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ON SOME FRACTIONAL INTEGRO-DIFFERENTIAL INCLUSIONS
WITH ERDÉLYI–KOBER FRACTIONAL INTEGRAL
BOUNDARY CONDITIONS



Abstract. We study two classes of fractional integro-differential inclusions with Erdélyi–Kober frac-
tional integral boundary conditions and we obtain existence results in the case of the set-valued map
has nonconvex values.

2010 Mathematics Subject Classification. 34A60, 34A12, 34A08.

Key words and phrases. Differential inclusion, fractional derivative, boundary value problem.

ÒÄÆÉÖÌÄ. ÛÄÓßÀÅËÉËÉÀ ×ÒÀØÝÉÖËÉ ÉÍÔÄÂÒÏ-ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÜÀÒÈÅÄÁÉÓ ÏÒÉ ÊËÀÓÉ ÄÒ-
ÃÄË-ÊÏÁÄÒÉÓ ×ÒÀØÝÉÖËÉ ÉÍÔÄÂÒÀËÖÒÉ ÓÀÓÀÆÙÅÒÏ ÐÉÒÏÁÄÁÉÈ ÃÀ ÌÉÙÄÁÖËÉÀ ÀÒÓÄÁÏÁÉÓ
ÛÄÃÄÂÄÁÉ ÉÌ ÛÄÌÈáÅÄÅÀÛÉ, ÒÏÝÀ ÌÒÀÅÀËÌÍÉÛÅÍÄËÏÅÀÍÉ ÀÓÀáÅÀ ÙÄÁÖËÏÁÓ ÀÒÀÀÌÏÆÍÄØÉË
ÌÍÉÛÅÍÄËÏÁÄÁÓ.
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1 Introduction
In recent years, the systems defined by fractional order derivatives have attracted increasing interest
mainly due to their applications in different fields of science and engineering. The main reason
is that a lot of phenomena in nature can be better explained using fractional-order systems (see,
e.g., [5, 10,13,15,16], etc.).

The present paper is concerned with the following boundary value problems. First, we consider a
fractional integro-differential inclusion defined by the Caputo fractional derivative

Dq
cx(t) ∈ F (t, x(t), V (x)(t)) a.e. ([0, T ]) (1.1)

with the boundary conditions of the form

x(0) = α
1

Γ(p)

ζ∫
0

(ζ − s)p−1x(s) ds = αJpx(ζ),

x(T ) = β
ηξ−η(δ+γ)

Γ(δ)

ξ∫
0

sηγ+η−1

(ξη − sη)1−δ
x(s) ds = βIγ,δη x(ξ),

(1.2)

where q ∈ (1, 2], Dq
c is the Caputo fractional derivative of order q, 0 < ζ, ξ < T , α, β, γ ∈ R,

p, δ, η > 0, Jp is the Riemann–Liouville fractional integral of order p, Iγ,δη is the Erdélyi–Kober
fractional integral of order δ > 0 with η > 0 and γ ∈ R, F : [0, T ] × R × R → P(R) is a set-
valued map and V : C([0, T ],R) → C([0, T ],R) is a nonlinear Volterra integral operator defined by

V (x)(t) =
t∫
0

k(t, s, x(s)) ds with k( · , · , · ) : [0, T ] × R × R → R a given function. We note that

the fractional derivative introduced by Caputo in [6] and afterwards adopted in the theory of linear
visco-elasticity allows to use Cauchy conditions with physical meanings.

Next, we consider the problem

Dqx(t) ∈ F (t, x(t), V (x)(t)) a.e. ([0, T ]) (1.3)

with the boundary conditions of the form

x(0) = 0, αx(T ) =

m∑
i=1

βiI
γi,δi
ηi

x(ξi), (1.4)

where Dq is the Riemann–Liouville fractional derivative of order q ∈ (1, 2], 0 < ξi < T , α, βi, γi ∈ R,
δi, ηi > 0, i = 1, 2, . . . ,m, F and V are as above.

Our aim is to obtain the existence of solutions for problems (1.1), (1.2) and (1.3), (1.4) in case
where the set-valued map F has nonconvex values, but is assumed to be Lipschitz in the second and
third variable. Our results use Filippov’s techniques (see [12]); namely, the existence of solutions
is obtained by starting from a given “quasi” solution. In addition, the result provides an estimate
between the “quasi” solution and the solution obtained.

