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Abstract. The sufficient conditions are given ensuring the existence and the controllability of mild
solutions for a semi-linear fractional differential equation with state-dependent delay in Fréchet space.
We use in the study a generalization of Darboux’s fixed point theorem combined with measures of
non-compactness.
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ÒÄÆÉÖÌÄ. ÌÏÝÄÌÖËÉÀ ÓÀÊÌÀÒÉÓÉ ÐÉÒÏÁÄÁÉ, ÒÏÌËÄÁÉÝ ÖÆÒÖÍÅÄËÚÏ×Ó ÓÖÓÔÉ ÀÌÏÍÀáÓÍÄÁÉÓ
ÀÒÓÄÁÏÁÀÓ ÃÀ ÌÀÒÈÅÀÓ ×ÒÄÛÄÓ ÓÉÅÒÝÄÛÉ ÍÀáÄÅÒÀÃßÒ×ÉÅÉ ×ÒÀØÝÉÖËÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ
ÂÀÍÔÏËÄÁÉÓÈÅÉÓ ÛÉÍÀÂÀÍ ÌÃÂÏÌÀÒÄÏÁÀÆÄ ÃÀÌÏÊÉÃÄÁÖËÉ ÃÀÂÅÉÀÍÄÁÉÈ. ÊÅËÄÅÀÛÉ ÂÀÌÏÚÄÍÄ-
ÁÖËÉÀ ÃÀÒÁÖÓ ÖÞÒÀÅÉ ßÄÒÔÉËÉÓ ÈÄÏÒÄÌÉÓ ÂÀÍÆÏÂÀÃÄÁÉÓ ÊÏÌÁÉÍÀÝÉÀ ÀÒÀÊÏÌÐÀØÔÖÒÏÁÉÓ
ÆÏÌÄÁÈÀÍ.
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1 Introduction

This paper deals with the existence and controllability of mild solutions for a semi-linear fractional
differential equation with state-dependent delay in Fréchet spaces. In Section 3, we examine semilinear
fractional differential equations with state-dependent delay given by

cDαy(t) = Ay(t) + f(t, y(t− ρ(y(t))), a.e. t ∈ J = [0,+∞), 0 < α < 1, (1.1)
y(t) = ϕ(t), t ∈ [−r, 0], (1.2)

and, in Section 4, we investigate the controllability of semi-linear fractional differential equation with
state-dependent delay

cDαy(t) = Ay(t) + f(t, y(t− ρ(y(t))) +Bu(t), a.e. t ∈ J = [0,+∞), 0 < α < 1, (1.3)
y(t) = ϕ(t), t ∈ [−r, 0], (1.4)

where cDα is the standard Caputo fractional derivative, f : J × E → E is a given function, A :
D(A) ⊂ E → E is an almost sectorial operator, that is, A ∈ Θγ

ω(E) (−1 < γ < 0, 0 < ω < Π
2 ),

Θγ
ω(E) is a space of almost sectorial operator to be specified later, the control function u is given in

L2(J, U), a Banach space of admissible control functions, B is a bounded linear operator from U into
E, ϕ : [−r, 0] → E is a given continuous function and (E, ∥ · ∥) is a Banach space, ρ is a positive
bounded continuous function on C([−r, 0], E), r is the maximal delay defined by

r = sup
y∈C

|ρ(y)| <∞.

Recently, fractional calculus takes a great interest, in cause, in part to both the intensive development
of the theory of fractional calculus itself and the applications of such constructions to different sciences
such as physics, mechanics, chemistry, engineering, etc. (for details, see the monographs [17, 21, 23]
and the references therein). Newly, several works have been published on the existence and uniqueness
of mild solutions for various types of fractional differential equations using different approaches and
techniques such as fixed point theorems, probability density functions, lower and upper solutions
method, coincidence degree theory, etc. (see, e.g., [2, 3, 12,15,28]).

Moreover, the existence of solutions on the half-line of the integer order differential equations has
been investigated in [1, 5, 6, 8, 16, 22]. Quite recently, in [25], Su considered the existence of solutions
to the boundary value problems of fractional differential equations on unbounded domains by using
the Darboux fixed point theorem. The attractiveness of fractional evolution equations with almost
sectorial operators has been proved by Zhou [29].

