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Abstract. For the system of generalized linear ordinary differential equations the initial problem
de =dA(t) -z +df(t) (tel),
J)(to) = Cp
is considered, where I C R is an interval, A : [ — R™" ™ and f : [ — R"™ are, respectively, matrix- and
vector-functions with components of local bounded variation, ty € I, ¢y € R™.

Under a solution of the system is understood a vector-function = : I — R"™ with components of
bounded local variation satisfying the corresponding integral equality, where the integral is understood
in the Kurzweil sense.

Along with a number of questions, we investigate the problems of the well-posedness and stability in
Liapunov sense. Effective sufficient conditions, as well as effective necessary and sufficient conditions,
are established for each of these problems.

The obtained results are realized for the initial problem for linear impulsive system

% =Pt)x+q(t), z(n+)—2z(n-)=Gm)z(n)+uln) (=1,2,...),

where P and ¢ are, respectively, the matrix- and the vector-functions with Lebesgue local integrable
components, 7; (I = 1,2,...) are the points of impulse actions, and G(r;) (I = 1,2,...) and u(n;)
(I1=1,2,...) are the matrix— and the vector-functions of discrete variables.

Using the well-posedness results, the effective sufficient conditions, as well as the effective necessary
and sufficient conditions, are established for the convergence of difference schemes to the solution of
the initial problem for the linear systems of ordinary differential equations.
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Introduction

In the present paper, the initial problem for systems of the so-called linear generalized ordinary
differential equations in the sense of Kurzweil is considered. We present the solvability conditions for
the problem and consider the related questions such as well-posedness of the problem and stability of
solutions in the Liapunov sense. The obtained results are realized for the initial problem for linear
systems of impulsive differential equations. Moreover, the obtained results on the well-posedness are
used for the numerical solvability of the initial problem for systems of linear ordinary differential
equations.

The theory of generalized ordinary differential equations is has been introduced by the Czech
mathematician J. Kurzweil in 1957. In [37], he investigated the question on the well-posedness of the
initial problem for linear ordinary differential equations, i.e., the problem where small perturbations
of the right-hand sides and the initial data of the given problem imply the nearness, in a uniform
sense, of the solutions of the perturbed initial problems to the solutions of the given problem. He
constructed an example of the problem which fails to have a solution in the classical sense, i.e., the
“solution” has the points of discontinuity. The perturbation problems have a classical solution which
converges to the “solution” of the given problem only in a pointwise sense. So, in this case, the
convergence may not be in a uniform sense. In this connection, J. Kurzweil has introduced certain
type of integral (see [37-39,45,53,55,56]) known in literature as the Kurzweil-Hanstock integral. He
considered the solutions of differential equations which were defined as the functions satisfying the
corresponding integral equations, where the integral was understood in the introduced sense. Such
differential equations, called as generalized ordinary differential equations, may have solutions with the
points of discontinuity. For such differential equations J. Kurzweil has proved the well-posed theorem.
In such a case, the convergence occurs only in the pointwise sense. So, the above-constructed example
was in conformity with the theorem.

To a considerable extent, the interest to the theory of generalized ordinary differential equations
has also been stimulated by the fact that this theory enabled one to investigate ordinary differential,
impulsive and difference equations from a unified point of view. In particular, all of them can be
rewritten in the form of generalized ordinary differential equations

do = dA(t) -z + df (t),

where A and f are the matrix- and vector-functions of bounded variation, respectively, for the following
systems: (a) the impulsive system

dx
7 = POz +at), a(nt) —a(n-) =Glnjz(n) +uln) (=1,2,...),
where P and q are, respectively, the matrix- and vector-functions with Lebesgue integrable compo-
nents, 7, (I = 1,2,...) are the points of impulse actions, and G(r;) (I = 1,2,...)and u(n) (I =1,2,...)
are the matrix- and vector-functions of discrete variables; (b) the difference system

Ay(k = 1) = Gy (k — Dy(k — 1) + Ga(k)y(k) + go(k) (k= 1,...,mo),

where mg is a fixed natural number, and G;,G2 and gy are, respectively, the matrix- and vector-
functions of the discrete variables; (c) the differential-difference systems, and so on.

Therefore, we can consider the ordinary differential, impulsive differential and difference equations
as equations of the same type. In particular, if for the generalized ordinary differential equations we
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investigate the question of well-posedness in the uniform sense, then, as a particular case, we will
obtain the results on the convergence of difference schemes to the solutions of the initial problem for
the ordinary differential equations. Analogous concept we can use for the investigation of the same
problem for linear boundary value problems and the initial and general boundary value problems for
nonlinear cases. In the present paper, we consider the question dealing only with the initial problem
in the linear case.

Note that another conception of the investigation enabling one to study the continuous and discrete
problems, one can find in [22].

The initial and boundary value problems for generalized ordinary differential equations are in-
vestigated sufficiently well for the linear and nonlinear cases. The questions of the existence and
well-posedness for linear problems are considered, e.g., in [2,4,11-13,15,17,20,21,32,33, 39,45, 53-56]
(see also the references therein). The same questions for the nonlinear case are studied in [5-10, 14,
31,37-39,45,53,55] (see also the references therein).

We give a short description of the results obtained in the present paper.

The work consists of three chapters. Section 1.1 is devoted to consideration of general properties
of initial problems given for systems of generalized linear ordinary differential equations most of which
are included, e.g., in [45,53,55]. Some of the results are precise and some are given as supplementary.
In particular, we suggest the method of successive approximations for constructing of solutions of the
problem. In addition, both questions on the nonnegativity of the Cauchy matrix and the systems of
linear generalized differential and integral inequalities are investigated. Moreover, the subject on the
relationship between the stability in the Liapunov sense and the well-posedness of the initial problem
on the infinity intervals is studied.

Section 1.2 considers the question of the well-posedness of the initial problem for systems of
generalized linear ordinary differential equations.

In the past century, the question on the well-posedness of the problems for the systems of ordinary
differential equations was of the utmost interest. In particular, such a question for the initial problem
for linear systems was treated very thoroughly (see, e.g., [3,11,34,35,40,46,48,57] and the references
therein). Note that unprovable sufficient conditions, as well as unprovable necessary and sufficient
conditions both for the initial and for the linear boundary value problems were obtained in [3].

The same question for the initial and boundary value problems for the nonlinear systems are
investigated, for example, in [34,36,57] (see also the references therein).

In the same section, we establish new effective sufficient conditions, as well as the effective criterion
for the well-posedness of the problem. Moreover, the effective conditions guaranteeing the uniform
convergence of the solutions of the perturbed problems on every closed subsegment are also established.
Some results obtained in the paper are new for ordinary differential case, as well.

Section 1.3 proposes investigation of the stability in Liapunov sense of the solutions of systems
of generalized linear ordinary differential equations. Such a subject-matter is classical. Our earlier
results concerning the problem for ordinary differential equations can be found in [26,34] (see also the
references therein). As for the case of generalized ordinary differential equations, one can see, e.g.,
the works [2,13,20,53] (see also the references therein). In the present paper, we make more precise
already known results for generalized case: the effective sufficient conditions and effective necessary
and sufficient conditions for stability, uniform stability, asymptotic and the so-called &-exponentially
asymptotic stability. The obtained results are new for the case of ordinary differential equations, as
well.

In Chapter 2, the results of Chapter 1 are realized for linear impulsive differential systems.

Some questions, such as solvability, well-posedness, stability in the Liapunov sense, etc., are studied
in [2,15,16,18,19,23,24,42,44,47,51,58] (see also the references therein).

The results obtained in the monograph is the generalization of our earlier results. In particular, we
obtain effective sufficient and necessary and sufficient conditions for the well-posedness and stability in
the Liapunov sense. Moreover, we also give the method of successive approximations for constructing
of solution of the impulsive initial problem.

In Chapter 3, we realize the results of Chapter 1 for the initial problem for ordinary differential
systems. The results obtained for this case generalize our earlier results. Moreover, we establish the
effective sufficient conditions and the effective necessary and sufficient conditions for the criterion of
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convergence of difference schemes to the solutions of the initial problems for ordinary differential case.
Note that for the convergence of difference schemes we have used the concept that it is possible to
consider both continuous and difference problems as generalized ones, and therefore, the convergence
is a particular case of the well-posedness for the latter problems.

Such problems, and among them the question of the solvability, stability, convergence of difference
schemes and others were investigated earlier in [1,2,15,27,28, 30,41, 43,49, 52] for linear as well as
nonlinear difference systems.
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Basic notation and definitions

In the paper, the use will be made of the following notation and definitions.

N={1,2,...}, N={0,1,...}, Z is the set of all integers.

R =]—o00, +0[, Ry = [0, +o0]; [a, b] and |a, b[ (a, b € R) are, respectively, closed and open intervals.

C is the space of all complex numbers z; |z| is the modulus of z.

I is an arbitrary finite or infinite interval from R. We say that some properties are valid in [ if
they are valid on every closed interval from 1.

[t] is the integer part of ¢ € R.

R™X™ (C"*™) is the space of all real (complex) n x m matrices X = (z;;);j; with the norm

ey

RY™ = {(wij)i )2y @iy >0 (i=1,...,m; j=1,...,m)}.

Opnxm (or O) is the zero n x m matrix. We designate the zero n-vector by 0,, or 0.

If X = (.’13”)2’]721 € R™™ ™ then

X = (lziz 72 -

X7 is the matrix transposed to X.

lim sup xy, is the upper limit of the sequence z € R (k,2...).

k— oo

Sometimes, by [X];; we denote the element z;; in the i-th row and in the j-th column of the matrix
X = (.’IJ”):’;ZP i.e., Tij = [X]Z] (Z = 1, ey Ny _] = 1, ce ,m).

R™ = R™*! is the space of all real column n-vectors = = (z;)7;; R? = R}

x * y is the scalar product of the vectors z,y € R".

If X € C™*" then X1, det(X) and 7(X) are, respectively, the matrix inverse to X, the determi-
nant of X and the spectral radius of X.

diag(Xy,..., X)), where X; € C%*™ (4 = 1,...,m), n1 + --- + n, = n, is a quasidiagonal
n X n-matrix. In particular, if X = (2;;)7';_,, then diag(X) = diag(w11,,...,Tnn).

Ao(X) and A°(X) are, respectively, the minimum and maximum eigenvalue of the symmetric matrix
X e RnXm7

I,, is the identity n X n-matrix; diag(\1,...,A,) is the diagonal matrix with diagonal elements
M, ...y An; 04 is the Kroneker symbol, i.e., d;; = 1 and §;; = 0 for i # j (4,5 = 1,...); Z, =
(Git15)7=1-

The inequalities between the real matrices are understood componentwise.

We say that some property holds in the set I if it holds on every closed interval from I.

A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each of its components
is s%ch.

V(X)) is the sum of total variations of components x;; (i =1,...,m; j =1,...,m) of the matrix-
a b b
function X : [a,b] — R™™; \/(X) = —V/(X); V(X) = lim V(X), where @ = infI and

b a I a—a+,b—p— a

B=supl; V (X)=-V (X).
(b,a) (b,a)

If X : 1T — R™™ is a matrix-function, then \/(X) is the sum of total variations on I of its

I
components z;; (i = 1,...,m; j = 1,...,m); V(X)(t) = (v(zi;)(t));/2,
t

v(zi;)(t) = V(z45), and a € I is some fixed point.

for t € I, where v(z;;)(a) =0,

a
X (t—) and X (t+) are, respectively, the left and the right limits of X at the point ¢ (X (a—) = X («)
ifaeland X(8+) =X (B) if v € I; if a or 8 do not belong to I, then X (¢) is defined by continuity
outside of I).
i X(t)=X(t)— X(t—), doX(t) = X(t+) — X ().

[ X loo = sup {[IX ()] : 2 € I}, [X|oo = (73500 )i j21
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BV(Z;R™ ™) is the normed space of all bounded variation matrix-functions X : I — R™*™ (i.e.,
such that \/(X) < oo) with the norm ||X||s.
I

BV(I; D), where D C R™*™_ is the set of all bounded variation matrix-functions X : I — D.

BVioc(I; D) is the set of all X : I — D for which the restriction on [a, b] belongs to BV([a, b]; D)
for every closed interval [a, b] from I.

BV joe(I; R?™) = {X € BV oo(I; R™™) : X(t) > Opsery for t € T}

C([a, b]; R™*™) is the space of all continuous on [a, b] matrix-functions X : [a,b] — R™*™ with the
standard norm

[ Xlle = max{[|X ()] : ¢ € [a,b]}.

C(I; R™™) is the space of all continuous and bounded matrix-functions X : I — R™*™ with the
norm || X||..; = sup{||X @) : t € I'}.

C(I; D), where D C R™ ™ is the set of all continuous and bounded matrix-functions X : I — D.

Cioc(I; D) is the set of all continuous matrix-functions X : I — D.

AC([a, b]; D) is the set of all absolutely continuous matrix-functions X : [a,b] — D.

AC;,.(I; D) is the set of all matrix-functions X : I — D whose restrictions to an arbitrary closed
interval [a, b] from I belong to AC(]a,b]; D).

ACioe(I\T; D), where T = {11,72,...}, n €I (1 =1,2,...), 1 # 7 (i # k), is the set of all
matrix-functions X : I — D whose restrictions to an arbitrary closed interval [a, b] from I \ T belong
to AC([a, b]; D).

ACV([a,b], T;R™) = AC([a, b] \ T;R™) N BV({a, b]; R™).

ACVoc(la, b], T;R™) = ACjoc([a, ] \ T;R™) N BVioe([a, b]; R™).

Ty =T nNJ for every interval J C I.

T, =Ty if J = [min{s,t}, max{s,t}[ for s,t € I.

Bioe(T; R™™™) is the set of all matrix-functions G : T — R™*™ such that

> IG(n)|| < +oo for every [a,b] C 1.

TIETa,b)

We say that a matrix-function X : I — R™*™ is nonsingular if det(X (t)) # 0 for every ¢ € I.

L([a, b]; R™*™) is the set of all the Lebesgue integrable matrix-functions X : [a,b] — R™*™.

Lioe(I; R™™ ™) is the set of all matrix-functions X : I — R™*™ whose restrictions to an arbitrary
closed interval [a, b] from I belong to L([a, b]; R™*™).

81,82, 8¢ and J : BV ,o(I;R) — BV,.(I; R) are the operators defined, respectively, as follows:

s1(2)(a) = s2(2)(@) =0 s(2) = 2(a);
s(@)) = s1@)s) + Y die(r), s@)t) = s@)(s) + Y daal)

s<t<t s<7T<t

se(@)(t) = sc(x)(s) +2(t) —2(s) = p_(s5(2)(t) = s5(x)(5)) for s <t;

M-

J(2)(a) = 2(a),
J(x)(t) = J(2)(s) + sc(x)(t) — se(x)(s) — Z In|l—dyz(r)] + Z In |1+ dyz(7)| for s <t,

s<T<t s<7T<t

where a € I is an arbitrary fixed point.
If g € BV([a,b];R), f : [a,b] = Rand a < s <t < b, then we assume

/ £(r) dg(r) = (L — 5) / 2(r) dg(v) + F(©)drg(t) + F(s)dag(s),

1s,[
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where (L—S) [ f(7)dg(r) is the Lebesgue—Stieltjes integral over the open interval ]s, ¢[. It is known
1s,t]
(see [45,55]) that if the integral exists, then the right-hand side of the integral equality equals to the

Kurzeil-Stieltjes integral (K — S)ftf(T) dg(t) and, therefore, ftf(T) dg(t) = (K — S)ftf(T) dg(r).

If a = b, then we assume
b
/ (1) dg(t) = 0.

Moreover, we put

t+ t+e t— t—e
[awrdgm=_tm | [amydgtn). [oryastr) =t [ atr)dgir).

L([a,b]; R; g) is the set of all functions z : [a,b] — R, measurable and integrable with respect to
the measures u(g;) (i = 1,2), i.e., such that

b

[1e0lan) < o0 (=12,

a

IfG= (gm)izzl € BV([a,b];R*") and X = (k)i + [a,b]; = R™ ™ then

Se(G)(1) = (eelgin)(D)ihmr SH(@)D) = (S;(ga)(D)ihey (G =1,2)

b
lm
/xkj(T) dgix (T)) .
] ij=1

. t
Sometimes we use the designation [dG(s)- X(s) for the integral [dG(s)- X(s) as the vector-

a

and
b

/dG(T) X(r) = ( n
k=

a 1

function to the variable t.
Let a € I be a fixed point. We introduce the operators:
(a) if X € BVipe(I;R™ ™), det(I,+(—1)7d; X (t)) #0fort € I (j =1,2),and Y € BV,,.(I; R"*™),
then
A(X,Y)(a) = Onxm,

AX,Y)() = AX, YY) =Y =Y () + Y diX(7) (I — di X (1)~ dyY (7)

s<t<t

= Y X (1) (In+ do X (1)) doY (1) for s < t; (0.0.1)

(b) if X € BVjoo(I;R™™) and Y € BV ,e(I;R?*™), then
B(X,Y)(t) = X(t)Y(t) — X (a)Y (a) — /th(T) Y(r) for tel; (0.0.2)
(¢) if X € BVjoo(I; R™ ™), det X(t)) # 0, and Y € B;ZOC(I; R™*™), then
I(X,Y)(t) = /td(X(T) +B(X,Y)(r)) - X~ (1) for tel; (0.0.3)

a
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(d)
Dz(Y1, X1; Y2, Xo)(t) = Z(X1, Y1)(t) — Z(X2, Yo)(t) for tel (0.0.4)

and
DB(Yl,Xl;}/Q,XQ)(t) = B(Xl,yl)(t) — B(XQ,}/Q)(t) for tel. (005)

moreover, we introduce the following operator: if a € I, and X € BVo.(I,R™*") and Y : [ — R"*™,
then we put
—d1 X(t) for t<a, tel,
AX(H) =L doX(t) for t>a, tel, (0.0.6)
Oixn for t=a.

Ifl €N, then N, = {1,...,1}, N, ={0,1,...,1}.

E(J,R"™), where J C Z, is the space of all matrix-functions Y = (yi;);/2; : J — R"™*™ with

the norm

Y|l =max{|[Y(®)[| : & €T}, [Y]r=lyilla); 2 -

A is the difference operator of the first order, i.e.,
AY(k—=1)=Y(k)—=Y(k—1) for Y e E(N,R™™) keN,.

If a function Y is defined on N; or Nl_l, then we assume Y (0) = Opxm, or Y(I) = Opxm,
respectively, if necessary.

We say that the matrix-function X € BV;,.(I, R"*") satisfies the Lappo-Danilevskii condition if
there exists ¢, € I such that the matrices S¢(X)(t) — Sc(X)(tx), S1(X)(t) —S1(X)(tx) and S2(X)(t) —
S2(X)(t.) are pairwise permutable and

t

/ S.(X) () dS.(X)(r) = / dS.(X)(7) - So(X)(r) for tel.

s

Here, the use will be made of the following formulas:

f )dg(t=) + f(b)d1g(b), (0.0.7)

f ) dg(t+) + f(a)dz2g(a),

a

/ (1) dg(7) — 2(t) dig(t), (0.0.8)

L/ (r) dg(r) + (t) dag(t).

b

+/ﬂﬂ@@=f@ﬂ@—ﬂ@ﬂ@

[0

f

[

f :
[ﬂ)@U

+ Z d1f< dlg Z d2f d29 )

a<t<b a<t<b

(integration-by-parts formula), (0.0.9)
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- > R dlf cdig(t) + Y h(t)daf(t) - dag(t)

a<t<b a<t<b

(general integration-by-parts formula), (0.0.10)

= S () dug(t) / fdsa()®) = 3 FO)dgt),  (00.11)

a<t<b a<t<b
/bf(t)d</g ) /f h(t) for tel, (0.0.12)
dj(/f(é‘) dg(S)) = f(t)d;g(t) for tel (j=1,2) (0.0.13)
and
a/bfk(t) df(t) = %H [karl( ) — fH(q mzz (G;Kb P dyf () - difEm(E)
= ) fMb)daf(t) dzf’“_m(t)ﬂ (k=1,2,...) (0.0.14)
a<t<b

for f,g € BV([a,b]; R).

The proof of formulas (0.0.7), (0.0.9) (0.0.11) and (0.0.12) one can find e.g., in [55, Theorems 1.4.25,
1.4.33, Lemma 1.4.23]). As to formulas (0.0.10) and (0.0.14), they are proved in Subsection 1.1.3 (see
Lemma 1.1.1).



Chapter 1

Systems of generalized linear
ordinary differential equations

1.1 The initial problem. Unique solvability

1.1.1 Statement of the problem and formulation of the results

Let I C R be some interval, non-degenerate into a point. In this section, for the system of linear
generalized ordinary differential equations

dx = dA(t) -z + df(t) (1.1.1)
we consider the initial problem
l’(to) = Cop, (112)

where A = (air)iy=y * I — R™™ and f = (f;)jL, : I — R" are, respectively, the matrix- and
the vector-functions with bounded variation components on every closed interval from I, i.e., A €
BVloc(I;Rnxn) and f € BVloc(I;Rn); to € -[7 and Co € R™.

A vector-function x € BV,.(I; R™) is said to be a solution of system (1.1.1) if

t

x(t) — z(s) :/dA(T)~$(T)+f(t)*f(S) for s<t; s,tel.

S

Note that if the vector-function x € BVy,.(I;R™), then the above integral exists for every s,t € T
(see [55]). If we define a solution of system (1.1.1) as an arbitrary vector-function z : I — R™ such

¢
that the integral [ dA(7) - z(7) exists for s < ¢ (s,t € I), then by Theorem III.1.3 from [55], z will

have bounded variation on every closed interval from I and so 2 will be from the set BV ,.(I; R™).
Under a solution of the system of generalized ordinary differential inequalities

dx < dA(t) - = + df(t) (resp. >)

we mean a vector-function x € BV ,.(I; R™) such that
t

x(t) < z(s) + /dA(T) ~x(T) + f(t) — f(s) (resp. >) for s <t; s,tel.

S

Under a solution of problem (1.1.1), (1.1.2) we understand a solution x € BV,,.(I; R™) of system
(1.1.1), satisfying condition (1.1.2).

We give here some known as well as new results concerning the solvability and properties of
solutions of the initial problem (1.1.1),(1.1.2).

11
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Theorem 1.1.1. Let tg € I. Then:

(a) the initial value problem (1.1.1), (1.1.2) possesses a unique solution x defined on {t € I : t > to}
for any f € BV([a,b];R™) and ¢y € R™ if and only if det(I,, — d1 A(t)) # 0 for any t € I, t > to;

)
(b) the initial value problem (1.1.1), (1.1.2) possesses a unique solution x defined on {t € I : t < 1y}
for any f € BV([a,b];R™) and ¢y € R™ if and only if det(I, + daA(t)) # 0 for any t € I, t < to;

(c) the initial value problem (1.1.1),(1.1.2) possesses a unique solution xz defined on I for any
f € BV([a,b];R™) and co € R™ if and only if

det (I, + (=1)7d;A(t)) # 0 for t €I, (=1)7(t—to) <0 (j =1,2). (1.1.3)
Proposition 1.1.1. Let s € I, and o € BV ,.(I; R) be such that
L+ (=1)dja(t) #0 for tel, (-1)/(t—s)<0 (j=1,2).

Then the initial problem
dy = ~vda(t), ~(s)=1 (1.1.4)
has the unique solution v, (-, s) defined by

exp(so(a)(t) — so(a)(s)) H (1—dya(r)! H (14 daa(r)) for t>s,

Yaltss) =  exp(so(a)(t) — so(a)(s)) 1_[_ (1 —dia(r)) 1_[_ (1+doa(7))™t for t <s, (1.1.5)
1 - o for t=s.

Proposition 1.1.2. Let a vector-function x be a solution of system (1.1.1). Then
djxz(t) =d;A(t) - x(t) +d; f(t) for tel (j=1,2). (1.1.6)

Theorem 1.1.2. Let A € BVy,.([a,b]; R™*™) and to € [a,b] be such that condition (1.1.3) holds for
I =]a,b]. Then there exists a constant r € Ry such that

la®)l < r(llato)ll + \V/(£)) exp (r\/(4)) for a<t<tg (1.1.7)
and \ t
le@Il < r(lla(to) |+ V() exp (r\/(4)) Jor to <t <b, (1.1.8)

where x is an arbitrary solution of system (1.1.1) with f € BV([a,b]; R™).

Alongside with system (1.1.1), we consider the corresponding homogeneous system
dx = dA(t) - x. (1.1.1p)

The assumption (1.1.3) on the regularity of the matrices is essential. We present a simple example
of a generalized ordinary differential system from [55] concerning the role of the condition.