Note that in the case when F does not depend on the last variable and is single-valued, the existence
results for problem (1.1), (1.2) may be found in [2], and in the situation when F does not depend on
the last variable, the existence results for problem (1.3), (1.4) are given in [1]. All the results in [1, 2]
are proved by using several suitable theorems from fixed point theory.

Our results improve some existence theorems in [1] and, respectively, in [2] in the case where
the right-hand side is Lipschitz in the second variable. Moreover, these results may be regarded as
generalizations to the case where the right-hand side contains a nonlinear Volterra integral operator.
It should be also mentioned that the method used in our approach is known in the theory of differential
inclusions; similar results for other classes of fractional differential inclusions have been obtained in
our previous papers (see [7–9], etc.). However, the exposition of this method in the framework of
problems (1.1), (1.2) and (1.3), (1.4) is new.

The paper is organized as follows. In Section 2, we recall some preliminary results that we need
in the sequel and in Section 3, we prove our main results.
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2 Preliminaries
Let (X, d) be a metric space. Recall that the Pompeiu–Hausdorff distance of the closed subsets
A,B ⊂ X is defined by

dH(A,B) = max
{
d∗(A,B), d∗(B,A)

}
, d∗(A,B) = sup

{
d(a,B); a ∈ A

}
,

where d(x,B) = inf
y∈B

d(x, y).
Let I = [0, T ], we denote by C(I,R) the Banach space of all continuous functions from I to R

with the norm ∥x( · )∥C = supt∈I |x(t)|, and L1(I,R) is the Banach space of integrable functions

u( · ) : I → R endowed with the norm ∥u( · )∥1 =
T∫
0

|u(t)| dt.

The fractional integral of order α > 0 of a Lebesgue integrable function f : (0,∞) → R is defined by

Jαf(t) =

t∫
0

(t− s)α−1

Γ(α)
f(s) ds,

provided the right-hand side is defined pointwise on (0,∞), and Γ( · ) is the (Euler’s) Gamma function
defined by Γ(α) =

∞∫
0

tα−1e−t dt.

The Riemann–Liouville fractional derivative of order α > 0 of a Lebesgue integrable function
f : (0,∞) → R is defined by

Dαf(t) =
1

Γ(n− α)

dn

dtn

t∫
0

(t− s)−α+n−1f(s) ds,

where n = [α] + 1, provided the right-hand side is defined pointwise on (0,∞).
The Caputo fractional derivative of order α > 0 of a function f : [0,∞) → R is defined by

Dα
c f(t) =

1

Γ(n− α)

t∫
0

(t− s)−α+n−1f (n)(s)ds,

where n = [α] + 1. It is assumed implicitly that f is n times differentiable whose n-th derivative is
absolutely continuous.

The Erdélyi–Kober fractional integral of order δ > 0 with η > 0 and γ ∈ R of a continuous function
f : (0,∞) → R is defined by

Iγ,δη f(t) =
ηt−η(δ+γ)

Γ(δ)

t∫
0

sηγ+η−1

(tη − sη)1−δ
f(s) ds,

provided the right-hand side is defined pointwise on (0,∞).
We recall that for η = 1,

Iγ,δ1 f(t) =
t−(δ+γ)

Γ(δ)

t∫
0

sγ

(t− s)1−δ
f(s) ds

is the Kober operator introduced by Kober in [14]. If γ = 0, the Kober operator reduces to the
Riemann–Liouville fractional integral with a power weight

I0,δ1 f(t) =
t−δ

Γ(δ)

t∫
0

f(s)

(t− s)1−δ
ds.
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Lemma 2.1 ([2]). Let δ, η > 0 and γ, q ∈ R. Then

Iγ,δη (tq) =
tqΓ(γ + q

η + 1)

Γ(γ + q
η + δ + 1)

.