The problem of controllability for linear and nonlinear systems shown by ODEs in a finite-
dimensional space has been extensively examined. Certain authors have enlarged the controllability
concept to the infinite-dimensional systems in Banach space with unbounded operators (for more de-
tails see [11,20]). N. Carmichael and M. D. Quinn [24] proved that the controllability problem can be
translated into a fixed point problem. Interesting controllability results of various classes of fractional
differential equations defined on a bounded and unbounded intervals are given in many papers (see
e.g., [4, 7, 10,19]).

Our investigations are considered in the Fréchet spaces by using a generalization of the classical
Darboux fixed point theorem with the concept of a family of measures of noncompactness.

The paper is organized as follows. In Section 2, we recall briefly some basic definitions and pre-
liminary facts that will be used throughout the paper. In Section 3, we discuss the existence of
mild solutions for problem (1.1), (1.2). In Section 4, we testify the controllability of mild solutions
for problem (1.3), (1.4). The investigation on semilinear fractional differential equations with almost
sectorial operators have not been shown yet in the Fréchet spaces, so the present results make a
valuable contribution to this study.
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2 Preliminaries
Let J = [0, b], b > 0, be a compact interval in R, C(J,E) be the Banach space of all continuous
functions from J to E with the norm

∥y∥∞ = sup
t∈J

∥y(t)∥.

Let B(E) denote the Banach space of bounded linear operators from E into E.
A measurable function y : J → E is Bochner integrable if and only if ∥y∥ is Lebesgue integrable.
Let L1(J,E) denote the Banach space of measurable functions y : J → E which are Bochner

integrable normed by

∥y∥L1 =

b∫
0

∥y(t)∥ dt.

Definition 2.1. A function f : J × E → E is said to be Carathéodory if

(i) for each t ∈ J the function f(t, · ) : E → E is continuous;

(ii) for each y ∈ E the function f( · , y) : J → E is measurable.

Definition 2.2 ([17]). The fractional primitive of order α > 0 of a function f : R+ → E of order
α ∈ R+ is defined by

Iα0 h(t) =

t∫
0

(t− s)α−1

Γ(α)
f(s) ds.

Definition 2.3 ([17]). The Riemann–Liouville derivative of order α > 0 with the lower limit t0 for a
function f : R+ → E is given by

Dα(f)(t) =
1

Γ(n− α)

dn

dtn

t∫
t0

(t− s)n−α−1f(s) ds, t > t0, n− 1 < α < n.

Definition 2.4 ([17]). The Caputo fractional derivative of order α > 0 with the lower limit t0 for a
function f : R+ → E is given by

cDα(f)(t) =
1

Γ(n− α)

t∫
t0

(t− s)n−α−1f (n)(s) ds.

We denote by D(A) the domain of A, by σ(A) its spectrum, while ρ(A) = C\σ(A) is the resolvent
set of A, and denote by R(z,A) = (zI−A)−1, z ∈ ρ(A), the family of bounded linear operators which
are the resolvents of A.

Definition 2.5. Let −1 < γ < 0 and 0 < ω < Π
2 . By Θγ

ω(E) we denote the family of all linear closed
operators A : D(A) ⊂ E → E which satisfy the following conditions:

(a) σ(A) ⊂ Sω = {z ∈ C \ {0}; | arg z| ≤ ω} ∪ {0};

(b) for every ω < µ < Π, there exists a constant Cµ such that

∥R(z;A)∥ ≤ Cµ|z|γ for all z ∈ C \ Sµ.

A linear operator A is said to be an almost sectorial operator on E if A ∈ Θγ
ω(E).
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Let A be an operator in the class Θγ
ω(E) and −1 < γ < 0, 0 < ω < Π

2 . Define the operator families
{Sα(t)}t∈S0

Π
2

−ω

, {Pα(t)}t∈S0
Π
2

−ω

by

Sα(t) = Eα(−ztα)(A) =
1

2Πi

∫
Γθ

Eα(−ztα)R(z,A) dz,

Pα(t) = eα(−ztα)(A) =
1

2Πi

∫
Γθ

eα(−ztα)R(z,A) dz,

where the integral contour Γθ = {R+e
iθ} ∪ {R+e

−iθ} is oriented counter-clockwise and ω < θ < µ <
Π
2 − | arg t|. Now, we present the following important results about the operators Sα and Pα.