Example 1.1.1. Let us set

At) = (g 8) for t € [o%) A(t) = (8 (1)) for t € [%1}

It is evident that A € BV([0, 1]; R?*2), do A(t) = Oaxa, d1A(t) = Ogxo for t # 1/2, and

()= 8) i n-aa(y) =3 8)
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Thus the matrix I,, — d; A(1/2) is not regular. Consider the initial value problem
dz(t) = dA(t) - z(t), z(0) = co, (1.1.9)

where cg = (coi)2q, co1,c02 € R. Let # = (x;)?2_; be a solution of the problem. Then by the
definition of the matrix-function A, we have z(t) = ¢¢ for t € [0,1/2). Moreover, by (1.1.5) we have
x(1/2=) = (I, — d1A(1/2))x(1/2), i.e., co1 = x1(1/2), and cg2 = 0. Hence problem (1.1.8) cannot
have a solution on [0,1/2] when cp2 # 0.

Let us now consider the case when cga = 0. Then the vector (z;(1/2))%_, = (¢;)%_;, where ¢; = co1
and ¢y € R is arbitrary, satisfying the last equality. Therefore, according to the equality z(t) = 2(1/2)
for t € [1/2,1], the vector-function z = (x;)2_; € BV([0, 1]; R?) defined by z1(t) = co; for t € [0,1],
and z2(t) = 0 for ¢t € [0,1/2), z2(t) = co for ¢ € [1/2,1], will be a solution of problem (1.1.9) for every
co € R.

Summarizing the above-said, we have: if cg = (cpi)?_;, where cpa # 0, then problem (1.1.9) is
unsolvable on the whole interval [0,1]; if ¢p2 = 0, then problem (1.1.9) has solutions on the whole
interval [0, 1], but the uniqueness is violated.

Note that by equalities (1.1.5), the singularities of matrices (I, + (—1)7d;A(to)) (j = 1,2) at the
initial point tg, is irrelevant for the existence and uniqueness of solutions to the initial value problem.
Therefore, problem (1.1.1),(1.1.2) is uniquely solvable for every tg € I and ¢y € R™ if and only if

det (I, + (=1)7d;A(t)) # 0 for t eI (j=1,2). (1.1.10)

Theorem 1.1.3. Let A € BV oo (I;R™™) and tg € I be such that condition (1.1.3) holds. Then the
set of all solutions x of the homogeneous system (1.1.1p) is an n-dimensional subset of BV,.(I; R™).

Theorem 1.1.4. Let A € BV oo (I;R™™) and to € I be such that the condition (1.1.3) holds. Then
there exists a unique n x n matriz-function U(t, s) defined for a <t < s <ty and tg < s <t < b such
that the matriz function X (t) = U(t, s) satisfies the matriz initial value problem

dX =dA(t)- X, X(s) =1, (1.1.11)
and
Ut,s) =U(t,r)U(r,s) for t,sel, t<r<s<tygortyg<s<r<t. (1.1.12)
In addition, if t; € I, then every solution of the homogeneous system (1.1.1¢) defined on {t € I,t < t1}
ift1 <tg and on {t € I,t > t1} if to <ty is given by the relation
z(t) = U(t,ty) z(ty) (1.1.13)
on the intervals of definition.

Theorem 1.1.5 (Variation-of-constants formula). Let A € BV ,o(I;R™ ™) and ty € I be such that
condition (1.1.3) holds. Then every solution of system (1.1.1) admits the representation

z(t) = U(t, to)x(to) + f(t) — f(to) — /ds Ult,s) - (f(s) = f(to)) for tel (1.1.14)

for every f € BVioo(I; R™), where U(t, s) is the matriz-function appearing in Theorem 1.1.4.

Proposition 1.1.3. Let the matriz-function A € BV ,.(I; R™*™) satisfy the Lappo—Danilevskii condi-
tion and condition (1.1.10) hold. Then the fundamental matriz X, X (a) = I, where a € I, of system
(1.1.10) is defined by

exp (SO(A)(t) = SO(A)(a)) H (I, + da A(T)) H (I, — di A(T))™Y for t > a,

=1 e (So(A)(1) = So(A)(@) [ Un—diA(r) J[ Un+dsA)™ for t <a. (1.1.15)

t<t<a t<r<a



14 Malkhaz Ashordia

Remark 1.1.1. In the general case, the expression of the fundamental matrix can be found, for
example, in [31,33,53].

Theorem 1.1.6. Let the matriz-function A € BV ,o(I;R"*™) be such that condition (1.1.10) holds.
Then there exists a unique n X n matriz-function U : I x I — R™ ™ such that the matrix function
X(t) = U(t,s) satisfies the matriz initial value problem (1.1.11) for every s € I. In addition, the
matriz-function U(t, s) has the following properties:

(a) U(t,t) =1, fortel;
(b) relation (1.1.12) holds for r,s,t € I;
()

U(t—,s) = (I, — diA@))U(t,s), U(t+,s) = (I, +d2A(1))U(t, s),
U(t,s) —U(t—,s) =diA@t)U(t,s), U(t+,s) —Ul(t,s) = d2 A(t)C(t,s) for s,t €I

Ut,s—) = (I, —diA(t)) U (t,s), U(t,s+) = (I, +d2A(t))'U(t, ),
Ut,s) —U(t,s—) = —(I, — diA(t)) L d1 AU (t, 5),
Ut,s+) = U(t,s) = —(I, + do A(t)) " 'do A()U(t,s) for s,t €I,

(e) det(U(t,s)) #0 fors,t€l;
(f) the matrices U(t,s) and U(s,t) are mutually reciprocal, i.e., U~1(t,s) = U(s,t) for s,t € I;
(g) Ut,s) = X(t)X1(s), where X(t) = U(t,a) for s,t € 1.

The matrix-function defined in the theorem is called the Cauchy matrix of the homogeneous gen-

eralized differential system (1.1.1p), and the matrix-function X (¢) = U(¢, a) is called the fundamental
matrix of the system.

Theorem 1.1.7 (Variation-of-constants formula). Let the matriz-function A € BVio.(I; R™ ™) be
such that condition (1.1.10) holds. Then every solution of system (1.1.1) admits the representation
(1.1.14) for every to € I.

Corollary 1.1.1. Let the matriz-function A € BVio.(I; R™ ™) be such that condition (1.1.10) holds.
Then representation (1.1.14) can be written in the form

z(t) = f(t) — f(to) +X(t){X—1(to)a:(to) - /dX_l(s) (f(s) — f(to))} for t,tg eI, (1.1.16)

to
where X is a fundamental matriz of the homogeneous system (1.1.1p).

Proposition 1.1.4. Let the matriz-function A € BV, (I; R™*"™) be such that condition (1.1.10) holds,
and let X be a fundamental matriz of the homogeneous system (1.1.19). Then

X7Ht)=X"1s) = XL)A@) + X (s)A(s) + /dX_l(T) - A(T)

S

X7Hs) = B(X L A)(t)+B(X 1 A)(s) for s,tel, s<t, (1.1.17)
and
;X)) = XN (t)d;A(t) - (I, + (—1)deA(t))‘1 for t € [a,b] (j=1,2). (1.1.18)
In addition,
dX7H(t) = =X Y (t)dA(A, A)(t) for t e, (1.1.19)

where A is the operator defined by (0.0.1).
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We give also a method of successive approximations for constructing the solution of the initial
problem (1.1.1), (1.1.2).
Here and in the sequel, we use the following designations:

Ji={tel: (-1)/(t—t) <0} (j=1,2).

Theorem 1.1.8. Let A € BV (I;R™*™) and tg € I be such that condition (1.1.3) holds, and let =
be a unique solution of the initial problem (1.1.1),(1.1.2). Then

lim () = x(t) uniformly on [a,b) (1.1.20)

k——+oo
for every [a,b] C I, where

xk(to) = Cp (k :0717...),
2o(t) = (In + (=1 d; A(t)) ‘o for teJ; (j=1,2),

w(t) = (In + (—1>jde<t>)‘1{co + [ A ma(7) + (1AW 20

+f(t) - f(to)} forteld; (j=1,2k=1,2...). (1121

1.1.2 Nonnegativity of the Cauchy matrix. The systems of linear
generalized differential and integral inequalities

In this subsection, we establish the sufficient conditions guaranteeing the nonnegativity of the Cauchy

matrix of system (1.1.1p). Moreover, we investigate the question of the estimates of solutions of linear

systems of differential and integral inequalities.

Theorem 1.1.9. Let to € I, A = (ai)ij=1 € BViee([;R™") and Q = diag(as,...,a,) €
BVioe(I; R™*™) be such that conditions (1.1.3),

L+ (=1)7dja;(t) >0 for te J;U{te} (j=1,2;i=1,...,n), (1.1.22)
det (I, + (1) d;(A(t) + Q())) #0 for te J; (j=1,2) (1.1.23)

and
(I + (=1)7d; (A(t) + Q(t))) "' > Opxn for teJ; (j=1,2) (1.1.24)

hold, where A(t) = A(t) — diag(A(t)). Let, moreover, for every j € {1,2}, the functions (—1)7+ az,
(t#k;i,k=1,...,n) be non-decreasing on the set J;. Then

U(t,s) > Opxn for t <s <ty or tg < s <t, (1.1.25)
where U is the Cauchy matriz of system (1.1.1¢).

If the matrix-function @) appearing in Theorem 1.1.9 is continuous, then the theorem has the
following form.

Corollary 1.1.2. Lettg €I and A = (aik)gszl € BV oo (I; R™™™) be such that conditions (1.1.3),

det (I, + (=1)7d;(A(t))) #0 for te J; (j=1,2) (1.1.26)

and
(In + (=1Yd; (A1) ™" > Onxn for teJ; (j=1,2) (1.1.27)

hold, where A(t) = A(t) — diag(A(t)). Let, moreover, for every j € {1,2}, the functions (—1)7+ az,
(i #k;i,k=1,...,n) be non-decreasing on the set J;. Then the conclusion of Theorem 1.1.9 is true.
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Remark 1.1.2. We will prove an estimate (see estimate (1.1.64) in the proof of the theorem) which
is more strong than (1.1.25). Note also that the condition

ld;At)|| <1 for te J; (j=1,2) (1.1.28)
guarantees the validity of condition (1.1.3). If
(L + (~1Yd; A0) ™ d,(Q(1) — ding(AM))]| <1 for t € J; (5 =1,2),
then condition (1.1.26) follows from (1.1.3). If the condition
(—1)7d;(A(t) + Q(t)) < Opxn for teJ; (j=1,2)

holds together with (1.1.26), then condition (1.1.27) holds, as well. If Q(¢) = diag(A(t)), then condition
(1.1.26) coincides with (1.1.3).

Theorem 1.1.10. Lettg € I, f € BV (I; R™) and let A = (aik)zkzl € BV oc(I; R™*™) be such that

aix (1 £k;i,k=1,...,n) are non-decreasing functions on the sets J; and Jo and the conditions
det(l, —d;A(t)) #0 for te J; (j=1,2), (1.1.29)
1-— djaii(t) >0 for t e Jj U {to} (] =1,2;i=1,... ,n) (1130)
and .
(In — de(t))f > Opxn for teJ; (j=1,2) (1.1.31)

hold. Let, moreover, a vector-function x € BVo.(I\{to},R™) satisfy be the system of linear differential
inequalities

sgn(t — to)da(t) < dA(t) - z(t) + df () (1.1.32)
on the intervals J1 and Js, satisfying the condition
w(to) + (—1)djz(to) < co + (—1) d;Ato) - co + (=1)7d; f(to) (j =1,2), (1.1.33)

where co € R™. Then the estimate
x(t) <y(t) for t €I\ {to} (1.1.34)
holds, where y € BV (I'\ {to};R™) is a solution of the system
sgn(t — to) dy = dA(t) -y + df (¢) (1.1.35)
on the intervals J1 and Js, satisfying the conditions
(—1)7djy(to) = d;Alto) - y(to) + d; f(to) (j=1,2) (1.1.36)

and
y(to) = Cp- (1.1.37)

Remark 1.1.3. It is evident that if we assume
J)(to) S Co

in Theorem 1.1.10, then inequality (1.1.34) is fulfilled on the whole I. Moreover, note that in this
case, inequalities (1.1.33) follow from the inequalities

(=1)7 dj(to) < (=1)7 d;A(t) - co+ (=1 d; f(t) (7 =1,2).
Remark 1.1.4. If for some j € {1,2} estimate (1.1.28) holds and
d;A(t) > Opxn for teJj,

then condition (1.1.31) holds, as well.
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It is clear that condition (1.1.31) automatically holds if the matrix-function A is continuous, in
particular, for the case of ordinary differential equations.

Theorem 1.1.11. Let ty € [a,b], cg € R™, f € BVoo([;R"™) and let A = (aik)ﬁkzl : I — R™X"
be a non-decreasing matriz-function satisfying conditions (1.1.29) and (1.1.31). Let, moreover, x €
BVioe(I\ {to};R™) be a solution of the system of linear integral inequalities

t

2(t) < co+ ( [ @) xo)+ 10 - f(to)> sgu(t — to) (1.1.38)

to

on the sets Ji and Jo, satisfying (1.1.33). Then the conclusion of Theorem 1.1.10 is true.

1.1.3 Auxiliary propositions. The lemmas on the general differential and
integral inequalities

Lemma 1.1.1. Let f,g,h € BV([a,b];R). Then equalities (0.0.10) and (0.0.14) hold.

Proof. First we show (0.0.10). Using (0.0.9), (0.0.11) and (0.0.12), we have
b
[ raisrs)

:/b (/f )dg(s / f(s)dg(s)+ Z dif(s)-dig(s Z d2 f(s) - dag( ))

a<s<t a<s<t
b

- / B(t) £ () dg(t) + / Mg A+ S A ) - diglt) — S h(t)daf () - daglt)

a a a<t<b a<t<b

Let us show (0.0.14). By (0.0.9), we conclude

b

b b
/ P dfEm (1) = / P At + / FE () dB(e)

= Y @ fE) - di ) D () daf (8) - dafFT(E) (m =0,k 1),

a<t<b a<t<b

Summing over m these equalities, we obtain (0.0.14). O

Lemma 1.1.2. Let g € BV([a,b]; R). Then

b
/ sen (1) dg(t) = lg(b)] — lg(a)]

+ > (lg=)—gt=)seng(t) = > (lgt+)| — g(t+)seng(t)).  (1.1.39)

a<t<b a<t<b

Proof. Tt is evident that sgn g(¢) is the break function. So, using the integration-by-parts formula and
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equality (0.0.11), we find that

b
/ sgng(t) dg(t) = g(b)sgng(b) — g(a)sgn g(a)

b
—/ (t)dsgng(t) + > dig(t)disgng(t) — > dag(t)dasgn g(t)
a a<t<b a<t<b
= lg®)| = [gla)| = > g(t)disgng(t)— > g(t)dasgng(t)
a<t<b a<t<b
+ ) dig(t)disgng(t) — Y dag(t) dosgng(t)
a<t<b a<t<b
=lg®)| = lg(a)| = > g(t—)disgng(t) = Y g(t+)dasgng(t).
a<t<b a<t<b
From this immediately follows equality (1.1.39). O

We give here the following lemma dealing with the differential inequalities.

Lemma 1.1.3. Let ty,...,t, € [a,]; ¢ = (¢:)7~; € BV([a,b;R") and (bi)},—; € BV([a,b];R"*") be
such that the functions by (i #1; 4,1 =1,...,n) are non-decreasing. Let, moreover, C = (cq)}j—; €
BV([a, b]; R™*™) be a matriz-function satisfying the conditions

5c(bi) (1) = s¢(bii) (5) < (se(cii) (B) = se(cii) (s)) sgn(t—s) for (t—s)(s—t;)>0 (i=1,...,n), (1.1.40)
(=17 (|14 (=1) " dybis ()] = 1) <dpmeii(t) for (=1) (t—t;)>0 (j,m=1,2; i =1,...,n), (1.1.41)
|Sc( i) (t) — sc(bir) (s )| < selei)(t) — selca)(s) for a<s<t<b (i#li4,l=1,...,n) (1.1.42)

and
|djba(t)] < djca(t) for t€la,b] (t#1; 1,l=1,...,n). (1.1.43)

Then every solution x = (x;)7_, of the system

dx = dB(t) -z + dq(t) (1.1.44)

will be a solution of the system

(d|xl(t)| —sgn(t —t;) Z |z (t)|deir () — sgn xi(t)dqi(t)) sgn(t —¢;) <0 (i=1,...,n),

=1

(1.1.45)
(=1 dj|zi(t;)| < Z lzi(t:)|djea(t:) + (=1) sgnai(t;)d;qi(t;) (j=1,2i=1,...,n).
Proof. First, we note that from (1.1.41) follows
djc“-(ti) Z 0, d]C”(t) 2 —1 for (—l)j(t - tl) >0 (_] = 1,2; L= ].7 N 771). (1146)

Taking into account (1.1.39) and the definition of the solution of system (1.1.44), it can be easily
shown that

t

j24(8)] — Jis)| = / 247 dselbi)(7)

+ > / 7)sgnai(r) dse(bu)(r) + Y (|2i(7)] = |zs(r—)])

l#4,1=1" s<t<t
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t

+ Z (|zi (74)| = |zi(7)]) + /sgnxi(T) dgi(7) for a<s<t<b (i=1,...,n).

s<t<t s

By (1.1.40)—(1.1.43) and (1.1.46), from the above equality, we have

|z ()] = |ai(s)] < Z/Ixz(T)ldsc(Cu)(T)Jr Y [l = lzi(r)l]
=17

s<t<t
t

5 (o)l - o)) + / s () (7)< 3 / (7)) dea(r)

s<7<t s

+ ) {m (1= daea(r)) + | zn: xl(T)dlbﬂ(T)‘|xi(7)||1d1bii(T)|}

s<T<t 1#i,1=1

_ Z {|£L’Z 1—|—dQC“(T))— ‘ xl(T)deil(T)‘ — |{E2(T)||1+d2b”(7')|}
s<7T<t I#1,1=1
t
- Z Z |z (7)|dyca(T Z Z |z (7)|d2ca(T) + /sgn x;(7)dq; (T)
s<T<tl#i,1=1 s<T<tl#i, =1 s

t

< |z (7)] deq (T) + nz;(7) dg; (T)
;8/ l l /sg q

S

+ Z {|xZ 1 —dycy(T) — |1 — dlbii(7)|) + Z |xl(7')\(|d1bil(7')| - dlcu(r))}

s<T<t 1#i,1=1

S {|xi<7>(1+dzc“<7>|1+dgbn-<v>|) 3 |$l(7)(|d2bil(7)|dzcz‘l(T))}
s<t<t 1#i,1=1

n t
< Z/|xg(7')|dcu(7') + /sgnxi(T) dg;(1) for t; <s<t<b (i=1,...,n).
=17

S

Therefore inequalities (1.1.45) are fulfilled for ¢ > ¢; and j = 2.
Analogously, we can show that

t

|z; ()] = |xi(s)] = — |z (7)| deu(T) + [ sgnxi(7)dg (1) for a<s<t<t; (i=1,...,n).
;9/ l l / g q

s
The above inequality implies (1.1.45) for ¢t < ¢; and j = 1. O
Lemma 1.1.3 has the following form for n = 1.

Lemma 1.1.4. Let tg € [a,b], a and g € BVoc([a, to[, R) N BVio.(Jto, b]; R) be such that

L+ (—=1)7 sgn(t — to)d;ja(t) > 0 for t € [a,b] (j =1,2).

Let, moreover, x € BV ,c([a, to[, R)NBV .. (]to, b]; R) satisfy the linear generalized differential inequality

sgn(t — to) dz(t) < z(t)da(t) + dg(t)

on the intervals [a,to[ and ]to,b], and

z(to+) < y(to+) and z(to—) < y(to—),
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where y € BVioe([a, to[, R) N BViee(Jto, b]; R) is a solution of the general differential equality
sgn(t — to) dy = yda(t) + dq(t). (1.1.47)

Then
z(t) <y(t) for t € a,to[U]to,b].

Lemma 1.1.5 (Gronwall). Let tg € [a,b], co € Ry, € BV([a,b];R;) and the non-decreasing
functions a, q : [a,b] = R be such that

for t € [a,b)]. (1.1.48)

2(t) < co + ‘ [ atr)datr) + 40 - ateo)
Then

z(t) < q(t) — q(to) + ’Ya(t,to){co + /’ya(s,to) < (q(s) — q(to)) dA(a, a)(s)} for t€la,b], (1.1.49)

to
where a(t) = a(t) sgn(t — to), and the function v5(t, to) is defined according to (1.1.5).
Proof. Let

for ¢ € [a,b].

t
(0= o+ | [[alr)datr) +al0) - atto)
to
By (1.1.48), it is evident that
x(t) < z(t) for t € [a,b]. (1.1.50)
First, consider the case t € [tg,b]. Assume to < b. In this case, we have

z(t) = co + /x(T) da(T) + q(t) — q(to) for t € [to,b)].

to

Then it is evident that z(t) < z(t) for t € [tg, b]. Using this estimate and the conditions of the lemma,
we have

sgn(t —to) - (2(t) — 2(s)) = 2(t) — 2(s)

t t

= /w(T) dg(t) +q(t) —q(s) < /z(T) dg(t) + q(t) — q(s) for tg <s<t<b.

S S

Analogous estimate we obtain for a < s < t < b. Therefore, the function z satisfies the general
differential inequality

sgn(t — to)dz(t) < z(t)da(r) +dq(t) for ¢ € [a,to) and t € (to,b].
Let now y be a solution of equation (1.1.47) under the condition y(to) = co. It is easy to see that
z(to+) < y(to+) and z(to—) < y(to — 0).
Therefore, by Lemma 1.1.4, we obtain
z(t) < y(t) for ¢ € [a,b].

According to (1.1.50), Corollary 1.1.1 (see (1.1.16)) and (1.1.50), estimate (1.1.49) holds. O
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Remark 1.1.5. In conditions of Lemma 1.1.5, every function « € BV(]a, b]; R ) satisfying the integral
inequality

for t € [a, b

2(t) < co+ ] / 2(7) da(r)

admits the estimate

coexp(se(a)(t) — se(a)(to)) [ A —dia(r))™" ] (1+daa(r)) for t>to,

#(t) < co exp(se(a)(to) — se(a)(t)) H_ (1+dya(r)) H_ (1 —dya(r))™" for t < to.

From the above remark, according to estimate (1.1.49), the following lemma given in [55] (see
Theorem 1.4.30) immediately follows.

Lemma 1.1.4". Let g : [a,b] — R4 be a non-decreasing function, and ¢ : [a,b] — Ry be a bounded
function, i.e., p(t) <r.

(a) If g is continuous from the right on [a,b) and if there exist nonnegative constants r1 and ro such
that

b
olt) <11+ / o(r)dg(r) for t € [a,]

then
o(t) < rrexp(ra(g(b) —g(t))) for t € [a,b].

(b) If g is continuous from the left on (a,b] and if there exist nonnegative constants r1 and ro such

that
t

o(t) <11+ 72 / o(r)dg(r) for t € [a,b]

then
o(t) < ryexp(ra(g(t) — g(a))) for t € [a,].