By definition, a function x( · ) ∈ C2(I,R) is called a solution of problem (1.1), (1.2) if there exists
f( · ) ∈ L1(I,R) such that f(t) ∈ F (t, x(t), V (x)(t)) a.e. (I), Dq

cx(t) = f(t) a.e. (I) and conditions
(1.2) are satisfied.
Lemma 2.2 ([2]). For f( · ) ∈ AC(I,R), x( · ) ∈ C2(I,R) is a solution of the problem

Dq
cx(t) = f(t) a.e. (I),

with the boundary conditions (1.2) if and only if

x(t) = Jqf(t) +
α

Λ
(v4 − tv3)J

p+qf(ζ) +
1

Λ
(v2 + tv1)

(
βIγ,δη Jqf(ξ)− Jqf(T )

)
,

where

Λ = v1v4 + v2v3 ̸= 0, v1 = 1− α
ζp

Γ(p+ 1)
, v2 = α

ζp+1

Γ(p+ 2)
,

v3 = 1− β
Γ(γ + 1)

Γ(γ + δ + 1)
, v4 = T − βζ

Γ(γ + 1
η + 1)

Γ(γ + 1
η + δ + 1)

.

Remark 2.3. The solution x( · ) in Lemma 2.2 can be written as

x(t) =

t∫
0

(t− s)q−1

Γ(q)
f(s) ds+

α

Λ

(v4 − tv3)

Γ(q)

ζ∫
0

(ζ − s)p+q−1f(s) ds

+
β(v2 + tv1)

Λ

ηξ−η(δ+γ)

Γ(δ)

ξ∫
0

sηγ+η−1

(ξη − sη)1−δ
(

1

Γ(q)

s∫
0

(s− u)q−1f(u) du) ds

− 1

Λ
(v2 + tv1)

T∫
0

(T − s)q−1

Γ(q)
f(s) ds

=
1

Γ(q)

t∫
0

(t− s)q−1f(s) ds+
α

Λ

(v4 − tv3)

Γ(q)

ζ∫
0

(ζ − s)p+q−1f(s) ds

+
β(v2 + tv1)

ΛΓ(q)

ηξ−η(δ+γ)

Γ(δ)

ξ∫
0

( ξ∫
u

sηγ+η−1

(ξη − sη)1−δ
(s− u)q−1 ds

)
f(u) du

− 1

Λ
(v2 + tv1)

T∫
0

(T − s)q−1

Γ(q)
f(s) ds

=

T∫
0

G1(t, s)f(s) ds,

where

G1(t, u) =
(t− u)q−1

Γ(q)
χ

[0,t]
(u) +

α

Λ

(v4 − tv3)

Γ(q)
(ζ − u)p+q−1χ

[0,ζ]
(u)

+
β(v2 + tv1)

ΛΓ(q)

ηξ−η(δ+γ)

Γ(δ)

ξ∫
u

sηγ+η−1

(ξη − sη)1−δ
(s− u)q−1 dsχ

[0,ξ]
(u)− v2 + tv1

ΛΓ(q)
(T − u)q−1,
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χ
S
( · ) denotes the characteristic function of the set S.
Using the fact that q > 1 and taking into account Lemma 2.1, one has

ηξ−η(δ+γ)

Γ(δ)

ξ∫
u

sηγ+η−1

(ξη − sη)1−δ
(s− u)q−1 ds

≤ ηξ−η(δ+γ)

Γ(δ)

ξ∫
0

sηγ+η−1

(ξη − sη)1−δ
sq−1 ds =

ξq−1Γ(γ + q−1
η + 1)

Γ(γ + q−1
η + δ + 1)

.

Therefore, for any t, u ∈ I,

|G1(t, u)| ≤
T q−1

Γ(q)
+

|α|(|v4|+ T |v3|)ζp+q−1

|Λ|Γ(q)

+
|β|(|v2|+ T |v1|)

|Λ|Γ(q)
ξq−1Γ(γ + q−1

η + 1)

Γ(γ + q−1
η + δ + 1)

+
(|v2|+ T |v1|)T q−1

|Λ|Γ(q)
=: K1.

By definition, a function x( · ) ∈ C2(I,R) is called a solution of problem (1.3), (1.4) if there exists
f( · ) ∈ L1(I,R) such that f(t) ∈ F (t, x(t), V (x)(t)) a.e. (I), Dq

cx(t) = f(t) a.e. (I) and conditions
(1.4) are satisfied.