Theorem 2.6 ([27]). For each fixed t ∈ S0
Π
2 −ω

, Sα(t) and Pα(t) are the bounded linear operators
on E. Moreover, there exist the constants Cs = C(α, γ) > 0, Cp = C(α, γ) > 0 such that for all t > 0,

∥Sα(t)∥ ≤ Cst
−α(1+γ), ∥Pα(t)∥ ≤ Cpt

−α(1+γ).

Also,

Sα(t)x =

∞∫
0

Ψα(s)T (st
α)x ds, t ∈ S0

Π
2 −ω

, x ∈ E,

and

Pα(t)x =

∞∫
0

αsΨα(s)T (st
α)x ds, t ∈ S0

Π
2 −ω

, x ∈ E,

where T ( · ) is a semigroup associated with A.

Theorem 2.7 ([27]). For t > 0, Sα(t) and Pα(t) are continuous in the uniform operator topology.

Consider the problem
cDαy(t)−Ay(t) = f(t), t ∈ (0, b], (2.1)

y(0) = y0, (2.2)

where cDα, 0 < α < 1, is the Caputo fractional derivative, f ∈ L1(J,E) and y0 ∈ E.

Definition 2.8 ([27]). A function y ∈ C([0, b], E) is called a mild solution of Problem (2.1), (2.2) if

y(t) = Sα(t)y0 +

t∫
0

(t− s)α−1Pα(t− s)f(s) ds, t ∈ [0, b].

Let C(R+) be the Fréchet space of all continuous functions ν from R+ into E, equipped with the
family semi-norms

∥ν∥n = sup
t∈[0,n]

∥ν(t)∥, n ∈ N,

and the distance
d(u, v) =

∞∑
n=1

2−n ∥u− v∥n
1 + ∥u− v∥n

, u, v ∈ C(R+).

(For more details about measures of noncompactness see [13,14].)

Definition 2.9. Let MX be the family of all nonempty and bounded subsets of a Fréchet space X.
A family of functions {µn}n∈N, where µn : MX → [0,∞) is said to be a family of measures of
noncompactness in the real Fréchet space X if for all B,B1, B2 ∈ MX it satisfies the following
conditions:
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(a) {µn}n∈N is full, that is, µn(B) = 0 for n ∈ N if and only if B is precompact;

(b) µn(B1) < µn(B2) for B1 ⊂ B2 and n ∈ N;

(c) µ(ConvB) = µ(B) for n ∈ N;

(d) if {B} is a sequence of closed sets from MX such that Bi+1⊂Bi, i=1, . . . , and if lim
i→∞

µn(Bi)= 0,

for each n ∈ N, then the intersection set B∞ =
∞∩
i=1

Bi is nonempty.

Definition 2.10. A nonempty subset B ⊂ X is said to be bounded if for n ∈ N, there exists Mn > 0
such that

∥y∥n ≤Mn, for each y ∈ B.

Lemma 2.11 ([9]). If Y is a bounded subset of the Banach space X, then for each ε > 0, there is a
sequence {yk}∞k=1 ⊂ Y such that

µ(Y ) ≤ 2µ
(
{yk}∞k=1

)
+ ε.

Lemma 2.12 ([18]). If {uk}∞k=1 ⊂ L1(I) is uniformly integrable, then µ({uk}∞k=1) is measurable for
n ∈ N and

µ

({ t∫
0

uk(s) ds

}∞

k=1

)
≤ 2

t∫
0

µ
(
{uk(s)}∞k=1

)
ds

for each t ∈ [0, n].

Definition 2.13. Let Ω be a nonempty subset of a Fréchet spaceX, and letA : Ω → X be a continuous
operator which transforms bounded subsets onto the bounded ones. One says that A satisfies the
Darboux condition with constants (kn)n∈N with respect to a family of measures of noncompactness
(µn)n∈N if

µn(A(B)) ≤ knµn(B)

for each bounded set B ⊂ Ω and n ∈ N. If kn < 1, n ∈ N, then A is called a contraction with respect
to {µn}n∈N.