Lemma 1.1.6. Let tg € [a,b]; o, 8 € BV([a,b];R) and
L+ (=1)dja(t) #0 for t € [a,b] (j=1,2). (1.1.51)
Let, moreover, £ € BV([a,b];R) be a solution of the equation
d¢ = Eda(t) + dB(t).
Then

t

VY OE®) — 7 ()€ (s) = / 7Y (r) dB(r)

= > diy ) - diB(r) + Y day (1) - dafB(T) for a<s<t<b, (1.152)

s<t<t s<T<t

where v € BV ([a, b];R) is a solution of the problem

dy = vda(t), ~(tg) =1. (1.1.53)
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Proof. By (1.1.51), problem (1.1.53) has the unique solution v and ~(t) # 0 for t € [a, b].
Let a < s <t <b. Due to the integration-by-parts formula (0.0.9) and (1.1.17), we have

YTHBER) =7 (5)E(s)

~ [viden+ [enaTio - X dn i) dse + Y dn ) i)

s<t<t s<T<t
t

=/t7_1(7)§(7) da(T)Jr/v‘l ) dB(7) +/t£ (1) dy~'(7)

S

= Y dy M) () daal(r) + diB(n)) + D doyTH(T) - (€(7) doa(r) + daB(T))

s<T<t s<t<t
and
7D =171 - [47 o) dato)
Z diy o) - dia(o Z doy™ 1 ) - doa(o) for s <1 <t.
s<o<T s<o<T
Therefore, (1.1.52) holds, since by the latter equality,
t t
[ewarin=- / §(r)y™(7) do(r)
S
—|—Z§ Y1y~ H(7) - dia(T Z{“ Ydoy " (7) - daa(r) for s <t. O
s<T<t s<T<t

1.1.4 Proof of the results

Theorems 1.1.1, 1.1.2 and Propositions 1.1.1, 1.1.2 (except equality (1.1.19)) follow immediately from

the corresponding results of [53] (see Part III).
Let us show equality (1.1.19). By (1.1.17), using the integration-by-parts formula, equalities

(1.1.18) and the definition of the operator A, we obtain

Xty —Xx"1s) = —/X_l(T) dA(T) + Z di XH7) - diA(T) — Z do X H(7) - dy A(T)

_ / XY Z X~ ) (In — i A1)~ di A(r)
+ 3 X DMBAR) - (I + AW Al / X

for a < s <t <b. Thus equality (1.1.19) holds on [a, b].
Proof of Theorem 1.1.8. By (1.1.3), according to Theorem 1.1.1, problem (1.1.1),(1.1.2) has the

unique solution .
Let us show (1.1.20). Let

A(t) + (=1)7d;A(t) for t € Jj,
Alto) for t¢J; (j=1,2).
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Then, by (0.0.7) and (1.1.21),

() = (I + (—1)7d; A1)

X {CO—I—/dAj(T) cxp_1 () + f(1) —f(to)} for teJ; (j=1,2k=12...). (1.1.54)

Besides, in view of (1.1.3), there exists a positive number r such that
[(Jn + (=1)7d; A() ]| < % for teJ; (j=1,2). (1.1.55)

Put

Ios (1) = H [avan@ lal| + V(o -V for teab G=1.2

and
1y (6) = [V(A)(0) = V(A)(to)]| for telat] (=1,2),

It is evident that the functions (—1)7*1/,,; (m = 0,1) are non-decreasing on .J; for every j € {1,2}.
In addition, l1; is continuous from the left on Jp, and 15 is continuous from the right on J;. Taking
into account this, (0.0.14), (1.1.54) and (1.1.55), and using the inductive method, it is not difficult to
verify that

rk

|k (t) — zr_1(2)|| < mloj(lf)llﬁ_l(t) for teld;, (j=1,2; k=1,2,...).

It follows from this that the functional series

wo(t) + Y (wk(t) — zx_1(t))

k=1

converges uniformly on [a, b], because the convergent series

oo rk;,,,llcfl
[coll + 705 Z ﬁ ;
k=1 ’

where
Tmj =sup {lm;(t) : t € J;} (m=0,1),
majorizes it on every J; U {to} ( = 1,2).
Let a vector-function x, : [a,b] — R™ be such that

lim z(t) = z.(¢) uniformly on [a,b]. (1.1.56)

k— 400

¢
Then, by Theorem 1.4.17 from [55], the integral [ dA;(7) - z.(7) exists and
to

t t

kginoo dA; (1) - xp—1(T) = /dAj(T) -z, (1) for t €a,b] (j=1,2).

The latter equality, (1.1.54), (1.1.56) and the definition of A; (j = 1,2) imply
t
2. (1) :co+/dA(T)~x*(T)+f(t)—f(to) for ¢ € [a, 1],
to

Hence z. € BV([a,b];R™) and it is a solution of problem (1.1.1),(1.1.2). But the latter problem has
the unique solution x. Therefore, (1.1.20) follows from (1.1.56). O
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Proof of Theorem 1.1.9. Let s € I (s # to) and j € {1,2} be such that s € J;. Let k € { 1,...,n} be
fixed, and let ug(t, s) = (u(t, s))"_; be the k-th column of the matrix U(t, s).
Assume

y(t) = (yit))iz, for te Jj,
yi(t) =75 He)(t) - uin(t,s) (i=1,...,n),
where v, () () = v () (8) - (i) (), and v(;)(t) is a solution of problem (1.1.4) for a(t) = a;(t).

Here, in view of (1.1.5) and (1.1.22), v(a;)(t) is positive for t € J;.
According to Lemma 1.1.6 and the integration-by-parts formula, we find

t

— Z dﬂs ai)(7) - wk (T, 8) dyug (1 Z dg’ys ai)(T) - wg (7, 8) douy (T ))

r<r<t r<r<t

n t

= > ([ s dscfun) (o)

£, 1=1
+ Z s M) (7=) - wk (7, 5) dywa (7 Z s M) (T4) - wk (7, 5) daua (7 ))
- 1) (7) - s(an) (P (r) dse(ua) (7)
l;ﬁ%:zl <T/’Y Vsl Ui l
+ 3 @) e dan) + 3 a7 @) e >d2u“<7>)

for a<7<t<b (i=1,...,n).
Hence y = ()7 is a solution of the initial problem
dy = dA™(t) -y, y(s) = ex,
where ey = (dix)iy, A*(t) = (aj(t))7 =1, aj;(t) =0 and

t

ay(t) = /'y;l(ai)(T) vs(a)(T)day(r) (i #£1 i,l=1,...,n).

S

In view of the conditions of the lemma, the functions (—1)7™'a}, (i # I; i,l = 1,...,n) are non-
decreasing on J;.
Let
As(t) = diag(ys(a1)(t), ..., vs(an)(t)) for t e J;.

Using (1.1.18), for the matrix-function Q(t), we have

L + (=1 djA*(t) = L + (1) (AT (1) + (1) d; AT (¢ )) ( ) As(?)
=1In - (AZl(t) ( Jd AT () (I + (=1 d;Q(1)) As ()
+ (AT () + (1) d AT () (T + (—1)7d; (A(t) + ( )))As( ) for t € Jj

and

L+ (=17 d; A" (t) = (ATHE) + (1) dyAT () (I + (—1)7d; (A(t) + Q(t)))As(t) for t € J;. (1.1.57)
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Hence, due to (1.1.23), we obtain
det(I, + (—1)7d;A*(t)) # 0 for t € J;.
Therefore, according to Theorem 1.1.8,

lim z,(t) = y(¢t) uniformly into Jj;, (1.1.58)

m——+oo
where

zm(s) =er (m=0,1,...),

20(t) = (In + (=17 d; A*(1)) " 'ey for (—=1)/(t—s) <0, ;s5,t € .Jj,
(1.1.59)

t
for (=1)7(t—s) <0, s,t€J; (m=1,2,...).
Taking into account the equalities
deS(t) = dJQ(t) . As(t) for t € Jj,
from (1.1.57) we get
I, + (=1)7d; A*(t)
= (AT ) + (1) AT @) (In + (=1)7B;(1)) (As(t) + (1) djAs(t)) for t € J;, (1.1.60)
where _ ‘ .
Bj(t) = d; A(t) (I, + (—1)d;Q(t))
Based on this, it is not difficult to verify that
(I + (=1Y B; (1)) "' = (In + (=1) d;Q(t)) (I, + (=1)7 d;(A(t) + Q(t))) " for t € J;.
Taking into account the above equality, by (1.1.22) and (1.1.24) we have
(I, + (=1Y B;(t)) " >0 for t € J;.

Therefore, due to (1.1.60),

(I + (=17 d;A*(£)) ™" > Opxn for t € Jj, (1.1.61)

since by (1.1.22) we have
As(t) > Opxp for t e Jj. (1.1.62)

(1.1.59) and (1.1.61) imply the estimates
2 (t) > (In + (1Y d; A* (1)) ex for (=1)/(t—5) <0, t,s€J; (m=0,1,...),

where ey = (dix)}';=; (dir is the Kronecker symbol).
Using now (1.1.58) and (1.1.59), we obtain

y(s) > er, y(t) > (I, + (fl)jde*(t))flek for (—=1)7(t—s) <0, t,s€Jj. (1.1.63)
On the other hand, by the equalities

y(t) = A; (t) ug(t,s) for t e Jj,
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inequalities (1.1.63) imply

uk(t, s) > Ay(t) (I, + (=1 d; A* (1)) ex for (=1)(t—s) <0, t,s€J;.

Since the latter inequalities are fulfilled for every k € {1,...,n}, we have
U(t,s) > Ag(t)(In + (—l)jde*(t))71 for (—=1)7(t—s) <0 (j=1,2). (1.1.64)
So, by virtue of (1.1.61) and (1.1.62), condition (1.1.64) implies estimate (1.1.25). O

Proof of Theorem 1.1.10. Assume t; < sup I and consider the interval {¢ € I : ¢ > ¢p}. Then problem
(1.1.35)—(1.1.37) has the form

dy = dA(t) -y +df(t) for t > tg, y(to) = co.
Let Z (Z(tg) = I,,) be a fundamental matrix of the system
dz = dA(t) -z for t > tp. (1.1.65)

Then by the variation-of-constants formula (see (1.1.14)),

t

y(t)=f<t>—f<s>+Z<t>{Z—1<s>y<s>— / dZ‘l(T)-(f(T)—f(s))} for st >t (1.166)

S

g(t) = —x(t) + z(to) + /dA(T) ~z(7) + f(t) — f(to) for t > to.

Evidently,
§ dx(t) = dA(t) - z(t) + d(f(t) — g(t)) for t > to.

Let € be an arbitrary small positive number. Then

2(t) = F(8) - f(to+ ) — g(t) + glto + &) + Z<t>{21<to T e)elty +<)

— / dZ_l(T)-(f(T)—f(t()+€)—g(7)+g(to+s))} for t > to+e.

fote
Hence, by (1.1.66), we get
x(t) = y(t) + Z(t)Z 7 (to + ) ((to +€) — y(to + ) + ge(t) for t >ty +e, (1.1.67)
where t
9e(t) = —g(t) + g(to +¢) + Z(t) / dZ=(7) - (9(r) = g(to +€)).

to+e

Using the integration-by-parts formula, we have

gelt) = — / Ut r)dseg)(r) — Y Ut 7—) dag(r)

tote tote<T<t

— Y U(t,7+)dag(r) for t >tg+e, (1.1.68)

tote<t<t

where U(t,7) = Z(t)Z~1(7) is the Cauchy matrix of system (1.1.65).
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On the other hand, conditions (1.1.29)—(1.1.31) guarantee conditions (1.1.22)—(1.1.24). Hence,
according to Theorem 1.1.9, where Q(t) = diag(A(t)), estimate (1.1.25) holds, and by (1.1.68),

ge(t) <0 for t >tg+e¢,
since by (1.1.32), the function g is non-decreasing on |tg,b]. Hence, this and (1.1.67) result in
x(t) <yt)+U(t,to+e)(z(to+¢) —y(to+¢)) for t >ty +e.

Passing to the limit as e — 0 in the latter inequality and taking into account (1.1.25) and (1.1.33),
we get
x(t) < y(t) for t >ty

since by (1.1.36) and (1.1.37),
y(to+) = co + d2A(to) - co + da f(to).
Analogously, we can show the validity of inequality (1.1.34) for ¢ < tg. O
In particular, Theorem 1.1.10 yields Theorem 1.1.11.

Proof of Theorem 1.1.11. Let us introduce the vector-function

2(t) =co + (/dA(T) cx(T)+ f(t) — f(t0)> -sgn(t —tg) for t € 1.

to

It is clear that z € BVj,.(I\ {to}; R™). Moreover, due to (1.1.38), the function z satisfies (1.1.33) and
x(t) < z(t) for tel. (1.1.69)

Since A is a non-decreasing matrix-function, from the latter inequality we find that = satisfies (1.1.32)
on the intervals J; and Jy. Therefore, according to Theorem 1.1.10 and (1.1.69), the theorem is
proved. O

1.2 The well-posedness of the initial problem

1.2.1 Statement of the problem and formulation of the results

Let Ag € BV (I; R™™), fo € BVioe(I;R™) and tg € I, where I C R is an arbitrary interval non-
degenerated at the point. Consider the system

dx = dAo(t) -z +dfo(t) for t el (1.2.1)

under the initial condition
x(to) = Cop, (1.2.2)

where ¢p € R™ is an arbitrary constant vector.
Let zo be a unique solution of problem (1.2.1), (1.2.2).
Along with the initial problem (1.2.1),(1.2.2), consider the sequence of the initial problems

dx = dAg(t) -« + df(t), (1.2.1%)
l'(tk) = Cj (122k:)

(k= 1,2,...), where Ay € BVio(L;R™™) (k= 1,2,...), fr € BVioo( 3R (k= 1,2,...), tp € [
(k=1,2,...)and ¢, e R" (k=1,2,...).
If t € I, then we denote I; = I\ {t}. Moreover, we use the designations

|z]le = sup {||z(t)]| : t € I; (1) (t —tx) > 0} for z € BV(I;R") (I=1,2;k=0,1,...).
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We assume that Ay = (axit)j—; and fr = (fr)iz; (K =0,1,...) and, without loss of generality,
either tp <tg (k=1,2,...),orty =ty (k=1,2,...),0or t, >to (k=1,2,...).

In this section, we establish the necessary and sufficient and the effective sufficient conditions for
the initial problem (1.2.1;), (1.2.2;) to have a unique solution xj, for any sufficiently large k and

kEr—iI-loc g (t) = x0(t) (1.2.3)
kligloo (z1() + A xi(t)) = zo(t) + Agyo(t) (1.2.4)

uniformly on I, where A¢, zx(t) (k=0,1,...) are the functions defined by (0.0.6).
Note that by (0.0.6) we have

xp(t—) for t <y,
.%‘}g(t) + Athk(t) = z(ty) for ¢t =ty,
xp(t+) for t >t

(k=0,1,...).
Along with systems (1.2.1) and (1.2.1;), we consider the corresponding homogeneous systems
dx = dAo(t) - x (1.2.1p)
and
dr = dAg(t) - (1.2.1x0)

for any natural k.
Definition 1.2.1. We say that the sequence (A, fi;tr) (kK =1,2,...) belongs to the set S(Ao, fo;to)
if for every ¢y € R™ and a sequence ¢, € R™ (k=1,2,...) satisfying the condition

lim ¢, = co, (1.2.5)

k—+oco

problem (1.2.1), (1.2.2;) has the unique solution zj, for any sufficiently large &, and condition (1.2.3)
holds uniformly on I.

We also consider the case where the condition

li i = Cp; 1.2.5;
k_}lfoo Ckj = Cojs (1.2.55)
if 5 € {1,2} is such that (—=1)7(t, —to) >0 (k= 0,1,...), holds instead or along with (1.2.5), where
Ckj = Ck + (—1)j (dek(tk)ck + djfk(tk)) (j =1,2, k=0,1,... ) (126)

Note that if
kEIJPoo dek(tk) = deO(tU) and k£r+noo djfk(tk) = djfo(to) (127)

for some j € {1,2}, then condition (1.2.5;) follows from (1.2.5).

Definition 1.2.2. We say that the sequence (Ag, fx;tx) (kK =1,2,...) belongs to the set Sa (Ao, fo; to)
if for every ¢p € R™ and a sequence ¢, € R™ (k = 1,2,...) satisfying condition (1.2.5;), problem
(1.2.1%), (1.2.2%) has the unique solution z, for any sufficiently large k, and condition (1.2.4) holds
uniformly on 1.

It is evident that S(Ao, fo;t0) C Sa(Ao, fo;to), but the inverse inclusion is not true, in general.
The corresponding example can be easily constructed based on the Example 1.2.1 given below.
From equalities

zp(t—) = (I, — diA(t))zk(t) and z(t+) = (I, + d2 A(t))zr(t) (K=0,1,...)

follow some conditions guaranteeing the inverse inclusion Sa (Ao, fo;to) C S(Ao, fo;to)-
We consider separately the cases of the sets S(Ag, fo;to) and Sa (Ao, fo;to)-
First, we give the results concerning the set S(Ao, fo;to)-
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Theorem 1.2.1. Let Ag € BV(I;R"*"), fo € BV(I;R"), ty € I, and the sequence of points ty € T
(k=1,2,...) be such that

det (I, + (=1)7d;Ag(t)) #0 for t €I, (=1)7(t—ty) <0
and for t =ty if j € {1,2} is such that (—1)7(t, —to) >0 for every k€ {1,2,...} (1.2.8)

and
kBIJPoo tk = t(). (129)
Then
((Ak, frste)) {27 € S(Ao, fosto) (1.2.10)
if and only if there exists a sequence of matriz-functions Hy, € BV(I;R"*"™) (k=0,1,...) such that
inf { | det(Ho(t))|: t € I} >0, (1.2.11)
and the conditions
lim Hy(t) = Ho(t), (1.2.12)
k— 400
. ¢
lim {HDI(A]C, Hk; Ao, H())(T)’ H (1 + ‘ \/ (DI(Ak, Hk; Ao, HO)) D } = 0, (1213)
k— o0 t b
. t
kll)lf {HDB(fk,Hk;meo)(T)’t H (1 + ’ \/ (DI(Akka§A07H0)>D} =0 (1.2.14)
o0 k
ty

hold uniformly on I, where the operators Dz and Dp are defined, respectively, by (0.0.4) and (0.0.5).

The following theorem together with Remark 1.2.1 is analogous of the Opial type theorem (see [46])
concerning the case of ordinary differential equations.

Theorem 1.2.2. Let Ay € BV(I;R"*"), fo € BV(I;R™), ¢y € R"™, to € I, and the sequence of points
ty €I (k=1,2,...) be such that conditions (1.2.8) and (1.2.9) hold. Let, moreover, the sequences of
matriz- and vector-functions Ay € BVioo(L;R™ ™) (k=1,2,...) and fr, € BV ([;R™) (k=1,2,...)
and bounded sequences of constant vectors ¢, € R™ (k=1,2,...) be such that conditions (1.2.5;),

lim  sup {||Akj(t) — Ao (1+| \t/(Ak - AO)D} =0 (1.2.15)

k—+o00 teT, t£t,

and

k=400 ter, t=£ty,

t
lim  sup {”fkj(t) — fosl (1 + ’ \/(Ak - AO)D} =0 (1.2.16)
tr
hold if j € {1,2} is such that (—1)7(ty —to) > 0 for every k € {1,2,...}, where c¢; (k=0,1,...) are
defined by (1.2.6),
A (t) = (1) (Ap(t) — Ax(tr)) — djAx(te) (7 =1,2k=0,1,...)
and
Fos () = (1) (Fut) = fr(tn)) — difu(tr) (G =1,2k=0,1,...).
Then the initial problem (1.2.1;), (1.2.2x) has the unique solution xj for any sufficiently large k and

lim  sup |lzk(t) — zo(t)|| = 0. (1.2.17)
k—+4oc0 tel, t#£ty,
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Remark 1.2.1. In Theorem 1.2.2, it is evident that the sequence zy (k = 1,2,...) converges to xg
uniformly on the set {t € I,t <to} if tx, > to (k=1,2,...), and on the set {t € I,t > to} if ¢t < to
(k=1,2,...). Moreover, in Theorem 1.2.2, if conditions (1.2.15) and (1.2.16) hold uniformly on the
set I, then these conditions are equivalent, respectively, to the conditions

gg;ﬁw%w—Aum»—maw—mﬁwm@+¢9uu—A@D}=o (12.18)
and
ggiwnm—nm»—mw—mmmMuﬂQmwﬁmD}=o (1.219)

uniformly on I, since (1.2.15) and (1.2.16) imply that

lim d; Ak( ) = deo(t) and kEToo d]fk(t) = djfo(t)

k—+o00

uniformly on I for every j € {1,2}. In addition, equalities (1.2.7) hold and therefore, in view of
(1.2.4) and (1.2.6), conditions (1.2.5;) (j = 1,2) hold, too. Thus, in this case, condition (1.2.3) holds
uniformly on I.

Theorem 1.2.3. Let Ay € BV(I;R"*"), f& € BV(I;R"), ¢ € R, tg € I, and a sequence of points
trp el (k=1,2,...) be such that condition (1.2.9) holds,
det (I, + (=1)7d;A5(t)) # 0 for t €I, (—1)7(t—ty) <0
and for t =to if j € {1,2} is such that (—1)7(t, —to) >0 for every k€ {1,2,...}, (1.2.20)

and the initial problem

dx = dAS(t) - = + df (t), (1.2.21)
x(to) = ¢ (1.2.22)
has a unique solution x. Let, moreover, the sequences of matriz- and vector-functions Ay, Hy, €

BViee(I;R™™™) (k=1,2,...) and fix,hr € BVioo(I;R™) (k=1,2,...) and the sequence of constant
vectors ¢, (k=1,2,...) be such that the sequence ¢ € R™ (k=1,2,...) is bounded and the conditions

inf { |det(Hy(t)| : t € I, } > 0 for every sufficiently large k, (1.2.23)
kEI—iI-loo Chj = Cojs (1.2.24)

)} =0 (1.2.25)

t
lim  su Az (t) — Ap,(t 1—1—‘ Ay, — Af
Jm e, {450 = 45,001 (15 | Vi — 4

)}=o0 (1.2.26)

k——+o0 tel, t#ty,

i s {150 - 75 1(1+ | V4z - 43

hold for j € {1,2} being such that (—1)7(tx —to) > 0 for every k € {1,2,...}, where

R (t) = (=17 (A5 (t) — Ax(te)) — d; A (tr) and
S @) = (=17 (fr () = fr(tr)) —djfi(te) for tel (j=1,2; k=0,1,...);
AL(t) = Z(Hy, Ag)(t) and fi(t) = hi(t) — hi(te) + B(Hg, fi)(t)

t

—B(Hg, fr)(tr) — /dAZ(s) chi(s) for tel (k=1,2,...);

tr
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CZ = Hk(tk)ck + hk(tk) (k =1,2,.. .),
chj = cn+ (1) (dj Ap(tr) ek + d fi(ty)) (G =1,2; k=0,1,...).

Then problem (1.2.1y),(1.2.2%) has the unique solution xy for any sufficiently large k and

lim  sup ||Hg(t)zg(t) + hi(t) — 25 (t)| = 0. (1.2.27)
k—+00 te] t£t),

Remark 1.2.2. In Theorem 1.2.3, the vector-function 7 (t) = Hy(t) 1 (t) + hi(t) is a solution of the
problem

do = dAL(t) -z + df (1), (1.2.21;)
.T(tk) = Cz (1222k>
for every sufficiently large k.

Remark 1.2.3. It is evident that if condition (1.2.3) holds uniformly on I, then condition (1.2.17)
holds, as well. But the inverse proposition is not true, in general.

We give the corresponding example, which is simple modification of the one given in [32,56].
Example 1.2.1. Let I =[-1,1],n =1, and o, (k =1,2,...) and B; (k =1,2,...) be, respectively,
an arbitrary increasing in [—1,0) and decreasing in (0, 1] sequences such that

lim ap = lim B =0 and lim v = € [0,1),
k—o0 k—o0 k—o0

where v, = ax (o — Be) L.
Let tp =to =0 (k=1,2,...), cx = exp(yx —Y0)co (kK =1,2,...), where ¢ is arbitrary, fx(t) =
fo®) =0, (k=1,2,...),

0 for t € [—1, ag],
Ak(t) = (t — ak)/(ﬂk — ak) for t € [akhﬁkL
1 for t €]Bk,1] (k=1,2,...).

It is not difficult to verify that the unique solution of the corresponding homogeneous initial
problem has the form

Ck for t € [—1, ag],
x(t) = § cx exp (t(Be — o) ™h)  for t € [ag, Brl,
cx exp(1) for t €8k, 1] (k=1,2,...).

So, condition (1.2.17) holds, where
o for t € [-1,0[,
zo(t) = { co exp(yo) for t =0,
co exp(l) for t €]0,1],
but (1.2.3) does not hold uniformly on [0, 1], since the function z((¢) is discontinuous at the point

t=0.
On the other hand, in the “limit” equation

dx = dA§(t) - =,
where the function A§ is defined as

0 for te[-1,0],
Aj(t) =< v for t=0,
1 for t€)0,1],
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and, therefore, the unique solution of the equation under the condition z(0) = co(1 — 40)~* has the
form

Co for t € [-1,0[,
z5(t) = { co(l — o) " for t =0,
co(2—70) (1 =)' for ¢t €]0,1].

It is evident that xf # 0.
On the other hand, xg is the solution of the initial problem

dx = dAo(t) -z, x(0) = coexp(yo),
where

0 for ¢t € [-1,0],
Ap(t) =< 1 —exp(—0) for t =0,
exp(1 — o) — exp(—0) for ¢ €]0,1].

The obtain “anomaly” corresponds to the statement of Theorem 1.2.3, in particular, to condition
(1.2.27), where Hi(t) = I, (k=1,2,...), and

co — Ck for t € [-1, agl,
hi(t) = § co(1— 7)™ — cx exp (H(Bx — aw) ™) for t € [an, B,
co(2 —vk) (1 — k)™t — ¢k exp(1) for t €16k, 1] (k=1,2,...).

