = −
[
∂jNk(x)

]
n×n, x ∈ ΩS . (1.3.20)
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Lemma 1.3.2. The extended Weingarten matrix WS (x) in (1.3.20) has the following properties:

(i) WS (x)N (x) = 0 for all x ∈ ΩS ;

(ii) even if extension N (x) is not proper, the restriction to the hypersurface WS

∣∣
S

coincides with
the Weingarten mapping of S and only depends on S (is independent of the choice of the
extension N );

(iii) even if extension N (x) is not proper, Tr(WS )
∣∣
S
= H 0

S , where H 0
S is the mean curvature of S ;

(iv) WS (x)V (x), x ∈ SC , is tangent to the level surface

SC :=
{
y ∈ Rn : ΨS (y) = C := ΨS (x)

}
(1.3.21)

for arbitrary vector field V : S → Rn.

Proof. First, WS N = ∇∥N ∥2 = ∇1 = 0 in ΩS , justifying (i). Assertions (ii) and (iii) follow from
Lemma 1.3.1.

Next, (iv) is proved as follows:

⟨N (x),WSV (x)⟩ = −
n∑

j,k=1

Nj(∂jNk)Vk = −
n∑
k=1

(∂N Nk)ω = 0

due to (1.3.13), proved above.

We remind that

GS (X ) = G(X ) =
[
gjk(X )

]
n−1×n−1

, gjk := ⟨gj , gk⟩,

is the positive definite Gram matrix, which is known as the covariant Riemannian metric tensor
and defines the metric on the surface S (cf. Section 1.5).

Let dσ =
√

detGS dx and ds =
√

detGΓdx
′ stand for the volume elements on S and Γ := ∂S ,

respectively (x ∈ Rn−1, x′ ∈ Rn−2; cf. Section 1.5).
Let

P (∇)u =

n∑
j=1

aj∂ju+ bu, aj , b ∈ C1(Rm×m), (1.3.22)

be a first-order differential operator with real-valued (variable) matrix coefficients, acting on vector-
valued functions (u = (uβ)

n
β=1) in Rn, and its principal symbol is given by the matrix-valued

function
σ(P ; ξ) :=

n∑
j=1

ajξj , ξ = {ξj}nj=1 ∈ Rn. (1.3.23)

Definition 1.3.3. We say that P is a weakly tangent operator to the hypersurface S , with unit
normal ν, provided that

σ(P ;ν) = 0 on the hypersurface S . (1.3.24)
Next, call P a strongly tangent operator to S provided that the symbol vanishes,

σ(P ;N ) = 0 in an open neighborhood of S in Rn (1.3.25)

on a proper extension of the unit normal vector field N in some neighbourhood of the surface S (see
Definition 1.3.2.

Note that in a strongly tangent operator the coordinate derivatives ∂j can be replaced by the
Günter’s derivatives Dj :

P (∇)u =

n∑
j=1

aj∂ju+ bu =

n∑
j=1

ajDju+ bu = P (D)u, aj , b ∈ C1(Rm×m). (1.3.26)

The most important tangent differential operators to the hypersurface for us are:
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A. The weakly tangent Günter derivatives (see (0.0.9))

Dj := ∂j − νj∂ν = ∂j − νj

n∑
k=1

νk∂k, j = 1, . . . , n.

B. The weakly tangent Stokes derivatives Mjk = νj∂k − νk∂j (for details see Section 1.6 below).

Günter and Stokes derivatives are tangent, since the corresponding vector fields are tangent

Dj := ∂d j = d j · ∇, Mjk := ∂mjk
= mjk · ∇,

d j := πS ej = ej − νjν = ν ∧ (ν ∧ ej) =

n∑
k=1

(δjk − νjνk)e
k,

mjk := νjek − νkej , ⟨d j ,ν⟩ = 0, ⟨mjk,ν⟩ = 0, j, k = 1, . . . , n,

(1.3.27)

where πS is the projection on the tangent space to the surface (see (0.0.8)). Therefore, Dj and Mjk

can be applied to functions which are defined only on the surface S .
The generating vector fields {d j}nj=1 {mjk}nj,k=1 cannot constitute frames, since they are linearly

dependent:
n∑
j=1

νj(X )d j(X ) ≡ 0, mjj = 0, (1.3.28)

but both systems {d j}nj=1 and {mjk}nj,k=1 are full in the space of all tangent vector fields: any vector
field U ∈ ω(S ) is represented as

U(X ) =

n∑
j=1

U j(X )d j(X ) =

n∑
06j<k61

cjk(X )mjk(X ). (1.3.29)

For example, the covariant vector fields g1(X ) := ∂1Θk(X ), . . . , gn−1(X ) := ∂n−1Θk(X ), X ∈ Sk,
k = 1, . . . , N , on S , which generate the derivatives ∂j = ∂dxj

, are represented as follows:

gj(X ) =

n∑
m=1

gmj (X )em =

n∑
m=1

gmj (X )dm(X ) (1.3.30)

and {em}nm=1 is a Cartesian frame in Rn. Indeed, by applying the derivative to Θk we get

gj =

n∑
m=1

gmj em =

n∑
m=1

gmj dm,

since
n∑

m=1

gmj [em − dm] =

n∑
m=1

gmj νmν = ⟨gj ,ν⟩ν = 0, j = 1, . . . , n− 1.

An example of a hypersurface S is given in (0.0.1).
The system

{
∂kX

}n−1

k=1
of derivatives is a basis in the tangent space ω(S ) of vectors. Consider

the following differential 1-form ωf

ωf (V ) := LV f =

n−1∑
k=1

V k∂kf for f ∈ C1(S ) , V =

n−1∑
k=1

V k∂kX ∈ TS . (1.3.31)

The form is correctly defined because the differential operator LV is tangential and can be applied to
a function f defined on the surface S only.

Then, for a given f , there exists a vector field ∇S f ∈ TS such that

ωf (V ) := (∇S f, V ) for all V ∈ V (X) , (1.3.32)
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which is, in classical differential geometry, the definition of surface Gradient of a function f ∈ C1(S )
and maps

∇S : C∞(S ) → TS . (1.3.33)
The surface divergence

divS : V (S ) → C∞(S ) (1.3.34)
of a smooth tangent vector field is, by the definition, the dual operator with the opposite sign

( divS V, f) := −(V,∇S f) , ∀V ∈ TS , ∀ f ∈ C1(S ) . (1.3.35)

These operators expressing in intrinsic parameters of the surface S (tangent vector fields, Metric
tensor etc.) are exposed in (0.0.4). In (0.0.5), it is exposed their composition-Laplace-Beltrami
operator, which is self-adjoint (see (0.0.6)). The intrinsic parameters enable generalization to arbitrary
manifolds, not necessarily immersed in the Euclidean space Rn. Below we expose another concept –
represent these operators on hypersurfaces in coordinates of the ambient Euclidean space.

Theorem 1.3.1 ([64]). For any function φ ∈ C1(S ) we have

∇Sφ =
{

D1φ,D2φ, . . . ,Dnφ
}⊤

. (1.3.36)

Also, for a 1-smooth tangent vector field V =
n∑
j=1

V jej ∈ ω(S ),

divS V = −∇∗
SV :=

n∑
j=1

DjV
j , div∗

S = ∇S . (1.3.37)

The Laplace–Beltrami operator ∆S on S takes the form

∆S ψ = divS ∇S ψ = −∇∗
S (∇Sψ) =

n∑
j=1

D2
j ψ

=
∑
j<k

M 2
jkψ =

1

2

n∑
j,k=1

M 2
jkψ, ∀ψ ∈ C2(S ). (1.3.38)

Proof. According to the definition of the surface gradient (1.3.32) we have ∇Sφ = π∇φ
∣∣
S

, where
πV = ψ − (ν, V )ν denotes, for arbitrary vector field V on cS, the orthogonal projection onto the
tangent vector fields from T S (see (0.0.8). It is easy to ascertain that indeed, by the definition in
(0.0.9), ∇S is the projection.

Now we consider the divergence operator divS = ∇S (cf. (1.3.34), (1.3.35)). Let a scalar function
φ and a tangent vector field V ∈ TS be both smooth and S has the boundary ∂S ̸= ∅, the sent
supp φ and supp V have no intersection with ∂S . By applying duality, the proved formula (1.3.36)
and formula (1.3.56) for the dual (Dj)

∗
S , we get

( divS V, ψ)S = −(V,∇Sψ)S =

∮
S

n∑
j=1

V j(X )Djφ(X ) dS(X )

= −
∮
S

n∑
j=1

(Dj)
∗
S V

j(X )φ(X ) dS(X ) =

∮
S

n∑
j=1

DjV
j(X )φ(X ) dS(X )

− (n− 1)HS

∮
S

n∑
j=1

νj(X )V j(X )φ(X ) dS(X )

=

n∑
j=1

(DjV
j , φ)S .
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We applied above that V is tangent: ν(X ) · V (X ) =
n∑
j=1

νj(X )V j(X ) ≡ 0. Since the function φ is

arbitrary, (1.3.37) follows.
To prove (1.3.38), we apply (1.3.36), 1.3.56 and proceed as follows

∆S φ = divS ∇S φ = −
n∑
j=1

(Dj)
∗
S Djφ =

n∑
j=1

D2
j φ− (n− 1)HS

n∑
j=1

νjDjφ =

n∑
j=1

D2
j φ ,

since ν · D =
n∑
j=1

νjDj = 0 (cf. Lemma 1.3.3.v).

To prove the last equality (1.3.38) we insert Mjk = νjDk−νkDj (cf. Lemma 1.3.3.vi)) and proceed
as follows:

1

2

n∑
j,k=1

M 2
jkφ =

1

2

n∑
j,k=1

[νjDk − νkDj ]
2
φ

=
1

2

n∑
j,k=1

[νjDkνjDkφ− νjDkνkDjφ+ νkDjνkDjφ− νkDjνjDkφ]

=

n∑
j,k=1

[νjDkνjDkφ− νjDkνkDjφ]

=

n∑
k=1

D2
kφ−

n∑
j,k=1

[
νjνkDkDjφ+

(
Dkνk

)
νjDjφ

]
=

n∑
k=1

D2
kφ = ∆Sφ .

We have again applied that
∑n
j=1 νjDj = 0 and, like (1.3.64),

n∑
j=1

νjDkνjφ = ν2Dkφ+

n∑
j=1

νj
(
Dkνj

)
φ = Dkφ+

1

2

(
Dkν

2
)
φ = Dkφ (1.3.39)

for k = 1, . . . , n.

Corollary 1.3.2 (cf. [64]). Let S be a smooth closed hypersurface. The homogeneous equation

∆S ψ = 0 (1.3.40)

has only a constant solution in the space W1(S ).

Proof. Due to (1.3.37), (1.3.38) and (1.3.40), we get

0 = ( −∆Sψ,ψ) = ( −∇∗
S∇Sψ,ψ) = (∇Sψ,∇Sψ) = ∥∇Sψ

∣∣L2(S )∥,

which gives ∇Sψ = 0. But the trivial surface gradient means constant function ψ = const (this is
easy to ascertain by analysing the definition of Günter’s derivatives; see e.g. [56]).

An important operator on forms is the exterior derivative. The derivative of a 0-form, i.e.,
of a scalar function

f : S → R, f ∈ C1(S ), (1.3.41)

is a 1-form and maps
df(w) : TwS → R. (1.3.42)

Thus, df(w) is a linear functional df(w) ∈ T∗
wS over TwS for all w ∈ S : being a vector df(w) =

Df(w) = (∂1f(w), . . . , ∂n−1f(w))
⊤ the differential assigns to a vector ξ ∈ ω(S ) the number

df(x)ξ =

n−1∑
j=1

∂jf(x)ξj , ∂jf(x) := ∂dxj
f(x), x ∈ Sk, (1.3.43)
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where {dxj = ∂jΘk}n−1
j=1 is the covariant basis on S and Θk : Ωk → Sk, k = 1, . . . , N , is the surface

immersion.
From (1.3.30) and the definition of the derivative ∂jf(x) := ∂dxj

f(x) in (1.3.43) it follows that
(see for the differential matrix DΘk)

∂S := (∂1, . . . , ∂n−1)
⊤ := (∂dx1

, . . . , ∂dxn−1
)⊤ = (DΘk)

⊤∇S ,

∇S := (D1, . . . ,Dn)
⊤ or ∂dxj

=

n∑
m=1

(∂jΘ
m
k )Dm, m = 1, . . . , n− 1.

(1.3.44)

Let N be a proper extension of the unit normal vector field ν to S (cf. Definition 1.3.2). Then
each operator Dj and Mjk extends accordingly by setting

Dj = ∂j − Nj∂N , Mjk := Nj∂k − Nk∂j , 1 6 j, k 6 n. (1.3.45)

In the sequel, we make no distinction between the operator Dj or Mjk on S and the extended one in
Rn given by (1.3.45). Note that the extended operators Dj and Mjk become even strongly tangent.

For further reference, below we collect some of the most basic properties of this system of differential
operators.

Lemma 1.3.3. Let N be a proper extension of the unit vector field of normal vectors ν to S . The
following relations are valid for j, k = 1, . . . , n:

(i) Mjj = 0, Mjk = −Mkj;

(ii) ∂k =
n∑
j=1

NjMjk + Nk∂N = −
n∑
k=1

NkMjk + Nj∂N ;

(iii)
n∑
k=1

MjkNk = −NjH 0
S , where H 0

S (X ) = −divS ν(X ) and HS (X ) := (n − 1)−1H 0
S (X ) is

the mean curvature at X ∈ S (see (0.0.15));

(iv) Dj =
n∑
k=1

NkMkj;

(v) Mjk = NjDk − NkDj;

(vi)
n∑
j=1

NjDj = 0;

(vii)
m+1∑

r,j,k=m−1

σ(r, j, k)NiMjk = 2
∑

{r,j,k}⊂{(m−1),m,(m+1)}
σ(r, j, k)NiMjk = 0 for m = 2, . . . , n − 1,

where σ(r, j, k) is the permutation sign:

σ(j1, . . . , jk) =



+1 if (j1, . . . , jk) is an even permutation of the strongly
ordered row (m1, . . . ,mk), m1 < · · · < mk,

0 if jr = js for some r, s = 1, . . . , k and r ̸= s,

−1 if (j1, . . . , jk) is an odd permutation of the strongly
ordered row (m1, . . . ,mk), m1 < · · · < mk;

(1.3.46)

(viii) [Dj ,Dk] =
n∑
r=1

(MjkNr)Dr + [Nj∂N Nk − Nk∂N Nj ]∂N ;

(ix) [Dj ,Dk] =
n∑
r=1

(MjkNr)Dr = Nk[DN , ∂j ]− Nj [DN , ∂k];

(x) ∂jNk = DjNk = DkNj.
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Proof. The identities (i)–(ii) and (iv)–(vii) are simple consequences of the definitions. For the equality
(iii) we have

n∑
k=1

MjkNk =

n∑
k=1

MjkNk =

n∑
k=1

(Nj∂k − Nk∂j)Nk = Nj div N − 1

2
∂j(∥N ∥2) = −NjH

0
S ,

as claimed.
To prove (viii) we calculate

DjDk = (∂j − Nj∂N )(∂k − Nk∂N )

= ∂j∂k − (∂jNk)∂N

−
n∑
r=1

[
Nk(∂jNr)∂r + NkNr∂r∂j + NjNr∂r∂k

]
+ Nj(∂N Nk)∂N + NjNk∂

2
N

= −
n∑
r=1

Nk(∂jNr)∂r + Nj(∂N Nk)∂N +Bjk

= −
n∑
r=1

Nk(∂jNr)Dr + Nj(∂N Nk)∂N +Bjk, (1.3.47)

since
n∑
r=1

Nk(∂jNr)Nr∂N =
1

2

n∑
r=1

Nk(∂jN
2
r )∂N =

1

2
Nk(∂j1)∂N = 0.

The operator

Bjk = ∂j∂k − (∂jNk)∂N −
n∑
r=1

[
NkNr∂r∂j + NjNr∂r∂k

]
+ NjNk∂

2
N

is symmetric, Bjk = Bkj , and the desired commutator identity in (viii) follows from (1.3.47).
The first commutator identity in (ix) utilizes the facts that ∂N Nk = 0 (cf. Lemma (1.3.10)) and

follows from the identity in (viii). The second commutator identity in (ix) applies the same identity
∂N Nk = 0, the identity ∂jNk = ∂kNj (cf. (1.3.13)), and follows by a routine calculations.

The identities in (x) are already proved in (1.3.10) and (1.3.15).

The next Lemma 1.3.4 provides an useful and interesting example of restriction of the differential
form to hypersurface and to its boundary.

Lemma 1.3.4. Let Θ : Ω → S be a smooth orientable hypersurface in Rn and with a smooth
boundary Γ := ∂S , while dσ and ds designate the respective volume elements on S and on Γ. Let
ν(X ) =

(
ν1(X ), . . . , νn(X )

)⊤ be the (outer) unit normal vector to S at X ∈ S compatible with a
chosen orintation and νΓ(s) = (ν1Γ(s), . . . , ν

n
Γ(s))

⊤ be the unit tangent vector to S at the boundary
point s ∈ Γ, which is outward (unit) normal vector to the boundary S . Then

νjdS = βj
∣∣
S
, (1.3.48)[

νjν
k
Γ − νkν

j
Γ

]
ds = βjk

∣∣
Γ
, (1.3.49)

where

βj :=
∣∣dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn

∣∣ = (−1)j−1dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn,

βjk :=
∣∣dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ d̂xk ∧ · · · ∧ dxn

∣∣ = (−1)j+k−1dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ d̂xk ∧ · · · ∧ dxn

and d̂xm denotes that the factor dxm is dropped.

The next theorem generalizes Stokes’ formulae (see [130, § 2.2, Theorem 2.1] for the version on
compact Riemannian manifolds).
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Theorem 1.3.2. For any real-valued function φ ∈ C1(S ) and any 1 6 j < k 6 n, there hold∫
S

Mjkφdσ =

∮
Γ

[
νjν

k
Γ − νkν

j
Γ

]
φds, (1.3.50)

where νΓ(ξ) = (ν1Γ(ξ), . . . , ν
n
Γ(ξ))

⊤ is the unit tangent vector to S at the boundary point ξ ∈ Γ := ∂S
and outward (unit) normal vector to the boundary Γ = ∂S .

Proof. With formula (1.3.48) at hand, the integrand in (1.3.50) can be represented as a total differential

(Mjkφ) dσ = (∂kφ)ωj
∣∣
S

− (∂jφ)ωk
∣∣
S

= d[φωjk]
∣∣
S
.

Applying the well known Stokes’ formula ∫
S

dβ :=

∫
Γ

β ds (1.3.51)

(see, e.g., [58]) and formula (1.3.49) we get∫
S

Mjkφdσ =

∫
S

d
[
φωjk

]∣∣
S

=

∫
Γ

φωjk
∣∣
Γ
=

∫
Γ

[
νjν

k
Γ − νkν

j
Γ

]
φds

and (1.3.50) is proved.

The formal adjoint (in Rn) to P is defined by

P ∗u = −
∑
j

∂ja
⊤
j u+ b⊤u.

If Ω ⊂ Rn is a smooth, bounded domain, and if P is a first-order operator, weakly tangent to
∂Ω, then, applying (1.3.58) (cf. Section 1.6), P can be integrated by parts over Ω without boundary
terms, i.e.,

(Pu, v)Ω :=

∫
Ω

⟨Pu, v⟩ dx =

∫
Ω

⟨u, P ∗v⟩ dx =: (u, P ∗v)Ω (1.3.52)

for all vector-valued sections of vector fields u, v ∈ C1(Ω).
For a weakly tangent differential operator Q on a closed hypersurface S let Q∗

S denote the
“surface” adjoint:

(QSφ,ψ)S :=

∮
S

⟨QSφ,ψ⟩ dσ =

∮
S

⟨φ,Q∗
Sψ⟩ dσ = (φ,Q∗

Sψ)S (1.3.53)

for all vector-valued sections of vector fields φ,ψ ∈ C1(Ω).

Corollary 1.3.3. The surface-adjoint operator P ∗
S to the weakly tangent differential operator P in

(1.3.22) coincides with the formally adjoint one

P ∗
Sφ = P ∗φ = −

n∑
j=1

∂ja
⊤
j φ+ b⊤φ. (1.3.54)

In particular, this is true for the Stokes’ derivatives and, moreover, Stokes’ derivatives are skew-
symmetric

(M ∗
jk)S = M ∗

jk = −Mjk = Mkj , ∀ j, k = 1, . . . , n. (1.3.55)
The adjoint operator to the operator Dj is

(Dj)
∗
Sφ = D∗

j φ = −Djφ+ νjH
0

Sφ, φ ∈ C1(S ), (1.3.56)
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where (n− 1)−1H 0
S (X ) = HS (X ) is the mean curvature of the surface S (cf. (0.0.15)).

For any real-valued function φ ∈ C1(S ), any 1 6 j < k 6 n and for νΓ = (ν1Γ, . . . , ν
n
Γ)

⊤ being the
the same as in Theorem 1.3.2 the following integration by parts formula∫

S

[
(Djφ)ψ − φ(D∗

j ψ)
]
dσ =

∮
Γ

νjΓφψ ds (1.3.57)

holds. It is an analogue of the classical Gaußian integration by parts formula∫
Ω

∂jf(y)g(y) dy =

∮
S

νj(τ)f(τ)g(τ) dσ −
∫
Ω

f(y)∂jg(y) dy, (1.3.58)

which holds for arbitrary f, g ∈ W1(S ).
In particular, the following Gauß formulae for open surfaces is valid:∫

S

Djφdσ =

∮
Γ

νjΓφds+

∫
S

νjH
0

Sφdσ. (1.3.59)

Proof. Let us first prove that Mjk is skew symmetric on the surface. Indeed, by applying Stokes’
formulae ∮

S

(Mjkf)(τ) dσ = 0, j, k = 1, . . . , n, f ∈ C1(S ), (1.3.60)

we get ∮
S

(Mjkφ)ψ dσ =

∮
S

(Mjkφψ) dσ −
∮
S

φ(Mjkψ) dσ = −
∮
S

φ(Mjkψ) dσ,

and this proves skew-symmetry of Mjk. On the other hand, the formal adjoint to Mjk = NjDk−NkDj

is
M ∗

jkφ = (Nj∂k − Nk∂j)
∗φ = −∂j(Nkφ) + ∂k(Njφ)

= Nk∂jφ− Nj∂kφ+ (∂jNk)φ− (∂kNj)φ = −Mjkφ

(cf. (1.3.10)), where φ ∈ C1(ΩS ) is defined in a neighborhood of S . Thus, formal adjoint to Mjk

coincides with the surface adjoint and (1.3.55) is proved completely.
Now let us prove (1.3.54). To this end, note that on S ,

Pφ =

n∑
j=1

aj∂jφ+ bφ =
∑
j

aj
[
Dj + νj∂ν

]
φ

=

n∑
j=1

ajDjφ+ bφ+ σ(P ;ν)∂νφ =

n∑
j=1

ajDjφ

=

n∑
j,k=1

ajνkMkjφ, (1.3.61)

due to Lemma 1.3.3(iv) and since P is weakly tangent. Now the property postulated in (1.3.54) follows
from (1.3.61) and from (1.3.55):

P ∗
Sφ =

n∑
j,k=1

(Mkj)
∗
S a

⊤
j νkφ+ b⊤φ =

n∑
j,k=1

(Mkj)
∗a⊤j νkφ+ b⊤φ = P ∗φ.

With (1.3.54) and (1.3.10) we get

(Dj)
∗
Sφ = D∗

j φ = −∂jφ+

n∑
k=1

∂k(NjNkφ)

= −∂jφ+

n∑
k=1

[
NjNk∂kφ+ (Nk∂kNj)φ+ Nj(∂kNk)φ

]
= −Djφ− NjH

0
Sφ+ (∂N Nj)φ, (1.3.62)



Thin Shells with Lipschitz Boundary 27

where φ ∈ C1(ΩS ) is defined in a neighborhood of S and

H 0
S := −

n∑
k=1

DkNk, H 0
S (X ) = −

n∑
k=1

Dkνk(X ) for X ∈ S . (1.3.63)

Hence (1.3.56) follows, since (cf. (1.3.13)) ∂N Nj = 0.
To prove (1.3.63) we apply

∂N N
∣∣
S

=

{ n∑
j=1

Nj∂jNk

}n
k=1

∣∣∣∣∣
S

=

{ n∑
j=1

Nj∂kNj

}n
k=1

∣∣∣∣∣
S

=
1

2
∇x|N |2

∣∣∣
S

=
1

2
∇x1 = 0 (1.3.64)

and proceed as follows:
n∑
k=1

Dkνk =

n∑
k=1

(
∂kνk − νk

n∑
j=1

νj∂jνk

)
= −H 0

S −
n∑
j=1

νj
2
∂j1 = −H 0

S .

To prove formula (1.3.57), we apply Lemma 1.3.3(iv), (1.3.55), the equalities
n∑
k=1

ν2k = 1,
n∑
k=1

νkν
k
Γ =

0 and proceed as follows:∮
S

(Djφ)ψ dσ =

n∑
k=1

∮
S

νk(Mjkφ)ψ dσ

−
n∑
k=1

∮
S

ψ(Mjkνkψ) dσ +

n∑
k=1

∮
Γ

(ν2kν
j
Γ − νkνjν

k
Γ)φψ ds =

∮
S

ψ(D∗
j ψ) dσ +

∮
Γ

νjΓφψ ds.

And, finally, formula (1.3.59) follows from formulae (1.3.57) and (1.3.56), if we insert ψ(t) ≡ 1 in
(1.3.57) and note that Dj1 = 0.

Lemma 1.3.5. Let P be, as in (1.3.22), a first-order differential operator with C1-smooth coefficients.
P is weakly/strongly tangent if and only if the formally adjoint P ∗ is so.

If P is weakly tangent to S and P is defined in a neighborhood of S , then

(Pφ)
∣∣
S

= P
(
φ
∣∣
S

)
(1.3.65)

for every C1-function φ defined in a neighborhood of S . In particular,

Djφ
∣∣
S

= Dj

(
φ
∣∣
S

)
, Mjkφ

∣∣
S

= Mjk

(
φ
∣∣
S

)
, j, k = 1, . . . , n. (1.3.66)

Furthermore, (1.3.65) is valid for the adjoint operator P ∗ and∫
S

⟨Pφ,ψ⟩ dσ =

∫
S

⟨φ,P ∗ψ⟩ dσ +

∮
Γ

⟨σ(P ;νΓ)φ,ψ⟩ ds (1.3.67)

for any vector-valued functions φ,ψ ∈ S , where σ(P ; ξ) is the symbol of P (cf. (1.3.23)).

Proof. The first assertion follows, since σ(P ∗; ξ) = −σ(P ; ξ)⊤ for each ξ ∈ Rn.
Due to the representation (1.3.26), it suffices to prove (1.3.65) only for the operator Dj = d j · ∇,

where d j = πS ej = N ∧ (N ∧ ej) is at least C1-smooth vector field in a neighborhood ΩS of
S , tangent to the surface S at surface points (cf. (1.3.27)). Thus, we have to justify the following
equality:

Djφ
∣∣
S

= (d j · ∇)φ
∣∣∣
S

= d j · ∇
(
φ
∣∣
S

)
= Dj

(
φ
∣∣
S

)
. (1.3.68)

The vector field d j(x) = d j(θ,X ) depends on the signed distance θ = dist(x,S ) = ±|x − X |
continuously (θ > 0 for the outer domain and θ < 0 for the inner one). Let F t

d j( · ) be the integral
curve of the vector field d j and

F t
d j( · ) : ΩS → ΩS , F t

d j(0, · ) = F t
d j ( · ) : S → S (1.3.69)
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be the flow generated by this vector field ℓθ in the neighborhood ΩS (cf. Section 1.3). Since the flow
depends continuously on the parameter θ, we get(

d j(θ,X ) · ∇
)
φ
∣∣∣
S

= lim
θ→0

d

dt
φ(F t

d j(θ,X ))
∣∣∣
t=0

=
d

dt
φ(F t

d j )
∣∣∣
t=0

= d j · ∇
(
φ
∣∣
S

)
,= Dj

(
φ
∣∣
S

)
and (1.3.68) is proved.

Next, we prove (1.3.67) by using formulae (1.3.26), (1.3.57) (integrating by parts) and get∫
S

⟨Pφ,ψ⟩ dσ =

n∑
j=1

∫
S

⟨ajDjφ,ψ⟩ dσ +

∫
S

⟨bφ, ψ⟩ dσ

=

n∑
j=1

∫
S

⟨φ,D∗
j a

⊤
j ψ⟩ dσ +

∫
S

⟨φ, b⊤ψ⟩ dσ +

n∑
j=1

∮
Γ

⟨νjΓa
⊤
j φ,ψ⟩ dσ

=

∫
S

⟨φ,P ∗ψ⟩ dσ +

∮
Γ

⟨σ(P ;νΓ)φ,ψ⟩ ds.

This completes the proof.

Remark 1.3.1. By iteration, an identity similar in spirit to (1.3.67) holds for high order weakly
tangent differential operators (i.e., for polynomials of Günter’s or Stokes’ derivatives; cf. Lemma
1.3.6).

In this connection, let us also point out that the strongly tangent operator, Stokes’ gradient

MS := N ∧∇S = N ∧∇ =
{
M23,−M13,M12

}
, MS

∣∣
S

= ν ∧∇S (1.3.70)

in R3 acting on scalar functions on S , is naturally identified with the skew-symmetric matrix whose
entries are Stokes’ derivatives in the sense that

ν ∧∇S =
1

2

3∑
j,k=1

Mjk dxj ∧ dxk =
∑

16j<k63

Mjk dxj ∧ dxk. (1.3.71)

A further important example of the strongly tangent, first-order differential operator is

PU := divU − ⟨ν,U⟩ ∂νU = divS πSU , with P ∗
1 φ = −∇φ+ (∂νφ+ H 0

Sφ)ν. (1.3.72)

Indeed, σ(P1; ξ) = ξ − ⟨ν, ξ⟩ν and, obviously, σ(P1;ν) ≡ 0.
In the sequel, we use the following standard notation

∇α
S := Dα1

1 . . .Dαn
n , α ∈ Nn0 ,

M β
S := M β1

1 · · ·M βm
m , β ∈ Nm0 , m =

n(n− 1)

2
, (1.3.73)

where
∇S := (D1, . . . ,Dn)

⊤, MS := (M12, . . . ,Mn−1,n)
⊤ (1.3.74)

and the selected Stokes’ derivatives M1 := M1,2, . . . ,Mm := Mn−1,n are non-vanishing, while the
remaining non-vanishing Stokes’ derivatives differ from the selected ones only by the sign. In contrast
to the case of the usual derivatives ∂α, it really matters in which sequence we apply the derivatives D

αj

j

and M βk

k in (1.3), because they have variable coefficients. In this connection, let us write precisely
what is meant under the dual operators:

(D∗
x)
α := (D∗

n)
αn · · · (D∗

1 )
α1 , α ∈ Nn0 ,

(M ∗
x )
β := (−1)|β|(Mm)βm · · · (M1)

β1 , β ∈ Nm0 .
(1.3.75)

Note that we use the same operators M ∗
1 = −M1 = −M1,2, . . . ,M ∗

m = −Mm := −Mn−1,n for the
adjoint operators to Stokes’ derivatives, because these operators are skew-symmetric (Mj,k)

∗ = −Mj,k

(cf. (1.3.55)).
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Lemma 1.3.6. Let G(D) be a tangent differential operator of the form

G(D) =
∑
|α|6k

gα(t)D
α
t =

∑
|β|6k

fβ(t)M
β
t , t ∈ S . (1.3.76)

Then ∮
S

⟨G(D)φ,ψ⟩ dσ =

∮
S

⟨φ,G∗(D)ψ⟩ dσ, (1.3.77)

where
G∗(D) =

∑
|α|6k

(D∗
t )
αg⊤α (t)I =

∑
|β|6k

(−1)|β|M β
t f

⊤
β (t)I (1.3.78)

and D∗ and M ∗ are the adjoint operators (cf. (1.3.56) and (1.3.55)).

Remark 1.3.2. Note that the operators iMj , j = 1, . . . ,m, with variable coefficients

A(x,Mx)u =

M∑
j=1

bj(x)(iMj)
mj b⊤j (x)u, bj ∈ [C∞(S )]N×N (1.3.79)

and polynomials with constant self-adjoint N ×N matrix coefficients

B(Mx)u =

M∑
j=1

aj(iM )
mj

j u, a⊤j = aj = const, ∀ j = 1, . . . ,M, ∀mj ∈ N0, (1.3.80)

are all self-adjoint on the hypersurface

A∗
S (Mx) = A(Mx), B∗

S (Mx) = B(Mx).

1.4 Equation of elastic hypersurface
One way of understanding the genesis of the Laplace–Beltrami operator ∆S on the surface S (see
(1.3.38)) is to consider the energy functional

E [u] :=

∫
S

∥∇u∥2 dσ, u ∈ C∞(S ). (1.4.1)

Then any minimizer u of functional (1.4.1) should satisfy

0 =
d

dt
E [u+ tv]

∣∣∣
t=0

=

∫
S

[
⟨∇u,∇v⟩+ ⟨∇v,∇u⟩

]
dσ

= 2Re
∫
S

⟨∇u,∇v⟩ dσ, u ∈ C∞(S ), ∀ v ∈ C∞
0 (S ), (1.4.2)

which implies
∆u = 0 on S . (1.4.3)

In other words, (1.4.3) is the Euler–Lagrange equation associated with the integral functional
(1.4.1).

Similarly, minimizers of the energy functional

E [U ] :=

∫
S

[
∥dU∥2 + ∥δU∥2

]
dσ, U ∈ Λℓω(S ), (1.4.4)
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where Λℓω(S ) is the space of differential ℓ forms on tangent space ω(S ), are null-solutions to the
Hodge–Laplacian (cf. later (1.5.16)), while minimizers of the energy functional

E [U ] :=

∫
S

∥∇U∥2 dσ, U ∈ ω(S ), (1.4.5)

are null-solutions to the Bochner–Laplacian (cf. later (1.5.17)).
Our aim is to adopt a similar point of view in the case of anisotropic and isotropic (Lamé) system

of elasticity on S .
Günter’s derivatives {Dj}nj=1 are tangent and represent a full system (cf. (1.3.27)–(1.3.29)). But

the derivative DjV is not covariant and maps the tangent vectors to non-tangent ones Dj : ω(S ) ̸→
ω(S ). To improve this, we just eliminate the normal component of the vector by applying the
canonical orthogonal projection πS onto ω(S ) (cf. (0.0.8))

DS
j V := πS DjV = DjV − ⟨ν,DjV ⟩ν = DjV + (∂V νj)ν, (1.4.6)

where
∂V φ :=

n∑
k=1

V 0
k ∂kφ =

n∑
k=1

V 0
k Dkφ,

and obtain an automorphisms of the space of tangent vector fields

DS
j : ω(S ) → ω(S ). (1.4.7)

The starting point is to consider the total free (elastic) energy as integral of stored energy density
E(x,DSU(x))

E [U ] :=

∫
S

E(y,DSU(y)) dσ, DSU :=
[
(DS

j U)0k
]
n×n, U ∈ ω(S ) (1.4.8)

(cf. (1.4.6), (1.4.7)), ignoring at the moment the displacement boundary conditions (Koiter’s model).
As before, equilibria states correspond to minimizers of the above variational integral (see [115, § 5.2]).
First, we should identify the correct form of the stored energy density E(x,DSU(x)). We shall restrict
attention to the case of linear elasticity. In this scenario, E = (SS ,DefS ) depends bi-linearly on the
stress tensor SS = [Sjk]n×n and the deformation (strain) tensor

DefS = [Djk]n×n, Djk(U) :=
1

2

[
(DS

k U)j + (DS
j U)k

]
, j, k = 1, . . . , n, (1.4.9)

which, according to Hooke’s law, satisfy SS = TDefS for some linear fourth-order tensor T. If the
medium is also homogeneous (i.e., the density and elastic parameters are position-independent), it
follows that E depends quadratically on the covariant derivative DSU , i.e.,

E(x,DSU(x)) = ⟨TDSU(x),DSU(x)⟩ (1.4.10)

for a linear operator
T : Mn×n(R) → Mn×n(R), (1.4.11)

where Mn×n(R) stands for the vector space of all n × n matrices with real entries. Hereafter, we
organize Mn×n(R) as a real Hilbert space with respect to the inner product

⟨A,B⟩ := Tr(AB⊤) =
∑
i,j

aijbij , ∀A = [aij ]i,j , B = [bij ]i,j ∈ Mn×n(R), (1.4.12)

where B⊤ denotes transposed matrix, and Tr is the usual trace operator for square matrices:

Tr([gij ]ni,j=1) =

n∑
i=1

gii, G = [gij ]
n
i,j=1.
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The linear operator (1.4.11) is a tensor of order 4, i.e., T = [cijkℓ]ijkℓ, and

TA =
[∑
k,ℓ

cijkℓakℓ

]
ij

for A = [akℓ]kℓ ∈ Mn×n(R). (1.4.13)

T will be referred to in the sequel as the elasticity tensor. It is customary to assume that the
elasticity tensor (1.4.11) is self-adjoint

⟨TA,B⟩ = ⟨A,TB⟩, A,B ∈ Mn×n(R). (1.4.14)

Condition (1.4.14), written in coordinate notation, is equivalent to the equality

cijkℓ = ckℓij , ∀ i, j, k, ℓ. (1.4.15)

Indeed, the equality

Tr((TA)B⊤) =
∑
i,j,k,ℓ

cijkℓakℓbij =
∑
i,j,k,ℓ

ckℓijakℓbij = Tr(A(TB)⊤)

holds, for arbitrary A = [akℓ]kℓ and B = [bkℓ]kℓ, if and only if (1.4.15) holds: by inserting the delta
functions akℓ = δkℓ, bij = δij we get equality (1.4.15).

It is also customary to impose a symmetry condition presented with two natural options:

T(A⊤) = TA and (TA)⊤ = TA, ∀A ∈ Mn×n(R). (1.4.16)

Then (1.4.16) amounts to the following symmetry in the indices of the elastic tensor:

cijkℓ = cijℓk and cijkℓ = cjikℓ, ∀ i, j, k, ℓ. (1.4.17)

Remark 1.4.1. Conditions (1.4.14) and the first equality in (1.4.16) imply the second equality in
(1.4.16) as well as conditions (1.4.14) and the second equality in (1.4.16) imply the first equality in
(1.4.16). This is evident if we apply an equivalent formulation for corresponding tensors and matrices:
(1.4.15) and (1.4.17).

A linear operator T in the energy functional of anisotropic elasticity (1.4.10) satisfies the symmetry
conditions (1.4.14) and (1.4.16). Equivalently, the corresponding elasticity tensor T =

[
cijkℓ

]
ijkℓ

has
symmetries (1.4.15), (1.4.17) and, therefore, might have only n+ n2(n− 1)2/2 different entries.

Remark 1.4.2. It is rather natural to introduce the deformation tensor as the symmetrized co-
variant derivative (cf., e.g., [130, Volume I, Chapter 5, § 12])

(DefS U)(V ,W ) =
1

2

{
⟨∂V U ,W ⟩+ ⟨∂WU ,V ⟩

}
=

1

2

{
⟨∂S

V U ,W ⟩+ ⟨∂S
WU ,V ⟩

}
, (1.4.18)

∀V ,W ∈ ω(S ).

It is also worth mentioning that the antisymmetric part of the covariant derivative ∂S
U

dU(V ,W ) = ⟨dU ,V ∧W ⟩ = 1

2

{
⟨∂S

V U ,W ⟩ − ⟨∂S
WU ,V ⟩

}
, ∀V ,W ∈ ω(S ), (1.4.19)

is the exterior differential.

By inserting value (1.4.9) of deformation tensor DefS U and applying the symmetry properties
(1.4.17), we obtain

4⟨TDefS U(x),DefS U(x)⟩ = ⟨TDSU(x),DSU(x)⟩ = E(x,DSU(x)) (1.4.20)

(cf. (1.4.10)), which means that the density of the elastic energy functional depends quadratically also
on the deformation tensor.

The density of the potential energy of an elastic medium should be strictly positive for the non-
vanishing deformation tensor DefS U ̸= 0 . This leads to the following
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Lemma 1.4.1. There exists a constant C0 > 0 such that

⟨Tζ, ζ⟩ :=
∑
i,j,k,ℓ

cijkℓζijζkℓ > C0

∑
i,j

|ζi,j |2 := C0|ζ|2 (1.4.21)

for all symmetric and complex-valued ζij = ζji ∈ C matrices (tensors of order 2) ζ := [ζij ]n×n.

Proof. The sum in the left-hand side of (1.4.21) is real ⟨Tζ, ζ⟩ = ⟨Tζ, ζ⟩ (easy to check applying
the symmetry properties (1.4.17) of the real-valued coefficients). Dividing equality in (1.4.21) by
|ζ|2 =

∑
lm

|ζlm|2 we find that it suffices to prove

inf
|ζ|=1

∑
i,j,k,ℓ

cijkℓζijζkℓ > C0 > 0. (1.4.22)

If otherwise C0 = 0, we select a sequence ζ(q)jk = ζ
(q)
kj ∈ C, q = 1, 2, . . . , such that

lim
q→∞

∑
i,j,k,ℓ

cijkℓζ
(q)
ij ζ

(q)
kℓ = 0, |ζ(q)| = 1.

Since the space of tensors [ζ(q)jk ]n×n is finite-dimensional, there exists a convergent subsequence ζ(qr)kℓ →
ζ
(0)
kℓ as r → ∞. Then we get an obvious contradiction∑

i,j,k,ℓ

cijkℓζ
(0)
ij ζ

(0)
kℓ = 0, |ζ(0)| = 1,

which proves that C0 > 0.

Theorem 1.4.1. The total free (elastic) energy functional (cf. (1.4.8)) acquires the form

E [U ] :=

∫
S

⟨TDSU(y),DSU(y)⟩ dσ = 4

∫
S

⟨TDefS U(y),DefS U(y)⟩ dσ, U ∈ ω(S ), (1.4.23)

and the Euler–Lagrange equation associated with the energy functional (1.4.23) for a linear anisotropic
elastic medium reads:

LSU = Def∗S TDefS U , U ∈ ω(S ). (1.4.24)
Here again T = [cijkℓ]

n
ijkℓ=1 is the elasticity tensor which is positive definite (cf. (1.4.22)) and has the

symmetry properties (1.4.17).
Proof. Representation (1.4.23) follows from (1.4.8) and (1.4.20).

The Euler–Lagrange equation (1.4.24) is derived from (1.4.23) as a similar equation (1.4.3) is
derived from (1.4.1):

E [U ] := 4

∫
S

⟨TDefS U(y),DefS U(y)⟩ dσ = 4

∫
S

⟨Def∗S TDefS U(y),U(y)⟩ dσ = 0

if and only if U ∈ ω(S ) is a solution of equation (1.4.24) due to the positive definiteness of the
elasticity tensor T (cf. (1.4.21)).

Next, we will find the Euler–Lagrange equation associated with the energy functional (1.4.8) for a
linear isotropic elastic medium (Lamé equation), which is simpler. Such energy functional should be
invariant with respect to any rotation. For the elasticity tensor T, this results into the requirement
that

T(BAB−1) = B(TA)B−1, ∀A,B ∈ Mn×n(R) and unitary B⊤ = B−1. (1.4.25)
Examples of linear operators (1.4.11) satisfying (1.4.16) and (1.4.25) include

T = TA := (TrA)I and TA := A+A⊤, (1.4.26)

where I denotes the identity. The decisive step in the direction of identifying all such operators is the
observation that any other operator of the type is a linear combination of these two. Namely, we have
the following
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Lemma 1.4.2. Let a linear operator T in (1.4.11) be frame indifferent (cf. (1.4.25))

T(BAB⊤) = B(TA)B⊤ for all A ∈ Mn×n and for B ∈ SO(n)

and have the symmetry property: one of conditions in (1.4.16) holds.
Then T has the form

TA = λ (TrA)I + µ (A+A⊤), A ∈ Mn,n(R), (1.4.27)

where λ, µ ∈ R are some constants, and it has both symmetry properties from (1.4.16).

Proof. Let us first show that any linear operator (1.4.11) satisfying (1.4.16), (1.4.25) is represented
in form (1.4.27). By the previous discussion (cf. (1.4.26)), it suffices to prove that the space of linear
operators (1.4.11) satisfying (1.4.16), (1.4.25) has dimension two when A is fixed and λ and µ are
arbitrary parameters.

It suffices to show that

TD = aD + b(I −D), where D :=


1 0 . . . 0
0 0 . . . 0
. . . . . . . . . . . . .
0 0 . . . 0

 (1.4.28)

for the identity matrix I and two numbers a, b ∈ R. Indeed, consider the following types of unitary
matrices:

Uj,k :=



1 0 . . . . . . . . . . . . 0
0 1 0 . . . . . . . . . 0
0 . . . 0 . . . 1 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 1 . . . 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . . . . 1 0
0 0 0 . . . . . . . . . 1


, Wj,k :=



1 0 . . . . . . . . . . . . 0
0 1 0 . . . . . . . . . 0
0 . . . 0 . . . 1 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . −1 . . . 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . . . . 1 0
0 0 0 . . . . . . . . . 1


,

where the only non-zero (equal 1), off-diagonal entries, are at (j, k) and (k, j). By multiplication Uj,kA
exchanges j-th with k-th rows in A, while Wj,kA, j < k, makes the same but changes the sign of j-th
row before shifting it to k-th row.

By applying the unitary operator U1,k, we get

TE =

n∑
j=1

ekTU1,kDU
−1
1,k =

n∑
j=1

ekU1,k(TD)U−1
1,k

=

n∑
j=1

ekU1,k[aD − b(I −D)]U−1
1,k = aE + b(I − E) (1.4.29)

for arbitrary diagonal matrix E = [δjke
k] =

n∑
j=1

ekU1,kDU
−1
1,k . Since for any A ∈ Mn×n(R) we

have TA = 1
2 T(A + A⊤), thanks to (1.4.16), and since a self-adjoint matrix can be diagonalized

1
2 (A+A⊤) = UEU−1 with a suitable unitary matrix U , equality (1.4.29) holds for arbitrary A:

TA = TUEU−1 = U(TE)U−1 = U [aE + b(I − E)]U−1 = aA+ b(I −A).

To check (1.4.28) we again apply the unitary matrices Ui0,j0 and Wi0,j0 . Set

A := TD, A =
[
aij

]
16i,j6n,

and observe that D is invariant under conjugation by Wi0,j0 , i.e., Wi0,j0DW
⊤
i0,j0

= D, as long as i0 ̸= 1
and j0 ̸= 1. Thus, by (1.4.25), the same is true for A = TD which, in turn, eventually implies that

ai0i0 = aj0j0 , ∀ i0, j0 ̸= 1. (1.4.30)
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The next observation is that D is invariant under conjugation by the product Ui0j0Wi0,j0 , i.e.,
Ui0j0Wi0,j0DW

⊤
i0,j0

U⊤
i0j0

= D, this time for every 1 6 i0 ̸= j0 6 n. Hence, by (1.4.25), the same holds
for A = TD, which ultimately implies that ai0j0 = −aj0i0 for every pair of indices 1 6 i0 ̸= j0 6 n.
Consequently,

ai0j0 = 0, for every 1 6 i0 ̸= j0 6 n. (1.4.31)
Under the current assumptions, that is (1.4.25), the first condition in (1.4.16), the desired conclu-

sion, that is, that TD has the two-parameter diagonal form indicated above, now readily follows from
(1.4.30) and (1.4.31).

Let us analyze the case where the linear operator T satisfies (1.4.25) along with the second condition
in (1.4.16). In this situation, let us consider the adjoint T∗ to the tensor T with respect to the inner
product (1.4.12), ⟨TA,B⟩ = ⟨A,T∗B⟩. It can be easily checked that the adjoint T∗ satisfies (1.4.25) and
the first condition in (1.4.16), so the previous reasoning applies. Consequently, T∗ can be represented
in form (1.4.27), which is invariant under taking the adjoint. Hence T can be written in form (1.4.27),
too. In particular, (1.4.27) holds in this case as well.

Concerning the equivalence of the first and the second condition in (1.4.16), each of two conditions
in (1.4.16) along with the condition (1.4.25) imply that the linear operator (1.4.11) has form (1.4.27).
Then, in particular, T is self-adjoint. Since conditions in (1.4.16) are obtained by taking the adjoint,
they are equivalent and the proof is completed.

Remark 1.4.3. A posteriori, conditions (1.4.16) and (1.4.25) imply that the linear operator (1.4.11)
has form (1.4.27) and, in particular, is self-adjoint, i.e., imply condition (1.4.14).

Remark 1.4.4. The above proof can be modified to hold in the case when (1.4.25) is (seemingly)
weakened to allow only orientation preserving unitary matrices U . All that needs to be done in the
latter case is to employ the invariance of D under conjugation by Uk0ℓ0Ui0j0Wi0,j0 (with k0, ℓ0 ̸= 1)
in place of conjugation by (the inversion) Ui0j0Wi0,j0 as in the original proof.

We are now ready to derive the Lamé equations of elasticity on a hypersurface.

Theorem 1.4.2. On a smooth, closed hypersurface S in Rn, modeling a homogeneous, linear, iso-
tropic, elastic medium, the Lamé operator LS is given by

LS = −λ∇S divS +2µDef∗S DefS = λ div∗
S divS +2µ Def∗S DefS . (1.4.32)

In particular, LS is a formally self-adjoint differential operator of second order.

Proof. According to the discussion in the first part of this section, the elasticity tensor in the case of
linear, isotropic, elastic medium is given by (1.4.27), where λ, µ are the Lamé moduli. Applying the
following properties of the trace

Tr(A+B) = Tr(A) + Tr(B), Tr(A⊤) = Tr(A), Tr(AB) = Tr(A)Tr(B),

⟨A+A⊤, A⟩ = Tr
[
(A+A⊤)A⊤] = 1

2
Tr

[
A2 + 2AA⊤ + (A⊤)2

]2
=

1

2
Tr(A+A⊤)2,

which are easy to verify directly, due to (1.4.10) the stored energy density is of the form

E(A) = ⟨TA,A⟩ = ⟨λTr(A)I + µ(A+A⊤), A⟩

= λTr(A)⟨I, A⟩+ µ⟨A+A⊤, A⟩ = λ (Tr A)2 + µ

2
Tr

(
(A+A⊤)2

)
. (1.4.33)

Further, by inserting A := DSU in (1.4.33) and recalling (1.3.37), we get

E(x,DSU(x)) = λ (divS U)2(x) + 2µ
⟨
(DefS U)(x), (DefSU)(x)

⟩
, (1.4.34)

by (1.4.18) and since the trace

Tr(∇SU) =

n∑
j=1

DjUj , hj = divS U (1.4.35)
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is the divergence and is independent of a basis {hj}nj=1. Thus, we are led to the variational integral

E [U ] =

∫
S

[
λ (divS U)2 + 2µ

⟨
DefS U ,DefS U

⟩]
dσ, U ∈ ω(S ). (1.4.36)

To determine the associated Euler–Lagrange equation, for a smooth and compactly supported vector
field V ∈ ω(S )

∩
C1

0 (S ) we compute

d

dt
E [U + tV ]

∣∣∣
t=0

= 2

∫
S

[
λ divS U divS V + 2µ

⟨
DefSU ,DefS V

⟩]
dσ.

By applying the formulae div∗
S = −∇S (see (1.3.37)), we get

d

dt
E [U + tV ]

∣∣∣
t=0

= 2

∫
S

⟨(−λ∇S divS +2µDef∗S DefS )U ,V ⟩ dσ = 2

∫
S

⟨LSU ,V ⟩ dσ = 0. (1.4.37)

Since the vector field V ∈ ω(S )
∩
C1

0 (S ) is arbitrary, from (1.4.37) it follows that the displacement
vector field U satisfies the equality LSU = 0.

The fact that the operator LS = λ div∗
S divS +2µ Def∗S DefS is formally self-adjoint is obvious

from its structure:

(LSU ,V )S = λ( div∗
S divS U ,V )S + µ( Def∗S DefS U ,V )S = (U ,LSV )S .

1.5 The surface Lamé operator and related PDO’s
The present section deals mostly with the identification of the deformation tensor

DefS (U)(V ,W ) :=
1

2

{
⟨∂S

V U ,W ⟩+ ⟨∂S
WU ,V ⟩

}
, ∀U ,V ,W ∈ ω(S ), (1.5.1)

and the Lamé operator (1.4.32).

Theorem 1.5.1. For the deformation tensor and the Lamé operator on S the following identities
are valid:

DefS (U) :=
[
Djk(U)

]
n×n, (1.5.2)

Djk(U) =
1

2

[
(DS

j U)k + (DS
k U)j

]
=

1

2

[
DjUk + DkUj + ∂U (νjνk)

]
, j, k = 1, . . . , n, (1.5.3)

Djj(U) =
1

2

[
2DjUj + ∂Uν

2
j

]
= DjUj + νj∂Uνj , , j = 1, . . . , n, (1.5.4)

[DefS (U)]⊤ = DefS (U) and DefS (U)ν = 0, (1.5.5)
LS = µπS∇∗

S ∇S + (λ+ µ)∇S ∇∗
S − µH 0

S WS

= −µπS∆S − (λ+ µ)∇S divS − µH 0
S WS . (1.5.6)

Proof. Given the local nature of the identities we seek to prove, it suffices to work locally, in a small
open subset O of S , where an orthonormal basis T1, . . . , Tn−1 to ω(S ) has been fixed. We extend
the basis by the outer unit normal vector field Tn := ν so that {Tj}16j6n becomes an orthonormal
basis for Rn, at points in O.

Since DefS (U) is a linear operator (see (1.5.1)), it is represented by an n × n matrix in the
fixed basis {Tj}16j6n and the first equality in (1.5.2) follows. The symmetry property of the matrix,
recorded as the first equality in (1.5.5), follows from (1.5.1), since interchange of vector fields V and
W does not affect definition (1.5.1).

For a tangent field U to S with supp U ⊂ O and arbitrary V ,W ∈ Rn we have

∂S
V U = ∂S

πS V U , ⟨∂S
V U ,W ⟩ = ⟨∂S

πS V U , πSW ⟩
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and, by the definition of the deformation tensor (cf. (1.5.1)), we obtain

⟨DefS (U)V ,W ⟩ := DefS (U)(πSV , πSW ), ∀V ,W ∈ Rn. (1.5.7)

Equality (1.5.7) implies the second equality in (1.5.5). Applying (1.4.18) and (1.4.6), we eventually
obtain the second equality in (1.5.2):

Djk(U) =
1

2

[
(DS

k U)j + (DS
j U)k

]
=

1

2

[
DkUj + DjUk + ∂U (νjνk)

]
=

1

2

[
DkUj + DjUk +

n∑
r=1

Ur(Drνk)νj +

n∑
r=1

Ur(Drνj)νk

]
.

Equality (1.5.4) is a particular case of (1.5.3).
We proceed with the proof of the last remaining equality (1.5.6). If V is also a smooth vector

field, tangent to S , applying (1.5.2) we get∫
S

⟨Def∗S DefS (U),V ⟩ dσ =

∫
S

⟨DefS (U),DefS (V )⟩ dσ

=

n∑
j,k=1

1

4

∫
S

[
DkUj + DjUk + ∂U (νjνk)

] [
DkVj + DjVk + ∂V (νjνk)

]
dσ. (1.5.8)

Next, consider

n∑
j,k=1

∫
S

(DjUk + DkUj)(DjVk + DkVj) dσ = 2

n∑
j,k=1

∫
S

D∗
j (DjUk + DkUj)Vk dσ

= 2

n∑
j,k=1

∫
S

[
−VkD2

j Uk − VkDjDkUj − H 0
S νj(DjUk)Vk − H 0

S νj(DkUj)Vk

]
dσ

= −2

∫
S

⟨∆SU ,V ⟩ dσ − 2

n∑
j,k=1

∫
S

[
VkDjDkUj + H 0

S νj(DkUj)Vk

]
dσ, (1.5.9)

since
n∑
j=1

νjDj = 0 on S .

To proceed in the second integrand in (1.5.9) we employ the commutator identity from Lemma
1.3.3.ix and recall that the fields U and V are tangent to write

n∑
j,k=1

∫
S

VkDjDkUj dσ =

n∑
j,k=1

∫
S

[
VkDkDjUj + Vk[Dj ,Dk]Uj

]
dσ

=

∫
S

⟨∇S divSU ,V ⟩ dσ +

n∑
j,k,l=1

∫
S

[
VkνjDkνl − νkVkDjνl

]
DlUj dS

=

∫
S

⟨∇S divSU ,V ⟩ dσ +

n∑
j,k,l=1

∫
S

Vk(Dkνl)
[
Dl(νjUj)− (Dlνj)Uj

]
dσ

=

∫
S

⟨∇S divSU ,V ⟩ dσ −
n∑

j,k,l=1

∫
S

(∂kνl)(∂lνj)UjVk dσ

=

∫
S

⟨∇S divSU ,V ⟩ dσ −
∫
S

⟨W 2
SU ,V ⟩ dσ (1.5.10)
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on S , because
n∑
j=1

νjUj =
n∑
k=1

νkVk = 0 and, due to (1.3.19),

n∑
j,l,k=1

(∂kνl)(∂lνj)UjVk =

n∑
j,l,k=1

(∂lνj)Uj(∂jνk)Vk = ⟨WSU ,WSV ⟩ = ⟨W 2
SU ,V ⟩.

For the third integrand in (1.5.9) we use Lemma 1.3.1(i) and the fact that the field U is tangent:

n∑
j,k=1

∫
S

H 0
S νj(DkUj)Vk dσ

= H 0
S

n∑
j,k=1

∫
S

Vk
[
Dk(νjUj)− (Dkνj)Uj

]
dσ =

∫
S

H 0
S ⟨WSU ,V ⟩ dσ. (1.5.11)

At this point we may, therefore, conclude that

n∑
j,k=1

∫
S

(DjUk + DkUj)(DjVk + DkVj) dσ

= 2

∫
S

⟨−∆SU −∇S divSU + W 2
SU − H 0

S WSU ,V ⟩ dσ. (1.5.12)

We now proceed to analyze the remaining terms in (1.5.8). More precisely, we still have to take
into account the terms containing either ∂U (νjνk) or ∂V (νjνk). We start with the identity

n∑
j,k=1

(DkUj)DV (νjνk) =

n∑
j,k=1

νk(DkUj)DV νj +

n∑
j,k=1

(DV νk)
[
Dk(νjUj)− UjDkνj

]
= −

n∑
k,j=1

(DV νk)(DUνk) = −⟨W 2
SU ,V ⟩, (1.5.13)

valid at points on S , because
∑
k

νkDk = 0,
∑
j

νjUj = 0 and Dkνj = Djνk. There are four such terms

in (1.5.8), i.e., containing either DU (νjνk) or DV (νjνk). An inspection of the above calculation shows
that, on S , they are all equal to −⟨W 2

SU ,V ⟩.
We still have to compute the last integrand in (1.5.8):

n∑
j,k=1

DU (νjνk)DV (νjνk) =

n∑
j,k,r,l=1

[
Ur(Drνj)νk + Ur(Drνk)νj

] [
Vl(Dlνj)νk + Vl(Dlνk)νj

]
= 2⟨W 2

SU ,V ⟩+ 2

n∑
k,r,l=1

Ur(Drνk)Vlνk
1

2
Dl

( n∑
j=1

(νj)
2
)
= 2⟨W 2

SU ,V ⟩

on S . At this point we combine all the above to get

4

∫
S

⟨Def∗S DefS (U),V ⟩ dσ = 4

n∑
j,k=1

∫
S

Djk(U)Djk(V ) dσ

= 2

∫
S

⟨−∆SU −∇S divSU − H 0
S WSU ,V ⟩ dσ, (1.5.14)

since ⟨W ,V ⟩ = ⟨πSW ,V ⟩ for a tangent vector field V and an arbitrary vector field W . Also we
have applied that the vectors ∇S divSU and WSU are tangent. Thus,

4Def∗S DefS = −2πS∆S − 2∇S divS −2H 0
S WS , (1.5.15)
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since the tangent vectors fields U , V are arbitrary.
The first identity in (1.5.6) now easily follows from (1.5.15) and (1.4.32). Then the remaining

identity in (1.5.6) follows from what we have just proved and from Theorem 1.3.1.