In the sequel, we will make use of the following generalization of the classical Darboux fixed point
theorem for the Fréchet spaces.

Theorem 2.14 ([13,14]). Let Ω be a nonempty, bounded, closed and convex subset of a Fréchet space
F and let V : Ω → Ω be a continuous mapping. Suppose that V is a contraction with respect to a
family of measures of noncompactness {µn}n∈N. Then V has at least one fixed point in the set Ω.

3 The main result
Influenced by [27] with ϕ(0) ∈ D(Aβ), β > 1 + γ, we define a mild solution of problem (1.1), (1.2) by
the following

Definition 3.1. We say that a continuous function y : R → E is a mild solution of problem (1.1), (1.2)
if y(t) = ϕ(t) for all t ∈ [−r, 0] and y satisfies the integral equation

y(t) = Sα(t)ϕ(0) +

t∫
0

(t− s)α−1Pα(t− s)f
(
s, y(s− ρ(y(s)))

)
ds for each t ∈ J.

Let us include the hypotheses.

(H1) The function f : J × E → E is Carathéodory.
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(H2) There exist a function p ∈ L1
loc(J,R+) and a continuous nondecreasing function ψ : J → [0,+∞)

such that
∥f(t, u)∥ ≤ p(t)ψ(∥u∥) for a.e. t ∈ J and each u ∈ E.

(H3) There exists a function l ∈ L1
loc(J,R+) such that for any bounded set B ⊂ E, and for each t ∈ J ,

we have
α((f,B)) ≤ l(t)α(B).

(H4) There exists rn > 0 such that

Csn
−α(1+γ)|ϕ(0)|+ Cpψ(rn) sup

t∈[0,n]

{ t∫
0

(t− s)−(1+αγ)p(s) ds

}
≤ rn.

For n ∈ N, we define on C([−r,+∞), E) the family of measures of noncompactness by

µn(V ) = ωn
0 (V ) + sup

t∈[0,n]

e−Ltµ(V (t)),

where V (t) = {v(t) ∈ E : v ∈ V )}, t ∈ [0, n], and L > 0 is a constant chosen so that

ln = 4Cp sup
t∈[0,n]

t∫
0

e−L(t−s)(t− s)−(1+αγ)l(s) ds < 1.

Remark 3.2. Notice that if the set V is equicontinuous, then ωn
0 (V ) = 0.

Theorem 3.3. Assume (H1)–(H4) are satisfied. Then problem (1.1), (1.2) admits at least one mild
solution.

Proof. Consider the operator N : C([−r,+∞), E) → C([−r,+∞), E) given by

(Ny)(t) =


ϕ(t) if t ∈ [−r, 0];

Sα(t)ϕ(0) +

t∫
0

(t− s)α−1Pα(t− s)f
(
s, y(s− ρ(y(s)))

)
ds if t ∈ J.

We shall check that the operator N satisfies all conditions of Theorem 2.14. The proof is given in
several steps.

Let
Brn =

{
u ∈ C([−r,+∞), E) : ∥u∥n ≤ rn

}
,

where rn is the constant given by (H4). It is obvious that the subset Brn is closed, bounded and
convex.
Step 1. N(Brn) ⊂ Brn .

For any n ∈ N and for each y ∈ Brn and t ∈ [0, n], we have

∥(Ny)(t)∥ ≤ ∥Sα(t)∥ |ϕ(0)|+
t∫

0

(t− s)α−1∥Pα(t− s)∥
∥∥f(s, y(s− ρ(y(s)))

)∥∥ ds
≤ Cst

−α(1+γ)|ϕ(0)|+
t∫

0

(t− s)−(1+αγ)Cpp(s)ψ(∥y(s)∥) ds

≤ Csn
−α(1+γ)|ϕ(0)|+ Cpψ(rn) sup

t∈[0,n]

{ t∫
0

(t− s)−(1+αγ)p(s) ds

}
≤ rn.
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Thus
∥N(y)∥n ≤ rn.