Indeed, in view of Remark 1.2.2, the function z}(¢) = x(t) will be a solution of the problem
de = dAL(t) -z, x(0) = co(l —~)"*
for every natural k, where

0 for te[-1,au],
Ap(t) = ¢y for t € [ag, Bkl (k=1,2,...).
1 for t €]B,1]

So, due to the conditions lim -~ = 7y, we have
k——+oco
im  sup [Af(E) — 45(0)] = 0.
k— 400 tel, t#£ty

Below, we consider, mainly, the well-posedness question only on the whole interval I. For the last
case, instead of (1.2.24) we consider the condition

lim ¢}, = ¢, (1.2.28)

k—+o00

and instead of conditions (1.2.25) and (1.2.26), we consider, respectively, the conditions

)}:0 (1.2.29)

k—+o00

lim {||<A;;<t> — Aj () = (45(0) — A5 (0))|| (1 + | V(47 — 47)

and

k— 400

i {100 = £ 000) = (550 - Fan | (1 + Vi - 43 ) -0 (1.2:30)

uniformly on I.
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Corollary 1.2.1. Let Ay € BV(I;R™*"), fo € BV(I;R"), ¢ € R™, ty € I and the sequences
A € BV(L;RY™™) (k=1,2,...), f e BV;R") (k=1,2,...), g e R" (k=1,2,...) and tpy € I
(k=1,2,...) be such that conditions (1.2.8), (1.2.9), (1.2.11) and

lim (er — @r(tr)) = co (1.2.31)

k—4oc0

hold, and conditions (1.2.12), (1.2.13) and

; +/dI(Hk7Ak)(T) - or(T)

k——+o00

lim {HDB(fk — r, Hy; fo, Ho)(T)

X (1 + ‘ \t/ (DI(Ak,Hk;AO,HO))D} —0 (1.2.32)

hold uniformly on I, where Hi € BVoe([;R™*™) (k = 0,1,...), pr € BVio (;R™) (k= 1,2,...),
and the operators Dg and Dz are defined, respectively, by (0.0.4) and (0.0.5). Then problem
(1.2.1g), (1.2.2) has the unique solution xy, for any sufficiently large k and

lim [zx(t) — er(t) — zo(t)] =0 (1.2.33)

k——+oo
uniformly on I.

Below, we will give some sufficient conditions guaranteeing inclusion (1.2.10). Towards this end,
we establish a theorem, other than Theorem 1.2.1, concerning the necessary and sufficient conditions
for the inclusion, as well as the corresponding propositions.

Theorem 1.2.1'. Let Ag € BV(I;R"*"), fo € BV(I;R"), to € I and the sequence of points ty, € T
(k=1,2,...) be such that conditions (1.2.8) and (1.2.9) hold. Then inclusion (1.2.10) holds if and
only if there exists a sequence of the matriz-functions Hy € BV ,.(I;R™*™) (k = 0,1,...) such that
conditions (1.2.11) and

1}1:3?;5 \/(Hyi + B(Hi, Ap)) < 400 (1.2.34)
hold, and conditions (1.2.12), I
i (B(Hy, Ap)(£) = B(Hy, A)(tx)) = B(Ho, Ao)(t) — B(Ho, Ao)(to) (1.2.35)
and
i (B(Hk, fi) (t) = B(Hy, fi)(tx)) = B(Ho, fo)(£) = B(Ho, fo)(to) (1.2.36)

hold uniformly on I.

Remark 1.2.4. Due to (1.2.11), (1.2.12), there exists a positive number r such that
¢
sup{ \ \/(I(Hk,Ak))\ te 1} < r\/(Hi + B(Hy, Ay)) (k=0,1,...).
to T

In addition, in view of Lemma 1.2.4 (see below), by conditions (1.2.35) and (1.2.36), we get

t
lim “Dz(Ak,Hk;Ao,Ho)(T)

k—+o00 L

=0

uniformly on I. Therefore, owing to (1.2.34) and (1.2.36), conditions (1.2.13) and (1.2.14) hold
uniformly on I.
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Theorem 1.2.1”. Let conditions (1.2.9) and
det (I, + (=1)7d;Ay(t)) #0 for t €[a,b] (j=1,2; k=0,1,...)
hold. Then inclusion (1.2.10) holds if and only if the conditions

lim X, '(t) = X, ' (t) (1.2.37)

k—+o00

and

lim (BX:Y fo)(t) — BOXE fo)(te)) = B(Xy ™, fo)(t) — B(Xg ™, fo)(to)

k—+4o00

hold uniformly on [a,b], where Xy, is the fundamental matriz of the homogeneous system (1.2.1y0) for
every k € {0,1,...}.

Theorem 1.2.2". Let Ag € BV(I; R™*™), fo € BV(I;R"™), ¢g € R", tg € I and the sequence of points
tp € I (k=1,2,...) be such that conditions (1.2.8) and (1.2.9) hold. Let, moreover, the sequences
Ap € BVio(LR™™) (k=1,2,...), fi € BVioo(;R?) (k=1,2,...) and ¢y € R (k=1,2,...) be
such that conditions (1.2.5) and

limsup \ /(4x) < 400 (1.2.38)
k—-+o0 I
hold, and the conditions
kHToo (Ak(t) — Ak(tk)) = Ao(t) — Ao(to) (1239)
and
kglfoo (fr(t) = fr(tr)) = fo(t) — fo(to) (1.2.40)

hold uniformly on I. Then the initial problem (1.2.1;),(1.2.2x) has the unique solution xy, for any
sufficiently large k and condition (1.2.3) holds uniformly on I.

Theorem 1.2.3'. Let A§ € BV(L;R"*"), f§ € BV(I;R"), ¢ € R", ty € I and the sequence of
points tr, € I (k=1,2,...) be such that conditions (1.2.9) and (1.2.20) hold, and the initial problem
(1.2.21),(1.2.22) has a unique solution xy. Let, moreover, the sequences Ay, Hy € BV (I; R™*™)
(k=1,2,...), fe,ht € BVioo(;R™) (k=1,2,...) and ¢, € R™ (k=1,2,...) be such that conditions
(1.2.23),

lim (Hg(tg)cx + hk(tk)) =c} (1.2.41)
k— 400
and
lim sup \/(A}) < 400 (1.2.42)
k—+oco I
hold, and the conditions
lim (AZ(t) — A,’;(tk)) = A5(t) — Aj(to) (1.2.43)
k—4o00
and
m (fi (1) = fi(t) = fo (8) = £ (to) (1.2.44)
— o0

hold uniformly on I, where the matriz-functions Aj(t) (k = 1,2,...) and vector-functions f;(t)
(k=1,2,...) are defined as in Theorem 1.2.3. Then problem (1.2.1;), (1.2.2%) has the unique solution
xg for any sufficiently large k and condition (1.2.27) holds uniformly on I.

Corollary 1.2.1'. Let Ay € BV(I;R™*"), fo € BV(I;R"), ¢y € R", ty € I, and the sequences
A € BVioo(LR™™) (k= 1,2,...), fi € BVioo( 3R?) (k= 1,2,...), cr, € R* (k= 1,2,...) and
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tr €1 (k=1,2,...) be such that conditions (1.2.8), (1.2.9), (1.2.11), (1.2.31) and (1.2.34) hold, and
conditions (1.2.12), (1.2.35) and

t

lim (B(Hkafk — ) (t) — B(Hg, fr — or)(te) + /dB(Hk,Ak)(T) : @k(T))

k— o0
ty

= B(Ho, fo)(t) — B(Ho, fo)(to) (1.2.45)

hold uniformly on I, where Hy, € BV oo (I; R™*™) (k= 0,1,...), and v € BVoe([;R™) (k=1,2,...).
Then problem (1.2.1;), (1.2.2x) has the unique solution xzy for any sufficiently large k and condition
(1.2.33) holds uniformly on I.

Corollary 1.2.2. Let Ag € BV(I;R™*"), fo€ BV(I[;R"), to €1, and the sequences Ay € BV, (I; R™*™)
(k=1,2,...), fr € BVioe(;R") (k=1,2,...) and ty, € I (k =1,2,...) be such that conditions
(1.2.9), (1.2.11) and (1.2.34) hold, and conditions (1.2.12),

kEI-Poo/Hk )dAg(s /Ho )dAp(s (1.2.46)
kgr—ir-loo/Hk dfk /HO dfo (1247)
kET A = dAo(t) (G = 1.2), (1.2.48)
Jim difi(t) = difolt) (5=1,2) (1.2.49)

hold uniformly on I, where Hy, € BVoo(I; R™"*™) (k= 0,1,...). Let, moreover, either

limsup Y ([ Ar(t)]| + lld; f(®)]]) < +o00 (5 =1,2) (1.2.50)
k—too Yo7
or
limsup Y _ [|d; H(t)]| < +o0 (j = 1,2). (1.2.51)
k—4o00 tel

Then inclusion (1.2.10) holds.

Corollary 1.2.3. Let A€ BV(I;R™ "), fo€ BV(I[;R"), to €1, and the sequences Ay € BV, (I; R"*™)
(k=1,2,...), fr € BVioe(l;R") (k=1,2,...) and ty € I (k= 1,2,...) be such that conditions
(1.2.9), (1.2.11) and (1.2.34) hold, and conditions (1.2.12), (1.2.39), (1.2.40),

kEToo/de(s) CAp(s) = A*() — A* (ko) (1.2.52)
and
Jlim / dHy () - fuls) = F*(t) = f*(to) (12.53)

hold uniformly on I, where Ho(t) = I, Hy € BVioe([;R™™) (k =1,2,...), A* € BV(I;R"*") and
f* € BV(I;R™). Let, moreover, system (1.2.21), where A§(t) = Ao(t) — A*(¢), f5(t) = fo(t) — f*(¢),
have a unique solution satisfying condition (1.2.2). Then

(A, fr tr))i23 € S(AG, fo3 to)-
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Corollary 1.2.4. Let Ao e BV(I;R"*™), fo € BV(I;R"), to €I, and the sequences Ar, € BV (I; R™*™)
(k=1,2,...), fr € BVio(I;R") (k=1,2,...) and ty, € I (k= 1,2,...) be such that conditions
(1.2.8) and (1.2.9) hold. Let, moreover, there exist a natural number m and matriz-functions B; €

BViee(I;R™™) (j =1,...,m — 1) such that

1;13i1£\1/(,4km) < 400 (1.2.54)
and the conditions
S (A (t) = Arj(te)) = B;(8) = Bj(to) (j=1,...,m 1), (1.2.55)
i (A (8) = Apn(81)) = Ao(1) — A(t0), (1.2.56)
L (fem () = frm(t)) = fo(t) = folto) (1.2.57)

hold uniformly on I, where

Apj(t) = Hy j—1(t) + B(Hg j—1, Ap)(t),  fioj(t) = B(Hy j—1, fr)(1)
fortel (j=1,....m; k=1,2,...);
Hio(t) = In, Hyj(t) = (In — Ag;j(t) + Ag;(tr) + Bj(t) — B;(to)) Hr j—1(t)
fortel G=1,....m—1k=12_..).

Then inclusion (1.2.10) holds.

If m = 1, then Corollary 1.2.4 coincides with Theorem 1.2.2’.
If m = 2, then Corollary 1.2.4 has the following form.

Corollary 1.2.4'. Let Ay € BV(I;R"*"), fo € BV(I;R"), tg € I, and the sequences Ay €
BVioe(;R™™ ™) (k=1,2,...), fx € BVioe(I;R") (k=1,2,...) and tx, € I (k=1,2,...) be such that
conditions (1.2.8), (1.2.9) and (1.2.34) hold, and the conditions

lim (Ak(t) — Ak(tk)) = B(t) - B(to),

k——+oco
GJm (B(Hg, Ax)(t) — B(H, Ag)(tx)) = Ao(t) — Ao(to),
. ETW(B(Hk, fe)(t) = B(Hg, fr)(tr)) = fo(t) — folto)

hold uniformly on I, where B € BV(I;R™*™) and
Hy(t) =1, — Ap(t) + Ag(tx) + B(t) — B(tg) for telI (k=1,2,...).
Then inclusion (1.2.10) holds.

Corollary 1.2.5. Let Ag € BV(I;R™"), fo € BV(;R"), to € I, and t, € I (k = 1,2,...) be
such that conditions (1.2.8) and (1.2.9) hold. Then inclusion (1.2.10) holds if and only if there exist
matriz-functions By € BVioo(I;R™ ™) (k =0,1,...) such that

limsup \/(Ax — Bi) < +00 (1.2.58)
k—+o00 I
and _
det (I, + (—1)/d;Bi(t)) #0 for t el (j=1,2k=0,1,...), (1.2.59)
and the conditions
. -1 =1
Jim 7, (t) = Zy (1), (1.2.60)
lim (B(Z; ", Ak)(t) — B(Z; " Ak)(te)) = B(Zy ', Ao)(t) — B(Z5 ", Ao)(to) (1.2.61)

k——+o0
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and

lim (B(Z. ', fi)(t) = B(Z ' fi)(te) = B(Zy ", fo)(t) — B(Zy ', fo)(to) (1.2.62)

k— 400

hold uniformly on I, where Zy, (Zy(tx) = I,) is a fundamental matriz of the homogeneous system
dx = dBy(t) - x (1.2.63)
for every k € {0,1...}.

Corollary 1.2.6. Let Ay € BV(L;R™™*™), fo € BV(I;R"), ¢ty € I, A € BVoo([;R™™) (k =
1,2,...), f € BVioe([;R?) (k=1,2,...), and tx, € I (k= 1,2,...) be such that conditions (1.2.8)
and (1.2.9) hold. Let, moreover, there exist matriz-functions By € BVoe([;R™*™) (k = 0,1,...)
satisfying the Lappo—Danilevskii condition, such that conditions (1.2.58) and

)

det (I, + (=1)7d;Bo(t)) #0 for t€ I (j=1,2) (1.2.64)
hold, and the conditions
Jm (Br(t) — B(tr)) = Bo(t) — Bo(to), (1.2.65)
Jim Z; N (1) dA(By, Ay) () = /Zo—l(T) dA(By, Ao)(7) (1.2.66)
tr to
and
t t
Jim [ 270 A () = [ 257 () dABo, o) (7) (1.267)

hold uniformly on I, where A is the operator defined by (0.0.1), and Zy, (Zy(tx) = Ip,) is a fundamental
matriz of the homogeneous system (1.2.63) for every k € {0,1...}. Then inclusion (1.2.10) holds.

Remark 1.2.5. In Corollary 1.2.6, due to (1.2.65), it follows from (1.2.64) that condition (1.2.59)
holds for every sufficiently large k and, therefore, the fundamental matrices Zy (kK = 0,1,...) exist.
Hence conditions (1.2.66) and (1.2.67) of the corollary are correct.

Remark 1.2.6. In Corollaries 1.2.5 and 1.2.6, if we assume that the matrix functions By (k =0,1,...)
are continuous, then conditions (1.2.59) and (1.2.64) are, obviously, valid. Moreover, due to the
integration-by-parts formula and definitions of operators A and B, each of conditions (1.2.61) and

(1.2.66) has the form
¢ ¢

lim Z;l(f) dAg(T) = /Zal(T) dAo(T),
k— 400
tr to

and each of conditions (1.2.62) and (1.2.67) has the form

t t

b ZEI(T)dfk(T):/Z(?l(T) dfo(7)-
ty to

Remark 1.2.7. If the matrix-function B € BV(I; R"*™), satisfying the Lappo—Danilevskii condition,
and s € I are such that det(I,, + (—1)7d;B(t)) # 0 for t € I, (—1)7(t — s) < 0 (j = 1,2), then owing
to (1.1.15), the fundamental matrix Z (Z(s) = I,,) of the homogeneous system

dx =dB(t) - x



38 Malkhaz Ashordia

has the form

exp (Se(B)(t) = Se(B)(5)) [ (In—d1B(r))™" ] (In+d2B for t> s,
Z(t) = § exp (Se(B)(s) — Se(B)(t)) H(InfdlB(T)) H (In + doB(7))~" for t <5, (1.2.68)
I, . e for ¢t = s.

Corollary 1.2.7. Let Ao e BV(I;R"*™), fo € BV(I;R"), to €I, and the sequences Ar, € BV (I; R™*™)
(k=1,2,...), fr € BVio(l;R") (k=1,2,...) and ty, € I (k= 1,2,...) be such that conditions
(1.2.8), (1.2.9) and

limsup Y~ ||d; Ax(t)]| < +00 (j =1,2) (1.2.69)
k——+oo tel

hold. Let, moreover, the matriz-functions Sc(Ay) (k = 0,1,...) satisfy the Lappo—Danilevskii condition
and the conditions

kEI-QI—loo (Sc(Ak)<t) - Sc(Ak)(tk)) = SC(A0>(t) - SC<AO)(tO)’ (1'2'70)
Jim (40 (0) = $5(A0)(1) (i =1,2), (1.271)
kgrfoo exp (— Sc(Ar)(1) + Sc(Ar)(tr)) dAx(T)

_ /eXp(—SC(AO)(T) + 8.(Ao) (k) dAo () (1.2.72)

and

t

lim exp ( —S.(Ap)(T) + Sc(Ak)(tk)) dfe(7)

k—+oco
tr

/ exp(—Se(Ao) (7) + Se(Ao) (o)) dfo(7) (12.73)

hold uniformly on I. Then inclusion (1.2.10) holds.

Corollary 1.2.8. Let Ag € BV(I;R™*"), fo€ BV(I[;R"), to €1, and the sequences Ay € BV, (I; R™*™)
(k=1,2,...), fr € BVioe(;R") (k=1,2,...) and ty, € I (k =1,2,...) be such that conditions
(1.2.8), (1.2.9),

lim sup Z \/a;ﬂl ) < 400

k=too i 1linl 1

and
L+ (=1)djagii(t)) #0 for tel (j=1,2i=1,...,n)

hold, and the conditions

lim  (aki(t) — arii(tr)) = aoii(t) — aoii(to) (i=1,...,n),

k—+o00
t

t
Jim /z,;;(f) dA(apis, apst) () = /zon( ) dA(aon, aon)(r) (£ L il =1,...,n)

k—+o00
tr
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and

t t

kEI—QI—loo Zk_zi (1) dA(akis, fri)(T) = /20_13(7') dA(aoi, foi)(T) (i=1,...,n)
tr to

hold uniformly on I, where A is the operator defined by (0.0.1), and zx;;, defined according to (1.2.68),
is a solution of the initial problem

for every sufficiently large k. Then inclusion (1.2.10) holds.

Remark 1.2.8. For Corollary 1.2.8, the remark analogous to Remark 1.2.6 is true, i.e.,
L+ (=1)7djapii(t)) #0 for tel (j=1,2;i=1,...,n)
for every sufficiently large k and, therefore, all conditions of the corollary are correct.

Remark 1.2.9. In Theorems 1.2.1'-1.2.3" and Corollaries 1.2.1’, 1.2.2-1.2.8, as well as in the state-
ment below, we may, without loss of generality, assume that Hy(¢) = I,,. In this case, it is evident
that

Z(Ho,Y)(t) —I(Hp,Y)(s) =Y (t) —Y(s) for Y € BV([;R"™") and t,s € I.

Remark 1.2.10. If for some k the matrix-function Ay is such that Ag(t) = const for ¢ € Iy, where
Ip C I is an interval, then, due to the proof of the necessity in Theorem 1.2.1, we conclude that
Hy(t) = const for t € Iy, as well, since Hy(t) = X, '(t), where X} is the fundamental matrix of
homogeneous system (1.2.1y0). Therefore, Xi(t) = const for t € Iy. So, everywhere in the results
given above we can assume that the matrix-function Hj has the described property.

Remark 1.2.11. The following example shows that if condition (1.2.69) is violated, then the state-
ment of Corollary 1.2.7 is not true, in general.

Example 1.2.2. Let I =[0,1], Ao(t) =0, fo(t) = fu(t) =0, t, =to =0, ¢ = ¢ = 1,

2k2
k=1 for te U]tQi—l ks Loi k),

Ap(t) = Z;i

0 for t ¢ U Jt2i—1 4, t2i k)],

i=1

where t;, = (2k* +1)71i (i = 0,...,2k?) for every natural k. Then all conditions of Corollary 1.2.7
are fulfilled except (1.2.69). It is evident that z¢(¢) = 1. On the other hand, the initial problem
(1.2.1%), (1.2.2%) has the unique solution zj, and, in addition, (1) = (1— k—g)kQ. Therefore, condition
(1.2.3) is not valid, since
lim (1) = exp(—1) # zo(1).
k— 400

Remark 1.2.12. In some results given above, the matrix-functions Ay (k =1,2,...) and the vector-
functions fx (k= 1,2,...) have really bounded total variations on the whole interval I.

The examples concerning the importance of some conditions given in the above results, one can
find in Section 3.1. See Examples 3.1.1, 3.1.2, 3.1.3, etc.

Now, we give the results concerning the set Sa(Aog, fo; o).

In the case under consideration, we use the following notation. Let the matrix-functions Ay
(k=0,1,...) and the vector-functions far (k=0,1,...) be defined by the equalities

Ank(tr) = Onxns  far(te) = On; (1.2.74)
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t

AAk(t) = / dAk(T+) . (In + dQAk(T))_l - dlA(tk and

te—

far(t) = fru(t+) — f(te) + / dAR(T) - dofi(T) for t < ty; (1.2.75)

AAk(t) = / dAk(Tf) . (In — dlAk(T))il + dQAk(tk») and

tr+
t

fAk(t) = fk(t—) — f(tk) + / dAk(T) . dlfk(T) for t > ty. (1276)

tp+

Theorem 1.2.4. Let Ag € BV(I;R™™™), fo € BV(I;R"™), tg € I, and a sequence of points t € I
(k=1,2,...) be such that conditions (1.2.8) and (1.2.9) hold. Let, moreover, the sequence of matriz-
functions A, € BV(I;R™*"™) (k=1,2,...) be such that

det (I, + (=1)7djA(t)) #0 for t €I, (=1)7(t—tx) <0 (j=1,2) (1.2.77)
for every sufficiently large k. Then
((Ak, frs te)i25 € Sa(Ao, fo; to) (1.2.78)

if and only if there exists a sequence of matriz-functions Hy, € BV(I;R"*") (k =0,1,...) such that
condition (1.2.11) holds, and conditions (1.2.12),

t

Jim {“I(Hk,AAk)(T) t

k— o0 tr

~zo sl (14| Ve aso) =0 2m)

t

and

t

— B(Ho, fao)(T)

lim {HB(HwaAk)(T) t

k— o0 th

(1 ¥ ‘ g/(I(Hk, An k))D } ~0 (1.2.80)

to

hold uniformly on I, where the matriz- and the vector-functions Aa and far (k= 0,1,...) are
defined by (1.2.74)—~(1.2.76), respectively.

Theorem 1.2.5. Let Ay € BV(I;R™™"™), fo € BV(I;R"), to € I, and a sequence of points ty, € T
(k =1,2,...) be such that conditions (1.2.8) and (1.2.9) hold. Let, moreover, the sequences Ay €
BV(L;R™™) (k=1,2,...) and fr, € BV(L;R™) (k = 1,2,...) be such that condition (1.2.77) holds
for every sufficiently large k, and the conditions

k—+o0

lim <||AAk(t) — AAQ(t)H + ‘ \/ (B(AAk — AAOaAAk))‘> =0 (1281)

and

kgrfoo | far(t) = fao(t) = B(Aak — Ano, far)(t) + B(Aak — Ao, far)(te)|| =0 (1.2.82)

hold uniformly on I. Then inclusion (1.2.78) holds.

Theorem 1.2.4 is analogous to Theorem 1.2.1 for the matrix-functions Aay (kK =0,1,...) and the
vector-functiosn far (k=0,1,...) defined above.

As for Theorem 1.2.5, it is a particular case of Theorem 1.2.4 when Hy(t) =1, (k=0,1,...).

It is evident that the results, analogous to those given above for the considered case, are true.
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Remark 1.2.13. In Theorem 1.2.2, under condition (1.2.5;), for sufficiently large natural k, we have
the following three cases: a) ty < to for k € N_; b) t;, = to for k € Ny or ¢) ty > to for k € N, where
N_, Ny and N are some infinite subsets of natural numbers. It follows from the proof of theorem
that in addition to the statement of theorem we have the following propositions:

1) if N_. =@ and Ny=@, then condition (1.2.3) is valid uniformly on the set {t €1 : t<ty}, as well;
2) if No=@ and N; =&, then condition (1.2.3) is valid uniformly on the set {t €I : t>to}, as well;

3) if N = @ and Ny = &, then condition (1.2.3) is valid uniformly into I\ {#o}, i.e., on the every
closed interval from I.