Next, recall the definition of the Hodge–Laplacian acting on 1-forms, i.e.,

∆HL := −dSd ∗
S − d ∗

SdS : Λ1ω(S ) → Λ1ω(S ), (1.5.16)

where dS is the exterior derivative operator on S , and d ∗
S is its formal adjoint. As explained in

Section 1.3, 1-forms on S are naturally identified with tangent fields to S , so, from now on, we shall
think of ∆HL as mapping ω(S ) into itself.

As pointed out in Section 1.3, the Hodge–Laplacian (1.5.16) is related to the Bochner–Laplacian
on S

∆BL := −(∇S )∗∇S (1.5.17)

via the Weitzenbock identity
∆BL = ∆HL + RicS . (1.5.18)

Our aim is to find alternative expressions for all these objects, starting with the Ricci curvature tensor.
The Ricci curvature RicS on S is a (0, 2)-tensor defined as a contraction of Riemannian curvature

tensor RS :

RicS (U ,V ) :=

n∑
j=1

⟨RS (hj ,V )U , hj⟩ =
n∑
j=1

⟨RS (V , hj)hj ,U⟩, ∀U ,V ∈ ω(S ), (1.5.19)

where h1, . . . , hn is an orthonormal basis (of unit vectors) in ω(S ). Thus, RicS is a symmetric bilinear
form.

Theorem 1.5.2. For the Ricci tensor RicS (cf. (1.5.19)) on S there holds

RicS = −W 2
S + H 0

S WS . (1.5.20)

In particular, when n = 3, i.e., for a two-dimensional hypersurface S in R3, the above identity reduces
to

RicS = −det WS = −KS , (1.5.21)

where KS is the Gaußian curvature of the hypersurface S .

Proof. The Riemannian curvature tensor RS of S is given by

RS (U ,V )W = [∂S
U , ∂S

V ]W − ∂S
[U ,V ]W , U ,V ,W ∈ ω(S ), (1.5.22)

where [U ,V ] := ∂UY − ∂Y U is the usual commutator bracket. It is convenient to change this into a
(0, 4)-tensor by setting

RS (U ,V ,W ,Z) := ⟨RS (U ,V )W ,Z⟩, U ,V ,W ,Z ∈ ω(S ). (1.5.23)

Since Rn has zero curvature, it follows from Gauß’s Theorema Egregium that if X, Y , Z, W are
tangent vector fields to S , then

⟨RS (U ,V )W ,Z⟩ = ⟨IIS (U ,Z), IIS (V ,W )⟩ − ⟨IIS (V ,Z), IIS (U ,W )⟩ (1.5.24)

(see, e.g., [130, Vol. II, p. 481]). By inserting the second fundamental form IIS (U ,V ) = ⟨∂UV −
∂S
U V ,ν⟩ = ⟨∂UV ,ν⟩ (cf. (1.3.16)), we obtain

⟨RS (U ,V )W ,Z⟩ = ⟨∂UZ,ν⟩⟨∂V W ,ν⟩ − ⟨∂V Z,ν⟩⟨∂UW ,ν⟩
= ⟨Z, ∂Uν⟩⟨W , ∂V ν⟩ − ⟨Z, ∂V ν⟩⟨W , ∂Uν⟩
= ⟨RSZ,U⟩⟨RSW ,V ⟩ − ⟨RSZ,V ⟩⟨RSW ,U⟩. (1.5.25)
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For the second equality in (1.5.25) we have used the fact that U , V , W , and Z are tangent, so, in
particular, ∂U ⟨W ,ν⟩ = 0, ∂V ⟨W ,ν⟩ = 0, ∂V ⟨W ,ν⟩ = 0, and ∂U ⟨W ,ν⟩ = 0 on S .

Next, recall from (1.5.19) the definition of the Ricci tensor, i.e.,

RicS (U ,V ) =

n−1∑
j=1

⟨RS (hj ,V )U , hj⟩,

where h1, . . . , hn−1 is, locally, an orthonormal basis in ω(S ), and U , V are arbitrary tangent vector
fields to S . If we set hn := ν and employ (1.5.25) together with WS ν = 0, we obtain

n−1∑
j=1

⟨
RS (Tj ,V )U , Tj

⟩
=

n∑
j=1

[
⟨RS Tj , Tj⟩⟨RSU ,V ⟩ − ⟨RS Tj ,V ⟩⟨RSU , Tj⟩

]
= −H 0

S ⟨RSU ,V ⟩ −
⟨
RSV ,

n∑
j=1

⟨Tj ,RSU⟩Tj
⟩
−

⟨
(W 2

S + H 0
S WS )U ,V

⟩
, (1.5.26)

which takes care of (1.5.20).
Finally, (1.5.21) is a consequence of what we have proved so far in Lemma 1.3.2(ii), and the

elementary identity A2 − (Tr A)A = −(detA)I, valid for any 2× 2 matrix A.

Lemma 1.5.1. Let H := {hj}nj=1, |hj | = 1, be a basis in n-dimensional Banach space B. Consider
the hyperspace Bν := {u ∈ B : ⟨u,ν⟩ = 0}, orthogonal to some vector ν ∈ B, |ν| ̸= 0. Consider the
system

ĥj := hj − νjν, νj := ⟨ν, hj⟩, j = 1, . . . , n, (1.5.27)
which is full in Bν but linearly dependent, and thus cannot be a basis. Nevertheless, for a linear
operator A =

[
ajk]n×n : B → B with Aν = 0 and ABν ⊂ Bν (i.e., Bν is invariant under A), we

have
Â := [âjk]n×n = [ajk]n×n := A, (1.5.28)

where Â :=
[
âjk]n×n is the matrix representations of A in the linearly dependent systems Ĥ :=

{ĥj}nj=1 ⊂ Bν .

Proof. Let us note that
n∑
k=1

ajkνk =

n∑
k=1

akjνk = 0 for all j = 1, . . . , n,

where the first equality is equivalent to Aν = 0 and the second one to ⟨ν, Aξ⟩ = 0 for all ξ ∈ B.
Applying the obtained equalities we find that

Aĥj = Ahj − νjAν =

n∑
k=1

akjhk =

n∑
k=1

akj ĥk +

n∑
k=1

akjνkν =

n∑
k=1

akj ĥk,

which entails ãkj = akj .

Theorem 1.5.3. The following identities are valid:

∆BL = πS∆S + W 2
S , (1.5.29)

∆HL = πS∆S + 2W 2
S − H 0

S WS . (1.5.30)

Proof. In order to identify the Bochner–Laplacian operator ∆BL on S , we observe that, with tangent
field U fixed, if the matrix DefS (U) satisfies ⟨DefS (U)V ,W ⟩ = ⟨∂S

πS V U , πSW ⟩ for each V ,W ∈
Rn, then, much as in the proof of Theorem 1.3.1,

Djk(U) := ⟨DefS (U)ek, ej⟩ = ⟨∂ekU , ej⟩ = DkUj −
n∑
r=1

νjνrDk(Ur). (1.5.31)
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On account of this we can now write

∫
S

⟨
(∇S )∗∇SU ,V

⟩
dσ =

∫
S

⟨∇SU ,∇SV ⟩ dσ =

n−1∑
j,k=1

∫
S

⟨∇S
Tj
U , Tk⟩⟨∇S

Tj
V , Tk⟩ dσ

=

n∑
j,k=1

∫
S

⟨
DefS (U)Tj , Tk

⟩⟨
DefS (V )Tj , Tk

⟩
dσ =

n∑
j,k=1

∫
S

Djk(U)Djk(V ) dσ

=

n∑
j,k=1

∫
S

[
DkUjDkVj −

n∑
r=1

νjνrDjUrDkVj −
n∑
l=1

νjνlDkUjDkVl +

n∑
r,l=1

νrνlDkUrDkVl

]
dσ

=

n∑
j,k=1

∫
S

[
(D∗

kDkUj)Vj −
n∑
r=1

UrVj(∂kνr)(∂kνj)
]
dσ =

∫
S

⟨
−∆SU − W 2

SU ,V
⟩
dσ. (1.5.32)

In the next-to-the-last equality, we have applied the following identity to the terms under the integral
sign in the fourth line above:

n∑
r=1

νrDsWr = Ds

( n∑
r=1

νrWr

)
−

n∑
r=1

WrDsνr = −
n∑
r=1

Wr∂sνr on S , (1.5.33)

which is valid for any tangent vector field W and any index s ∈ {1, . . . , n}. In turn, identity (1.5.33)
can be seen from a direct computation (recall that ∂ννr = 0 on S ). Finally, to justify the last equality
in (1.5.32), it suffices to recall (1.3.38), (1.3.56) and the fact that

n∑
k=1

νkDk = 0.

The conclusion is that (1.5.29) holds. Finally, identity (1.5.29) in concert with (1.5.18) and (1.5.20)
implies (1.5.30).

Recall now from [71, Note Added in Proof, pp. 161–162], [129] (cf. also the remark at the end of
this paper), and [130, Volume III], that the Navier–Stokes system for a velocity field U , tangent to
S , and a (scalar-valued) pressure function p on S reads:

∂U

∂t
− 2Def∗S DefS (U) + ∂S

U U −∇S p = f in S × (0,∞),

divSU = 0 in S .
(1.5.34)

If S is embedded in Rn and the Riemannian metric is inherited from Rn, a directional derivative
∂U along a tangent vector field U ∈ ω(S ) maps the space of tangent vector fields to the space of
possibly non-tangent vector fields

∂U : ω(S ) → ω(S ).

If composed with the projection

∂S
U V := πS ∂UV = ∂UV − ⟨ν, ∂UV ⟩ν (1.5.35)

(cf. (0.0.8)), it becomes an automorphism of the space of tangent vector fields. Such derivatives are
compatible with the Riemannian metric on S and are torsion-free as well. Therefore, they represent
the natural Levi–Civita connection on S .

Theorem 1.5.4. The Navier–Stokes system (1.5.34) is equivalent to

∂U

∂t
+ ∂S

U U + πS∆SU + H 0
S WSU −∇S p = f in S × (0,∞),

divS U = 0 in S .
(1.5.36)

Proof. This is a direct consequence of (1.5.15) and (1.5.35).
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1.6 Lions’ lemma and Korn’s inequalities
For 1 6 p < ∞, an integer m = 1, 2, . . . and a closed Cm+1-smooth hypersurface S , by Wm

p (S )
Wm(S ) := Wm

2 (S ) for p = 2) we denote the Sobolev spaces. The space W−m
p (S ) is defined as the

dual to Wm
p′ (S ), p′ := p

p−1 , with respect to the sesquilinear form (φ,ψ)S (cf. (1.3.53)) on functions
φ,ψ ∈ Cm(S ) and extended by continuity to pairs φ ∈ Wm

p′ (S ) and ψ ∈ W−m
p (S ).

The embeddings Wm
p (S ) ⊂ Lp(S ) ⊂ W−m

p (S ) are continuous, even compact, and

W−m
p (S ) :=

{
Dαφ : φ ∈ Lp(S ) for all Dα = Dα1

1 · · ·Dαn
n , |α| = m

}
.

If S is an open surface with the Lipschitz boundary Γ = ∂S ≠ ∅, W̃m
p (S ) denotes the space

of functions obtained by closing the space C∞
0 (S ) of smooth functions with compact support in the

norm of Wm
p (S̃ ), where S̃ ⊃ S is a closed surface which extends the surface S . The notation

Wm
p (S ) is used for the factor space Wm

p (S̃ )/W̃m
p (S̃ \ S ); the space Wm

p (S ) can also be viewed as
the restriction of all functions φ

∣∣
S

of the space Wm
p (S̃ ) to the subsurface S (cf. [133] and [67] for

details about these spaces).
The following generalizes essentially J. L. Lions’ Lemma (cf. [129], [4, Proposition 2.10], [23, § 1.7],

[110]).

Lemma 1.6.1. Let S be a 2-smooth closed hypersurface in Rn. Then the inclusions φ ∈ W−1
p (S ),

Djφ ∈ W−1
p (S ) for all j = 1, . . . , n imply φ ∈ Lp(S ).

Moreover, the assertion holds for a hypersurface S with the Lipschitz boundary Γ := ∂S and the
spaces W−1

p (S ) and W̃−1
p (S ).

Proof. First, we assume that S is a closed surface. The proof is based on the following facts from
[67,88,130], which we recall without proofs.

A. There exists a “lifting operator” (a Bessel potential operator) Λ(X , D), which maps isometri-
cally the spaces

Λ−1(X , D) : Wm−1
p (S ) → Wm

p (S ), Λ(X , D) : Wm
p (S ) → Wm−1

p (S ) (1.6.1)

for arbitrary m = 0,±1, . . . and has the inverse Λ−1(X , D).
B. Λ−1(X , D) is a pseudodifferential operator of order −1 and the commutant

[Dj ,Λ
−1(X , D)] := DjΛ

−1(X , D)− Λ−1(X , D)Dj (1.6.2)

with the pseudodifferential operator Dj has order −1, i.e., maps continuously the spaces

[Dj ,Λ
−1(X , D)] : W−1

p (S ) → Lp(S ).

Let φ ∈ W−1
p (S ), Djφ ∈ W−1

p (S ) for all j = 1, . . . , n. Then, due to (1.6.1), ψ := Λ−1(X , D)φ ∈
Lp(S ) and, due to (1.6.2), Djψ = [Dj ,Λ

−1(X , D)]φ + Λ−1(X , D)Djφ ∈ Lp(S ) for all j = 1, . . . , n.
From the definition of the space W1

p(S ) it follows that ψ ∈ W1
p(S ). Due to (1.6.2), we finally get

φ = Λ(X , D)ψ ∈ Lp(S ).
If S has non-empty Lipschitz boundary Γ ̸= ∅, there exist pseudodifferential operators

Λ−1
− (X , D) : Wm

p (S ) → Wm+1
p (S ),

Λ−1
+ (X , D) : W̃m

p (S ) → W̃m+1
p (S )

(1.6.3)

arranging isomorphisms between the indicated spaces and having the inverses Λ+1
− (X , D), Λ+1

+ (X , D)
(cf. [67]).

Moreover, the pseudodifferential operators Λ−1
± (X , D) have order −1 and the commutants

[Dj ,Λ
−1
± (X , D)] := DjΛ

−1
± (X , D) − Λ−1

± (X , D)Dj have order −1, i.e., map continuously the spaces
W−1
p (S ) → Lp(S ).
By using the formulated assertions the proof is completed as in the case of a closed surface S .
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The foregoing Lemma 1.6.1 has the following generalization for the Bessel potential spaces H̃sp(S )
and Hsp(S ) (see [133] and [67] for details about these spaces).

Lemma 1.6.2. If S is closed, sufficiently smooth, 1 < p <∞, s ∈ R, m = 1, 2, . . . and

φ ∈ Hs−mp (S ), Dαφ = Dα1
1 · · ·Dαn

n φ ∈ Hs−mp (S ) for all |α| 6 m,

then φ ∈ Hsp(S ).
Moreover, the assertion holds for a hypersurface S with the Lipschitz boundary Γ := ∂S and the

spaces Hsp(S ) and H̃sp(S ).

Proof. Assume first that S has no boundary. The proof is based, as in the foregoing case, on the
following facts from [88,130,133], which we recall without proofs.

A. There exists a “lifting operator” (the Bessel potential operator),

Λr(X , D) : Hsp(S ) → Hs−rp (S ), r ∈ R, (1.6.4)

which arranges isomorphism between the indicated spaces and having the inverse Λ−r(X , D).

B. Λr(X , D) is a pseudodifferential operator of order −r and the commutant

[Dα,Λr(X , D)] := DαΛr(X , D)− Λr(X , D)Dα (1.6.5)

with the pseudodifferential operator Dα = Dα1
1 · · ·Dαn

n has order |α|+ r − 1, i.e., maps continuously
the spaces Hγp(S ) → Hγ−|α|−r+1

p (S ), ∀ γ ∈ R.
Assume that m = 1. Then φ ∈ Hs−1

p (S ) and, due to (1.6.4), (1.6.5), it follows that ψ :=

Λs−1
S (X , D)φ ∈ Lp(S ), Djψ = [Dj ,Λ

s−1
S (X , D)]φ + Λs−1

S (X , D)Djφ ∈ Lp(S ) for all j = 1, . . . , n.
By the definition of the space W1

p(S ) we conclude that ψ ∈ W1
p(S ). Due to (1.6.2), we finally get

φ = Λ1−s(X , D)ψ ∈ Hsp(S ).
Now assume m = 2, 3, . . . and the assertion is valid for m − 1. Then, due to the hypothesis,

ψj := Djφ ∈ Hs−mp (S ) for j = 1, . . . , n. Moreover, due to the same hypothesis,

Dαψj := DαDjφ ∈ Hs−mp (S ) for all |α| 6 m− 1 and all j = 1, . . . , n.

Hence the induction hypothesis implies that ψj := Djφ ∈ Hs−1
p (S ) for j = 1, . . . , n. Now from the

already considered case m = 1 it follows that φ ∈ Hsp(S ).
If S has non-empty Lipschitz boundary Γ ̸= ∅, there exist pseudodifferential operators

Λr−(X , D) : Hsp(S ) → Hs−rp (S ), Λr+(X , D) : H̃sp(S ) → H̃s−rp (S ) (1.6.6)

arranging isomorphisms between the indicated spaces and having the inverses Λ−r
− (X , D), Λ−r

+ (X , D)
(cf. [67]).

Moreover, the pseudodifferential operators Λ−r
± (X , D) have order −r and the commutants

[Dα,Λ−r
± (X , D)] := DαΛ−1

± (X , D) − Λ−r
± (X , D)Dα have order |α| − r − 1, i.e., map continuously

the spaces Hγp(S ) → Hγ+r+1−|α|
p (S ).

By using the formulated assertions, the proof is completed, as in the case of closed surface.

Theorem 1.6.1 (Korn’s I inequality “without boundary condition”). Let S ⊂ Rn be a Lipshitz
hypersurface without boundary, DefS (U) := [Djk(U)]n×n be the deformation tensor

Djk(U) =
1

2

[
DkUj + DjUk + ∂U (νjνk)

]
=

1

2

[
DkUj + DjUk +

n∑
m=1

UmDm

(
νjνk

)]
(cf. (1.5.2)) and

∥∥DefS (U) | Lp(S )
∥∥ :=

[ n∑
j,k=1

∥∥Djk(U) | Lp(S )
∥∥p]1/p, U ∈ W1

p(S ), (1.6.7)
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for 1 < p <∞. Then

∥∥U | W1
p(S )

∥∥ 6M
[ ∥∥U | |Lp(S )

∥∥p + ∥∥DefS (U) | Lp(S )
∥∥p]1/p (1.6.8)

for some constant M > 0 or, equivalently, the mapping

U 7−→
[∥∥U | Lp(S )

∥∥p + ∥∥DefS (U) | Lp(S )
∥∥p]1/p (1.6.9)

defines an equivalent norm on the space W1
p(S ).

Proof. Consider the space

Ŵ1
p(S ) :=

{
U = (U1, . . . , Un)

⊤ : Uj ,Djk(U) ∈ Lp(S ) for all j, k = 1, . . . n
}
, (1.6.10)

which is obtained by closing the space of smooth functions C1(S ) with respect to the norm (cf. (1.6.8)
and (1.6.9)): ∥∥U ∣∣Ŵ1

p(S )
∥∥ :=

[∥∥U ∣∣Lp(S )
∥∥p + ∥∥DefS (U)

∣∣Lp(S )
∥∥p]1/p . (1.6.11)

It is obviously sufficient to prove that the spaces W1
p(S ) and Ŵ1

p(S ) are identical, which means
that the norms in these spaces are equivalent.

The inclusion W1
p(S ) ⊂ Ŵ1

p(S ) is trivial, because the inclusion U ∈ W1
p(S ) (which means

Uj ,DkUj ∈ Lp(S ) for all j, k = 1, . . . , n) and the equalities (see (1.5.4))

Djk(U) =
1

2

[
DkUj + DjUk

]
+

1

2

n∑
r=1

∂r(νjνk)Ur ∈ Lp(S ) j, k = 1, . . . , n (1.6.12)

imply that Djk(U) ∈ Lp(S ) for all j, k = 1, . . . , n and validate the inclusion W1
p(S ) ⊂ Ŵ1

p(S ).
To prove the inverse inclusion Ŵ1

p(S ) ⊂ W1
p(S ) we assume U ∈ Ŵ1

p(S ), apply the formulae for
the commutators [Dj ,Dk] from [64, Proposition 4.4.iv]

[
Dj ,Dk

]
Um =

n∑
r=1

[
νjDkνr − νkDjνr

]
DrUm ∈ H−1

p (S ), j, k = 1, . . . , n

and find out that

DjUk ∈ H−1
p (S ), DkDjUm = DjD̃km(U) + DkD̃jm(U)− DmD̃jk(U)− 1

2

[
Dj ,Dk

]
Um

−1

2

[
Dj ,Dm

]
Uk −

1

2

[
Dk,Dm

]
Uj ∈ H−1

p (S ) for all j, k,m = 1, . . . , n ,

because, by the assumption, Uj ,Djk(U) ∈ Lp(S ) for all j, k = 1, . . . , n. Due to Lemma 1.6.1 of
J. L. Lions this implies DjUm ∈ Lp(S ) for all j,m = 1, . . . , n and the claimed inclusion U ∈ W1

p(S )
follows.

Remark 1.6.1. The foregoing Theorem 1.6.1 is proved by P. Ciarlet in [23] for the case p = 2, for
curvilinear coordinates and covariant derivatives.

A remarkable consequence of Korn’s inequality (1.6.8) is that the space

W1
p(S ) :=

{
U = (U1, . . . , Un)

⊤ : Uj ,DkUj ∈ Lp(S ) for all j, k = 1, . . . , n
}

and the space Ŵ1
p(S ) (cf. (1.6.10)) are isomorphic (i.e., can be identified), although only n(n+1)

2 < n2

linear combinations of the n2 derivatives DjUk, j, k = 1, . . . , n, participate in the definition of the
space Ĥ1

p(S ).
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1.7 Killing’s vector fields and further Korn’s inequalities
Definition 1.7.1. Let S be a hypersurface in the Euclidean space Rn. The space R(S ) of solutions
to the deformation equations

Djk(U) :=
1

2

[
DS
j Uk + DS

k Uj
]
=

1

2

[
DkUj + DjUk +

n∑
m=1

UmDm(νjνk)
]
= 0, (1.7.1)

U =

n∑
j=1

Ujd
j ∈ ω(S ), j, k = 1, . . . , n,

is called the space of Killing’s vector fields.

Killing’s vector fields on a domain in the Euclidean space Ω ⊂ Rn are known as the rigid motions
and we start with this simplest class.

The space of rigid motions R(Ω) extends naturally to the entire Rn and consists of affine vector-
functions

V (x) = a+ Bx, B = [bjk]n×n, a ∈ Rn, x ∈ Rn, (1.7.2)

where the matrix B is skew symmetric

B :=


0 b12 b13 . . . b1(n−2) b1(n−1)

−b12 0 b21 . . . b1(n−3) b2(n−2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−b1(n−2) −b2(n−3) −b3(n−4) . . . 0 b(n−1)1

−b1(n−1) −b2(n−2) −b3(n−3) . . . −b(n−1)1 0

 = −B⊤ (1.7.3)

with real-valued entries bjk ∈ R. For n = 3, 4, . . . , the space R(Rn) is finite-dimensional and
dim R(Rn) = n+ n(n−1)

2 = n(n+1)
2 .

Note that for n = 3 the vector field V ∈ R(Ω), Ω ⊂ R3, is the classical rigid displacement

V (x) = a+ Bx = a+ b ∧ x, b := (b1, b2, b3)
⊤ ∈ R3, x ∈ Ω, B :=

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 . (1.7.4)

Definition 1.7.2. We call a subset M ⊂ Rn essentially m-dimensional and write ess dim M = m
if there exist m + 1 points X

0,X 1, . . . ,Xm ∈ M such that the vectors {X
j − X

0}mj=1 are linearly
independent.

Note that any m-dimensional subset M ⊂ Rm is essentially m-dimensional, because contains
m linearly independent vectors. Moreover, any collection of m + 1 points in Rm is essentially m-
dimensional, provided that these points do not belong to any m− 1-dimensional hyperplane.

Lemma 1.7.1. The operator

Def(U) :=
[
Djk(U)

]
n×n, Djk(U) =

1

2
[∂kUj + ∂jUk

]
, U =

n∑
j=1

Uje
j , (1.7.5)

is the deformation tensor in Cartesian coordinates.
The linear space R(Rn) of rigid motions (of Killing’s vector fields) in Rn consists of vector fields

K = (K1, . . . ,Kn)
⊤ which are solutions to the system

2Djk(K)(x) = ∂kKj(x) + ∂jKk(x) = 0, x ∈ S for all j, k = 1, . . . , n. (1.7.6)

If a rigid motion vanishes on an essentially (n− 1)-dimensional subset K(X ) = 0 for all X ∈ M ,
ess dim M = n − 1, or at infinity K(x) = O(1) as |x| → ∞, then K vanishes identically on Rn,
K(x) ≡ 0.
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Proof. By differentiating (1.7.6) and recalling that ∂k∂lKj = ∂l∂kKj , we get

∂j∂kKm = ∂jDkm(K) + ∂kDjm(K)− ∂mDjk(K) = 0 for all j, k,m = 1, 2, . . . , n− 1.

Therefore,
Kj(x) = aj + bj1x1 + · · ·+ bjnxn, j = 1, 2, . . . , n,

or
K(x) = a+ B x with B = [bjk]n×n. (1.7.7)

From (1.7.6) we derive that B is a skew symmetric matrix (cf. (1.7.3)):

∂jKk(x) = −∂kKj(x) ≡ 0 =⇒ bjk = −bkj , j, k = 1, 2, . . . , n =⇒ B = −B⊤.

The inclusion K ∈ R(Rn) is proved.
The inverse statement that any vector field K ∈ R(Rn) (of the form (1.7.2)) is a solution of the

system (1.7.6), is easy to verify.
Let us prove the second assertion: for any linearly independent vectors x0, . . . , xn−1 the condition

K(xk) = 0 =⇒ a+ Bxk = K(xk) = 0 (1.7.8)

implies a = 0 and B = 0, i.e., K(x) = 0 for all x ∈ Rn. Indeed, if B = 0, then, obviously, a = 0.
Accepting B ̸= 0, for rank of B we have the estimate 2 6 rank B < n (if B ̸= 0, then, due to the
symmetry B = −B⊤, there exists a non-degenerate minor of order at least 2). On the other hand,
from (1.7.8) it follows

B(xk − x0) = 0, ∀ k = 1, . . . , n− 1,

which contradicts the estimate 2 6 rank B < n, since {x1−x0, . . . , xn−1−x0} are linearly independent.
If a rigid motion K(x) in (1.7.7) vanishes at infinity K(x) = O(1) as |x| → ∞, then, obviously,

a = 0, B = 0 and, therefore, K(x) = 0 for all x ∈ Rn.

Remark 1.7.1. For the deformation tensor in Cartesian coordinates Def(U) (cf. (1.7.5)) in a domain
Ω ⊂ Rn Korn’s inequality

∥∥U | W1
p(Ω)

∥∥ 6M
[ ∥∥U | Lp(Ω)

∥∥P +
∥∥Def(U) | Lp(Ω)

∥∥p]1/p, 1 < p <∞, (1.7.9)

with some constant M > 0 is well known and is proved e.g. in [21] (cf. (1.6.7) for a similar norm).

In contrast to the rigid motions in Rn, Killing’s vector fields on hypersurfaces nobody can identify
explicitly so far. The next Theorem 1.7.1 underlines importance of Killing’s vector fields for the Lamé
equation on hypersurfaces. Later, we investigate properties of Killing’s vector fields to prepare tools
for investigations of boundary value problems for the Lamé equation.

Theorem 1.7.1. Let S be an ℓ-smooth closed hypersurface in Rn and ℓ > 2. The Lamé operator
LS for an isotropic hypersurface

LS : Hs+1
p (S ) → Hs−1

p (S ), (1.7.10)
LSU = µπS divS ∇SU + (λ+ µ)∇S divS U + µH 0

S WSU ,

is self-adjoint L ∗
S = LS , elliptic, Fredholm and has the trivial index Ind LS = 0 for all 1 < p <∞

and all s ∈ R, provided that |s| 6 ℓ.
The kernel of the operator Ker LS ⊂ Hsp(S ) is independent of the parameters p and s, coincides

with the space of Killing’s vector fields

Ker LS =
{
U ∈ ω(S ) : LSU = 0

}
= R(S ), (1.7.11)

and is finite-dimensional dim R(S ) = dim Ker LS <∞.
If S is C∞-smooth, then Killing’s vector fields are smooth as well, R(S ) ⊂ C∞(S ).
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LS is non-negative on the space H1(S ) and positive definite on the orthogonal complement H1
R(S )

to R(S ) in H1(S ):

(LSU ,U)S > 0 for all U ∈ H1(S ), (1.7.12)

(LSU ,U)S > C
∥∥U | H1(S )

∥∥2 for all U ∈ H1
R(S ), C > 0. (1.7.13)

Moreover, the following Gåarding’s inequality

(LSU ,U)S > C1∥U |H1(S )∥2 − C0∥U |H−r(S )∥2 (1.7.14)

holds for all U ∈ H1(S ), with any −1 < r 6 ℓ and some positive constants C0 > 0, C1 > 0.

Proof. (cf. [57, Theorem 3.5]). Let us check the ellipticity of LS . The operator LS maps the tangent
spaces and the principal symbol is defined on the cotangent space. The cotangent space is orthogonal
to the normal vector and, therefore,

LS (X , ξ)η = µ|ξ|2(1− νν⊤)η + (λ+ µ)ξξ⊤η = µ|ξ|2η + (λ+ µ)ξξ⊤η , ∀ ξ, η ⊥ ν.

Thus, while considering the principal symbol LS (X , ξ), we can ignore the projection πS . With this
assumption, the principal symbol of LS reads as

LS (X , ξ) = µ|ξ|2 + (λ+ µ)ξξ⊤ for (X , ξ) ∈ T∗(S ) . (1.7.15)

The matrix LS (X , ξ) has eigenvalue (λ+2µ)|ξ|2 (the corresponding eigenvector is ξ) and eigenvalue
µ|ξ|2 with multiplicity n−1 (the corresponding eigenvectors θj are orthogonal to ξ: ξ⊤θj = ⟨ξ, θj⟩ = 0,
j = 1, . . . , n− 1). Then

det LS (X , ξ) = (λ+ 2µ)|ξ|2
[
µ|ξ|2

]n−1
= µn−1(λ+ 2µ) > 0 for (X , ξ) ∈ T∗(S ) , |ξ| = 1

and the ellipticity is proved.
The ellipticity of the differential operator LS in (1.7.10) on a manifold without boundary S ,

proved above, implies Fredholm property for all 1 < p < ∞ and all s ∈ R. Indeed, LS has a
parametrix RS (X ,D), which is a pseudodifferential operator (ΨDO) with the symbol RS (X , ξ) :=
χ(ξ)L −1

S (X , ξ), where L −1
S (X , ξ) is the inverse symbol of LS and χ ∈ C∞(Rn) is a smooth function,

χ(ξ) = 1 for |ξ| > 2 and χ(ξ) = 0 for |ξ| < 1. ΨDO RS (X ,D) is a bounded operator between the
spaces

RS (X ,D) : Hs−2
p (S ) → Hsp(S ) for all 1 < p <∞, s ∈ R,

because the symbol RS (X , ξ) = L −1
S (X , ξ) belongs to the Hörmander class S−2(S ,Rn)∣∣∣Dα∂βξ RS (X , ξ)

∣∣∣ ≤ Cα,β |ξ|−2−|β|

for all multi-indices α, β ∈ Zn+ (cf. [88, 126,130] for details).
The Fredholm property for the case p = 2 and s = 1 follows from Gårding’s inequality (1.7.14) as

well (cf. [89, Thorem 5.3.10] and [110, Thorem 2.33]).
The Fredholm property implies that the kernel is finite-dimensional dim Ker LS (X ,D) <∞.
To prove that the index is trivial Ind LS (X ,D) = 0 for all 1 < p < ∞, s ∈ R, note that the

symbol LS (X , ξ) is positive definite (cf. (1.7.15))

⟨LS (X , ξ)η, η⟩ = µ|ξ|2|η|2 + (λ+ µ)⟨ξξ⊤η, η⟩ = µ|ξ|2|η|2 + (λ+ µ)
∑
j=1n

(ξjηj)
2

≥ µ|ξ|2|η|2, ∀X ∈ S , ∀ ξ, η ∈ Rn. (1.7.16)

Further, recall that the Bessel potential operator Λ2
S (X , D) : Hsp(S ) → Hs−2

p (S ) (cf. (1.6.1))
lifting the Bessel potential spaces, also has positive definite symbol

⟨Λ2
S (X , ξ)η, η⟩ ≥ C|ξ|2|η|2 ∀X ∈ S , ∀ ξ, η ∈ Rn (1.7.17)
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(cf. [67]). Now consider the symbols Bτ (X , ξ) = (1−τ)LS (X , ξ)+τΛ2
S (X , ξ) and the corresponding

ΨDO
Bτ (X ,D) = (1− τ)LS (X ,D) + τΛ2

S (X ,D) : Hsp(S ) → Hs−2
p (S ). (1.7.18)

Obviously, Bτ (X ,D) is a continuous (with respect to 0 ≤ τ ≤ 1) homotopy connecting the operator
B0(X ,D) = LS (X ,D) with B1(X ,D) = Λ2

S (X ,D). Since the symbol Bτ (X , ξ) is positive definite

⟨Bτ (X , ξ)η, η⟩ ≥ [(1− τ)µ+ τC]|ξ|2|η|2 ∀ ξ, η ∈ Rn

(cf. (1.7.16) and (1.7.17)), it is elliptic and the operator Bτ (X ,D) is then Fredholm for all 0 ≤ τ ≤ 1.
Then Ind LS (X ,D) = Ind B0(X ,D) = Ind B1(X ,D) = Ind Λ2

S (X ,D) = 0, since the operator
Λ2

S (X ,D) is invertible.
From representation (1.4.32) it follows that the bilinear form (LSU ,U)S is non-negative

(LSU ,U)S = λ( div∗
S divS U ,U)S + 2µ( Def∗S DefS U ,U)S

= λ
∥∥divS U

∣∣L2(S )
∥∥2 + 2µ

∥∥DefS U
∣∣L2(S )

∥∥2 ≥ 0 (1.7.19)

(cf. (1.7.12)) and vanishes (i.e., U ∈ Ker LS ) if and only if

DefS U = 0, divS U . (1.7.20)

Thus, Ker LS ⊂ Ker DefS = R(S ).
But the first equality in (1.7.20) follows from the second one. Indeed, if DefS U = 0, then, in

particular, Djj(U) = DjUj +
1
2∂Uν

2
j = 0, j = 1, . . . , n (cf. (1.5.4)), and

divS U =

n∑
j=1

DjUj = −1

2

n∑
j=1

∂U (νj)
2 = ∂U |ν|2 = ∂U 1 = 0, ∀U ∈ R(S ), (1.7.21)

since |ν(X )|2 ≡ 1. Thence, due to (1.7.20), R(S ) = Ker LS . This accomplishes the proof of
(1.7.11).

Estimate (1.7.13) is a direct consequence of (1.7.12) and of (1.7.11): since the operator LS is
Fredholm, self-adjoint and Ker LS = R(S ), then also Coker LS = R(S ) and, therefore, the
mapping

LS : H1
R(S ) −→ H−1

R (S )

is one-to-one, i.e., is invertible. The established invertibility implies the claimed inequality (1.7.13).
A priori regularity property of solutions to partial differential equations (cf. [88,130]) states that the

ellipticity of LS (X ,D) provides Cℓ(S )-smoothness of any solution K to the homogeneous equation
LS (X ,D)K = 0, provided the hypersurface S is Cℓ-smooth. Due to the embeddings Hrq(S ) ⊂
Hsp(S ), s ≤ r, p ≤ q, the kernel Ker LS (X ,D) is independent of the space Hsp(S ) provided that
the spaces are well defined, which is the case if |s| ≤ ℓ (cf. [1, 44,65,92] for similar assertions).

In particular, the Killing’s vector fields R(S ) = Ker LS (X ,D) are smooth R(S ) ⊂ C∞(S ),
provided the hypersurface S is C∞-smooth.

Let
{
Kj

}m
j=1

be an orthogonal basis (Kj ,Kk)S = δjk in the finite-dimensional space of Killing’s
vector fields R(S ). Let

TU(X ) :=

m∑
j=1

(Kj ,U)S Kj(X ), X ∈ S . (1.7.22)

Due to the proved part,
{
Kj

}m
j=1

⊂ Cℓ(S ) and the operator T is smoothing T : H−r(S ) → Hr(S )

(is infinitely smoothing if ℓ = ∞). Then the operator

LS + T : H1(S ) → H−1(S )

is invertible and non-negative

((LS + T)U ,U)S = (LSU ,U)S +

m∑
j=1

(Kj ,U)2S ≥ 0
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(cf. (1.7.12)). This implies that LS + T is positive definite

((LS + T)U ,U)S ≥ C1

∥∥U ∣∣H1(S )
∥∥2

and we write

(LSU ,U)S = ((LS + T)U ,U)S − (TU ,U)S ≥ C1

∥∥U ∣∣H1(S )
∥∥2 − (TU ,U)S

≥ C1

∥∥U ∣∣H1(S )
∥∥2 − C2∥U

∣∣H−r(S )
∥∥2,

which proves (1.7.14).

Corollary 1.7.1. Let S ⊂ Rn be a Lipshitz hypersurface without boundary, DefS (U) := [Djk(U)]n×n
be the deformation tensor (see (1.4.9)). The norm ∥DefS (U) | L2(S )∥ is defined by (1.6.7).

Then the following Korn’s inequality∥∥DefS (U) | L2(S )
∥∥ > c

∥∥U | H1(S )
∥∥, ∀U ∈ H1

R(S ), (1.7.23)

holds for some constant c > 0 or, equivalently, the mapping U 7→ ∥DefS (U) | L2(S )∥ is an equivalent
norm on the orthogonal complement H1

R(S ) to the space of Killing’s vector fields.

Proof. Due to Korn’s inequality (1.6.8) for p = 2∥∥U | L2(S )
∥∥2 >M1

[ ∥∥U | H1(S )
∥∥2 − ∥∥DefS (U) | L2(S )

∥∥2],
the mapping DefS : H1

R(S ) → L2(S ) is Fredholm and has index 0. Inequality (1.7.23) follows, since
the mapping is injective (has an empty kernel).

Let us recall some results related to the uniqueness of solutions to arbitrary elliptic equation.

Definition 1.7.3. Let Ω be an open subset with the Lipschitz boundary ∂Ω ̸= ∅ either on a Lipschitz
hypersurface S ⊂ Rn or in the Euclidean space Rn−1.

A class of functions U (Ω) defined in a domain Ω in Rn is said to have the strong unique
continuation property if every u ∈ U (Ω) in this class, which vanishes to infinite order at one
point, must vanish identically.

If a surface S is C∞-smooth, any elliptic operator on S has the strong unique continuation
property due to Holmgren’s theorem. But we can have more.

Lemma 1.7.2. Let S be a W2
∞-smooth hypersurface in Rn. The class of solutions to a second order

elliptic equation A(X ,D)u = 0 with Lipschitz continuous top order coefficients on a surface S has
the strong unique continuation property.

In particular, if the solution u(X ) = 0 vanishes in any open subset of S , it vanishes identically
on entire S .

Proof. The result was proved in [8] for a domain Ω ⊂ Rn by the method of “Carleman estimates” (also
see [88, Volume 3, Theorem 17.2.6]). Another proof, involving monotonicity of the frequency function,
was discovered by N. Garofalo and F. Lin (see [78, 79]). A differential equation A(X ,D)u(X ) = 0
with Lipschitz continuous top order coefficients on a W2

∞-smooth surface S is locally equivalent
to a differential equation with Lipschitz continuous top order coefficients on a domain Ω ⊂ Rn−1.
Therefore, a solution u(X ) has the strong unique continuation property locally (on each coordinate
chart) on S .

Since S is covered by a finite number of local coordinate charts which intersect on open neigh-
borhoods, a solution u(X ) has the strong unique continuation property globally on S .

Remark 1.7.2. If the top order coefficients of a second order elliptic equation A(X ,D)u = 0 in
open subsets Ω ⊂ Rn, n > 3, are merely Hölder continuous, with exponent less than 1, examples
due to A. Plis [116] and K. Miller [112] show that a solution u(x) does not have the strong unique
continuation property.
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Lemma 1.7.3. Let C be a W2
∞-smooth hypersurface in Rn with the Lipschitz boundary Γ := ∂C and

γ ⊂ Γ be an open part of the boundary Γ. Let A(X ,D) be a second order elliptic system with Lipschitz
continuous top order matrix coefficients on a surface S .

The Cauchy problem 
A(X ,D)u = 0 on C , u ∈ H1(Ω),

u(s) = 0 for all s ∈ γ,

(∂V u)(s) = 0 for all s ∈ γ,

(1.7.24)

where the vector field V is non-tangent to Γ, but tangent to S , has only a trivial solution u(X ) = 0
on entire S .

Proof. With a local diffeomorphism the Cauchy problem (1.7.24) is transformed into a similar problem
on a domain Ω ⊂ Rn−1 with the Cauchy data vanishing on some open subset of the boundary
γ ⊂ Γ := ∂Ω.

Let us, for simplicity, use the same notation γ ⊂ Γ = ∂Ω, V for a non-tangent vector field to
γ, the function u and the differential operator A(x,D) for the transformed Cauchy problem in the
transformed domain Ω. Moreover, we will suppose that γ is a part of the hypersurface x1 = 0
(otherwise we can transform the domain Ω again). We also use new variables t = x1 and x :=
(x2, . . . , xn−1). Then (0, x) ∈ γ, while (t, x) ∈ Ω for all small 0 < t < ε and some x ∈ Ω′.

Thus, the natural basis element e1 (cf. (0.0.7)) is orthogonal to γ and, therefore, e1 = c1(x)V (x)+
c2(x)g(x) for some unit tangent vector g(x) to γ for some scalar functions c1(x), c2(x) and all x ∈ Ω′.
Then, due to the third line in (1.7.24),

(∂tu)(0, x) = ∂eju(0, x) = c1(x)∂V u(0, x) + c2(x)∂gu(0, x) = 0,

since any derivative along tangent vector to γ vanishes ∂gu(0, x) = 0 due to the second line in (1.7.24).
The second order equation A(t, x;D) can be written in the form

A(t, x,D)u = A(t, x; e1)∂2t u+ A1(t, x;D)∂tu+ A2(t, x;D)u, D := −i∂x,

where A(t, x; e1) is the (invertible) matrix function, A1(t, x;D) and A2(t, x;D) are differential oper-
ators of orders 1 and 2, respectively, compiled of derivatives ∂x, x ∈ Ω′. Therefore, if A0

j (t, x;D) :=

A−1(t, x; e1)Aj(t, x;D), j = 1, 2, the Cauchy problem (1.7.24) transforms into
∂2t u(t, x) + A0

1(t, x;D)∂tu(t, x) + A0
2(t, x;D)u(t, x) = 0 on (t, x) ∈ Ωε,

u(0, x) = 0 for all x ∈ Ω′,

(∂tu)(0, x) = 0 for all x ∈ Ω′,

(1.7.25)

where Ωε := (0, ε)× Ω′ ⊂ Ω, u ∈ H1(Ωε) and γ := {(0, x) : x ∈ Ω′}.
Now let us recall the inequality (see [113, § 4.3, Theorem 4.3, § 6.14], [123, § 4–7, Lemma 4–21]):

there is a constant C which depends only on ε and A(t, x;D) and such that the inequality∫
Ωε

e−λt|v(t, x)|2 dt dx 6 C

∫
Ωε

e−λt|(A(t, x;D)v)(t, x)|2 dt dx (1.7.26)

holds for A(t, x;D)v ∈ L2(Ωε), v ∈ C∞(Ωε); moreover, v(t, x) should vanish near t = ε and should
have vanishing Cauchy data v(0, x) = (∂tv)(0, x) = 0 for all x ∈ Ω′.

Let ρ ∈ C2(0, ε) be a cut-off function: ρ(t) = 1 for 0 6 t < ε/2 and ρ(t) = 0 for 3ε/4 6 t < ε.
Then v := ρu ∈ H1(Ωε) and, since A(t, x;D)u = 0 on Ωε, we get

A(t, x;D)(ρu) = ρA(t, x;D)u+ (∂2t ρ)u+ (∂tρ)∂tu+ (∂tρ)A0
1(t, x;D)u

= (∂2t ρ)u+ (∂tρ)∂tu+ (∂tρ)A0
1(t, x;D)u.

We have asserted u ∈ H1(Ωε), ρ ∈ C2, and this implies (∂2t ρ)u ∈ L2(Ωε), (∂tρ)∂tu ∈ L2(Ωε). Note
that ∂tρ(t) vanishes for 0 < t < ε/2. Therefore, (∂tρ)A0

1(t, x;D)u vanishes in a neighborhood of the
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boundary γ ⊂ Γ. Due to a priori regularity result (cf. [105, Chapter 2, § 3.2, § 3.3]), a solution to an
elliptic equation in (1.7.25) has additional regularity u ∈ H2(Ω0

ε) for arbitrary Ω0
ε properly imbedded

into Ωε. This implies (∂tρ)A0
1(t, x;D)u ∈ L2(Ωε) and we conclude

A(t, x;D)(ρu) ∈ L2(Ωε). (1.7.27)

Introducing v = ρu into inequality (1.7.26) we get

∫
Ω′

ε/4∫
0

e−λt|ρ(t)u(t, x)|2 dt dx

6
∫
Ωε

e−λt|ρ(t)u(t, x)|2 dt dx 6 C

∫
Ω′

3ε/4∫
ε/2

e−λt|(A(t, x;D))ρ(t)u(t, x)|2 dt dx.

This implies, for λ > 0,

∫
Ω′

ε/4∫
0

|ρ(t)u(t, x)|2 dt dx 6 e−λε/4
∫
Ωε

∣∣(A(t, x;D))ρ(t)u(t, x)
∣∣2 dt dx 6 C1e

−λε/4,

where, due to (1.7.24), C1 > 0 is a finite constant. By sending λ → ∞, we get the desired result
u(t, x) = 0 for all 0 6 t 6 ε/4 and all x ∈ Ω′. Since u(x) vanishes in a subset of the domain Ω
bordering γ, due to Lemma 1.7.2 the solution vanishes on entire Ω (on entire C ).

Due to our specific interest (see the next Lemma 1.7.4) and many applications, for example, to
control theory, the following boundary unique continuation property is of special interest.

Definition 1.7.4. Let S be a Lipschitz hypersurface in Rn and C ⊂ S be an open subsurface with
the Lipschitz boundary Γ = ∂C .

We say that a class of functions U (Ω) has the strong unique continuation property from
the boundary if a vector-function U ∈ U (Ω) which vanishes on an open subset of the boundary
γ ⊂ Γ, vanishes on the entire C .

Lemma 1.7.4. Let S be a W2
∞-smooth hypersurface in Rn and C ⊂ S be an open W2

∞-smooth
subsurface.

The set of Killing’s vector fields R(S ) on the open surface C has the strong unique continuation
property from the boundary.

Proof. Let γ ⊂ Γ := ∂C , mes γ > 0 and U(s) = 0 for all s ∈ γ ⊂ Γ := ∂C . Then (cf. (1.3.22))(DjU
0
k )(s) + (DkU

0
j )(s) = −

n∑
m=1

U0
m(s)Dm

(
νj(s)νk(s)

)
= 0,

U0
k (s) = 0, ∀ s ∈ γ, j, k = 1, . . . , n.

(1.7.28)

Among tangent vector fields generating Gunter’s derivatives {d j(s)}nj=1 only n − 1 are linearly
independent. One of vectors might collapse at a point d j(s) = 0 if the corresponding basis vector ej

is orthogonal to the surface at s ∈ S , while others might be tangent to the subsurface Γ, except at
least one, say d n(s), which is non-tangent to γ. Then from (1.7.28) it follows

2(DnU
0
n)(s) = 0 and implies (DjU

0
n)(s) = 0 for all s ∈ γ and all j = 1, . . . , n. (1.7.29)

Indeed, the vector d j , 1 6 j 6 n− 1, is a linear combination d j(s) = c1(s)d
n(s) + c2(s)τ

j(s) of the
non-tangent vector d n(s) and of the projection τ j(s) := πγd

j(s) of d j(s) to the subsurface γ at the
point s ∈ γ. Since U0

n vanishes identically on γ, the derivative (∂τ jU0
n)(s) = 0 vanishes as well and

(1.7.29) follows:

(DjU
0
n)(s) = c1(s)(∂d nU0

n)(s) + c2(s)(∂τ jU0
n)(s) = c1(s)(DnU

0
n)(s) = 0, ∀ s ∈ γ.
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Equalities (1.7.28) and (1.7.29) imply

(DnU
0
j )(s) = −(DjU

0
n)(s) = 0, ∀ s ∈ γ, ∀ j = 1, . . . , n. (1.7.30)

Thus, we have the following Cauchy problem
LC (X ,D)U(X ) = 0 on C ,

U(s) = 0 for all s ∈ γ,

(DnU)(s) = (∂d nU)(s) = 0 for all s ∈ γ,

(1.7.31)

where d n is a vector field non-tangent to Γ. Due to Lemma 41.7.3, U(X ) = 0 for all X ∈ C .

Before we draw some consequences from the proved unique continuation property, we should make
some comments. The finite dimensionality of the linear space R(C ) when the surface C is 2-smooth,
was proved in the papers [29,80].

The foregoing Lemma 1.7.4 generalizes essentially the “infinitesimal rigid displacement lemma”
(see [23, Theorem 2.7-2]). The following conditions are imposed:

(i) C ⊂ S is C3-smooth, elliptic in R3, i.e.,
2∑
k=1

|ξk|2 6 C

2∑
k,j=1

|bjk(X )ξjξk|, ∀X ∈ S , ∀ (ξ1, ξ2)⊤ ∈ R2, (1.7.32)

where bjk(X ) : S → R are the covariant components of the curvature tensor of S ; the equivalent
condition is that the Gaußian curvature is positive on the entire surface S or that the principal
curvatures of the surface S have the same sign everywhere on S .

(ii) Killing’s vector field U vanishes on the entire boundary ∂S , i.e.,

R0(C ) =
{
U ∈ R : U

∣∣
∂C

= 0
}
= {0}. (1.7.33)

A similar assertion is proved by V. Lods and C. Mardare in [107], but for C2,1-smooth hypersurface
with the Lipschitz boundary ∂S and when Killing’s vector field expires on the entire boundary ∂S .
An earlier version of the “infinitesimal rigid displacement lemma” is due to I. Vekua [134], who proved
it using the theory of “generalized analytic functions”.

Corollary 1.7.2 (Korn’s I inequality “with boundary condition”). Let C ⊂ Rn be a Cℓ-smooth
hypersurface with the Lipschitz boundary Γ := ∂C ̸= ∅ and ℓ > 2, |s| 6 ℓ. Then∥∥U | Hsp(C )

∥∥ 6M
∥∥DefC (U) | Hs−1

p (C )
∥∥, ∀U ∈ H̃sp(C ),

for some constant M > 0. In other words, the mapping

U 7−→
∥∥DefC (U) | Hs−1

p (C )
∥∥ (1.7.34)

is an equivalent norm on the space H̃sp(C ).

Proof. If the claimed inequality (1.7.34) is false, there exists a sequence U j ∈ H̃sp(C ), j = 1, 2, . . . ,
such that ∥∥U j | Hsp(C )

∥∥ = 1, ∀j = 1, 2, . . . , lim
j→∞

∥∥DefC (U j) | Hs−1
p (C )

∥∥ = 0.

Due to the compact embedding H̃sp(C ) ⊂ Hsp(C ) ⊂ Hs−1
p (C ), a convergent subsequence U j1 ,U j2 , . . .

in Hs−1
p (C ) can be selected. Let U0 = lim

k→∞
U jk . Then∥∥DefC (U0) | Hs−1

p (C )
∥∥ = lim

k→∞

∥∥DefC (U jk) | Hs−1
p (C )

∥∥ = 0

and U0 is a Killing’s vector field. Since U(x) = 0 on Γ, due to Lemma 1.7.4, U0(x) = 0 for all x ∈ C ,
which contradicts to ∥U0 | Hsp(C )∥ = lim

k→∞
∥U jk | Hsp(C )∥ = 1.
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Let us check the following equalities for a later use:

∇ΩεU =
[
DjU

0
k

]
n+1×n+1

+ ⟨N ,U⟩WΩε , (1.7.35)

where

U :=

n+1∑
m=1

U0
mdm =

n∑
m=1

Umem, U0
n+1 =

n∑
m=1

NmUm, Dn+1 := ∂N , dn+1 := N .

WΩε is the extended Weingarten matrix

WΩε :=
[
DjNk

]
n+1×n+1

(1.7.36)

and its last column and last row are 0, because DjNn+1 = Dn+1Nj = Dn+1Nn+1 = 0 for j = 1, . . . , n.
In fact (see (2.2.12) for some further details of calculation),

∇ΩεU :=
[
∂jUk

]
n×n =

n∑
j,ky=1

∂jUke
j ⊗ ek

:=

n∑
j,k=1

[
Dj + Nj∂N

] [
U0
k + Nk⟨N ,U⟩

]
[dj + NjN ]⊗ [dk + NkN ]

=

n∑
j,k=1

(DjU
0
k )d

j ⊗ [dk + NkN ] +

n∑
j,k=1

Dj

[
Nk⟨N ,U⟩

]
dj ⊗ [dk + NkN ]

+

n∑
j,k=1

N 2
j (∂N U0

k )N ⊗ [dk + NkN ] +

n∑
j,k=1

N 2
j N 2

k ∂N ⟨N ,U⟩N ⊗ N

=

n∑
j,k=1

(DjU
0
k )d

j ⊗ dk +

n∑
j,k=1

Nk(DjU
0
k )d

j ⊗ dn+1

+

n∑
j,k=1

⟨N ,U⟩(DjNk)d
j ⊗ [dk + NkN ] +

n∑
j,k=1

N 2
k Dj⟨N ,U⟩dj ⊗ dn+1

+

n∑
k=1

(Dn+1U
0
k )d

n+1 ⊗ dk +

n∑
k=1

[
NkDn+1U

0
k + Dn+1U

0
n+1

]
dn+1 ⊗ dn+1

=

n∑
j,k=1

(DjU
0
k )d

j ⊗ dk +

n∑
j,k=1

[
Dj(NkU

0
k )− U0

kDjNk

]
dj ⊗ dn+1

+ ⟨N ,U⟩
n∑

j,k=1

(DjNk)d
j ⊗ dk +

n∑
j=1

Dj⟨N ,U⟩dj ⊗ dn+1

+

n∑
k=1

(Dn+1U
0
k )d

n+1 ⊗ dk + (Dn+1U
0
n+1)d

n+1 ⊗ dn+1

=

n+1∑
j,k=1

(DjU
0
k )d

j ⊗ dk −
n∑

j,k=1

U0
k (DjNk)d

j ⊗ dn+1 + ⟨N ,U⟩
n∑

j,k=1

(DjNk)d
j ⊗ dk

=
[
DjUk

]
(n+1)×(n+1)

+ ⟨N ,U⟩WΩε −
n∑

j,k=1

U0
k (DjNk)d

j ⊗ dn+1

=
[
DjUk

]
(n+1)×(n+1)

+ ⟨N ,U⟩WΩε −
[
(WΩεU0)jδj,n+1

]
(n+1)×(n+1)

,

since

∂N Nj = 0,

n∑
j,k=1

N 2
j = 1,

n∑
j=1

NjDj = 0,

n∑
j=1

Njd
j = 0,
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n∑
k=1

NkU
0
k = 0,

n∑
k=1

NkDjNk =
1

2
Dj

n∑
k=1

N 2
k =

1

2
Dj1 = 0, j = 1, 2, . . . , n+ 1.

Let Ω ⊂ Rn be domain with a smooth boundary M := ∂Ω, M0 ⊂ M be a subsurface of non-zero
measure and W̃1(Ω,M0) denote a subspace of functions φ ∈ W1(Ω,M0) which is the closure of the
set C∞(Ω,M0) of smooth functions φ(x) which have vanishing traces on M0, i.e., φ+(X ) = 0 for all
X ∈ M0. The space W̃1(Ω,M0) inherits the standard norm from W1(Ω):

∥φ | W̃1(Ω)∥ := ∥φ | W1(Ω)∥ =
[ ∥∥φ | Lp(Ω)

∥∥+

n∑
j=1

∥∥∂jφ | Lp(Ω)
∥∥]1/p.

Since the space W̃1(Ω,M0) does not contain constants, it is easy to prove the following

Lemma 1.7.5. The formula

∥∥φ | W̃1(Ω,M0)
∥∥ :=

[ n∑
j=1

∥∥∂jφ | Lp(Ω)
∥∥]1/p (1.7.37)

defines an equivalent norm in the space W̃1(Ω,M0).

If ε is sufficiently small, the boundary Mε := ∂Ωε is represented as the union of three C1-smooth
surfaces Mε = Mε,D∪M−

ε,N∪M+
ε,N , where Mε,D = ∂C×[−ε, ε] is the lateral surface, M+

ε,N = C×{+ε}
is the upper surface and M−

ε,N = C × {−ε} is the lower surface of the boundary Mε of the layer
domain Ωε.

The next Lemma 1.7.6 is proved for a later use in Section 3.

Lemma 1.7.6. Let M0 := γ × [−ε, ε], where γ ⊂ Γ := ∂C is a subset of the boundary of the surface
C of non-trivial measure. If g ∈ L2(Ωε), for the linear functional

Eε(u) =

∫
Ωε

g(x)u(x) dx, u ∈ W̃1(Ωε,M0), (1.7.38)

we have the following estimate

Eε(u) 6 C∥g|L2(Ωε)∥ ∥DCu|L2(Ωε)∥ (1.7.39)

with a constant C > 0 independent of u ∈ W̃1(Ωε,M0).

Proof. To prove (1.7.39) we recall that u ∈ W̃1(Ωε,M0) vanishes on the lateral subsurface X ∈ M0 ⊂
MD := ∂C × (−ε, ε).