Step 2. N is continuous on Brn .
Let yn be a sequence such that yn −→ y in Brn . Then for each t ∈ [0, n], we have∥∥(Nyn)(t)− (Ny)(t)

∥∥
≤

t∫
0

(t− s)α−1∥Pα(t− s)∥
∥∥∥f(s, yn(s− ρ(yn(s)))

)
− f

(
s, y(s− ρ(y(s)))

)∥∥∥ ds
≤ Cp

t∫
0

(t− s)−(1+αγ)
∥∥∥f(s, yn(s− ρ(yn(s)))

)
− f

(
s, y(s− ρ(y(s)))

)∥∥∥ ds.
Since f is a Carathéodory function for t ∈ [0, n], from the continuity of ρ, the Lebesgue dominated
convergence theorem implies that

∥N(yn)−N(y)∥n −→ 0 as n→ ∞.

Step 3. N(Brn) is bounded which is clear.

Step 4. For each bounded equicontinuous subset V of Brn , µn(N(V )) ≤ knµn(V ).

From Lemmas 2.11 and 2.12, for any V ⊂ Brn and any ϵ > 0, there exists a sequence {yk}∞k=0 ⊂ V
such that for all t ∈ [0, n],

µ((NV )(t)) = µ

({
Sα(t)ϕ(0) +

t∫
0

(t− s)α−1Pα(t− s)f
(
s, y(s− ρ(y(s)))

)
ds, v ∈ V

})

≤ 2µ

({ t∫
0

(t− s)α−1Pα(t− s)f
(
t, yk(s− ρ(yk(s)))

)
ds

}∞

k=1

)
+ ϵ

≤ 4Cp

t∫
0

(t− s)−(1+αγ)µ
({
f
(
t, yk(s− ρ(yk(s)))

)}∞

k=1

)
ds+ ϵ

≤ 4Cp

t∫
0

(t− s)−(1+αγ)l(s)µ
(
{(yk(s))}∞k=1

)
ds+ ϵ

≤ 4Cp

t∫
0

eLs(t− s)−(1+αγ)e−Lsl(s)µ
(
{(yk(s))}∞k=1

)
ds+ ϵ.

Since ϵ > 0 is arbitrary, we have

µ(N(V )) ≤ 4Cp

t∫
0

e−L(t−s)(t− s)−(1+αγ)l(s)µn(V ) ds.

Thus
µn(N(V )) ≤ lnµn(V ).

As a conclusion, N has at least one fixed point in Brn .
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4 Controllability of semilinear fractional differential equations
with state-dependent delay

In this section, we prove a controllability result for system (1.3), (1.4).

Definition 4.1. System (1.3), (1.4) is said to be controllable if for any continuous function ϕ ∈ [−r, 0],
any y1 ∈ E and for each n ∈ N there exists a control u ∈ L2([0, n], E) such that the mild solution
y( · ) of (1.3), (1.4) satisfies y(n) = y1.

Let us introduce the following hypotheses:

(H4′) There exists r′n > 0 such that

Csn
−α(1+γ)|ϕ(0)|

[
1 +

n−αγ

−αγ

]
+ |y1|CpM1M2

n−αγ

−αγ

+ Cpψ(r
′
n)

n∫
0

(t− s)−(1+αγ)p(s) ds ·
[
1 +

n−αγ

−αγ
CpM1M2

]
≤ r′n.

(H5) For each n > 0, the linear operator W : L2([0, n], U) → E is defined by

Wu =

n∫
0

(t− s)α−1Pα(n− s)(Bu(s)) ds,

and

(i) the operator W has a pseudo-invertible operator W−1 which takes values in L2([0, n], U)/KerW
and there exist positive constants M1, M2 such that

∥B∥ ≤M1 and ∥W−1∥ ≤M2,

(ii) there exist ηW (t) ∈ L∞(J,R+), CB ≥ 0, for any bounded sets V1 ⊂ E, V2 ⊂ U ,

µ((W−1V1)(t)) ≤ ηW (t)µ(V1(t)), µ((BV2)) ≤ CBµU (V2).

Theorem 4.2. Suppose that hypotheses (H1)–(H3) and (H4′)–(H5) hold. Further, assume that the
inequality

ln

(
1 + 2CpCB∥ηW ∥L∞

n−αγ

αγ

)
< 1

holds, then problem (1.3), (1.4) is controllable.