Lemma 2.4 ([1]). For f( · ) ∈ AC(I,R), x( · ) ∈ C2(I,R) is a solution of the problem

Dcx(t) = f(t) a.e. (I),

with the boundary conditions (1.4) if and only if

x(t) = Jqf(t)− tq−1

Λ

(
αJqf(t)−

m∑
i=1

βiI
γi,δi
ηi

Jqf(ξi)
)
,

where

Λ = αT q−1 −
m∑
i=1

β1ξ
q−1
i Γ(γi +

q−1
ηi

+ 1)

Γ(γi +
q−1
ηi

+ δi + 1)
̸= 0.

Remark 2.5. The solution x( · ) in Lemma 2.4 can be written as x(t) =
T∫
0

G2(t, s)f(s) ds, where

G2(t, u) =
(t− u)q−1

Γ(q)
χ

[0,t]
(u)− αtq−1

ΛΓ(q)
(t− u)q−1χ

[0,t]
(u)

+

m∑
i=1

βit
q−1

ΛΓ(q)

ηiξ
−ηi(δi+γi)
i

Γ(δi)

ξi∫
u

sηiγi+ηi−1

(ξηi

i − sηi)1−δi
(s− u)q−1 dsχ

[0,ξi]
(u).

As in Remark 2.3, for i = 1, 2, . . . ,m, one has

ηiξ
−ηi(δi+γi)
i

Γ(δi)

ξi∫
u

sηiγi+ηi−1

(ξηi

i − sηi)1−δi
(s− u)q−1 ds ≤

ξq−1
i Γ(γi +

q−1
ηi

+ 1)

Γ(γi +
q−1
ηi

+ δi + 1)

and thus, for any t, u ∈ I,

|G2(t, u)| ≤
T q−1

Γ(q)
+

T q−1

|Λ|Γ(q)

[
|α|T q−1 +

m∑
i=1

|βi|ξq−1
i Γ(γi +

q−1
ηi

+ 1)

Γ(γi +
q−1
ηi

+ δi + 1)

]
=: K2.
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3 The main results
First, we recall a selection result (see [4]) which is a version of the celebrated Kuratowski and Ryll–
Nardzewski selection theorem.

Lemma 3.1. Suppose X is a separable Banach space, B is the closed unit ball in X, H : I → P(X) is
a set-valued map with nonempty closed values and g : I → X, L : I → R+ are measurable functions. If

H(t) ∩ (g(t) + L(t)B) ̸= ∅ a.e. (I),

then the set-valued map t → H(t) ∩ (g(t) + L(t)B) has a measurable selection.

In order to prove our results, we need the following hypotheses.

Hypothesis 3.2.

(i) F ( · , · ) : I × R× R → P(R) has nonempty closed values and is L(I)⊗ B(R× R) measurable.

(ii) There exists L( · ) ∈ L1(I, (0,∞)) such that, for almost all t ∈ I, F (t, · , · ) is L(t)-Lipschitz in
the sense that

dH

(
F (t, x1, y1), F (t, x2, y2)

)
≤ L(t)

(
|x1 − x2|+ |y1 − y2|

)
∀x1, x2, y1, y2 ∈ R.

(iii) k( · , · , · ) : I × R× R → R is a function such that ∀x ∈ R, (t, s) → k(t, s, x) is measurable.

(iv) |k(t, s, x)− k(t, s, y)| ≤ L(t)|x− y| a.e. (t, s) ∈ I × I, ∀x, y ∈ R.

Next, we use the notation

M(t) := L(t)(1 +

t∫
0

L(u) du), t ∈ I, K0 =

T∫
0

M(t) dt.

Theorem 3.3. Assume that Hypothesis 3.2 is satisfied and K1K0 < 1. Let y( · ) ∈ C2(I,R) be such
that y(0) = αJpy(ζ), y(T ) = βIγ,δη y(ξ) and there exist p( · ) ∈ L1(I,R+) with

d
(
Dq

cy(t), F (t, y(t), V (y)(t))
)
≤ p(t) a.e. (I).

Then there exists a solution x( · ) : I → R of problem (1.1), (1.2) satisfying for all t ∈ I the inequality

|x(t)− y(t)| ≤ K1

1−K1K0
∥p( · )∥1.