Let Ct be the “parallel” surface to the mid-surface C on a distance |t| and for negative t < 0 the
surface Ct is “below” C , while for positive t > 0 is “above” C with respect to the direction of the
normal vector field ν(X ), X ∈ C . Note that C±ε = M±

D . Taking u(X , t), X ∈ C , −ε < t < ε, from a
dense subset of the space W̃1(Ωε,M0) we can assume that u( · , t) ∈ W̃1(Ct) for all fixed −ε 6 t 6 ε.
Since u(X , t) vanishes on the part of the boundary M0 ∩ ∂Ct, the Sobolev semi-norm

∥∥u( · , t) | W1(Ct)
∥∥
0
:=

∥∥DCu( · , t) | L2(Ct)
∥∥ =

[ 3∑
j=1

∫
Ct

|Dju(X , t)|2 dσ
]1/2

turns into the norm and is equivalent to the standard Sobolev norm

∥∥u( · , t) | W1(Ct)
∥∥ :=

[ ∫
Ct

|u(X , t)|2 dσ +

3∑
j=1

∫
Ct

|Dju(X , t)|2 dσ
]1/2
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for all t ∈ [−ε, ε], which means

M
∥∥u( · , t) | W1(Ct)

∥∥ 6
∥∥u( · , t) | W1(Ct)

∥∥
0
6

∥∥u( · , t) | W1(Ct)
∥∥

for some constant 0 < M < 1, independent of t and u. From this equivalence we get the estimate

∥∥u( · , t) | L2(Ct)
∥∥2 6 1−M2

M2

∥∥DCu( · , t) | L2(Ct)
∥∥2. (1.7.40)

By integrating the obtained inequality with respect to the variable t we get the final estimate

∥∥u | L2(Ωε)
∥∥ 6

√
1−M2

M

∥∥DCu | L2(Ωε)
∥∥, ∀u ∈ W̃1(Ωε,M0). (1.7.41)

The estimate in (1.7.39) follows with the help of the Cauchy inequality and inequality (1.7.41):∫
Ωε

g(x)u(x) dx 6
∥∥g | L2(Ωε)

∥∥∥∥u | L2(Ωε)
∥∥ 6

√
1−M2

M

∥∥g | L2(Ωε)
∥∥ ∥∥DCu | L2(Ωε)

∥∥.
Remark 1.7.3. Let us underline that in estimate (1.7.39) we only need the surface derivatives D1,D2

and D3. If we would have g ∈ W−1(Ωε), then we should assume u ∈ W̃1(Ωε). These spaces are dual
and, therefore, if the integral in the functional Eε in (1.7.38) is understood as the duality, the functional
Eε is bounded, but then we have the estimate

Eε(u) 6 C
∥∥g | L2(Ωε)

∥∥∥∥DΩεu | L2(Ωε)
∥∥, DΩε = (D1,D2,D3,D4)

⊤. (1.7.42)

Note that all derivatives D1,D2,D3 and the transversal ∂t = ∂ν = D4 (the normal to the surface C )
derivative appear in the latter inequality.

1.8 Geometric rigidity
The basic rigidity result relevant to passage to the thin plate limit is the following statement.

Proposition 1.8.1 (see [77]). Let Ω be a bounded Lipschitz domain in Rn, n > 2 and 1 < p < ∞.
There exists a constant C(Ω) with the following property: for each U ∈ W1(Ω) there is an associated
rotation RU ∈ SO(n) := SO(Rn) such that∥∥∇U −RU | Lp(Ω)

∥∥ 6 C(Ω)
∥∥dist(∇U,SO(n)) | Lp(Ω)

∥∥. (1.8.1)

The result is sharp in the sense that neither the norm on the right-hand side nor the power with
which it appears can be improved.

By considering the special case when the right-hand side in (1.8.1) is zero, Proposition 1.8.1 reduces
to the following

Corollary 1.8.1 (Liouville theorem). Let Ω be a bounded Lipschitz domain in Rn, n > 2. If U is a
W1(Ω) map which satisfies the partial differential equation

∇U(x) = V (x) a.e. in Ω, V ∈ SO(n), (1.8.2)

then it is affine U(x) = Rx+ c, R ∈ SO(n), c = const or, equivalently, ∇U = R ∈ SO(n).

Proof. In the setting of Sobolev maps, this was first proved by Reshetnyak [118]. A short modern
proof belongs to G. Friesecke, R. D. James and S. Müller [77] and consists of three observations.

First, for n× n matrix A = [ajk]n×n let cofA denote the matrix of cofactors of A, i.e.,

cofA =
[
(−1)j+k detAjk

]
n×n, (1.8.3)
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where Ajk is the (n − 1) × (n − 1)-matrix obtained from A by deleting the j-th row and the k-th
column (so called (j,k)-minor). It is well known that

div cof∇U = 0 for all U ∈ W1(Ω). (1.8.4)

Note first that if equality (1.8.4) is proved for U ∈ C2(Ω), it can be extended to arbitrary U ∈
W1(Ω).

We have to prove

Ci :=

n∑
k=1

∂k(cof∇U)ki = 0, i = 1, . . . , n. (1.8.5)

Note that Ci can be formally written as

Ci = det


∂1 ∂2 . . . ∂n

∂1v
(i)
1 ∂2v

(i)
1 . . . ∂nv

(i)
1

...
... . . . ...

∂1v
(i)
n−1 ∂2v

(i)
n−1 . . . ∂nv

(i)
n−1

 , (1.8.6)

where v(i) = (U1, . . . , Ui−1, Ui+1, . . . , Un). Equality (1.8.5) follows from the following assertion: for
any u = (u1, . . . , un−1) ∈ C2(Rn−1),

∂1 ∂2 . . . ∂n
∂1u1 ∂2u1 . . . ∂nu1

...
... . . . ...

∂1un−1 ∂2un−1 . . . ∂nun−1

 = 0, (1.8.7)

which can be easily proved by induction, expanding the determinant with respect to the last row.
Second, (1.8.2) implies that U is harmonic and, in particular, smooth. To prove this, recall that

if A ∈ GL(n) is an invertible matrix, then A−1 = detA(cofA)⊤. In particular, for B ∈ SO(n), which
means B−1 = B⊤, detB = 1, we get cofB = B. Then from the asserted inclusion ∇U ∈ SO(n) we
get ∇(U)(x) = cof∇U(x) and, by taking the divergence, we obtain

∆U = div∇U = div cof∇U(x) = 0.

Third, the second gradient squared of any harmonic map can be expressed pointwise via derivatives
of the inner products,

1

2

(
|∇U |2 − n

)
= ⟨∇U,∆∇U⟩+ |∇2U |2 = |∇2U |2; (1.8.8)

but |∇U |2 − n = 0 when U satisfies (1.8.2).

An estimate in terms of ε+
√
ε, where ε := ∥dist(∇U,SO(n)) || Lp(Ω)∥, is much easier to prove,

but it is insufficient for the application to plate theory, where one needs to sum the estimate over
many small cubes of size h.

Corollary 1.8.2 (see [118]). If Uj → U in W1(Ω) and dist(∇Uj ,SO(n)) → 0 in measure, then
∇Uj → R in L2(Ω) for some constant rotation matrix R ∈ SO(n)).



Chapter 2

Γ-convergence of heat transfer
equation

In the present chapter, we investigate a mixed boundary value problem for the stationary heat transfer
equation in a thin layer around a surface C with the boundary. The main objective is to trace what
happens in Γ-limit when the thickness of the layer converges to zero. The limit Dirichlet BVP for
the Laplace–Beltrami equation on the surface is described explicitly and we show how the Neumann
boundary conditions in the initial BVP transform in the Γ-limit. For this, we apply the variational
formulation and the calculus of Günter’s tangent differential operators on a hypersurface and layers,
which allow global representation of basic differential operators and of corresponding boundary value
problems in terms of the standard Euclidean coordinates of the ambient space Rn.

The exposition follows mostly the paper of T. Buchukuri, R. Duduchava and G. Tephnadze [16].

2.1 Introduction
The main objective of the present chapter is to demonstrate what happens with a boundary value
problem for the Laplace equation in a thin layer Ωε around a surface C in R3 when the thickness of
the layer ε diminishes to zero: ε → 0. We impose the Neumann boundary conditions on the upper
and lower faces of the layer C × {±ε} and the Dirichlet boundary conditions on the lateral surface
∂C × (−ε, ε).

The limit of the associated functionals is understood in the sense of Γ-convergence and the main
tool is the representation of differential operators with the help of Günter’s derivatives – the system

of tangent derivatives on the surface D1,D2,D3 and the normal derivative D4 = ∂ν :=
3∑
j=1

νj∂j , where

ν = (ν1, ν2, ν3)
⊤ is the unit normal vector field on the mid-surface C .

We consider heat conduction by an “isotropic” medium, governed by the Laplace equations, with
the classical mixed Dirichlet–Neumann boundary conditions on the boundary in the layer domain
Ωε := C × (−ε, ε) of thickness 2ε, where C ⊂ S is a smooth subsurface of a closed hypersurface
S with smooth nonempty boundary ∂C . In particular, we confine ourselves with zero Dirichlet and
non-zero Neumann data (see Remark 2.4.1 for the case of non-zero Dirichlet data):

∆Ωε T̃ (X , t) = f(X , t), (X , t) ∈ C × (−ε, ε),

T̃+(X , t) = 0, (X , t) ∈ ∂C × (−ε, ε),

(∂tT̃ )
+(X ,±ε) = q±ε (X ), X ∈ C .

(2.1.1)

In the investigation we apply the fact that the Laplace operator ∆Ωε = ∂21 + ∂22 + ∂23 is represented as
the sum of the Laplace–Beltrami operator on the mid-surface, the square of the transversal derivative
and the lower order term

∆Ωε T̃ = ∆C T̃ + ∂2t T̃ + 2HC∂tT̃ , (2.1.2)

56
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where D4 = ∂t. The Laplace–Beltrami operator ∆C defined in (0.0.12) and the mean curvature

HC (X )=
3∑
k=1

DkNk(X ) of the surface are extended properly from C (see the forthcoming Lemma 2.2.2).

Introducing the function G(X , t) which has the same Dirichlet and Neumann traces as T on the
∂C × (−ε, ε) and on C × {±ε}, respectively,

G(X , t) =
1

4ε
(t+ ε)2q+ε (X )− 1

4ε
(t− ε)2q−ε (X ), (2.1.3)

we can reduce problem (2.1.1) to the following boundary value problem with respect to unknown
function T = T̃ −G:

∆ΩεT (X , t) = F (X , t), (X , t) ∈ C × (−ε, ε), (2.1.4)
T+(X , t) = 0, (X , t) ∈ ∂C × (−ε, ε), (2.1.5)

(∂tT )
+(X ,±ε) = 0, X ∈ C , (2.1.6)

where

F (X , t) := f(X , t)− 1

4ε

(
(t+ ε)2∆C q

+
ε (X )− (t− ε)2∆C q

−
ε (X )

)
− H 0

C (X )

2ε

(
(t+ ε)q+ε (X )− (t− ε)q−ε (X )

)
− 1

2ε

(
q+ε (X )− q−ε (X )

)
, (X , t) ∈ C × (−ε, ε). (2.1.7)

The BVP (2.1.4)–(2.1.6) is reformulated as the minimization problem for the functional which, after
scaling (stretching the variable t = ετ and dividing the entire functional by ε), has the form

Eε(Tε) :=

1∫
−1

∫
C

[1
2
(DCTε)

2(X , τ) +
1

2ε2
(∂τTε)

2(X , τ) + Fε(X , τ)Tε(X , τ)
]
dσ dτ, (2.1.8)

Fε(X , t) := F (X , εt) = f(X , εt)− ε

4

(
(t+ 1)2∆C q

+
ε (X )− ε

4
(t− 1)2∆C q

−
ε (X )

)
− H 0

C (X )

2

(
(t+ 1)q+ε (X )− (t− 1)q−ε (X )

)
− 1

2ε

(
q+ε (X )− q−ε (X )

)
, (2.1.9)

Tε(X , τ) := T (X , ετ), Tε ∈ H̃1(Ω1, ∂C × (−1, 1)),

Fε ∈ H̃−1(Ω1), q±ε ∈ H̃2(C ), (X , t) ∈ C × (−ε, ε).

(For the definition of H̃1(Ω1, ∂C × (−1, 1)), see (2.4.9).)
Let

P(C ) :=
{
T ∈ H1(Ω1) : T (X , τ) = TC (X ), TC ∈ H̃1(C ), τ ∈ [−1, 1]

}
. (2.1.10)

The main result of the present investigation is the following statement.
Theorem 2.1.1. Let

fε(X , t) := f(X , εt) →
ε→0

f0(X ) in L2(Ω
1),

q±ε ∈ H̃2(C ) be uniformly bounded (with respect to ε) in H2(C ), and

lim
ε→0

q+ε = lim
ε→0

q−ε = q0, q0 ∈ L2(C ),

1

2ε
(q+ε − q−ε ) −→

ε→0
q1 in L2(C ).

Then the functional in (2.1.8) Γ-converges to the functional

E(0)(T ) =



∫
C

[⟨
DCTC (X ),DCTC (X )

⟩
+2

(
f0(X )− H 0

C q0(X )− q1(X )
)
TC (X )

]
dσ if T ∈ P(C );

+∞ if T ̸∈ P(C ).

(2.1.11)
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The following Dirichlet boundary value problem for Laplace–Beltrami equation on the mid-surface C

∆CT (X ) = f0(X )− H 0
C q0(X )− q1(X ), X ∈ C ,

T+(X ) = 0, X ∈ ∂C ,

T ∈ H1(C ), f0, q0, q1 ∈ L2(C ),

(2.1.12)

is an equivalent reformulation of the minimization problem with the energy functional (2.1.11).

Remark 2.1.1. The BVP (2.1.12) is the “Γ-limit” of the initial BVP (2.1.1) in the following sense:
the corresponding functional (2.1.11) is the Γ-limit of functional (2.1.8), corresponding to the BVP
(2.1.4)–(2.1.6).

It is remarkable to note that the weak derivative q0 of the Neumann condition from the initial
BVP (2.1.1) migrated into the right-hand side of the limit equation.

Note as well that the Γ-limit TC (X ) of a solution T (X , ετ), T ∈ H1(Ωε), to the BVP (2.1.4)–(2.1.6)
has better smoothness TC ∈ H1(C ) than expected.

Γ-limits of boundary value problems in thin structures, reformulated as a minimization problem
for the associated energy functional, were studied by many authors (see, e.g., [13, 76, 77, 134] and the
references therein). But mostly the Lamé equations for elastic plates C ⊂ R2 and the zero boundary
conditions were treated (the Laplace equation for a plate is studied in [13]). In the papers [76, 134],
the case of shells is treated, but with a different technique. Our approach is based on the calculus of
Günter’s derivatives, which we find more appropriate for such problems.

These results are useful in numerical and engineering applications (cf. [6,9,20,32,34,128]) and the
results exposed here allow to treat cases of special surfaces in greater detail.

The layout of the chapter is as follows. In Section 2.2, we identify the most important partial
differential operators on hypersurfaces such as gradient, divergence, Laplace–Beltrami operator. In
Section 2.3, we consider the energy functional (2.3.3) and the associated Euler–Lagrange equation
(2.3.4). In Sections 2.4 and 2.5, the aforementioned approach is applied and main theorems of the
present chapter, including Theorem 2.1.1, are proved.

2.2 Laplace operator in curvilinear coordinates
We will keep the notation of Chapter 1: Θ, ω, S and C . We consider a layer domain

Ωε :=
{

X t ∈ Rn : X t = X +tν(X ) = Θ(x)+tν(Θ(x)), x ∈ ω, −ε < t < ε
}
= C ×(−ε, ε), (2.2.1)

where ν(X ) = ν(Θ(y)) for X = Θ(y) ∈ S is the outer unit normal vector field (see (1.3.7) and
(1.3.9)). The surface C is a mid-surface for the layer domain.

We will also use the notation ν(y) := ν(Θ(y)) for brevity, unless this leads to a confusion. The
coordinate t will be referred to as the transverse variable.

Without going into details, let us only remark that if the hypersurface S is C2-smooth and 1/ε is
more than the maximum of modules of all principal curvatures of the surface S (i.e., of all eigenvalues
|λ1(X )|, . . . , |λn−1(X )|, λn(X ) ≡ 0 of the Weingarten matrix WS (X ), X ∈ S ), then the mapping

Θε : ωε := ω × (−ε, ε) → Ωε, ωε ⊂ Rn,
Θε(y, t) := Θ(y) + tν(y), (y, t) ∈ ωε,

(2.2.2)

is a diffeomorphism.
We will also suppose that N is a proper extension of the outer unit normal vector field ν into the

layer neighborhood Ωε (cf. Definition 1.3.2).
The n-tuple g1 := ∂1Θ, . . . , gn−1 := ∂n−1Θ, gn := N , where N is the proper extension of ν in

the neighborhood Ωε, is a basis in Ωε, and an arbitrary vector field U =
n∑
j=1

U0
j e

j on Ωε is represented

with this basis in “curvilinear coordinates”.
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Let us consider the system of (n+ 1)-vectors

d j := ej − NjN , j = 1, . . . , n, and d n+1 := N , (2.2.3)

where e1, . . . , en is the Cartesian basis in Rn (cf. (0.0.7)); the first n vectors d 1, . . . ,d n are tangent to
the surface C , while the last one d n+1 = N is orthogonal to all d 1, . . . ,d n. This system is, obviously,
linearly dependent, but full and any vector field U ∈ W (Ωε) is written in the following form:

U =

n∑
j=1

Uje
j =

n+1∑
j=1

U0
j d

j . (2.2.4)

Since the system {d j}n+1
j=1 is linearly dependent

n∑
j=1

Njd
j = 0, ⟨N ,dj⟩ = 0, j = 1, . . . , n, (2.2.5)

representation (2.2.4) is not unique. To fix the unique representation in (2.2.4) we will keep the
following convention:

U0
j := Uj − ⟨N ,U⟩Nj , j = 1, . . . , n, U0

n+1 = ⟨N ,U⟩ =
n∑
j=1

UjNj . (2.2.6)

Convention (2.2.6) is natural, because if the vector U(X ) is tangent to C for X ∈ C , then U0
j (X ) :=

Uj(X ) for j = 1, . . . , n and U0
n+1(X ) = 0.

Lemma 2.2.1. Representation (2.2.4) is unique, provided that conditions (2.2.6) hold:

If U0 =

4∑
j=1

U0
j d

j = 0, then U0
1 = U0

2 = U0
3 = U0

4 = 0. (2.2.7)

The scalar product and, consequently, the distance between two vectors does not change:

⟨U0,V 0⟩ =
4∑
j=1

U0
j V

0
j =

3∑
j=1

UjVj = ⟨U ,V ⟩, ∥U0 − V 0∥ = ∥U − V ∥ (2.2.8)

for arbitrary vectors U = (U1, U2, U3, U4)
⊤,V = (V1, V2, V3, V4)

⊤ ∈ R3.

Proof. If U0 =
4∑
j=1

U0
j d

j = 0, then U4 = ⟨U ,N ⟩ = 0, since N is orthogonal to vectors d 1d 2,d 3.

On the other hand, using U0
j = Uj − Nj⟨N ,U⟩, j = 1, 2, 3, and the obtained equality U4 = 0 (cf.

(2.2.6)), we get

0 = ⟨U0, ek⟩ =
3∑
j=1

U0
j ⟨d j , ek⟩ =

3∑
j=1

U0
j

[
δjk − Nj⟨N , ek⟩

]
= U0

k − Nk

3∑
j=1

U0
j Nj = U0

k , k = 1, 2, 3,

since
3∑
j=1

U0
j Nj =

3∑
j=1

(
Uj − Nj⟨N ,U⟩

)
Nj

3∑
j=1

UjNj −
n∑
j=1

N 2
j ⟨N ,U⟩ = ⟨N ,U⟩ − ⟨N ,U⟩ = 0

and U0
1 = U0

2 = U0
3 = U0

4 = 0.
Let us prove the first equality in (2.2.8):
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⟨U0,V 0⟩ =
4∑
j=1

U0
j V

0
j =

3∑
j=1

(Uj − Nj⟨N ,U⟩)
(
Vj − Nj⟨N ,V ⟩

)
+ ⟨N ,U⟩⟨N ,V ⟩

=

3∑
j=1

[
UjVj − ⟨N ,V ⟩UjNj − ⟨N ,U⟩VjNj + ⟨N ,U⟩⟨N ,V ⟩N 2

j

]
=

3∑
j=1

UjVj = ⟨U ,V ⟩

and the equality is proved.
The second equality in (2.2.8) is a simple consequence of the first one, since

∥U0 − V 0∥ =

√
⟨U0 − V 0,U0 − V 0⟩ =

√
⟨U − V ,U − V ⟩ = ∥U − V ∥.

Note for later use that due to equalities (2.2.5) and convention (2.2.6) we get

∂U =

n∑
j=1

Uj∂j =

n∑
j=1

[U0
j ∂j + ⟨N ,U⟩Nj∂j ]

=

n∑
j=1

U0
j (∂j − Nj∂N ) + ⟨N ,U⟩∂N =

n∑
j=1

U0
j Dj + U0

n+1Dn+1 =

n+1∑
j=1

U0
j Dj =: DU .

Definition 2.2.1. For a function φ ∈ H1(Ωε) the extended gradient is

∇Ωε φ =
{
D1φ, . . . ,Dnφ,Dn+1φ

}⊤
=

n+1∑
j=1

(Djφ)d
j , Dn+1φ := ∂N φ, (2.2.9)

and for a smooth vector field U =
n+1∑
j=1

U0
j d

j ∈ W (Ωε) (see (2.2.4), (2.2.6)) the extended divergence is

divΩε U :=

n+1∑
j=1

DjU
0
j + H 0

C ⟨N ,U⟩ = −∇∗
ΩεU , (2.2.10)

since

H 0
Ωε(x) :=

n∑
j=1

∂jNj(x) =

n+1∑
j=1

DjNj(x) =

n∑
j=1

Djνj(X ) = H 0
C (X ), x ∈ Ωε, X = πS x,

and H 0
C (X ) differs from the mean curvature HC (X ) (see (1.3.63)) by the constant multiplier H 0

C (X )=
(n− 1)HC (X ).

Lemma 2.2.2. The classical gradient ∇φ := {∂1φ, . . . , ∂nφ}⊤ written in the full system of vectors
{d j}n+1

j=1 in (2.2.3) coincides with the extended gradient ∇Ωε φ in (2.2.9).

Similarly, the classical divergence div U :=
n∑
j=1

∂jUj of a vector field U :=
n∑
j=1

Uje
j written in the

full system (2.2.3) coincides with the extended divergence div U = divΩε U in (2.2.10).
The extended gradient and the negative extended divergence are dual: D∗

Ωε = −divΩε and div∗
Ωε =

−∇Ωε .
The Laplace–Beltrami operator ∆Ωε := divΩε ∇Ωε φ = −D∗

Ωε (∇Ωεφ) on Ωε written in the full
system (2.2.3) acquires the form

∆Ωεφ =

n∑
j=1

D2
j φ+ ∂2N φ+ H 0

C ∂N φ =

n+1∑
j=1

D2
j φ+ H 0

C Dn+1φ, φ ∈ H2(Ωε). (2.2.11)
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Proof. A similar lemma is proved in [57, Lemma 4.3], but the definition of divergence divΩε is different
there. Therefore, we expose the full proof below.

The fact that the gradients coincide follows from the choice of the full system (2.2.3):

∇φ :=
{
∂1φ, , ∂nφ

}⊤
=

n∑
j=1

(∂jφ)e
j

=

n∑
j=1

(Djφ+ NjDn+1φ)e
j =

n∑
j=1

(Djφ)d
j + (Dn+1φ)N =

n+1∑
j=1

(Djφ)d
j = ∇Ωεφ, (2.2.12)

since

ej = dj + NjN , ∂j = Dj + Nj∂N ,

n∑
j=1

NjDj = 0,

n∑
j=1

(Djφ)e
j =

n∑
j=1

(Djφ)d
j . (2.2.13)

By applying (2.2.6) and (2.2.13) we proceed as follows:

divU =

n∑
j=1

∂jUj =

n∑
j=1

DjUj +

n∑
j=1

Nj∂N Uj =

n∑
j=1

Dj

[
U0
j + Nj⟨N ,U⟩

]
+

n∑
j=1

∂N (NjUj)

=

n∑
j=1

DjU
0
j +

n∑
j=1

(DjNj)⟨N ,U⟩+ Dn+1U
0
n+1 =

n+1∑
j=1

DjU
0
j + H 0

C ⟨N ,U⟩ = divΩε U . (2.2.14)

The proved equality and the classical equality ∇∗ = −div ensure the both claimed equalities
D∗

Ωε = −divΩε and div∗
Ωε = −∇Ωε :

(∇Ωεφ,U) = (∇φ,U) = −(φ,div U) = −(φ,divΩε U).

Formula (2.2.11) for the Laplace–Beltrami operator is a direct consequence of equalities (2.2.12),
(2.2.14) and definitions. Indeed, the first n components of the gradient

∇φ = ∇Ωεφ =

n∑
j=1

(Djφ)d
j + (Dn+1φ)N

have the property (Djφ)
0 = Djφ− ⟨N ,∇Ωεφ⟩Nj = Djφ because (see the third formula in (2.2.13))

⟨N ,∇Ωεφ⟩ =
n∑
j=1

NjDjφ = 0, and we can write

∆φ = div ∇φ = divΩε DΩεφ =

n+1∑
j=1

D2
j φ+ H 0

C ⟨N ,∇φ⟩ =
n+1∑
j=1

D2
j φ+ H 0

C Dn+1φ = ∆Ωεφ.

2.3 Convex energies
Let again Ωε be a layer domain of width 2ε in the direction transversal to the mid-surface C (cf.
Section 2.2).

Any minimizer u of the energy functional

E ε(u) :=

∫
Ωε

⟨∇u,∇u⟩ dy, u ∈ H1(Ωε), (2.3.1)

should satisfy

0 =
d

dt
E ε(u+ tv)

∣∣∣
t=0

=

∫
Ωε

[
⟨∇u,∇v⟩+ ⟨∇v,∇u⟩

]
dy

= 2Re
∫
Ωε

⟨∇u,∇v⟩ dy = −2Re
∫
Ωε

⟨div∇u, v⟩ dy = −2Re
∫
Ωε

⟨∆u, v⟩ dy
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for arbitrary v ∈ H̃1(Ωε), which implies
∆u = 0 on Ωε. (2.3.2)

In other words, (2.3.2) is the Euler–Lagrange equation associated with the energy functional (2.3.1).
Similarly, a minimizer of the energy functional

E0(u) :=

∫
C

⟨∇Cu,∇Cu⟩ dσ, u ∈ H1(C ), (2.3.3)

on the hypersurface C should satisfy the following Laplace–Beltrami equation
∆Cu := divC ∇Cu = 0 on C . (2.3.4)

To treat the dimension reduction problem for the Laplace equation (see [13] for a similar consideration
in case of a flat 3D body), we assume, without restricting generality, that Ω1 (i.e., for ε = 1) is still a
layer domain. Otherwise, we can first change the variable X n = ε0X n, 0 < X n < 1, where 0 < ε0 < 1
is such that Ωε0 is still a layer domain.

Next, we introduce a new coordinate system (cf. (2.2.6))

x :=

n∑
m=1

xmem =

n∑
m=1

Xmdm + td n+1,

X k := xk − Nk⟨N , x⟩, k = 1, . . . , n, t = X n+1 := ⟨x,N ⟩ =
n∑

m=1

xmNm

(2.3.5)

and define the scalar product of elements as follows (cf. similar in (2.2.8)):

⟨X ,Y ⟩ :=
n+1∑
j=1

X jY j for X :=

n+1∑
m=1

Xmdm, Y :=

n+1∑
m=1

Y mdm.

Then (cf. (2.2.8))

⟨X ,Y ⟩ =
n+1∑
j=1

X jY j =

n∑
j=1

(xj − Nj⟨N , x⟩)
(
yj − Nj⟨N , y⟩

)
+ ⟨N , x⟩⟨N , y⟩ =

n∑
j=1

xjyj = ⟨x, y⟩.

In particular,

∥X ∥ :=

n+1∑
j=1

|X j |2 =

n∑
j=1

|xj |2 = ∥x∥. (2.3.6)

Due to Lemma 2.2.2, the classical gradient in the energy functional (2.3.1) can be replaced by the
extended gradient

E ε(u) :=

∫
Ωε

⟨DΩεu(y),DΩεu(y)⟩ dy =

ε∫
−ε

∫
C

[
|DCu(X , t)|2 + |∂tu(X , t)|2

]
dσ dt, (2.3.7)

where DC := (D1, . . . ,Dn)
⊤ is the surface gradient and u ∈ H1(Ωε) is arbitrary, since Dn+1 = ∂N =

∂t. Here C is the mid-surface of the layer domain Ωε = C × (−ε, ε) and dσ is the surface measure
on C .

Due to representation (2.3.7) and the new coordinate system (2.3.5), we can apply the scaling
with respect to the variable t and study the scaled energy. The approach is based on Γ-convergence
(see [13,77]) and can be applied to a general energy functional which is convex and has square growth.
The problem we have in mind is the following: Do these energies defined on thin n-dimensional domains
Ωε converge (and in which sense) to an energy defend on the (n−1)-dimensional Hypersurface C (the
mid-surface of Ωε) when the domain Ωε is “squeezed” infinitely in the transversal direction to C ?

In the next two sections, we apply the results developed in the present chapter to boundary value
problems for the heat conduction by a hypersurface. In particular, we show that if the thickness of
the layer domain Ωε, with the mid-surface C , tends to zero, the sequence of functionals in variational
formulation of the linear heat conduction equation Γ-converges to the functional corresponding to
some explicit boundary value problem for the Laplace–Beltrami equation on the mid-surface C .
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2.4 Variational reformulation of heat transfer problems
Let Ω be a bounded Lipschitz domain in R3 with the piecewise smooth boundary ∂Ω = CD ∪ CN ,
where CD and CN are open non-intersecting surfaces, CD ∩ CN = ∅, and their common boundary is
a smooth arc. Denote by ν = (ν1, ν2, ν3)

⊤ the unit normal on C , external with respect to Ω.
We consider the general steady-state, linear heat transfer problem for a medium occupying do-

main Ω. We assume that on the part CD of the boundary ∂Ω the temperature g is prescribed, while
on the part CN of ∂Ω it is prescribed the heat flux q.

We look for a temperature distribution T (x) in Ω, which satisfies the linear heat conduction
equation

div(A (x)∇T )(x) = f(x), x ∈ Ω, (2.4.1)
and the boundary conditions

T+(y) = g(y) on CD, (2.4.2)
−
⟨
ν(y),A +(y)(∇T )+(y)

⟩
= q(y) on CN , (2.4.3)

where A is the thermal conductivity, f is the heat source, g is the distribution of temperature and q
is the heat flux. All these quantities are supposed to be known.

We assume that A (x) is a bounded measurable and positive definite 3×3 matrix-function (cf. the
similar condition (1.4.37))

⟨A (x)ξ, ξ⟩ > C∥ξ∥2, x ∈ Ω, ξ ∈ R3.

The following inequality is an obvious consequence of the positive definiteness of A :

(A U ,U) > C∥U |L2(Ω)∥2

for all 3-vectors U = (U1, U2, U3)
⊤ ∈ L2(Ω). Further, we assume that the traces A +(y) at the

boundary C exist. Then A + has the same properties as A on Ω, namely, it is a bounded, measurable
positive definite matrix function.

We impose the following natural constraints on the solution T and on the prescribed data f , g, q:

T ∈ H1(Ω), f ∈ H̃−1(Ω), g ∈ H1/2(CD), q ∈ H−1/2(CN ). (2.4.4)

The existence of the traces ⟨ν(y),A +(y)(∇T )+⟩ ∈ H−1/2(C3), which is not ensured by the trace
theorem, follows from the Green formula∫

Ω

(div A (x)∇T )(x)ψ(x) dx

=

∫
C

⟨
ν(y),A +(y)(∇T )+(y)

⟩
ψ+(y) dσ −

∫
Ω

⟨
A (x)∇T (x),∇ψ(x)

⟩
dx (2.4.5)

by the duality between the spaces H1/2(C ) and H̃−1/2(C ), due to the fact that T is a solution to
equation (2.4.1). For this, we rewrite (2.4.5) in the form∫

C

⟨
ν(y),A +(y)(∇T )+(y)

⟩
ψ+(y) dσ =

∫
Ω

f(x)ψ(x) dx+

∫
Ω

⟨
A (x)∇T (x),∇ψ(x)

⟩
dx

and note that ψ ∈ H1(Ω) is arbitrary and, therefore, ψ+ ∈ H1/2(C ) is arbitrary, too.
First, we reduce the BVP (2.4.1)–(2.4.3) to the equivalent BVP with vanishing Dirichlet data.

Remark 2.4.1. Let us assume that the subsurface CD is smooth and g ∈ Hs(CD), s > 1
2 . There

exists a domain Ω′ with a smooth boundary C ′ := ∂Ω′ with the properties: Ω ⊂ Ω′ and CD ⊂ C ′.
Let g0 ∈ Hs(C ′) be such extension of g which maintains the space.

The Dirichlet BVP
div(A (x)∇G)(x) = 0, x ∈ Ω′,

G+(y) = g0(y) on C ′ (2.4.6)
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has a unique solution

G(x) =W
(1
2
I +W0

)−1

g0(x), x ∈ Ω′, G ∈ Hs+1/2(Ω′),

where W is the double layer potential for the operator div A (x)∇ and W0 is its direct value (a singular
integral operator) on the surface C ′, I : Hs(C ′) → Hs(C ′) is a unit operator. Then the BVP

div(A (x)∇T0)(x) = f(x), x ∈ Ω,

T+
0 (y) = 0 on CD,

−
⟨
ν(y),A +(y)(∇T0)+(y)

⟩
= q0(y) on CN

(2.4.7)

is an equivalent reformulation of the BVP (2.4.1)–(2.4.3), now with vanishing Dirichlet traces. The
solutions and Neumann data are related as follows:

T0(x) := T (x)−G(x), x ∈ Ω,

q0(y) := q(y)−
(
∂νW

(1
2
I +W0

)−1

g0
)+

(y), x ∈ C .
(2.4.8)

Note that if we require higher smoothness for the Neumann data q ∈ Hr(CN ), r > −1/2, and take
g ∈ Hr+1(CD) (i.e., s = r + 1 in (2.4.6)), the Neumann data in the BVP (2.4.7) inherits the same
smoothness q0 ∈ Hr(CN ).

Let Ω ⊂ Rn be a domain with a Lipshitz boundary M := ∂Ω and M0 ⊂ ∂Ω be a subsurface of
the boundary surface which has the non-zero measure. By H̃1(Ω,M0) we denote a subspace of H1(Ω)
of those functions which have vanishing traces on the part of the boundary

H̃1(Ω,M0) :=
{
φ ∈ H1(Ω) : φ+(y) = 0, ∀ y ∈ M0

}
. (2.4.9)

This space inherits the standard norm from H1(Ω):

∥∥φ | H1(Ω)
∥∥ :=

[ ∥∥φ | L2(Ω)
∥∥2 + n∑

j=1

∥∥∂jφ | L2(Ω)
∥∥2]1/2.

Consider the functional

Φ(T ) =

∫
Ω

[1
2

⟨
A (x)∇T (x),∇T (x)

⟩
+ f(x)T (x)

]
dx+

∫
CN

q(y)T+(y) dσ, (2.4.10)

where f and q satisfy conditions (2.4.4) and T ∈ H1(Ω) has vanishing traces on CD, i.e., T ∈ H̃1(Ω,CD)
(see (2.4.9)).

The second summand in the integral on Ω is understood in the sense of duality between the spaces
H̃−1(Ω) and H1(Ω). Concerning the integral on CN : it is understood in the sense of duality between
the spaces H̃1/2(CN ) and H−1/2(CN ), since q ∈ H−1/2(CN ) and the conditions T ∈ H̃1(Ω,CD),
suppT+ ⊂ CN imply the inclusion T+ ∈ H̃1/2(CN ).

Theorem 2.4.1. Problem (2.4.1)–(2.4.3) with vanishing Dirichlet condition T+(y) = g(y) = 0 for all
y ∈ CD is reformulated into the following equivalent variational problem: let f and q satisfy conditions
(2.4.4) and look for a temperature distribution T ∈ H̃1(Ω,CD) (see (2.4.9)) which is a stationary point
of functional (2.4.10).

Proof. Let T (x) be a stationary point of functional (2.4.10). Consider the variation

δΦ =
d

dε
Φ(T + εV )|ε=0 =

∫
Ω

[⟨
A (x)∇T (x),∇V (x)

⟩
+ f(x)V (x)

]
dx+

∫
CN

q(y)V +(y) dσ. (2.4.11)
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The trial function V ∈ H1(Ω) is such that T + εV satisfies the boundary conditions. Then from the
equalities T+(y) + V +(y) = 0 = T+(y) on CD it follows that T+(y) = V +(y) = 0 on CD, i.e., T and
V have the traces vanishing on the part CD of the boundary ∂Ω.

It is clear that for those V for which the functional Φ(T + εV ) has a stationary point, we have
δΦ = 0. By applying the Gauß theorem to the first summand under the integral on Ω in (2.4.11), we
obtain the associated Euler–Lagrange equation∫

Ω

[
− div A (x)∇T (x) + f(x)

]
V (x) dx+

∫
CD

⟨
ν(y),A +(y)(∇T )+(y)

⟩
V +(y) dσ

+

∫
CN

[
q(y) +

⟨
ν(y),A +(y)(∇T )+(y)

⟩]
V +(y) dσ = 0. (2.4.12)

Since the trial function V vanishes on CD (see (2.4.9)), the integral on CD in (2.4.12) vanishes.
Now, taking arbitrary function V ∈ C∞

0 (Ω) (vanishing in the vicinity of the boundary C ), all sum-
mands in (2.4.12) except the first one vanish and we obtain∫

Ω

[
− div A (x)∇T (x) + f(x)

]
V (x) dx = 0,

which is equivalent to the basic differential equation in (2.4.1).
Therefore, it follows from (2.4.12) that∫

CN

[
q(y) +

⟨
ν(y),A +(y)(∇T )+(y)

⟩]
V +(y) dσ = 0, (2.4.13)

where the trace V + of a trial function in (2.4.13) is arbitrary. Thus we derive the boundary condition
(2.4.3).

Vice versa: Let T be a solution to the mixed problem (2.4.1)–(2.4.3) with vanishing Dirichlet traces
T+(y) = g(y) = 0 on C . Taking the scalar product of the basic equation in (2.4.1) with the solution
T , applying the Green formulae and the boundary conditions (2.4.2) with g = 0, we get the following
equality:

0 =

∫
Ω

[
− div A (x)∇T (x) + f(x)

]
T (x) dx =

∫
Ω

[
A (x)∇T (x) + f(x)

]
∇T (x) dx

+

∫
CD∪CN

⟨
ν(y),A +(y)(∇T )+(y)

⟩
T+(y) dσ =

∫
Ω

[
A (x)∇T (x) + f(x)

]
∇T (x) dx

∫
CN

q(y)T+(y) dσ.

Therefore, T is a stationary point of the functional Φ in (2.4.10).

If CD = C , CN = ∅, problem (2.4.1)–(2.4.3) reduces to the problem with a Dirichlet boundary
condition

T+(y) = 0 on C ,

and the corresponding functional Φ in variational formulation (see (2.4.10)) takes the form

ΦD(T ) =
1

2

∫
Ω

[⟨
A (x)∇T (x),∇T (x)

⟩
+ f(x)T (x)

]
dx.

If CD = ∅, CN = C , from (2.4.1)–(2.4.3) we get the problem with Neumann boundary condition

−
⟨
A +(y)ν(y), (∇T )+(y)

⟩
= q(y) on C ,
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and the corresponding functional in variational formulation (see (2.4.10)) takes the form

ΦN (T ) =
1

2

∫
Ω

[⟨
A (x)∇T (x),∇T (x)

⟩
+ f(x)T (x)

]
dx+

∫
C

q(y)T+(y) dσ.

We conclude this section with some auxiliary results on Lebesgue points of integrable functions
which is important in the next section.

Let B(x) be a ball in the Euclidean space B ⊂ Rn centered at x. The derivative of the integral at
x is defined to be

lim
B(x)→x

1

|B(x)|

∫
B(x)

f(y)dy, (2.4.14)

where |B(x)| denotes the volume (i.e., the Lebesgue measure) of B(x), and B(x) → x means that the
diameter of B(x) tends to 0. Note that∣∣∣∣ 1

|B(x)|

∫
B(x)

f(y)dy − f(x)

∣∣∣∣ = ∣∣∣∣ 1

|B(x)|

∫
B(x)

[f(y)− f(x)]dy
∣∣∣∣ 6 1

|B(x)|

∫
B(x)

|f(y)− f(x)|dy. (2.4.15)

The points x for which the right-hand side tends to zero are called the Lebesgue points of f .

Theorem 2.4.2 (Lebesgue Differentiation Theorem, Lebesgue (1910)). For an integrable function
f ∈ L1(Ω) the derivative of integral (2.4.14) exists and is equal to f(x) at almost every point x ∈ Ω.

Moreover, almost every point x ∈ Ω is a Lebesgue point of f (see (2.4.15)).

Corollary 2.4.1. If g ∈ L2(Ω), f ∈ L2(Ω× (−1, 1)), then

lim
ε→0

1

2ε

t+ε∫
t−ε

(g( · ), f( · , τ)))Ω dτ = (g( · ), f( · , t)))Ω (2.4.16)

for almost all t ∈ (−1, 1).

Proof. It is clear that g ·f ∈ L1(Ω× (−1, 1)) and for the function h(t) := (g( · ), f( · , t))Ω the inclusion
h ∈ L1((−1, 1)) is true. Thence we can apply Theorem 2.4.2 to the function h(t) and get (2.4.16).

2.5 Heat transfer in thin Layers
Let C be a C2-smooth orientable surface in R3 given by a single chart (immersion)

θ : ω → C , ω ⊂ R2,

and let ν(X ), X ∈ C , be the unit normal vector field on C with the fixed orientation. The chart
is supposed to be single just for convenience, and the multi-chart case can be considered similarly.
Denote by Ωε the layer domain, i.e., the set of all points in R3 in the distance less than ε from C .
Then for sufficiently small ε the map Θ : C × (−ε, ε) → Ωε,

Θ(X , t) = X + tν(X ) = θ(x) + tν(θ(x)), x ∈ ω,

is C1-homeomorphism and Θ(C × {0}) = C .
As noted above, we can extend unit normal vector field to the entire Ωε properly by assuming

ν(X + tν(X )) = ν(X ), X ∈ C , −ε < t < ε.

If ε is sufficiently small, the boundary M ε := ∂Ωε is represented as the union of three C1-
smooth surfaces M ε = Mε,D ∪ M−

ε,N ∪ M+
ε,N , where Mε,D = ∂C × [−ε, ε] is the lateral surface,

M+
ε,N = C × {+ε} is the upper surface and M−

ε,N = C × {−ε} is the lower surface of the boundary
M ε of layer domain Ωε.
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In the present section, we will consider the heat conduction problem by an “isotropic” medium
governed by the BVP (cf. (2.1.2) for ∆Ωε)

∆ΩεT (X , t) = f(X , t), (X , t) ∈ C × (−ε, ε),
T+(X , t) = 0, (X , t) ∈ ∂C × (−ε, ε),

(∂tT )
+(X ,±ε) = q±ε (X ), X ∈ C .

(2.5.1)

The case of an “anisotropic” medium will be treated in a forthcoming publication.
We impose the following constraints

T ∈ H1(Ωε), q±ε ∈ H̃2(C ), f ∈ L2(Ω
1),

0 is the Lebesgue point for the function f̃(t) :=

∫
C

|f(X , t)|2 dσ (2.5.2)

(see (2.4.15) and note that ∥f̃ | L1(−1, 1)∥ 6 ∥f | L2(Ω
1)∥2). The latter constraint implies that f̃(0)

exists and, due to Theorem 2.4.2,

lim
ε→0

1

ε

ε∫
−ε

f̃(t) dt =
1

ε

ε∫
−ε

∫
C

|f(X , t)|2 dσ dt = f̃(0).

The formulated BVP (2.5.1) governs a heat transfer in the body Ωε when there are thermal
sources or sinks in Ωε. The temperature on the lateral surface ∂C × (−ε, ε) is zero, the heat fluxes
are fixed on the upper and lower surfaces C± := C × {±ε). It is well known that the boundary value
problem (2.5.1), as well as its equivalent problem (2.1.4)–(2.1.6), has a unique solution T ∈ H1(Ωε)
(respectively, T0 ∈ H1(Ωε); see, e.g., [70]).

The energy functional associated with problem (2.5.1) reads (cf. Theorem 2.4.1):

E(Tε) :=

ε∫
−ε

∫
C

[1
2
(DCT

2(X , τ) +
1

2ε2
(∂τT

2(X , τ)) + F (X , τ)Tε(X , τ)
]
dσ dτ, (2.5.3)

F (X , t) := f(X , t)− 1

4ε

(
(t+ ε)2∆C q

+
ε (X )− (t− ε)2∆C q

−
ε (X )

)
− H 0

C

2ε

(
(t+ ε)q+ε (X )− (t− ε)q−ε (X )

)
− 1

2ε

(
q+ε (X )− q−ε (X )

)
, (X , t) ∈ C × (−ε, ε). (2.5.4)

More generally, we consider the non-linear functional

Eε(T ) =

∫
Ωε

[
K0(∇ΩεT (x), T (x)) + Fε(x)T (x)

]
dx, (2.5.5)

where K0(∇ΩεT, T ) is strictly convex and has quadratic estimate. In the case of functional (2.5.3),

K0(∇ΩεT, T ) =
1

2

⟨
DΩεT,DΩεT

⟩
=

1

2
(DΩεT )2 =

1

2
(DCTε)

2(X , τ) +
1

2ε2
(∂τTε)

2(X , τ), (2.5.6)

and it is clear that the kernel is strictly convex because the quadratic function F (x) = x2 is strictly
convex: [θx1 + (1− θ)x2]

2 < θx21 + (1− θ)x22 for all x1, x2 ∈ R, x1 ̸= x2, 0 < θ < 1. The kernel has a
trivial quadratic estimate, since it is a quadratic function.

A nice proof of the next Lemma 1.7.5 is exposed in [2, Example 3.6].
Lemma 2.5.1. Let Ω be a domain in Rn with the Lipshitz boundary M := ∂Ω and M0 ⊂ M be a
subsurface of non-zero measure. Then the inequality∥∥φ | L2(Ω)

∥∥ 6 C
∥∥∇φ | L2(Ω)

∥∥ = C
[ n∑
j=1

∥∥∂jφ | L2(Ω)
∥∥2]1/2 (2.5.7)

holds for all functions φ ∈ H̃1(Ω,M0) and the constant C is independent of φ.
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Now we perform the scaling of the variable t = ετ , −1 < τ < 1, and study the following functionals
in the scaled domain Ω1 = C × (−1, 1):

Eε(Tε) =

1∫
−1

∫
C

[
K0

(
DCTε,

1

ε
∂tTε, Tε

)
+ FεTε

]
dσ dτ, (2.5.8)

where DC = (D1,D2,D3),D4 = ∂t. The functionals Eε(Tε) are related to the original functional E(T )
by the equality

Eε(Tε) =
1

ε
E(T ), where Tε(X , t) = T (X 1,X 2,X 3, εt), (2.5.9)

Fε(X , t) = F (X , εt) = f(X , εt)− ε

4

(
(t+ 1)2∆C q

+
ε (X )− ε

4
(t− 1)2∆C q

−
ε (X )

)
− H 0

C (X )

2

(
(t+ 1)q+ε (X )− (t− 1)q−ε (X )

)
− 1

2ε

(
q+ε (X )− q−ε (X )

)
, (X , t) ∈ C × (−ε, ε). (2.5.10)

Lemma 2.5.2. Let Fε be uniformly bounded in L2(Ω
1):

sup
ε<ε0

∥Fε|L2(Ω
1)∥ <∞. (2.5.11)

Then the energy functional Eε(T ) in (2.5.8) is correctly defined on the space H̃1(Ω1, ∂C × (−1, 1)), is
strictly convex and has the following quadratic estimate:

Eε(θT1 + (1− θ)T2) < θEε(T1) + (1− θ)Eε(T2), 0 < θ < 1,

C1

∫
Ω1

K0

(
DCT,

1

ε
∂tT, T

)
dσ dt− C2 6 Eε(T )

6 C3

[
1 +

∫
Ω1

K0

(
DCT,

1

ε
∂tT, T

)
dσ dt

]
, ∀T1, T2, T ∈ H̃1(Ω1, ∂C × (−1, 1))

(2.5.12)

for some positive constants C1, C2 and C3 not depending on ε.

Proof. Let us decompose the functional Eε(T ) in (2.5.8) into the sum of non-linear and linear parts

Eε(T ) = E(1)
ε (T ) + E(2)

ε (T ),

E(1)
ε (T ) :=

∫
Ω1

K0

(
DCT,

1

ε
∂tT, T

)
dx,

E(2)
ε (T ) :=

∫
Ω1

Fε(x)T (x) dx.

(2.5.13)

By the conditions imposed on K0 in (2.5.5), the first (non-linear) functional E(1)
ε (T ) is strictly

convex and has a quadratic estimate:

C0
1

∫
Ω1

(
⟨DCTj ,DCTj⟩+

1

ε2j
|∂tTj |2

)
dx− C0

2 6 E(1)
ε (T )

6 C0
3

[
1 +

∫
Ω1

(
⟨DCTj ,DCTj⟩+

1

ε2j
|∂tTj |2

)
dx

]
. (2.5.14)
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On the other hand, E(2)
ε (T ) is linear and, therefore, strictly convex (see the first inequality in

(2.5.12)). Thus, we only have to prove the two-sided quadratic estimate in (2.5.12) for the linear
functional E(2)

ε (T ). Due to Lemma 2.5.1 and equality (2.2.12), we can write

|E(2)
ε (T )| 6

∣∣∣∣ ∫
Ω1

Fε(x)T (x) dx

∣∣∣∣ 6 ∥∥Fε | L2(Ω
1)
∥∥∥∥T | L2(Ω

1)
∥∥

6M
∥∥∇T | L2(Ω

1)
∥∥ 6M

(1
η
+ η

∥∥∇T | L2(Ω
1)
∥∥2) 6M

(1
η
+ η

∥∥DΩ1T | L2(Ω
1)
∥∥2). (2.5.15)

Choosing η = 1 in (2.5.15) and taking into account (2.5.14) we get the right inequality in the second
line of (2.5.12), whereas taking η sufficiently small we obtain

Eε(T ) > |E(1)
ε (T )| − |E(2)

ε (T )| > C1

∥∥DΩεT | L2(Ω
ε)
∥∥2 − C2.

Let Fj = Fεj , 0 < εj ≤ 1, lim
j→∞

εj = 0 and Fεj be uniformly bounded (see (2.5.11)). Further, let

Tj = Tεj ∈ H̃1(Ω1, ∂C × (−1, 1)), j = 1, 2, . . . , be the sequence of functions with “finite energy”:

sup
j
Eεj (Tj) < +∞. (2.5.16)

Then from (2.5.14)–(2.5.15) we get

C0
1∥DΩ1Tj |L2(Ω

1)∥2

=

∫
Ω1

(1
2
⟨DCTj ,DCTj⟩+

1

2ε2j
|∂tTj |2

)
dx = C0

1Eεj (Tj)− C0
1

∫
Ω1

Fj(X , t)Tj(X , t) dσ dt

6 C0
2

(
1 +

∥∥Fj | L2(Ω
1)
∥∥∥∥Tj | L2(Ω

1)
∥∥) 6 C0

3

(
1 +

∥∥DΩ1Tj | L2(Ω
ε)
∥∥2) 1

2

, (2.5.17)

since, due to Lemma 2.5.1, ∥∥Tj | L2(Ω
1)
∥∥ 6 C0

∥∥DΩ1Tj | L2(Ω
1)
∥∥. (2.5.18)

Consequently,

sup
j

∥∥DΩ1Tj | L2(Ω
1)
∥∥ = sup

j

(∫
Ω1

(1
2
⟨DCTj ,DCTj⟩+

1

2ε2j
|∂tTj |2

)
dx

)1/2

< +∞. (2.5.19)

From (2.5.17)–(2.5.19) it follows

sup
j

∫
Ω1

|Tj |2 dx <∞, sup
j

∫
Ω1

|DCTj |2 dx <∞, sup
j

1

ε2j

∫
Ω1

|∂tTj |2 dx <∞. (2.5.20)

Note that if Tj are the scaled solutions to problem (2.1.1), then from the Euler–Lagrange equation
associated with the functional (see (2.4.12)) it follows that Eεj (Tj) = 0 and, therefore, conditions
(2.5.20) are satisfied.

Due to (2.5.20), the sequence {Tj}∞j=1 is uniformly bounded in H̃1(Ω1, ∂C × (−1, 1)) and a weakly
converging subsequence (say {Tj}∞j=1 itself) to a function T in H̃1(Ω1, ∂C × (−1, 1)) can be extracted.

The functional
H(T ) =

∫
Ω1

|∂tT |2 dx

is convex and continuous in H̃1(Ω1, ∂C ×(−1, 1)); then it is weakly lower semi-continuous and ∂tT = 0
a.e., since ∫

Ω1

|∂tT |2 dx = H(T ) ≤ lim
j

infH(Tj) = lim
j

inf
∫
Ω1

|∂tTj |2 dx = 0
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(see the last inequality in (2.5.20)). Hence T (X , t) is independent of t, i.e.,

T (X , t) = T (X ), X ∈ C , −1 ≤ t ≤ 1. (2.5.21)

Let the following conditions are fulfilled

fε(X , t) := f(X , εt) −→
ε→0

f0(X ) in L2(Ω
1), (2.5.22)

q±ε ∈ H2(C ) are uniformly bounded (with respect to ε) in H2(C ), and

lim
ε→0

q+ε = lim
ε→0

q−ε = q0 in L2(C ) (2.5.23)

and
1

2ε
(q+ε − q−ε ) −→

ε→0
q1 in L2(C ). (2.5.24)

From (2.5.22)–(2.5.24) it follows, in particular, that

Fj(X , t) → F (X , 0) in L2(Ω
1). (2.5.25)

Set

E(0)(T ) =

{
E(1)(T ) + E(2)(T ) for T ∈ P(C ),

+∞, for T ̸∈ P(C ),
(2.5.26)

where P(C ) is defined in (2.1.10), and

E(1)(T ) :=
1

2

∫
Ω1

⟨
(DΩ1T )(x, t), (DΩ1T )(x, t)

⟩
dσ dt =

∫
C

⟨
(DCTC )(X ), (DCTC )(X )

⟩
dσ, (2.5.27)

E(2)(T ) :=

∫
Ω1

F (X , 0)T (X , t) dσ dt = 2

∫
C

(
f0(X )− H 0

C q0(X )− q1(X )
)
TC (X ) dσ. (2.5.28)

Let us check that the sequence Eεj Γ-converges to E(0) in H̃1(Ωε, ∂C × (−1, 1)). Indeed, we have

Eεj (Tj) = E(1)
εj (Tj) + E(2)

εj (Tj),

where
E(1)
εj (Tj) =

∫
Ω1

(1
2
⟨DCTj ,DCTj⟩+

1

2ε2j
|∂tTj |2

)
dx, E(2)

εj (Tj) =

∫
Ω1

FjTj dx.

The functional E(1)(T ) is convex and continuous and so it is weakly lower semicontinuous in
H̃1(Ωε, ∂C × (−1, 1)), therefore,

lim inf
j
E(1)
εj (Tj) > lim inf

j
E(1)(Tj) > E(1)(T ).

The sequence E
(2)
εj (Tj) converges to E(2)(T ), since Fj(X , t) → F (X , 0) and Tj ⇀ T in L2(Ω

1).
Consequently,

lim inf
j
Eεj (Tj) > E(0)(T ).

This proves lim inf inequality for the sequence Eεj .
Note that

E(2)(T ) =

∫
C

1∫
−1

F (X , 0)T (X , t) dt dσ = 2

∫
C

F (X , 0)TC (X ) dσ.

To show that the lower bound is reached, i.e., to build a recovery sequence Tj , we fix TC ∈ H1(C ) and
set T (X , t) = TC (X ), X ∈ C , t ∈ (−1, 1). Define recovery sequence as Tj(x, t) = T (x, t) = TC (x).
Then ∂tTj = ∂tT = 0 and

lim
j→∞

Eεj (Tj) = lim
j→∞

E(1)
εj (T ) + lim

j→∞
E(2)
εj (T ) = E(1)(T ) + E(2)(T ) = E(0)(T ).

We have proved the following result.
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Theorem 2.5.1. If conditions (2.5.22)–(2.5.24) are fulfilled, then the functional in (2.5.8) Γ-converges
to the functional E(0)(T ) defined in (2.1.11) as ε→ 0.

Now we are able to prove the main Theorem 2.1.1 formulated in the introduction.

Proof of Theorem 2.1.1. The first part of the theorem, i.e., Γ-convergence of functional (2.1.11) to
functional E(0) defined by (2.1.11), is proved in Theorem 2.5.1.

The concluding assertion that the BVP (2.1.12) is an equivalent reformulation of the minimization
problem with the energy functional (2.1.11) is explained in Theorem 2.4.1.



Chapter 3

Shell equations in terms of
Günter’s derivatives, derived by the
Γ-convergence

In the present chapter, we expose results on mixed boundary value problems for the Lamé equation in
a thin layer Ωε = C × (−ε, ε) around a surface C with the Lipshitz boundary (cf. (2.2.1)). The main
objective is to find out what happens in Γ-limit when the thickness of the layer converges to zero.
The limit BVP for the Lamé equation on the surface is derived in explicit form in terms of Günter’s
derivatives (see (0.0.9)) and it is shown how the Neumann boundary condition in the initial BVP on
the upper and lower surfaces wanders into the right-hand side of the equation in the Γ-limit. For
this, we apply the variational formulation and the calculus of Günter’s tangent differential operators
on a hypersurface and layers, which allow global representation of basic differential operators and of
corresponding boundary value problems in terms of the curvilinear coordinates on the surface C .

3.1 Introduction
Let C ⊂ R3 be an open surface with the boundary Γ = ∂C in the Euclidean space R3, represented by
a single coordinate function

θ : ω → C , (3.1.1)

where ω is open simple connected domain in R2 with Lipschitz boundary ∂ω. Let ζ : S → ω be the
inverse mapping

ζ : S → ω, θ ◦ ζ = Id : S → S , ζ ◦ θ = Id : ω → ω (3.1.2)

(the case of multiple coordinate function is similar and we skip this case for simplicity).
Denote by ν(X ) = (ν1(X ), ν2(X ), ν3(X ))⊤, X ∈ C , the normal vector field on C and let N (x) =

(N1(x),N2(x),N3(x))
⊤ be its extension in the neighbourhood UC of the surface C . It is well known

that such an extension is unique under some natural constraints (see [66] for details).
The equations of three-dimensional linearized elasticity have been extensively studied, but mostly

in Cartesian coordinates. The linear shell theories justified in this Chapter from three-dimensional
elasticity require, however, that these equations are recorded rather in terms of curvilinear coordinates
that “follow the geometry” of the shell in a most natural way. Accordingly, the purpose of this
preliminary section is to provide a thorough derivation and a mathematical treatment of the equations
of linearized three dimensional elasticity in terms of special curvilinear coordinates.

The 3-tuple of tangent vector fields to the surface g1 := ∂1Θ, g2 := ∂2Θ (the covariant metric
tensor) and the proper extension g3 := N of normal vector field ν from the surface C into the neigh-
borhood Ωh depends only on the variable x′ ∈ C and constitutes a basis in Ωh. That means that an

arbitrary vector field U =
3∑
j=1

Uje
j can also be represented with this basis in “curvilinear coordinates”.

72
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Along with the covariant metric tensor it is used the contravariant metric tensor gj , . . . , gn−1 which
is a bi-orthogonal system to the system of covariant metric tensors ⟨gj , gk⟩ = δjk, where δjk denotes
the Kroneker’s symbol, j, k = 1, 2 (see, e.g., [22, 23]). For example, using the Christofells symbols

Γijk := ⟨gi, ∂jgk⟩, covariant derivatives are defined vi∥j := ∂jvi −
2∑
k=1

Γkijvk.