Proof. We define in C((−∞, r], E) the family of measures of noncompactness by

µn(V ) = ωn
0 (V ) + sup

t∈[0,n]

e−Ltµ(V (t)),

where V (t) = {v(t) ∈ E : v ∈ V }.
Consider the operator N1 : C((−∞, r], E) → C((−∞, r], E) defined by

(N1y)(t) =



ϕ(t) if t ∈ [−r, 0];

Sα(t)ϕ(0) +

t∫
0

(t− s)α−1Pα(t− s)f
(
s, y(s− ρ(y(s)))

)
ds

+

t∫
0

(t− s)α−1Pα(t− s)Buy(s) ds if t ∈ J.
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Using assumption (H5), for an arbitrary function y( · ), we define the control

uy(t) =W−1

[
y1 − Sα(t)ϕ(0) +

t∫
0

(t− s)α−1Pα(t− s)f
(
s, y(s− ρ(y(s)))

)
ds

]
(t).

Noting that

∥uy(t)∥ ≤ ∥W−1∥
[
|y1|+ ∥Sα(t)ϕ(0)∥+

n∫
0

(n− τ)α−1Pα(n− τ)f
(
τ, y(τ − ρ(y(τ)))

)
dτ

]
,

by (H2) we get

∥uy(t)∥ ≤M2

[
|y1|+ Cst

−α(1+γ)|ϕ(0)|+
n∫

0

Cp(n− τ)−(1+αγ)p(τ)∥y(τ)∥ dτ
]
. (4.1)

Next, for any n ∈ N,

Br′n
= B(0, r′n) =

{
w ∈ C([−r,∞), E) : ∥w∥n ≤ r′n

}
,

where r′n > 0 is the constant defined in (H4′). Obviously, the subset Br′n is closed, bounded and
convex.

Step 1. N1(Brn) ⊂ Brn .
For any n ∈ N, and each y ∈ Br′n , by (4.1) we have

∥(N1y)(t)∥ ≤ ∥Sα(t)∥ |ϕ(0)|+
t∫

0

(t− s)α−1∥Pα(t− s)∥
∥∥f(s, y(s− ρ(y(s)))

)∥∥ ds
+

t∫
0

(t− s)α−1∥Pα(t− s)∥∥Buy(s)∥ ds

≤ Csn
−α(1+γ)|ϕ(0)|+ Cpψ(r

′
n)

t∫
0

(t− s)−(1+αγ)p(s) ds

+ CpM1M2

t∫
0

(t− s)−(1+αγ)

[
|y1|+ Csn

−α(1+γ)|ϕ(0)|

+ Cpψ(r
′
n)

n∫
0

(n− τ)−(1+αγ)p(τ) dτ

]
ds

≤ Csn
−α(1+γ)|ϕ(0)|

[
1 +

n−αγ

−αγ

]
+ |y1|CpM1M2

n−αγ

−αγ

+ Cpψ(r
′
n)

n∫
0

(t− s)−(1+αγ)p(s) ds ·
[
1 +

n−αγ

−αγ
CpM1M2

]
≤ r′n.

Step 2. N1 is continuous on Br′n
.
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Let yn be a sequence such that yn −→ y in Br′n
. Then for each t ∈ [0, n], and by the Lebesgue

dominated convergence theorem, we obtain

∥(N1yn)(t)− (N1y)(t)∥

≤
t∫

0

(t− s)α−1∥Pα(t− s)∥
∥∥∥f(s, yn(s− ρ(yn(s)))

)
− f

(
s, y(s− ρ(y(s)))

)∥∥∥ ds
+

t∫
0

(t− s)α−1∥Pα(t− s)∥
∥∥Buyn

(s)−Buy(s)
∥∥ ds −→ 0 as n→ ∞.

Thus N1 is continuous.
Step 3. Since N1(Brn) ⊂ Br′n

and Br′n
is bounded, we find that N1(Br′n

) is bounded.
Step 4. For each bounded subset V of Br′n

, µn(N1(V )) ≤ knµn(V ).