Proof. The set-valued map t → F (t, y(t), V (y)(t)) is measurable with closed values and

F (t, y(t), V (y)(t)) ∩
{
Dq

cy(t) + p(t)[−1, 1]
}
̸= ∅ a.e. (I).

It follows from Lemma 3.1 that there exists a measurable selection f1(t) ∈ F (t, y(t), V (y)(t)) a.e.
(I) such that

|f1(t)−Dq
cy(t)| ≤ p(t) a.e. (I). (3.1)

Define x1(t) =
T∫
0

G1(t, s)f1(s) ds. One has

|x1(t)− y(t)| ≤ M1

T∫
0

p(t) dt.
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We construct two sequences xn( · ) ∈ C(I,R), fn( · ) ∈ L1(I,R), n ≥ 1, with the following proper-
ties:

xn(t) =

T∫
0

G1(t, s)fn(s) ds, t ∈ I, (3.2)

fn(t) ∈ F
(
t, xn−1(t), V (xn−1)(t)

)
a.e. (I), (3.3)

|fn+1(t)− fn(t)| ≤ L(t)

(
|xn(t)− xn−1(t)|+

t∫
0

L(s)|xn(s)− xn−1(s)| ds
)

a.e. (I). (3.4)

If this is done, then from (3.1)–(3.4) for almost all t ∈ I we have

|xn+1(t)− xn(t)| ≤ K1(K1K0)
n

T∫
0

p(t) dt ∀n ∈ N.

Indeed, assume that the last inequality is true for n− 1 and we prove it for n. One has

|xn+1(t)− xn(t)| ≤
T∫

0

|G1(t, t1)| |fn+1(t1)− fn(t1)| dt1

≤ K1

T∫
0

L(t1)

[
|xn(t1)− xn−1(t1)|+

t1∫
0

L(s)|xn(s)− xn−1(s)| ds
]
dt1

≤ K1

T∫
0

L(t1)

(
1 +

t1∫
0

L(s) ds

)
dt1 ·Kn

1 K
n−1
0

T∫
0

p(t) dt

= K1(K1K0)
n

T∫
0

p(t) dt.

Therefore, {xn( · )} is a Cauchy sequence in the Banach space C(I,R) converging uniformly to
some x( · ) ∈ C(I,R). Hence, by (3.4), for almost all t ∈ I, the sequence {fn(t)} is Cauchy sequence
in R. Let f( · ) be the pointwise limit of fn( · ).

At the same time, one has

|xn(t)− y(t)| ≤ |x1(t)− y(t)|+
n−1∑
i=1

|xi+1(t)− xi(t)|

≤ M1

T∫
0

p(t) dt+

n−1∑
i=1

(
K1

T∫
0

p(t) dt

)
(K1K0)

i =

K1

T∫
0

p(t) dt

1−K1K0
. (3.5)

On the other hand, from (3.1), (3.4) and (3.5) for almost all t ∈ I we obtain

|fn(t)−Dq
cy(t)| ≤

n−1∑
i=1

|fi+1(t)− fi(t)|+ |f1(t)−Dq
cy(t)| ≤ L(t)

K1

T∫
0

p(t) dt

1−K1K0
+ p(t).

Hence the sequence fn( · ) is integrably bounded and therefore f( · ) ∈ L1(I,R).
Using Lebesgue’s dominated convergence theorem and taking the limit in (3.2), (3.3), we deduce

that x( · ) is a solution of (1.1), (1.2). Finally, passing to the limit in (3.5), we obtain the desired
estimate on x( · ).
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It remains to construct the sequences xn( · ), fn( · ) with the properties in (3.2)–(3.4). The con-
struction will be done by induction.

Since the first step is already realized, assume that for some N ≥ 1 we have already constructed
xn( · ) ∈ C(I,R) and fn( · ) ∈ L1(I,R), n = 1, 2, . . . , N , satisfying (3.2), (3.4) for n = 1, 2, . . . , N and
(3.3) for n = 1, 2, . . . , N − 1. The set-valued map t → F (t, xN (t), V (xN )(t)) is measurable. Moreover,
the map

t −→ L(t)

(
|xN (t)− xN−1(t)|+

t∫
0

L(s)|xN (s)− xN−1(s)| ds
)

is measurable. By the lipschitzianity of F (t, · ) for almost all t ∈ I we have

F
(
t, xN (t), V (xN )(t)

)
∩
{
fN (t)+L(t)

(
|xN (t)−xN−1(t)|+

t∫
0

L(s)|xN (s)−xN−1(s)| ds
)
[−1, 1]

}
̸= ∅.