Consider the problem of deformation of an isotropic layer domain Ωh := C × (−h, h) of thickness
2h around the mid-surface C which has the nonempty Lipschitz boundary ∂C . The deformation is
governed by the Lamé equation, with the classical mixed boundary conditions, the Dirichlet conditions
on the lateral surface ΓhL := ∂C ×(−h, h) and the Neumann conditions on the upper and lower surfaces
Γ± := C × {±h}:

LΩhU(x) = F (x), x ∈ Ωh := C × (−h, h),
U+(t) = G(t), t ∈ ΓhL := ∂C × (−h, h),

(T(X ,∇)U)+(X ) =H(X ,±h), (X , t) ∈ Γ± = C × {±h}.
(3.1.3)

Here U(x) = (U1(x), U2(x), U3(x))
⊤ is the displacement vector, LΩh is the Lamé differential operator

and (T(X ,∇) is the traction operator

LΩhU = −µ∆U − (λ+ µ)∇divU ,

[T(X ,∇)U ]j = λ νj∂kUk + µ νk∂jUk + µ∂νU j , j = 1, 2, 3.
(3.1.4)

We consider the BVP (3.1.3) in the following weak classical setting:

U ∈ H1(Ωh), F ∈ H̃−1(Ωh), G ∈ H
1
2 (ΓhL), H( · ,±h) ∈ H− 1

2 (C ). (3.1.5)

For definitions of Bessel potential spaces Hs, H̃s, see, e.g., [133].
Let us consider the following subspace of H1(Ωh):

H̃1(Ωh,ΓhL) :=
{
V ∈ H1(Ωh) : V +(t) = 0 for all t ∈ ΓhL

}
. (3.1.6)

Theorem 3.1.1. The BVP (3.1.3) in the weak classical setting (3.1.5) has a unique solution.

Proof. Since the Lamé operator LΩh is strictly positive on the subspace H̃1(Ωh,ΓhL),

⟨LΩhV ,V ⟩ >M∥V ∥2, ∀V ∈ H̃1(Ωh,ΓhL), (3.1.7)

the proof easily follows from the Lax–Milgram Lemma (see, e.g., [70] for similar proofs).

3.2 Lamé operator in curvilinear coordinates
In the present section, we use the notation from Section 2.2 and will represent Lamé and traction
operators in curvilinear coordinate system introduced in Section 2.2.

Lemma 3.2.1. A matrix-operator A = [Ajk]3×3 written in curvilinear coordinates (2.2.3)–(2.2.6)
acquires the form

A =


A11 A12 A13 ⟨A1, · ,ν⟩
A21 A22 A23 ⟨A2, · ,ν⟩
A31 A32 A33 ⟨A3, · ,ν⟩

⟨A · ,1,ν⟩ ⟨A · ,2,ν⟩ ⟨A · ,3,ν⟩ ⟨Aν,ν⟩

 , (3.2.1)

Aj, · := (Aj,1,Aj,2,Aj,3)
⊤, A · ,j := (A1,j ,A2,j ,A3,j)

⊤, j = 1, 2, 3.
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Proof. Indeed, take the vector-function U = (U1, U2, U3) and proceed as follows:

AU =
3∑

j,k=1

AjkUke
j =

3∑
j,k=1

Ajk(U
0
k + νkU

0
4 )(d

j + νjd
4)

=

3∑
j,k=1

AjkU
0
kd

j +

3∑
j,k=1

AjkνjU
0
kd

4 +

3∑
j,k=1

AjkνkU
0
4d

j +

3∑
j,k=1

AjkνjνkU
0
4d

4

=


A11 A12 A13 ⟨A1, · ,ν⟩
A21 A22 A23 ⟨A2, · ,ν⟩
A31 A32 A33 ⟨A3, · ,ν⟩

⟨A · ,1,ν⟩ ⟨A · ,2,ν⟩ ⟨A · ,3,ν⟩ ⟨Aν,ν⟩



U0
1

U0
2

U0
3

U0
4


and (3.2.1) is proved.

The Lamé operator

LU = −µ∆U − (λ+ µ)∇divU = −
[
µδjk∂

2
k + (λ+ µ)∂j∂k

]
3×3

U

=
[
−

3∑
k,ℓ=1

cijkℓ∂j∂ℓ

]
3×3

U , cijkℓ = λδijδkℓ + µ(δikδjℓ + δiℓδjk) (3.2.2)

is formally self-adjoint differential operator of the second order and, written in the full system (2.2.3),
acquires the form

LΩhU0 = −µ∆ΩhU0 − (λ+ µ)∇Ωh divΩh U0. (3.2.3)
To reformulate the BVP (3.1.3) in curvilinear coordinates we also need to represent the traction

operator (cf. (3.1.4))

T(x, ∂)U =

3∑
j,k=1

(
Tjk(x, ∂)Uk

)
ej

=

3∑
j,k=1

({
λνj∂k + µνk∂j + δkjµ∂ν

}
Uk

)
ej , U = (U1, U2, U3)

⊤ =

3∑
j=1

Uke
k

in Günter’s derivatives:

T(X ,D) =

3∑
j,k=1

ej ⊗ ek
{
λνj∂k + µνk∂j + δkjµ∂ν

}
= λ

3∑
k=1

d4 ⊗ (dk + νkd
4)(Dk + νkD4) + µ

3∑
k=1

(dk + νkd
4)⊗ (dk + νkd

4)D4

+ µ

3∑
j=1

(dj + νjd
4)⊗ d4(Dj + νjD4) =


µD4 0 0 µD1

0 µD4 0 µD2

0 0 µD4 µD3

λD1 λD2 λD3 (λ+ 2µ)D4

 , (3.2.4)

since

∂ν = D4,

3∑
j=1

νje
j = ν = d4,

3∑
k=1

νkd
k = 0,

3∑
k=1

ν2k = 1.

3.3 Convex energies
In the present section, we expose some results about convex energies and energy functionals from [77]
and endow it with description of similar results in curvilinear coordinates introduced in Section 2.2.
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Let an elastic body occupy a thin domain Ωh (see (2.2.1)) in a reference configuration and let a
three-dimensional vector U : Ωh → R3 represent the deformation of the body subject to the action of
internal and external forces. We assume that U is sufficiently smooth mapping, U ∈ H2(C ), and the
elastic energy of the deformation is represented by a non-linear functional

E (h)(U) :=

∫
Ωh

W (∇U(x)) dx =

∫
Ωh

W
(
[∂jUk]3×3

)
dx. (3.3.1)

The non-linear stored energy function W : M3×3 → R has a single energy well at the group of
orthogonal matrices

SO(3) :=
{
A ∈ M3×3 : A⊤A = AA⊤ = I

}
.

The stored energy function W is subject to the following constraints:

1. W ∈ C(M3×3), W ∈ C2 in a neighbourhood of SO(3);

2. W is frame-indifferent: W (F ) =W (RF ), ∀F ∈ M3×3, ∀R ∈ SO(3);

3. W (F ) ≥ C dist2(F, SO(3)), W (F ) = 0 if F ∈ SO(3).

(3.3.2)

The condition W ∈ C(M3×3) in (3.3.2) can be weakened to include energy functions W which become
+∞ outside an open neighbourhood of SO(3), such as the following model functional for isotropic
materials which goes back to St. Venant and Kirchhoff:

W (F ) =

µ
∣∣∣√F⊤F − I

∣∣∣2 + λ

2

(
Tr

(√
F⊤F − I

))2

, detF > 0,

+∞ otherwise.

Let us rewrite the functional of non-linear elastic energy of a deformation E (h)(U) in (3.3.1) in
curvilinear coordinates (2.2.3)–(2.2.6):

E
(h)
0 (U0) :=:

∫
C

h∫
−h

W0

(
DΩhU0(x′, t)

)
dσ dt, (3.3.3)

W0

(
DΩhU0(x′, t)

)
:=W

([
(Dj + Nj(x

′)D4)(U
0
k (x

′, t) + Nk(x
′)U0

4 (x
′, t))

]
3×3

)
.

Lemma 3.3.1. The non-linear stored energy function W0 : M4×4 → R has a single energy well at the
set of matrices A(4), which consists of matrices of the form

A =


a11 a12 a13 ⟨ν,a1, · ⟩
a21 a22 a23 ⟨ν,a2, · ⟩
a31 a32 a33 ⟨ν,a3, · ⟩

⟨ν,a · ,1⟩ ⟨ν,a · ,2⟩ ⟨ν,a · ,3⟩ ⟨Aν,ν⟩

 = V ⊤A0V , (3.3.4)

aj, · := (aj,1, aj,2, aj,3)
⊤, a · ,j := (a1,j , a2,j , a3,j)

⊤, j = 1, 2, 3,

where A = [ajk]3×3 ∈ SO(3) is an orthogonal matrix and A0, V are given by the formulae

A0 =


a11 a12 a13 0
a21 a22 a23 0
a31 a32 a33 0
0 0 0 0

 , V :=


1 0 0 ν1
0 1 0 ν2
0 0 1 ν3
0 0 0 1

 . (3.3.5)

The matrix V is invertible and the inverse is

V −1 :=


1 0 0 −ν1
0 1 0 −ν2
0 0 1 −ν3
0 0 0 1

 .
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The stored energy function W0 is subject to the following constraints:

1. W0 ∈ C2(M4×4) in a neighbourhood of A(4);

2. W0(R1V
−1(V ⊤)−1GV −1(V ⊤)−1R2) =W0(G), ∀G ∈ M3×3, ∀R1,R2 ∈ A(4);

3. W0(G) ≥ Cdist2(G,A(4)), W0(G) = 0 if G ∈ A(4).
(3.3.6)

Proof. From Lemma 3.2.1 we know that a matrix function A = [ajk]3×3 in curvilinear coordinates
(2.2.3)–(2.2.6) acquires form (3.2.1). Since the functions ajk and components of the normal vector
field ν1, ν2, ν3 commute, we can represent the matrix A0 as follows:

A0 =


a11 a12 a13 ⟨ν,a1, · ⟩
a21 a22 a23 ⟨ν,a2, · ⟩
a31 a32 a33 ⟨ν,a3, · ⟩

⟨ν,a · ,1⟩ ⟨ν,a · ,2⟩ ⟨ν,a · ,3⟩ ⟨Aν,ν⟩



=


1 0 0 0
0 1 0 0
0 0 1 0
ν1 ν2 ν3 0



a11 a12 a13 0
a21 a22 a23 0
a31 a32 a33 0
0 0 0 1



1 0 0 ν1
0 1 0 ν2
0 0 1 ν3
0 0 0 1

 = V ⊤A0V ,

where A0 and the invertible matrix V with its inverse V −1 are defined above. Therefore, the algebra
of orthogonal matrices SO(3) in curvilinear coordinates transforms into the set A(4) and the energy
integral E

(h)
0 has a single energy well on A(4).

Properties (3.3.6) of the energy function W0(G) follow from (3.3.2) with the help of representation
(3.3.4) and the last part of Lemma 2.2.1 (see (2.2.8)) asserting that the distance is invariant under
the change of Euclidean coordinates to the curvilinear ones.

Remark 3.3.1. From representation (3.3.4) it follows that if an initial matrix-function A = [ajk]3×3

is skew symmetric

A =


0 a12 a13

−a12 0 a13
−a13 −a23 0
0 0 0

 = −A⊤,

it maintains the skew symmetry in curvilinear coordinates (2.2.3)–(2.2.6):

A⊤ = (V ⊤A0V )⊤ = V ⊤A⊤
0 (V

⊤)⊤ = −V ⊤A0V = −A.

But if the initial matrix A = [ajk]3×3 is orthogonal A ∈ SO(3), which implies the equalities

3∑
j=1

akjajm = δkma, k,m = 1, 2, 3,

in curvilinear coordinates (2.2.3)–(2.2.6), it looses the orthogonality: A⊤=V ⊤(A0)⊤V =V ⊤(A0)−1V
is not the inverse to A (moreover, A is not invertible at all).

3.4 Variational reformulation of the problem
To apply the method of Γ-convergence, we have to reformulate the BVP (3.1.3) in an equivalent
variational problem for the energy functional. For this, note that it is sufficient to consider the BVP
with wanishing Dirichlet condition on the lateral surface:

LΩhU(x) = F (x), x ∈ Ωh := C × (−h, h),
U+(t) = 0, t ∈ ΓhL := ∂C × (−h, h),

(T(X ,∇)U)+(X ,±h) = H(X ,±h), X ∈ C .

(3.4.1)
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Indeed, consider the BVP
LΩhV (x) = 0, x ∈ Ωh := C × (−h, h),

V +(t) = G, t ∈ ΓhL,

(T((X ,∇)V )+(X ,±h) = 0, (X ,±h) ∈ Γ± = C × {±h},
(3.4.2)

which has a unique solution V ∈ W1(Ωh) (see Theorem 3.1.1), and note that the difference U −V of
solutions to BVPs (3.1.3) and (3.4.2) satisfies the BVP (3.4.1). Thus, solution to the BVP (3.1.3) is
recovered as the sum of solutions U + V of the BVPs (3.4.1) and (3.4.2).
Theorem 3.4.1. Problem (3.4.1) with the constraints

U ∈ H1(Ωh,ΓhL), F ∈ H̃−1(Ωh), H( · ,±h) ∈ H− 1
2 (C ) (3.4.3)

is reformulated into the following equivalent variational problem: under the same constraints (3.4.3),
look for a displacement vector-function U ∈ H̃1(Ωh,ΓhL), which is a stationary point of the following
functional:

EΩh(U) :=
1

2

∫
Ωh

[
µ|∇ΩhU(x)|2 + (λ+ µ)

{
divΩh U(x)

}2
+ 2⟨F (x),U(x)⟩

]
dx

+

∫
C

[⟨
H(X ,+h),U+(X ,+h)

⟩
−
⟨
H(X ,−h),U+(X ,−h)

⟩]
dσ

=
1

2

h∫
−h

∫
S

[
µ|∇ΩhU(x)|2 + (λ+ µ)

{
divΩh U(x)

}2
+ 2⟨F (x),U(x)⟩

+
1

h

[⟨
H(X ,+h),U+(X ,+h)

⟩
−
⟨
H(X ,−h),U+(X ,−h)

⟩]]
dσ dt. (3.4.4)

Remark 3.4.1. The integral on C in (3.4.4) is understood in the sense of duality between the spaces
H̃ 1

2 (C ) and H− 1
2 (C ) because H( · ,±h) ∈ H− 1

2 (CN ) and the condition U ∈ H̃1(Ωh,ΓhL) implies the
inclusion U+( · ,±h) ∈ H̃ 1

2 (CN ).
Proof of Theorem 3.4.1. Let U be a solution to the mixed problem (3.4.1). By taking the scalar
product of the first equation LΩhU(x) = F (x) in (3.4.1) with a function V ∈ H̃1(Ωh,ΓhL) and
applying the Green formulae we get the following equality:∫
Ωh

⟨
F (x),V (x)

⟩
dx =

∫
Ωh

⟨
LΩhU(x),V (x)

⟩
dx

= −
∫
Ωh

[
µ
⟨
∇ΩhU(x),∇ΩhV (x)

⟩
+ (λ+ µ)

⟨
divΩh U(x),divΩh V (x)

⟩]
dx

+

∫
Γh
L

⟨
(T(y,∇)U)+(y),V +(y)

⟩
dσ

+

∫
C

[⟨
(T(y,∇)U)+(y),V +(X ,+h)

⟩
−

⟨
(T(y,∇)U)+(y),V +(X ,−h)

⟩]
dσ.

By inserting the boundary conditions from (3.4.1) we derive that the solution U to the BVP (3.4.1)
solves the following variational problem for arbitrary trial function V ∈ H̃1(Ωh,ΓhL):∫

Ωh

[
µ
⟨
∇ΩhU(x),∇ΩhV (x)

⟩
+ (λ+ µ)

⟨
divΩh U(x),divΩh V (x)

⟩]
dx

= −
∫
Ωh

⟨F (x),V (x)⟩ dx+

∫
C

[⟨
H(X ,+h),V +(X ,+h)

⟩
−

⟨
H(X ,−h),V +(X ,−h)

⟩]
dσ. (3.4.5)
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Next, note that the quadratic form (i.e., when V = U) in the left-hand side of equality (3.4.5)
is positive definite in the space H̃1(Ωh,ΓhL) and, therefore, defines an equivalent norm in the Hilbert
space H̃1(Ωh,ΓhL). On the other hand, the functional in the right-hand side with a fixed U is bounded
in the same space H̃1(Ωh,ΓhL). Therefore, by the Riesz theorem on functionals in the Hilbert spaces,
there exists a unique function U ∈ H̃1(Ωh,ΓhL) which defines the functional in (3.4.5).

Now let U ∈ H̃1(Ωh,ΓhL) be a solution to the variational problem (3.4.5) and V ∈ H̃1(Ωh,ΓhL) is
arbitrary. A direct verification shows that

EΩh
(U + V ) = EΩh

(U) +
[
A (U ,V )− F (V )

]
+

1

2
A (V ,V ), (3.4.6)

where A (U ,V ) is a bilinear form and F (V ) is a functional

A (U ,V ) =

∫
Ωh

[
µ
⟨
∇ΩhU(x),∇ΩhV (x)

⟩
+ (λ+ µ)

⟨
divΩh U(x),divΩh V (x)

⟩]
dx,

F (V ) = −
∫
Ωh

⟨F (x),V (x)⟩ dx

+

∫
C

[⟨
H(X ,+h),V +(X ,+h)

⟩
−

⟨
H(X ,−h),V +(X ,−h)

⟩]
dσ,

(3.4.7)

and the equality
EΩh

(U) =
1

2
A (U ,U)− F (U) (3.4.8)

holds. Then, due to (3.4.5)–(3.4.6),

A (U ,V )− F (V ) = 0 for all V ∈ H̃1(Ωh,ΓhL)

implies

EΩh
(U + V )− EΩh

(U) =
1

2
A (V ,V ) > C

2

∥∥V | H̃1(Ωh)
∥∥2, ∀V ∈ H̃1(Ωh,ΓhL)

and, thus, U ∈ H̃1(Ωh,ΓhL) is the minimizer of the functional EΩh
(U) in this case.

Conversely: Let U ∈ H̃1(Ωh,ΓhL) be the minimizer of EΩh
(V ) and V ∈ H̃1(Ωh,ΓhL) be arbitrary.

The inequality (cf. (3.4.6))

0 6 EΩh
(U + εV )− EΩh

(U) = ε
{
A (U ,V )− F (V )

}
+
ε2

2
A (V ,V ), ∀ ε ∈ R,

implies that A (U ,V ) = F (V ). Indeed, the first summand in the right-hand side of the equality
dominates for small ε (positive and negative) and the second is non-negative. If we assume the
contrary A (U ,V ) ̸= F (V ), the difference EΩh

(U +θV )−EΩh
(U) would become negative for certain

small ε, which is a contradiction.

By using representations (2.2.9) and (2.2.10) of extended gradien and extended divergence, we
rewrite the energy functional in the following form:

EΩh(U0) =
1

2

h∫
−h

∫
C

[
µ

4∑
j=1

{ 3∑
α=1

(DαU
0
j (X , t))2 +

(∂U0
j (X , t)

∂t

)2

+ 2⟨F 0(X , t),U0(X , t)⟩
}

+ (λ+ µ)

{ 3∑
α=1

DαU
0
α(x) +

∂U0
4 (X , t)

∂t
+ 2HC (X )U0

4 (X , t)

}2

+
1

h
{
⟨
H0(X ,+h),U0,+(X ,+h)

⟩
−
⟨
H0(X ,−h),U0,+(X ,−h)

⟩}]
dσ dt, (3.4.9)

U0 := (U0
1 , U

0
2 , U

0
3 , U

0
4 )

⊤, D4 =
∂

∂t
, x = (X , t), X ∈ C , t ∈ (−h, h).
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Next, we perform the scaling of the variable t = hτ , −1 < τ < 1, divide by h the scaled energy
functional and study the following functionals in the scaled domain Ω1 = C × (−1, 1):

E 0
Ωh(U

0
h) =

1

h
EΩh(U0

h) =
1

2

1∫
−1

∫
C

Q4

(
∇CU0(X , hτ), h−1∂τU

0(X , hτ)
)
dσ dτ,

Q4

(
∇SU0(X , hτ), h−1∂tU

0(X , hτ)
)
:= µ

4∑
j=1

{
(∇CU

0
j (X , hτ))2 +

( 1

h

∂U0
j (X , hτ)

∂τ

)2
}

+(λ+ µ)

{
divC Û

0
(X , hτ) + 2HC (X )U0

4 (X , hτ) +
1

h

∂U0
4 (X , hτ)

∂τ

}2

+2
⟨
F 0(X , hτ),U0(X , hτ)

⟩
+
1

h

[⟨
H0(X ,+h),U0,+(X ,+h)

⟩
−
⟨
H0(X ,−h),U0,+(X ,−h)

⟩]
,

(3.4.10)

where

U0 := (U0
1 , U

0
2 , U

0
3 , U

0
4 )

⊤ = (Û
0
, U0

4 )
⊤, Û

0
:= (U0

1 , U
0
2 , U

0
3 )

⊤, U0
h(X , τ) := U0(X , hτ),

F 0 := (F 0
1 , F

0
2 , F

0
3 , F

0
4 )

⊤, F 0
j := Fj − νjF

0
4 , F 0

4 := ⟨ν,F ⟩,

and ∇C , divC are the surface gradient and divergence:

∇Cφ := (D1φ,D2φ,D3φ)
⊤, divC V :=

3∑
α=1

DαVα.

Lemma 3.4.1. The energy functional E 0
Ωh(U

0
h) in (3.4.11) is correctly defined on the space H̃1(Ω1,Γ1

L)
(see (3.1.6)) and is convex

E 0
Ωh(θU

0
h + (1− θ)V

0

h) 6 θE 0
Ωh(U

0
h) + (1− θ)E 0

Ωh(V
0

h), 0 < θ < 1. (3.4.11)

Moreover, if F 0
h(X , τ) := F 0(X , hτ) are uniformly bounded in L2(Ω

1),

sup
h<h0

∥F 0
h|L2(Ω

1)∥ <∞. (3.4.12)

for some h0 > 0, the energy functional has the following quadratic estimate: there exist positive
constants C1, C2 and C3 independent of the parameter h such that

C1

∫
Ω1

( 4∑
j=1

{
(∇CU

0
j (X , hτ))2 +

( 1

h

∂U0
j (X , hτ)

∂τ

)2
})

dx− C2 6 E 0
Ωh(U

0
h)

6 C3

[
1 +

∫
Ω1

( 4∑
j=1

{
(∇CU

0
j (X , hτ))2 +

( 1

h

∂U0
j (X , hτ)

∂τ

)2
})

dx

]
(3.4.13)

for all U0
h ∈ H̃1(Ω1,Γ1

L).

Proof. Let us decompose the energy functional into the sum of quadratic and linear functionals

E 0
Ωh(U

0
h) = EQ

Ωh(U
0
h) + E L

Ωh(U
0
h), (3.4.14)

EQ
Ωh(U

0
h) :=

1

2

1∫
−1

∫
C

[
µ

4∑
j=1

{
(∇CU

0
j (X , hτ))2 +

( 1

h

∂U0
j (X , hτ)

∂τ

)2
}

+ (λ+ µ)
{

divC Û
0
(X , hτ) + 2HC (X )U0

4 (X , hτ) +
1

h

∂U0
4 (X , hτ)

∂τ

}2
]
dσ dτ,



80 Tengiz Buchukuri, Roland Duduchava

E L
Ωh(U

0
h) :=

1

2

1∫
−1

∫
C

[
2
⟨
F 0(X , hτ),U0(X , hτ)

⟩
+

1

h

[⟨
H0(X ,+h),U0,+(X ,+h)

⟩
−
⟨
H0(X ,−h),U0,+(X ,−h)

⟩]]
dσ dτ .

The convexity of the linear part E L
Ωh(U

0
h) is trivially obvious. The convexity of the quadratic part

EQ
Ωh(U

0
h) is also rather trivial to prove if based on the well-known inequality[

θa+ (1− θ)b
]2

= θ2a2 + 2θ(1− θ)ab+ (1− θ)2b2

6 θ2a2 + θ(1− θ)(a2 + b2) + (1− θ)2b2 = θa2 + (1− θ)b2.

Thus, inequality (3.4.11) is proved.
Inequality (3.4.13) is trivial for the quadratic part EQ

Ωh(U
0
h) of the energy functional (even with

C2 = 0) and since the quadratic part dominates the linear one E L
Ωh(U

0
h) 6 C4E

Q
Ωh(U

0
h), the proof for

E 0
Ωh(U

0
h) = EQ

Ωh(U
0
h) + E L

Ωh(U
0
h) follows from the proved one for EQ

Ωh(U
0
h).

Theorem 3.4.2. Let the weak limits

lim
h→0

F 0(X , hτ) = F 0(X ), lim
h→0

1

2h

[
H0(X ,+h)−H0(X ,−h)

]
= H(1),0(X ), (3.4.15)

F 0,H(1),0 ∈ L2(C ),

exist, respectively, in L2(Ω
h) and L2(C ). Then the Γ-limit of the energy functional E 0

Ωh(U
0
h) exists:

lim
h→0

E 0
Ωh(U

0
h) = E 3

C (U0) :=

∫
C

Q3(U
0(X )) dσ, (3.4.16)

where

Q3(U
0(X )) =

µ

2

3∑
j=1

(∇CU
0
j (X ))2

+
µ

2

λ+ µ

λ+ 2µ

{
divC Û

0
(X ) + HC (X )U0

4 (X )
}2

+ 2
⟨
F 0(X ) +H(1),0(X ),U0(X )

⟩
(3.4.17)

and

U0(X ) := (U0
1 (X ), U0

2 (X ), U0
3 (X ), U0

4 (X ))⊤, Û
0
(X ) := (U0

1 (X ), U0
2 (X ), U0

3 (X ))⊤,

U0
j (X ) := U0

j (X , 0) = Uj(X )− νj(X )U0
4 (X ), j = 1, 2, 3,

U0
4 (X ) := (ν(X ),U(X )), U(X ) = (U1(X , 0), U2(X , 0), U3(X , 0))⊤,

F 0 := (F 0
1 , F

0
2 , F

0
3 , F

0
4 )

⊤, F 0
j (X ) := F 0

j (X , 0) = Fj(X , 0)− νj(X )F 0
4(X ), j = 1, 2, 3,

F 0
4 (X ) := (ν(X ),F (X )), F (X ) = F (X , 0) = (F1(X , 0), F2(X , 0), F3(X , 0))⊤.

(3.4.18)

Proof. To check the Γ-convergence (3.4.16), first we prove the estimate

E 0
Ωh(U

0
h) > E 3

Ωh(U
0
h) :=

∫
C

Q3(U
0(X )) dσ. (3.4.19)

For this, we rewrite the quadratic form

Q4

(
U0(X , hτ), h−1∂tU

0(X , hτ)
)
:=

µ

2

4∑
j=1

{
(U0

α(X , hτ))2 + c2j (h)
}
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+
λ+ µ

2

{
divC Û

0
(X , hτ) + 2HC (X )U0

4 (X , hτ) + c4(h)
}2

+
⟨
F 0(X , hτ),U0(X , hτ)

⟩
+

1

2h

[⟨
H0,+(X ),U0,+(X ,+h)

⟩
−

⟨
H0,−(X ),U0,+(X ,−h)

⟩]
and have to find the infimum with respect to 4 variables depending on h:

cj(h) :=
1

h

∂U0
j (X , hτ)

∂τ
, j = 1, 2, 3, 4. (3.4.20)

From the extremum conditions

∂Q4(U
0(X , hτ), h−1∂tU

0(X , hτ))

∂cj(h)
= µcj(h) = 0, j = 1, 2, 3,

∂Q4(U
0(X , hτ), h−1∂tU

0(X , hτ))

∂c4(h)
= µc4(h)

+ (λ+ µ)
{

divC Û
0
(X , hτ) + HC (X )U0

4 (X , hτ) + c4(h)
}
= 0

(3.4.21)

we find that

c1(h) = c2(h) = c3(h) = 0,

c4(h) = − λ+ µ

λ+ 2µ

{
divC Û

0
(X , hτ) + 2HC (X )U0

4 (X , hτ)
}
.

By introducing the obtained values into the quadratic form we get a new quadratic form E 3
Ωh(U

0
h)

which is minimum of E 0
Ωh(U

0
h) and, therefore, estimates this from below.

Thus, estimate (3.4.19) is proved.
To accomplish the proof of the Γ-convergence (3.4.16) it remains to build a recovery sequence

U0(X , hkt) =
(
U0

1(X , hkt),U
0
2(X , hkt),U

0
3(X , hkt),U

0
4(X , hkt)

)⊤
→ U0(X ) =

(
U0

1(X ),U0
2(X , ),U0

3(X ),U0
4(X )

)⊤
along which the quadratic form reaches its minimum

lim
hk→0

E 0
Ωh(U

0(X , hkt)) = E 3
C (U0(X )). (3.4.22)

The minimizing sequence U0(X , hkt) should satisfy conditions (3.4.21) and, therefore (cf. (3.4.20)),

1

hk

∂U0(X , hkτ)

∂τ
= 0, j = 1, 2, 3,

1

hk

∂U0
4(X , hkτ)

∂τ
= − λ+ µ

λ+ 2µ

{
divC Uo(X , hkτ) + 2HC (X )Uo4 (X , hkτ)

}
, (3.4.23)

lim
hk→0

U0
m(X , hkτ) = U0

m(x), m = 1, 2, 3, 4. (3.4.24)

From (3.4.12) we derive that the first 3 components of the vector-function U0(X , hkτ) is indepen-
dent of the transversal variable to the surface, of τ ∈ (−1, 1), i.e.,

U0
j (X , hkτ) = U0

j (X ) for j = 1, 2, 3, (3.4.25)

as well as its surface divergence

divC Û
0
(X , hkτ) = D1U

0
1 (X ) + D2U

0
2 (X ) + D3U

0
3 (X ) = divC Û

0
(X ).
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Solution U0
4 (X , hkτ) to the Cauchy problem (3.4.23)–(3.4.24) for the first order differential equation

depends on the surface variable X as a parameter:

U0
4 (X , hkτ) =

divC Û
0
(X )

2HC (X )
(e−A(x)hkτ − 1) + e−A(x)hkτU0

4 (X ) if HC (X ) ̸= 0, (3.4.26)

U0
4 (X , hkτ) = B(x)hkτ + U0

4 (X ) if HC (X ) = 0, (3.4.27)

where

A(x) =
2(λ+ 2µ)HC (X )

λ+ 4µ
, B(x) =

(λ+ 2µ)divC Û
0
(X )

λ+ 4µ
.

Note that if A(x) → 0, then the limit of (3.4.26) coincides to (3.4.27), so U0
4 (X , hkτ) is smooth

with respect to X .
Inserting equalities (3.4.25) and (3.4.26) into the quadratic form E 0

Ωhk
(U0

hk
) (see (3.4.9)) and

sending hk → 0 we prove that the limit in (3.4.16) is attained.

Corollary 3.4.1. The boundary value problem

µ∆C Û
0
(X ) + µ

λ+ µ

λ+ 2µ

{
∇C divC Û

0
(X ) +∇C

[
HC (X )U0

4(X )
]}

= F 0(X ) +H(1),0(X ) on C ,

µ
λ+ µ

λ+ 2µ
HC (X )

(
divC Û

0
(X ) + HC (X )U0

4(X )
)
= −(F 0

4 +H
(1),0
4 ) on C ,

U0(t) = 0 on Γ = ∂C

(3.4.28)

corresponds to the energy functional E 3
C (U0) in (3.4.16) and, therefore, can be considered as the Γ-limit

of the BVP (3.4.1).

Proof. Let U0 minimizes functional E 3
C . To determine the associated Euler–Lagrange equation, for

an arbitrary V ∈ H̃1(Ωh,ΓhL), we should solve the variational equation

d

dt
E 3

C (U0 + tV 0)
∣∣∣
t=0

=

∫
C

d

dt
Q3

(
U0(X ) + tV 0(X )

)∣∣∣
t=0

dσ = 0.

Calculating integrand and applying Stokes’ theorem we obtain

∫
C

(
2µ

3∑
j=1

∇CU
0
j · ∇CV

0
j

+
2µ(λ+ µ)

λ+ 2µ

{
divC Û0 + HCU

0
4

}{
divC V̂ 0 + HCV

0
4

}
+
⟨
F 0 +H(1),0, V 0

⟩)
dσ

−
∫
C

3∑
j=1

{
2µ∆CU

0
j +

2µ(λ+ µ)

λ+ 2µ
Dj

[
divU0

j + HCU
0
4

]
− 2

[
F 0
j +H

(1),0
j

]}
V 0
j dσ

+

∫
C

{
2µ(λ+ µ)

λ+ 2µ

[
divU0

j + HCU
0
4

]
+ 2

[
F 0
4 +H

(1),0
4

]}
HCV

0
4 dσ = 0. (3.4.29)

Taking V 0
4 = 0 and an arbitrary V̂ 0 in (3.4.29) we obtain the first equation of (3.4.28), while taking

V̂ 0 = 0 and an arbitrary V 0
4 = 0 we obtain the second equation.

Remark 3.4.2. The boundary value problem for shell (3.4.28) is written in the new coordinate system
(2.2.3)–(2.2.6) and first three components of the displacement vector

U0(X ) := (U0
1 (X ), U0

2 (X ), U0
3 (X ), U0

4 (X ))⊤
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correspond to the displacements in the direction tangent to the mid-surface C vectors d1,d2, d3

(projections of the coordinate vectors e1, e2, e3 on the surface C ), while the fourth one gives the
displacement in the direction of the normal vector field d4 = ν.

Note that components of the tangential part of the displacement vector

U0(X ) :=
(
U0
1 (X ), U0

2 (X ), U0
3 (X ), U0

4 (X )
)⊤

are linearly dependent:

ν1(X )U0
1 (X ) + ν2(X )U0

2 (X ) + ν3(X )U0
3 (X ) ≡ 0 for all X ∈ C .

3.5 Shell operator is non-negative
Main theorem of the present paper, Theorem 3.5.2, will be proved later. Here we recall main results
about Γ-limit of the energy functional EΩh(U) in (1.4.4).

Next, we perform the scaling of the variable t = hτ , −1 < τ < 1, in the modified kernel Q4(∇U)
of the quadratic part of energy functional (1.4.4) and divide by h.

Lemma 3.5.1. The scaled and divided by h energy functional

E 0
Ωh(Ũ

h
) =

1

h
EΩh(Ũ

h
) =

1

2
Q0

4(Ũ
h
)− F 0(Ũ

0

h) (3.5.1)

with the quadratic and linear parts

Q0
4(Ũ

h
) =

1∫
−1

∫
C

Q0
4

(
∇ΩhŨ

h
(X , τ)

)
dσ dτ

F 0(Ũ
0

h) = −
h∫

−h

∫
C

[
⟨F̃

0

h,U
0
h⟩+

1

h

[⟨
H̃(X ,+h), Ũ

0,+
(X ,+h)

⟩
−
⟨
H̃

0
(X ,−h), Ũ

0,+
(X ,−h)

⟩]]
dσ dτ,

F̃
0

h(X , τ) :=
(
F 0
1 (X , hτ), F 0

2 (X , hτ), F 0
3 (X , hτ), F 0

4 (X , hτ)
)⊤
, F 0

4 = NαFα,

H̃
0

h(X , τ) :=
(
H0

1 (X , hτ),H0
2 (X , hτ),H0

3 (X , hτ),H0
4 (X , hτ)

)⊤
, H0

4 = NαHα,

is correctly defined on the space H̃1(Ω1,Γ1
L) (see (3.5.1)) and is convex

E 0
Ωh

(
θŨ

h
+ (1− θ)Ṽ

h) 6 E 0
Ωh(Ũ

h
) + (1− θ)E 0

Ωh(Ṽ
h
), 0 < θ < 1, (3.5.2)

for arbitrary vector Ṽ
h
(X , τ) := (V1(X , hτ), V2(X , hτ), V 0

3 (X , hτ), V4(X , hτ))⊤, Ṽ
h
∈ H̃1(Ω1,Γ1

L).
Moreover, if F̃

0

h(X , τ) := F 0(X , hτ) is uniformly bounded in L2(Ω
1),

sup
h<h0

∥∥F̃ 0

h | L2(Ω
1)
∥∥ <∞ (3.5.3)

for some h0 > 0, the energy functional has the following quadratic estimate: there exist positive
constants C1, C2 and C3 independent of the parameter h such that

C1

∫
Ω1

[
(DαU

0
j (X , hτ))2 +

( 1

h

∂U0
j (X , hτ)

∂τ

)2
]
dx− C2 6 E 0

Ωh(Ũ
h
)

6 C3

{
1 +

∫
Ω1

[
(DαU

0
j (X , hτ))2 +

( 1

h

∂U0
j (X , hτ)

∂τ

)2
]
dx

}
(3.5.4)

for all Ũ
h
∈ H̃1(Ω1,Γ1

L).
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Proof see in [14, Lemma 3.1].

Theorem 3.5.1. Let the weak limits

lim
h→0

F (X , hτ) = F (X ), lim
h→0

1

2h

[
H(X ,+h)−H(X ,−h)

]
= H(1)(X ), F ,H(1) ∈ L2(C ) (3.5.5)

exist, respectively, in L2(Ω
h) and L2(C ). Then the Γ-limit of the energy functional E 0

Ωh(Ũ
h
) exists

Γ− lim
h→0

E 0
Ωh(Ũ

h
) = E 3

C (U) :=

∫
C

Q3(U(X )) dσ, (3.5.6)

where

Q3(U) =
µ

2

[ [
DαUβ + DβUα

]2 − 2νβνγDαUβDαUγ

]
+

2λµ

λ+ 2µ
(DαUα)

2 +
⟨
F (X ) + 2H(1)(X ), U(X )

⟩
(3.5.7)

and
U(X ) :=

(
U1(X ), U2(X ), U3(X )

)⊤
, Uα(X ) := Uα(X , 0), α = 1, 2, 3.

Proof see in [14, Theorem 3.2].

Theorem 3.5.2. Let F ,H(1) ∈ L2(C ). The vector-function U ∈ H̃1(C ) which minimizes the energy
functional E 3

C (U) in (3.5.6)–(3.5.7) is a solution to the following boundary value problem:
(LCU)α := µ

[
∆CUα + DβDαUβ − 2HC νβDαUβ − Dγ(νανβDγUβ)

]
+

4λµ

λ+ 2µ

[
DαDβUβ − 2HC ναDβUβ

]
=

1

2
Fα +H(1)

α on C ,

Uα(t) = 0 on Γ = ∂C ,

(3.5.8)

α = 1, 2, 3.

Vice versa: on the solution U ∈ H̃1(C ) to the boundary value problem (3.5.8) under the condition
F ,H(1) ∈ L2(C ), the energy functional E 3

C (U) in (3.5.6)–(3.5.7) attains the minimum.
Moreover, the operator LC in the left-hand side of the shell equation (3.5.8) is elliptic, positive

definite and has finite-dimensional kernel, which consists of the solutions to the following system of
equations:

DαUβ + DβUα −
∑
γ

[
νανγ(DβUγ) + νβνγ(DαUγ)

]
≡ 0, α, β = 1, 2, 3. (3.5.9)

The boundary value problem (3.5.8) has a unique solution in the classical setting:

U := (U1, U2, U3)
⊤ ∈ H1(C ),

1

2
F + H(1) ∈ L2(C ). (3.5.10)

Proof. The first part of the theorem that BVP (3.5.8) is the Γ-limit of the BVP (1.4.1) (i.e., the
solution to the BVP (3.5.8) U ∈ H̃1(C ) minimizes the energy functional E 3

C (U) in (3.5.6)–(3.5.7)) is
proved in [14, Theorem 3.3].

Ellipticity of the operator LC in the left-hand side of the shell equation (3.5.8) is checked directly
and it is Fredholm operator in the setting LC : H−1(C ) → H1(C ). This follows from the Lax–Milgram
Lemma (see [70, Theorem 14] for a similar proof). Therefore, LC has the finite-dimensional kernel.

Let us start with the energy functional and recall the quadratic part of the energy functional (see
(3.5.1) and formulae [14, (2.7)]):

Q0
4(U) =

h∫
−h

∫
C

Q0
4(∇U(X , t)) dσ dt, Q0

4(F ) = 2µ|E|2 + λ(TraceE)2, E =
1

2
(F + F⊤), (3.5.11)
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where F = [Fαβ ]3×3 and E = [Eαβ ]3×3 are 3 × 3 matrix and |E|2 = Trace(E⊤E) =
∑
α,β

E2
αβ . From

Lemma 3.5.1 it follows that the kernel Q0
4(F ) is non-negative:

Q0
4(F ) = 2µ

∑
α ̸=β

E2
αβ + (µ+ λ)

(∑
α

Eαα

)2

+ µ
∑
α ̸=β

(Eαα − Eββ)
2 ≥ 0. (3.5.12)

Let us rewrite the kernel Q0
4(∇U) of the quadratic part Q0

4(U) of the energy functional in (1.4.4),
(3.5.11), (3.5.12) by using the equalities

F = ∇U = [∂αUβ ]3×3, (DefU) :=
1

2

(
(∇U) + (∇U)⊤

)
=

[1
2
(∂αUβ + ∂βUα)

]
3×3

and (5.4.5) as follows:

Q4(∇U) = 2µ
∑
α̸=β

(DefU)2αβ + (µ+ λ)
(∑

α

∂αUα

)2

+ µ
∑
α̸=β

[
∂αUα − ∂βUβ

]2 (3.5.13)

= 2µ
∑
α̸=β

[
(DefU)αβ +

ναD4Uα + νβD4Uβ
2

]2
+ (µ+ λ)

(∑
α

DαUα + D4U4

)2

+ µ
∑
α̸=β

[
DαUα − DβUβ + ναD4Uα − νβD4Uβ

]2
= 2µ

∑
α̸=β

[
(DefU)αβ +

ναD4Uα + νβD4Uβ
2

]2
+ (µ+ λ)

(∑
α

DαUα + D4U4

)2

+ µ
∑
α,β

[
DαUα − DβUβ + ναD4Uα − νβD4Uβ

]2
, (3.5.14)

where
(DefU)αβ :=

DαUβ + DβUα
2

, α, β = 1, 2, 3.

Next, we perform the scaling of the variable t = hτ , −1 < τ < 1, in the modified kernel Q4(∇U)
of the quadratic part of energy functional (3.5.13), divide by h and study the following kernel in the
scaled domain Ω1 = C × (1, 1):

Q0
4

(
∇ΩhŨ

h
(X , τ)

)
=

1

h
Q4

(
∇U(X , hτ)

)
=
µ

2

∑
α ̸=β

[
DαUβ(X , hτ) + DβUα(X , hτ) +

να
h

∂Uβ(X , hτ)

∂τ
+
νβ
h

∂Uα(X , hτ)

∂τ

]2
+ (µ+ λ)

(∑
α

DαUα(X , hτ) +
1

h

∂U4(X , hτ)

∂τ

)2

+ µ
∑
α,β

[
DαUα(X , hτ)− DβUβ(X , hτ) +

να
h

∂Uα(X , hτ)

∂τ
− νβ

h

∂Uβ(X , hτ)

∂τ

]2
, (3.5.15)

where

Ũ
h
(X , τ) :=

(
U0
1 (X , hτ), U0

2 (X , hτ), U0
3 (X , hτ), U0

4 (X , hτ)
)⊤
, U0

4 = NαUα. (3.5.16)

For this, let us rewrite Q0
4 in (3.5.15) in the form

Q0
4

(
∇ΩhŨ

h
(X , τ)

)
=
µ

2

∑
α̸=β

[
DαUβ(X , hτ) + DβUα(X , hτ) + Nαξβ + Nβξα

]2
+ (µ+ λ)

(∑
α

DαUα(X , hτ) + ξ4

)2

+ µ
∑
α,β

[
DαUα(X , hτ)− DβUβ(X , hτ) + Nαξα − Nβξβ

]2
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=
µ

2

∑
α̸=β

[
DαUβ(X , hτ) + DβUα(X , hτ) + Nαξβ + Nβξα

]2
+ (µ+ λ)

(
D ivU(X , hτ) + ξ4

)2
+ µ

∑
α,β

[
DαUα(X , hτ)− DβUβ(X , hτ) + Nαξα − Nβξβ

]2
, (3.5.17)

where the variables

ξα = ξα(X , hτ) :=
1

h

∂Uα(X , hτ)

∂τ
, α = 1, 2, 3, ξ4 = Nαξα (3.5.18)

depend on h, and we will find minimum of the kernel Q0
4(∇ΩhŨ(X , τ)) with respect to the variables

ξ1, ξ2, ξ3. It was shown in [14] that by Q0
4(∇ΩhŨ

h
(X , τ)) the Γ-limit is attained on the following

values of the variables:

ξ4 = − λ

λ+ 2µ
DβUβ = − λ

λ+ 2µ
D ivU , (3.5.19)

ξα = −Nγ(DαUγ)−
λ

λ+ 2µ
NαD ivU , α = 1, 2, 3, (3.5.20)

where we remind D ivU = DαUα. From (3.5.19), (3.5.21) and (3.5.17) we find the Γ-limit Q0
3(U) (the

same as in [14], but written in a different form):

Q0
3(U) = min

ξ1,ξ2,ξ3
Q0

4(∇ΩhŨ
h
)

=
µ

2

∑
α̸=β

[
DαUβ + DβUα −

∑
γ

[
νανγ(DβUγ) + νβνγ(DαUγ)

]
− 2λ

λ+ 2µ
νανβD ivU

]2
+ (µ+ λ)

(
D ivU − λ

λ+ 2µ
D ivU

)2

+ µ
∑
α,β

[
DαUα − DβUβ −

∑
γ

[
νανγ(DαUγ)− νβνγ(DβUγ)

]
− λ

λ+ 2µ
ν2αD ivU +

λ

λ+ 2µ
ν2βD ivU

]2
=
µ

2

∑
α̸=β

[
DαUβ + DβUα −

∑
γ

[
νανγ(DβUγ) + νβνγDαUγ

]
− 2λ

λ+ 2µ
νανβD ivU

]2
+

4µ2(µ+ λ)

(λ+ 2µ)2
[
D ivU

]2
+ µ

∑
α,β

[
DαUα − DβUβ −

∑
γ

[
νανγ(DαUγ)− νβνγ(DβUγ)

]]2
. (3.5.21)

From (3.5.21) it follows that Q0
3(U) is a nonnegative quadratic form Q0

3(U) > 0 for all U ∈
H1(C ,Γ), Γ := ∂C .

3.6 Shell operator is positive definite
If Q0

3(U) ≡ 0, from (3.5.21) we get

D ivU ≡ 0,

DαUα − DβUβ −
∑
γ

[
νανγ(DαUγ)− νβνγ(DβUγ)

]
≡ 0, α ̸= β = 1, 2, 3,

DαUβ + DβUα −
∑
γ

[
νανγ(DβUγ) + νβνγ(DαUγ)

]
≡ 0, α ̸= β = 1, 2, 3.

(3.6.1)
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Taking the sum over β in the second equality in (3.6.1), we get

DαUα =
∑
γ

νανγ(DαUγ), α = 1, 2, 3. (3.6.2)

Note that the obtained equality implies both, the first and the second equalities from (3.6.1). Moreover,
it coincides with the third equality in (3.6.1) if we allow there α = β = 1, 2, 3. Thus, equation (3.5.9)
implies all three equalities in (3.6.1) and describes the kernel Ker LC of the shell equation LC in
(3.5.8).

Now we rewrite the obtained equation in the following form:

DαUα =
∑
γ

νανγ(DαUγ) = ναDα

(∑
γ

νγUγ

)
−
∑
γ

να(Dανγ)Uγ

= να(DαU4)−
∑
γ

να(Dανγ)Uγ , U4 =
∑
γ

νγUγ , α = 1, 2, 3. (3.6.3)

Similarly to (3.6.3), from equality (3.5.9) (see the third equality in (3.6.1)) we derive

DαUβ + DβUα = ναDβU4 + νβDαU4 −
∑
γ

[
να(Dβνγ) + νβ(Dανγ)

]
Uγ , α, β = 1, 2, 3. (3.6.4)

To equalities (3.5.9), (3.6.3), (3.6.4) we add the following:∑
α,β

[ [
DαUβ + DβUα

]2 − 2
∑
γ

νβνγDαUβDαUγ

]
=

∑
α,β

[ [
DαUβ + DβUα

]2]− 2
∑
α

(DαU4)
2 − 2

∑
α,β,γ

(Dανβ)(Dανγ)UβUγ

+ 2
∑
α,β

(Dανβ)(DαU4)Uβ − 2
∑
α,γ

(Dανγ)(DαU4)Uγ ≡ 0, (3.6.5)

which follows from (3.5.7) if we apply the first equality from (3.6.1) and recall that Q0
3(U) = 0.

If Uα(s) = 0, α = 1, 2, 3, equalities (3.6.3)–(3.6.5) simplify:

Dα(s)Uα(s) = να(s)DαU4(s),

DαUβ(s) + DβUα(s) = να(s)DβU4(s) + νβ(s)DαU4(s), α, β = 1, 2, 3,∑
α,β

[ [
DαUβ(s) + DβUα(s)

]2]
= 2

∑
α

(DαU4(s))
2, s ∈ ∂C .

(3.6.6)

We can see that not only the first equality in (3.6.6) is the consequence of the second one (by taking
α = β), but also the third equality follows from the second one if we take into account that

∑
α
ν2α = 1

and
∑
α
ναDα = 0.

By inserting the first equality from (3.6.6) into the second one we get

DαUβ(s) + DβUα(s) =
να(s)

νβ(s)
DβUβ(s) +

νβ(s)

να(s)
DαUα(s), α, β = 1, 2, 3.

If we succeed to prove that

DαU4(s) ≡ 0, s ∈ ∂C , α = 1, 2, 3, (3.6.7)

from (3.6.6) and (3.6.7) follow

DαUβ(s) + DβUα(s) ≡ 0, s ∈ ∂C , α, β = 1, 2, 3. (3.6.8)
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The latter implies that
DαUβ(s) ≡ 0, ∀α, β = 1, 2, 3, ∀ s ∈ ∂C . (3.6.9)

Indeed, among directing tangent vector fields {dk(s)}3k=1 generating Günter’s derivatives Dk = ∂dk ,
k = 1, 2, 3, only two are linearly independent (one of these vectors might even collapse at a point
dk(s) = 0 if the corresponding basis vector ek is orthogonal to the surface at s ∈ C ). One of these
vectors might be tangent to the boundary curve ∂C and, at least one, say d3(s), is non-tangential
to ∂C . The vector dα for α = 1, 2, 3 is a linear combination dα(s) = c1(s)d

3(s) + c2(s)τ
α(s) of

the non-tangential vector d3(s) and of the projection τα(s) := π∂Cdα(s) of the vector dα(s) to the
boundary curve ∂C at the point s ∈ ∂C . Then

(DαU3)(s) = c1(s)(∂d3U3)(s) + c2(s)(∂ταU3)(s) = c1(s)(D3U3)(s) (3.6.10)

for all s ∈ γ and all α = 1, 2, 3, because (Dd3U3)(s) = (D3U3)(s)U3, U3 vanishes identically on ∂C
and the derivative (∂τ jU0

3 )(s) = 0 vanishes, as well.
On the other hand, from (3.6.8) for β = α = 3 it follows 2D3U3(s) = 0 and, together with (3.6.10),

this gives (DαU3)(s) = 0 for all s ∈ γ, β = 1, 2, 3. Then, due to (3.6.8), (D3Uα)(s) = (DαU3)(s) = 0
and, due to (3.6.8), (DαUα)(s) = 0 for all s ∈ γ, α = 1, 2, 3. Applying again the above arguments
exposed for U3, we prove equalities (3.6.9).

3.7 Numerical approximation of the shell equation
Consider the boundary value problem (3.5.8)

(LCU)α := µ
[
∆CUα + DβDαUβ − 2HC νβDαUβ − Dγ(νανβDγUβ)

]
+

4λµ

λ+ 2µ

[
DαDβUβ − 2HC ναDβUβ

]
=

1

2
Gα, on C ,

Uα(t) = 0, on Γ = ∂C ,

(3.7.1)

α = 1, 2, 3,

where Gα = Fα + 2H
(1)
α ∈ [L2(C )], α = 1, 2, 3.

In [14, Theorem 5.1], it is proved that if U ∈ [H̃1(C )]3 is a solution of the BVP (3.7.1) and
V ∈ [H̃1(C )]3, then∫

C

{
2µ

[
DβUαDβV α + DαUβDβV α − νανβDγUβDγV α

]
+

4λµ

λ+ 2µ
DβUβDαV α

}
dσ

=

∫
C

⟨Gα, V α⟩ dσ. (3.7.2)

Therefore, the BVP (3.7.1) can be reformulated in the following way.
Find a vector U ∈ [H̃1(C )]3 satisfying equation (3.7) for any V ∈ [H̃1(C )]3

(cαβγζ(x)DβUα,DζVγ) = (Gα, Vα), ∀V ∈ [H̃1(C )]3, (3.7.3)

where
cαβγζ(x) =

4λµ

λ+ 2µ
δαβ + 2µ(δαγδβζ + δαζδβγ − νανγδβζ)

and ( · , · ) denotes an inner product

(f, g) =

∫
C

⟨f, g⟩ dσ.

Due to (3.5.21), the sesquilinear form

a(U, V ) := (cαβγζDβUα,DζVγ) (3.7.4)
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is bounded and coercive in H1
0(C )

M1

∥∥U | H1(C )
∥∥2 ≥ a(U,U) ≥M

∥∥U | H1(C )
∥∥2, ∀U ∈ [H1

0(C )]3, (3.7.5)

for some M > 0, M1 > 0. Therefore, by Lax–Milgram theorem, problem (3.7.3) possesses a unique
solution.

Now, let us consider the discrete counterpart of the problem.
Let Xh be a family of finite-dimensional subspaces approximating [H1(C )]3, i.e., such that

∪
h

Xh

is dense in [H1(C )]3.
Consider equation (3.7.3) in the finite-dimensional space Xh

a(Uh, Vh) = g̃(Vh), ∀V ∈ Xh, (3.7.6)

where g̃(Vh) = −(G,Vh)C .

Theorem 3.7.1. Equation (3.7.6) has a unique solution Uh ∈ Xh for all h > 0. This solution
converges in [H1(C )]3 to the solution U of (3.7.3) as h→ 0.

Proof. Immediately follows from the coercivity of sesquilinear form a(·, ·)

c1
∥∥Uh | [H1(C )]3

∥∥2 ≤ a(Uh, Uh) = |f̃(Uh)| ≤ c2
∥∥Uh | [H1(C )]3

∥∥ for all h. (3.7.7)

Let Uh be a unique solution of the homogeneous equation

a(Uh, ψh) = 0 for all ψh ∈ Xh. (3.7.8)

Then (3.7.7) implies ∥Uh | [H1(C )]3∥ = 0 and, consequently, Uh = 0. Therefore, equation (3.7.6) has
a unique solution. From (3.7.7) it also follows that∥∥Uh | [H1(C )]3

∥∥2 ≤ c2
c1

∥∥Uh | [H1(C )]3
∥∥.

Hence, the sequence {∥Uh | [H1(C )]3∥} is bounded and we can extract a subsequence {Uhk
} which

converges weakly to some U ∈ H1(C ).
Let us take an arbitrary V ∈ [H1(C )]3 and for each h > 0 choose Vh ∈ Xh such that Vh → V in

[H1(C )]3. Then from (3.7.6) we have

a(U, V ) = g̃(V ), ∀V ∈ [H1(C )]3.

Hence, U solves (3.7.3). Note that since (3.7.3) is uniquely solvable, each subsequence {Uhk
} converges

weakly to the same solution U and, consequently, the whole sequence {Uh} also converges weakly to U .
Now let us prove that it converges in the space [H1(C )]3.

Indeed, due to (3.7.7) we have

c1∥Uh − U∥2 ≤
∣∣a(Uh − U,Uh − U)

∣∣ ≤ ∣∣a(Uh, Uh − U)− a(U,Uh − U)
∣∣

= c1
∣∣g̃(Uh)− a(Uh, U)− g̃(Uh − U)

∣∣ → c1
∣∣g̃(U)− a(U,U)

∣∣ = 0,

which completes the proof.

We can choose spaces Xh in different ways.
In particular, consider a case, when ω in parametrization (3.1.1) is a square part of R2

ω =
{
(x1, x2) : 0 < x1 < 1, 0 < x2 < 1

}
, ϑ(ω) = C .

Allocate N2 nodes Pij = ( i
N+1 ,

j
N+1 ), i, j = 1, . . . , N , on ω.
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Let αk, k = 1, . . . , N , be piecewise linear functions defined on segment [0, 1] as follows:

αk(x) =



0, 0 ≤ x ≤ k − 1

N + 1
,

(N + 1)
(
x− k − 1

N + 1

)
,

k − 1

N + 1
< x ≤ k

N + 1
,

(N + 1)
( k + 1

N + 1
− x

)
,

k

N + 1
< x ≤ k + 1

N + 1
,

0,
k + 1

N + 1
< x ≤ 1 .

(3.7.9)

Denote by φij , i, j = 1, . . . , N , the functions

φij(x1, x2) = αi(x1)αj(x2), i, j = 1, . . . , N, (x1, x2) ∈ ω. (3.7.10)

Evidently, φij are continuous functions, which take their maximal value φij(Pij) = 1 at point Pij and
vanish outside the set

ωij = ω ∩
{
(x1, x2) : 0 ≤

∣∣∣x1 − i

N + 1

∣∣∣ ≤ 1, 0 ≤
∣∣∣x2 − j

N + 1

∣∣∣ ≤ 1

}
, (3.7.11)

consequently, they belong to H1(ω) and are linearly independent.
Denote by XN the linear span of the functions φ̂ij = φij ◦ ζ, i, j = 1, . . . , N . The space XN is

N2-dimensional space contained into H1(C ).
Let φ̃(k)

ij = (δ1k, δ2k, δ3k)φ̂ij ∈ [XN ]3, k = 1, 2, 3; i, j = 1, . . . , N .
Consider equation (3.7.6) in the space [XN ]3,

a(U, V ) = g̃(V ), ∀V ∈ [XN ]3. (3.7.12)

We are looking for a solution U ∈ [XN ]3 of equation (3.7.12) in the form

U =

3∑
m=1

N∑
i,j=1

C
(m)
ij φ̃

(m)
ij , (3.7.13)

where C(m)
ij are unknown coefficients. Substituting U in (3.7.12) and replacing V successively by φ̃(m)

ij ,
m = 1, 2, 3, i, j = 1, . . . , N , we get the equivalent system of 3N2 linear algebraic equations

3∑
m=1

N∑
i,j=1

A
(m,n)
ijkl C

(m)
ij = g

(n)
kl , n = 1, 2, 3, k, l = 1, . . . , N, (3.7.14)

where
A

(m,n)
ijkl = a

(
φ̃
(m)
ij , φ̃

(n)
kl

)
, g

(n)
kl = g̃(φ̃

(n)
kl ). (3.7.15)

The matrix A = A
(m,n)
(ijkl) is Gram’s matrix defined by the positive semidefinite bilinear form a(·, ·)

attached on basis vectors φ̃(m)
ij , m = 1, 2, 3, i, j = 1, . . . , N , of [XN ]3 , therefore, it is a nonsingular

matrix and equation (3.7.14) has a unique solution

U =

N∑
i,j,k,l=1

(A−1)
(m,n)
ijkl φ̃

(m)
ij g

(n)
kl . (3.7.16)

To calculate explicitly A(m,n)
ijkl and g

(n)
kl note that

Drφ̃
(m)
ij (y) = ∂yr φ̃

(m)
ij (y) + νr∂νφ̃

(m)
ij (y)

=

2∑
p=1

∂pφij(ζ(y))
(
∂rζp(y) + νrνl∂lζp(y)

)
(δm1, δm2, δm3)
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=

2∑
p=1

∂pφij(ζ(y))Drζp(y)(δm1, δm2, δm3), (3.7.17)

A
(m,n)
ijkl = a

(
φ̃
(m)
ij , φ̃

(n)
kl

)
= (cqrstδrmδtnDqφij ,Dsφkl)

=

2∑
α,β=1

∫
ωij∩ωkl

cqmsn(x)
(
∂αφij(x)

)(
∂βφkl(x)

)
Dqζα(ϑ(x))Dsζβ(ϑ(x))|σ′(x)| dx, (3.7.18)

g
(n)
kl = −(g, φ̃(n)

kl )C = −
∫

ωij∩ωkl

g(ϑ(x)) φ̃
(n)
kl (ϑ(x))|σ

′(x)| dx, (3.7.19)

where |σ′(x)| is a surface element of C

|σ′(x)| = |∂1ϑ(x)× ∂2ϑ(x)|.