From Lemmas 2.11 and 2.12, for any V ⊂ Br′n
and any ϵ > 0, there exists a sequence {yk}∞k=0 ⊂ V

such that for all t ∈ [0, n], we have

µ((N1V )(t)) = µ

({
Sα(t)ϕ(0) +

t∫
0

(t− s)α−1Pα(t− s)
[
f(s, y(s− ρ(y(s)))) +Buy(s)

]
ds, v ∈ V

})

≤ 2µ

({ t∫
0

(t− s)α−1Pα(t− s)
[
f
(
s, yk(s− ρ(yk(s)))

)
+Buyk

(s)
]
ds

}∞

k=1

)
+ ϵ

≤ 4Cp

t∫
0

(t− s)−(1+αγ)µ
({
f
(
s, yk(s− ρ(yk(s)))

)
+Buyk

(s)
}∞

k=1

)
+ ϵ

≤ 4Cp

t∫
0

(t− s)−(1+αγ)l(s)µ
(
{yk(s)}∞k=1

)
+ ϵ

+ 4Cp

t∫
0

(t− s)−(1+αγ)CBµ
(
{uyk

(s)}∞k=1

)
ds.

Now, let us calculate µ({uyk
(s))}∞k=1).

By (H5) we have

µ
(
{uyk

(t)}∞k=1

)
≤ 2ηW (t)Cp

t∫
0

(t− s)−(1+αγ)l(s)µ
(
{(yk(s))}∞k=1

)
ds

≤ 1

2
ηW (t)Cp4

t∫
0

(t− s)−(1+αγ)eLse−Lsl(s)µ
(
v{(yk(s))v}∞k=1v) ds.

Then
µn(u(V )) ≤ 1

2
lnηW (t)µn(V ). (4.2)

Since ϵ > 0 is arbitrary, by (4.2) we obtain

µ(N1(V )) ≤ lnµn(V ) + 2lnCpCB
t−αγ

αγ
∥ηW ∥L∞µn(V ).

Thus
µn(N1(V )) ≤ ln

(
1 + 2CpCB∥ηW ∥L∞

n−αγ

αγ

)
µn(V ).

As a conclusion, we have achieved that N1 has at least one fixed point in Br′n
.
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5 An example
We consider the fractional differential equation with state-dependent delay of the form

c
0∂

α
t u(t, x) = ∂2xu(t, x) +Q(t)|u(t− τ(u(t, x)), x)|, x ∈ [0, π], t ∈ [0,∞),

u(t, x) = u0(t, x), x ∈ [0, π], −τmax ≤ t ≤ 0,

u(t, 0) = u(t, π) = 0, t ∈ [0,∞),

(5.1)

where u0 ∈ C2([−τmax, 0]× [0, π],R) Q is a continuous function from [0,+∞) to R, the delay function
τ is the bounded positive continuous function in Rn, and τmax is the maximal delay which is defined by

τmax = sup
x∈R

τ(x).

Consider the space of Hölder continuous functions E = Cl([0, π],R) (0 < l < 1), and let c
0∂

α be the
regularized Caputo fractional partial derivative of order 0 < α < 1 with respect to t defined by

(c0∂
αu)(t, x) =

1

Γ(1− α)

(
∂

∂t

t∫
0

(t− s)−αu(t, x) ds− t−αu(0, x)

)
.

Next, we introduce the operator

A = −∂2x, D(A) =
{
u ∈ C2+l([0, π]) : u(t, 0) = u(t, π) = 0

}
in the space Cl([0, π],R). It follows from [26] that ν exists, ϵ > 0 such that A+ ν ∈ Θ

l
2−1
π
2 −ϵ(X). Set

y(t)(x) = u(t, x), t ∈ (−∞, 0], x ∈ [0, π],

ϕ(t)(x) = u0(t, x), t ∈ [−τmax, 0], x ∈ [0, π],

f(t, φ)(x) = Q(t)
∣∣u(t− τ(u(t, x)), x)

∣∣, φ ∈ E, t ∈ [0,+∞), −∞ < θ ≤ 0, x ∈ [0, π].

Then system (5.1) can be written in the abstract form as (1.1), (1.2). As a consequence of Theo-
rem 2.14, system (5.1) has a mild solution.
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