1.2.2 Auxiliary propositions

Lemma 1.2.1. Let a € I be fived. Then:

(a) if X € BVioe(I;R™ ™), Y € BVoo(I; R™XY) and Z € BV o (I; R*F), then

B(X,B(Y,Z))(t)=B(XY,Z)(t) for tel (1.2.83)
and
B(X,/dY(s) : Z(s)) (t) = /dB(X, Y)(s)-Z(s) for t el (1.2.84)

(b) if X € BVioo(l;R™™), Y € BVype(L;R™™) and Z € BVyoo(I; R™"), then
I(X,Z(Y,2))(t) =Z(X Y, Z)(t) for t eI (1.2.85)
where the operators B and T are defined by (0.0.2) and (0.0.3), respectively.

Proof. Consider the case t > a. Let us show that (1.2.83) is valid. According to equalities (0.0.9)—
(0.0.12) and (0.0.13), we have
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+/X(T)dY(T)— Y dX(r)-diY(r)+ Y ng(T)-de(T)) - Z(s)

a a<t<s a<t<s

Let us verify (1.2.84). By (0.0.12) and (1.2.83), it can be easily shown that

B (X, / dY (s) - Z(s)) (t) = B(X,Y Z — B(Y, 2))(t) = B(X, Y Z)(t) — BXY, Z)(t)

a

Finally, using (0.0.12), (1.2.83) and (1.2.84), we have

X IV, 2)(0) = [ d[X(r) + BV, 2)(0)] - X7 (7)

a

_ / (X +5(x / Y () + BV 2)(5)] - Y (9)) ) ) - X0

a a

:/td<X(7-)+/TdB(X,Y+B(Y,Z))(s)-Y1(5)) X7

a

- / d(xm + / AB(X,Y)(s) - Y4 (s) + / dB(X, B(Y. 2))(s) Y-1<s>) X ()

a a a

= /td<X(T) +]d(X(s)Y(s) —/SdX(U) -Y(a)) .Y—l(s)+]dB(XY, Z)(s)-Y—l(s)) - X7Y(7)

= /d[X(T)Y(T) +B(XY,Z)(1)] - Y N (1) XN (1) = T(XY, Z)(t).

a

Equalities (1.2.83), (1.2.84) and (1.2.85) for t < a can be proved similarly. O

Lemma 1.2.2. Let h € BV,.(I;R™), and H € BVo.(I;R"*"™) be a nonsingular matriz-function.
Then the mapping
r—y=Hx+h

establishes a one-to-one correspondence between the solutions x and y of systems (1.1.1) and

dy = dA,(t) - y + df.(t), (1.2.86)
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respectively, where the matriz- and vector-functions A, and f. are defined, respectively, by

t

A.(t) =Z(H, A)(t) and f.(t) = h(t) — h(a) + B(H, f)(t)—/dA*(S%hk(S),

a

and a € I is a fived point. Besides,
I+ (=1)7d; Au(t) = (H(t) + (=1 d; H®)) (I, + (=1)7d; A(#))H () for tel (j=1,2). (1.2.87)

Proof. Let x be a solution of system (1.1.1) and let y(t) = H(t)x(t) + h(t). In view of (1.2.84) and
the definition of a solution, we have

t

/dB(H,A)(s) ~x(s) =B(H,z — f)(t) for tel.

a

In view of this and (0.0.12), we obtain

t t

/dA*(S) “y(s) + fu(t) = fula) = /dA*(S) ~(y(s) = h(s)) + B(H, f)(t) + h(t) — h(a)

a a

_/d(/d )+ B(H, A)(r)] - H1(7)> CH($)a(s) + BH, f)(1) + h(t) — h(a)
. / d[H(s) + B(H, A)(s)] - 2(s) + B(H, £)(t) + h(t) — h(a)

_ / dH(s) - 2(s) + B(H, = — £)(t) + B(H, £)(t) + h(t) — h(a)

t

= /dH(s) ~xz(s) + B(H,z)(t) + h(t) — h(a)

= H(t)z(t) — H(a)x(a) + h(t) — h(a) = y(t) — y(a) for t €1,

i.e., y is a solution of system (1.2.86).
Let us prove the converse assertion. It suffices to show that

T(H™ A () = A(t) — A(a) for tel (1.2.88)

and

— H7H(t)h(t) + H™ (a)h(a) + Z(H Y, f*)(t)
+/dI(H*1,A*)(T) -H Y7)h(t) = f(t) — f(a) for t € I. (1.2.89)

Indeed, by (1.2.85), we have

TH AN =T(H ' IT(H,A)(t) = I(I, A)(t)

t

_ / AL, + B(L, A)(s)] = B(Ln, A)(t) = A(t) — f(a) for t € I.

a
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Therefore, equality (1.2.88) is proved.
Let us show that (1.2.89) is valid. Let R(t) be the left-hand side of the equality. In view of (1.2.83)

and (1.2.84), it is easy to verify that
B(H—l, / dB(H, A)(s) -H—l(s)h(s)) ) = / dA(s) - H-(s)h(s) for t €T

and

B(Hl,/dH(s)-Hl(s)h(s)> (t) = —/th(s)-h(s) for teI.

Taking these equalities, (0.0.12), (1.2.83), (1.2.84) and (1.2.88) into account, we obtain

R(t) = —H ' (t)h(t) + H ' (a)h(a) + B(H ', h)(t) + B(H ', B(H, f))(t)

-5 fane ne )0 + / dA(s) - H(s)h(s)

a

= B(I,, f)(t — /thl(s) - h(s) —B(Hl,/dI(H, A) - h(s))(t)

Hence (1.2.89) is valid.
Equality (1.2.87) follows from the equalities

djA*(t) = d;j(H(t) + B(H,A)(t)) - H *(t) for tel (j=1,2)

and
d;B(H,A)(t) = d;(H(t)A(t)) - d;jH(t) - A(t) for tel (j=1,2). O

Let £ be an arbitrary positive number and let ¢ : [a,b] — R be a non-decreasing function. We

denote
Dj(a,b,e;9) = {t € [a,0] : djg(t) > e} (j=1,2).

Let R(a,b,e; g) be the set of all subdivisions {ag, 71, a1, ..., Tm, @m} of [a,b] such that

(@) a=ap<ar < - <ap=ba<m <o < STy < A

(b) if 7; € D1(a,b,;9) then g(1;) — glai—1) < &;

if 7, € Di(a,b,e;9), then ;1 < 7; and g(1;—) — g(ai—1) < &;
(c) if 7 & Da(a, b,e;59), then g(a;) — g(1) < &;

if ; € Da(a,b,e;9g), then 7; < ; and g(o;) — g(Ti+) < &.

Lemma 1.2.3. The set R(a,b,&;g) is not empty for an arbitrary positive number € and a non-
decreasing function g : [a,b] — R.
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We omit the proof of the lemma because it is analogous to that of Lemma 1.1.1 from [37].

Lemma 1.2.4. Let oy, B € BV([a,b];R) (k=0,1,...) be such that

hm 18 — Bolls = 0, (1.2.90)
kgr—il-loo sup \a/(ak-) < +o0, (1.2.91)
and let the condition
lim (ag(t) — ar(a)) = ao(t) — agla) (1.2.92)
k——+oo
be fulfilled uniformly on [a,b]. Then
lim /ﬂk ) dag (T /BO ) dag () (1.2.93)
k—+oco

is fulfilled uniformly on [a,b], as well.

Proof. Let ¢ be an arbitrary positive number. By Lemma 1.2.3,

R(a,b, g) £ o,

where g(t) = V(5o)(t).
Let

{aOaThO‘la ceey Ty am} € R(aa ba %)
be an arbitrary fixed subdivision. We set
Bo(t) for t € {ap, 1,01, T, Qm },
Bo(ri—) fort €lai_1,7[, 7 € Di(a,b,e59),
/8 ( ) for t E]ai—l77-i[7 Ti g Dl(a;b,5§9) or for ¢ G]Tiaai[a Ti g DQ(G;, b75;g)a
Bo(mi+) fort €lm, auf, 7 € Di(a,b,e;9)

(i=1,...,m).

It can be easily shown that n € BV(a,b;R) and

Ti

|Bo(t) — n(t)| < 2¢ for t € [a,b]. (1.2.94)

For every natural k and ¢ € [a, b], we assume

t t

(t) = / B () ok (t) — / Bo(r) dao(7)

and

Tt follows from (1.2.92) that
khm 10k |00 = 0. (1.2.95)

On the other hand, by (1.2.92) and (1.2.94), we have

klloo < 4re +7(1Bk = Bolloo + 10l (k= 1,2,...).

Hence, in view of (1.2.91) and (1.2.95), we obtain klim I7k]loo = O, since € is arbitrary. O
—+o0
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Lemma 1.2.5. Let condition (1.2.8) hold and let

lim Xj(t) = Xo(¢) (1.2.96)
k— 400
uniformly on [a,b] C I, where Xo and X (k =1,2,...) are the fundamental matrices, respectively,
of the homogeneous systems (1.2.1g) and (1.2.1x9) (k=1,2,...). Then
inf {| det(Xo(t))| : ¢ € [a,b]} >0, (1.2.97)
inf {|det(Xy ' ()| : t € [a,b]} >0 (1.2.98)

and condition (1.2.37) holds uniformly on [a,b], as well.
Proof. According to equalities (1.1.6), we have
d;Xo(t) = d;jAo(t) - Xo(t) for t € [a,b] (j=1,2). (1.2.99)

From this, by (1.2.5), we find
det(Xo(t—) - Xo(t+))

= [det(Xo(t Hdet (I, + (—1)7d; Ag(t)) # 0 for t € [a,b] (j=1,2). (1.2.100)

Let us show that (1.2.97) is valid. Assume the contrary. Then it can be easily shown that there
exists a point ¢ € [a, b] such that

det (X()(to—) . X(](t()—f—)) =0.

But this equality contradicts (1.2.100). Thus inequality (1.2.97) is proved.
The proof of inequality (1.2.98) is analogous.
In view of (1.2.96) and (1.2.97), there exists a positive number r such that

inf {| det(X4(¢t))|: ¢t € [a,b]} >r >0
for any sufficiently large k. From this and (1.2.96), we obtain (1.2.37). O

Lemma 1.2.6. Let the sequences of the matriz-functions By, € BV(I;R"*™) (k. =0,1,...) and of the
points ty, € I be such that conditions (1.2.9),

det (I, + (=1)7d;By(t)) #0 for t €I, (=1)7(t—to) <0 (j =1,2) (1.2.101)

and
Jim sup{||ijk(t) —d;Bo(t)|| s tel, (1) (t—ty) < 0} =0 (j=1,2) (1.2.102)
—+oo

hold. Then there exists a positive number ro such that

det (I, + (=1)7d;By(t)) #0 for t €I, (—1)/(t—t,) <0 (j =1,2), (1.2.103)
(L + (—=1)7d; Bo (1)) || < o for tel, (—1)7(t—to) <0 and
| (In + (—=1)7d; Bi(t)) H <o for tel, (=1)(t—1t;) <0 (j=1,2) (1.2.104)

for every sufficiently large k.

Proof. Since \/BO < 400, the series Y ||d;Bo(t)|| (j = 1,2) converge. Thus for any j € {1,2} the
tel
inequality

1d; Bo(®)]| =

N



The Initial Problem. Numerical Solvability 47

may hold only for some finite number of points ¢;1,...,%;.,, in I. Therefore,
1
ld; Bo(t)| < 3 for tel, t#t; (i=1,...,mj). (1.2.105)

First, let us consider the case where j = 2 and t; > ¢ for every sufficiently large k. We may assume
that to; >t (i =1,...,mq) for every sufficiently large k.
It follows from (1.2.101), (1.2.102) and (1.2.105) that

det(In + ngk(tgi)) 75 0 (’L =1,..., mg)
and )
||dQBk(t)|| < 5 for t € Itk, t 7’5 to; (Z =1,... ,mg)

for every sufficiently large k. The latter inequalities imply that the matrices I,, + d2 By (t) are invertible
fort € I,, t # t;; (i =1,...,m;), too. From this, it is evident that condition (1.2.103) is fulfilled
and there exists a positive number rq for which estimates (1.2.104) hold. Analogously we prove this
estimate for the other cases. O

Lemma 1.2.7. Let A € BV, o(I;R™*™), f € BVo(I;R"™) and a € I be such that
det (I, + (=1)7d;A(t)) # 0 for (=1)7(t—a) <0 (j =1,2). (1.2.106)
Let, moreover, the vector-function x € BV,.(I;R™) be a solution of the initial problem
dx = dA(t) - x4+ df(t), =z(a)= co.
Then the vector-function y € BV,.(I; R™), defined by y(t) = x(t+) for t < a, y(t) = x(t—) fort > a
and y(a) = z(a), is a solution of the initial problem
dy =dA(t) - y+df(t), ya) = co, (1.2.107)
where A(a) = Opxn, f(a) =0,;
¢
At) = /dA(T+) (I + doA(T)) ™t — d1 A(a) and

a—

A(t) = / dA(T—) - (I — dyA()) ") + ds A(a) and

a+
t

70 = 1)~ fla) + [ dA) - daf(r) for t>a.

a

Proof. Let j =1 and a < s < t; s,t € I. Then y(t) = z(t—) and by the definition of the solution of
linear systems we have
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Using now equalities (0.0.7) and
dya(t) = di A(t) - 2(t) + di f (1),

due to (1.2.106), we get
2(t) = (In — i A1)~ (a(t=) + di f(1))

and
t

y(t) =y(s) + /dA(T—) (I = di A7) "My (7) + di f(7)) + f(t=) = f(5-).
So, by (0.0.13), the vector-function y is the solution of system (1.2.107) for ¢t > a.
Similarly, we can show that y is also the solution of system (1.2.107) for ¢ < a.
In addition, it is not difficult to verify the validity of the equalities

djA(a) = djA(a) and d;f(a) =d;f(a) (j =1,2),

whence d;y(a) = d;z(a) (j = 1,2). Therefore, the vector-function y is the solution of system (1.2.107)
on the whole interval I. O

1.2.3 Proof of the results
Proof of Theorem 1.2.2. By (1.2.15),

lim su Ag;i(t) — Ag; ()| =0 (=1,2
Jim s 44 ()~ Ay (] =0 (=12

and, therefore,
lim  sup ||djAx(t) —d;Ac(®)||=0 (j=1,2) (1.2.108)
k—=+00 ter, t£t,
if j € {1,2} is such that (=1)7(t — tx) > 0 for every k € {1,2,...}. So, according to Lemma 1.2.6,
there exists a positive number ry such that

det (I, + (—1)'djA(t)) #0 for te I, (—1)"(t—tx) <0 (I=1,2)

and
(I + (—1)'di Ax(£)) || < 7o for te I, (~1)'(t—t) <0 (1=1,2) (1.2.109)

for every sufficiently large k.

Therefore, there exists a natural number kg such that problem (1.2.1;),(1.2.2;) has a unique
solution xy for every k > k.

Let z(t) = xp(t) — xo(t) for k € {ko, ko +1,...}.

First, consider the case tx > to (k = ko, ko +1,...), i.e., j = 2.

Let € be an arbitrarily small positive number.

It is not difficult to check that

t t
zi(t) =z (tg+e)+ /dAo(s) cz(s)+ /deg(s) x1(8)+ fro(t) = Fro(ty +¢) for t>t+e,
tp+e trte

where B B
Apj(t) = Agj(t) = Ao (1), Fir; () = fij (1) = fo; (1) (G=1,2k=0,1,...).
Using the integration-by-parts formula (0.0.9), the equalities

dl.%‘k(t> = dlAk(t) .%‘k(t) + dlf(t> for tel (] = 172), (1.2.110)

and general integration-by-parts formulas (0.0.10) and (0.0.12), we conclude that



The Initial Problem. Numerical Solvability 49

t

/ de;Q(S) . CL’k(S) = Zkg(t) . .’Ek(t) — Zkz(tk + E) . xk(tk + E)

tr+e
t
- / Ao()du(s)+ Y diTw(s) dios) = S daAals) - dami(s)
thte trt+e<s<t trt+e<s<t
= Zkg(t) . Ik(t) — Zkg(tk =+ 6) . l‘k(tk =+ E) — / Zkz(s) (dAk(S) . ij(s) =+ dfk(s))
tr+e
+ Y didia(s) - (diAk(s) - a(s) + difi(s)
tr+e<s<t
— Z do Aga(s) - (dgAk(S) ~xp(s) + dgfk(S)) for t >t +e.
trte<s<t
Therefore,

¢
2k(t) = zi(te + &) + Ti2(t, te + €) + Qra(t, tr +€) + / dAo(s) - zi(s) for t >t +e. (1.2.111)
tr+e
where

t

Tij(t,7) = Agj(t) - @ (t) — A (7) - 2i(7) — /ij(S)dAk(S) “@(s)

T

+ Y diAgi(s) - diAr(s) - wx(s) — Y daAg;(s) - dpAk(s) - mi(s) for T <t (j=1,2),

s€]T,t] selr,t]
Tki(t,t) =0 (j =1,2) and Ji;(t,7) = —Tij(7,t) for t <7 (j =1,2),

and
Quj(t,7) = frj(t) — Fij (1) = B(Akj, fr)(t) + B(Agj, fr)(1) (5 =1,2).
Let By be a matrix-function defined by By(t; +¢) = Ao(tx +¢) and By(s) = Ag(s—) for s > t; +e.
Obviously,

daBy(ty, +¢) = daAo(ty +¢) and di(Bo(s) — Ap(s)) = —d1Ap(s) for s >ty +e.

Therefore, according to (0.0.7),

¢ ¢
/ dAo(s) - zi(s) = / dBo(s) - zi(s) + d1Ao(t) - z(t) for t >ty + €.
tr+e trp+e

Consequently, by (1.2.8), from (1.2.111) it follows that

2p(t) = (In—d1 Ap(t)) ™ (zk(tk—i—s)—&—jkg(t,tk +e)+ Qpalt, tr+e)+ / dBO(s)-zk(s)> for t > t;,+e.

tr+e

From this, due to (1.2.108) and estimate (1.2.109), without loss of generality, for k > ko, we get

lzk(@®)] <71 (IIZk(tk o)l + T2t te + )|
t

+ |1Qr2(t, tr + )| + / ||Zk(T)||d||V(BO)(T)||> for t >t +¢, (1.2.112)

te+e
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where r{ = rg + 1.

Let
po=\/(4o), 00 =\/(fo),
4 I
ap = te?}ltgtk A2, Br = tei}ltgtk Ifa®] (k=1,2,...)
and

t

= sup )\/(Ak_AO)] (k=1,2,...).

tel thte |,
In view of the conditions Ay € BV(I;R"*"), fo € BV(I;R"™), (1.2.15) and (1.2.16), we have

lim ap(1+v) = kEI-&I-loo Br(1+ 00+ %) = 0. (1.2.113)

k——+oco
By the inequalities

t

V(Ar) <\ (Ae = Ag) + \/(Ao) for tel (k=1,2,...),

tr tr tr

we find

| T2 (t, te +€)|| < 2a||zk|lre + ar(ve + po)llzk| ke

+ 2ak|$kk2( Z (Hdl(Ak(S) — Ao(s))]| + ||d1A0(5)||>

tp+e<s<t
2 (i) — An(s))] + ||d2A0(5)|>)
tpte<s<t
and, therefore,
[ Trz(t,te +€)|| < enllznllnz for ¢ >ty +e, (1.2.114)

where
|@llke =sup { lz(t)]| : t €I, t>tr} and ep = (2 +3po + 37k) (k=1,2,...).

Moreover, if we take into account the fact that the operator B is linear with respect to every its
variable and equals zero if the second variable is a constant function, then we conclude that

| B(Akz, fr)(t) — B(Akz, fi)(tr + )|
< ||B(Akas Fr2)(t) — B(Aga, Fro) (b + €)|| + || B(Aka, fo)(£) — B(Arz, fo)(tk +¢)|| for ¢ >ty +e.

By the definition of the operator B, we have
[B(Aka, Fra)(t) — B(Agz, Fro)(t +€)|| < Br(2an +) for ¢ >ty +e.
Using the integration-by-part formula, we find
(| B(Aa, fo)(t) — B(Axa, fo)(tr + )|

Sak\/<fo>+2ak( S ds@)+ Y ||d2f0(8)|> for t >ty +e

trp+e trt+e<s<t trt+e<ls<t
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and, therefore, - _
1B(Akz, fo)(£) = B(ARa, fo) (b + €)|| < Beoa for ¢ >t +e.

So,
|Qra(t, tr +€)|| < 0 for t >ty +e, (1.2.115)

where 6, = Br(2 + 2ai + &) + 300k
From (1.2.112), by (1.2.114) and (1.2.115), we find

t
||zk(t)\|§r1<||zk(tk+5)||+5k||xk||k2+5k+ / ||zk(T)||d||V(Bo)(T)||> for t >t +e. (1.2.116)

tr+e
Hence, according to Gronwall’s inequality (see Lemma 1.1.4" (b)),
2kl < 1 (llzk(te + )l + exllznllke + 6k ) exp (r1][V(Bo)(t) — V(Bo) (te)l])
< T1(||Zk(tk + )|l + exllzrllre + §k) exp(pory) for t >ty +e.

Now, passing to the limit as € — 0 in the last inequality, we conclude that

llzkllk2 <71 (|\Zk(tk+)|| + exllzrllk2 + 6k) exp(por)- (1.2.117)
Due to (1.2.113), we have
lim e, = 0. (1.2.118)
k—+oco

Therefore, there exists a natural k; > kg such that
1
rieg exp(por1) < 3 for k> k.

By this, from (1.2.117) it follows that

1
zkllk2 < lzollk2 + ll2kllk2 < [[zollx2 + 5 lznllez + 1 (llzk(te+) || + 0k) exp(pory) (k> ki)

and, therefore,
lallen < 2(lzollis + 1 ()l + 6) explpor) ) (> ka).

which, due to (1.2.52), implies that the sequence ||z|/x2 (K =1,2,...) is bounded.
In view of conditions (1.2.15) and (1.2.16),

lim & = 0. (1.2.119)

k— o0

Moreover, using (1.2.52), we conclude

kli}:r_loo 2k (tp+) = lim (xk(t;ﬁ—) - xo(tk—l—)) = kgriloo (ﬂﬁk(tk‘f‘) — xo(tO‘i'))

k—4o0c0

= lim ([(In + do Ay (tr)) ke (tr) + dafi(th)] — [(In + daA(to))zo(to) + d2f0(to)D

k—+oco

= 1. — - O
Jim (o2 = o)

Therefore, by this, (1.2.118) and (1.2.119), it follows from (1.2.117) that
li =0.
iz =0

Analogously to (1.2.111), we show that
t —_

2, (t) = 21t — ) — Tia(th — €,1) — Qua(ty — €, t) — / dAo(s) - zi(s) for t <t —e. (1.2.120)
t
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Let now the matrix-function By be defined by By(tr, — &) = Ao(tx — €) and By(s) = Ag(s+) for
s <ty —e. Obviously,

dlBo(tk — E) = dle(tk — E) and dQ(BO(S) — Ao(S)) = —dng(S) for s <ty —e.
Therefore, according to (0.0.7),

tr—e tp—e

/ dAo(s) - zi(s) = / dBo(s) - zi(s) + daAo(t) - zi(t) for ¢t <t —e.