Chapter 4

Mellin convolution equations in the
Bessel potential spaces

In the present chapter, we expose investigations of Mellin convolution equations in the Bessel potential
spaces published in the papers [37, 59]. Such equations are important while investigating boundary
value problems (BVPs) for elliptic equations on surfaces and domains with Lipschitz boundary and
will be applied in the next chapter to the investigations of BVPs for the Laplace–Beltrami and Lamé
equations on surfaces.

4.1 Introduction
It is well-known that various boundary value problems for PDE in planar domains with angular points
on the boundary, e.g., Lamé systems in elasticity (cracks in elastic media, reinforced plates), Maxwell’s
system and Helmholtz equation in electromagnetic scattering, Cauchy–Riemann systems, Carleman–
Vekua systems in generalized analytic function theory, etc., can be studied with the help of the Mellin
convolution equations of the form

Aφ(t) := c0φ(t) +
c1
πi

∞∫
0

φ(τ) dt

τ − t
+

∞∫
0

K
( t
τ

)
φ(τ)

dτ

τ
= f(t) (4.1.1)

with the kernel K satisfying the condition
∞∫
0

tβ−1|K (t)| dt <∞, 0 < β < 1, (4.1.2)

which makes it a bounded operator in the weighted Lebesgue space Lp(R+, tγ), provided 1 6 p 6 ∞,
−1 < γ < p− 1, β := (1 + γ)/p (cf. [47]).

In particular, integral equations with fixed singularities in the kernel

c0(t)φ(t) +
c1(t)

πi

∞∫
0

φ(τ)

τ − t
dt+

n∑
k=0

ck+2(t)t
k−r

πi

∞∫
0

τ rφ(τ)

(τ + t)k+1
dτ = f(t), 0 6 t 6 1, (4.1.3)

where 0 6 r 6 k, are of type (4.1.1) after localization, i.e., after “freezing” the coefficients.
The Fredholm theory and the unique solvability of equations (4.1.1) in the weighted Lebesgue

spaces were accomplished in [47]. This investigation was based on the following observation: if 1 <
p <∞, −1 < γ < p− 1, β := (1+ γ)/p, the following mutually invertible exponential transformations

Zβ : Lp(R+, tγ) → Lp(R+), Zβφ(ξ) := e−βξφ(e−ξ), ξ ∈ R := (−∞,∞),

Z−1
β : Lp(R) → Lp(R+, tγ), Z−1

β ψ(t) := t−βψ(− ln t), t ∈ R+ := (0,∞),
(4.1.4)

92
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transform equation (4.1.1) from the weighted Lebesgue space f, φ ∈ Lp(R+, tγ) into the Fourier
convolution equation W 0

Aβ
ψ = g, ψ = Zβφ, g = Zβf ∈ Lp(R) of the form

W 0
Aβ
ψ(x) = c0ψ(x) +

∞∫
−∞

K1(x− y)φ(y) dy, K1(x) = e−βx
[ c1
1− e−x

+ K (e−x)
]
.

Note that the symbol of the operator W 0
Aβ

, viz. the Fourier transform of the kernel

Aβ(ξ) := c0 +

∞∫
−∞

eiξxK1(x) dx := c0 − ic1 cotπ(β − iξ) +

∞∫
−∞

e(iξ−β)xK (e−x) dx, ξ ∈ R, (4.1.5)

is a piecewise continuous function. Let us recall that the theory of Fourier convolution operators with
discontinuous symbols is well developed, cf. [42,43,45,46,132]. This allows one to investigate various
properties of operators (4.1.1), (4.1.3). In particular, Fredholm criteria, index formula and conditions
of unique solvability of equations (4.1.1) and (4.1.3) have been established in [47].

Similar integral operators with fixed singularities in kernel arise in the theory of singular integral
equations with the complex conjugation

a(t)φ(t) +
b(t)

πi

∫
Γ

φ(τ)

τ − t
dt+

e(t)

πi

∫
Γ

φ(τ)

τ − t
dt = f(t), t ∈ Γ,

and in more general R-linear equations

a(t)φ(t) + b(t)φ(t) +
c(t)

πi

∫
Γ

φ(τ)

τ − t
dt+

d(t)

πi

∫
Γ

φ(τ)

τ − t
dt+

+
e(t)

πi

∫
Γ

φ(τ)

τ − t
dt+

g(t)

πi

∫
Γ

φ(τ)

τ − t
dt = f(t), t ∈ Γ,

if the contour Γ possesses corner points. Note that a complete theory of such equations is presented
in [62,63].

Let t1, . . . , tn ∈ Γ be the corner points of a piecewise-smooth contour Γ, and let Lp(Γ, ρ) denote
the weighted Lp-space with a power weight ρ(t) :=

n∏
j=1

|t − tj |γj . Assume that the parameters p and

βj := (1 + γj)/p satisfy the conditions

1 < p <∞, 0 < βj < 1, j = 1, . . . , n.

If the coefficients of the above equations are piecewise-continuous matrix functions, one can construct
a function Aβ⃗(t, ξ), t ∈ Γ, ξ ∈ R, β⃗ := (β1, . . . , βn), called the symbol of the equation (of the related
operator). It is possible to express various properties of the equation in terms of Aβ⃗ :

• The equation is Fredholm in Lp(Γ, ρ) if and only if its symbol is elliptic., i.e., if and only if

inf
(t,ξ)∈Γ×R

| Aβ⃗(t, ξ)| > 0;

• To an elliptic symbol Aβ⃗(t, ξ) there corresponds an integer valued index ind Aβ⃗(t, ξ), the winding
number, which coincides with the Fredholm index of the corresponding operator modulo a
constant multiplier.

For more detailed survey of the theory and various applications to the problems of elasticity we
refer the reader to [42,43,45,47–51,124].
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Similar approach to boundary integral equations on curves with corner points based on Mellin
transformation has been exploited by M. Costabel and E. Stephan [31,33].

However, one of the main problems in boundary integral equations for elliptic partial differential
equations is the absence of appropriate results for Mellin convolution operators in the Bessel potential
spaces, cf. [48, 50, 51] and recent publications on nano-photonics [10, 11, 85]. Such results are needed
to obtain an equivalent reformulation of boundary value problems into boundary integral equations
in the Bessel potential spaces. Nevertheless, numerous works on Mellin convolution equations seem
to pay almost no attention to the mentioned problem.

The first arising problem is the boundedness results for Mellin convolution operators in the Bessel
potential spaces. The conditions on kernels known so far are very restrictive. The following bound-
edness result for the Mellin convolution operator can be proved.

Proposition 4.1.1. Let 1 < p <∞ and let m = 1, 2, . . . be an integer. If a function K satisfies the
condition

1∫
0

t
1
p−m−1|K (t)| dt+

∞∫
1

t
1
p−1|K (t)| dt <∞, (4.1.6)

then the Mellin convolution operator (see (4.1.1))

A = M0
A1/p

: H̃sp(R+) → Hsp(R+)

with the symbol (see (4.1.5))

A1/p(ξ) := c0 + c1 cothπ
( i
p
+ ξ

)
+

∞∫
0

t1/p−iξK (t)
dt

t
, ξ ∈ R, (4.1.7)

is bounded for any 0 6 s 6 m.

Note that the condition

Kβ :=

∞∫
0

tβ−1|K (t)| dt <∞ (4.1.8)

ensures that the operator
M0
a : Lp(R+, tγ) → Lp(R+, tγ)

is bounded, while the norm of the Mellin convolution

M0
aβ
φ(t) :=

∞∫
0

K
( t
τ

)
φ(τ)

dτ

τ
(4.1.9)

admits the estimate ∥M0
aβ
∥ 6 Kβ .

The above-formulated result has very restricted application. For example, the operators

Nαφ(t) =
sinα
π

∞∫
0

t φ(τ)

t2 + τ2 − 2tτ cosα dτ,

N∗
αφ(t) =

sinα
π

∞∫
0

τ ψj(τ)

t2 + τ2 − 2tτ cosα dτ,

Mαφ(t) =
1

2π

∫
R+

[τ cosα− t]φ(τ)

t2 + τ2 − 2t τ cosα dτ,

− π < α < π, (4.1.10)
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which we encounter in boundary integral equations for elliptic boundary value problems (see [15]), as
well as the operators

Nm,kφ(t) :=
tk

πi

∞∫
0

τm−kφ(τ)

(τ + t)m+1
dτ, k = 0, . . . ,m,

represented in (4.1.3), do not satisfy conditions (4.1.6). In particular, Nα satisfies condition (4.1.6)
only for m = 1 and Nm,k only for m = k. Although, as we will see below in Theorem 4.3.1, all
operators Nα, N∗

α and Nm,k are bounded in the Bessel potential spaces in setting (5.6.2) for all
s ∈ R.

Here we introduce admissible kernels, which are meromorphic functions on the complex plane C
vanishing at infinity

K (t) :=

ℓ∑
j=0

dj
t− cj

+

∞∑
j=ℓ+1

dj
(t− cj)mj

, j = 0, 1, . . . , (4.1.11)

c0, . . . , cℓ ∈ R, 0 < αk := arg ck < 2π, k = ℓ+ 1, ℓ+ 2, . . . .

K (t) have poles at c0, c1, . . . ∈ C \ {0} and complex coefficients dj ∈ C. The Mellin convolution
operator

Km
c φ(t) :=

1

π

∞∫
0

τm−1φ(τ)

(t− c τ)m
dτ (4.1.12)

with the kernel
K m
c (t) :=

1

(t− c)m
, 0 < arg c < 2π

(see (4.1.1)) turns out to be bounded in the Bessel potential spaces (see Theorem 4.3.1).
In order to study Mellin convolution operators in the Bessel potential spaces, we use the “lifting”

procedure, performed with the help of the Bessel potential operators Λs
+ and Λs−r

− , which transform
the initial operator M0

a into the lifted operator Λs−r
− M0

aΛ
−s
+ acting already on a Lebesgue Lp spaces.

However, the lifted operator is neither Mellin nor Fourier convolution and to describe its properties,
one has to study the commutants of the Bessel potential operators and Mellin convolutions with
meromorphic kernels. It turns out that the Bessel potentials alter after commutation with Mellin con-
volutions and the result depends essentially on poles of the meromorphic kernels. These results allow
us to show that the lifted operator Λs−r

− MaΛ
−s
+ belongs to the Banach algebra of operators generated

by Mellin and Fourier convolution operators with discontinuous symbols. Since such algebras have
been studied before [52], one can derive various information (Fredholm properties, index, the unique
solvability) about the initial Mellin convolution equation M0

aφ = g in the Bessel potential spaces in
the settings φ ∈ H̃sp(R+), g ∈ H̃s−rp (R+) and in the settings φ ∈ H̃sp(R+), g ∈ Hs−rp (R+).

The results of the present work are already applied in [70] to the investigation of some boundary
value problems studied before by Lax–Milgram Lemma in [10,11]. Note that the present approach is
more flexible and provides better tools for analyzing the solvability of the boundary value problems
and the asymptotic behavior of their solutions.

It is worth noting that the obtained results can also be used to study Schrödinger operator on
combinatorial and quantum graphs. Such a problem recently has attracted a lot of attention, since the
operator mentioned above possesses interesting properties and has various applications, in particular,
in nano-structures (see [98,99] and the references therein). Another area for application of the present
results are Mellin pseudodifferential operators on graphs. This problem has been studied in [117], but
only in the periodic case. Moreover, some of the results can be applied in the study of stability of
approximation methods for Mellin convolution equations in the Bessel potential spaces.

The present chapter is organized as follows. In Section 4.2, we observe Mellin and Fourier con-
volution operators with discontinuous symbols acting on Lebesgue spaces. Most of these results are
well known and we recall them for convenience. In Section 4.3, we define Mellin convolutions with
admissible meromorphic kernels and prove their boundedness in the Bessel potential spaces. In Sec-
tion 4.4, we present local principle of I. Gohbrg and N. Krupnik – a key toolkit for the investigation.
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In Section 4.5, we recall results of R. Duduchava on Banach algebra of operators generated by Mellin
and Fourier (Winer-Hopf) operators, which play key role in the investigation. We enhance results on
Banach algebra generated by Mellin and Fourier convolution operators by adding explicit definition
of the symbol of a Hankel operator, which belong to this algebra. In Section 4.6, it is proved the
key result on commutants of the Mellin convolution operator (with admissible meromorphic kernel)
and a Bessel potential operators. In Section 4.7, the exposed results are applied to find the Fredholm
criteria and the index of Mellin convolution operators with admissible meromorphic kernels in the
Bessel potential spaces.

4.2 Mellin convolution and the Bessel potential operators
Let N be a positive integer. If there arises no confusion, we write A for both scalar and matrix N ×N
algebras with entries from A. Similarly, the same notation B is used for the set of N -dimensional
vectors with entries from B. It will be usually clear from the context what kind of space or algebra
is considered.

The integral operator (4.1.1) is called Mellin convolution. More generally, if a ∈ L∞(R) is an
essentially bounded measurable N × N matrix function, the Mellin convolution operator M0

a is de-
fined by

M0
aφ(t) := M−1

β aMβφ(t) =
1

2π

∞∫
−∞

a(ξ)

∞∫
0

( t
τ

)iξ−β
φ(τ)

dτ

τ
dξ, φ ∈ S(R+),

where S(R+) is the Schwartz space of fast decaying functions on R+, whereas Mβ and M−1
β are the

Mellin transform and its inverse, i.e.,

Mβψ(ξ) :=

∞∫
0

tβ−iξψ(t)
dt

t
, ξ ∈ R,

M−1
β φ(t) :=

1

2π

∞∫
−∞

tiξ−βφ(ξ) dξ, t ∈ R+.

The function a(ξ) is usually referred to as a symbol of the Mellin operator M0
a. Further, if the

corresponding Mellin convolution operator M0
a is bounded on the weighted Lebesgue space Lp(R+, tγ)

of N -vector functions endowed with the norm

∥∥φ | Lp(R+, tγ)
∥∥ :=

[ ∞∫
0

tγ |φ(t)|p dt
]1/p

,

then the symbol a(ξ) is called a Mellin Lp,γ multiplier.
The transformations

Zβ : Lp(R+, tγ) → Lp(R), Zβφ(ξ) := e−βtφ(e−ξ), ξ ∈ R,
Z−1
β : Lp(R) → Lp(R+, tγ), Z−1

β ψ(t) := t−βψ(− ln t), t ∈ R+,

arrange an isometrical isomorphism between the corresponding Lp-spaces. Moreover, the relations

Mβ = FZβ , M−1
β = Z−1

β F−1, M0
a = M−1

β aMβ = Z−1
β F−1aFZβ = Z−1

β W 0
aZβ ,

−1 < γ < p− 1, β :=
1 + γ

p
, 0 < β < 1,

(4.2.1)

where F and F−1 are the Fourier transform and its inverse,

Fφ(ξ) :=

∞∫
−∞

eiξxφ(x) dx, F−1ψ(x) :=
1

2π

∞∫
−∞

e−iξxψ(ξ) dξ, x ∈ R ,
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show a close connection between Mellin M0
a and Fourier

W 0
aφ := F−1aFφ, φ ∈ S(R),

convolution operators, as well as between the corresponding transforms. Here S(R) denotes the
Schwartz class of infinitely smooth functions, decaying fast at infinity.

An N × N matrix function a(ξ), ξ ∈ R, is called a Fourier Lp-multiplier if the operator W 0
a :

Lp(R) → Lp(R) is bounded. The set of all Lp-multipliers is denoted by Mp(R).
From (4.2.1) immediately follows the following

Proposition 4.2.1 (see [47]). Let 1 < p < ∞. The class of Mellin Lp,γ-multipliers coincides with
the Banach algebra Mp(R) of Fourier Lp-multipliers for arbitrary −1 < γ < p− 1 and is independent
of the parameter γ.

Thus, a Mellin convolution operator M0
a in (4.2.1) is bounded in the weighted Lebesgue space

Lp(R+, tγ) if and only if a ∈ Mp(R).
It is known (see, e.g., [47]) that the Banach algebra Mp(R) contains the algebra V1(R) of all

functions with bounded variation provided that

β :=
1 + γ

p
, 1 < p <∞, −1 < γ < p− 1. (4.2.2)

As it was already mentioned, the primary aim of the present chapter is to study Mellin convolution
operators M0

a acting in the Bessel potential spaces,

M0
a : H̃sp(R+) → Hsp(R+). (4.2.3)

The symbols of these operators are N × N matrix functions a ∈ CM0
p(R), continuous on the real

axis R with the only one possible jump at infinity. We commence with the definition of the Besseel
potential spaces and Bessel potentials, arranging isometrical isomorphisms between these spaces and
enabling the lifting procedure, writing a Fredholm equivalent operator (equation) in the Lebesgue
space Lp(R+) for the operator M0

a in (4.2.3).
For s ∈ R and 1 < p <∞, the Bessel potential space, known also as a fractional Sobolev space, is

the subspace of the Schwartz space S′(R) of distributions having the finite norm

∥∥φ | Hsp(R)
∥∥ :=

[ ∞∫
−∞

∣∣F−1
(
1 + |ξ|2

)s/2
(Fφ)(t)

∣∣p dt]1/p <∞.

For an integer parameter s = m = 1, 2, . . . , the space Hsp(R) coincides with the usual Sobolev space
endowed with an equivalent norm

∥∥φ | Wm
p (R)

∥∥ :=

[ m∑
k=0

∞∫
−∞

∣∣∣dkφ(t)
dtk

∣∣∣p dt]1/p.
If s < 0, one gets the space of distributions. Moreover, H−s

p′ (R) is the dual to the space Hsp(R+),
provided p′ := p

p−1 , 1 < p <∞. Note that Hs2(R) is a Hilbert space with the inner product

⟨φ,ψ⟩s =
∫
R

(Fφ)(ξ)(Fψ)(ξ)(1 + ξ2)s dξ, φ, ψ ∈ Hs(R).

By rΣ we denote the operator restricting functions or distributions defined on R to the subset Σ ⊂ R.
Thus Hsp(R+) = r+(Hsp(R)), and the norm in Hsp(R+) is defined by∥∥f | Hsp(R+)

∥∥ = inf
ℓ

∥∥ℓf | Hsp(R)
∥∥,
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where ℓf stands for any extension of f to a distribution in Hsp(R).
Further, we denote by H̃sp(R+) the (closed) subspace of Hsp(R) which consists of all distributions

supported in the closure of R+.
Notice that H̃sp(R+) is always continuously embedded in Hsp(R+), and if s ∈ ( 1p − 1, 1p ), these two

spaces coincide. Moreover, Hsp(R+) may be viewed as the quotient-space Hsp(R+) := Hsp(R)/H̃sp(R−),
R− := (−∞, 0).

Let a ∈ L∞,loc(R) be a locally bounded m×m matrix function. The Fourier convolution operator
(FCO) with the symbol a is defined by

W 0
a := F−1aF .

If the operator
W 0
a : Hsp(R) → Hs−rp (R)

is bounded, we say that a is an Lp-multiplier of order r and use “Lp-multiplier” if the order is 0. The
set of all Lp-multipliers of order r (of order 0) is denoted by Mr

p(R) (by Mp(R), respectively).
For an Lp-multiplier of order r, a ∈ Mr

p(R), the Fourier convolution operator (FCO) on the
semi-axis R+ is defined by the equality

Wa = r+W
0
a : H̃sp(R+) → Hs−rp (R+) (4.2.4)

and the Hankel operator by the equality

Ha = r+VW
0
a : H̃sp(R+) → Hs−rp (R+), V ψ(t) := ψ(−t), (4.2.5)

where r+ := rR+ : Hsp(R) → Hsp(R+) is the restriction operator to the semi-axes R+. Note that the
generalized Hörmander’s kernel of a FCO Wa depends on the difference of arguments Ka(t− τ), while
the Hörmander’s kernel of a Hankel operator r+VW 0

a depends of the sum of the arguments Ka(t+τ).
We did not use in the definition of the class of multipliers Mr

p(R) the parameter s ∈ R. This is
due to the fact that Mr

p(R) is independent of s: if the operator Wa in (4.2.5) is bounded for some
s ∈ R, it is bounded for all other values of s. Another definition of the multiplier class Mr

p(R) is
written as follows: a ∈ Mr

p(R) if and only if λ−ra ∈ Mp(R) = M0
p(R), where λr(ξ) := (1 + |ξ|2)r/2.

This assertion is one of the consequences of the following theorem.

Theorem 4.2.1. Let 1 < p <∞. Then:

(1) For any r, s ∈ R, γ ∈ C, Im γ > 0, the convolution operators (ΨDOs)

Λr
γ =Wλr

γ
: H̃sp(R+) → H̃s−rp (R+),

Λr
−γ = r+W

0
λr
−γ
ℓ : Hsp(R+) → Hs−rp (R+),

λr±γ(ξ) := (ξ ± γ)r, ξ ∈ R, Im γ > 0,

(4.2.6)

where ℓ : Hsp(R+) → Hsp(R) is an extension operator and r+ is the restriction from the axes
R to the semi-axes R+, arrange isomorphisms of the corresponding spaces. The final result is
independent of the choice of an extension ℓ.

(2) For arbitrary operator A : H̃sp(R+) → Hs−rp (R+) of order r, the following diagram is commutative

H̃sp(R+)
A // Hs−rp (R+)

Λs−r
−γ

��
Lp(R+)

Λs−r
−γ AΛ−s

γ

//

Λ−s
γ

OO

Lp(R+)

. (4.2.7)

Diagram (4.2.6) provides an equivalent lifting of the operator A of order r to the operator
Λs−r

−γ AΛ−s
γ : Lp(R+) → Lp(R+) of order 0.
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(3) For any bounded convolution operator Wa : H̃sp(R+) → Hs−rp (R+) of order r and for any pair of
complex numbers γ1, γ2 such that Im γj > 0, j = 1, 2, the lifted operator

Λµ
−γ1WaΛ

ν
γ2 =Waµ,ν

: H̃s+νp (R+) → Hs−r−µp (R+), aµ,ν(ξ) := (ξ − γ1)
µa(ξ)(ξ + γ2)

ν (4.2.8)

is again a Fourier convolution.
In particular, the lifted operator Wa0 in Lp-spaces, Λs−r

−γ WaΛ
−s
γ : Lp(R+) → Lp(R+) has the

symbol
as−r,−s(ξ) = λs−r−γ (ξ)a(ξ)λ−sγ (ξ) =

(ξ − γ

ξ + γ

)s−r a(ξ)

(ξ + i)r
.

(4) The Hilbert transform SR+ = iK1
1 =W− sign is a Fourier convolution operator and

Λs
−γ1K

1
1Λ

−s
γ2 =Wi gs−γ1,γ2

sign, (4.2.9)

where
gs−γ1,γ2(ξ) :=

(ξ − γ1
ξ + γ2

)s
. (4.2.10)

Proof. For the proof of items (1)–(3) we refer the reader to [47, Lemma 5.1] and [67, 72]. The item
(4) is a consequence of the proved items (2) and (3) (see [47,59]).

Remark 4.2.1. The class of Fourier convolution operators is a subclass of pseudodifferential operators
(ΨDOs). Moreover, for integer parameters m = 1, 2, . . . the Bessel potentials Λm

± =Wλm
±γ

, which are
Fourier convolutions of order m, are ordinary differential operators of the same order m:

Λm
±γ =Wλm

±γ
=

(
i
d

dt
± γ

)m
=

m∑
k=0

(
m

k

)
ik(±γ)m−k dk

dtk
. (4.2.11)

These potentials map both spaces (cf. (4.2.6))

Λm
±γ : H̃sp(R+) → H̃s−rp (R+),

: Hsp(R+) → Hs−mp (R+),
(4.2.12)

but the mappings are not isomorphisms because the inverses Λ−m
±γ are bounded only for one pair of

spaces indicated in (4.2.6).

Remark 4.2.2. For any pair of multipliers a ∈ Mr
p(R), b ∈ Ms

p(R), the corresponding convolution
operators on the half-axes W 0

a and W 0
b have the property W 0

aW
0
b =W 0

bW
0
a =W 0

ab.
For the corresponding Wiener–Hopf operators on the half-axes, a similar equality

WaWb =Wab (4.2.13)

holds if and only if either the function a(ξ) has an analytic extension in the lower half-plane, or the
function b(ξ) has an analytic extension in the upper half-plane (see [47]).

Note that, actually, (4.2.8) is a consequence of (4.2.13).

4.3 Mellin convolutions with admissible meromorphic kernels
Now we consider kernels K (t) exposed in (4.1.11), which are meromorphic functions on the complex
plane C, vanishing at infinity, having poles at c0, c1, . . . ∈ C \ {0} and complex coefficients dj ∈ C.

Definition 4.3.1. We call a kernel K (t) in (4.1.11) admissible if and only if

(i) K (t) has only a finite number of poles c0, . . . , cℓ which belong to the positive semi-axes, i.e.,
arg c0 = · · · = arg cℓ = 0;
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(ii) The corresponding multiplicities are one: m0 = · · · = mℓ = 1;

(iii) The remainder points cℓ+1, cℓ+2, . . . do not condense to the positive semi-axes and their real
parts are bounded uniformly

lim
j→∞

cj ̸∈ [0,∞), sup
j=ℓ+1,ℓ+2,...

Re cj 6 K <∞. (4.3.1)

(iv) K (t) is a kernel of an operator, which is a composition of finite number of operators with
admissible kernels.

Example 4.3.1. The function

K (t) = exp
( 1

t− c

)
, Re c < 0 or Im c ̸= 0,

is an example of the admissible kernel which also satisfies the condition of the next Theorem 4.3.1.
Other examples of operators with admissible kernels (which also satisfy the condition of the next
Theorem 4.3.1) are operators which we encounter in (4.1.3), in (4.1.10) and in (4.2.4) and, in general,
any finite sum in (4.1.11).

Example 4.3.2. The function

K (t) =
ln t− c1c2
t− c1c2

, Im c1 ̸= 0, Im c2 ̸= 0,

is another example of the admissible kernel and it represents the composition of operators c2K1
c1K1

c2
(see (4.2.10)) with admissible kernels which also satisfies the condition of the next Theorem 4.3.1.
More trivial examples of operators with admissible kernels (which also satisfy the condition of the
next Theorem 4.3.1) are operators which we encounter in (4.1.3), in (4.1.10) and in (4.2.4) and, in
general, any finite sum in (4.1.11).

Theorem 4.3.1. Let conditions

β :=
1 + γ

p
, 1 < p <∞, −1 < γ < p− 1, (4.3.2)

hold, K (t) in (4.1.11) be an admissible kernel and

Kβ :=

∞∑
j=0

2mj |dj | |cj |β−mj <∞. (4.3.3)

Then the Mellin convolution M0
aβ

in (4.1.9) with the admissible meromorphic kernel K (t) in (4.1.11)
is bounded in the Lebesgue space Lp(R+, tγ) and its norm has the estimate ∥M0

aβ
| L (Lp(R+, tγ))∥ 6

MKβ with some M > 0.
We can drop the constant M and replace 2mj by 2

mj
2 in estimate (4.3.3) provided Re cj < 0 for all

j = 0, 1, . . . .

Proof. The first ℓ+ 1 summands in the definition of the admissible kernel (4.1.11) correspond to the
Cauchy operators

A0φ(t) =

ℓ∑
j=0

dj
π

∞∫
0

φ(τ)

t− cjτ
dτ, cj > 0, j = 0, 1, . . . , ℓ,

and their boundedness property in the weighted Lebesgue space

A0 : Lp(R+, tγ) → Lp(R+, tγ) (4.3.4)
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under constraints (4.3.2) is well known (see [93] and also [83]). Therefore, we can ignore the first ℓ
summands in the expansion of the kernel K (t) in (4.1.11). To the boundedness of the operator M0

aℓβ

with the remainder kernel

K ℓ(t) :=

∞∑
j=ℓ+1

dj
(t− cj)mj

, cj ̸= 0, j = 0, 1, . . . , 0 < αk := arg ck < 2π, k = ℓ+ 1, ℓ+ 2, . . .

(see (4.1.11)), we apply estimate (4.1.8)

∥∥M0
aℓβ

| L (Lp(R+, tγ))
∥∥ 6

∞∫
0

tβ−1|K ℓ(t)| dt 6
∞∑

j=ℓ+1

|dj |
∞∫
0

tβ−1

|t− cj |mj
dt. (4.3.5)

Now note that

|t− cj |−mj =
(
t2 + |cj |2 − 2Re cjt

)−mj
2

6
( t2 + |cj |2

2

)−
mj
2 6 2mj (t+ |cj |)−mj for all t > 2K = 2 sup |Re cj | > 0,

due to constraints (4.3.1). On the other hand,

|t− cj |−mj 6M(t+ |cj |)−mj for all 0 6 t 6 2K

and a certain constant M > 0. Therefore,

|t− cj |−mj 6M2mj (t+ |cj |)−mj for all 0 < t <∞. (4.3.6)

Next, we recall the formula from [84, Formula 3.194.4]
∞∫
0

tβ−1

(t+ c)m
dt = (−1)m−1

(
β − 1

m− 1

)
πcβ−m

sinπβ , −π < arg c < π, Reβ < 1, (4.3.7)

(
β − 1

m− 1

)
:=

(β − 1) · · · (β −m+ 1)

(m− 1)
,

(
β − 1

0

)
:= 1

to calculate the integrals. By inserting estimate (4.3.6) into (4.3.5) and applying (4.3.7), we get

∥∥M0
aℓβ

| L (Lp(R+, tγ))
∥∥ 6

∞∑
j=ℓ+1

|dj |
∞∫
0

tβ−1

|t− cj |mj
dt

6M0

∞∑
j=ℓ+1

2mj |dj |
∞∫
0

tβ−1

(t+ |cj |)mj
dt 6 πM0

sinπβ

∞∑
j=ℓ+1

2mj |dj |
∣∣∣∣( β − 1

mj − 1

)∣∣∣∣cβ−mj

j

6M

∞∑
j=ℓ+1

2mj |dj |c
β−mj

j =MKβ , M :=
πM0

sinπβ , (4.3.8)

since (see (4.3.7)) ∣∣∣∣( β − 1

mj − 1

)∣∣∣∣ 6 1,

where Kβ is from (4.3.3). The boundedness of (4.3.4) and estimate (4.3.8) imply the claimed estimate∥∥M0
aβ

| L (Lp(R+, tγ))
∥∥ 6MKβ .

If Re cj < 0 for all j = 0, 1, . . . , we have
1

|t− cj |mj
=

(
t2 + |c|2 − 2Re cjt

)−mj
2 6

(
t2 + |c|2

)−mj
2 6 2

mj
2

(
t+ |cj |

)−mj
,

valid for all t > 0 and a constant M does not emerge in the estimate.
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Let us find the symbol (the Mellin transform of the kernel) of operator (4.2.10) for 0 < arg c < 2π,
m = 1, 2, . . . (see (4.2.9), (4.2.10)). For this, we apply formula (4.3.7):

MβK
m
c (ξ) =

∞∫
0

tβ−iξ−1K m
c (t) dt =

1

π

∞∫
0

tβ−iξ−1

(t+ (−c))m
dt

=

(
β − iξ − 1

m− 1

)
(−1)m−1(−c)β−iξ−m

sinπ(β − iξ)
=

(
β − iξ − 1

m− 1

)
(−1)m−1e−iπ(β−iξ−m)cβ−iξ−m

sinπ(β − iξ)
,

since if −π < arg(−c) < π and 0 < arg c < 2π, then −c = e−πic. In particular,

MβK
1
c (ξ) =

e−iπ(β−iξ−1)c β−iξ−1

sinπ(β − iξ)
, 0 < arg c < 2π, (4.3.9a)

MβK
1
−d(ξ) =

d β−iξ−1

sinπ(β − iξ)
, −π < arg d < π, (4.3.9b)

MβK
1
−1(ξ) =

1

sinπ(β − iξ)
, ξ ∈ R. (4.3.9c)

Now let us find the symbol of the Cauchy singular integral operator K1
1 = −iSR+ (see (4.2.9),

(4.2.10)). For this, we apply Plemeli formula and formula (4.3.7):

MβK
1
1 (t) : =

∞∫
0

tβ−iξ−1K 1
1 (t) dt = − 1

π

∞∫
0

tβ−iξ−1 dt

t− 1

= lim
ε→0

1

2π

∞∫
0

[ tβ−iξ−1

t+ ei(π−ε)
+

tβ−iξ−1

t+ e−i(π−ε)

]
dt

= lim
ε→0

ei(π−ε)(β−iξ−1) + e−i(π−ε)(β−iξ−1)

2 sinπ(β − iξ)
= cotπ(β − iξ).

For an admissible kernel with poles arg c0 = arg cℓ = 0 (and, therefore, m0 = · · · = mℓ = 1) and
0 < arg cj < 2π, j = ℓ+ 1, . . . , we get

MβK (ξ) = cotπ(β − iξ)

ℓ∑
j=0

djc
β−iξ−1
j

+
1

sinπ(β − iξ)

∞∑
j=ℓ+1

dj

(
β − iξ − 1

mj − 1

)
(−1)mj−1e−iπ(β−iξ−mj)c

β−iξ−mj

j . (4.3.10)

Theorem 4.3.2. If K is an admissible kernel, then the corresponding Mellin convolution operator
with the kernel K

Kφ(t) :=

∞∫
0

K
( t
τ

)
φ(τ)

dτ

τ
, K : H̃sp(R+) → Hsp(R+), (4.3.11)

is bounded for all 1 < p <∞ and s ∈ R.
The condition on the parameter p can be relaxed to 1 6 p 6 ∞, provided the admissible kernel K

in (4.1.11) has no poles on positive semi-axes: αj = arg cj ̸= 0 for all j = 0, 1, . . . .

Proof. Due to representation (4.1.11), we have to prove the theorem only for a model kernel

K m
c (t) :=

1

π(t− c)m
, c ̸= 0, 0 < arg c < 2π, m = 1, 2, . . . . (4.3.12)

The respective Mellin convolution operator Km
c (see (4.2.10)) is bounded in Lp(R+) for all 1 6 p 6 ∞

for arbitrary 0 < | arg c| < π (cf. (4.1.2)).
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To accomplish the boundedness result of Km
c in Lp(R+), we need to consider the case arg c = 0

(i.e., c ∈ (0,∞)) and, therefore, m = 1 (see Definition 4.3.1). Then the operator K1
c coincides with

the “dilated” Cauchy singular integral operator with a constant multiplier

K1
cφ(t) :=

1

π

∞∫
0

φ(τ)

t− c τ
dτ = − i

c
(SR+φ)

( t
c

)
, (4.3.13)

where

SR+φ(t) :=
1

πi

∞∫
0

φ(τ)

τ − t
dτ, (4.3.14)

and is bounded in Lp(R+) for all 1 < p <∞ (cf., e.g., [47, 83]).
Now let 0 6 arg c < 2π and m = 1. Then if φ ∈ C∞

0 (R+) is a smooth function with compact
support and k = 1, 2, . . . , by integrating by parts we get

dk

dtk
K1
cφ(t) =

1

π

∞∫
0

dk

dtk
1

t− c τ
φ(τ) dτ

=
(−c)−k

π

∞∫
0

dk

dτk
1

t− c τ
φ(τ) dτ =

c−k

π

∞∫
0

1

t− c τ

dkφ(τ)

dτk
dτ = c−k

(
K1
c

dk

dtk
φ
)
(t). (4.3.15)

For m = 2, 3, . . . and 0 < arg c < 2π we get similarly

d

dt
Km
c φ(t) =

1

π

∞∫
0

d

dt

τm−1

(t− c τ)m
φ(τ) dτ =

m−1∑
j=0

(−c)−1−j

π

∞∫
0

d

dt

τm−1−j

(t− c τ)m−j φ(τ) dτ

= −
m−1∑
j=0

(−c)−1−j

π

∞∫
0

τm−1−j

(t− c τ)m−j
d

dτ
φ(τ) dτ = −

m−1∑
j=0

(−c)−1−j
(

Km−j
c

d

dt
φ
)
(t)

and, recurrently,

dk

dtk
Km
c φ(t) = (−1)k

m−1∑
j=0

(−c)−k−jγkj
(

Km−j
c

dk

dtk
φ
)
(t), k = 1, 2, . . . , (4.3.16)

γ1j = j + 1, γk0 = 1, γkj :=

j∑
r=0

γk−1
r , j = 0, 1, . . . ,m, k = 1, 2, . . . .

Recall now that for an integer s = n the spaces Hnp (R+), H̃np (R+) coincide with the Sobolev
spaces Wn

p (R+), W̃n
p (R+), respectively (these spaces are isomorphic and the norms are equivalent),

and C∞
0 (R+) is a dense subset in W̃n

p (R+) = H̃np (R+). Then, using equalities (4.3.14), (4.3.16) and
the boundedness of the operators Km−j

c (see (4.3.12)–(4.3.14)), we proceed as follows:

∥∥Km
c φ | Hnp (R+)

∥∥ =

n∑
k=0

∥∥∥ dk
dtk

Km
c φ | Lp(R+)

∥∥∥
=

n∑
k=0

m−1∑
j=0

|c|−k−jγkj
∥∥∥Km−j

c

dk

dtk
φ | Lp(R+)

∥∥∥ 6M

n∑
k=0

∥∥∥ dk
dtk

φ | Lp(R+)
∥∥∥ =M

∥∥φ | Hnp (R+)
∥∥,

where M > 0 is a constant, and the boundedness of (4.3.11) follows for s = 0, 1, 2, . . . . The case of
arbitrary s > 0 follows by the interpolation between the spaces Hmp (R+) and H0

p(R+) = Lp(R+), also
between the spaces H̃mp (R+) and H̃0

p(R+) = Lp(R+).
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For s < 0, the boundedness of (4.3.11) follows by duality: the adjoint operator to Km
c is

Km,∗
c φ(t) :=

1

π

∞∫
0

tm−1φ(τ) dτ

(τ − c t)m
=

m∑
j=1

ωjKj
c−1φ(t)

for some constant coefficients ω1, . . . , ωm. The operator Km,∗
c has the admissible kernel and, due

to the proved part of the theorem, is bounded in the space setting Km,∗
c : H̃−s

p′ (R+) → H−s
p′ (R+),

p′ := p/(p − 1), since −s > 0. The initial operator Km
c : H̃sp(R+) → Hsp(R+) is dual to Km,∗

c and,
therefore, is bounded as well.

Corollary 4.3.1. Let 1 < p < ∞ and s ∈ R. A Mellin convolution operator M0
a with an admissible

kernel described in Definition 4.3.1 (also see Example 4.3.2 and Theorem 4.3.1) is bounded in the
Bessel potential spaces

M0
a : H̃sp(R+) → Hsp(R+).

The boundedness property
M0
a : Hsp(R+) → Hsp(R+)

does not hold in general for even a simplest Mellin convolution operator Kc, except the case when
the spaces H̃sp(R+ and Hsp(R+) can be identified, i.e., except the case 1

p − 1 < s < 1
p . Indeed, to check

this, consider a smooth function with a compact support φ ∈ C∞
0 (R+) which is constant on the unit

interval: φ(t) = 1 for 0 < t < 1. Obviously, φ ∈ Hsp(R+) and φ ̸∈ H̃sp(R+ for all s > 1
p . Then

Kcφ(t) =
1

π

∞∫
0

φ(τ)

t− c τ
dτ =

1

π

1∫
0

dτ

t− c τ
+

1

π

∞∫
1

φ(τ)

t− c τ
dτ = c−1 ln τ + φ0(t),

where φ0 ∈ Hsp(R+) ∩ C∞(R+), while the first summand ln τ does not belong to Hs(R+), since all
functions in this space are continuous and uniformly bounded for s > 1

p .
We can prove the following very partial result, which has important practical applications.

Theorem 4.3.3. Let 1 < p < ∞, c ∈ C and Xsp(R+) denote one of the spaces Hrp(R+) or Wr
p(R+),

while X̃sp(R+) denote one of the spaces H̃rp(R+) or W̃r
p(R+).

If 1
p − 1 < r < 1

p + 1, the operator

Ac := cKc − c−1Kc−1 : Xrp(R+) → Xrp(R+),

: X̃rp(R+) → X̃rp(R+)
(4.3.17)

is bounded, while for 1
p − 2 < r < 1

p the operator

A#
c := Kc −Kc−1 : Xrp(R+) → Xrp(R+),

: X̃rp(R+) → X̃rp(R+)
(4.3.18)

is bounded.

Proof. If 1
p − 1 < r < 1

p , the spaces H̃rp(R+) and Hrp(R+) can be identified and the boundedness of
(4.3.17), (4.3.18) follows from Theorem 4.3.2.

Now let 1
p < r < 1

p + 1. Due to (1.6.4) and (4.2.12), the following diagrams

Hrp(R+)
Ac // Hrp(R+)

Λ1
−1

��
Hr−1
p (R+)

Λ1
−1AcΛ

−1
−1

//

Λ−1
−1

OO

Hr−1
p (R+)

,

H̃rp(R+)
Ac // H̃rp(R+)

Λ1
1

��
H̃r−1
p (R+)

Λ1
1AcΛ

−1
1

//

Λ−1
1

OO

H̃r−1
p (R+)

(4.3.19)
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are commutative. Diagrams (4.3.19) provide equivalent lifting of the operator Ac from the spaces
Hrp(R+) and H̃rp(R+) to the operator A+

c := Λ1
1AcΛ

−1
1 in the space H̃r−1

p (R+) and the operator
A−
c := Λ1

−1AcΛ
−1
−1 in the space Hr−1

p (R+). On the other hand, Λ1
±1 = i∂t ± I (see (4.2.11)) and it

can be easily checked, using the integration by parts, that ∂tAc = −A#
c ∂t. Then

A±
c = Λ1

±1AcΛ
−1
±1 = (i∂t ± I)AcΛ

−1
±1

= (±Ac −A#
c )Λ

−1
1 +A#

c (i∂t ± I)Λ−1
±1 = (±Ac −A#

c )Λ
−1
1 +A#

c .

Since 1
p − 1 < r − 1 < 1

p and the embeddings

Λ−1
−1Hr−1

p (R+) = Hrp(R+) ⊂ Hr−1
p (R+),

Λ−1
1 H̃r−1

p (R+) = H̃rp(R+) ⊂ H̃r−1
p (R+)

are continuous, the operators

A−
c = (−Ac −A#

c )Λ
−1
1 +A#

c : Hr−1
p (R+) → Hr−1

p (R+),

A+
c = (Ac −A#

c )Λ
−1
1 +A#

c : H̃r−1
p (R+) → H̃r−1

p (R+)

are bounded. Then, according to the commutative diagrams (4.3.19), the operator Ac in (4.3.17) is
bounded for Xrp = Hrp. For Xrp = Wr

p, the boundedness is proved similarly or, alternatively, with the
help of the interpolation theorems (see below Corollary 4.7.2 for similar arguments).

Now let 1
p − 2 < r < 1

p . Then

1

p′
− 1 = −1

p
< −r < 1

p′
+ 1 = 2− 1

p
, p′ :=

p

p− 1
. (4.3.20)

The pair of the operator Kc and −c−1Kc−1 are adjoint to each other. Therefore, the operator

Ac := cKc − c−1Kc−1 : Xrp(R+) → Xrp(R+),

: X̃rp(R+) → X̃rp(R+)
(4.3.21)

is the adjoint to the operator A#
c in (4.3.18). Since the parameters {−r, p′} satisfy the condition of

the first part of the present theorem (see (4.3.20)), the operator Ac in (4.3.21) is bounded and justifies
the boundedness of the adjoint operator A#

c in (4.3.18).

The next result is crucial in the present investigation. Note that the case arg c = 0 is essentially
different and will be considered in Theorem 4.5.1 below.

Theorem 4.3.4. Let 0 < arg c < 2π and 0 < arg(−c γ) < π. Then

Λs
−γK1

cφ = c−sK1
cΛ

s
−c γφ, φ ∈ H̃rp(R+), (4.3.22)

where c−s = |c|−se−is arg c.

Proof. First of all note that due to the mapping properties of the Bessel potential operators (see
(4.2.6)) and the mapping properties of a Mellin convolution operator with an admissible kernel, both
operators

Λs
−γK1

c : H̃rp(R+) → Hr−sp (R+),

K1
cΛ

s
−c γ : H̃rp(R+) → Hr−sp (R+)

(4.3.23)

are correctly defined and bounded for all s ∈ R, 1 < p < ∞, since −π < arg(−γ) < 0 and 0 <
arg(−c γ) < π.

Second, let us consider the positive integer values s = n = 1, 2, . . . . Then, with the help of formulae
(4.2.11) and (4.3.14), it follows that
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Λn
−γK1

cφ =
(
i
d

dt
− γ

)n
K1
cφ

=

n∑
k=0

(
n

k

)
ik(−γ)n−k dk

dtk
K1
cφ =

n∑
k=0

(
n

k

)
ik(−γ)n−kc−k

(
K1
c

dk

dtk
φ
)
(t)

= c−nK1
c

( n∑
k=0

(
n

k

)
ik(−c γ)n−k dk

dtk
φ

)
(t) = c−nK1

cΛ
n
−c γφ, φ ∈ H̃rp(R+),

and we have proven formula (4.3.22) for positive integers s = n = 1, 2, . . . .
For negative s = −1,−2, . . . , formula (4.3.22) follows if we apply the inverse operator Λ−n

−γ and
Λ−n

−cγ to the proved operator equality

Λn
−γK1

c = c−nK1
cΛ

n
−c γ

for positive n = 1, 2, . . . from the left and from the right, respectively. We obtain

K1
cΛ

−n
−cγ = c−nΛ−n

−γK1
c or Λ−n

−γK1
c = cnK1

cΛ
−n
−cγ

and (4.3.22) is proved also for a negative s = −1,−2, . . . .
In order to derive formula (4.3.22) for non-integer values of s, we can confine ourselves to the case

−2 < s < −1. Indeed, any non-integer value s ∈ R can be represented in the form s = s0 +m, where
−2 < s0 < −1 and m is an integer. Therefore, if for s = s0 +m the operators in (4.3.23) are correctly
defined and bounded, and if the relations in question are valid for −2 < s0 < −1, then we can write

Λs
−γK1

c = Λs0+m
−γ K1

c = c−mΛs0
−γK1

cΛ
m
−c γ

= c−s0−mK1
cΛ

s0
−c γΛ

m
−c γ = c−s0−mK1

cΛ
s0+m
−c γ = c−sK1

cΛ
s
−c γ .

Thus let us assume that −2 < s < −1 and consider the expression

Λs
−γK1

cφ(t) =
1

2π2
r+

∞∫
−∞

e−iξt(ξ − γ)s
∞∫
0

eiξy
∞∫
0

φ(τ)

y − cτ
dτ dy dξ, (4.3.24)

where r+ is the restriction to R+. It is clear that the integral in the right-hand side of (4.3.24) exists.
Indeed, if φ ∈ L2, then K1

cφ ∈ L2 ∩ C∞ and Λs
−γK1

cφ ∈ H−s ∩ C∞ ⊂ L2 ∩ C∞.
Now consider the function e−izt(z − γ)seizy, z ∈ C. Since Imγ ̸= 0, s < −1, for sufficiently small

ε > 0 this function is analytic in the strip between the lines R and R+ iε and vanishes at infinity for
all finite t ∈ R and for all y > 0. Therefore, the integration over the real line R in the first integral of
(4.3.24) can be replaced by the integration over the line R+ iε, i.e.,

Λs
−γK1

cφ(t) =
1

2π2
r+

∞∫
−∞

e−iξt+εt(ξ + iε− γ)s
∞∫
0

eiξy−εy
∞∫
0

φ(τ)

y − cτ
dτ dy dx. (4.3.25)

Let us use the density of the set C∞
0 (R+) in H̃sp(R+). Thus for all finite t ∈ R and for all functions

φ ∈ C∞
0 (R) with compact supports the integrand in the corresponding triple integral for (4.3.25) is

absolutely integrable. Therefore, for such functions one can use Fubini–Tonelli theorem and change
the order of integration in (4.3.25). Thereafter, one returns to the integration over the real line R and
obtains

Λs
−γK1

cφ(t) =
1

2π2
r+

∞∫
0

φ(τ)

∞∫
0

1

y − cτ

∞∫
−∞

eiξ(y−t)(ξ − γ)s dξ dy dτ. (4.3.26)

In order to study the expression in the right-hand side of (4.3.26), one can use a well known formula

∞∫
−∞

(β + ix)−νe−ipx dx =

0 for p > 0,

−2π(−p)ν−1eβ p

Γ(ν)
for p < 0,

Re ν > 0, Reβ > 0
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[84, Formula 3.382.6]. It can be rewritten in a more convenient form, viz.,

∞∫
−∞

eiµ ξ(ξ − γ)s dξ =

0 if µ < 0, Im γ > 0,

2π µ−s−1e−
π
2 si+µ γi

Γ(−s)
if µ > 0, Im γ > 0.

(4.3.27)

Applying (4.3.27) to the last integral in (4.3.26), one obtains

Λs
−γK1

cφ(t) =
e−

π
2 si

πΓ(−s)
r+

∞∫
0

φ(τ) dτ

∞∫
t

ei(y−t)γ

(y − t)1+s(y − cτ)
dy

=
e−

π
2 si

πΓ(−s)
r+

∞∫
0

φ(τ) dτ

∞∫
0

y−s−1eiγ y

y + t− cτ
dy, (4.3.28)

where the integrals exist, since −s− 1 > −1 and 0 < arg γ < π (i.e., Im γ > 0).
Let us recall the formula

∞∫
0

xν−1e−µx

x+ β
dx = βν−1eβ µΓ(ν)Γ(1− ν, βµ), Re ν > 0, Reµ > 0, argβ| < π (4.3.29)

(cf. [84, Formula 3.383.10]). Due to the conditions 0 < arg c < 2π, t > 0, τ > 0, we have | arg(t−cτ)| <
π and, therefore, we can apply (4.3.29) to equality (4.3.28). Then (4.3.28) acquires the following final
form:

Λs
−γK1

cφ(t) =
e−

π
2 si

π
r+

∞∫
0

e−iγ(t−cτ)Γ(1 + s,−iγ(t− cτ))φ(τ)

(t− cτ)1+s
dτ. (4.3.30)

Consider now the reverse composition K1
cΛ

s
−c γφ(t). Changing the order of integration in the

corresponding expression (see (4.3.26) for a similar motivation), one obtains

K1
cΛ

s
−c γφ(t) :=

1

2π2
r+

∞∫
0

1

t− c y

∞∫
−∞

e−iξ y(ξ − c γ)s
∞∫
0

eiξ τφ(τ) dτ dξ dy

=
1

2π2
r+

∞∫
0

φ(τ)

∞∫
0

1

t− c y

∞∫
−∞

eiξ(τ−y)(ξ − c γ)s dξ dy dτ. (4.3.31)

In order to compute the expression in the right-hand side of (4.3.31), let us recall formula 3.382.7
from [84]:

∞∫
−∞

(β − ix)−νe−ipx dx =

0 for p < 0,

2π pν−1e−β p

Γ(ν)
for p > 0,

Re ν > 0, Reβ > 0,

and rewrite it in the form, more suitable for our consideration, viz.,

∞∫
−∞

eiµ ξ(ξ + ω)s dξ =

0 µ > 0, Imω > 0,

2π (−µ)−s−1e
π
2 si−µωi

Γ(−s)
µ < 0, Imω > 0,

(4.3.32)

Re s < 0, µ ∈ R, ω, s ∈ C.

Using (4.3.32), we represent (4.3.31) in the form

K1
cΛ

s
−c γφ(t) =

e
π
2 si

πΓ(−s)
r+

∞∫
0

φ(τ) dτ

∞∫
τ

e−ic γ(y−τ)

(y − τ)s+1(t− c y)
dy
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= − e
π
2 si

πcΓ(−s)
r+

∞∫
0

φ(τ) dτ

∞∫
0

y−s−1e−icγ y

y + τ − c−1t
dy, (4.3.33)

where the integrals exist, since −s− 1 > −1 and −π < arg(c γ) < 0 (i.e., Im c γ < 0).
Due to the conditions 0 < arg c < 2π, t > 0, τ > 0, we have | arg(τ − c−1t)| < π. Therefore, we

can apply formula (4.3.29) to (4.3.33) and get the following representation:

K1
cΛ

s
−c γφ(t) = −c

−1e
π
2 si

π
r+

∞∫
0

e−icγ(c
−1t−τ)Γ(1 + s,−icγ(c−1t− τ))φ(τ)

(τ − c−1t)1+s
dτ

=
cse−

π
2 si

π
r+

∞∫
0

e−iγ(t−c τ)Γ(1 + s,−iγ(t− c τ))φ(τ)

(t− c τ)1+s
dτ. (4.3.34)

If we multiply (4.3.34) by c−s, we get precisely the expression in (4.3.30) and, therefore,
Λs

−γK1
cφ(t) = c−sK1

cΛ
s
−c γφ(t), which proves the claimed equality (4.3.22) for −2 < s < −1 and

accomplishes the proof.

Corollary 4.3.2. Let 0 < arg c < 2π and 0 < arg γ < π. Then for arbitrary γ0 ∈ C such that
0 < arg γ0 < π and −π < arg(c γ0) < 0, one has

Λs
−γK1

c = c−sWg−γ,−γ0
K1
cΛ

s
−c γ0 , (4.3.35)

where
gs−γ,−γ0(ξ) :=

( ξ − γ

ξ − γ0

)s
.

If, in addition, 1 < p < ∞ and 1
p − 1 < r < 1

p , then equality (4.3.35) can be supplemented as
follows:

Λs
−γK1

c = c−s
[
K1
cWgs−γ,−γ0

+ T
]
Λs

−c γ0 , (4.3.36)

where T : H̃rp(R+) → Hrp(R+) is a compact operator, and if c is a real negative number, then c−s :=

|c|−se−πsi.

Proof. It follows from equalities (4.2.13) and (4.3.22) that

Λs
−γK1

c = Λs
−γΛ

−s
−γ0Λ

s
−γ0K1

c = c−sWg−γ,−γ0
K1
cΛ

s
−c γ0

and (4.3.35) is proved. If 1 < p <∞ and 1
p − 1 < r < 1

p , then the commutator

T :=Wgs−γ,−γ0
K1
c − K1

cWgs−γ,−γ0
: H̃rp(R+) → Hrp(R+)

of Mellin and Fourier convolution operators is correctly defined and bounded. It is compact for
r = 0 and all 1 < p < ∞ (see [41, 52]). Due to Krasnoselsky’s interpolation theorem (see [96] and
also [133, Sections 1.10.1 and 1.17.4]), the operator T is compact in all Lr-spaces for 1

p − 1 < r < 1
p .

Therefore, equality (4.3.35) can be rewritten as

Λs
−γK1

c = c−s
[
K1
cWgs−γ,−γ0

+ T
]
Λs

−c γ0 ,

and we are done.

Remark 4.3.1. The assumption 1
p − 1 < r < 1

p in (4.3.36) cannot be relaxed. Indeed, the operator
Wgs−γ,−γ0

K1
c = Λs

−γΛ
−s
−γ0K1

c : H̃rp(R+) → Hrp(R+) is bounded for all r ∈ R (see (4.3.23)). But the
operator K1

cWgs−γ,−γ0
: H̃rp(R+) → Hrp(R+) is bounded only for 1

p − 1 < r < 1
p , because the function

gs−γ,−γ0(ξ) has an analytic extension into the lower half-plane but not into the upper one.
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4.4 Quasi localization in Banach para-algebras
In the present section, we expose well known, but modified local principle from [38,83,127], which we
apply intensively.

Let B1(C ) and B2(C ) be Banach spaces of functions on an (n-1)-dimensional ℓ-smooth hyper-
surface C ⊂ S ⊂ Rn, ℓ > 1, with the Lipshitz boundary Γ = ∂C , and multiplication by uniformly
bounded smooth Cℓ(C )-functions are bounded operators in both spaces. If C = Rn−1, we consider
one point compactification C :=

•

Rn−1 of C = Rn−1 and then Γ = ∅.
C can also be minded as a domain with the Lipschitz boundary in the Euclidean space Rn−1.

Definition 4.4.1. A quadruple L = [Ljk]2×2 of Banach spaces is called a Banach para-algebra
if there exists a binary mapping (a multiplication)

Ljk × Lkr → Ljr

for each choice of j, k, r = 1, 2, which is continuous, associative and bilinear.

Definition 4.4.2. Let A be a Banach algebra. A set ∆ ⊂ A is called a localizing class if:

i) 0 ̸∈ ∆;

ii) for a pair of elements a1, a2 ∈ ∆ an element a ∈ ∆ exists such that ama = aam = a, m = 1, 2.

Definition 4.4.3. A system {∆ω}ω∈Ω of localizing classes in A is said to be covering if from arbitrary
collection {aω}ω∈Ω of elements aω ∈ ∆ω there can be selected a finite collection {aωj

}Nj=1 so that the

sum
N∑
j=1

aωj
is invertible in A.

In what follows, under the Banach algebra there are taken linear operator algebras on Banach (in
particular-function) spaces and the quotient spaces

L ′
0(B1(C ),B2(C )) := L (B1(C ),B2(C ))/K (B1(C ),B2(C ))

of linear bounded operators with respect to the ideal of compact operators.
Definition 4.4.1 implies that the spaces L11 and L22 from a Banach para-algebra L = [Ljk]2×2

are Banach algebras.
For a pair of Banach spaces B1 and B2 the quadruple

L0(B1,B2) := [L (Bk,Bj)]2×2

represents a Banach para-algebra. Moreover, the quadruple of the quotient algebras L ′
0(B1,B2) =

[L ′
jk]2×2 = [L (Bj ,Bk)/K (Bj ,Bk)]2×2 represents a Banach para-algebra, as well. For simplicity,

we dwell on these particular para-algebras.
Let x ∈ C and consider the class of multiplication operators by functions

∆x :=
{
vI : v ∈ Cℓ(C ), v(t) = 1 for |t− x| < ε1, v(x) > 0 and v(t) = 0 for |t− x| > ε2

}
, (4.4.1)

where ε2 > ε1 > 0 are not fixed and vary from function to function. ∆x is, obviously, a localizing
class in the algebra of bounded linear operators L (B1(C ),B2(C )) and {∆x}x∈C is a covering class.
Indeed, for a system {vxI}x∈C we consider the related covering

C =
∪
x∈C

Ux, Ux := {y ∈ C : vx(y) = 1} .

The set C is compact and there exists a finite covering system C =
∪N
j=1 Uxj

. The corresponding
sum is strictly positive

inf
y∈Rn

g(y) > 1 for g(y) :=

N∑
j=1

vxj
(y) (4.4.2)
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and the multiplication operator
N∑
j=1

vxj
I = gI has the inverse g−1I. Thus, the system of localizing

classes {∆x}x∈C is covering.

Definition 4.4.4. A quotient class [A] ∈ L ′(B1(C ),B2(C )) is called ∆x-invertible from the
left (∆x-invertible from the right) if there exists a quotient class [Rx] ∈ L ′(B2(C ),B1(C )) and
vx ∈ ∆x such that the operator equality [RxAvxI1] = [vxI1] ([vxARx] = [vxI2], respectively) holds,
where I1 and I2 are the identity operators in the spaces B1(C ) and B2(C ).