Lemma 3.1 yields that there exists a measurable selection fN+1( · ) of F ( · , xN ( · ), V (xN )( · )) such
that for almost all t ∈ I,

|fN+1(t)− fN (t)| ≤ L(t)

(
|xN (t)− xN−1(t)|+

t∫
0

L(s)|xN (s)− xN−1(s)| ds
)
.

We define xN+1( · ) as in (3.2) with n = N + 1. Thus fN+1( · ) satisfies (3.3) and (3.4) and the proof
is complete.

The assumption in Theorem 3.3 is satisfied, in particular, for y( · ) = 0 and therefore with p( · ) =
L( · ). We obtain the following consequence of Theorem 3.3.

Corollary 3.4. Assume that Hypothesis 3.2 is satisfied, d(0, F (t, 0, 0) ≤ L(t) a.e. (I) and K1K0 < 1.
Then there exists a solution x( · ) of problem (1.1), (1.2) satisfying for all t ∈ I, the inequality

|x(t)| ≤ K1

1−K1K0
∥L( · )∥1.

Example 3.5. Consider

q =
3

2
, T = 1, α =

6

13
, p =

1

2
, ζ =

1

4
,

β =

√
7

9
, γ =

3

4
, δ =

√
7

5
, η =

1

6
, ξ =

3

4
.

Denote by K0
1 the corresponding estimate of G1( · , · ) in Remark 2.3 and take a ∈

(
0,−1+

√
1 + 2

K0
1

)
.

Define F ( · , · ) : I × R× R → P(R) by

F (t, x, y) =
[
− a

|x|
1 + |x|

, 0
]
∪
[
0, a

|y|
1 + |y|

]
and k( · , · , · ) : I × R× R → R by k(t, s, x) = ax.

Since

sup
{
|u| : u ∈ F (t, x, y)

}
≤ a ∀ t ∈ [0, 1], x, y ∈ R,

dH

(
F (t, x1, y1), F (t, x2, y2)

)
≤ a|x1 − x2|+ a|y1 − y2| ∀x1, x2, y1, y2 ∈ R,

in this case p(t) ≡ L(t) ≡ a, M(t) = a(1 + at) and K0 = a+ a2

2 .
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According to the choice of a, we are able to apply Corollary 3.4 in order to deduce the existence
of a solution of the problem

D
3
2
c x(t) ∈

[
− a

|x(t)|
1 + |x(t)|

, 0
]
∪
[
0, a2

∣∣ ∫ t

0
x(s) ds

∣∣
1 + a

∣∣ ∫ t

0
x(s) ds

∣∣
]
,

x(0) =
6

13
J

1
2x

(1
4

)
, x(1) =

√
7

9
I

3
4 ,

√
7

5
1
6

x
(3
4

)
that satisfies

|x(t)| ≤ K0
1a

1− (a+ a2

2 )K0
1

∀ t ∈ [0, 1].

If F does not depend on the last variable, Hypothesis 3.2 becames

Hypothesis 3.6.

(i) F ( · , · ) : I × R → P(R) has nonempty closed values and is L(I)⊗ B(R) measurable.

(ii) There exists L( · ) ∈ L1(I, (0,∞)) such that for almost all t ∈ I, F (t, · ) is L(t)-Lipschitz in the
sense that

dH
(
F (t, x1), F (t, x2)

)
≤ L(t)|x1 − x2| ∀x1, x2 ∈ R.

Denote L0 =
T∫
0

L(t) dt.

Corollary 3.7. Assume that Hypothesis 3.6 is satisfied, d(0, F (t, 0) ≤ L(t) a.e. (I) and K1L0 < 1.
Then there exists a solution x( · ) of the fractional differential inclusion

Dq
cx(t) ∈ F (t, x(t)) a.e. (I),

with the boundary conditions (1.2) satisfying for all t ∈ I

|x(t)| ≤ K1L0

1−K1L0
. (3.6)

Remark 3.8. If F ( · , · ) is a single-valued map, the fractional differential inclusion reduces to the
fractional differential equation

Dq
cx(t) = f(t, x(t)) a.e. (I).