Using these equalities, from (1.2.120) we obtain

2(t) = (I, + daAg(t))™? <zk(tk —¢e) = Tr2(ti — €, 1)

— Qpa(ty — &, t) — / dAo(s) - zk(s)> for t <t —e.

t

From this, analogously as above, we get

2k ller < ra(l2n(tr=)Il + xllzkllny + k) exp(pors) (1.2.121)

and, in addition, the sequence ||zg|x1 (k= 1,2,...) is bounded.
By (1.2.15) and (1.2.16),

Jim (s Aw(t) + doAw(t) | + [l fiult) + dafi(t)]]) = 0.
Using the latter equality, (1.2.52) and take into account that the sequence ¢ (k = 1,2, ...) is bounded,
we can conclude that

im zp(ty—) = lm (zx(ts—) —zo(tk—)) = lm (2x(tk—) — 20(to+))

k—+4o00 k—+4o00 k—+oo

= lim ([(In - dlAk(tk))ilik(tk) - dlfk(tk)] - [(In + dQA(to))ZE()(to) + d2f0(to)]>

k—+o00

= tim ([(n + daAg(tn))ew + dafi(t0)] — [(I + daA(to)o(to) + dafo(t0)])

k—+o00

— lim (diAg(tr) + daAg(tr))cr — (do fi(te) + dafi(tr)) = kgrfoo(ckz —co2) = 0.

k—+oo

Therefore, due to (1.2.121), taking into account (1.2.118) and (1.2.119), we get

li =0.
k_iffoo |2k ][k1
Thus condition (1.2.17) holds for ¢ >ty (k =1,2,...).
In a similar way we can prove the statement of the theorem for another cases, as well, i.e., when
tk<t0(k’=1,2,...)0rtk=t0(k=1,2,...). ]

Proof of Theorem 1.2.3. Due to condition (1.2.20), analogously to the proof of Theorem 1.2.2, we show
that the initial problem (1.2.21;), (1.2.22;) has the unique solution z} for every sufficiently large k.
Moreover, according to Lemma 1.2.2, the mapping x — z*, ** = Hyx + hy, establishes a one-to-one
correspondence between the solutions of problem (1.2.1;),(1.2.2;) and those of the initial problem
(1.2.213), (1.2.22;,) for every natural k. Thus problem (1.2.1;), (1.2.2;) has the unique solution xj, and

l‘;(t) = Hk(t)l‘k + hk(t)

for every sufficiently large k.
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Conditions (1.2.20), (1.2.23)—(1.2.26) guarantee the fulfillment of the conditions of Theorem 1.2.2
for the initial problem (1.2.21), (1.2.22) and for the sequence of the initial problems (1.2.21y), (1.2.22;)
(k=1,2,...). Therefore, according to Theorem 1.2.2,

Jim sup [l (1) - 2] = 0.
=00 te T, t#£ty,

So, condition (1.2.27) holds. O

Proof of Corollary 1.2.1. Verify the conditions of Theorem 1.2.3. From (1.2.11), (1.2.12) it follows
that condition (1.2.23) holds, and the condition

lim [[H,'(t) - Hy'(t)]| =0 (1.2.122)

k—+o00

holds uniformly on I.
Put

hk(t) = —Hi(t)pr(t) (k =1,2,... )
Due to (1.2.9) and (1.2.12), we get

kgrilw Hy(tr) = Qo,

where QO = H()(t()—) if t, < to, Qo = H()(to) if tp = tg and Q() = Ho(to—f—) if tp > to for sufﬁciently
large k. By this and (1.2.31), condition (1.2.28) is fulfilled for ¢ = Qoco.
Moreover, by (1.2.13) and (1.2.32), conditions (1.2.29) and (1.2.30) hold uniformly on I, where

hk(t) = —Hk(t)gok(t), AZ(t) = I(Hk,Ak)(t) —I(Hk,Ak)(tk) (k = 0, ].7 PN );

fo(t) = B(Ho, fo)(t) — B(Ho, fo)(to),

B(Hy, fr — o) (t) — B(Hy, fx — ) (tx) + /dI(Hk>Ak)(S) “or(s) (k=1,2,...).

ty

fi(®)

Taking into account Lemma 1.2.2, it is not difficult to see that problem (1.2.21),(1.2.22) has the
unique solution
xg(t) = Ho(t)mo(t).
By Theorem 1.2.3 and Remark 1.2.2, we have
lim || He(Her () — He(Dpn(t) — 23(t)] = 0

k—+oco
uniformly on I. Therefore, owing to (1.2.12) and (1.2.122), condition (1.2.33) holds uniformly on I. O

Proof of Theorem 1.2.1. The sufficiency follows from Corollary 1.2.1 if we assume @g(t) = 0 (k =
1,2,...) therein.

Let us show the necessity. Let ¢, € R™ (k=0,1,...) be an arbitrary sequence of constant vectors
satisfying (1.2.5) and let e; = (d;;)71, where 6;; = land §;; =0ifi # j (4,5 = 1,...,n) (the Kroneker
symbol).

In view of (1.2.10), without loss of generality, we may assume that problem (1.2.1;),(1.2.2;) has
a unique solution zj for every natural k.

For any k € {0,1,...} and j € {1,...,n}, let us denote

ij(t) = Ik(t) — Tkyj (t),
where 2 is a unique solution of system (1.2.1;) under the initial condition
x(tk) = Ci — €j.

Moreover, let X (t) be a matrix-function whose columns are zp1(t), ..., 2gn(t).
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It can be easily shown that Xy and X (k= 1,2,...) satisfy, respectively, the homogeneous systems
(1.2.1p) and (1.2.1xp) (k=1,2,...) and

zi(te) =¢; (=0,1,...) (1.2.123)

for every j € {1,...,n}.

If we assume
n

Z a;zki(t) =0

j=1
for some natural k and o; € R (j =1,...,n), then using (1.2.123) we get

and, therefore,

ie., Xo and Xy (k=1,2,...) are the fundamental matrices, respectively, of the homogeneous systems
(1.2.1p) and (1.2.1x9) (k =1,2,...). Without loss of generality, we assume that

Xplte) = I, (k=0,1,...).

Owing to (1.2.10), condition (1.2.96) holds uniformly on every closed interval [a, b] from I. There-
fore, due to Lemma 1.2.5, conditions (1.2.97) and (1.2.98) hold, and condition (1.2.37) holds uniformly
on every closed interval [a, b] from I, as well.

Let us verify conditions (1.2.11)—(1.2.14) of the theorem for

Hy(t) =X, '(t) (k=0,1,...).

Conditions (1.2.11) and (1.2.12) coincide with conditions (1.2.98) and (1.2.37), respectively.
According to Proposition 1.1.5 (see equality (1.1.17)), we have

Xt =1, - B(X; Y Ap)(t) for tel (k=0,1,...). (1.2.124)
Therefore,
Hy(t) + B(Hy, Ap)t) =1, (k=0,1,...) (1.2.125)
and, by the definition of the operator Z (see (0.0.3)), we conclude
T(Hy, Ap)t) =0 (k=0,1,...). (1.2.126)

Thus condition (1.2.13) is evident.
On the other hand, by (1.2.125) and equalities Hy(tx)=1I, (k = 0,1,...), according to Lemma 1.2.1
and the definition of the solutions of system (1.2.1;), we have

B(Hy, fi)(t) = B(Hg, fi)(tx) =B(Hk,a?k—/dAk(S)'l‘k(S)>(t)—B(mek—/dAk(s)'ﬂ?k(s))(tk)

= B0, 00)(0) ~ Bt 0) 00~ B( B, [ 29 -ns) ) 0+ BB [ dns) o)) a0

tr tr

— B(Hy 20)(t) — B(Hy, 21) (1) — / dB(Hy, Ay)(s) - 2u(s)

t t

= Hk(t)xk(t) — Hk(tk):vk(tk) — /de(S) . CL’k(S) — /d(In — Hk(s)) xk(s)
= Hk(t)wk(t) — Hk<t];>$k(tk) for tel (k' =0,1,... )
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Hence

B(Hg, fr)(t) — B(Hy, fi)(tr) — (B(Ho, fo)(t) — B(Ho, fo)(to))
— Hy(t)za(t) — Ho(t)zo(t) — (wx(ts) — molty)) for t€ T (k=0,1,...). (1.2.127)

By this, (1.2.5) and (1.2.126), if we take into account the fact that due to the necessity of the theorem
condition (1.2.3) holds uniformly on I, we conclude that condition (1.2.14) holds uniformly on I, as
well. O

Proof of Theorem 1.2.2’. It is evident that in view of conditions (1.2.38), (1.2.39) and (1.2.40), con-
ditions (1.2.18) and (1.2.19) hold uniformly on I. So, the theorem follows from Theorem 1.2.2 and
Remark 1.2.1. O

Proof of Theorem 1.2.8’. In this case, condition (1.2.41) is equivalent to condition (1.2.24). Moreover,
by conditions (1.2.42), (1.2.43) and (1.2.44), conditions (1.2.29) and (1.2.30) hold uniformly on I. So,
the theorem follows from Theorem 1.2.3 and the remark analogous to Remark 1.2.1. O

Proof of Corollary 1.2.1'. Verify the conditions of Theorem 1.2.3". The validity of conditions (1.2.23),
(1.2.41) and (1.2.122) we show as in the proof of Corollary 1.2.1. In addition, by (1.2.122), there exists
a positive number M such that

|H ' ()| < M for tel (k=0,1,...).

Using Lemma 1.2.1, from this estimate and also from (1.2.12), (1.2.34), (1.2.35), (1.2.45) and (1.2.122)
we find that condition (1.2.42) holds, and conditions (1.2.43) and (1.2.44) are fulfilled uniformly on
I, where

hi(t) = —Hp(t)er(t), Ag(t) = Z(Hg, Ap)(t) = Z(Hg, Ag)(te) (k=0,1,...);
fo(t) = B(Ho, fo)(t) — B(Ho, fo)(to),

F2(t) = B(Hy. fe — o1)(t) — B(Hy. fe — 9)(tx) + / AB(Hy, A)(s) - oi(s) (k=1,2,...).

Further, the proof coincides with that of Corollary 1.2.1. O

Proof of Theorem 1.2.1’. Sufficiency follows from Corollary 1.2.1" if we assume @i(t) = 0 (k =
1,2,...) therein. The proof of necessity is the same as in the proof of Theorem 1.2.1. We only note
that by condition (1.2.12) and equality (1.2.125), condition (1.2.34) is valid, and condition (1.2.35)
holds uniformly on I.

O

Proof of Theorem 1.2.1"”. As it follows from the proof of Theorem 1.2.1, we may assume that Hy(t)
X, '(t). In this case, Theorem 1.2.1" has the form of Theorem 1.2.1”. We only note that by (1.2.37)
and (1.2.124), condition (1.2.35) holds uniformly on I. O

Proof of Corollary 1.2.2. By (1.2.48), (1.2.49) and (1.2.50) (or (1.2.51)), we have

lim > (diHi(s) - diAk(s) — diHo(s) - dyAo(s)) = Onsn,

k——+oo

s<t;s,tel
kggloo Z (diHy(s) - di fr(s) — diHo(s) - dy fo(s)) = on,
s<t;s,tel
Jim > (daHi(s) - d2Ax(s) — daHo(s) - d2Ao(s)) = Opxcn,
s<t;s,tel
Jim > (doHi(s) - dafi(s) — d2Ho(s) - dafo(s)) = on

s<t;s,tel



56 Malkhaz Ashordia

uniformly on I. From this, the integration-by-parts formula, (1.2.46) and (1.2.47), we find that
conditions (1.2.35) and (1.2.36) are fulfilled uniformly on I. Condition (1.2.36) coincides with (1.2.45)
for pp(t) =0 (k=1,2,...).

Therefore, the corollary follows from Corollary 1.2.1. O

Proof of Corollary 1.2.8. Using (1.2.12), (1.2.39) and (1.2.52), we conclude
djA*(t) = Opxn (4 =1,2).
Hence, in view of (1.2.8), we have

det (I, + (=1)7d;Aj(t)) # 0 for t €I, (—1)(t—1t9) <0
and for t =tq if j € {1,2} is such that (—1)7(t, —tg) >0 for every k € {1,2,...}.

On the other hand, from (1.2.12), (1.2.39), (1.2.40), (1.2.52) and (1.2.53) we obtain that the conditions

lim (B(Hy, Ar)(t) — B(Hy, Ap)(t)) = B(In, Ay)(t) — B(In, Aj)(to)

k—+o00
and
Jlim (B(Hi, £1)(6) = B(He, f)(t0)) = BT, f5)(0) = B(I 5)(o)
hold uniformly on I. Thus, Corollary 1.2.3 is a direct consequence of Theorem 1.2.1'. O

Proof of Corollary 1.2.4. By virtue of (1.2.9) and (1.2.55), we have

lim B](tk) = Bj(t()) (] = 1,...7m7 ].)

k—+oo

and, therefore,
lim Cy;(t) =1, and lim Hy;(t)=1, (j=1,...,m—1)

k—4o00 k—4o00

uniformly on I, where
Cri(t) = I, — (Ag;(t) — Ak (tr)) + (B;(t) = Bj(ty)) (G=1,....,m; k=1,2,...).

Thus, without loss of generality, we can assume that the matrix-functions Hy; (j = 1,...,m) and Cy;
(j =1,...,m) are nonsingular for every natural k. Using now Lemma 1.2.1, we find that

B(Cry, B(H j—1, Ap))(7)];,
B(Cij, B(Hy i1, i) (7)),

B(Hyg, AT,
B(Hyj, fi)(7)],,

and
I(CkﬁI(ij—hAk))(T)}zk EI(ijaAk)(T)Kk (] =1,...,m; k= 1a27)

In addition, by conditions (1.2.54)—(1.2.57), according to Lemma 1.2.4 and the definition of the
operator Z, we find that conditions (1.2.12), (1.2.35) and (1.2.36) hold uniformly on I, where Hy(t) =
I, and Hy(t) = Him—1(t) (k=1,2,...). The corollary follows from Theorem 1.2.1’. O

Proof of Corollary 1.2.5. Let us show the sufficiency. Let Hy(t) = Z, '(t) (k= 0,1,...) in Theorem
1.2.1". In view of (1.2.60), there exists a positive number 7 such that

1ZZ ()| <r for te T (k=0,1,...).
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Using this estimate, by (1.1.17), the definition of the operator B and the integration-by-parts formula,
we have

12:1() + B(Z ' AR)(t) — 2 (s) — B(Z A (s) |

= ||B(Z; ", Ax — Bi)(t) — B(Z, 1, Ak — Bi)( ||H/ (1) = Bi(1))
— Z di Z;7 (1) - di (Ag(7) Z do Z; M (7) - do(AR(T) — Bk(T))’
<r\/ (Ar — Bi) +2r Z d1(Ar(r) = Be(m))| +2r > |ld2(Ax(r) — Bi(7))]|

t
<5r\/(Ax — By) for s <t (k=0,1,...).
Consequently,
\/(Hi + B(Hy, Ay)) < 5r \/(Ax — By) (k=0,1,...)
I I

and due to (1.2.58), estimate (1.2.34) holds. Conditions (1.2.35) and (1.2.36) coincide with (1.2.61)
and (1.2.62), respectively. Hence the sufficiency follows from Theorem 1.2.1.

Let us show the necessity. Let By (t) = Ax(t) (k =0,1,...). Then Zy(t) = Xi(t) (k =0,1,...),
where Xy and X (k = 1,2,...) are the fundamental matrices of systems (1.1.1p) and (1.1.1x),
respectively. Analogously, just as in the proof of Theorem 1.2.1, conditions (1.2.60) and (1.2.127)
are valid. In addition, condition (1.2.61) coincides with (1.2.35), and condition (1.2.62) follows from
(1.2.127). O

Proof of Corollary 1.2.6. Due to conditions (1.2.64) and (1.2.65), without loss of generality, we may
assume that condition (1.2.59) holds for every natural k. Condition (1.2.60) follows from (1.2.65) by
representation (1.2.68).

Let us verify condition (1.2.61). Using the integration-by-parts formula, we find that

t

B(Z*, AR)(t) = B(ZH Ay)(s) = /Zk_l(r) dAL(T)

S

= > diZ M) diA(T) + Y daZ () - daAg(r) for s <t (k=0,1,...).

s<t<t s<t<t
In addition, by equalities (1.1.18), we have
d; 2 () = =2 () djBi(t) - (In + (—1)7d; Bi(t)) ™" (j=1,2; k=0,1,...).
Consequently, due to (0.0.1), we get
t
BUZ A0 - BZ A = [ 27 (7)dABL, A(r) (E=0.1....)

for s < t. In the same way we establish the last equalities for the case t < s.
Analogously, we check the equalities

t

B(Zi ' i) — BZt fi)(s) = / 2 (r) dA(Br, fu)(7) for s,te T (k=0,1,...).

S

Therefore, equalities (1.2.61) and (1.2.62) coincide with equalities (1.2.66) and (1.2.67), respec-
tively. The corollary follows from Corollary 1.2.5. O
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Proof of Corollary 1.2.7. The corollary follows from Corollary 1.2.6 if we assume that Bg(t) =
Sc(Ag)(t) (k=0,1,...) therein. In addition, we note that condition (1.2.58) has form (1.2.69), con-
dition (1.2.65) is equivalent to conditions (1.2.70) and (1.2.71), and by (1.2.68), conditions (1.2.66)

and (1.2.67) coincide with (1.2.72) and (1.2.73), respectively. O
Proof of Corollary 1.2.8. The corollary follows from Corollary 1.2.6 if we assume that Bg(t) =
diag(Ag(t)) (k=0,1,...) therein. O
1.3 The stability in the Liapunov sense
1.3.1 Statement of the problem and formulation of the results
In this section, we investigate the question on the stability of the solutions of the system

dr = dA(t) -+ df(t) for t € Ry (1.3.1)

with respect to the small perturbation of initial data under the assumptions
Ae BVloc(RJr;Rnxn)7 f € BVloc(RjL;Rn)-

We consider, mainly, the case where A ¢ BV (R4 ; R™*™).
As above, we assume that condition (1.1.10) holds, i.e.,

det (I, + (=1)7d;A(t)) #0 for te Ry (j=1,2),

and, without loss of generality, A(0) = O,,x,. This condition guarantees the unique solvability of the
initial problem for system (1.3.1) (see Section 1.1).

Definition 1.3.1. A solution z, of system (1.3.1) is called stable if for every € > 0 and ¢, € Ry there
exists a positive number § = §(e, tp) such that an arbitrary solution z of system (1.3.1), satisfying the
inequality

|z(to) — zo(to)] < 0, (1.3.2)

admits the estimate
lz(t) — zo(t)|| < e for ¢ > to. (1.3.3)

Definition 1.3.2. A solution zg of system (1.3.1) is called uniformly stable if for every £ > 0 there
exists a positive number § = J(¢) such that for every ¢ty € R4 an arbitrary solution x of system (1.3.1),
satisfying inequality (1.3.2), admits estimate (1.3.3).

Definition 1.3.3. A solution z( of system (1.3.1) is called asymptotically stable if it is stable and for
every tg € Ry there exists a positive number dy = do(to) such that an arbitrary solution z of system
(1.3.1), satisfying the inequality

|2(to) — zo(to)| < do.
has the property

lim ||z(¢) — zo(t)|| = 0.

t—+oo

Definition 1.3.4. Let £ : Ry — Ry be a non-decreasing function such that

lim £(t) = +oc. (1.3.4)

t——+oo

A solution g of system (1.3.1) is called £-exponentially asymptotically stable if there exists a positive
number 7 such that for every ¢ > 0 there exists a positive number 6 = §(¢) such that an arbitrary
solution z of system (1.3.1), satisfying inequality (1.3.2) for some ¢y, € Ry, admits the estimate

Ja(t) — 2o(t)] < exp (— n(E(t) — £(t0))) for ¢ = to.
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We assume that £ : R — R, is a non-decreasing function satisfying condition (1.3.4) when we
consider the question of {-exponential asymptotic stability.

Note that the exponentially asymptotic stability is a particular case of the &-exponentially asymp-
totic stability if we assume £(t) = .

Definition 1.3.5. System (1.3.1) is called stable in one or another sense if every its solution is stable
in the same sense.

Let zp be some solution of system (1.3.1). Then every solution x of the system has the form
x(t) = y(t) + zo(t), where y is a solution of the homogeneous system

dx = dA(t) -z for t € Ry. (1.3.1p)
From this and Definitions 1.3.1-1.3.5 we have the following propositions.

Proposition 1.3.1. System (1.3.1) is stable in one or another sense if and only if the zero solution
of the homogeneous system (1.3.1¢) is stable in the same sense.

Proposition 1.3.2. System (1.3.1) is stable in one or another sense if and only if some of its solutions
is stable in the same sense.

Therefore, the stability is not the property of any solution of system (1.3.1). It is the common
property of all solutions of the system, and the vector-function f does not affect this property. Hence
it is the property only of the matrix-function A. Thus the following definition is natural.

Definition 1.3.6. The matrix-function A is called stable in one or another sense if system (1.3.1)
is stable in the same sense.

By Theorem 1.1.4, it is not difficult to verify the following propositions.

Proposition 1.3.3. The matriz-function A € BV oe(R1;R™ ™) is stable if and only if every solution
of system (1.3.1g) is bounded on R, .

Proposition 1.3.4. The matriz-function A € BV ,.(R; R™*™) is uniformly stable if and only if the
Cauchy matriz U of system (1.3.1g) admits the estimate

sup {|U(t, to)|| : ¢ >to >0} < +o0. (1.3.5)

Proposition 1.3.5. The matriz-function A € BV ,(Ry; R™"*™) 4s asymptotically stable if and only
if every solution x of system (1.3.1¢) has the property

tilgloo lz(t)]| = 0. (1.3.6)
Proposition 1.3.6. The matriz-function A € BVo.(R4;R™ ™) is &-exponentially asymptotically

stable if and only if there exists a positive number n such that the Cauchy matriz U of system (1.3.1p)
admits the estimate

sup { exp (M(E() — £(t))) - U, to)|| : t > to > 0} < +oc. (1.3.7)

In connection with Propositions 1.3.3-1.3.6, we present some results (see Theorems 1.3.1-1.3.3)
concerning the necessary and sufficient conditions for the stability in one or another sense of the
matrix-function A.

Below, we assume that H(0) = I,, in each statement where the matrix-function H appears.

Theorem 1.3.1. The matriz-function A € BV ,.(Ry; R™™ ™) is stable if and only if there exists a
nonsingular matriz-function H € BV ,.(R; R"™™) such that

sup {|[H™"(t)]| : t € Ry} < +o00 (1.3.8)
and N
\/ (H + B(H, A)) < +c0. (1.3.9)

0
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Theorem 1.3.2. The matriz-function A € BV ,.(Ry; R™ ™) is uniformly stable if and only if there
exists a nonsingular matriz-function H € BV oo (R ; R™ ™) such that conditions (1.3.9) and

sup {[|H " (t)H(7)||: t>7 >0} < +o0 (1.3.10)
hold.

Theorem 1.3.3. The matriz-function A € BVi,.(R;R™ ™) is asymptotically stable if and only if
there exists a nonsingular matriz-function H € BV o (R4 ; R™ ™) such that conditions (1.3.9) and

. —1 o
Jim [HT @) =0 (1.3.11)
hold.

Theorem 1.3.4. The matriz-function A € BV ,.(R;R™ ™) is &-exponentially asymptotically stable
if and only if there exist a positive number n and a nonsingular matriz-function H € BV (R4 ; R™*™)
such that

sup { exp (n(€(t) — €(r) - [ OHE)] = #2720} < +oo (1.3.12)
and
+o00
\/ B,(H, A) < +o0, (1.3.13)
0
where ,
B,(H,A)(t) = /exp(—nf(T)) d(H(7) 4+ B(H, A)(1)). (1.3.14)
0

Remark 1.3.1. In Theorem 1.3.3, if the function £ : Ry — R, is continuous, then condition (1.3.13)
can be rewritten in the form

+oo

/ A(V(Z(H, A)(1) + ding(€(1). ...£(1))) - |H(t)|H < too.

Corollary 1.3.1. Let the matriz-function Q € BVoo(Ry;R"*™) be such that

det (I, + (=1)7d;Q(t)) #0 for te Ry (j=1,2) (1.3.15)

and N
\/ BY 1 A-Q) <+, (1.3.16)

0

where Y (Y (0) = I,,) is the fundamental matriz of the system
dy =dQ(t) -y for t € Ry. (1.3.17)

Then the stability in one or another sense of the matriz-function Q guarantees the stability of the
matriz-functions A in the same sense.

Theorem 1.3.5. Let the matriz-function Ag € BVioe(Ry; R™ ™) be uniformly stable and
det (I, + (=1)7d;Ap(t)) #0 for t e Ry (j =1,2). (1.3.18)
Let, moreover, the matriz-function A € BV oc(Ry; R™ ™) be such that

+oo
\/ A(Ao, Z(H, A) — Ag) < +o0, (1.3.19)
0

where H € BV (R4 ; R™ ™) 4s a nonsingular matriz-function satisfying condition (1.3.10). Then the
matriz-function A is uniformly stable, as well.
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Remark 1.3.2. In Theorem 1.3.5, if H(t) = I,,, then condition (1.3.19) has the form

+oo
\/ A4y, A — Ag) < +o0. (1.3.20)
0

If the matrix-function Ag is stable, but not uniformly stable, then condition (1.3.20) does not
guarantee the uniform stability of A. We give a corresponding example which is a simple modification
of the analogous one from [35]. Let

1 1
Aoty = | 78" 0 A(t) 8! "
0 = ; =
0  —t(1+ cos®t)i —8exp ( - é) —t(1 + cos?t)

It is not difficult to verify that Ay is not only stable, but also asymptotically stable. As to the
matrix-function A, it is not uniformly stable.