[A] is called ∆x-invertible if it is ∆x-invertible from the left and from the right.

We can generalize Definition 4.4.4 for operators

Aj : B1(Cj) → B2(Cj), j = 1, 2, (4.4.3)

in the same pairs of function spaces B1(C1), B2(C1) and B1(C2), B2(C2) defined on different domains
C1,C2 ⊂ Rn. For this, we assume that for any pair of points x1 ∈ C 1 and x2 ∈ C 2 there exists a local
diffeomorphism of neighbourhoods

β : ω1 → ω2, β(x1) = x2, xj ∈ ωj ⊂ Cj , j = 1, 2. (4.4.4)

The operators
β∗φ(x) := φ(β(x)), β−1

∗ ψ(y) := ψ(β−1(y))

are inverses to each-other and map the spaces

β∗ : Bj(ω2) → Bj(ω1), β−1
∗ : Bj(ω1) → Bj(ω2).

Definition 4.4.5 (local quasi equivalence). Let multiplication by uniformly bounded Cℓ-functions on
corresponding closed domains C1 and C1 are bounded operators in all respective spaces B2(C1) and
B1(C2), B2(C2).

Two classes from the quotient spaces [A1], [A2] ∈ L ′(B1,B2) (see (4.4.3)) are called locally
quasi equivalent from the left, [A1]

∆x1
−L

∼ β
∆x2

−L
∼ [A2] or [A1]

x1−L∼ β
x2−L∼ [A2] (locally quasi

equivalent from the right, [A1]
∆x1−R∼ β

∆x2−R∼ [A2] or [A1]
x1−R∼ β

x2−R∼ [A2]) at x1 ∈ C 1 and
x2 ∈ C 2, if (see (4.4.4))

inf
vx1∈∆x1

∥|[vx1 ][A1 − β∗A2β
−1
∗ ]∥| = 0,(

inf
vx1

∈∆x1

∥|[A1 − β∗A2β
−1
∗ ][vx1I]∥| = 0

)
,

(4.4.5)

where the norm in the quotient space L ′(B1,B2) = L (B1,B2)/K (B1,B2) coincides with the
essential norm

∥[A]∥ := ∥|A∥| := inf
T∈K (B1,B2)

∥A+ T∥.

If two classes from the quotient spaces [A1], [A2] ∈ L ′(B1,B2) are locally quasi equivalent both,
from the left and from the right, they are called locally quasi equivalent at x1 ∈ C 1 and x2 ∈ C 2

[A1]
∆x1∼ β

∆x2∼ [A2] or [A1]
x1∼ β

x2∼ [A2].
If C1 = C2 = C and β(x) = x is the identity map, the equivalence at the point x ∈ C is denoted

as follows: [A1]
∆x−L∼ [A2], [A1]

∆x−R∼ [A2], [A1]
∆x∼ [A2] or also [A1]

x−L∼ [A2], [A1]
x−R∼ [A2],

[A1]
x∼ [A2].

Definition 4.4.6. Let B1(C ) and B2(C ) be the same as in Definition 4.4.1. An operator A :
B1(C ) → B2(C ) is called of local type if v1Av2I : B1(C ) → B2(C ) is compact for all v1, v2 ∈
Cℓ(C ), provided supp v1 ∩ supp v2 = ∅ (see [127]); or, equivalently, if vA−AvI : B1(C ) → B2(C )
is compact for all v ∈ Cℓ(C ) (see [125]).
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Theorem 4.4.1 (Quasi Localization Principle). Let A, Bj(Ck), j, k = 1, 2, be the same as in
Definition 4.4.5 and

A : B1(C1) → B2(C1), By : B1
y(C

2
y ) → B2

y(C
2
y ), y = βx(x), x ∈ C1,

be operators of local type. The diffeomorphisms βx : ω1
x → ω2

y, y = βx(x) ∈ C 2
y of neighbourhoods of

x ∈ C1 and of y ∈ C 2
y , as well as the domains C 2

y and operators By, depend on y = βx(x) and might
be different for different x ∈ C1.

If the Quasi Equivalence [A]
x∼ βx

y=βx(x)∼ [By] holds at some point x ∈ C1, then the quotient class
[A] is locally invertible at x ∈ C1 if and only if the quotient class [By] is locally invertible at y ∈ C 2

y .

If the Quasi Equivalence [A]
x∼ βx

y=βx(x)∼ [By] holds for all x ∈ C1 and [By] ∈ L ′(B1(C2),B2(C2))
are locally invertible at y ∈ C 2

y for all x ∈ C 1, then the quotient class [A] is globally invertible (i.e.,
A : B1(C1) → B2(C1) is a Fredholm operator).

Proof. Let the left Quasi Equivalence [A]
x−L∼ βx

y=βx(x)−R∼ [By] hold and A be ∆x-invertible from
the left. Then there exist Rx ∈ L (B2(C1),B1)(C1), v1, v2 ∈ ∆x such that RxAv1I = v1I and

Rx[A− βx,∗Byβ
−1
x,∗]v2I

∣∣L (B1(C1))∥ 6 ∥Rxv2I
∣∣L (B2(C1),B1(C1))∥

×∥[A− βx,∗Byβ
−1
x,∗]v2I

∣∣L (B1(C1),B2(C1))∥ < 1.

Furthermore, let us pick up an element v ∈ ∆ with the property v1v = v2v = v. Then
Rxβx,∗Byβ

−1
x,∗vI = [I −Dx]vI, where

Dx := Rx[A− βx,∗Byβ
−1
x,∗]v2I = [I −Rxβx,∗Byβ

−1
x,∗]v2I.

Since ∥Dx

∣∣L (B1)∥ < 1, the inverse (I − Dx)
−1 to I − Dx exists and R1

yByvI = vI for R1
y =

β−1
x,∗(I −Dx)

−1Rxβx,∗. Thus, By is ∆y-invertible from the left.
Since Quasi Equivalence is symmetric, the left Quasi Equivalence and left local invertibility of By

at y = βx(x) follows the left local invertibility of A at x.
The case of the right Quasi Equivalence [A]

x−R∼ βx
y=βx(x)−R∼ [By] is similar.

Let the left Quasi Equivalence [A]
x−L∼ βx

y=βx(x)−L∼ [By] hold for all x ∈ C1 and By be ∆y-
invertible from the left for y = βx(x) and all x ∈ C1. By the first part of theorem A is then locally
∆x invertible from the left for all x ∈ C1: there exist elements Rx ∈ L (fB2, fB1) and vx ∈ ∆x

such that RxAxvxI = vxI. Since the system {∆x}x∈C1
is covering, there exists a finite collection of

elements vx1
, . . . , vxN

such that the sum v0I =
N∑
m=1

vxm
I is invertible. By taking R =

N∑
m=1

Rxm
vxm

I

and recalling that A is of local type, which provides the commutativity AvymI = vymA+ Tm, where
Tm ∈ L (B1(C1),B2(C1)) are all compact operators, m = 1, . . . , N (see Definition 4.4.6), we get

RA =

N∑
m=1

RxmvxmA =

N∑
m=1

Rxm [AvxmI + Tm] =

N∑
m=1

vxmI + T = v0I + T ,

where v0I is invertible and

T =

N∑
m=1

Rxm
Tm ∈ L (B1(C1),B1(C1))

is a compact operator. Hence, the operator A has a left regularizer and the quotient class [A] is
invertible from the left and the inverse reads [A]−1 = [v−1

0 I]R.
The case of the right Quasi Equivalence [A]

x−R∼ βx
y=βx(x)−R∼ [By] is similar.
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4.5 Algebra generated by Mellin and Fourier convolution op-
erators

Let
•

R := R ∪ {∞} denote one point compactification of the real axes R and R := R ∪ {±∞} be the
two point compactification of R. By C(

•

R) (by C(R), respectively) we denote the space of continuous
functions g(x) on R which have the equal limits at infinity g(−∞) = g(+∞) (limits at infinity can be
different g(−∞) ̸= g(+∞)). By PC(

•

R) it is denoted the space of piecewise-continuous functions on
•

R having the limits a(t± 0) at all points t ∈
•

R, including infinity.
Unlike the operators W 0

a and M0
a (see Section 3.1) possessing the property

W 0
aW

0
b =W 0

ab, M0
aM

0
b = M0

ab for all a, b ∈ Mp(R), (4.5.1)

the composition of the convolution operators on the semi-axes Wa and Wb cannot be computed by
the rules similar to (4.5.1). Nevertheless, the following propositions hold.

Proposition 4.5.1 ([47, § 2]). Let 1 < p <∞ and a, b ∈ Mp(R+) ∩ PC(
•

R) be scalar Lp-multipliers,
piecewise-continuous on R including infinity. Then the commutant [Wa,Wb] :=WaWb−WbWa of the
operators Wa and Wb is a compact operator in the Lebesgue space [Wa,Wb] : Lp(R+) 7−→ Lp(R+).

Moreover, if, in addition, the symbols a(ξ) and b(ξ) of the operators Wa and Wb have no common
discontinuity points, i.e., if[

a(ξ + 0)− a(ξ + 0)
][
b(ξ + 0)− b(ξ + 0)

]
= 0 for all ξ ∈

•

R,

then T =WaWb −Wab is a compact operator in Lp(R+).

Note that the algebra of N × N matrix multipliers M2(R) coincides with the algebra of N × N
matrix functions essentially bounded on R. For p ̸= 2, the algebra Mp(R) is rather complicated.
There are multipliers g ∈ Mp(R) which are elliptic, i.e., ess inf |g(x)| > 0, but 1/g ̸∈ Mp(R). In
connection with this, let us consider the subalgebra PCMp(R) which is the closure of the algebra of
piecewise-constant functions on R in the norm of multipliers Mp(R)∥∥a | Mp(R)

∥∥ :=
∥∥W 0

a | Lp(R)
∥∥.

Note that any function g ∈ PCMp(R) ⊂ PC(R) has limits g(x ± 0) for all x ∈ R, including infinity.
Let

CMp(R) := C(R) ∩ PCM0
p(R), CM0

p(
•

R) := C(
•

R) ∩ PCMp(R),

where the functions g ∈ CMp(R) (the functions h ∈ C(
•

R)) might have jump only at infinity g(−∞) ̸=
g(+∞) (are continuous at infinity h(−∞) = h(+∞)).

PCMp(R) is a Banach algebra and contains all functions of bounded variation as a subset for all
1 < p < ∞ (Stechkin’s theorem, see [47, Section 2]). Therefore, cothπ(iβ + ξ) ∈ CMp(R) for all
p ∈ (1,∞).

Proposition 4.5.2 ([47, § 2]). If g ∈ PCMp(R) is an N × N matrix multiplier, then its inverse
g−1 ∈ PCMp(R) if and only if it is elliptic, i.e., det g(x± 0) ̸= 0 for all x ∈ R. If this is the case, the
corresponding Mellin convolution operator M0

g : Lp(R+) 7−→ Lp(R+) is invertible and (M0
g)

−1 = M0
g−1 .

Moreover, any N ×N matrix multiplier b ∈ CM0
p(

•

R) can be approximated by polynomials

rn(ξ) :=

m∑
j=−m

cm

(ξ − i

ξ + i

)m
, rm ∈ CM0

p(R),

with constant N ×N matrix coefficients, whereas any N ×N matrix multiplier g ∈ CM0
p(R) having a

jump discontinuity at infinity can be approximated by N×N matrix functions d cothπ(iβ+ξ)+rm(ξ),
0 < β < 1.
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The Hilbert transform on the semi-axis

SR+φ(x) :=
1

πi

∞∫
0

φ(y)

y − x
dy (4.5.2)

is the Fourier convolution SR+ =W− sign on the semi-axis R+ with the discontinuous symbol − sign ξ
(see [47, Lemma 1.35]), and it is also the Mellin convolution

SR+ = M0
sβ

= ZβW 0
sβ

Z−1
β , (4.5.3)

sβ(ξ) := cothπ(iβ + ξ) =
eπ(iβ+ξ) + e−π(iβ+ξ)

eπ(iβ+ξ)e−π(iβ+ξ)
= −i cotπ(βiξ), ξ ∈ R

(cf. (4.1.1) and (4.1.7)). Indeed, to verify (4.5.3), rewrite SR+ in the form

SR+φ(x) :=
1

πi

∞∫
0

φ(y)

1− x
y

dy

y
=

∞∫
0

K
(x
y

)
φ(y)

dy

y
,

where K(t) := (1/πi)(1− t)−1. Further, using the formula
∞∫
0

tz−1

1− t
dt = π cotπz, Re z < 1

(cf. [84, formula 3.241.3]), one shows that the Mellin transform MβK(ξ) coincides with the function
sβ(ξ) from (4.5.3).

Next Theorem 4.5.1 is an enhancement of Theorem 4.2.4.

Theorem 4.5.1. Let 1 < p < ∞ and s ∈ R. For arbitrary γj ∈ C, Im γj > 0 (j = 1, 2), the Hilbert
transform

K1
1 = −iS+

R = −iW− sign =Wi sign : H̃sp(R+) → Hsp(R+) (4.5.4)

(see (4.3.13), (4.3.14) and (4.5.2); the case c = 1, arg c = 0, Theorem 4.3.4). K1
1 is a Fourier

convolution operator and

Λs
−γ1K1

1Λ
−s
γ2 =Wi sign gs−γ1,γ2

: Lp(R+) → Lp(R+), (4.5.5)

where gs−γ1,γ2(ξ) is defined in (4.2.10).

Proof. Formula (4.5.5) follows from (4.2.8) and (4.5.4).

We need certain results concerning the compactness of Mellin and Fourier convolutions in Lp-
spaces. These results are scattered in literature. For the convenience of the reader, we reformulate
them here as Propositions 4.5.3–4.5.7. For more details, the reader can consult [30,47,52].

Proposition 4.5.3 ([52, Proposition 1.6]). Let 1 < p < ∞, a ∈ C(
•

R+), b ∈ CM0
p(

•

R) and a(0) =
a(∞) = b(∞) = 0. Then the operators aM0

b ,M
0
b aI : Lp(R+) → Lp(R+) are compact.

Proposition 4.5.4 ([47, Lemma 7.1], [52, Proposition 1.2]). Let 1 < p <∞, a ∈ C(
•

R+), b ∈ CM0
p(

•

R)
and a(∞) = b(∞) = 0. Then the operators aWb,Wb aI : Lp(R+) → Lp(R+) are compact.

Proposition 4.5.5 ([52, Lemma 2.5, Lemma 2.6], [30]). Assume that 1 < p <∞. Then

(1) if g ∈ CM0
p(

•

R) and g(∞) = 0, the Hankel operator Hg : Lp(R+) → Lp(R+) is compact;

(2) if the functions a ∈ C(
•

R), b ∈ CM0
p(R), c ∈ C(R+) satisfy one of the conditions

(i) c(0) = b(+∞) = 0 and a(ξ) = 0 for all ξ > 0;
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(ii) c(0) = b(−∞) = 0 and a(ξ) = 0 for all ξ < 0;
(iii) c(0) = b(±∞) = a(0) = 0,

then the operators cWaM
0
b , cM

0
bWa, WaM

0
b cI, M

0
bWa cI : Lp(R+) → Lp(R+) are all compact.

Proof. Let us comment on item (1) which is actually well known. The kernel k(x+y) of the operatorHa

is approximated by the Laguerre polynomials km(x+y) = e−x−ypm(x+y), m = 1, 2, . . . , where pm(x+
y) are polynomials of order m so that the corresponding Hankel operators converge in norm ∥Ha −
Ham | |L (Lp(R+))∥ → 0, where am = Fkm are the Fourier transforms of the Laguerre polynomials
(see, e.g. [82]). Since

|km(x+ y)| =
∣∣e−x−ypm(x+ y)

∣∣ 6 Cme
−xe−yxmym, m = 1, 2, . . . ,

for some constant Cm, the condition on the kernel

∞∫
0

[ ∞∫
0

|km(x+ y)|p
′
dy

]p/p′
dx <∞, p′ :=

p

p− 1
,

holds and ensures the compactness of the operator Ham : Lp(R+) → Lp(R+). Then the limit operator
Ha = lim

m→∞
Ham is compact as well.

Items (i) and (ii) are proved in [52].
The item (iii) follows from (i) and (ii) and the representation cWaM

0
b = cWχ−aM

0
b + cWχ+aM

0
b ,

where χ± are the characteristic functions of the semi-axes R±.

Proposition 4.5.6 ([47, Lemma 7.1], [52, Proposition 1.2]). Let 1 < p <∞, a ∈ C(
•

R+), b ∈ CM0
p(

•

R)
and a(∞) = b(∞) = 0. Then the operators aWb,Wb aI : Lp(R+) → Lp(R+) are compact.

Proposition 4.5.7 ([47, Lemma 7.4], [52, Lemma 1.2]). Let 1 < p < ∞ and let a and b satisfy at
least one of the conditions

(i) a ∈ C(R+), b ∈ M0
p(R) ∩ PC(R);

(ii) a ∈ PC(R+), b ∈ CM0
p(R).

Then the commutants [aI,Wb] and [aI,M0
b ] are compact operators in the space Lp(R+).

Remark 4.5.1. Note that if both, a symbol b and a function a, have jumps at finite points, the
commutants [aI,Wb] and [aI,M0

b ] are not compact. Only jumps of a symbol at infinity does not
matter.

Proposition 4.5.8 ([52]). The Banach algebra generated by the Cauchy singular integral operator SR+

and the identity operator I on the semi-axis R+ contains Fourier convolution operators with symbols
having discontinuity of the jump type only at zero and at infinity and Mellin convolution operators
with continuous symbols on

•

R (including infinity).
Moreover, the Banach algebra Fp(R+) generated by the Cauchy singular integral operators with

“shifts”

ScR+φ(x) :=
1

πi

∞∫
0

e−ic(x−y)φ(y)

y − x
dy =W− sign(ξ−c)φ(x) for all c ∈ R

and by the identity operator I on the semi-axis R+ over the field of N ×N complex valued matrices
coincides with the Banach algebra generated by Fourier convolution operators with piecewise-constant
N ×N matrix symbols containing all Fourier convolution Wa and Hankel Hb operators with N ×N
matrix symbols (multipliers) a, b ∈ PCMp(R).
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Let us consider the Banach algebra Ap(R+) generated by Mellin convolution and Fourier convolu-
tion operators, i.e., by the operators

A :=

m∑
j=1

M0
ajWbj (4.5.6)

and there compositions, in the Lebesgue space Lp(R+). Here M0
aj are Mellin convolution operators

with continuous N × N matrix symbols aj ∈ CMp(
•

R), Wbj are Fourier convolution operators with
N × N matrix symbols bj ∈ CMp(R \ {0}) := CMp(R

− ∪ R+
). The algebra of N × N matrix

Lp-multipliers CMp(R \ {0}) consists of those piecewise-continuous N × N matrix multipliers b ∈
Mp(R) ∩ PC(R) which are continuous on the semi-axis R− and R+ but might have finite jump
discontinuities at 0 and at infinity.

This and more general algebras were studied in [52] and also in earlier works [41,51,132].

Remark 4.5.2. If in (4.5.6) we admit more general symbols aj ∈ CMp(R) which have different limits
at infinity aj(−∞) ̸= aj(+∞), this will not be a generalization.

Indeed, if aj ∈ CMp(R) has different limits at infinity aj(−∞) ̸= aj(+∞), we can represent

aj(ξ) = a0j (ξ) + aj(−∞)
1− cothπ( ip + ξ)

2
+ aj(+∞)

1 + cothπ( ip + ξ)

2
, a0j (±∞) = 0

and the corresponding Mellin operator is written as follows:

M0
aj = M0

a0j
+
aj(−∞)

2
[I − SR+ ] +

aj(−∞)

2
[I + SR+ ]

= M0
a0j

+
aj(−∞)

2
[I −W− sign] +

aj(−∞)

2
[I +W− sign]

(see (4.5.4) and (4.3.14)). Therefore, the discontinuity at infinity of symbols of Mellin convolution
operators is taken over in Fourier convolution operators and we can even assume in (4.5.6) that
a0j (±∞) = 0 for all j = 1, . . . ,m.

In order to keep the exposition self-contained and to improve formulations from [52], the results
concerning the Banach algebra generated by operators (4.5.6) are presented here with some modifica-
tion and the proofs.

Note that the algebra Ap(R+) is actually a subalgebra of the Banach algebra Fp(R+) generated by
the Fourier convolution operators Wa with piecewise-constant symbols a(ξ) in the space Lp(R+) (cf.
Proposition 4.5.7). Let S(Lp(R+)) denote the ideal of all compact operators in Lp(R+). Since the
quotient algebra Fp(R+)/S(Lp(R+)) is commutative in the scalar case N = 1, the following is true.

Corollary 4.5.1. The quotient algebra Ap(R+)/S(Lp(R+)) is commutative in the scalar case N = 1.

To expose the symbol of operator (4.5.6), consider the infinite clockwise oriented “rectangle”
R := Γ1 ∪ Γ−

2 ∪ Γ+
2 ∪ Γ3, where (cf. Fig. 4.1)

Γ1 := {∞} × R, Γ±
2 := R+ × {±∞}, Γ3 := {0} × R.

The symbol Ap(ω) of the operator A in (4.5.6) is a function on the set R, viz.,

Ap(ω) :=



m∑
j=1

aj(ξ)(bj)p(∞, ξ), ω = (∞, ξ) ∈ Γ1,

m∑
j=1

aj(∞)bj(η), ω = (η,+∞) ∈ Γ+
2 ,

m∑
j=1

aj(∞)bj(−η), ω = (η,−∞) ∈ Γ−
2 ,

m∑
j=1

aj(ξ)(bj)p(0, ξ), ω = (0, ξ) ∈ Γ3.

(4.5.7)
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(0, ξ)

(∞, ξ)

Γ3

Γ1

Γ−
2 (η,−∞) Γ+

2(η,+∞)

(∞,−∞)

(0,+∞)(0,−∞)

(∞,+∞)

Figure 4.1. The domain R of definition of the symbol A s
p (ω).

The symbol Ap(ω), when ω = (∞, ξ) ranges through the infinite interval Γ1 (cf. Fig. 4.1), it fills the
gap between the values

m∑
j=1

aj(∞)bj(−∞) and
m∑
j=1

aj(∞)bj(+∞)

and, when ω = (0, ξ) ranges through the infinite interval Γ3 (cf. Fig. 4.1), it fills the gap between the
values

m∑
j=1

aj(ξ)bj(0− 0) and
m∑
j=1

aj(ξ)bj(0 + 0).

The connecting function gp(∞, ξ) in (4.5.7) for a piecewise continuous function g ∈ PC(R) is defined
as follows:

gp(x, ξ) :=
g(x+ 0) + g(x− 0)

2
+
g(x+ 0)− g(x− 0)

2i
cotπ

(1
p
− iξ

)
= eiπ

g
+
x +g

−
x

2

cosπ( 1p −
g+x +g−x

2 − iξ)

sinπ( 1p − iξ)
, ξ ∈ R, (4.5.8)

g±x :=
1

πi
ln g(x± 0), Re g±x =

1

π
arg g(x± 0), x ∈

•

R := R ∪ {∞}.

The function gp(∞, ξ) fills up the discontinuity (the jump) of g(ξ) at ∞ between g(−∞) and
g(+∞) with an oriented arc of the circle such that from every point of the arc the oriented interval
[g(−∞), g(+∞)] is seen under the angle π/p. Moreover, the oriented arc lies above the oriented interval
if 1

2 <
1
p < 1 (i.e., if 1 < p < 2) and the oriented arc is under the oriented interval if 0 < 1

p <
1
2 (i.e.,

if 2 < p < ∞). For p = 2, the oriented arc coincides with the oriented interval (cf. Fig. 4.2 on page
117)).

A similar geometric interpretation is valid for the function gp(t, ξ), which connects the point g(t−0)
with g(t+ 0) at the point t where g(ξ) has a jump discontinuity.

To make the symbol Ap(ω) continuous, we endow the rectangle R with a special topology. Thus,
let us define the distance on the curves Γ1, Γ±

2 , Γ3 and on R by

ρ(x, y) :=
∣∣∣ arg x− i

x+ i
− arg y − i

y + i

∣∣∣ for arbitrary x, y ∈ R.

In this topology, the length |R| of R is 6π, and the symbol Ap(ω) is continuous everywhere on R. The
image of the function det Ap(ω), ω ∈ R (det Bp(ω)) is a closed curve in the complex plane. It follows
from the continuity of the symbol at the angular points of the rectangle R where the one-sided limits
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g(−∞) g(−∞) g(−∞)

g(+∞) g(+∞) g(+∞)

1 < p < 2 2 < p <∞ p = 2

Figure 4.2. Arc condition.

coincide. Thus

Ap(±∞,∞) =

m∑
j=1

aj(∞)bj(∓∞),

Ap(±∞, 0) =

m∑
j=1

[aj(∞)bj(0∓ 0).

Hence, if the symbol of the corresponding operator is elliptic, i.e., if

inf
ω∈R

|det Ap(ω)| > 0, (4.5.9)

the increment of the argument (1/2π) arg Ap(ω), when ω ranges through R in the positive direction,
is an integer, is called the winding number or the index and it is denoted by ind det Ap.

Theorem 4.5.2. Let 1 < p <∞ and let A be defined by (4.5.6). The operator A : Lp(R+) → Lp(R+)
is Fredholm if and only if its symbol Ap(ω) is elliptic. If A is Fredholm, the index of the operator has
the value

Ind A = − ind det Ap. (4.5.10)

The operator A is locally invertible at 0 ∈ R+ if and only if its symbol A s
p (ω), defined in (4.5.7),

is elliptic on Γ1, i.e.,
inf
ω∈Γ1

|det A s
p (ω)| = inf

ξ∈R

∣∣det A s
p (ξ,∞)

∣∣ > 0.

Proof. Note that our study is based on a localization technique. For more details concerning this
approach, we refer the reader to [47,49,83,127].

Let us apply the Gohberg–Krupnik local principle to the operator A in (4.5.8), “freezing” the
symbol of A at a point x ∈ R := R∪{−∞}∪{+∞}. For x ∈ R and ℓ ∈ N, ℓ ≥ 1, let Cℓx(R) denote the
set of all ℓ-times differentiable non-negative functions which are supported in a neighborhood of x ∈ R
and are identically one everywhere in a smaller neighborhood of x. For x ∈ {−∞} ∪ {+∞} ∪ {∞},
the functions from the corresponding classes Cℓ+∞(R) and Cℓ−∞(R) vanish on semi-infinite intervals
[−∞, c) and (−c,∞], respectively, for certain c > 0, and are identically one in smaller neighborhoods.
It is easily seen that the system of localizing classes {Cℓx(R)}x∈R is covering in the algebras C(R),
Mp(R), respectively (cf. [38, 47,49,83]).

Let us now consider a system of localizing classes {Lω,x}(ω,x)∈R×R+ in the quotient algebra
Ap(R+)/S(Lp(R+)). These localizing classes depend on two variables, viz. on ω ∈ R and x ∈ R+. In
particular, the class Lω,x contains the operator Λω,x,

Λω,x :=



[
h0M

0
vξ
Wg∞

]
=

[
h0M

0
vξ

]
if ω = (ξ,∞) ∈ Γ1, x = 0,[

hxM
0
v±∞

Wg∞

]
=

[
hxM

0
v±∞

Wg∓∞

]
if ω = (±∞,∞) ∈ Γ±

2 ∩ Γ1, x ∈ R+,[
h∞M0

v±∞
Wgη

]
=

[
h∞M0

v±∞
Wg∓ η

]
if ω = (±∞, η) ∈ Γ±

2 , x = ∞,[
h∞M0

vξ
Wg0

]
=

[
M0
vξ
Wg0

]
if ω = (ξ, 0) ∈ Γ3, x = ∞,

(4.5.11)



118 Tengiz Buchukuri, Roland Duduchava

where hx ∈ C1
x(R+), vξ ∈ C1

ξ (R+), gη ∈ C1
η(R+), and [A] ∈ Ap(R+)/S(Lp(R+)) denotes the coset

containing the operator A ∈ Ap(R+).
To verify the equalities in (4.5.11), one has to show that the difference between the operators in

the square brackets is compact.
Consider the first equality in (4.5.11). The operator

h0Wg∞ − h0I = h0W(g∞−1) = h0Wg0

is compact, since both functions h0 and 1 − g∞ = g0 have compact supports, so Proposition 4.5.3
applies.

To check the second equality in (4.5.11), let us note that hx(0) = 0, v±∞(∓∞) = 0 and g±∞(ξ) = 0
for all ∓ ξ > 0. From the fourth part of Proposition 4.5.5 we conclude that for any x ∈ R+ the operator
hxM

0
v±∞

Wg±∞ is compact. This leads to the claimed equality, since[
hxM

0
v±∞

Wg∞

]
=

[
hxM

0
v±∞

{
Wg−∞ +Wg+∞

}]
=

[
hxM

0
v±∞

Wg∓∞

]
.

The third identity in (4.5.11) can be verified analogously. Concerning the fourth identity in (4.5.11):
one can replace h∞ by 1 because the difference h∞Wg0 −Wg0 = (1 − h∞)Wg0 = h0Wg0 is compact
due to Proposition 4.5.3.

Now consider other properties of the system {Lω,x}(ω,x)∈R×R+ . Propositions 4.5.3–4.5.6 imply
that [

hxM
0
vξ
Wg∞

]
= 0 for all (ξ, η, x) ∈ R× R× R+ \R× R+.

Therefore, the system of localizing classes {Lω,x}(ω,x)∈R×R+ is covering: for a given system
{Λω,x}(ω,x)∈R×R+ of localizing operators one can select a finite number of points (ω1, x1) =

(ξ1, η1, x1), . . . , (ωs, xs) = (ξs, ηs, xs) ∈ R and add appropriately chosen terms [hxs+j
M0
vξs+j

Wgs+j
] = 0

with (ξs+j , ηs+j , xs+j)) ∈ R× R× R+ \ (R× R+), j = 1, 2, . . . , r, so that the equality
r∑
j=1

s∑
k=1

[
cxj

M0
aξj
Wbηk

]
=

[
cM0

aWb

]
(4.5.12)

holds and the functions c ∈ C(R+), a ∈ CMp(R), b ∈ CMp(R) are all elliptic. This implies the
invertibility of the coset [cM0

aWb] in the quotient algebra Ap(R+)/S(Lp(R+)) and the inverse coset is
[cM0

aWb]
−1 = [c−1M0

a−1Wb−1 ].
Note that the choice of a finite number of terms in (4.5.12) is possible due to the Borel–Lebesgue

lemma and the compactness of the sets R and R+ (two point and one point compactification of R and
of R+, respectively).

Moreover, localization in the quotient algebra Ap(R+)/S(Lp(R+)) leads to the following local
representatives of the cosets containing Mellin and Fourier convolution operators with symbols a, b ∈
CMp(R):

[M0
a]

M0
vξ0∼ [M0

a(ξ0)
] = [a(ξ0)I] if ξ0 ∈ R, (4.5.13a)

[M0
a]
vx0

I
∼ [M0

a∞ ] if x0 ∈ R+, x0 ̸= 0, (4.5.13b)

[M0
a]
v∞I∼ [M0

a] if x0 = ∞, (4.5.13c)

[M0
a]
v0I∼ [M0

a] if x0 = 0, (4.5.13d)

[Wb]
Wvη0∼ [Wb(η0)] = [b(η0)I] if η0 ∈ R \ {0}, (4.5.13e)

[Wb]
Wv0∼ [Wb0 ] = [M0

bp(0, · )] if η = 0, (4.5.13f)

[Wb]
Wv∞∼ [Wb∞(∞, · )] = [M0

bp(∞, · )] if η0 = ∞, (4.5.13g)

[Wb]
vx0

I
∼ [Wb∞ ] = [M0

bp(∞, · )] if x0 ∈ R+, (4.5.13h)



Thin Shells with Lipschitz Boundary 119

[Wb]
v∞I∼ [Wb] if x0 = ∞, (4.5.13i)

where

g∞(ξ) :=
g(+∞) + g(−∞)

2
+
g(+∞)− g(−∞)

2
sign ξ = g(−∞)χ−(ξ) + g(+∞)χ+(ξ),

g0(ξ) :=
g(0 + 0) + g(0− 0)

2
+
g(0 + 0) + g(0− 0)

2
sign ξ = g(0− 0)χ−(ξ) + g(0 + 0)χ+(ξ),

and χ±(ξ) := (1/2)(1±sign ξ). Note that in the equivalency relations (4.5.13e)–(4.5.13g) we used the
identities (cf. (4.5.2) and (4.5.8))

Wg∞ =
g(−∞)− g(+∞)

2
− g(−∞)− g(+∞)

2
SR+ = Mgp(∞, · ),

Wg0 =
g(0 + 0) + g(0− 0)

2
− g(0 + 0)− g(0− 0)

2
SR+ = Mgp(0, · ) ,

which means that the Fourier convolution operators with homogeneous of order 0 symbols g∞(ξ) and
g0(ξ) are, simultaneously, Mellin convolutions with the symbols gp(∞, ξ), gp(0, ξ).

Using the equivalence relations (4.5.13a)–(4.5.13h) and the compactness of the corresponding op-
erators, cf. Propositions 4.5.3–4.5.5, one easily finds the following local representatives of the operator
(coset) A ∈ Ap(R+)/SLp(R+) (see (4.5.8) for the operator A):

[A]
Λ(ξ0,∞),0∼

[ m∑
j=1

M0
aj(ξ0)

W(bj)∞

]
=

[ m∑
j=1

M0
aj(ξ0)(bj)p(∞, · )

] Λ(ξ0,∞),0∼
[ m∑
j=1

M0
aj(ξ0)(bj)p(∞,ξ0)

]
=

[
Ap(ξ0,∞)I

]
if ω = (ξ0,∞) ∈ Γ1, x0 = 0, (4.5.14a)

[A]
Λ(±∞,∞),x0∼

[ m∑
j=1

M0
aj(±∞)W(bj)∞

]
=

[ m∑
j=1

M0
aj(±∞)(bj)p(∞, · )

]
=

[
M0

Ap(±∞, · )
] Λ(±∞,∞),x0∼

[
Ap(±∞,∞)I

]
(4.5.14b)

if ω = (±∞,∞) ∈ Γ±
2 ∩ Γ1, 0 < x0 <∞,

[A]
Λ(±∞,∓ η0),∞∼

[ m∑
j=1

M0
aj(±∞)Wbj(∓ η0)

]
=

[ m∑
j=1

aj(±∞)bj(∓ η0)I
]

=
[
Ap(±∞,∓ η0)I

]
if η0 > 0, ω = (±∞,∓ η0) ∈ Γ±

2 , x0 = ∞, (4.5.14c)

[A]
Λ(ξ0,0),∞∼

[ m∑
j=1

M0
ajWb0j

]
=

[ m∑
j=1

aj(ξ0)M(bj)p(0, · )

] Λ(ξ0,0),∞∼
[ m∑
j=1

aj(ξ0)(bj)p(0, ξ0)
]

=
[
Ap(ξ0, 0)I

]
if ω = (ξ0, 0) ∈ Γ3, x0 = ∞, (4.5.14d)

[A]
Λ(±∞,η),∞∼

[ m∑
j=1

M0
aj(±∞)Wbj(0)

]
=

[ m∑
j=1

aj(±∞)bj(0)I
]
=

=
[
Ap(±∞, 0)I

]
if ω = (±∞, 0) ∈ Γ3, x0 = ∞. (4.5.14e)

It is remarkable that the local representatives (4.5.14a)–(4.5.14e) are just the quotient classes of
multiplication operators by constant N ×N matrices [Ap(ξ0, η0)I]. If det Ap(ξ0, η0) = 0, these repre-
sentatives are not invertible, both locally and globally. On the other hand, they are globally invertible
if det Ap(ξ0, η0) ̸= 0. Thus, the conditions of the local invertibility for all points ω0 = (ξ0, η0) ∈ R
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and the global invertibility of the operators under consideration coincide with the ellipticity condition
for the symbol inf

(ξ0,η0)∈R
det Ap(ξ0, η0) ̸= 0.

The index Ind A is a continuous integer-valued multiplicative function Ind AB = Ind A+ Ind B
defined on the group of Fredholm operators of Ap(R+). On the other hand, the index function
ind det Ap defined on Lp-symbols Ap possesses the same property ind det ApBp = ind det Ap +
ind det Bp, see explanations after (4.5.9). Moreover, the set of operators (4.5.8) is dense in the alge-
bra Ap(R+) and the corresponding set of their symbols is dense in the algebra C(R) of all continuous
functions on R. For p = 2, these algebras even coincide. Therefore, there is an algebraic homeomor-
phism between the quotient algebra Ap(R+)/S(Lp(R+)) and the algebra of their symbols which is a
dense subalgebra of C(R). Hence, two various index functions can only be connected by the relation
Ind A = M0 ind det Ap with an integer constant M0 independent of A ∈ Ap(R+)/S(Lp(R+)). Since
for any Fourier convolution operator A = Wa the index formula is Ind A = − ind det Ap [41, 42, 47],
the constant M0 = −1, and the index formula (4.5.10) is proved.

Concerning the concluding assertion of the theorem: A is, after lifting to Lp-space, locally equiv-
alent at 0 to the Mellin convolution operator M0

A s
p (∞,ξ), which commutes with the dilation

M0
aVλ = VλM

0
a, Vλφ(t) := φ(λt) for all λ > 0

and, therefore, is locally invertible at 0 if and only if it is globally invertible (see [45,47,127]) and this
is the case if and only if inf

ξ∈R
|A s

p (∞, ξ)| > 0.

Remark 4.5.3. Let us emphasize that formula (4.5.10) does not contradict the invertibility of “pure
Mellin convolution” operators M0

a : Lp(R+) → Lp(R+) with an elliptic matrix symbol a ∈ CM0
p(R),

inf
ξ∈R

|a(ξ)| > 0, stated in Proposition 4.1.1, even if ind a ̸= 0.

In fact, computing the symbol of M0
a by formula (4.5.7), one obtains

(M0
a)p(ω) :=


a(ξ), ω = (ξ,∞) ∈ Γ1,

a(+∞), ω = (+∞, η) ∈ Γ+
2 ,

a(−∞), ω = (−∞, η) ∈ Γ−
2 ,

a(ξ), ω = (ξ, 0) ∈ Γ3.

Noting that on the sets Γ1 and Γ3 the variable ω runs in opposite direction, the increment of the
argument [arg det(M0

a)p(ω)]R = 0 is zero, implying IndM0
a = 0.

In contrast to the above, the pure Fourier convolution operators Wb : Lp(R+) → Lp(R+) with
elliptic matrix symbol b ∈ CM0

p(R), inf
ξ∈R

|bp(ξ, η)| > 0 can possess non-zero indices. Since

bp(ω) :=


bp(∞, ξ), ω = (ξ,∞) ∈ Γ1,

b(−η), ω = (+∞, η) ∈ Γ+
2 ,

b(η), ω = (−∞, η) ∈ Γ−
2 ,

b(0), ω = (ξ, 0) ∈ Γ3,

one arrives at the well-known formula

IndWb = − ind bp.

Moreover, in the case where the symbol b(−∞) = b(+∞) is continuous, one has bp(ξ, η) = b(ξ). Thus
the ellipticity of the corresponding operator leads to the formula

ind bp = ind det b.

If Ap(ω) is the symbol of an operator A of (4.5.6), the set R(Ap) := {Ap(ω) ∈ C : ω ∈ R}
coincides with the essential spectrum of A. Recall that the essential spectrum σess(A) of a bounded
operator A is the set of all λ ∈ C such that the operator A − λI is not Fredholm in Lp(R+) or,
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equivalently, the coset [A − λI] is not invertible in the quotient algebra Ap(R+)/S(Lp(R+)). Then,
due to Banach theorem, the essential norm ∥∥A∥∥ of the operator A can be estimated as follows

sup
ω∈ω

|Ap(ω)| 6 ∥∥A∥∥ := inf
T∈S(Lp(R+))

∥∥(A + T) | L (Lp(R+))
∥∥. (4.5.15)

Inequality (4.5.15) enables one to extend continuously the symbol map (4.5.7)

[A] → Ap(ω), [A] ∈ Ap(R+)/S(Lp(R+)) (4.5.16)

on the whole Banach algebra Ap(R+). Now, applying Theorem 4.5.2 and standard methods, cf. [52,
Theorem 3.2], one can derive the following result.

Corollary 4.5.2. Let 1 < p <∞ and A ∈ Ap(R+). The operator A : Lp(R+) → Lp(R+) is Fredholm
if and only if its symbol Ap(ω) is elliptic. If A is Fredholm, then

Ind A = − ind Ap.

Corollary 4.5.3. The set of maximal ideals of the commutative Banach quotient algebra
Ap(R+)/S(Lp(R+)), generated by scalar N = 1 operators in (4.5.6), is homeomorphic to R, and
the symbol map in (4.5.7), (4.5.16) is a Gelfand homeomorphism of the corresponding Banach alge-
bras.

Proof. The proof is based on Theorem 4.5.2 and Corollary 4.5.2 and is similar to [52, Theorem 3.1].
The details of the proof is left to the reader.

Remark 4.5.4. All the above results are valid in a more general setting, viz., for the Banach algebra
PAN×N

p,α (R+) generated in the weighted Lebesgue space of N -vector-functions LNp (R+, xα) by the
operators

A :=

m∑
j=1

[
d1jM

0
a1j
Wb1j

+ d2jM
0
a2j
Hc1j

+ d3jW
0
b2j
Hc2j

]
(4.5.17)

when coefficients d1j , d2j , d3j ∈ PCN×N (R) are piecewise-continuous N ×N matrix functions, symbols
of Mellin convolution operators M0

a1j
, M0

a2j
, Winer–Hopf (Fourier convolution) operators Wb1j

, Wb2j

and Hankel operators Hc1j
, Hc2j

are N × N piecewise-continuous matrix Lp-multipliers akj , bkj , ckj ∈
PCN×NMp(R).

The spectral set Σ(PAN×N
p,α (R+)) of such Banach algebra (viz., the set where the symbols are

defined, e.g., R for the Banach algebra AN×N
p (R+) investigated above) is more sophisticated and

described in the papers [45,46,52,132]. Let CAp,α(R+)S(Lp(R+)) be the sub-algebra of PAp,α(R+) =

PA1×1
p,α (R+) generated by the scalar operators (4.5.17) with continuous coefficients cj , hj ∈ C(R)

and the scalar piecewise-continuous Lp-multipliers aj , bj , dj , gj ∈ PCMp(R). The quotient-algebra
CAp,α(R+)S(Lp(R+)) with respect to the ideal of all compact operators is a commutative algebra and
the spectral set Σ(PAp,α(R+)) is homeomorphic to the set of maximal ideals.

We will not elaborate more on further details concerning the Banach algebra PAN×N
p,α (R+), since

the result exposed above are sufficient for the purpose of this and subsequent papers dealing with the
BVPs in domains with corners at the boundary.

4.6 Mellin convolution operators in the Bessel potential spa-
ces. The boundedness and lifting

As it was already mentioned, the primary aim of the present paper is to study Mellin convolution
operators M0

a acting in the Bessel potential spaces,

M0
a : H̃sp(R+) → Hsp(R+). (4.6.1)

The symbols of these operators are N ×N matrix functions a ∈ CM0
p(R) continuous on the real axis

R with the only possible jump at infinity.
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Theorem 4.6.1. Let s ∈ R and 1 < p <∞.
If conditions of Theorem 4.3.4 hold, the Mellin convolution operator between the Bessel potential

spaces
K1
c : H̃rp(R+) → Hrp(R+) (4.6.2)

is lifted to the equivalent operator
Λs

−γK1
cΛ

−s
γ = c−sK1

cWgs−cγ,γ
: Lp(R+) → Lp(R+), (4.6.3)

where c−s = |c|−se−is arg c and the function gs−cγ,γ is defined in (4.2.10).
If conditions of Corollary 4.3.2 hold, the Mellin convolution operator between the Bessel potential

spaces (4.6.2) is lifted to the equivalent operator
Λs

−γK1
cΛ

−s
γ = c−sWgs−γ,−γ0

K1
cWgs−cγ0,γ

= c−sK1
cWgs−γ,−γ0

gs−cγ0,γ
+ T : Lp(R+) → Lp(R+), (4.6.4)

where T : Lp(R+) → Lp(R+) is a compact operator.
Proof. The equivalent operator after lifting is

Λs
−γK1

cΛ
−s
γ : Lp(R+) → Lp(R+)

(see Theorem 4.2.1). To proceed we need two formulae
Λs

−cγΛ
−s
γ =Wgs−cγ,γ

, Wgs−γ,−γ0
Wgs−cγ0,γ

=Wgs−γ,−γ0
gs−cγ0,γ

. (4.6.5)

The first one holds because 0 < arg γ < π (see (4.2.8)) and the second one holds because gs−γ,−γ0(ξ)
has a smooth, uniformly bounded analytic extension in the complex lower half-plane (see (4.2.13)).

If conditions of Theorem 4.3.4 hold, we apply formula (4.3.23), the first formula in (4.6.5) and
derive the equality in (4.6.3):

Λs
−γK1

cΛ
−s
γ = c−sK1

cΛ
s
−cγΛ

−s
γ = c−sK1

cWgs−cγ,γ
.

If conditions of Corollary 4.3.2 hold, we apply formulae (4.3.35), (4.3.36), both formulae in (4.6.5)
and derive the equality in (4.6.4):

Λs
−γK1

cΛ
−s
γ = c−sWgs−γ,−γ0

K1
cΛ

s
−cγΛ

−s
γ

= c−sWgs−γ,−γ0
K1
cWgs−cγ0,γ

= c−sK1
cWgs−γ,−γ0

Wgs−cγ0,γ
+ T.

Remark 4.6.1. The case of operator K1
1 is not covered by the foregoing Theorem 4.6.1, where

arg c ̸= 0. This case is essentially different as underlined in Theorem 4.5.1 because K1
1 is a Hilbert

transform K1
1 = −πiSR+ = πiWsign and K1

1 between the Bessel potential spaces (4.6.2) is lifted to
the equivalent Fourier convolution operator

Λs
−γK1

1Λ
−s
γ =Wπigs−γ,γ sign : Lp(R+) → Lp(R+), (4.6.6)

as it follows from Theorem 4.5.1.
Theorem 4.6.2. Let cj , dj ∈ C, 0 < arg cj < 2π, 0 < arg γ < π, −π < arg(cjγ) < 0 for j = 1, . . . ,m
and 0 < arg(cjγ) < π for j = m+ 1, . . . , n.

The Mellin convolution operator between the Bessel potential spaces

A =

n∑
j=1

djK1
cj : H̃rp(R+) → Hrp(R+) (4.6.7)

is lifted to the equivalent operator

Λs
−γAΛ−s

γ =

m∑
j=0

djc
−s
j K1

cjWgs−cjγ,−γ
+

n∑
j=m+1

djc
−s
j Wgs−γ,−γj

K1
cjWgs−cjγj,γ

(4.6.8a)

=

m∑
j=0

djc
−s
j K1

cjWgs−cjγ,γ
+

n∑
j=m+1

djc
−s
j K1

cjWgs−γ,−γj
gs−cjγj,γ

+ T (4.6.8b)

in the space Lp(R+), where c−s = |c|−se−is arg c and γj are such that 0 < arg γj < π, −π < arg(cj γj) <
0 for j = m+ 1, . . . , n. T : Lp(R+) → Lp(R+) is a compact operator.
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Proof. The proof is a direct consequence of Theorem 4.6.1.

Theorem 4.6.3. Let s ∈ R and 1 < p <∞.
If conditions of Theorem 4.3.4 hold, the Mellin convolution operator between the Bessel potential

spaces
K2
c : H̃rp(R+) → Hrp(R+) (4.6.9)

is lifted to the equivalent operator

Λs
−γK2

cΛ
−s
γ = c−s[K2

c − sc−1K1
c ]Wgs−cγ,γ

+ s γ c−sK1
cW(ξ+γ)−1gs−1

−cγ,γ
(4.6.10)

in the space Lp(R+), where c−s = |c|−se−is arg c and the function gs−cγ,γ is defined in (4.2.10) and the
last summand in (4.6.10)

T := s γ c−sK1
cWgs−1

−cγ,γ
Λ−1
γ : Lp(R+) → Lp(R+) (4.6.11)

is a compact operator.
If conditions of Corollary 4.3.2 hold, the Mellin convolution operator between the Bessel potential

spaces (4.6.9) is lifted to the equivalent operator in the space Lp(R+)

Λs
−γK2

cΛ
−s
γ = c−sWgs−γ,−γ0

[K2
c − sc−1K1

c ]Wgs−cγ0,γ
+ s γ c−sWgs−γ,−γ0

K1
cW(ξ+γ)−1gs−1

−cγ0,γ

= c−s[K2
c − sc−1K1

c ]Wgs−γ,−γ0
gs−c γ0,γ

+ s γ c−sK1
cW(ξ−cγ0)−1gs−cγ0,−γ0

gs−γ,γ
+ T, (4.6.12)

where T : Lp(R+) → Lp(R+) is a compact operator.

Proof. Let conditions of Theorem 4.3.4 hold (that means Im γ > 0 and Im c γ < 0). Then

1

(t− c)2
= lim
ε→0

1

2εi

[ 1

t− c− εi
− 1

t− c+ εi

]
and we have

Λs
−γK2

cΛ
−s
γ = lim

ε→0

1

2εi
Λs

−γ
[
K1
c+εi − K1

c−εi
]
Λ−s
γ

= lim
ε→0

1

2εi

[
(c+ εi)−sK1

c+εiΛ
s
−(c+εi)γ − (c− εi)−sK1

c−εiΛ
s
−(c−εi)γ

]
Λ−s
γ

= lim
ε→0

{
(c+ εi)−s − (c− εi)−s

2εi
K1
c+εiΛ

s
−(c+εi)γ

− (c− εi)−s
1

2εi

[
K1
c+εi − K1

c−εi
]
Λs

−(c−εi)γ

− (c− εi)−sK1
c−εi

1

2εi

[
Λs

−(c+εi)γ −Λs
−(c−εi)γ

]}
Λ−s
γ

= −sc−s−1K1
cΛ

s
−c γΛ

−s
γ + c−sK2

cΛ
s
−c γΛ

−s
γ

+ c−sK1
c lim
ε→0

F−1 (ξ − c γ − εγi)s − (ξ − c γ + εγi)s

2εi
FΛ−s

γ

= c−s
[
K2
c − sc−1K1

c

]
Wgs−cγ,γ

+ s γ c−sK1
cΛ

s−1
−c γΛ

−s
γ

= c−s
[
K2
c − sc−1K1

c

]
Wgs−cγ,γ

+ s γ c−sK1
cW(ξ+γ)−1gs−1

−cγ,γ

Formula (4.6.10) is proved.
Formula (4.6.12) is derived from (4.6.10) as in Theorem 4.6.1.

Remark 4.6.2. The case of operators Kn
c , n = 3, 4, . . . , can be treated similarly as in Corollary 4.6.3:

with the help of perturbation the operator Kn
c can be represented in the form

Kn
cφ = lim

ε→0
Kc1,ε,...,cn,ε

φ, ∀φ ∈ H̃rp(R+),



124 Tengiz Buchukuri, Roland Duduchava

Kc1,ε,...,cn,ε
φ(t) :=

∞∫
0

Kc1,ε,...,cn,ε

( t
τ

)
φ(τ)

dτ

τ
=

n∑
j=1

dj(ε)K1
cj,εφ(t),

Kc1,ε,...,cm,ε
(t) :=

1

(t− c1,ε) · · · (t− cn,ε)
=

n∑
j=1

dj(ε)

t− cj,ε
, (4.6.13)

cj,ε = c(1 + εeiωj ), ωj ∈ (−π, π), arg cj,ε, arg cj,ε γj ̸= 0, j = 1, . . . ,m.

The points ω1, . . . , ωn ∈ (−π, π] are pairwise different, i.e., ωj ̸= ωk for j ̸= k (we remind that
arg c ̸= 0 because n = 3, 4, . . . ). By equating the numerators in formula (4.6.2) we find the coefficients
d1(ε), . . . , dn−1(ε).

Since the operators K3
c ,K4

c , . . . encounter in applications rather rarely, we have confined ourselves
with the exact formulae only for the operators K1

c and K2
c .

4.7 Mellin convolution operators in the Bessel potential spa-
ces. Fredholm properties

Let us write the symbol of a model operator

A := d0I +Wa0 +

n∑
j=1

WajK1
cjWbj (4.7.1)

acting in the Bessel potential spaces H̃sp(R+) → Hsp(R+), compiled of the identity I, of Fourier
Wa0 , . . . ,Wan , Wb1 , . . . ,Wbn and Mellin K1

c1 , . . . ,K1
cn convolution operators.

We assume that a0, . . . , an, b1, . . . , bn ∈ CMp(R \ {0}), c1, . . . , cn ∈ C and, if s 6 1
p − 1 or s > 1

p ,
the functions a1(ξ), . . . , an(ξ) have bounded analytic extensions in the lower half-plane Im ξ < 0, while
the functions b1(ξ), . . . , bn(ξ) have bounded analytic extensions in the upper half-plane Im ξ > 0 to
ensure the proper mapping properties of the operator A : H̃sp(R+) → Hsp(R+). For 1

p − 1 < s < 1
p ,

such constraints are not necessary.
Now we describe the symbol A s

p (ω) of the operator A. For this, we lift the operator A : H̃sp(R+) →
Hsp(R+) to the Lp-setting and apply equality (4.2.13) to the operator

Λs
−γAΛ−s

γ : Lp(R+) → Lp(R+), (4.7.2)

Λs
−γAΛ−s

γ = d0Λ
s
−γΛ

−s
γ +Λs

−γWa0Λ
−s
γ +

n∑
j=1

WajΛ
s
−γK1

cjΛ
−s
γ Wbj

= d0W( ξ−γ
ξ+γ )s +Wa0(ξ)(

ξ−γ
ξ+γ )s +

n∑
j=1

WajK1
cjW( ξ−cγ

ξ+γ )sWbj (4.7.3)

(see Theorem 4.2.1, diagram (4.2.7)), if conditions of Theorem 4.3.4 hold (see (4.6.4)) and to the
operator

Λs
−γAΛ−s

γ = d0W( ξ−γ
ξ+γ )s +Wa0(ξ)(

ξ−γ
ξ+γ )s +

n∑
j=1

WajK1
cjW( ξ−γ

ξ−γ0
)s(

ξ−cγ0
ξ+γ )s

Wbj + T, (4.7.4)

where T : Lp(R+) → Lp(R+) is a compact operator, if conditions of Corollary 4.3.2 hold (see (4.6.5)).
We declare the symbol of the lifted operator (4.7.2)–(4.7.4) in the space Lp(R+) as the symbol of

the operator A in the Bessel potential space. This symbol, written according formulae (4.5.7) and
(4.5.8), has the form

A s
p (ω) := d0I

s
p (ω) + W s

a0,p(ω) +

n∑
j=1

W 0
aj ,p(ω)K

1,s
cj ,p(ω)W

0
bj ,p(ω), (4.7.5)
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where I s
p (ω), W s

a0,p(ω), W 0
aj ,p(ω), K 1,s

cj ,p(ω) and W 0
bj ,p

(ω) are the symbols of the operators W( ξ−γ
ξ−γ )s in

Lp (of I in Hsp), of Wa0(ξ)(
ξ−γ
ξ−γ )s in Lp (of Wa0 in Hsp), of Waj in Lp (and in Hsp), of K1

cjW( ξ−cγ
ξ−γ )s in

Lp (of K1
cj in Hsp), of Wbj in Lp (and in Hsp). Now it suffices to expose the symbols I s

p (ω), W s
a0,p(ω),

W 0
aj ,p(ω) and K 1,s

cj ,p(ω) of the operators I, Wa0 , Waj (j = 1, 2, . . . , n) and K1
c separately (the symbol

W 0
bj ,p

(ω) of Wbj (j = 1, 2, . . . , n) is written analogously):

I s
p (ω) :=


gs−γ,γ,p(∞, ξ), ω = (ξ,∞) ∈ Γ1,(η − γ

η + γ

)∓s
, ω = (+∞, η) ∈ Γ±

2 ,

eπsi, ω = (ξ, 0) ∈ Γ3,

(4.7.6a)

W s
a,p(ω) :=


asp(∞, ξ), ω = (ξ,∞) ∈ Γ1,

a(∓η)
(η − γ

η + γ

)∓s
, ω = (+∞, η) ∈ Γ±

2 ,

eπsiap(0, ξ), ω = (ξ, 0) ∈ Γ3,

(4.7.6b)

W 0
a,p(ω) :=


ap(∞, ξ), ω = (ξ,∞) ∈ Γ1,

a(∓η), ω = (+∞, η) ∈ Γ±
2 ,

ap(0, ξ), ω = (ξ, 0) ∈ Γ3,

(4.7.6c)

K 1,s
c,p (ω) :=


c−se−iπ(

1
p−iξ−1)c

1
p−iξ−1

sinπ( 1p − iξ)
, ω = (ξ,∞) ∈ Γ1, , ω = (ξ, 0) ∈ Γ3

0, ω = (±∞, η) ∈ Γ±
2 for arg c ̸= 0,

(4.7.6d)

K 1,s
1,p (ω) :=


−i cotπ

(1
p
− iξ

)
, ω = (ξ,∞) ∈ Γ1,

±1, ω = (±∞, η) ∈ Γ±
2 ,

i cotπ
(1
p
− iξ

)
, ω = (ξ, 0) ∈ Γ3,

(4.7.6e)

asp(∞, ξ) :=
e2πsia(∞) + a(−∞)

2
− e2πsia(∞)− a(−∞)

2i
cotπ

(1
p
− iξ

)
,

ap(x, ξ) :=
a(x+ 0) + a(x− 0)

2
− a(x+ 0)− a(x− 0)

2i
cotπ

(1
p
− iξ

)
, x = 0,∞,

gs−γ,γ,p(∞, ξ) :=
e2πsi + 1

2
− e2πsi − 1

2i
cotπ

(1
p
− iξ

)
= eπsi

sinπ( 1p − s− iξ)

sinπ( 1p − iξ)
, ξ ∈ R, η ∈ R+,

where
0 < arg c < 2π, −π < arg(c γ) < 0, 0 < arg γ < π,

and cs = |c|seis arg c, (−c)δ = |c|δeiδ(arg c∓π) for c, δ ∈ C; the sign “−” is chosen for π < arg c < 2π and
the sign “+” is chosen for 0 < arg c < π.

Note that we got the equal symbol K 1,s
c,p (ω) of the operator K1

cj in cases (4.7.3) and (4.7.4), since
the functions

gs−γ,−γ0(ξ)g
s
−cγ0,γ(ξ) :=

( ξ − γ

ξ − γ0

)s(ξ − cγ0
ξ + γ

)s
and gs−cγ,γ(ξ) :=

(ξ − cγ

ξ + γ

)s
have equal limits at infinity

gs−cγ,γ(±∞) = gs−γ,−γ0(±∞)gs−cγ0,γ(±∞) = 1 and gs−cγ,γ(0) = gs−γ,−γ0(0)g
s
−cγ0,γ(0) = (−c)s.

If a(−∞) = 1 and a(+∞) = e2παi, then a−∞ = 0, a+∞ = 2α and the symbol asp(∞, ξ) acquires the
form

asp(∞, ξ) = eπ(s+α)i
sinπ( 1p − s+ α− iξ)

cosπ( 1p − iξ)
. (4.7.6f)
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Note that the Mellin convolution operator

K1
−1φ(t) :=

∞∫
0

φ(τ) dτ

t+ τ
= M0

M 1
p

K 1
−1
, M 1

p
K 1

−1(ξ) =
πd β−iξ−1

sinπ(β − iξ)

(see (4.3.9b)), which we encounter in applications, has a rather simple symbol in the Bessel potential
space Hsp(R+) (see (4.7.6c), where c = −1 = eiπ):

K 1,s
−1,p(ω) :=


e−πsi

sinπ(β − iξ)
, ω = (ξ,∞) ∈ Γ1 ∪ Γ3,

0, ω = (±∞, η) ∈ Γ±
2 , .