In this case, a similar result to the one in Corollary 3.7 may be found in [2], namely, Theorem 3.1.
It is assumed that the Lipschitz constant of f(t, · ) does not depend on t and its proof is done by
using the Banach fixed point theorem. Therefore, our Corollary 3.7 extends Theorem 3.1 in [2] to
the situation when the Lipschitz constant of f(t, · ) depends on t and to the set-valued framework.
Moreover, Corollary 3.7 provides a priori bounds for the solution, as in (3.6).

The proof of the next theorem is similar to that of Theorem 3.3.

Theorem 3.9. Assume that Hypothesis 3.2 is satisfied and K2K0 < 1. Let y( · ) ∈ C2(I,R) be such
that y(0) = 0, αy(T ) =

m∑
i=1

βiI
γi,δi
ηi

y(ξi) and let there exist p( · ) ∈ L1(I,R) with

d
(
Dqy(t), F (t, y(t, V (y)(t)))

)
≤ p(t) a.e. (I).

Then there exists a solution x( · ) : I → R of problem (1.3), (1.4) satisfying for all t ∈ I

|x(t)− y(t)| ≤ K2

1−K2K0
∥p( · )∥1.
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Example 3.10. Consider

q =
3

2
, T = 5, m = 3, α =

2

3
, β1 =

e

2
, β2 =

π

3
, β3 =

√
π

6
,

η1 =

√
3

5
, η2 =

√
2

5
, η3 =

e

3
, γ1 =

5

3
, γ2 =

2

9
, γ3 =

√
e

2
,

δ1 =
3

7
, δ2 =

√
3

8
, δ3 =

e2

4
, ξ1 =

4

3
, ξ2 =

3

2
, ξ3 =

2

7
.

Denote by K0
2 the corresponding estimate of G2( · , · ) in Remark 2.5 and take a ∈

(
0, 1

5 (−1 +√
1 + 2

K0
2
)
)
.

Define F ( · , · ) : I × R× R → P(R) by

F (t, x, y) =
[
− a

|x|
1 + |x|

, 0
]
∪
[
0, a

|y|
1 + |y|

]
and k( · , · , · ) : I × R× R → R by k(t, s, x) = ax.

As above,

sup
{
|u| : u ∈ F (t, x, y)

}
≤ a ∀ t ∈ [0, 1], x, y ∈ R,

dH

(
F (t, x1, y1), F (t, x2, y2)

)
≤ a|x1 − x2|+ a|y1 − y2| ∀x1, x2, y1, y2 ∈ R,

and, therefore, p(t) ≡ L(t) ≡ a, M(t) = a(1 + at) and K0 = 5a+ 25a2

2 .
Taking into account the choice of a, we can apply Theorem 3.9 with y( · ) = 0 and deduce the

existence of a solution of the problem

D
3
2x(t) ∈

[
− a

|x(t)|
1 + |x(t)|

, 0
]
∪
[
0, a2

∣∣ ∫ t

0
x(s) ds

∣∣
1 + a

∣∣ ∫ t

0
x(s) ds

∣∣
]
,

x(0) = 0,
2

3
x(5) =

e

2
I

5
3 ,

3
7√

3
5

x
(4
3

)
+

π

3
I

2
9 ,

√
3

8√
2

5

x
(3
2

)
+

√
π

6
I

√
e

2 , e
2

4
e
3

x
(2
7

)
that satisfies

|x(t)| ≤ 5K0
2a

1− (5a+ 25a2

2 )K0
2

∀ t ∈ [0, 5].

Remark 3.11. If F ( · , · , · ) does not depend on the last variable and y( · ) = 0, similar results to
the one in Theorem 3.9 can be found in [1], namely, Theorem 3.1 and Theorem 4.2. Even if our
hypothesis concerning the set-valued map is weaker than in [1] (in Theorem 3.1 of [1] it is assumed
that F has the approximate end point property and in Theorem 4.2 of [1] it is assumed that F is a
generalized contraction), our approach does not require for the values of F to be compact as in [1]
and also provides a priori bounds for solutions.
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