Theorem 1.3.6. Let the matriz-function Ay € BVipe(R4;R™ ™) be &-exponentially asymptotically
stable and condition (1.3.18) hold. Let, moreover, the matriz-function A € BVioe(R4; R™ ™) be such

that
v(€)(t)

dim A(Ag, A — Ag) = 0, (1.3.21)
where
v()(t) =sup{r >t: (1) <&(t+) + 1} (1.3.22)

Then the matriz-function A is also &-exponentially asymptotically stable.

Corollary 1.3.2. Let the components of the matriz-function A = (aik)}'j—; € BVige(R ;R ™) be
such that

L+ (=1)dja;(t) #0 for te Ry (j=1,2;i=1,...,n),
V(&)

t—l)niloo A(aii,aik) =0 (Z,k: ].,...771) (1323)
and
aii(t) —au (1) < =€) = &(7)) for 0< 7 <t (i=1,...,n), (1.3.24)

where n > 0, and the function v(€) : Ry — Ry is defined by (1.3.22). Then the matriz-function A is
&-exponentially asymptotically stable.

Corollary 1.3.3. Let a matriz-function P € Ljoc(Ry; R™ ™) be &-exponentially asymptotically stable,
and the matriz-function A € BV oe(R4;R™ ™) be such that

ve(€)(t)
lim \/ (A=A =0,

t——+oo
t
where
t
ve(§)(t) = max {7‘ >t: (1) =¢&(t) + 1}, Ap(t) = /P(T) dr,

0
and £ : Ry — Ry is a continuous non-decreasing function satisfying condition (1.3.4). Then the
matriz-function A is £-exponentially asymptotically stable, as well.
Remark 1.3.3. If the function £ is strongly increasing, then

ve(€)(t) = €71 (E() + 1).

In particular, if £(¢) = ¢, then v.(€)(¢t) = t + 1, and the obtained results coincide with ones given
in [35] for the case of ordinary differential equations.
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Proposition 1.3.7. Let the matriz-function A € BVo.(R4; R™ ™) be -exponentially asymptotically
stable, and the vector-function f € BVi,.(Ry;R™) be such that

(E)(t)
lim \/ A4, f)=0, (1.3.25)
t

t—+oo

where the function v(€) : Ry — Ry is defined by (1.3.22). Then each solution x of system (1.3.1)
satisfies condition (1.3.6).

Proposition 1.3.8. Let the matriz-function Ay € BV 4c(R4; R™*™) be -exponentially asymptotically
stable and condition (1.3.18) hold. Let, moreover, the matriz-function A € BVioe(R4; R™ ™) be such

that
t

. 1 -
tilgloo@\o/A(Ao,Aon) =0 (1.3.26)
and
|diA(Ao, A — Ag)(t)|| <1 for t € Ry. (1.3.27)

Then the matriz-function A is £-exponentially asymptotically stable, as well.

Theorem 1.3.7. Let the matriz-function A = (aik)ﬁkzl € BVioe (R4 ; R™ ™) be such that

L+ (=1)dja;(t) #0 for t>t* (j=1,2;i=1,...,n), (1.3.28)
t
/exp (J(aii)(t) = J(ai) (7)) dv(bis) (1) < hig for t >t* (i #k; i,k=1,...,n) (1.3.29)
A
and
sup {J(a;)(t): te Ry} <400 (i=1,...,n), (1.3.30)
where by (t) = Alai, ai)(t) (@ # k; i,k =1,...,n), t* and hy, € Ry (i # k; i,k =1,...,n). Let,
moreover, the matriz H = (hik)?,k:p where hy; =0 (i =1,...,n), be such that
r(H) <1. (1.3.31)

Then the matriz-function A is stable.

Theorem 1.3.8. Let the matriz-function A = (aik)Zk:I € BV o (R4 ; R™™ ™) be such that conditions
(1.3.28), (1.3.29) and

sup {J(ai;)(t) — J(au)(r): t =72t} <400 (i=1,...,n) (1.3.32)

hold, where b, (t) = A(aii, ai)(t) (0 £ k; i,k =1,...,n), t* and hy, € Ry (i # k; i,k =1,...,n).
Let, moreover, the matrizv H = (hik)?,k:p where hi; =0 (i =1,...,n), be such that condition (1.3.31)
holds. Then the matriz-function A is uniformly stable.

Remark 1.3.4. In Theorem 1.3.8, condition (1.3.32) cannot be replaced by (1.3.30). We give the
corresponding example from [35]. Let n = 1, A(t) = —t(1 + cos?t). Then every solution of system
(1.3.19) has the form

z(t) = exp (— t(1 4 cos? t) + to(1 + cos® to)) z(to).
Therefore, the matrix-function A is asymptotically stable, since each solution of (1.3.1g) satisfies
condition (1.3.6). On the other hand,

x(t) = exp (lmr - g)x(to)

for t = km + 5 and to = k7 for every natural k. From this, it is evident that for every p > 0, condition
(1.3.5) is violated for some ¢y € Ry and t > tg. So, the matrix-function A is not uniformly stable.
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Corollary 1.3.4. Let the components of the matriz-function A = (aik)ﬁkzl € BVipe(Ry; R ™) be
such that the conditions

L+ (=1)Ydja;(t) >0 for t>t, (j=1,2;i=1,...,n) (1.3.33)

and

| A(aii, air)(t) — Alai, ax) (1))
S _hik (.A(aii, aii)(t) - A(aii, @ii)(T)) fO’I” t Z T Z s (Z 75 k‘; i, k= 1, .- ,n) (1334)
hold, where a;; (i =1,...,n) are non-increasing functions, t, and h;x, € Ry (1 # k; i,k =1,...,n).

Let, moreover, the matriz H = (hix)}'—,, where hi; =0 (i =1,...,n), be such that condition (1.3.31)
holds. Then the matriz-function A is uniformly stable.

Theorem 1.3.9. Let the matriz-function A = (air)} y=; € BVioc(R1;R" ™) be such that conditions
(1.3.28),
J(ai;)(t) — J(ai)(") < —nt) + nt*) for t >t (i=1,...,n), (1.3.35)
and
¢
/exp (n(t)—n(T)+J(ai)(t) = J(ai;)(1)) dv(bix) (T) S hi for t>t° (i#k; i,k=1,...,n) (1.3.36)

t*

hold, where b, (t) = A(asi,ai)(t) (i £ k; i,k=1,...,n), tx andhy, Ry (i £ k;i,k=1,...,n), and
the function 1 € BVio.(Ry;R) satisfies condition (1.3.4). Let, moreover, the matriz H = (hix)})—;,
where hy; = 0 (i = 1,...,n), be such that condition (1.3.31) holds. Then the matriz-function A is
asymptotically stable.

Corollary 1.3.5. Let the components of the matriz-function A = (aix)}—; € BVige(R ;R ™) be
such that the conditions

|sclain)(t) — sclaiw)(7)]
< —hig(Sc(ai)(t) = sc(ai)(T)) for t>7>t" (i#k;i,k=1,...,n), (1.3.37)
(=1)Ydja;(t) >0 or —1< (=1)dja;(t) <exp *(1) -1
for t>t" (7=1,2;i=1,...,n), (1.3.38)

and

|djaik(t)| S hik (1 + In (1 + (—1)jdjaii(t)))_l
xIn (14 (=1)dja;(t)) for t>t* (j=1,2i#k; i,k=1,...,n) (1.3.39)

hold, where s.(a;;) (i =1,...,n) are non-increasing functions, t* and hy, € Ry (i £ k;i,k=1,...,n)
are such that the matriz H = (hix)}y—,, where hy =0 (i = 1,...,n), satisfies condition (1.3.31). Let,
moreover, there exists a function ag € BVoe(R4;R) such that

ao(t) — ao(r) < min{|J(aii)(t) — J(ai)()| s i=1,... n} for t>1>t" (1.3.40)
and
tlg-noo ap(t) = +oo. (1.3.41)

Then the matriz-function A is asymptotically, as well as uniformly stable.

Corollary 1.3.6. Let the components of the matriz-function A = (aik);'j—; € BViec(Ry;R™*™) be
such that conditions (1.3.37)~(1.3.39) hold, where a;; (i =1,...,n) are non-increasing functions such
that sc(ai;) € ACie(Ry;R) (i =1,...,n), t* and hy, € Ry (i # k; i,k = 1,...,n) are such that
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the matriz H = (hi)j y—,, where hy; = 0 (i = 1,...,n), satisfies condition (1.3.31). Let, moreover,
condition (1.3.41) hold, where

t

ao(t) = /770(5) ds+ Y In(l—=m(s) — Y In(1+n(s)), (1.3.42)
0 0<s<t 0<s<t
no(t) = min {|(sc(ai) ()| : i=1,...,n} (1.3.43)
and
m(t) = max {da;(t): i=1,...,n}, n2(t) =min{doa;(t): i=1,...,n}. (1.3.44)

Then the matriz-function A is asymptotically, as well as uniformly stable.

Theorem 1.3.10. Let the matriz-function A = (aix)'—; € BVioe(Ry;R"*™) be such that conditions
(1.3.28),

CE> >, E() £ E(r )} v (i=1,...,n) (1.3.45)

and

/eXp (V(&(t) = &(7)) + J(ai)(t) — J(aii)(7)) dv(bix)(7)

<hy fort>t" (i£k; i,k=1,...,n) *

hold, where v > 0, t* and hy, € Ry (1 £ k; i,k =1,...,n), bi(t) = Alai,a:ix)(t) (i,k=1,...,n).
Let, moreover, the matriz H = (hix)})—,, where hi; =0 (i = 1,...,n), be such that condition (1.3.31)
holds. Then the matriz-function A is &-exponentially asymptotically stable.

Corollary 1.3.7. Let the components of the matriz-function A = (aix);'j—; € BViee(R;R™*™) be
such that conditions (1.3.33), (1.3.37), (1.3.39) and (1.3.45) hold, where v > 0, t* and h;y, € Ry
(i #£k;i,k=1,....n), ayz (1 =1,...,n) are non-decreasing functions. Let, moreover, the matriz
H = (hik)} =1, where hy; =0 (i = 1,...,n), be such that condition (1.3.31) holds. Then the matriz-
function A is &-exponentially asymptotically stable.

Theorem 1.3.11. Let A= (aik)zkzl €BV o (Ry; R ™) and let the matriz-function Ag= (aOik)gszl €
BVioe(Ry; R™*™ ) with non-decreasing components agir, (i £ k; i,k =1,...,n), be such that
lAD] <1 for teR, (G=1,2)
Se(@ii) (t) = sc(ai) (1) < se(aoii)(t) — sc(aoi)(T) for t>7>0 (i=1,...,n),
’sc(aik)(t) Se(air)( T)| < se(aoir)(t) — sc(agir)(T) for t>7>0 (i£k; i,k=1,...,n)

and
djaii(t)| < djaol'i(t) and |djaik(t)| < djaom(t) fO?” te R+ (] =1,2; i,k‘ =1,... ,n).

Let, moreover, the matriz-function Ay be stable (uniformly stable, asymptotically stable or &-exponen-
tially asymptotically stable). Then the matriz-function A is also stable (uniformly stable, asymptoti-
cally stable or £-exponentially asymptotically stable).

Theorem 1.3.12. Let aj, € R (i,k=1,...,n) and p; : Ry = R (i =1,...,n) be the functions such
that s.(p;) (i =1,...,n) are absolutely continuous and non-decreasing functions, conditions (1.3.41)
and

(—1)jaiidjul( )>0 or —1<(—1) a”dJul(t) <exp (1) —
for teRy (j=1,2,i=1,...,n) (1.3.46)
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hold, where the function ag(t) is defined by (1.3.42),

7o (t) = min {|aii|(sc(ui)(t))' ci=1,... ,n}
and
n1(t) = max {aiidl,ui(t) i=1,... ,n}, 72(t) = min {aiidg,ui(t) i=1,.. .,n}.

Then conditions (1.3.31) and
Qi <0 (i=1,...,n), (1.3.47)

where

H=((1- ) |0‘““|)7k:1, (1.3.48)

|cvii
are sufficient for the matriz-function A(t) = (qurpi(t))i =, to be asymptotically stable; and if the
conditions

>0 (i #£1 ik=1,...,n), (1.3.49)

Z Oéildjﬂi(t) < |]. — a”djuz(t)| or

1=1; l#i
> andipi(t) < |1 — amdpk(t)] for teRy (j=1,2% i, k=1,...,n), (1.3.50)
1=1; 1%k
oz”djlul(t) <1 fOT‘ te R+ (] =1,2;i=1,... ,’Il) (1351)
and
n -1 .
((5ik - Oéikd,jui(t))i7k:1) > Opxn for teRy (j=1,2) (1.3.52)

hold, then conditions (1.3.31) and (1.3.47) are necessary, as well.

Corollary 1.3.8. Let the matriz-function Q € BVoe(Ry;R™ ™) satisfying condition (1.3.15) be
uniformly stable and there exist a number n > 0 such that

)]V (G (f,Q,A))(t)H < 400, (1.3.53)

where Y (Y (0) = I,,) is the fundamental matriz of system (1.3.17), and

Gn(§Q, A)(1) = A(Q, A —Q)( )+nsc(§)(t)1n

+ Y exp(—né(r)) dy exp(é (1)) (I — drQ(7)) ™ (I, — d1 A(7))
o<r<t

+ Z exp(—né(T)) da exp(né(T)) (I, + de(T))fl(In + dy A(T)). (1.3.54)
0<r<t

Then the matriz-function A is £-exponentially asymptotically stable.

Remark 1.3.5. In Corollary 1.3.8, if the function £ : Ry — R is continuous, then

Remark 1.3.6. As

t

B(Z™', A-Q)(t) = / 27\ (r) dA(Q, A — Q)(r) for t € R,

0
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then the condition .
H [ onavia@a- Q))(t)H < foo
0

guarantees the fulfillment of condition (1.3.16) in Corollary 1.3.1. On the other hand,
lim G, (£, Q,A)(t) = AQ,A—Q)(t) for t € Ry,
n—0+

where G,(§, Q, A)(t) is defined by (1.3.54). Therefore, Corollary 1.3.8 is true for the limit case (n = 0),
as well, if require the &-exponentially asymptotic stability of the matrix-function @ instead of the
uniform stability of that matrix-function.

Corollary 1.3.9. Let Q € BVjo.(R4;R™ ™) be a continuous matriz-function satisfying the Lappo—
Danilevskii condition. Let, moreover, there exist a nonnegative number n such that

H yweXp(_Q(t)) dV(A—-Q+ nfln)(t)H < +00.
0

Then:

(a) the uniform stability of the matriz-function Q guarantees the &-exponentially asymptotically
stability of the matriz-function A if n > 0;

(b) the &-exponentially asymptotic stability of the matriz-function Q guarantees the &-exponentially
asymptotically stability of the matriz-function A if n = 0.

Corollary 1.3.10. Let there exist a nonnegative number n such that the components a;, (i,k =

1,...,n) of the matrixz-function A satisfy the conditions
L+ (1) dja;(t) #0 for teRy (i=1,...,n), (1.3.55)
se(aii)(t) = se(aii) (1) = Y |l —diaii(s)| + > |1+ daaii(s)|
T<s<t T<s<t
< =n(5e(€)(t) = 5e(E)(T)) — p(€(t) = &(7)) for t>7>0 (i=1,...,n), (1.3.56)
(=17 >l Ol (exp ((=1)nd;é(r)) —1) < 400 (j=1,23i=1,...,n) (1.3.57)
0<t<+o0
and
“+o0
[ 15 Ol detgn)e) < +00 (i £ ki ik =L..m)
0

where p=014fn >0 and p >0 if n=0,
yi(t) = exp (sc(aii) (t) +15.()(1) [ 1= draus(r))™" [] (1 +deais(r)) (i=1,...,n),

0<r<t o<r<t
gir(t) = se(au)(t) + Y exp(=ndi&(7)) drain(7) - (1 = dra(7)) ™"
0<r<t
+ Z exp(nda&(7)) doair(7) - (1 + daasi (7)™ (i # k; i,k =1,...,n).

0<r<t
Then the matriz-function A is &-exponentially asymptotically stable.

Remark 1.3.7. In Corollary 1.3.10, if the components a;; (i,k =1,...,n) of the matrix-function A
satisfy the condition

(=1 djam(t) - (14 (=1 djas(t)) " >0 for t€Ry (i £k; i, k=1,...,n; j=1,2)

together with condition (1.3.55), then we can assume without loss of generality that 7 > 0 and u =0
in Corollary 1.3.10.
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Theorem 1.3.13. Let the matriz-function A € BV (R ; R™ ™) be such that

Se(A)(t) = sc(on)(t) - By for t € Ry (1.3.58)
k=1
and .
I+ (—1)7d; A(t) = exp ((-1)]’ S djan(t) Bk) for teRy (j=1,2), (1.3.59)
k=1
where ay, € BV, (Ry;Ry) (B =1,...,m), and B € R™™™ (k= 1,...,m) are pairwise permutable
my
constant matrices. Let, moreover, (A — Ag;)™ (i =1,...,mg; Y ng; = n) be the elementary divisors
i=1

of the matrixz By, for every k € {1,...,m}. Then

(a) the matriz-function A is stable if and only if

sup{ ﬁ (%(1 + oy ()™t exp(oz;g(t)Re)\ki)> s te R+} < 4005 (1.3.60)

k=1 i=1

(b) the matriz-function A is asymptotically stable if and only if

lim H (zk:(l + g (t))i ! exp(ozk(t)Re)\ki)) =0. (1.3.61)
k=1 =1

t——+oo

Corollary 1.3.11. Let conditions (1.3.58) and (1.3.59) hold, where By, € R™*™ (k =1,...,m) are

pairwise permutable constant matrices and ay € BVo(Ry;Ry) (K =1,...,m) are such that
t_lh_moo ag(t) =400 (k=1,...,m). (1.3.62)
Then
(a) the matriz-function A is stable if and only if every eigenvalue of the matrices By, (k=1,...,m)

has the nonpositive real part; in addition, every elementary divisor corresponding to the eigen-
values with the zero real part is simple;

(b) the matriz-function A is asymptotically stable if and only if every eigenvalue of the matrices By
(k=1,...,m) has a negative real part.

If the matrix-function A € BV,.(Ry; R™*™) has at most a finite number of discontinuity points
in [a,t] for every t > 0, then by v4(t) and v5(t) we denote, respectively, a number of points 7 €0, ¢]
for which ||d1 A(7)|| # 0 and a number of points 7 € [0,¢[ for which ||d2A(7)]| # 0.

Corollary 1.3.12. Let the matriz-function A € BV oc(R4; R™ ™) be such that
So(A)(t) = a(t)Ao for t e Ry

and
GAW) = A; if AR £0 (teRy; j=1,2),
where a € BV,.(Ry; R, s a continuous function such that

lim a(t) = 400, (1.3.63)

t——+o0

and Ag, Ay and Ay € R™™ are the pairwise permutable constant matrices. Let, moreover, there exist
numbers P1, B € Ry such that

limsup |v;(t) — Bja(t)] < 400 (j =1,2). (1.3.64)

t——+oo

Then
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(a) the matriz-function A is stable if and only if every eigenvalue of the matriz P = Ay — 51 In(I,, —
Ayp) + BoIn(l, + As) has the nonpositive real part; in addition, every elementary divisor corre-
sponding to the eigenvalue with the zero real part is simple;

(b) the matriz-function A is asymptotically stable if and only if every eigenvalue of the matrix P
has the negative real part.

Corollary 1.3.13. Let the matriz-function A € BV oe(R4; R™ ™) be such that

Se(A)(t) = Cdiag (So(G1)(1), ..., Se(G) (1)) O™ for t € Ry

and
Ly + (~1)7d;A(t) = C diag ((exp ((~1)7d;G1 (1), .., exp ((~1V d; G (1)) ) O
fOT te ]R+ (] = 1a2)7
nE—1 m
where C € C™*" {s a nonsingular complex matriz, G(t) = kX: () Zh (k=1,...,m; Y ny=n),
i=0 k=1
ar; € BVipe(RyRy) (K=1,...,m;i=1,...,np — 1), and axo is a complex-valued function such
that Re(ago) and Im(agko) € BVipe(Ry;R). Then
(a) the matriz-function A is stable if and only if
T’Lk—l 1
sup { exp (Re(aro (1)) T (1 + aws(®)! ™12 te R+} <400 (k=1,...,m);  (1.3.65)
i=1

(b) the matriz-function A is asymptotically stable if and only if

lim exp (Re(axo(t))) ﬁ A+ ap@)™ =0 (k=1,...,m). (1.3.66)

t—+oo
i=1

Later, we will use the following notation.
Let H = (hir)}x=1 € Lioc(R+;R™ ™ ), where o : Ry — R is a non-decreasing function. Then by
Q(H; a) we denote the set of all matrix-functions A = (aix)}'—; € BVioe(R4; R™ ™) such that

ban(t) = /hik(T) da(r) for tERy (ik=1,....n), (1.3.67)
0

where

bikzaik(t)—%z< 3 dia(r) - dua(r) - dzali(T).anlk(T)) (i,k=1,...,n). (1.3.68)

=1 0<7<t 0<r<t
If 8 € BVipe(R4; R) is such that
L+ (=1)7d;B(t) #0 for te Ry (j =1,2),
then by v3 we denote the unique solution of the initial problem
dy(t) = (1) dB(t), 7(0) = 1.
By (1.1.5),

¥5(t) = exp (5.(B)(t) — 5c(8)(0)) J[ (1 =duB(r)™" J] (1+d2B(r)) for teRy.  (1.3.69)

0<T<t 0<T<t
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Theorem 1.3.14. Let A = (ax)}—; € Q(H; ),

n

Z he(O)xszr < p(t Zw for teRy, (z;)f-, €R” (1.3.70)
i,k=1 =1
and '
142(=1)Yp(t) d;a(t) > 0 for teR, (j=1,2), (1.3.71)
where H = (hi)p—y € Lloc(R+;R"X”' a), a : Ry — R is a non-decreasing function, and p €

Lioe(Ry;R; ). Let, moreover, B(t) = 2fp da(T), and v3(t) be defined by (1.3.69). Then

(a) the condition
hmsup’yﬁ/ (t) < +o0 (1.3.72)

t—+oo
guarantees the stability of the matriz-function A;
(b) the condition
1/2 —~1/2
sup {7 By ()i t>T > 0} < +o0 (1.3.73)
guarantees the uniform stability of the matriz-function A;
(c) the condition
/20y
t—li—&-moory t)=0 (1.3.74)

guarantees the asymptotic stability of the matriz-function A;

(d) the condition

Invyp(t) —Inyg(r) g 7-
p{ e —emy) | =T A >}<o, (1.3.75)

where t* € Ry, guarantees the £-exponentially asymptotic stability of the matriz-function A;

(e) if the inequality, opposite to inequality (1.3.70), holds and

11msup'yﬁ/ (t) = +oo, (1.3.76)

t—+oo
then the matriz-function A is nonstable.

Corollary 1.3.14. Let A € Q(H;«) and
, 1
(=1 (C(t) djalt) > —5 for teRy (j=1,2), (1.3.77)

where

Ct)== (Ht)+H" (1)),

N |~

H = (hir)}' k=1 € Lioc(R;R™"™; ), and a : Ry — R is a non-decreasing function. Then

(a) the condition

lim sup (/)\O ) dse( - = Z In 1—2/\0 ( ))d104(7'))

t=+oo 0<T<t

+ % Z In (1+2X°(C(7)) d2a(7))> < +00

0<r<t

guarantees the stability of the matriz-function A;
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(b) the condition

sup{/)\o(C( ))dsc(a)(s) — = Z In (1 —2X%(C(s)) dr(s))

T 7'<9<t

+ % Z In (14 2X\%(C(s)) daar(s)) : t > 7> O} < 400

T<s<t
guarantees the uniform stability of the matriz-function A;

(c) the condition

t—+oo

ml<jWWhD%NMﬂ
0

—_

_ % Z In (1 —2X%(C(7)) dia(7)) 3 Z In (1+ QAO(C(T))dza(T))> = -

guarantees the asymptotic stability of the matriz-function A;

(d) the condition

sup{ (/)\0 D dsela)(s) — 5 3 (1= 2°(C(s)) duas)

T<S<t
1
+ 5 Z In (1 + 2A0(C(s))d2a(s))> t>T >t E(t) # 5(7)} <0,
T<s<t
where t* € Ry, guarantees the £-exponentially asymptotic stability of the matriz-function A;

(e) if instead of condition (1.3.77), the condition
; 1
(1P M(CO) dyalt) > —5 for t€ Ry (j=1.2)

holds and

lim sup </)\0 ) dse(@)(T)
t——+oo

0

B 5 Z In (1 — 22(C(7)) dla(T)) + % Z In (1 +2X(C (7)) dgoz(T))> = 400,

0<r<t o<r<t

then the matrixz-function A is nonstable.