Theorem 4.7.1. Let 1 < p <∞, s ∈ R. The operator

A : H̃sp(R+) → Hsp(R+), (4.7.7)

defined in (4.7.1), is Fredholm if and only if its symbol A s
p (ω), defined in (4.7.5) and (4.7.6a)–(4.7.6f),

is elliptic.
If A is Fredholm, the index of the operator has the value

Ind A = − ind det A s
p .

Proof. Let cj , dj ∈ C, 0 < arg cj < 2π. Lifting the operator A to the space Lp(R+) we get

Λs
−γAΛ−s

γ = d0Λ
s
−γΛ

−s
γ +Λs

−γWa0Λ
−s
γ +

n∑
j=1

WajΛ
s
−γK1

cjΛ
−s
γ Wbj , (4.7.8)

where c−s = |c|−se−is arg c and γj are such that 0 < arg γj < π, −π < arg(cj γj) < 0 for j =
m+ 1, . . . , n.

To derive (4.7.8), we have applied the following property of convolution operators Λs
−γWaj =

WajΛ
s
−γ and WbjΛ

s
γ = Λs

γWbj , Λ∓s
±γ =Wλ∓s

±γ
, which are based on the analytic extension properties of

the symbols λs−γ , a1(ξ), . . . , an(ξ) in the lower half-plane Im ξ < 0 and of symbols λ−sγ , b1(ξ), . . . , bn(ξ)
in the upper half-plane Im ξ > 0 (see (4.2.6)).

The model operators I, K1
c and Wa lifted to the space Lp(R+) acquire the form

Λs
γIΛ

−s
γ =Wgs−γ,γ

, Λs
γWakΛ

−s
γ =Wakgs−γ,γ

,

Λs
γK1

cΛ
−s
γ =

{
c−sK1

cWgs−c γ,γ
for − π < arg(c γ) < 0,

c−sK1
cWgs− γ,−γ0

gs−c γ0,γ
+ T for 0 < arg(c γ) < π, −π < arg(c γ0)| < 0,

(4.7.9)

where T is a compact operator. Here, as above, 0 < arg c < 2π, 0 < arg γ < π, 0 < arg γ0 < π and
either −π < arg(c γ) < 0 or, if −π < arg(c γ) < 0, then −π < arg(c γ0)| < 0. Here c−s = |c|−se−is arg c.

Therefore, the operator Λs
−γAΛ−s

γ in (4.7.8) is rewritten as follows:

Λs
−γAΛ−s

γ = d0Wgs−γ,γ
+Wa0gsγ,γ

+

m∑
j=1

c−sj WajK1
cjWgs−cjγ,γ

Wbj

+

n∑
j=m+1

c−sj WajK1
cjWgs−γ,−γj

gs−cjγj,γ
Wbj + T : Lp(R+) → Lp(R+), (4.7.10)

where T is a compact operator and we ignore it when writing the symbol of A.
We declare the symbol of the lifted operator Λs

−γAΛ−s
γ (see (4.7.10)) in the Lebesgue space Lp(R+)

as the symbol of the initial operator A : H̃sp(R+) → Hsp(R+) in (4.7.1).
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The function gs−γ,γ ∈ C(R) is continuous on R, but has different limits at infinity

gs−γ,γ(−∞) = 1, gs−γ,γ(+∞) = e2πsi, gs−γ,γ(0) = eπsi, (4.7.11a)

while the functions gs−γ,−γ0 , g
s
−cγ,γ , g

s
−cγ0,γ ∈ C(R) are continuous on R including infinity

gs−c γ,γ(±∞) = gs−γ,−γ0(±∞) = gs−c γ0,γ(±∞) = 1,

gs−γ,−γ0(0)g
s
−c γ0,γ(0) =

( −γ
−γ0

)s(−cγ0
γ

)s
= (−c)s,

gs−c γ,γ(0) = (−c)s if 0 < arg c < 2π.

(4.7.11b)

In the Lebesgue space Lp(R+), the symbols of the first two operators in (4.7.10) are written
according to formulae (4.5.7)–(4.5.8) by taking into account equalities (4.7.11a) and (4.7.11a). The
symbols of these operators have, respectively, forms (4.7.6a) and (4.7.6c).

The symbols of operators Wa1 , . . . ,Wan and Wb1 , . . . ,Wbn are written with the help of formulae
(4.5.7)–(4.5.8) and have form (4.7.6b).

The lifted Mellin convolution operators

Λs
γK1

cjΛ
−s
γ : Lp(R+) → Lp(R+)

are of mixed type and comprise both the Mellin convolution operators K1
cj = M0

K 1
cj,p

(ξ), where the
symbol K 1

cj ,p(ξ) := M 1
p
K 1
cj (ξ) is defined in (4.3.9b) and (4.3.9c), and the Fourier convolution op-

erators Wgs−cj γ0,γ
and Wgs− γ,−γ0

gs−cj γ0,γ
. The symbol of the operators Λs

γK1
cjΛ

−s
γ from (4.7) in the

Lebesgue space Lp(R+) is found according formulae (4.5.7)–(4.5.8), has form (4.7.6d) and is declared
the symbol of K1

cj : H̃sp(R+) → Hsp(R+). The symbols of Fourier convolution factors Wgs−cj γ0,γ
and

Wgs− γ,−γ0
gs−cj γ0,γ

, which contribute the symbol of K1
cj = M0

K 1
cj,p

, are written again according formulae
(4.5.7)–(4.5.8) by taking into account equalities (4.7.11a) and (4.7.11b).

Theorem 4.6.2 applied to the lifted operator gives the result formulated in Theorem 4.7.1.

Corollary 4.7.1. Let 1 < p <∞, s ∈ R. The operator

A : H̃sp(R+) → Hsp(R+),

defined in (4.5.15), is locally invertible at 0 ∈ R+ if and only if its symbol A s
p (ω), defined in (4.7.5)

and (4.7.6a)–(4.7.6f), is elliptic on Γ1, i.e.,

inf
ω∈Γ1

∣∣det A s
p (ω)

∣∣ = inf
ξ∈R

∣∣det A s
p (ξ,∞)

∣∣ > 0.

Proof. For the definition of the Sobolev–Slobodeckij (Besov) spaces Ws
p(Ω) = Bsp,p(Ω), W̃s

p(Ω) =

B̃sp,p(Ω) for an arbitrary domain Ω ⊂ Rn, including the half-axes R+, we refer to the monograph
[133].

Corollary 4.7.2. Let 1 < p < ∞, s ∈ R. If the operator A : H̃sp(R+) → Hsp(R+), defined in
(4.5.15), is Fredholm (is invertible) for all a ∈ (s0, s1) and p ∈ (p0, p1), where −∞ < s0 < s1 < ∞,
1 < p0 < p1 <∞, then

A : W̃s
p(R+) → Ws

p(R+), s ∈ (s0, s1), p ∈ (p0, p1), (4.7.12)

is Fredholm (is invertible, respectively) and has the equal index

Ind A = − ind det A s
p (4.7.13)

in the Sobolev–Slobodeckij (Besov) spaces Ws
p = Bsp,p.
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Proof. First of all recall that the Sobolev–Slobodeckij (Besov) spaces Ws
p = Bsp,p emerge as the result

of interpolation with the real interpolation method between the Bessel potential spaces(
Hs0p0(Ω),H

s1
p1(Ω)

)
θ,p

= Ws
p(Ω), s := s0(1− θ) + s1θ,(

H̃s0p0(Ω), H̃
s1
p1(Ω)

)
θ,p

= W̃s
p(Ω), p :=

1

p0
(1− θ) +

1

p1
θ, 0 < θ < 1.

(4.7.14)

If A : H̃sp(+) → Hsp(R+) is Fredholm (or is invertible) for all s ∈ (s0, s1) and p ∈ (p0, p1), it has a
regularizer R (has the inverse A−1 = R, respectively), which is bounded in the setting

R : Ws
p(R+) → W̃s

p(R+),

due to the interpolation (4.7.14) and

RA = I + T1, AR = I + T2,

where T1 and T2 are compact in H̃sp(R+) and in Hsp(R+), respectively (T1 = T2 = 0 if A is invertible).
Due to the Krasnoselskij interpolation theorem (see [133]), T1 and T2 are compact in W̃s

p(R+) and
in Ws

p(R+), respectively, for all s ∈ (s0, s1) and p ∈ (p0, p1) and, therefore, A in (4.7.12) is Fredholm
(is invertible, respectively).

The index formula (4.7.13) follows from the embedding properties of the Sobolev–Slobodeckij and
the Bessel potential spaces by standard well-known arguments.



Chapter 5

BVPs for the Laplace–Beltrami
equations on surfaces with
Lipschitz boundary

The objective of the present chapter is to investigate the general Mixed type boundary value problems
for the Laplace–Beltrami equation on a surface with the Lipschitz boundary C in a non-classical
setting, when solutions are sought in the Bessel potential spaces Hsp(C ), 1

p < s < 1 + 1
p , 1 < p < ∞.

Fredholm criteria and the unique solvability criteria are found. By the localization the problem is
reduced to the investigation of Model Dirichlet, Neumann and mixed boundary value problems for
the Laplace equation in a planar angular domain Ωα ⊂ R2 of magnitude α. The model mixed BVP
is investigated in earlier paper [69] and here we study Model Dirichlet and Neumann boundary value
problems in a non-classical setting. The problems are investigated by the potential method and by
reducing to locally equivalent 2×2 systems of Mellin convolution equations with meromorphic kernels
on the semi-infinite axes R+ in the Bessel potential spaces. Such equations were studied recently by
R. Duduchava in [59] and V. Didenko and R. Duduchava in [37].

5.1 Introduction and formulation of the problems
Many problems in mathematical physics, e.g., cracks in elastic media, electromagnetic scattering
by surfaces, etc., are reformulated in the form of a boundary value problem for an elliptic partial
differential equation in domains and surfaces with angular points at the boundary. In the recent
paper [15], investigation of such BVPs with the help of localization are reduced to the investigation
of a family of model problems in plane with finite number of angular points on the boundary of
magnitude αj ∈ (0, 2π), j = 1, . . . ,m, which, in its turn, are reduced to the investigation of the
associated model BVPs in angles with vertex at 0 and the same magnitude.

Consider a hypersurface C ⊂ R3 with the Lipschitz boundary Γ := ∂C , which is a smooth
subsurface of a closed hypersurface S in the Euclidean space R3. Let MΓ denote the angular points
(the knots) of Γ. Let ν := (ν1, ν2, ν3)

⊤ be the normal vector field on the surface C .
On C we consider the mixed BVP

∆Cu(t) = f(t), t ∈ C ,

u+(s) = g(s), on ΓD,

(∂νΓu)
+(s) = h(s), on ΓN ,

(5.1.1)

where ∆C is the Laplace–Beltrami operator

∆C := D2
1 + D2

2 + D2
3

129
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Figure 5.1.

and Dj := ∂j − νj∂ν , j = 1, 2, 3, are Günter’s tangent derivatives on the surface. Note that for the
flat case C ⊂ R2 Günter’s tangent derivatives coincide with the coordinate derivatives Dj := ∂j and
the Laplace–Beltrami operator with the Laplace operator ∆C = ∆ = ∂21 + ∂22 + ∂23 .

νΓ := (νΓ,1, νΓ,2, νΓ,3)
⊤ is the normal vector field to the boundary Γ tangent to S and ∂νΓ

=
νΓ,1D1 + νΓ,2D2 + νΓ,3D3 is the normal derivative.

Problem (5.1.1) is considered in the non-classical setting

u∈Hsp(C ), f ∈H̃s−2
p,0 (C ), g∈H

s− 1
p

p (ΓD), h∈H
s−1− 1

p
p (ΓN ), Γ=ΓD∪ΓN , 1<p<∞, s>

1

p
. (5.1.2)

Note that the upper constraint in 1
p < s < 1 + 1

p is necessary to ensure an invariant definition of
the Bessel potential and Besov spaces on non-smooth boundary Γ, while the lower constraint ensures
the existence of the Dirichlet trace u+ and, together with the Green formulae, also the existence of
the Neumann trace (∂νu)

+ of a solution on the boundary. These constraints cannot be relaxed.
For the definitions of the Bessel potential Hsp(C ), H̃sp(S ), Hrp(C ), H̃rp(R+) and Sobolev–Slobodečkii

W̃r
p(R+), etc., spaces for r ∈ R, 1 < p < ∞, we refer to the classical source [133] and also the

papers [54, 68,69].
Here we define only the space H̃−1

p,0(C ) mentioned above. Let H̃−1
Γ (C ) be a subspace of H̃−1(C )

consisting of functions supported just on the boundary Γ, i.e.:

H̃−1
Γ (C ) :=

{
f ∈ H̃−1(C ) : ⟨f, φ⟩ = 0 for all φ ∈ C1

0 (C )
}
. (5.1.3)

H̃−1
0 (C ) is a subspace of H̃−1(C ) orthogonal to H̃−1

Γ (C ). H̃−1(C ) is decomposed into the direct sum
of the subspaces:

H̃−1(C ) = H̃−1
Γ (C )⊕ H̃−1

0 (C ). (5.1.4)

The space H̃−1
Γ (C ) is non-empty (see [89, § 5.1] and excluding it from H̃−1(C ) it is necessary to make

BVPs uniquely solvable (cf. [89] and the next Theorem 5.1.1).
Let

H̃−r
p,0(C ) = H̃−r

p (C ) ∩ H̃−1
0 (C ), r >

1

p
. (5.1.5)

Theorem 5.1.1 (see Theorem 5.2.1 below). The BVP (5.1.1) has a unique solution in the classical
weak setting

u ∈ H1(C ), f ∈ H̃−1
0 (C ), g ∈ H

1
2 (Γ), h ∈ H− 1

2 (Γ). (5.1.6)

A natural question arises: why we investigate the BVP (5.1.1) in the non-classical setting, when
in the classical setting the solvability result is easily obtainable. Besides that this is an interesting
mathematical problem in many cases, for example, in approximation methods, it is important to know
a maximal smoothness of a solution. From the solvability results in non-classical setting it is possible
to conclude smoothness property of a solution.

To formulate the appropriate main theorems of the present chapter we need the following definition.



Thin Shells with Lipschitz Boundary 131

Definition 5.1.1. The BVP (5.1.1) in setting (5.1.2) (the BVP (5.7.1), the BVP (5.8.1)) is Fredholm
if the homogeneous problem f = g = 0 (f = h = 0, respectively) has a finite number of solutions
and the BVP has a solution if and only if the data f , g, h satisfy a finite number of orthogonality
conditions.

Let MΓ denote the set of knots of the boundary Γ := ∂C , where the smoothness of the curve Γ
is violated, the angle between the left and right tangent half-lines at cj ∈ MΓ (inside the surface C )
is αj ̸= 0, π, 2π or, cj is a smoothness point of Γ, but Dirichlet and Neumann boundary conditions
collide there. The set MΓ consists of three subsets: MΓ = MD ∪ MN ∪ MDN ; the first subset MD

consists of all knots cj where the Dirichlet conditions collide and αj ̸= π; MN consists of all knots
cj where Neumenn conditions collide and αj ̸= π; MDN consists of all knots cj where Dirichlet and
Neumenn conditions collide and here αj can be smoothness point 0 < αj < 2π.

Next, we formulate the main theorem of the present chapter which was proved in [61].

Theorem 5.1.2. The BVP on a surface (5.1.1) in the non-classical setting (5.1.2) is Fredholm if and
only if the following holds:

(i) If at cj ∈ MD collide the Dirichlet conditions, then either α = π or α ̸= π and

ei2π(s−
1
p ) sin2 π(s− iξ) + e−i2πs sin2(αj − π)

(1
p
− s− 1− iξ

)
̸= 0 for all ξ ∈ R. (5.1.7)

(ii) If at cj ∈ MN collide the Neumann conditions, then either α = π or α ̸= π and

ei2π(s−
1
p ) sin2 π(s− iξ) + e−i2πs sin2(αj − π)

(1
p
− s− iξ

)
̸= 0 for all ξ ∈ R. (5.1.8)

(iii) If at cj ∈ MN collide the Dirichlet and Neumann conditions, then either α = π or α ̸= π and

ei2π(s−1/p) sin2 π(s−iξ)−cos2[π/p+αs−i(π−α)ξ] ̸= 0 for all ξ ∈ R. for all ξ ∈ R. (5.1.9)

If conditions (5.1.7), (5.1.8) and (5.1.9) hold (i.e., the BVP (5.1.1), (5.1.2) is Fredholm), the subset
( 1p ,∞) × (1,∞) of the Euclidean plane R2, where the pairs (s, p) range, decomposes into an infinite
union R0 ∪R1 ∪ · · · of non-intersecting connected subsets of regular pairs, for which the BVP (5.1.1)
is Fredholm in setting (5.1.2).

If the connected subset R0 contains the point (1, 2) (i.e., s = 1, p = 2), then the BVP (5.1.1) is
uniquely solvable in setting (5.1.2) for all pairs (s, p) ∈ R0.

The formulated Theorem 5.1.2 is proved at the end of Section 5.8. Theorem is proved based
on a local principle, which reduces the proof to the investigation of the model problems, Dirichlet,
Neumann and Mixed BVPs on a model domain, an angle of magnitude α (see Section 5.3). We will
investigate model Dirichlet, Neumann and Mixed BVPs in Sections 5.6–5.8.

We can formulate more transparent criteria of solvability of BVP (5.1.1), where C is a hypersurface
with a smooth boundary Γ = ∂C and, consequently, the set of knots MΓ consists of only points where
the Dirichlet and Neumann boundary conditions collide MΓ = MDN .

Corollary 5.1.1 (cf. [68]). Let C be a hypersurface with a smooth boundary MΓ = MDN and
1 < p <∞, 1/p < s < 1/p+1. The BVP (5.1.1) is Fredholm in the non-classical setting (see (5.1.6))
if and only if

cos2 π s−
∣∣∣ sin 2π

(
s− 1

p

)∣∣∣ ̸= 0. (5.1.10)

In other words, the isotherm curves on Fig. 5.2 does not cross the point (s− k, 1/p), where k = 0, 1, . . .
is an integer such that 1

2 < s− k 6 3
2 .

In particular, the BVP (5.1.1) has a unique solution u in the non-classical setting (5.1.6) if the
point (s, 1/p) belongs to the open curved quadrangle ABCD on Fig. 5.2.
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Figure 5.2. The symbol (5.1.10) plot.

Investigations of the boundary integral equations run into difficulties due to the absence of results
on Mellin convolution equations in the Bessel potential space setting φ ∈ H̃sp(R+), f ∈ Hsp(R+). In
the recent paper [19], L. Castro and D. Kapanadze reduce BVPs (5.6.1) and (5.7.1) in the H1+ε(Ωα)
space settings to equivalent Wiener–Hopf ± Hankel operators, by manipulating with the even and
odd extensions and the reflection operators. The obtained equations were investigated in L2(R+) and
in the special potential space defined by Mellin transforms.

In [97], P. A. Krutitskii investigated boundary value problems for the Helmholtz equation in a
planar 2D domain Ω outer to a finite number of domains and cuts, with Dirichlet, Neumann, mixed
and impedance conditions on the boundary and faces of cuts. Unique solvability was proved in classical
strong setting u ∈ C1(Ω)∩C2(Ω) by reducing the problems to boundary Fredholm integral equations.
Singularities at the tips of cuts were described as well.

In the present chapter, we apply the potential method and reduce investigation of BVPs (5.6.1)
and (5.7.1) to the investigation of simpler equivalent systems.

The chapter is organized as follows. In Section 5.2, we apply Lax–Milgram Lemma (see Lemma
1.1.4) and prove the solvability of Dirichlet, Neumann and Mixed boundary value problems for the the
Laplace–Beltrami equation on a hypersurface C with the Lipschitz boundary Γ := ∂C in the classical
W 1(C ) setting. In Section 5.3, we expose quasi localisation method for the boundary value problem
for a second order elliptic partial differential equation on a hypersurface with the Lipschitz bounbdary
(cf. (5.3.1)) and prove Theorem 5.3.1 on Quasi Localization. In Section 5.4, we recall auxiliary
materials on potential operators and representation of solutions to BVPs in model domain, then on
Mellin convolution operators in the Bessel potential spaces (see Section 5.5). We prove criteria of
Fredholm property and unique solvability in non-classical setting of model Dirichlet problem (5.6.1)
(Section 5.6), of model Neumann BVP (5.7.1) (Section 5.7) and of the model Mixed BVP (5.8.1)
(Section 5.8). At the end of Section 5.8, we prove the main theorem of the section, Theorem 5.1.2,
based on Quasi Localization (cf. Section 5.3) and investigation of model BVPs in Sections 5.6–5.8.

5.2 Solvability of BVPs for the anisotropic Laplace-Beltrami
equation on a hypersurface in the classical setting

The exposition in the present section follows the paper [70].
We will use the notation from Section 5.1 and consider, along with the Mixed BVP (slightly more
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general than in (5.1.1)), 
divC A ∇S u(t) = f(t), t ∈ C ,

u+(s) = g(s), on ΓD,

⟨νΓ(s), (A ∇Cu)
+(s)⟩ = h(s), on ΓN ,

(5.2.1)

the particular cases – the Dirichlet BVP (when ΓN is the empty set ΓN = ∅) divC A ∇Cu(t) = f(t), t ∈ C ,

u+(s) = g(s), on Γ
(5.2.2)

and the Neumann BVP (when ΓD is the empty set ΓD = ∅){
divC A ∇Cu(t) = f(t), t ∈ C ,

⟨νΓ(s), (A ∇Cu)
+(s)⟩ = h(s), on Γ.

(5.2.3)

Here divC A ∇C is the “anisotropic” Laplace-Beltrami operator and A is a positive definite 3 × 3
matrix function

(A φ,φ)C > C > 0 for all ∥φ|L2(cC)∥ = 1 (5.2.4)

and ⟨νΓ(s),A (∇Cu)
+(s)⟩ denotes the “Neumann” operator, the scalar product of 3-vectors νΓ(s)

and A (∇Cu) in R3. For A (t) ≡ 1, the operator divC A ∇C becomes the Laplace–Beltrami operator
divC∇C = ∆C and the “Neumann” operator becomes the normal derivative ⟨νΓ(s), (∇Cu)

+(s)⟩ =
⟨νΓ,∇Cu⟩+(s).

The BVPs (5.2.1)–(5.2.3) are investigated in the following classical weak settings in 3-vector spaces

u∈H1(C ), f ∈H̃−1
0 (C ), g∈H

1
2(ΓD), h∈H− 1

2 (ΓN ), Γ=ΓD∪ΓN (5.2.5)

for the mixed BVP (also cf. (5.1.2)), and in the weak settings

f ∈ H̃−1(C ), g ∈ H1/2(Γ), h ∈ H−1/2(Γ) (5.2.6)

for the Dirichlet and Neumann BVPs.
The main objective of the present section is to prove the following

Theorem 5.2.1. Let C ⊂ R3 be a hypersurface with the Lipschitz boundary Γ := ∂C .
The Mixed BVP (5.2.1) in the classical setting (5.2.5) has a unique solution.
The Dirichlet BVP (5.2.2) in the classical setting (5.2.6) has a unique solution.
For the solvability of the Neumann problem (5.2.3) in the classical setting (5.2.5) the following

necessary and sufficient compatibility condition has to hold:

(f, 1)C − (h, 1)Γ = 0. (5.2.7)

Note that if f and h are regular integrable functions, the compatibility condition (5.2.7) acquires
the form ∫

C

f(y) dσ −
∮
Γ

h(s)ds = 0. (5.2.8)

The formulated theorem will be proved at the end of the present section. Prior to this, we will
expose auxiliary material for this proof.

Remark 5.2.1. Theorem 5.2.1 was proved in [56] for Dirichlet and Neumann BVPs with the help of
potential method and in [70] for Mixed, Dirichlet and Neumann BVPs using Lax-Milgram Lemma in
case of smooth boundary Γ.

Moreover, for the Dirichlet (5.2.2) and Neumann (5.2.3) BVPs and non-classical setting

u∈Hsp(C ), f ∈H̃s−2
p,0 (C ), g∈H

s− 1
p

p (Γ), h∈H
s−1− 1

p
p (Γ), 1<p<∞, s>

1

p
(5.2.9)
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in case of a hypersurface with the smooth boundary, the unique solvability holds as well (see [56]).
For the mixed BVP (5.2.3) in the non-classical setting

u∈Hsp(C ), f ∈H̃s−2
p,0 (C ), g∈H

s− 1
p

p (ΓD), h∈H
s−1− 1

p
p (ΓN ), Γ=ΓD∪ΓN , 1<p<∞, s>

1

p
, (5.2.10)

even for a hypersurface with the smooth boundary and for Dirichlet (5.2.2) and Neumann (5.2.3) BVPs
for a hypersurface with the Lipshitz boundary and the non-classical setting (5.2.9), the solvability
conditions change dramatically (see Theorem 5.1.2 above and Sections 5.6–5.8 below).

Mixed BVPs for the Laplace equation in domains were investigated by Lax-Milgram Lemma by
many authors (see, e.g., the recent lecture notes online [103]).

Let M be a non-trivial, mes M ̸= ∅, smooth closed or open hypersurface, s ∈ R and 1 < p < ∞.
If M is definitely closed, we use S , while in case M is definitely open, we use C .

By Xsp(M ) we denote one of the spaces: Hsp(M ), Sobolev-Slobodecki Ws
p(M ) (if M is closed or

open) and by X̃sp(C ) denote one of the spaces: H̃sp(C ) and W̃s
p(C ). Consider the space

Xsp,#(M ) := {φ ∈ Xs2(M ) : (φ, 1) = 0} . (5.2.11)

It is obvious that Xsp,#(M ) does not contain constants: if c0 = const ∈ Xsp,#(M ), then

0 = (c0, 1) = c0(1, 1) = c0mes M

and c0 = 0. Moreover, Xsp(M ) decomposes into the direct sum

Xsp(M ) = Xsp,#(M ) + {const} (5.2.12)

and the dual (adjoint) space is

(Xsp,#(M ))∗ = X−s
p′,#(M ), p′ :=

p

p− 1
. (5.2.13)

Indeed, decomposition (5.2.12) follows from the representation

φ = φ0 + φaver, φ0 ∈ Xsp,#(M ), φaver :=
1

mes M
(φ, 1)

of arbitrary function φ ∈ Xsp(M )), because the average of the difference of a function and its average
is zero: (φ0)aver = (φ− φaver)aver = 0.

Description (5.2.13) of the dual space follows from the fact that the dual space to Xsp(M ) is
X−s
p′ (M ) (see [133]) and, therefore, due to the decomposition (5.2.12) and Hahn–Banach theorem,

the dual space to Xsp,#(M ) should be embedded into X−s
p′ (M ). The only functional from X−s

p′ (M )

that vanishes on the entire space Xsp,#(M ) is constant 1 ∈ X−s
p′ (M ) (see definition (5.2.11)). After

detaching this functional the remainder coincides, due to (5.2.12), with the space X−s
p′,#(M ), which is

the dual to Xsp,#(M ).

Lemma 5.2.1. The equivalent norm in the space Wm
p,#(M ) is defined as follows:∥∥φ∣∣Wm

p,#(M )
∥∥
0
:=

∑
16|α|6m

∥∥Dαφ
∣∣Lp(M )

∥∥. (5.2.14)

In particular, in the space W1
p,#(M ) the equivalent norm is∥∥φ∣∣W1

p,#(M )
∥∥
0
:=

∥∥∇Sφ
∣∣Lp(M )

∥∥. (5.2.15)

Proof. By Wm,0
p,#(M ) denote the same subspace Wm

p,#(M ) of Wm
p (M ), but equipped with the standard

norm of the subspace∥∥φ∣∣Wm,0
p,#(M )

∥∥ =
∥∥φ∣∣Wm

p (M )
∥∥ :=

∑
06|α|6m

∥∥Dαφ
∣∣Lp(M )

∥∥. (5.2.16)
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Then the embedding Wm,0
p,#(M ) ⊂ Wm

p,#(M ) is continuous∥∥φ∣∣Wm
p,#(M )

∥∥
0
6

∥∥φ∣∣Wm,0
p,#(M )

∥∥. (5.2.17)

On the other hand, this embedding is bijective due to representations (5.2.12). Then the Banach
inverse mapping theorem states that these norms are equivalent: along with inequality (5.2.17) also
the inverse inequality ∥∥φ∣∣Wm,0

p,#(M )
∥∥
0
6 C

∥∥φ∣∣Wm
p,#(M )

∥∥
holds with some constant C, which is independent of a function φ.

Let Γ0 ⊂ Γ be a non-trivial subset of the boundary Γ = ∂C of the surface C and X̃sp(Γ0,C ),
s > 1/p, 1 < p < ∞, denote the subspace of Xsp(C ) which consists of functions with vanishing trace
on Γ0.

Lemma 5.2.2. Along with the standard norm of subspace of Wm
p (C ) (m = 1, 2, . . . ), the equivalent

norm in the space W̃m
p (Γ0,C ) is defined as follows:∥∥φ∣∣W̃m

p (Γ0,C )
∥∥
0
:=

∑
16|α|6m

∥∥Dαφ
∣∣Lp(C )

∥∥. (5.2.18)

In particular, in the space W̃1
p(Γ0,C ) the equivalent norm is∥∥φ∣∣W̃1

p(Γ0,C )
∥∥
0
:=

∥∥∇Sφ
∣∣Lp(M )

∥∥. (5.2.19)

Proof. By W̃m,0
p (Γ0,C ) denote the same subspace W̃m

p (Γ0,C ) of Wm
p (C ), but equipped with the

standard norm of the subspace∥∥φ∣∣W̃m,0
p (Γ0,C )

∥∥ =
∥∥φ∣∣Wm

p (C )
∥∥ :=

∑
06|α|6m

∥∥Dαφ
∣∣Lp(C )

∥∥. (5.2.20)

Then the embedding W̃m,0
p (Γ0,C ) ⊂ W̃m

p (Γ0,C ) is continuous∥∥φ∣∣W̃m
p (Γ0,C )

∥∥
0
6

∥∥φ∣∣W̃m,0
p (Γ0,C )

∥∥. (5.2.21)

On the other hand, this embedding is bijective due to the definition. Then the Banach inverse
mapping theorem states that these norms are equivalent: along with inequality (5.2.21) also the
inverse inequality ∥∥φ∣∣W̃m,0

p (Γ0,C )
∥∥
0
6 C

∥∥φ∣∣W̃m
p (Γ0,C )

∥∥
holds with some constant C, which is independent of a function φ.

Theorem 5.2.2. Let S be ℓ-smooth ℓ = 1, 2, . . . , 1 < p <∞, |s| 6 ℓ and A (t) be a positive definite
3× 3 matrix function. Let Xsp(S ) be the same vector-space as above.

Let the matrix-function H ∈ [Cℓ−1(Rn)]3×3 have one of the following properties:

i. H has a non-negative definite real part (Re H φ,φ)C > 0 and mes supp Re H ̸= 0;

ii. mes supp Im H ̸= 0 and the complex part Im H is either positive definite or negative definite:

(εIm H φ,φ)C > C > 0 for all ∥φ|L2(C )∥ = 1, (5.2.22)

where ε = 1 or ε = −1.
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Then the perturbed operator

divS A ∇S − H I : Xs+1
p (S ) → Xs−1

p (S ) (5.2.23)

is invertible.
Moreover, the operator divS A ∇S is also invertible between the spaces with detached constants

(see (5.2.11))
divS A ∇S : Xs+1

p,# (S ) → Xs−1
p,# (S ) (5.2.24)

and, therefore, divS A ∇S has the fundamental solution in setting (5.2.24).
The invertibility is also interpreted as the existence of the fundamental solution to the operators

divS A ∇S − H I and divS A ∇S in the appropriate spaces.
In particular, the perturbed Laplace–Beltrami operator ∆S − H I (the particular case A (t) ≡ 1)

is invertible in setting (5.2.23) (has the fundamental solution), while the Laplace–Beltrami operator
∆S is invertible in setting (5.2.24) (has the fundamental solution).

Proof. First of all note that the operators in (5.2.22) and (5.2.23) are bounded. For the operator
in (5.2.22) this is trivial, while for the operator in (5.2.23) we need to check that the image of the
operator belongs to the subspace Xs−1

p (S ), i.e., is orthogonal to the identity 1 (see (5.2.11)). Indeed,
by applying formula (1.3.37) we get

(divS A ∇Sφ, 1)S = (A ∇Sφ,∇S 1)S = 0.

This operator in the setting

divS A ∇S : X1
2,#(S ) → X−1

2,#(S ) (5.2.25)

is coercive:
−(divS A ∇Sφ,φ)S = (A ∇Sφ,∇Sφ)S > C∥φ|X1

2#(S )∥2. (5.2.26)
Then, due to Lemma 1.1.5, this operator is invertible in setting (5.2.25).

Moreover, this operator divS A ∇S is elliptic and even has negative definite symbol ξtopA ξ,
ξ ∈ Rm (ellipticity follows from the invertibility in setting (5.2.26), as well). As an elliptic operator
on the closed hypersurface the operator in (5.2.24) is Fredholm for all s ∈ R and 1 < p < ∞ (it has
a parametrix if S is infinitely smooth, see [88, 126, 130] and the proof of Theorem 1.7.1 for a similar
arguments). Since all operators in the homotopy

Bλ = (1− λ)divS A ∇S − λΛ2(X , D), 0 6 λ 6 1,

where
Λ2(X , D) : Xs+1

p,# (S ) → Xs−1
p,# (S )

is the Bessel potential operator with positive definite symbol and arranges the isometrical isomorphism
of the spaces (see (1.7.17)), have positive definite symbol, they are Fredholm operators in the setting

Bλ : Xs+1
p,# (S ) → Xs−1

p,# (S )

for all 0 6 λ 6 1, 1 < p <∞, |s| 6 ℓ. Then

Ind divS A ∇S = Ind B0 = Ind Bλ = Ind B1 = Ind λ2(X , D) = 0

and Theorem 1.1.1 can be applied, which states that the operator in (5.2.24) is invertible for all
1 < p <∞, |s| 6 ℓ.

Since the operator in (5.2.23) is the perturbation by lower order operator H I (i.e., by a compact
operator) of the invertible operator in (5.2.23), the operator in (5.2.23) is Fredholm and has trivial
index Ind [divS A ∇S − H ] = 0. Then to prove that the operator in (5.2.23) is invertible we just
need to check that it has trivial kernel, i.e., if (divS A ∇S − H )φ = 0, then φ = 0. Due to equality
(1.3.37),

( − (divS A ∇S − H )φ,φ)S

= (A ∇Sφ,∇Sφ)S + (Re H φ,φ)S + i(Im H φ,φ)S , ∀φ ∈ W1
2(S ). (5.2.27)
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If φ is a solution to the homogeneous equation (divS A ∇S − H )φ = 0, equality (5.2.24) takes the
form

(A ∇Sφ,∇Sφ)S + (Re H φ,φ)S = 0, (Im H φ,φ)S = 0. (5.2.28)

Now let Re H (t) > 0 for all t ∈ S and mes supp Re H ̸= 0 (case (i)). Then from the first equality
in (5.2.27) it follows

C∥∇Sφ∥ 6 (A ∇Sφ,∇Sφ)S = 0, (Re H φ,φ)S = 0

(the inequality is due to the positive definiteness of A ). From the first inequality we get ∇Sφ ≡ 0
and, consequently, φ = C = const (this is easy to ascertain by analysing the definition of Günter’s
derivatives; see, e.g., [56]). By inserting this in the second equality in (5.2.27) we get

0 = (Re H φ,φ)S = C

∫
S

H (t)dσ,

and the conclusion φ(t) = C = 0 is immediate, because mes supp Re H ̸= 0.
In the case (ii), from the second equality in (5.2.28) we have

C∥φ∥ 6 ε(Im H φ,∇Sφ)S = 0

(the inequality is due to the positive definiteness of εIm H ) and, again, φ = 0.

Corollary 5.2.1 (cf. [56]). For the operator divC A ∇C on the open hypersurface C with the boundary
∂C := Γ the following Green formulae are valid

(divC A ∇Cφ,ψ)C = (⟨νΓ, (A ∇Cφ)
+⟩, ψ+)Γ − (A ∇Cφ,∇Cψ)C ,

(divC A ∇Cφ,ψ)C − (φ,divC A ∇Cψ)C

= (⟨νΓ, (A ∇Cφ)
+⟩, ψ+)Γ − (φ+, ⟨νΓ, (A ∇Cψ)

+⟩)Γ,
(5.2.29)

where (φ,ψ)C denotes the scalar product of functions. The normal boundary derivative ⟨νΓ, (A ∇Cφ)
+⟩

we have encountered already in the mixed BVP (5.2.1).

Note that a function φ ∈ Ws
p(C ) (and φ ∈ Hsp(C )) has the trace φ+ ∈ W

s− 1
p

p (Γ) on the boundary,
provided 1 < p <∞ and s > 1

p (see [133] for details). Therefore, if we look for a solution to Dirichlet
BVP (5.2.2) in the space W1(C ), the trace u+ on ΓD exists and belongs to the space H1/2(ΓD).

Concerning the existence of the Neumann trace ⟨νΓ,A ∇Cu⟩+ in (5.2.1) and (5.2.3) for a solution
u ∈ W1(C ), it is not guaranteed by the general trace theorem. But in this case, the first Green formula
(5.2.29) ensures the existence of the Neumann trace. Indeed, by setting φ = u and inserting the data
(divCA∇C )u(t) = f(t) from (5.2.1) into the first Green formula (5.2.29) we obtain

(⟨νΓ, (A ∇Cu)
+⟩, ψ+)Γ − (A ∇Cu,∇Cψ)C = (divC (A ∇Cu), ψ)C = (f, ψ)C

and, finally, we get

(⟨νΓ, (A ∇Cu)
+⟩, ψ+)Γ = (A ∇Cu,∇Cψ)C + (f, ψ)C (5.2.30)

for arbitrary ψ ∈ W1(C ). Since ψ+ ∈ H1/2(Γ), the scalar product (A ∇Cu,∇Cψ)C in the right-hand
side of equality (5.2.30) is correctly defined and defines correct duality in the left-hand side of the
equality. Since ψ+ ∈ H1/2(Γ) is arbitrary, by the duality argument this gives that ⟨νΓ, (A ∇Cu)

+⟩
should be in the dual space, i.e., in H−1/2(Γ).

To prove the above formulated Theorem 5.2.1, we need more properties of trace operator (called
retraction) and their inverses, called co-retractions (see [133, § 2.7]).

To keep the exposition simpler we recall a very particular case of Lemma 4.8 from [53], which we
apply in the present investigation.
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A differential operator
B(t,D) =

∑
|α|6m

aα(t)D
α, t ∈ C ,

on a hypersurface C ⊂ R3 with the Lipschitz boundary Γ = ∂C is called normal if its symbol (the
characteristic polynomial)

B(t, ξ) =
∑

|α|6m
aα(t)(−iξ)α, t ∈ C , ξ ∈ R3,

does not vanish on normal vactor field on the boundary infs∈Γ |det B(s,ν(s))| > 0.

Lemma 5.2.3 (see Lemma 4.8 in [53]). Let s ̸∈ N, 1 < p < ∞, and C be a hypersurface with the
Lipschitz boundary Γ = ∂C . Further, let s > 0, B(D) be a normal differential operator of the first
order defined in the vicinity of the boundary Γ and A(D) be a normal differential operator of the
second order defined on the surface C . Then there exists a continuous linear operator

R : Ws
p(Γ)⊗Ws−1

p (Γ) −→ H
s+ 1

p
p (C ) (5.2.31)

such that
(RΦ)+ = φ0, (B(D)RΦ)+ = φ1, A(D)BΦ ∈ H̃

s−2+ 1
p

p (C ) (5.2.32)

for arbitrary pair of functions Φ = (φ0, φ1)
⊤, where φ0 ∈ Ws

p(Γ) and φ1 ∈ Ws−1
p (Γ).

Proof of Theorem 5.2.1. We commence by the reduction of the BVP (5.2.1) to an equivalent one with
the homogeneous Dirichlet condition. For this, we extend the boundary data g ∈ W1/2(ΓD) up to
some function g̃ ∈ W1/2(Γ) on the entire boundary Γ and apply Lemma 5.2.3: there exists a function
G ∈ W1(C ) such that G+(t) = g(t) for t ∈ ΓD (actually G+ = g̃ almost everywhere on the boundary)
and divC (A ∇CG) ∈ W̃−1(C ).

For a new unknown function v := u − G we have the following equivalent reformulation of the
BVP (5.2.1): 

divC (A ∇C v)(t) = f0(t), t ∈ C ,

v+(s) = 0, on ΓD,

⟨νΓ(s), (A ∇C v)
+(s)⟩ = h0(s), on ΓN ,

(5.2.33)

where

f0 := f + divC (A ∇CG) ∈ W̃−1(C ), h0 := h+ ⟨νΓ, (A ∇CG)
+⟩ ∈ W−1/2(Γ),

v+ ∈ W̃1(ΓD,C )W1/2(ΓN ).
(5.2.34)

To justify the last inclusion v+ ∈ W̃1/2(ΓN ) note that, due to our construction, the trace of a solution
vanishes on ΓD: v+ |ΓD

= 0.
By inserting the data from the reformulated boundary value problem (5.2.33) into the first Green

identity (5.2.29), where φ = ψ = v, we get

(A ∇C v,∇C v)C = (⟨νΓ, (A ∇C v)
+⟩, v+)ΓD

+ (⟨νΓ, (A ∇C v)
+⟩, v+)ΓN

− (divC (A ∇C v), v)C

= (h0, v+)ΓN
− (f0, v)C , v ∈ W̃1(ΓD,C ). (5.2.35)

In the left-hand side of equality (5.2.35) we have a symmetric bilinear form, which is positive definite

(A ∇C v,∇C v)C > C∥∇C v∥2 = ∥v|W̃1(ΓD,C )∥2 ∀ v ∈ W̃1(ΓD,C ),

because A (s) is strictly positive definite matrix and we have applied Lemma 5.2.2 on equivalent norms
in the space W̃1(ΓD,C ).
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(h0, v+)ΓN
and (f0, v)C in equality (5.2.35) are correctly defined continuous functionals, because

h0 ∈ W−1/2(Γ), f0 ∈ W̃−1(C ), while their counterparts in the functional belong to the dual spaces
v+ ∈ W̃1/2(ΓD) and v ∈ W̃1(ΓN ,C ) ⊂ W1(C ).

Application of the Lax-Milgram Lemma 1.1.4 accomplishes the proof of the unique solvability of
the mixed BVP (5.2.1) in setting (5.2.5).

Now we prove the unique solvability of the Dirichlet BVP (5.2.2) in setting (5.2.6). We commence,
as above, with an equivalent reformulation: due to Lemma 5.2.3, we can pick up a function G ∈ W1(C )

such that G+ = g and divC (A ∇CG) ∈ W̃−1(C ).
For a new unknown function v := u − G we have the following equivalent reformulation of the

BVP (5.2.2): {
divC (A∇C v)(t) = f0(t), t ∈ C ,

v+(s) = 0, on Γ,
(5.2.36)

where
f0 := f + divC (A ∇CG) ∈ W̃−1(C ), v ∈ W̃1(C ).

By inserting the data from the reformulated boundary value problem (5.2.36) into the first Green
identity (5.2.29), where φ = ψ = v, we get

(A∇C v,∇C v)C = (⟨νΓ, (A∇C v)
+⟩, v+)Γ − (divC (A∇C v), v)C = −(f0, v)C , v ∈ W̃1(C ).

What we get is similar to identity (5.2.35) which we derived in the foregoing case: the positive definite
form in the left-hand side and a single correctly defined functional in the right-hand side. Again,
applying the Lax–Milgram Lemma, the unique solvability of the Dirichlet BVP (5.2.2) can be proved
in setting (5.2.6).

In conclusion, we prove the unique solvability of the Dirichlet BVP (5.2.3) in setting (5.2.6). Let us
insert the data from the boundary value problem (5.2.3) into the first Green identity (5.2.29), where
φ = ψ = u. We get

(A ∇Cu,∇Cu)C = (⟨νΓ,A ∇Cu⟩+, u+)Γ − ((divC A ∇C )u, u)C

= (h, u)Γ − (f, u)C , u ∈ W1
2,#(C ). (5.2.37)

We have to look for a solution in the subspace W1
2,#(C ) (see (5.2.11)) because the constants are trivial

solutions of the homogeneous BVP (5.2.1) with f = h = 0. Since identity (5.2.37) has to be valid for
constant u(t) = 1 and the left-hand side vanishes for such solution, we get the necessary condition of
solvability (h, 1)Γ − (f, 1)C = 0, which is the compatibility condition (5.2.7).

In the left-hand side of equality (5.2.37) we have a symmetric bilinear form, which is positive
definite

(A ∇C v,∇C v)C > C∥∇C v∥2 = ∥v|W1
2,#(C )∥2 ∀ v ∈ W1

2,#(C ),

because A (s) is strictly positive definite matrix and we have applied Lemma 5.2.1 on equivalent norms
in the space W12,#(C ).

Further, both functionals in the right-hand side of (5.2.37) are bounded on the subspace W1
2,#(C ).

Application of the Lax-Milgram Lemma 1.1.4 accomplishes the proof of the unique solvability of the
Neumann BVP (5.2.3) in setting (5.2.6), provided the compatibility condition (5.2.6) holds.

5.3 Quasi localization of boundary value problems
The exposition of Quasi Localization of BVPs follows from the paper [15]. Similar localization is also
applied in [17].

In recent years, there is a substantial interest to investigate the boundary value problems in domains
with Lipschitz boundary. Let C ⊂ R3 be a 2-dimensional hypersurface with the Lipschitz boundary
Γ = ∂C ; C (cf. Fig. 5.1 on page 130). The boundary Γ := ∂C is decomposed into two closed parts
Γ = Γ1 ∪ Γ2, each consisting of finite number of smooth arcs, having in common only endpoints.
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Look for a vector-function u(x) = (u1(x), u2(x), u3(x))
⊤ on C which solves the mixed boundary

value problem 
A(D)u = f in C ,

[B1(D)u]+ = gi on Γ1,

[B2(D)u]+ = g2 on Γ2

(5.3.1)

for a second order elliptic operator A(D) with constant scalar or 3 × 3 matrix coefficients in the
domains and 0 or 1-st order normal boundary operators Bk(D) of order 0 6 rk 6 1, k = 1, 2, with
constant scalar or 3× 3 matrix coefficients:

A(D) =
∑
|α|62

aαDα, Bk(D) = bk0 +

3∑
j=1

bkjDj , k = 1, 2. (5.3.2)

Here D = (D1,D2,D3)
⊤ denotes Günter’s gradient.

We denote by t0, t1, . . . , tn ̸= ω0 the knots on the boundary Γ where either Γ has an angle (of
magnitude αj ̸= π, measured from the inner domain), or Γ is smooth at tj (i.e., αj = π), but tj is
an endpoint of both Γ1 and Γ2 (at such points two different boundary conditions collide, see (5.3.1)).
Let t0, t1, . . . , tn0 be the knots where the different boundary conditions B1(D) and B2(D) do not
collide, while at the rest knots tn0+1, . . . , tn different boundary conditions collide (in the left and right
neighbourhoods of tj boundary condition is prescribed with different boundary operators B1(D) and
B2(D)).

The BVP (5.3.1) is considered in the non-classical setting

u ∈ Hsp(C ), f ∈ H̃s−2
p,0 (C ), gj ∈ Hs−rj−1/p

p (Γj), 1 < p <∞, s >
1

p
j = 1, 2 . (5.3.3)

Our objective is to find a criterion of unique solvability of particular BVPs of type (5.3.1) when,
for example, operators in the domains (surfaces) are Laplace–Beltrami, Lamé or Hepmholz operators.
In the present section, we will reduce investigation of the BVP (5.3.1) to the investigation of local
representatives – model BVPs in model domains of the type described below.

To formulate the model problems, let us introduce the operators

A(∇) =
∑
|α|62

aα∂
α, Bk(∇) = bk0 +

3∑
j=1

bkj ∂j , k = 1, 2, (5.3.4)

defined now on the Euclidean space R2 and its subdomains R2
+ and the model domains Ωαk

(see
Fig. 5.3 below). ∇ = (∂1, ∂2)

⊤ denotes the classical gradient.
I model problem. A local representative of the BVP (5.3.1) at an inner point t ∈ Cj is problem

in the entire Euclidean space R2:
A(∇)u = f in R2 (5.3.5)

in the non-classical setting
u ∈ Hsp(R2), f ∈ Hs−2

p (R2). (5.3.6)
The fundamental solution is the inverse to the model differential equation and the invertibility is

granted. In this case we do not need even ellipticity of the operator.
II model problem. A local representative of the BVP (5.3.1) at a boundary point t ∈ Γ ∩

∂Cj , different from knots t ̸= t0, . . . , tn and where in the neighbourhood the boundary condition is
prescribed by the operator Bℓ(D), is a model problem in a half-plane R2

+ := R× R+{
A(∇)u = f in R2

+,

(Bℓ(∇)u)+ = gℓ on R := ∂R2
+

(5.3.7)

in the non-classical setting

u ∈ Hsp(R2
+), f ∈ H̃s−2

p,0 (R2
+), gℓ ∈ H

s−rk− 1
p

p,0 (R+). (5.3.8)
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0

t2

ν(t2)

t1

ν(t1)

α

Ωα

R+

Rα

Figure 5.3.

Only the ellipticity of the symbol ensures the unique solvability of BVP (5.3.7), (5.3.8) and we drop
the details again.

III model problem. Assume that at a knot t = tk ∈ Γ ∩ ∂Cj , 0 6 k 6 n0, the boundary
condition in the neighbourhood is prescribed by Bℓ(D). A local representative of the BVP (5.3.1) at
such vertex is the model problem in an angular domain Ωαk

(cf. Fig. 5.3):{
A(∇)u = f in Ωαk

,

(Bℓ(∇)u)+ = g on Γαk
:= ∂Ωαk

= R+ ∪ Rαk

(5.3.9)

in the non-classical setting

u ∈ Hsp(Ωαk
), f ∈ H̃s−2

p,0 (Ωαk
), g ∈ H

s−rℓ− 1
p

p (Γαk
). (5.3.10)

Here Ωαk
is the angle of magnitude αk between the half-axes R+ and the beam Rαk

inclined to R+

by the angle α = αk. Ωαk
is oriented counterclockwise (cf. Fig. 5.3):

Γαj
:= ∂Ωαj

= R+ ∪ Rαj
, R+ = [0,∞), Rαj

:=
{
eiαjt = (t cos αj , t sin αj) : t ∈ R+

}
. (5.3.11)

The unit normal vector field on the boundary Γα of the model domain and the corresponding
normal derivative are given by the following formulae:

ν(t) =

{
(0,−1)⊤ for t ∈ R+,

(− sin αj , cos αj) for t ∈ Rα,

∂νφ(t) :=

{
−∂x2φ(x1, x2)

∣∣
(x1,x2)=(t,0)

for t ∈ R+,

(− sin α∂x1
+ cos α∂x2

)φ(x1, x2)
∣∣
(x1,x2)=(t sin α,t cos α) for t ∈ Rα.

(5.3.12)

IV model problem. Assume that at a boundary knot t = tk ∈ Γ ∩ ∂Cj , n0 + 1 6 k 6 n, the
boundary condition in the left neighbourhood is prescribed by B1(D) and in the right neighbourhood-
by B2(D). A local representative of the BVP (5.3.1) at such vertex is the mixed type model problem
in an angular domain Ωαk

(see Fig. 5.3):
A(∇)u = f in Ωαk

,

(B1(∇)u)+ = g1 on Rαk
,

(B2(∇)u)+ = g2 on R+

(5.3.13)

in the non-classical setting

u ∈ Hsp(Ωαk
), f ∈ H̃s−2

p,0 (Ωαk
), g1 ∈ H

s−r1− 1
p

p (Rαk
), g2 ∈ H

s−r2− 1
p

p (R+), (5.3.14)
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Remark 5.3.1. Further model case is when the boundary condition in the left neighbourhood is
prescribed by B2(D) and in the right neighbourhood-by B1(D):

Aj(∇)u = f in Ωαk
,

(B2(∇)u)+ = g2 on Rαk
,

(B1(D)u)+ = g1 on R+.

(5.3.15)

Theorem 5.3.1 (Quasi Localization Principle). The initial mixed boundary value problem (5.3.1) in
the non-classical setting (5.3.3) is Fredholm if and only if:

• III model BVPs (5.3.9) in the non-classical setting (5.3.10) (or the alternative BVP (5.3.11)–
(5.3.10)) are Fredholm for all knots t0, . . . , tn0

;

• IV model BVPs (5.3.13) in the non-classical setting (5.3.14) are Fredholm for all knots tn0+1,
. . . , tn.

Proof. The unique solvability (the Fredholmness) of the BVP (5.3.1) can be reformulated as the
invertibility (Fredholmness) of the operator between Banach spaces, direct product of Bessel potential
spaces:

MA(D) : B1 → B2, (5.3.16)

MA(D) :=


A(D)

TrΓ1B1(D)

TrΓ2
B2(D)

 , B1 :=


Hsp(C )

Hsp(C )

Hsp(C )

 , B2 :=


H̃s−2
p,0 (C )

Hs−r1−1/p
p (Γ1)

Hs−r2−1/p
p (Γ2)

 ,
where TrΓαk

is the trace operator from the hypersurface C to the part of the boundaery Γαk
, k = 1, 2.

The unique solvability (the Fredholmness) of the model BVPs (5.3.5)–(5.3.15) can be reformulated
as the invertibility (Fredholmness) of the following operators between Banach spaces:

M I(∇) : B1 → B2, (5.3.17)

M I(∇) = A(∇), B1 := Hsp(R2), B2 := Hs−2
p (R2),

for the I Model BVP (5.3.5)–(5.3.6);

M II(∇) : B1 → B2, (5.3.18)

M II(∇) :=

[
A(∇)

TrRBℓ(∇)

]
, B1 :=

[
Hsp(R2

+)

Hsp(R2)

]
, B2 :=

[
H̃s−2
p,0 (R2)

Hs−rℓ−1/p
p (R)

]
,

for the II Model BVP (5.3.7)–(5.3.8);

M III(∇) : B1 → B2, (5.3.19)

M III(∇) :=

[
A(∇)

TrΓαk
Bℓ(∇)

]
, B1 :=

[
Hsp(Ωαk

)

Hsp(Ωαk
)

]
, B2 :=

[
H̃s−2
p,0 (Ωαk

)

Hs−r1−1/p
p (Γαk

)

]
,

for the III Model BVP (5.3.9)–(5.3.10);

M IV (∇) : B1 → B2, (5.3.20)

M IV (∇) :=


A(∇)

TrR+B1(∇)

TrRαk
B2(∇)

 , B1 :=


Hsp(Ωαk

)

Hsp(Ωαk
)

Hsp(Ωαk
)

 , B2 :=


H̃s−2
p,0 (Ωαk

)

Hs−r1−1/p
p (Γαk

)

Hs−r2−1/p
p (Γαk

)

 ,
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for the IV Model BVP (5.3.13)–(5.3.14),
For the localizing class ∆c at a point c ∈ C = C ∪ Γ we take operators of multiplication by

smooth functions vcI which is 1 at some neighbourhood Uc ⊂ C and has support at some larger
neighbourhood. Similar localizing class ∆0 is chosen for the operators M I ,M II ,M III ,M IV of the
model BVPs, consisting of operators of multiplication by smooth functions v0I which is 1 at some
neighbourhood U0 of the respective point 0 ∈ R2 (for the I model BVP), 0 ∈ R2

+ (for the II model
BVP) and 0 ∈ Ωαk

(for the III and IV model BVPs), and has support at some larger neighbourhood.
Instead of initial operator MA(D) and model operators M I(∇), M II(∇), M III(∇) and M IV (∇)

we consider the quotient classes [MA(D)], [M I(∇)], [M II(∇)], [M III(∇)] and [M IV (∇)] in the re-
spective quotient spaces ̂L (B1,B2) := L (B1,B2)/T (B1,B2) of linear operators L (B1,B2) with
respect to the compact operators T (B1,B2). This approach has two advantages. First, the Fred-
holmness criteria for operators turns into the invertibility of the corresponding quotient class (see
Corollary 1.1.3 on page 11). Second, quotient classes [vcI] and [v0I] of operators from the localizing
classes commute with the corresponding quotient classes of operators:

[MA(D)][vcI] = [vcI][MA(D)], [M I(∇)][v0I] = [v0I][M I(∇)], [M II(∇)][v0I] = [v0I][M II(∇)],

[M III(∇)][v0I] = [v0I][M III(∇)], [M IV (∇)][v0I] = [v0I][M IV (∇)].

Next, note that if βc : Uc → U0 is a diffeomorphism of the neighbourhood Uc of a point c ∈ C
and of the point 0 in the model domain of the corresponding model BVPs I–IV, the corresponding
quotient classes are locally quasi equivalent:

[MA(D)]
c∼ βc

0=βc(c)∼ [M0(∇)],

where M0(∇) is one of the model operators M I(∇), M II(∇), M III(∇) and M IV (∇), chosen de-
pending on the point c ∈ C according to the algorithm described above.

Now note that the quotient classes of operators M I(∇) in (5.3.17) and M II(∇) in (5.3.18) are
invertible. Indeed, the operator M I(∇) in (5.3.17) is invertible itself and the inverse is given by the
Newton’s potential

NMI(∇)φ(x) :=

∫
R2

KMI(∇)(x− y)φ(y) dy, x ∈ R2,

where KMI(∇)(x) is the fundamental solution to M I(∇).
The operator M II(∇) in (5.3.18) is invertible itself if Bℓ(∇) = const and is Fredholm (has one

dimensional kernel and cokernel) if Bℓ(∇) = a0+a1∂1+a2∂2. The inverse (the regularizer) is written
by analogy of Poisson integrals for the Laplace equation ∆u(x) = f(x) with the Dirichlet u+ = g and
the Neumann (−∂x2

u)+ = h boundary conditions.
There remains to note that the proof follows now from Theorem 4.4.1 on Quasi Localization.

5.4 Potential operators
It is well known that the Laplace operator ∆ has the fundamental solution K∆

K∆(x) :=
1

2π
ln |x|, ∆K∆(x) = δ(x), x ∈ R2,

which is used to define the standard double layer W∆, the single layer V ∆ and the Newton N∆

potentials on the angle Ωα:

V ∆φ(x) :=
1

2π

∫
Γα

ln |x− τ |φ(τ) dσ, W∆φ(x) :=
1

2π

∫
Γα

∂ν(τ) ln |x− τ |φ(τ) dσ,

N∆φ(x) :=
1

2π

∫
Ωα

ln |x− y|φ(y) dy, x ∈ Ωα.

(5.4.1)
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For the standard properties of these potentials we refer to [53].
Let us recall the Plemelji formulae

(W∆φ)
±(t) = ±1

2
φ(t) +W∆,0φ(t), (∂ν∆(t)V ∆ψ)

±)(t) = ∓1

2
ψ(t) +W ∗

∆,0ψ(t),

(∂ν∆(t)W∆ψ)
±(t) = V ∆,+1ψ(t), (V ∆φ)

±(t) = V ∆,−1φ(t), t ∈ Γα := ∂Ωα,
(5.4.2)

where the pseudodifferential operators (ΨDO)

V ∆,−1φ(t) :=
1

2π

∫
Γα

ln |t− τ |φ(τ) dσ, V ∆,+1φ(t :=
1

2π

∫
Γα

∂ν(t)∂ν(τ) ln |t− τ |φ(τ) dσ,

W∆,0φ(t) :=
1

2π

∫
Γα

∂ν(τ) ln |t− τ |φ(τ) dσ, W ∗
∆,0φ(t) :=

1

2π

∫
Γα

∂ν(t) ln |t− τ |φ(τ) dσ,

t ∈ Γα,

(5.4.3)

of orders −1, 0, 0 and +1 are associated with the layer potentials of the Helmholtz equation. The
operator V ∆,−1 has weakly singular kernel and the integral exists in the Lebesgue sense, while the
operators W∆,0 and W ∗

∆,0 have singular kernel of order −1 and the integrals exist in the Cauchy
Mean Value sense. V ∆,+1 is a hypersingular integral operator and it is interpreted in [68, § 1]. The
standard mapping property is listed below (see [53,65,89] for details):

V ∆,−1 : Hsp(Γα) → Hs+1
p (Γα),

W∆,0 : Hsp(Γα) → Hsp(Γα),
W ∗

∆,0 : Hsp(Γα) → Hsp(Γα),
V ∆,+1 : Hsp(Γα) → Hs−1

p (Γα), s ∈ R, 1 < p <∞.

(5.4.4)

Next, we need to find explicit forms of pseudodifferential operators (PsDOs) W∆,0 and W ∗
∆,0 for

the use in Chapters 4–5.
Let us consider the following Mellin convolutions operators, where the first one is known as the

Cauchy singular integral operator (see [37, 47,59]):

SR+ϕ(t) :=
1

πi

∞∫
0

ϕ(τ) dτ

τ − t
, Kcϕ(t) :=

1

π

∞∫
0

ϕ(τ) dτ

t− c τ
, 0 < arg c < 2π, ϕ ∈ Lp(R+). (5.4.5)

The pull back operator Jα : Hsp(Rα) → Hsp(R+) and its inverse J−1 : Hsp(R+) → Hsp(Rα) are defined
as follows:

Jαφ(t) = φ(t cos α, t sin α), t ∈ R+,

J−1
α ψ(x1, x2) = ψ

(√
x21 + x22

)
, (x1, x2)

⊤ ∈ Rα.
(5.4.6)

Note that the tangent vector ℓ(x) to the boundary of the model domain Γα and the corresponding
tangent derivative are given by the formulae (we remind that Rα is oriented from ∞ to 0):

ℓ(t) =

{
(1, 0)⊤ for x ∈ R+,

−(cos α, sin α) for x ∈ Rα,

∂ℓφ(x) :=

{
∂tφ(t, 0) for x = (t, 0) ∈ R+,

−(cos α∂x1
+ sin α∂x2

)φ(t cos α , t sin α) for x = (t cos α , t sin α)
⊤ ∈ Rα.

(5.4.7)

Theorem 5.4.1 (cf. [61, 69]). For the singular integral operator on the boundary Γα of the model
domain W∆,0 and its dual (conjugate) W ∗

∆,0 the following explicit representations hold:

rR+W∆,0rRα
J−1
α φ(t) = −JαrRα

W∆,0rR+φ(t) = − 1

4i

[
eiαKeiα − e−iαKei(2π−α)

]
φ(t), (5.4.8a)

rR+W ∗
∆,0rRα

J−1
α φ(t) = −JαrRα

W ∗
∆,0rR+φ(t) =

1

4i

[
Keiα −Kei(2π−α) ]φ(t), t ∈ R+, (5.4.8b)

rR+W∆,0rR+φ = rRαW∆,0rRαφ = rR+W ∗
∆,0rR+φ = rRαW

∗
∆,0rRαφ = 0, (5.4.8c)
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where rR+ and rRα are the restriction operators to the spaces on the corresponding subsets R+ and Rα.
For the pseudodifferential operators V ∆,−1 and V ∆,+1 the following explicit representations hold:

rR+∂ℓV ∆,−1rRα
J−1
α φ(t) = JαrRα

∂ℓV ∆,−1rR+φ(t) = −1

4
[Keiα +Ke−iα ]φ(t), (5.4.9a)

rR+V ∆,+1rRαJ
−1
α φ(t) = JαrRα∂ℓV ∆,+1rR+∂τφ(t) =

1

4
[Keiα +Ke−iα ] ∂τφ(t), (5.4.9b)

rR+∂tV ∆,−1rR+φ(t)JαrRα = ∂ℓV ∆,−1rRαJ
−1
α φ(t) =

1

2i
SR+φ(t), (5.4.9c)

rR+V ∆,+1rR+φ(t) = JαrRαV ∆,+1rRαJ
−1
α φ(t) = −φ(t) + 1

2i
SR+∂τφ(t), t ∈ R+, (5.4.9d)

where the operator ∂ℓ is defined from (5.4.7).

Proof. Using the parametrizations x = (x1, x2)
⊤=(t, 0)⊤ of R+ and y = (y1, y2)

⊤=(τ cos α, τ sin α)⊤

of Rα (cf. (5.3.11)), recalling the form of the normal derivative ∂ν(y) on Γα = R+ ∪Rα (cf. (5.3.12))
and taking into account that Rα is oriented from ∞ to 0, we get

rR+W∆,0φ(x) =
1

2π

∫
Γα

∂ν(y) ln |x− y|φ(y)dσ = − 1

2π

∞∫
0

[
∂y2 ln |(t, 0)− (y1, y2)|

∣∣
(y1,y2)=(τ,0)

φ(τ, 0)

+ [− sin α∂y1 + cos α∂y2 ] ln |(t, 0)− (y1, y2)|φ(y1, y2)
∣∣
(y1,y2)=(τ cos α,τ sinα)

]
dτ.

Here we apply the equality

ln |x− y| = ln |(x1, x2)− (y1, y2) = |1
2

ln
[
(x1 − y1)

2 + (x2 − y2)
2
]

(5.4.10)

and continue as follows:

rR+W∆,0φ(x) = − 1

2π

∞∫
0

[ y2φ+(τ)

(t− y1)2 + y22

∣∣∣
(y1,y2)=(τ,0)

+
[(t− y1) sinα+ y2 cos α]φα(τ)

(t− y1)2 + y22

∣∣∣
(y1,y2)=(τ cos α,τ sinα)

]
dτ

= − 1

2π

∞∫
0

t sinαφα(τ) dτ
(t− τ cos α)2 + τ2 sin2 α

= − 1

2π

∞∫
0

t sinαφα(τ) dτ
t2 + τ2 − 2tτ cos α

= − 1

4i

[
eiαKeiα − e−iαKe−iα

]
φα(t) = − 1

4i

[
eiαKeiα − e−iαKei(2π−α)

]
φα(t),

φ+(τ) := φ(τ, 0), φα(τ) := φ(τ cos α, τ sinα) = Jαφ(t), τ ∈ R+. (5.4.11)

The obtained equality proves the first equalities in (5.4.8a) and (5.4.8c), because the integral on R+

in the third line of (5.4.11) turned to 0. Similarly,

rR+W ∗
∆,0φ(x) =

1

2π

∫
Γα

∂ν(x) ln |x− y|φ(y)dσ = − 1

2π

∞∫
0

[
∂x2 ln |(x1, x2)− (τ, 0)|

∣∣
(x1,x2)=(t,0)

φ(τ, 0)

+ ∂x2
ln |(x1, x2)− (τ cos α, τ sinα)|

∣∣
(x1,x2)=(t,0)

φ(τ cos α, τ sinα)
]
dτ

= − 1

2π

∞∫
0

[ x2φ(τ, 0)

(x1 − τ)2 + x22

∣∣∣
(x1,x2)=(t,0)

+
(x2 − τ sin α)φα(τ)

(x1 − τ cos α)2 + (x2 − τ sin α)2

∣∣∣
(x1,x2)=(t,0)

]
dτ

=
1

2π

∞∫
0

τ sin αφα(τ) dτ

t2 + τ2 − 2tτ cos α =
1

4i

[
Keiα −Kei(2π−α)

]
φα(t). (5.4.12)
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The obtained equality proves the first equality in (5.4.8b) and the third equality in (5.4.8c) (because
the integral on R+ in the third line of (5.4.12) turned to 0).

If x = (x1, x2)
⊤ = (t cos α, t sin α)⊤ ∈ Rα and y = (y1, y2)

⊤ = (τ, 0)⊤ ∈ R+ (cf. (5.3.11)), as in
the foregoing case, we get the following:

rRα
W∆,0φ(x) =

1

2π

∫
Γα

∂ν(y) ln |x− y|φ(y)dσ

= − 1

2π

∞∫
0

[
∂y2 ln |(t cos α, t sinα)− (y1, y2)|

∣∣
(y1,y2)=(τ,0)

φ+(τ)

+ [− sin α∂y1 + cos α∂y2 ] ln |(t cos α, t sinα)− (y1, y2)|
∣∣
(y1,y2)=(τ cos α,τ sinα)φα(τ)

]
dτ

= − 1

2π

∞∫
0

[ −(t sinα− y2)φ+(τ)

(t cos α− y1)2 + (t sinα− y2)2

∣∣∣
(y1,y2)=(τ,0)

+
[sinα(t cos α− y1)− cos α(t sinα− y2)]φα(τ)

(t cos α− y1)2 + (t sinα− y2)2

∣∣∣
(y1,y2)=(τ cos α,τ sinα)

]
dτ

=
1

2π

∞∫
0

t sinαφ+(τ) dτ

t2 + τ2 − 2tτ cos α =
1

4i

[
eiαKeiα − e−iαKei(2π−α)

]
φ+(t), (5.4.13)

The obtained equality proves the second equalities in (5.4.8a) and (5.4.8c), because the integral on
Rα in the fourth line of (5.4.13) turned to 0. Similarly,

rRαW
∗
∆,0φ(x) =

1

2π

∫
Γα

∂ν(x) ln |x− y|φ(y)dσ

= − 1

2π

∞∫
0

[
[− sin α∂x1

+ cos α∂x2
] ln |(x1, x2)− (τ, 0)|

∣∣
(x1,x2)=(t cos α,t sinα)φ+(τ)

+ [− sinα∂x1
+ cosα∂x2

] ln |(x1, x2)− (τ cosα, τ sinα)|
∣∣
(x1,x2)=(t cos α,t sinα)φα(τ)

]
dτ

= − 1

2π

∞∫
0

[{− sinα(x1 − τ) + cos αx2}φ+(τ)

(x1 − τ)2 + x22

∣∣∣
(x1,x2)=(t cos α,t sinα)

+
[− sinα(x1 − τ cos α) + cos α(x2 − τ sinα)]φα(τ)

(x1 − τ cos α)2 + (x2 − t sinα)2
∣∣∣
(x1,x2)=(t cos α,t sinα)

]
dτ

= − 1

2π

∞∫
0

τ sinαφ+(τ) dτ

t2 + τ2 − 2tτ cos α = − 1

4i

[
Keiα −Kei(2π−α)

]
φ+(t). (5.4.14)

The obtained equality proves the second equality in (5.4.8b) and the fourth equality in (5.4.8c),
because the integral on R+ in the fifth line of (5.4.14) turned to 0.

Prior to calculating the operator V ∆,+1 from (5.4.3), consider its kernel 1
2π∂ν(x)∂ν(y) ln |x− y|.

Using equalities (5.4.10), (5.4.7) and, as above, the parametrizations of Rα and R+ we calculate
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the kernel for x = (t, 0)⊤ ∈ R+, y = (τ cos α τ sin α)⊤ ∈ Rα, as follows:

∂ν(x)∂ν(y)K∆(x− y) = −∂x2
(− sin α∂y1 + cos α∂y2)K∆(x− y)

∣∣∣
x=(t,0)
y=(τ cos α,τ sin α)

= ∂y2 {− sin α∂y1 + cos α∂y2}K∆(x− y)
∣∣∣
x=(t,0)
y=(τ cos α,τ sin α)

= [cos α∆K∆(x− y)− ∂y1 {cos α∂y1 + sin α∂y2}K∆(x− y)]
∣∣∣
x=(t,0)
y=(τ cos α,τ sin α)

=
[
cos αδ(x− y) + ∂y1∂ℓ(y)K∆(x− y)

] ∣∣∣
x=(t,0)
y=(τ cos α,τ sin α)

=

[
cos α δ(0)+ 1

4π
∂ℓ(y)∂y1 ln

[
(x1 − y1)

2 + (x2 − y2)
2
]] ∣∣∣

x=(t,0)
y=(τ cos α,τ sin α)

=

[
cos α δ(0)− 1

2π
∂ℓ(y)

x1 − y1
(x1 − y1)2 + (x2 − y2)2

] ∣∣∣
x=(t,0)
y=(τ cos α,τ sin α),

(5.4.15)

since, δ(x− y) = 0 for x ∈ R+ and y ∈ Rα with Dirac’s delta function δ(x).
In the case x = (t cos α, t sin α)⊤ ∈ Rα, y = (τ, 0)⊤ ∈ R+ we calculate similarly:

∂ν(x)∂ν(y)K∆(x− y) = −(− sin α∂x1
+ cos α∂x2

)∂y2K∆(x− y)
∣∣∣
x=(t cos α,t sin α)
y=(τ,0)

= {− sin α∂y1 + cos α∂y2} ∂y2K∆(x− y)
∣∣∣
x=(t cos α,t sin α)
y=(τ,0)

= [cos α∆K∆(x− y)− ∂y1 {cos α∂y1 + sin α∂y2}K∆(x− y)]
∣∣∣
x=(t cos α,t sin α)
y=(τ,0)

=
[
cos αδ(x− y) + ∂ℓ(y) {cos α∂y1 + sin α∂y2}K∆(x− y)

] ∣∣∣
x=(t cos α,t sin α)
y=(τ,0)

=

[
cos α δ(0)− 1

2π
∂ℓ(y)

cos α(x1 − y1) + sin α(x2 − y2)

(x1 − y1)2 + (x2 − y2)2

] ∣∣∣
x=(t cos α,t sin α)
y=(τ,0)

. (5.4.16)

For the case x = (t, 0)⊤ ∈ R+, y = (τ, 0)⊤ ∈ R+ we get

∂ν(x)∂ν(y)K∆(x− y) = ∂x2
∂y2K∆(x− y)

∣∣∣
x=(t,0)
y=(τ,0)

= −∂2y2K∆(x− y)
∣∣∣
x=(t,0)
y=(τ,0)

=
[
−∆K∆(x− y) + ∂2y1K∆(x− y)

] ∣∣∣
x=(t,0)
y=(τ,0)

= −δ(t− τ) + ∂2τK∆(t− τ) = −δ(t− τ) +
1

2π
∂τ

1

τ − t
. (5.4.17)

For the case x = (t cos α t, sin α)⊤ ∈ Rα, y = (τ cos α, τ sin α)⊤ ∈ Rα we get

∂ν(x)∂ν(y)K∆(x− y) = (− sin α∂x1
+ cos α∂x2

)(− sin α∂y1 + cos α∂y2)K∆(x− y)
∣∣∣
x=(t cos α,t sin α)
y=(τ cos α,τ sin α)

= −{− sin α∂y1 + cos α∂y2}
2 K∆(x− y)

∣∣∣
x=(t cos α,t sin α)
y=(τ cos α,τ sin α)

= −
[
∆− (cos α∂y1 + sin α∂y2)

2
]
K∆(x− y)

∣∣∣
x=(t cos α,t sin α)
y=(τ cos α,τ sin α)

= −
[
δ(x− y)− ∂2ℓ(y)K∆(x− y)

]
x=(t cos α,t sin α)
y=(τ cos α,τ sin α)
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= −
[
δ(x− y) +

1

2π
∂ℓ(y)

− cos α(x1 − y1)− sin α(x2 − y2)

(x1 − y1)2 + (x2 − y2)2

]
x=(t cos α,t sin α)
y=(τ cos α,τ sin α)

= −δ(t− τ) +
1

2π
∂τ

1

τ − t
. (5.4.18)

Now we calculate the operator rR+V ∆,+1 from (5.4.3), using the derived representations of the kernel
(5.4.15), (5.4.17) and integration by parts:

rR+V ∆,+1φ(t) = −φ+(t)−
1

2π

∫
R+

∂τφ+(τ)dτ

τ − t
+

1

2π
rR+

∫
Rα

(x1 − y1)∂ℓ(y)φ(y)dσ

(x1 − y1)2 + (x2 − y2)2

∣∣∣
x=(t,0)
y=(τ cos α,τ sin α)

= −φ+(t) +
1

2i
SR+∂τφ+(t)−

1

2π

∞∫
0

t− τ cos α
t2 + τ2 − 2tτ cosα (Jα∂ℓφ)(τ)dτ

= −φ+(t) +
1

2i
SR+∂τφ+(t)−

1

4π

∞∫
0

[
1

t− eiατ
+

1

t− e−iατ

]
(Jα∂ℓφ)(τ)dτ,

= −φ+(t) +
1

2i
SR+∂τφ+(t) +

1

4
[Keiα +Ke−iα ] ∂τφα(t),

since (Jα∂ℓφ)(τ) = −(∂τφα)(τ), where, we remind, φ+(t) := φ(t, 0), φα(t) := Jαφ(t). Thus, the first
formula in (5.4.9b) and the first formula in (5.4.9d) are proved.

Next, we calculate the operator JαrRα
V ∆,+1 using the derived representations of the kernel

(5.4.16), (5.4.18) and integration by parts:

JαrRαV ∆,+1φ(t) =
1

2π

∫
R+

[cos α(x1 − y1) + sin α(x2 − y2)]∂ℓ(y)φ(y)dσ

(x1 − y1)2 + (x2 − y2)2

∣∣∣
x=(t cos α,t sin α)
y=(τ,0))

− φα(t)−
1

2π

∫
R+

∂τφα(τ)dτ

τ − t
= −φα(t) +

1

2i
SR+∂τφα(t)

+
1

2π

∞∫
0

[cos α(t cos α− τ) + t sin2 α]∂τφ+(τ)dτ

t2 + τ2 − 2tτ cosα

=
1

2π

∞∫
0

t− τ cos α)∂τφ+(τ)dτ

t2 + τ2 − 2tτ cosα − φα(t) +
1

2i
SR+∂τφα(t)

=
1

4
[Keiα +Ke−iα ] ∂τφ+(t)− φα(t) +

1

2i
SR+∂τφα(t).

Thus, the second formula in (5.4.9b) and the second formula in (5.4.9d) are proved.
Now we look at the singular integral operator rR+∂ℓV ∆,−1:

rR+∂ℓV ∆,−1φ(t) =
1

2π

∫
R+

∂ℓ(x) ln |x− y|φ(y)dσ
∣∣∣
x=(t,0))
y=(τ,0)

+
1

2π

∫
Rα

∂ℓ(x) ln |x− y|φ(y)dσ
∣∣∣
x=(t,0)
y=(τ cos α,τ sin α)

=
1

2π

∫
R+

(t− τ)φ+(τ) dτ

(t− τ)2
− 1

2π

∞∫
0

(t− τ cos α)φα(τ) dτ
(t− τ cos α)2 + τ2 sin2 α

= − 1

2π

∞∫
0

φ+(τ) dτ

τ − t
− 1

4π

∞∫
0

[
eiα

t− eiατ
+

e−iα

t− e−iατ

]
φα(τ)dτ
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=
1

2i
SR+φ+(t)−

1

4

[
eiαKeiα + e−iαKe−iα

]
φα(t), t ∈ R+, t ∈ R+.

Thus, the first formula in (5.4.9a) and the first formula in (5.4.9c) are proved.
In conclusion, we look at the singular integral operator JαrRα

∂ℓV ∆,−1:

JαrRα
∂ℓV ∆,−1φ(t) =

1

2π

∫
R+

∂ℓ(x) ln |x− y|φ(y)dσ
∣∣∣
x=(t cos α,t sin α))
y=(τ,0)

+
1

2π

∫
Rα

∂ℓ(x) ln |x− y|φ(y)dσ
∣∣∣
x=(t cos α,t sin α))
y=(τ cos α,τ sin α))

= − 1

2π

∫
R+

cos α(x1 − τ) + x2 sin α

(x1 − τ)2 + x22
φ+(τ) dτ

∣∣∣
x=(t cos α,t sin α)

+
1

2π

∫
R+

cos α(x1 − τ cos α) + (x2 − τ sin α) sin α

(x1 − τ cos α)2 + (x2 − τ sin α)2
φα(τ) dτ

∣∣∣
x=(t cos α,t sin α)

= − 1

2π

∞∫
0

cos α(t cos α− τ) + t sin2 α

(t cosα− τ)2 + t sin2 α
φ+(τ)dτ −

1

2π

∫
R+

φα(τ) dτ

τ − t

= − 1

2π

∞∫
0

t− τ cosα
t2 + τ2 − 2tτ cosαφα(τ)dτ +

1

2i
SR+φα(t)

= −1

4
[Keiα +Ke−iα ]φ+(t) +

1

2i
SR+φα(t), t ∈ R+.

Thus, the second formula in (5.4.9a) and the second formula in (5.4.9c) are proved.

5.5 Mellin convolution equations in Bessel potential spaces
Let us recall from [37] the results on the Fredholm properties of operators

A := d0I +

n∑
j=1

djK1
cj : H̃sp(R+) → Hsp(R+), (5.5.1)

where K1
c1 , . . . ,K1

cn are admissible Mellin convolution operators and d0, . . . , dn are m ×m constant
matrix coefficients. H̃sp(R+) and Hsp(R+) are the spaces of m-vector functions.

To this end, consider the infinite clockwise oriented “rectangle” R := Γ1 ∪ Γ−
2 ∪ Γ+

2 ∪ Γ3, where
(cf. Fig. 4.1 on page 116)

Γ1 := {+∞}× R, Γ±
2 := R+ × {±∞}, Γ3 := {0} × R.

According to [37, formulae (52)–(53d)], the symbol A s
p (ω) of the operator A is

A s
p (ω) := d0I

s
p (ω) +

n∑
j=1

djK
1,s
cj ,p(ω), (5.5.2)

where

I s
p (ω) :=


gs−γ,γ,p(∞, ξ), ω = (∞, ξ) ∈ Γ1,(±η − γ

±η + γ

)s
, ω = (η,±∞) ∈ Γ±

2 ,

eπsi, ω = (0, ξ) ∈ Γ3, ξ, η ∈ R,

(5.5.3a)
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gs−γ,γ,p(∞, ξ) :=
e2πsi + 1

2
+
e2πsi − 1

2i
cotπ

(1
p
− iξ

)
= eπsi

sinπ( 1p + s− iξ)

sinπ( 1p − iξ)
, ξ ∈ R, (5.5.3b)

K 1,s
c,p (ω) :=



−e
−iπ( 1

p−iξ)c
1
p−iξ−s−1

sinπ( 1p − iξ)
, ω = (∞, ξ) ∈ Γ1,

0, ω = η,±∞) ∈ Γ±
2 ,

−e
−iπ( 1

p+s−iξ)c
1
p−iξ−s−1

sinπ( 1p − iξ)
, ω = (0, ξ) ∈ Γ3,

(5.5.3c)

0 < arg c < 2π, c−s = |c|−sei(2π−arg c)s, cγ = |c|γeiγ arg c.

The function det A s
p (ω) is continuous on the rectangle R. The statement is easy to verify, analyzing

the symbols in (5.5.2), (5.5.3a)–(5.5.3b) and taking into account that

I s
p (−∞,−∞) = 1, I s

p (0,−∞) = I s
p (0,+∞) = eπsi, I s

p (+∞,+∞) = e2πsi,

K 1,s
−1,p(−∞,−∞) = K 1,s

−1,p(0,−∞) = K 1,s
−1,p(0,+∞) = K 1,s

−1,p(+∞,+∞) = 0,

gs−γ,γ,p(∞,−∞) = 1, gs−γ,γ,p(∞,+∞) = e2πsi.

Therefore, the image of the function det A s
p (ω) is a closed curve in the complex plane and, if the

symbol is elliptic
inf
ω∈R

∣∣det A s
p (ω)

∣∣ > 0,

the increment of the argument 1
2π arg A s

p (ω), when ω ranges through R in the direction of orientation,
is an integer. It is called the winding number or the index of the curve Γ := {z ∈ C : z = det Ap(ω),
ω ∈ R} and is denoted by ind det A s

p .
Propositions 5.5.1–5.5.3, exposed below, are well known and will be applied in the next section in

the proof of the main theorems.

Proposition 5.5.1 ([59] and [37, Theorem 5.4]). Let 1 < p <∞, s ∈ R. The operator

A : H̃sp(R+) → Hsp(R+) (5.5.4)

defined in (5.5.1) is Fredholm if and only if its symbol A s
p (ω) defined in (5.5.2), (5.5.3a)–(5.5.3b) is

elliptic. If A is Fredholm, then
Ind A = − ind det A s

p .

The operator A in (5.5.4) is locally invertible at 0 if and only if it is globally invertible.
The operator A in (5.5.4) is locally invertible at 0 if and only if its symbol A s

p (ω) is elliptic on
the set Γ1 only, infω∈Γ1

∣∣det A s
p (ω)

∣∣ > 0.

Proposition 5.5.2 ([59, Corollary 6.3]). Let 1 < p < ∞, s ∈ R and let A be defined by (5.5.1). If
the operator A : H̃sp(R+) → Hsp(R+) is Fredholm (is invertible) for all s ∈ (s0, s1) and p ∈ (p0, p1),
where −∞ < s0 < s1 < ∞, 1 < p0 < p1 < ∞, then A is Fredholm (is invertible, respectively) in the
Sobolev–Slobodečkii space setting

A : W̃s
p(R+) → Ws

p(R+) for all s ∈ (s0, s1), p ∈ (p0, p1)

and has the same index
Ind A = − ind det A s

p .

Proposition 5.5.3 ([40, 65]). Let two pairs of parameter-dependent Banach spaces Hs1 and Hs2, s1 <
s < s2, have intersections Hs

′

j ∩ Hs
′′

j dense in Hs
′

j and in Hs
′′

j for all j = 1, 2, s′, s′′ ∈ (s1, s2).
If a linear bounded operator A : Hs1 → Hs2 is Fredholm for all s ∈ (s1, s2), it has the same kernel

and co-kernel for all values of this parameter s ∈ (s1, s2).
In particular, if A : Hs1 → Hs2 is Fredholm for all s ∈ (s1, s2) and is invertible for only one value

s0 ∈ (s1, s2), it is invertible for all values of this parameter s ∈ (s1, s2).
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5.6 Model Dirichlet BVP
In the present section, we investigate model Dirichlet Boundary value problem, associated with the
BVP (5.2.2) and described in general in the foregoing Section 5.5. We derive an equivalent boundary
integral equation in the model domain (5.6.10) and investigate it.

Results for the model Dirirchlet BVP (5.6.1) (Fredholm criteria, the unique solvability) were
obtained in [60,61].

Let us commence with the formulation of the model Dirichlet BVP associated with the BVP (5.2.2)
in the non-classical setting (5.1.2) at a knot cj ∈ MD (where Dirichlet conditions collide):{

∆u(t) = f(t), t ∈ Ωαj
,

u+(s) = g(s) on Γαj
= R+ ∪ Rαj

,
(5.6.1)

u ∈ Hsp(Ωαj
), f ∈ H̃s−2

p,0 (Ωαj
), g ∈ H

s− 1
p

p (Γαj
), 1 < p <∞,

1

p
< s < 1 +

1

p
.

Here Ωj is the model domain, associated with this problem (cf. Fig. 5.3 on page 141 and formula
(5.3.11)) and Γαj := ∂Ωαj = R+ ∪ Rαj is the boundary. We assume that α ̸= π, because for α = π
we have the case Γπ = R and BVP (5.6.1) is trivially solvable.

As a particular case of Theorem 5.1.1 we get the following

Corollary 5.6.1. The boundary value problem (5.6.1) has a unique solution in the classical weak
setting p = 2, s = 1.

Let Cs0(Γα) denote the set of Hölder continuous functions with exponent s and compact supports.
It is well known that Cs0(Γα) is a dense subset of Hsp(Γα) for 0 < s < 1 + 1

p .
The next proposition is a standard consequence of the Green formulae and can easily be found e.g.

in [53,65,89].

Proposition 5.6.1 (Representation of a solution to BVP). Any solution u ∈ Hsp(Ωαj
) to the BVP

(5.6.1) (and also to the BVPs (5.7.1) and (5.8.1) in the forthcoming sections) is represented as follows:

u(x) = N∆f(x) +W∆u
+(x)− V ∆[∂νu]

+(x), x ∈ Ωαj , (5.6.2)

where u+ and [∂νu]
+ are the Dirichlet and the Neumann traces of the solution u on the boundary Γαj .

Lemma 5.6.1. Let 1 < p <∞, −1− 1
p < s < 1 + 1

p , g0 ∈ Cs0(Γα), g0(0) = 1, is a fixed function. Let
us consider the linear functional

F0(φ) := lim
ε→0

1

2ε

∫
Γα,ε

ψ(τ) dσ, ψ ∈ Hsp(Γα),

where Γα,ε is the intersection of Γα with the circle of radius ε centered at the vertex 0 ∈ Γα.
Then for arbitrary φ ∈ Hsp(Γα) and ψ ∈ Ws

p(Γα) the following representations hold:

φ = F0(φ)g0 + φ+ + φα, φ+ ∈ H̃sp(R+), φα ∈ H̃sp(Rα),

ψ = F0(ψ)g0 + ψ+ + ψα, ψ+ ∈ W̃s
p(R+), ψα ∈ W̃s

p(Rα),
F0(φ+) = F0(φα) = F0(ψ+) = F0(ψα) = 0.

(5.6.3)

Proof. It is easy to check that for φ ∈ Cs0(Γα) there holds F0(φ) = φ(0) and, since g0(0) = 1, we get
φ+(0) = 0, φα(0) = 0. The inclusions φ+ ∈ H̃sp(R+), φα ∈ H̃sp(Rα) follow automatically. Since the
subset Cs0(Γα) is dense in Hsp(Γα) (also in Ws

p(Γα)) and F0 is a linear bounded functional in Hsp(Γα)
(also in Ws

p(Γα)), the both representations in (5.6.3) remain valid for arbitrary function φ ∈ Hsp(Γα)
(for arbitrary function ψ ∈ Ws

p(Γα)).
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We remind that the Dirichlet trace u+ = g ∈ W
s− 1

p
p (Γα) is a known function and let (∂νu)

+ =

ψ ∈ W
s−1− 1

p
p (Γα) denote the unknown Neuman’s trace. Then the representation formula (5.6.2) for a

solution to the Dirichlet BVP (5.6.1) has the form

u = N∆f +W∆g − V ∆ψ. (5.6.4)

By applying the Plemelji Formulae (5.4.2) to (5.6.4) we get

(∂νu)
+ = ψ = (∂νN∆f)

+ + V ∆,+1g +
1

2
ψ −W ∗

∆,0ψ

and rewrite the obtained equality as follows:

1

2
ψ +W ∗

∆,0ψ = G, G := (∂νN∆f)
+ + V ∆,+1g, ψ,G ∈ W

s−1− 1
p

p (Γα). (5.6.5)

Since I = rR+ + rRα
, applying equalities (5.4.8c) we rewrite equation (5.6.5) as follows:

1

2
ψ + rR+W ∗

∆,0rRαψ + rRαW
∗
∆,0rR+ψ = G, G,ψ ∈ W

s−1− 1
p

p (Γα). (5.6.6)

Now we recall representation (5.4.8b), restrict equation (5.6.6) to R+ by applying rR+ , which gives
us the first equation in (5.6.7) below. Then restrict equation (5.6.6) to Rα and apply the pull back
operator Jα and its inverse (see (5.4.6)) and get the second equation in (5.6.7). Thus, we get the
system of two equations on the half-axes with two unknown functions:

1

2
ψ1 + (rR+W ∗

∆,0rRα
J−1
α )ψ2 + F0(ψ)g2 = G1,

1

2
ψ2 + (JαrRαW

∗
∆,0rR+)ψ1 + F0(ψ)g1 = G2,

(5.6.7)

g1 := rR+W ∗
∆,0rRα

g0, g2 := JαrRα
W ∗

∆,0rR+g0,

ψ1 := rR+ψ, ψ2 := JαrRαψ, G1 := rR+G, G2 := JαrRαG,

ψ1, ψ2,∈ W̃
s−1− 1

p
p (R+), g1, g2, G1, G2 ∈ W

s−1− 1
p

p (R+).

(5.6.8)

Since one-dimensional operator F0( · ) does not influence Fredholm property of system (5.6.7), the
system

1

2
ψ1 + (rR+W ∗

∆,0rRαJ
−1
α )ψ2 = G1,

1

2
ψ2 + (JαrRα

W ∗
∆,0rR+)ψ1 = G2,

ψ1, ψ2 ∈ W̃
s−1− 1

p
p (R+), G1, G2 ∈ W

s−1− 1
p

p (R+), (5.6.9)

is Fredholm-equivalent to system (5.6.7)–(5.6.8).
Due to formula (5.4.8b), system (5.6.9) of boundary integral equations coincides with the following

system of integral equations of Mellin type:
ψ1 −

1

2i

[
K1
eiα −K1

ei(2π−α)

]
ψ2 = G1,

ψ2 +
1

2i

[
K1
eiα −K1

ei(2π−α)

]
ψ1 = G2,

ψ1, ψ2 ∈ W̃
s−1− 1

p
p (R+), G1, G2 ∈ W

s−1− 1
p

p (R+).

(5.6.10)

Theorem 5.6.1. Let 1 < p <∞, 1
p < s < 1 + 1

p .
The model Dirichlet boundary value problem in the non-classical setting (5.6.1) is Freholm if and

only if the system of boundary integral equation (5.6.10) is Fredholm.

Now we can prove the main theorem of the present section.
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Theorem 5.6.2. Let 1 < p <∞, −1− 1
p < s < 1+ 1

p . The Model Dirichlet BVP in the non-classical
setting (5.6.1) is Fredholm (and the system of boundary integral equations (5.6.10) is Fredholm) if and
only if either α = π, or (p, s) = (2, 1) or α ̸= π, (p, s) ̸= (2, 1), α ̸= π and the following holds:

ei2π(s−
1
p ) sin2 π(s− iξ) + e−i2πs sin2(α− π)

(1
p
− s− 1− iξ

)
̸= 0, ∀ ξ ∈ R. (5.6.11)

If condition (5.6.11) holds, the semi-strip ( 1p ,∞)× (0, 1) of the Euclidean plane R2, where the pair
(s, 1p ) ranges, decomposes into an infinite union R0 ∪ R1 ∪ · · · of non-intersecting connected subsets
of regular pairs, for which the BVP (5.6.1) is Fredholm.

If the point (1, 12 ) (i.e., s = 1, p = 2) belongs to the connected subset R0, then the BVP (5.6.1) is
uniquely solvable for all pairs (s, 1p ) ∈ R0.

The same unique solvability holds for the system of integral equations (5.6.7).
Proof. The unique solvability of the BVP (5.6.1) in the cases (p, s) = (2, 1) and α = π are already
proved in Corollary 5.6.1 on page 151 and the Model case II on page 140, respectively. Thus, we
assume that (p, s) ̸= (2, 1), α ̸= π.

Let us investigate the Fredholm properties of system (5.6.10). An equivalent task is to study the
Fredholm property of the corresponding operator

Dα = I − 1

2i
d
[
K1
eiα −K1

ei(2π−α)

]
: W̃

s−1− 1
p

p (R+) → W
s−1− 1

p
p (R+). (5.6.12a)

For this, it suffices, due to Proposition 5.5.2, to prove the same theorem for the operator

Dα = I − 1

2i
d
[
K1
eiα −K1

ei(2π−α)

]
: H̃

s−1− 1
p

p (R+) → H
s−1− 1

p
p (R+). (5.6.12b)

Here d is the 2× 2 constant matrix
d :=

[
0 1
−1 0

]
. (5.6.13)

The symbol of the operator Dα in (5.6.12b) on the set Γ1, according to the formulae (5.5.3a)–
(5.5.3c), reads:

D
s−1− 1

p
α,p (∞, ξ) =


eiπ(s−

1
p )

sinπ(s− iξ)

sinπ( 1p − iξ)
−e−iπs

sin(α− π)( 1p − s− 1− iξ)

sinπ( 1p − iξ)
,

e−iπs
sin(α− π)( 1p − s− 1− iξ)

sinπ( 1p − iξ)
eiπ(s−

1
p )

sinπ(s− iξ)

sinπ( 1p − iξ)

 , (5.6.14)

because

I
s−1− 1

p
p (∞, ξ) = e2π(s−1− 1

p )i
sinπ( 1p + s− 1− 1

p − iξ)

sinπ( 1p − iξ)
= −eiπ(s−

1
p )

sinπ(s− iξ)

sinπ( 1p − iξ)
; (5.6.15)

1

2i

[
K

1,s−1− 1
p

eiα,p (∞, ξ)− K
1,s−1− 1

p

ei(2π−α),p(∞, ξ)
]
= −e−iπ(

1
p−iξ) e

iα( 1
p−s−1−iξ) − ei(2π−α)(

1
p−s−1−iξ)

2i sinπ( 1p − iξ)

= e−iπs
ei(α−π)(

1
p−s−1−iξ) − e−i(α−π)(

1
p−s−1−iξ)

2i sinπ( 1p − iξ)
= e−iπs

sin(α− π)( 1p − s− 1− iξ)

sinπ( 1p − iξ)
.

Since det D
s−1− 1

p
p (∞, ξ) coincides with the function in (5.6.11), due to Proposition 5.5.1, the

operator in (5.6.12b) is locally Fredholm and, therefore, globally Fredholm if condition (5.6.11) holds.
The determinant of the symbol

det D
s−1− 1

p
p (∞, ξ) = ei2π(s−

1
p ) sin2 π(s− iξ) + e−i2πs sin2(α− π)

(1
p
− s− 1− iξ

)
is a periodic function with respect to the parameters s and 1

p and vanishes on curves which divide the
strip (1,∞)× (0, 1) ⊂ R2 into connected subsets R0,R1, . . . . Due to Corollary 5.6.1, the BVP (5.6.1)
is uniquely solvable for s = 1 and p = 2. Then, due to Proposition 5.5.3, the BVP (5.6.1) is uniquely
solvable for all pairs (s, 1p ) ∈ R0, provided (1, 12 ) ∈ R0.
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5.7 Model Neumann BVP
In the present section, we investigate model Neumann Boundary value problem, associated with the
BVP (5.1.1) and described in general in the foregoing Section 5.5. We derive an equivalent boundary
integral equation for the model domain (5.7.5) and investigate it.

Results for the model Neumann BVP (5.7.1) (Fredholm criteria, the unique solability) was obtained
in [60,61].

Let us commence with the formulation of the model Neumann BVP associated with the BVP
(5.1.1) in the non-classical setting (5.1.2) at a knot cj ∈ MD (where Neumann conditions collide):{

∆u(t) = f(t), t ∈ Ωαj
,

(∂νu)
+(s) = h(s) on Γαj = R+ ∪ Rαj ,

(5.7.1)

u ∈ Hsp(Ωαj ), f ∈ H̃s−2
p,0 (Ωαj ), h ∈ H

s−1− 1
p

p (Γαj ), 1 < p <∞,
1

p
s < 1 +

1

p
.

Here the model domain Ωαj and the boundary Γαj are the same as in Section 5.6 (see Fig. 5.3 on page
141 and formula (5.3.11)). The unit normal vector field ν(t) and the normal derivative ∂ν are defined
above in (5.3.12). We assume, as above, that α ̸= π, because for α = π we have the case Γπ = R and
BVP (5.7.1) is trivially solvable.

As a particular case of Theorem 5.1.1 we get the following

Corollary 5.7.1. The boundary value problems (5.7.1) has a unique solution in the classical weak
setting p = 2, s = 1.

If the Neuman trace (∂νu)
+ = h ∈ W

s−1− 1
p

p (Γα) is known and u+ = φ ∈ W
s− 1

p
p (Γα) denotes the

unknown Dirichlet trace, the representation formula (5.6.2) for a solution to BVP (5.7.1) takes the
form

u = N∆f +W∆φ− V ∆h. (5.7.2)
By applying the Plemelji Formulae (5.4.2) to (5.7.2) we get

u+ = φ = (N∆f)
+ +

1

2
φ+W∆,0φ− V ∆,−1h, φ ∈ Γα.

Since I = rR+ + rRα
, rewrite the obtained equation as follows:

1

2
φ−rR+W∆,0rRα

φ−rRα
W∆,0rR+φ = H, , H := (∂νN∆f)

+−V ∆,−1h, φ,H ∈ W
s− 1

p
p (Γα). (5.7.3)

By using representation (5.6.3), similarly to (5.6.6)–(5.6.8), equation (5.7.3) is rewritten as an equiv-
alent system of boundary integral equations on the semi-axes R+:

1

2
φ1 − rR+W∆,0rRαφ2 − F0(φ)h2 = H1,

1

2
φ2 − JαrRαW∆,0rR+φ1 − F0(φ)h1 = H2,

(5.7.4)

h1 := rR+W∆,0rRα
g0, h2 := JαrRα

W∆,0rR+g0,

φ1 := rR+φ, φ2 := JαrRα
φ, H1 := rR+H, H2 := JαrRα

H,

φ1, φ2 ∈ W̃
s− 1

p
p (R+), h1, h2,H1,H2 ∈ W

s− 1
p

p (R+).

Due to formula (5.4.8a), system (5.7.4) of boundary integral equations coincides with the following
system of integral equations of Mellin type:

ψ1 −
1

2i

[
eiαKeiα − e−iαKei(2π−α)

]
ψ2 = G1,

ψ2 +
1

2i

[
eiαKeiα − e−iαKei(2π−α)

]
ψ1 = G2,

(5.7.5)

ψ1, ψ2 ∈ W̃
s−1− 1

p
p (R+), G1, G2 ∈ W

s−1− 1
p

p (R+).
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Theorem 5.7.1. Let 1 < p <∞, 1
p < s < 1 + 1

p .
The model Neumann boundary value problem in the non-classical setting (5.7.1) is Freholm if and

only if the system of boundary integral equation (5.7.5) is Fredholm.

Now we can prove the main theorem of the present section.

Theorem 5.7.2. Let 1 < p <∞, −1− 1
p < s < 1+ 1

p . The Model Neumann BVP in the non-classical
setting (5.7.1) is Fredholm (and the system of boundary integral equations (5.7.5) is Fredholm) if and
only if either α = π or (p, s) = (2, 1) or α ̸= π, (p, s) ̸= (2, 1) and the following holds:

ei2π(s−
1
p ) sin2 π(s− iξ) + e−i2πs sin2(α− π)

(1
p
− s− iξ

)
̸= 0, ∀ ξ ∈ R. (5.7.6)

If condition (5.7.6) holds, the subset ( 1p ,∞) × (1,∞) of the Euclidean plane R2, where the pairs
(s, p) range, decomposes into an infinite union R0 ∪R1 ∪ · · · of non-intersecting connected subsets of
regular pairs, for which the BVP (5.7.1) is Fredholm.

If point (1, 2) (i.e., s = 1, p = 2) belongs to the connected subset R0, then the BVP (5.7.1) is
uniquely solvable for all pairs (s, p) ∈ R0.

The same unique solvability holds for the system of integral equations (5.7.4).

Proof. The unique solvability of the BVP (5.7.1) in the cases (p, s) = (2, 1) and α = π are already
proved in Corollary 5.7.1 on page 154 and the Model case II on page 140, resepctively. Thus, we
assume that (p, s) ̸= (2, 1), α ̸= π.

Let us investigate the Fredholm properties of system (5.7.5). An equivalent task is to study the
Fredholm property of the corresponding operator

Nα = I − 1

2i
d
[
eiαKeiα − e−iαKei(2π−α)

]
: W̃

s−1− 1
p

p (R+) → W
s−1− 1

p
p (R+). (5.7.7a)

For this, it suffices, due to Proposition 5.5.2, to prove the same theorem for the operator

Nα = I − 1

2i
d
[
eiαKeiα − e−iαKei(2π−α)

]
: H̃

s−1− 1
p

p (R+) → H
s−1− 1

p
p (R+). (5.7.7b)

Here the 2× 2 matrix d is defined in (5.6.13).
The symbol of the operator Dα in (5.7.7b) on the set Γ1, according to formulae (5.5.3a)–(5.5.3c),

reads:

D
s−1− 1

p
α,p (∞, ξ) =


−eiπ(s−

1
p )

sinπ(s− iξ)

sinπ( 1p − iξ)
−e−iπs

sin(α− π)( 1p − s− iξ)

sinπ( 1p − iξ)

e−iπs
sin(α− π)( 1p − s− iξ)

sinπ( 1p − iξ)
−eiπ(s−

1
p )

sinπ(s− iξ)

sinπ( 1p − iξ)

 , (5.7.8)

because

1

2i

[
eiαK

1,s−1− 1
p

eiα,p (∞, ξ)− e−iαK
1,s−1− 1

p

ei(2π−α),p(∞, ξ)
]
= −e−iπ(

1
p−iξ) e

iα( 1
p−s−iξ) − ei(2π−α)(

1
p−s−iξ)

2i sinπ( 1p − iξ)

= e−iπs
ei(α−π)(

1
p−s−iξ) − e−i(α−π)(

1
p−s−iξ)

2i sinπ( 1p − iξ)
= e−iπs

sin(α− π)( 1p − s− iξ)

sinπ( 1p − iξ)
,

and for I
s−1− 1

p
p (∞, ξ) cf. (5.6.15).

Since det N
s−1− 1

p
p (∞, ξ) coincides with the function in (5.7.6), due to Proposition 5.5.1, the op-

erator in (5.7.7a) is locally Fredholm and, therefore, globally Fredholm if condition (5.7.6) holds.
The determinant of the symbol

det N
s−1− 1

p
p (∞, ξ) = ei2π(s−

1
p ) sin2 π(s− iξ) + e−i2πs sin2(α− π)(

1

p
− s− iξ)
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is a periodic function with respect to the parameters s and 1
p and vanishes on curves which divide the

strip (1,∞)× (0, 1) ⊂ R2 into connected subsets R0,R1, . . . . Due to Corollary 5.7.1, the BVP (5.7.1)
is uniquely solvable for s = 1 and p = 2. Then, due to Proposition 5.5.3, the BVP (5.7.1) is uniquely
solvable for all pairs (s, 1p ) ∈ R0, provided (1, 12 ) ∈ R0.

5.8 Model Mixed BVP and proof of Theorem 5.1.2
In the present section, we investigate model Mixed (Dirichlet–Neumann) Boundary value problem,
associated with the BVP (5.1.1) and described in general in the foregoing Section 5.5. We derive an
equivalent boundary integral equation for the model domain (5.8.7) and investigate it.

Moreover, at the end of this section we prove the main theorem of the present Chapter 5, Theorem
5.1.2.

The results for the model mixed BVP (5.8.1) (Fredholm criteria, the unique solability) were ob-
tained in [68,69]. Similar results for the BVPs with mixed impedance conditions are proved in [18].

Let us commence with the formulation of the model Mixed BVP associated with the BVP (5.1.1) in
the non-classical setting (5.1.2) at a knot cj ∈ MD (where Neumann and Dirichlet conditions collide):

∆u(t) = f(t), t ∈ Ωαj
,

u+(s) = g(s) on R+,

(∂νu)
+(s) = h(s) on Rαj ,

(5.8.1)

u ∈ Hsp(Ωαj ), f ∈ H̃s−2
p,0 (Ωαj ), g ∈ H

s− 1
p

p (R+), h ∈ H
s−1− 1

p
p (Rαj

), 1 < p <∞,
1

p
< s < 1 +

1

p
,

at a knot cj ∈ MDN (where the Dirichlet and Neumann conditions collide). We assume, as above,
that α ̸= π, bacause for α = π we have the case Γπ = R and the unique solvability of BVP (5.8.1) is
well known.

As a particular case of Theorem 5.1.1 we get the following

Corollary 5.8.1. The boundary value problems (5.8.1) has a unique solution in the classical weak
setting p = 2, s = 1.

Let g0 ∈ Hs−1/p
p (Γα) and h0 ∈ Hs−1−1/p

p (Γα) be some fixed extensions of the boundary conditions
g ∈ Hs−1/p

p (R+) and h ∈ Hs−1−1/p
p (Rα) in BVP (5.8.1), initially defined on the parts of the boundary

Γα = R+∪Rα. Since the difference between such two extensions belong to the spaces H̃s−1/p
p (Rα) and

H̃s−1−1/p
p (R+), respectively, we seek two unknown functions φ ∈ H̃s−1/p

p (Rα) and ψ ∈ H̃s−1−1/p
p (R+),

for which the boundary conditions in (5.8.1) hold on the entire boundary. It is usual to consider
H̃sp(R+) and H̃sp(Rα) as subsets of Hs(Γα) by extending functions from H̃sp(R+) and H̃sp(Rα) by 0 to
Rα and to R+, respectively. Then if u(x) is a solution to the BVP (5.8.1), the following holds:

u+(t) = g0(t) + φ(t) =

{
g(t) if t ∈ R+,
g0(t) + φ(t) if t ∈ Rα,

(∂νu)
+(t) = h0(t) + ψ(t) =

{
h0(t) + ψ(t) if t ∈ R+,
h(t) if t ∈ Rα.

(5.8.2)

By introducing the data of the boundary value problem (5.8.1) into the representation formula
(5.6.2) of a solution, we get

u(x) = Wu+(x)− V [∂νu]
+(x) = W [g0 + φ](x)− V R+ [h0 + ψ](x), x ∈ Ωα. (5.8.3)

The known and unknown functions in (5.8.3) belong to the following spaces (cf. (5.8.1))

g0∈Hs−1/p
p (Γα), h0 ∈ Hs−1−1/p

p (Γα), φ ∈ H̃s−1/p
p (Rα), ψ∈H̃s−1−1/p

p (R+). (5.8.4)



Thin Shells with Lipschitz Boundary 157

Inserting the boundary conditions from (5.8.1) into (5.8.2) and applying the Plemelji formulae
(5.4.2) we get

g0(t) + φ(t) = u+(t) =
1

2
(g0(t) + φ(t)) +W 0[g0 + φ](t)− V −1[h0 + ψ](t),

h0(t) + ψ(t) = (∂νu)
+(t) = V +1[g0 + φ](t) +

1

2
(h0(t) + ψ(t))−W ∗

0[h0 + ψ](t), t ∈ Γα.

The obtained system is rewritten in the form
1

2
φ−W 0φ+ V −1ψ = G0,

1

2
ψ +W ∗

0ψ − V +1φ = H0 on Γα,

(5.8.5)

where
G0 := −1

2
g0 +W 0g0 − V −1h0 ∈ Hs−1/p

p (Γα),

H0 := −1

2
h0 + V +1g0 −W ∗

0h0 ∈ Hs−1−1/p
p (Γα).

Since supp φ ⊂ Rα and supp ψ ⊂ R+, we restrict the first equation in system (5.8.5) to Rα while the
second equation to R+. Let r+ and rα be the corresponding restriction operators: r+φ = rαψ = 0.
By restricting system (5.8.5) properly and by applying equalities (5.4.8c), we get the equations{

1
2φ+ rαV −1ψ = rαG0 on Rα,
1
2ψ − r+V +1φ = r+H0 on R+.

(5.8.6)

By applying the operator Jα∂ℓ = −∂tJα (composition of the pull back Jα from (5.4.6) and the
tangent derivative ∂ℓ from (5.4.7)) to the first equation and using formulae (5.4.9a)–(5.4.9b), we
rewrite system (5.8.6) in the following form:

φ0 −
1

2π

[
K1
eiα + K1

e−iα

]
ψ = G1,

ψ − 1

2π

[
K1
eiα + K1

e−iα

]
φ0 = H1 on R+,

(5.8.7)

where

φ0(t) := Jα∂ℓφ(t) = −∂tφ(t cos α, t sin α)⊤, H1 := 2r+H0, G1 := 2Jα∂ℓG1, (5.8.8)
φ0, ψ,G1,H1 ∈ Hs−1−1/p

p (R+).

Theorem 5.8.1. Let 1 < p < ∞ and 1/p < s < 1 + 1/p. A solution u ∈ Hsp(Ωα) to the mixed
BVP (5.8.1) is represented by formula (5.8.3), where the unknown functions ψ,φ0 ∈ H̃s−1−1/p

p (R+)

are solutions to system (5.8.7) and φ ∈ H̃s−1−1/p
p (Rα) is recovered from φ0(t) = ∂tφ+(t) (see (5.8.8))

by the formula

φ(x) = φ(t cos α, t sin α) := −
t∫

0

φ0(τ) dτ, t ∈ R+, (5.8.9)

where x := (t cos α, t sin α)⊤ ∈ Rα.
Vice versa: if the functions ψ,φ0 ∈ H̃s−1−1/p

p (R+) are solutions to system (5.8.7) and φ ∈
H̃s−1/p
p (Rα) is recovered by formula (5.8.9), the function u ∈ H1(Ωα), represented by formula (5.8.3),

is a solution to the model mixed BVP (5.8.1).

Proof. Every step in deriving equation system (5.8.7) from the model mixed BVP (5.8.1) is reversible
and the one-to-one correspondence of solutions to the equation system (5.8.7) and solution to the
model mixed BVP (5.8.1), established by representation formula (5.8.3), can easily be checked.
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Now we can prove the main theorem of the present section.

Theorem 5.8.2. Let 1 < p <∞, 1
p < s < 1 + 1

p . The Model Mixed BVP in the non-classical setting
(5.8.1) is Fredholm (and the system of boundary integral equations (5.8.7) is Fredholm) if and only if
either (p, s) = (2, 1) or (p, s) ̸= (2, 1) and the following holds:

ei2π(s−1/p) sin2 π(s− iξ)− cos2[π/p+ αs− i(π − α)ξ] ̸= 0 for all ξ ∈ R. (5.8.10)

If condition (5.8.10) holds, the subset ( 1p ,∞) × (1,∞) of the Euclidean plane R2, where the pairs
(s, p) range, decomposes into an infinite union R0 ∪R1 ∪ · · · of non-intersecting connected subsets of
regular pairs, for which the BVP (5.8.1) is Fredholm.

If point (1, 2) (i.e., s = 1, p = 2) belongs to the connected subset R0, then BVP (5.8.1) is uniquely
solvable for all pairs (s, p) ∈ R0.

The same unique solvability holds for the system of integral equations (5.8.7).

Proof. The unique solvability of the BVP (5.7.1) in the case (p, s) = (2, 1) is already proved in
Corollary 5.8.1 on page 156. Thus, we assume that (p, s) ̸= (2, 1).

Let us rewrite system (5.8.7) in the matrix form

BαΦ = G, (5.8.11)

where

Φ :=

(
φ0

ψ

)
, Gα :=

(
G1

H1

)
∈ Hs−1−1/p

p (R+),

Bα =

[
I −Aα

−Aα I

]
, Aα =

1

2π

[
K1
eiα + K1

e−iα

]
.

and investigate the operator Bα : H̃s−1−1/p
p (R+) → Hs−1−1/p

p (R+) with the help of Theorem 1.4.2.
For this, we have to write the symbol A

s−1−1/p
α,p (ω) of Aα of the operator Bα in (5.7.7b) on the set Γ1.

To this end, note that for c1 = c+ = eiα and c2 = c− = e−iα we can choose γ = eiθ, 0 < θ < π, such
that arg(c±γ) = ±α + β < 0 provided π

2
< α < π. If 0 < α <

π

2
, there is needed a couple γ = eiθ,

γ0 = eiθ0 , 0 < θ < π, 0 < θ0 < π, such that arg(c+γ) = α+ β < 0 and arg(c+γ0) = α+ β0 < 0. Since
these values exist but there choice does not influence the symbol of operators, we drop further details
about them.

The symbol of the operator Dα in (5.7.7b) on the set Γ1, according to formulae (5.5.3a)–(5.5.3c),
reads:

Bs−1−1/p
α,p (∞, ξ) =

[
I
s−1−1/p
p (∞, ξ) A

s−1−1/p
α,p (∞, ξ)

−A
s−1−1/p
α,p (∞, ξ) I

s−1−1/p
p (∞, ξ)

]
,

=

 −eiπ(s−1/p) sinπ(s− iξ)

sinπ(1/p− iξ)

cos[π/p+ αs− i(π − α)ξ]

sinπ(1/p− iξ)

−cos[π/p+ αs− i(π − α)ξ]

sinπ(1/p− iξ)
−eiπ(s−1/p) sinπ(s− iξ)

sinπ(1/p− iξ)

 , (5.8.12)

for ω = (∞, ξ) ∈ Γ1, 1/p < s < 1 + 1/p, 1 < p <∞,

because (cf. (5.5.3c))

A s−1−1/p
α,p ((∞, ξ)) =

1

2i

[
K

1,s−1−1/p
eiα,p (∞, ξ) + K

1,s−1−1/p

ei(2π−α),p (∞, ξ)
]

= −e
−π(1/p−iξ)ie−iα(iξ+s) + eπ(1/p−iξ)ieiα(iξ+s)

2 sinπ(1/p− iξ)

= −cos[π/p+ αs− i(π − α)ξ]

sinπ(1/p− iξ)
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and (cf. (5.6.15))

I s−1−1/p
p (∞, ξ) = −eiπ(s−1/p) sinπ(s− iξ)

sin2 π(1/p− iξ)
.

Since

det A s−1−1/p
α,p ((∞, ξ) =

ei2π(s−1/p) sin2 π(s− iξ)− cos2[π/p+ αs− i(π − α)ξ]

sin2 π(1/p− iξ)
,

due to Proposition 5.5.1 and condition (5.8.10), the operator in (5.7.7a) is locally Fredholm and,
therefore, globally Fredholm provided condition (5.8.10) holds.

The determinant of the symbol det A
s−1−1/p
α,p ((∞, ξ) in (5.8.10) vanishes on curves which divide

the strip (1,∞) × (0, 1) ⊂ R2 into connected subsets R0,R1, . . . . Due to Corollary 5.8.1, the BVP
(5.8.1) is uniquely solvable for s = 1 and p = 2. Then, due to Proposition 5.5.3, the BVP (5.8.1) is
uniquely solvable for all pairs (s, 1/p) ∈ R0, provided (1, 12 ) ∈ R0.

Next, we are going to prove Theorem 5.1.2. For this we need one auxiliary result, formulated in
Corollary 5.8.2 and which is a direct consequence of Theorem 5.3.1.

Corollary 5.8.2 (Quasi Localization Principle). The initial mixed boundary value problem (5.1.1) in
the non-classical setting is Fredholm if and only if the boundary value problems (5.6.1), (5.7.1) and
(5.8.1) are Fredholm in the non-classical setting for all knots cj ∈ MΓ.

Proof of Theorem 5.1.2. Due to the Quasi Localization Principle, Corollary 5.8.2, the BVP (5.1.1) is
Fredholm if local representatives (the corresponding BVPs (5.6.1), (5.7.1) and (5.8.1)) at the knots
cj ∈ M = MD ∪ MN ∪ MDN are all Fredholm. Due to Theorem 5.6.2, Theorem 5.7.2 and Theorem
5.8.2, conditions (5.1.7), (5.1.8) and (5.1.9) are necessary and sufficient for the corresponding Dirichlet,
Neumann and Mixed BVPs to be Fredholm in appropreate non-classical settings.

The determinants of the symbols in (5.1.7), (5.1.8) and (5.1.9) are periodic functions with respect
to the parameters s and 1/p and vanish on curves which divide the strip (1,∞) × (0, 1) ⊂ R2 into
connected subsets R0,R1, . . . . Due to Theorem 2.1.1, the BVP (5.1.1) is uniquely solvable for s = 1
and p = 2. Then, due to Proposition 5.5.3, the BVP (5.1.1) is uniquely solvable for all pairs (s, 1/p) ∈
R0, provided (1, 12 ) ∈ R0.
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