1.3.2 The well-posedness of the initial problem on infinite intervals and
stability

In this section, we consider the question on the well-posedness of problem (1.2.1), (1.2.2) for the case
I=R;, Ao = A € BVpe(Ry;R™ ™) and fo = f € BVipe(R;R™).

Definition 1.3.7. The initial problem (1.2.1), (1.2.2), where Ay € BV,.(I; R™*™) is the matrix-
function satisfying condition (1.2.8), and fo € BV,.(I;R™), is said to be well-posed if condition
(1.2.10) holds for every sequences Ay (k = 1,2,...), fr (k = 1,2,...), tx (k = 0,1,...) and ¢
(k=0,1,...) for which there exists a sequence Hy (k =0,1,...) such that conditions (1.2.5), (1.2.9)
and (1.2.11) hold, and conditions (1.2.12)—(1.2.14) are fulfilled uniformly on I.
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Tt is evident that the statements of Theorems 1.2.1, 1.2.1" and Corollary 1.2.2 imply that the initial
problem (1.2.1), (1.2.2) is well-posed.

Definition 1.3.8. The initial problem (1.2.1), (1.2.2), where Ay € BV,.(I; R™**™) is the matrix-
function satisfying condition (1.2.8), and fo € BVy,.(I;R™), is said to be weakly well-posed if condition
(1.2.10) holds for every sequences Ay (kK = 1,2,...), fi (k = 1,2,...), tx (k = 0,1,...) and ¢
(k=0,1,...) for which there exists a sequence Hy, (k=0,1,...) such that conditions (1.2.5), (1.2.9)
and (1.2.11) hold, and the conditions (1.2.12),

t

kglfm\! (Z(Hy, Ar) — Z(Ho, Ag)) =0 (1.3.78)
and .
kEToo\/ (B(Hy, fr) — B(Ho, fo)) =0 (1.3.79)

hold uniformly on I, where a € I is a fixed point.

Theorem 1.3.15. Let A € BV, (R4 ;R™™ ™) and f € BV oo(R;R™) be such that
v(&)(t)
limsup \/ A(4, A) < +oo (1.3.80)
t

t——+oo

and
v(§)(t)
lim \/ A4, f)=0,
t

t——+oo

where the function v(§) is defined by (1.3.22). Then &-exponentially asymptotic stability of the matriz-
function A guarantees the well-posedness of problem (1.2.1), (1.2.2) on the R..

Theorem 1.3.16. Let A € BV ,.(R4; R™™™) and
f € BV(R; R™). (1.3.81)

Then uniform stability of the matriz-function A guarantees the weakly well-posedness of problem

(1.2.1),(1.2.2) on the Ry.

1.3.3 Auxiliary propositions

Lemma 1.3.1. Let the matriz-function Ay € BVioo(Ry; R™*™) satisfy condition (1.3.18). Let, more-
over, the following conditions hold:

(a) the Cauchy matriz Uy of the system
dr =dAo(t) - (1.3.82)
satisfies the inequality
Uo(t, )| < Qexp (—n(t) +nlto)) for t >t (1.3.83)
for some ty € Ry, where Q = (pik)ﬁkzl e RV, and n € BVjo.(Ry;R);

(b) there exists a matric H € R*™ such that conditions (1.3.31) and
¢
/exp(n(t) —n(71)) - |Uo(t, 7)| dV (A(Ag, A — Ap))(T) < H for t >ty (1.3.84)
to

hold.
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Then an arbitrary solution x of system (1.3.1g) admits the estimate

z(t)| < Rl|z(to)| exp ( — n(t) +n(to)) for t > to, (1.3.85)
where R = (I, — H)~1Q.

Proof. Let A = (aix)} =1, Ao = (a0ir)} k=1, Uo = (woik)} =1, and x = (z;)j_; be an arbitrary solution
of system (1.3.1p).
It is evident that
dx(t) = dAo(t) - x(t) + d(A(t) — Ao(t)) - z(t).

) -
From this, according to the variation-of-constant formula (see (1.1.14)), the integration-by-parts for-
mula and properties of the Cauchy matrix Uy (see Theorem 1.1.6(d)), we have

t

z(t) = Uo(t, to)z(to) + /d(A(T) — Ay(71)) - (1) — /tho(t,T)</d<A(S) — Ao(s)) -x(s))

to

T

to
t

= Up(t,to)x(to) + / Uo(t,7)d(A(T) — Ao(7)) - z(7)

Z d1Uo(t,7) - di(A(T) — Ao(7)) - 2(7)
+ Z daUo(t,7) - do(A(T) — Ao(7)) - 2(7)

t

= Up(t,to)x(to) + / Uo(t,7)d(A(T) — Ao(7)) - z(7)

to

+ Z Uo(t,T) dlAQ(T) . (In - dle(T))71 . dl(A(T) — Ao(T)) . Z‘(T)

Z Uo(tﬂ') dng(T) . (In + dgA()(T))_l - do (A(T) — AO(T)) . w(T)
Therefore,
2(8) = U(t, to)a(to) +/U0(t,7-) dA(Ag, A — Ag)(r) - (r) for ¢ > to. (1.3.86)
Let
yi(t) = sup { exp (n(7) — n(to)) - |zx(7)] : to < 7 < t},
y(t) = (y(t)) k=1
Then
> /um‘j(f, T)ak(r) dbjn(r)| < D ui(t) / [uoij (t, T)||2k ()] dv(bjr) (1)
k=14 k,j=1

< 37 [ exp(n(r) + nfto) o8, )] (b)) for ¢ = to

where b (t) = A(agik, aix, — aoir)(t) (i,k =1,...,n). From this and (1.3.86) we find
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exp(n(t) — ) - | (t)] < ZeXp n(to))uoir (L, to)| |k (to)]

n t

k,j=1 &
Therefore, by (1.3.83) and (1.3.84), we obtain
y(t) < Qlz(to)| + Hy(t) for t > to.

Hence,
(I, — H)y(t) < Qa(ty)| for t > to.

+ Z yk(t)/exp(n(t) — (7)) |woi; (¢, T)|dv(bj)(T) for t >ty (t=1,...,n).

(1.3.87)

On the other hand, due to (1.3.31), the matrix I,, — H is nonsingular and the matrix (I,, — H)™*

is nonnegative, since H is nonnegative. From this, by (1.3.87) and the definition of y, we get
y(t) < (I — H) ' Qe(ty)] for > to

and
|2(t)] < (In — H) ' Qa(to)| exp(=n(t) + n(to)) for t > to.
Thus estimate (1.3.85) is proved.

Lemma 1.3.2. Let h € BV([a,b];R™) and 8 € BV([a,b];R). Then

b

b
/ h(t) exp(—B(t)) dexp(B(t)) = / h(t) dB(t)

a

+ 3 h(t)(1—diB(t) —exp(—di A1) + > h(t)(exp(daB(t)) — dap(t) —

a<t<b a<t<b

Proof. Let £(t) = s1(B)(t) + s2(8)(¢). Using (0.0.10), (0.0.11) and (0.0.12), we have

b

/h(t) exp(—p(t)) dexp(8 /h exp(—s.(8 —£(t)) dexp(se(8)(t) + £(2))

a
b

b
- / h(t) exp(—so(8)(£)) dexp(se(8)(1)) + / (t) exp(—£(t)) dexp(£(1))

a

— Y hlt)exp(=sc(B)() = £(t)) dr exp(sc(B)(1)) - dy exp(£(t))

a<t<b
+ Y h(t)exp(—so(B)(t) — £(1)) dzexp (sc(B) (1)) - dz exp(£(1))
a<t<b
b 5 b
/h ) exp(— )) dexp(s.(B +Z/h exp(— t)) dexp(s;(8)(t))
]:1

b
/h Ydse(B)(t) + Z h(t)(1 — exp(—d1 B(t) Z h(t)(exp(daB(t)) — 1)

a<t<b a<t<b

\@

h(t + Y h()(1 = diB(t) - exp(=d1B(1)))

a<t<b

+ Z h(t)(exp(d2(t)) — d2B(t) — 1).

a<t<b

).
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Lemma 1.3.3. Let the matriz-function B € BV ,.(Ry; R™"*"™) satisfy the Lappo—Danilevskii condition.
Then
b
/dEXp(B(t)) -exp(=B(t)) = 5.(B)(b) — S:(B)(a)
a

+ > (In—exp(=diB(t)) + > (exp(d2B(t)) — I) for 0<a<b. (1.3.88)

a<t<b a<t<b

Proof. Since S.(B)(t), S1(B)(t) and S3(B)(t) (t € Ry) are pairwise permutable matrices, we, in
addition, have

S(B)(t) - d;B(t) = d; B(t) - S.B)(t) for t€ Ry (j=1,2)
and

S;(B)(t) - ds—; B(t) = ds_;B() - S;(B)(t) for t € Ry (j=1,2).

Therefore, according to the general integration-by-parts formula (0.0.10) and (0.0.11), we find that
b b
/deXp(B(t)) -exp(—B(t)) = /dexp(sc(B)(t)) ~exp (S1(B)(t) + S2(B)(1)) - exp(~B(t))
a \ a
+/exp(5c(B)(f))deXp (S1(B)(t) + S2(B)(1)) - exp(—B(t))

b
= /dexp(Sc(B)(t)) -exp(—Se(B)(t))

+ > (In—exp(=diB(t))) + > (exp(d2B(t)) — I,). (1.3.89)

a<t<b a<t<b

Due to the Lappo—Danilevskii condition, we easily get

b
[ sk 0 S0 = 1 (S B - S (B))

a

for every natural k£ and m.
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By this and the definition of the exponential matrix, we obtain

b
/ dexp(Su(B)(2)) - exp(—Su(B)(#))

— m+1 = kl(m — k)!
St m+1 _ Qgm+1 a
= exp(S.(B)(8) — exp(S(B)(a) - 3 PR (O,
Thus
b
[ desp(s.B)0) - exp(-S.(B)E) = S.B)O) - 5.(B) (o). (1.3.90)
By (1.3.89) and (1.3.90), equality (1.3.88) holds. O

Lemma 1.3.4. Let the matriz-function A € BVo.(R1;R™ ™) be such that

Sc(A)(t) = Sc(B)(t) and I, + (—1)7djA(t) = exp ((-1)’d; B(t)) (j =1,2),

)

where the matriz-function B € BV (R ;R"*™) satisfies the Lappo—Danilevskii condition. Then the
matriz-function exp(B(t)) is a solution of system (1.3.1p).

Proof. By (1.3.88),

/dexp(B(T)) ~exp(—B(1)) = A(t) — A(s) for 0 <t <s.

Consequently, using the substitution formula (0.0.12), we get
t t T
[ aaw) o) = [ a( [ aess@) ew(-5) ) e
S S S
=exp(B(t)) —exp(B(s)) for 0 <t < s. O
Remark 1.3.8. Let the function 8 € BV,.(R4;R) be such that
1+ (=1)7d;B(t) >0 for t e Ry (j =1,2).

Then if one of the functions 3, J(5) and A(S, 8) is non-decreasing (non-increasing), then all the others
will be the same. This fact immediately follows from equalities (1.1.4), (1.1.5) and (1.1.19).

For completeness, we give the following lemma from [35].

Lemma 1.3.5. Let P = (pix)j—; € R"*" be the symmetric matriv. Then

Mo(P)(zx2) < Pr*x < \O(P)(x * ).
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1.3.4 Proof of the results
Proof of Theorem 1.3.1. First, we show the sufficiency. According to Lemma 1.2.2; the mapping

r—y=Hz
establishes a one-to-one correspondence between the solutions of systems (1.3.1p) and
dy = dA*(t) - y, (1.3.91)

respectively, where
A*(t) =Z(H, A)(t).

On the other hand, by (1.3.8),
inf { det(H(t)): t € Ry} >0

and so,
det H(t—) #0 and det H(t+) # 0 for t € Ry. (1.3.92)

Therefore, by (1.2.87), we have
det (I, + (=1)7d;A*(t)) #0 for te Ry (j =1,2).

Let X (X(0) = I,,) and Y (Y(0) = I,,) be the fundamental matrices of systems (1.3.1p) and
(1.3.91), respectively. Then

d(H(T)+ B(H, A))(7) -X(T)) for t e Ry.

I
T
L
-
S~—
7N
~
3
+
o\ﬁ

From this, by virtue of (1.3.8), we have

u(t) <r+ /U(T) da(r) for t € Ry, (1.3.93)
0

where

wt) = [ X@I,  a(t) =r|V(H + B(H, A) @),

and
r=sup{|H'(t)[: t € Ry}

It is evident that a(t) (¢ € Ry) is the non-decreasing function and the series Y. dja(t) (j =1,2)
teR L

contain at most countable nonzero terms. On the other hand, in view of (1.3.9), these series converge.
Therefore, there exists t* € Ry such that

0 < dja(t) < % for t>t* (j=1,2). (1.3.94)

Due to (1.3.93), (1.3.94) and equality (0.0.7), we get

t t

/u(T) da(t) = u(t) dya(t) + /u(T) db(t) for t >0,

0 0
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where b(t) = a(t—). So,

u(t) < (1—d1a(t))_1<r+ / u(r) da(r) + / u(r) db(T)) for ¢ >t
0 t*
and ,
u(t) <ri + Q/U(T) db(r) for t>t*, (1.3.95)
where )

ry = 2(7« + 0/ u(r) da(7’)>.

From (1.3.95), according to the Gronwall’s inequality (see Lemma 1.1.4), we get

u(t) < riexp (2\t/(b)) < rpexp (V(H + B(H, A))) for t > t*.
0

t*

Hence, by (1.3.9),
sup {[| X ()] : t € Ry} < +o0.

In view of Proposition 1.3.3, the stability of the matrix-function A is proved.
Let us show the necessity. Let the matrix-function A be stable. Then, due to Proposition 1.3.2,
there exists r > 0 such that
| X (@) <r for t eRy,

where X (X (0) = I,,) is the fundamental matrix of system (1.3.1¢).
If we assume H(t) = X ~1(t), then by (1.1.17) we conclude that

Ht)+BH,A)) =Xt +BX 1AW =X+, - X *(t)=1, for t e Ry.
Therefore, estimates (1.3.8) and (1.3.9) hold. O

Proof of Theorem 1.3.2. Let us show the sufficiency. Let U* be the Cauchy matrices of system
(1.3.91). Then, by Lemma 1.2.2, for every fixed s € R, we have

Ul(t,s) = H Y (t)U*(t,s)H(s) = H '(t) (In + /dﬁ(H, A)(r) - U*(T,s))H(s)

=H 'Y(t)H(s) + Hﬁl(t)/d(H(T) + B(H, A)(7)) - H *(r)U*(r,8)H(s) for t € Ry.

Therefore,

Ult,s) = H- (#)H(s) + H-\(1) / d(H(r) + B(H, A)(7)) - U(r,s) for t > s.

S

From this, if we take into account (1.3.10), we find that

t
|U(¢, s)]] §r+/||U(7,s)||da(T) for t > s,
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where
a(t) =r||V(H + B(H, A))(t)|
and
r=sup{|H '()H(s)| : t>s>0}.

Let t* € Ry be such that estimates (1.3.94) hold and let s > ¢t* be fixed. Analogously, as in the
proof of Theorem 1.3.1, we get

t —+oo
Ut 5)|| < 2rexp (2 \/(b)) < 2rexp (2 \/ (H + B(H, A))) for ¢ > s> 1,
s 0

where b(t) = a(t—). Thus, estimate (1.3.5) is valid. Therefore, due to Proposition 1.3.4, the matrix-
function A is uniformly stable.

The proof of the necessity is analogous to that of Theorem 1.3.2, but with the use of Proposi-
tion 1.3.4. O

Proof of Theorem 1.3.53. Let ¢ > 0 be an arbitrary positive number. According to (1.3.11), there
exists t* € R4 such that estimates (1.3.94) and

|H-(t)|| <& for t>t*

hold. From the last estimate, due to Theorem 1.3.1, the matrix-function A is stable. Therefore, there
exists r > 0 such that
IX (@) <r for t € Ry,

where X (X (0) = I,,) is the fundamental matrix of system (1.3.1¢).
As in the proof of Theorem 1.3.1, we obtain

t
u(t) <er+ /u(T) da.(7) for t > t*,

t*

where
u(t) = | X (@)

and

0. (1) = ||V (H + B(H, 4)(1)].
Therefore, by Gronwall’s inequality, we have

+o00o
1X (8)[| < eexp (5 \/ (H+B(H,A))) for ¢ > t*.
0

Consequently, with regard to (1.3.9), we have

lim || X(t)]| = 0.

t——+oo

Hence, in view of Proposition 1.3.5, the matrix-function A is asymptotically stable.
The proof of the necessity is analogous to that of Theorem 1.3.1, but with the use of Proposi-
tion 1.3.5. 0

Proof of Theorem 1.3.4. Let U and U* be the Cauchy matrices of systems (1.3.1p) and (1.3.93),
respectively, where
A*(t) = Z(H, A)(¢).

According to Lemma 1.2.2,

U*(t,s) = Ht)U(t,s)H *(s) for t,s € R,.
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From this, by definition of the operator Z, we conclude that
exp (1(&(t) —&(5))) - U(t,s) = H ()U* (¢, ) Hi(s)

=H{ Y1) (In + /t dZ(H,A)(r) - U*(r, 3)) H(s)

= Hy '(t)Hi(s) + Hy '(t) / exp (n(&(7) — &(5))) dB,(H, A)(7) - U(,s) for t,s € Ry,

where
Hy(t) = exp(—ng(t)) - H(2).
As in the proof of Theorem 1.3.1, we get

W(t,s) = Hy '(t)Hi(s) + Hy ' (t) diB,(H, A)(t) - W (¢, )
+HT\) / dG(r) - W(r,s) for t,s € Ry,  (1.3.96)

S

where

W (t,s) = exp (n(&(t) — £(5))) - Ut s),
G(t) = B, (H, A)(t-).

On the other hand, as above, by (1.3.12), inequalities (1.3.92) hold. Therefore, taking into account
this and the equalities

I, + (“1)7H{' () d;B,(H, A)(t) = H'(t) (I, + (—1)7d;A* (1)) H(t) for t,s e Ry (j=1,2),
by (1.1.10) and (1.2.87), we have
det (I, + (=1)7H{ ' (t) d;B,(H, A)(t)) #0 for te Ry (j=1,2). (1.3.97)
Moreover, according to conditions (1.3.12) and (1.3.13), there exists a positive number ¢ such that
H(In 4 (-1 HL@) ijn(H,A)(t))*lH <o for teR, (j=1,2). (1.3.98)

From (1.3.96), by (1.3.12), (1.3.97) and (1.3.98), we find that

W) <o (p+ o [ 1w d|V<G><T>||> for £ 530,

where
p=sup { exp (n(€(t) = () - [H W H(T)] : t= 72> 0},
p1 = pexp(n(£(0)).
Hence, according to Gronwall’s inequality,
|[W(t,s)|| <7< 4oo for t>s>0,

where
+oo

r = Topexp (r0p1 \/ B,(H, A))
0
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Therefore,
[U(t,s)]| < rexp (—n(&(t) —&(s))) for t>s>0.

So, estimate (1.3.7) is valid and, due to Proposition 1.3.6, the matrix-function A is &-exponentially
asymptotically stable.

Let us show the necessity. Let the matrix-function A be £-exponentially asymptotically stable.
Then, due to Proposition 1.3.6, there exist a positive numbers 1 and p such that

IX (X2 (s)]| < pexp (= n(&(t) —£(s)) for ¢ > s >0,

where X (X (0) = I,,) is the fundamental matrix of system (1.3.1¢).
Let
H(t)=X'(1).

Then, due to the definition of B, (H, A), using equality (1.1.17), we have

exp (n((t) = £())) - [H (O H(s)| < p for t>5>0
and
B,(H,A)(t) = B,(X ', A)(t) =0 for t € R,.
Consequently, conditions (1.3.12) and (1.3.13) are fulfilled. O

Proof of Corollary 1.3.1. The cases of stability, uniform stability and asymptotic stability of the
matrix-function A follow from Theorems 1.3.1-1.3.3, respectively, if we assume that H(t) = Y ~1(¢)
in these theorems. Indeed, by definition of the operator B, (1.1.17) and (1.3.16), it is easy to verify
that

YHO) +BY LA =Y ) +BYHLA-Q)t)+BY 1 Q)(t)
=BY L A-Q)t)+1, for tc Ry

and
+00 too
\/ (H+B(H,A)=\/ B(Z™', A= Q) < +oc.
0 0

Let now the matrix-function @) be &-exponentially asymptotically stable. Then there exist positive
numbers 1 and p such that

Y @)Y~ (s)ll < pexp (= n(&(t) = &(s))) for t=5>0.
Therefore, estimate (1.3.12) is valid, where H(t) = Y ~1(t). On the other hand, by (1.1.17),
Y t) =1, + B(Y ™, —-Q)(t) for t € R,.

Then
t

By(H. A)t) = [ exsp(-né(r) dBY ™1, 4~ Q)(r) for t€ R,
0

where B, (H, A) is the matrix-function defined by (1.3.14). From this, by (1.3.16), we conclude that
condition (1.3.13) holds. Hence, due to Theorem 1.3.4, the matrix-function A is &-exponentially
asymptotically stable, as well. O

Proof of Theorem 1.3.5. According to Lemma 1.2.2; the mapping
r—y=Hzx

establishes a one-to-one correspondence between the solutions of systems (1.3.1¢) and (1.3.91), respec-
tively, where A*(t) = Z(H, A)(t). On the other hand, by the uniform stability of the matrix-function
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Ay there exists a constant matrix Q2 € R}*" such that the Cauchy matrix Uy of system (1.3.82) admits
the estimate
|U0(t,t0)| < Q for t > to > 0.

Taking into account the latter estimate, we conclude that

/ |U0(t,7')| dV(A(A(), A* - A(]))(’T) S Q/dV(A(A(), A* - A()))(T)

=Q- (V(A(Ao, A¥ — Ao))(t) - V(.A(Ao, A¥ — Ao))(to)) for ¢t Z to 2 0. (1399)
Moreover, by inequality (1.3.19), the constant matrix

+oo
Q=9 \/ A(Ag, A" — A) (1.3.100)
M

admits estimate (1.3.31), i.e., 7(Q) < 1 for some sufficiently large t* € R..
According to (1.3.99) and (1.3.100),

t
/|U0(t,7)| dV (A(Ag, A* — Ap)) (1) < Q for t >ty > t*.

to
Therefore, by Lemma 1.3.1, every solution y of system (1.3.91) admits the estimate
ly@I < plly(to)ll for ¢ =10 =17,

where p > 0 is a number independent of ty. The latter estimate guarantees the uniform stability of
the matrix-function A*. Hence there exist a positive number p; such that

|U*(t,t0)|| < p1 for t>to > t*, (1.3.101)

where U* is the Cauchy matrix of system (1.3.91).
Let now U be the Cauchy matrix of system (1.3.1g). Then, according to Lemma 1.2.2,

Ul(t,to) = H Y (t)U*(t,to)H(to) for t >tg > 0.
From this, in view of (1.3.10) and (1.3.101), we get
||U(t,t0)|| § p1p2 fOI‘ t Z to Z t*,

where

p2 =sup{|H '(t)H(7)||: t >7 >0}.
Consequently, the matrix-function A is uniformly stable, as well. O
Proof of Theorem 1.3.6. By the £-exponentially asymptotic stability of the matrix-function Ay and

Proposition 1.3.6, there exist positive numbers 7 and py such that the Cauchy matrix Uy of system
(1.3.82) satisfies the estimate

|Uo(t,7)] < Roexp (—n(&(t) — &(7))) for t>7 >0, (1.3.102)

where Ry is an n X n matrix whose every component equals pg.
Let

e = (4npo)~(exp(n) — 1) exp(—2n). (1.3.103)
Due to (1.3.21), there exists t* € R, such that

V(€)()
\ A(Ao, A— Ag) <e for t >1". (1.3.104)
t
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On the other hand, by (1.3.102), we have

[ ex n(ete) = ) Wa(e, )| aV(BY(T) < 1) (62 1) (1.3.105)
for every ty > 0, where B(t) = A(Ag, A — Ap)(t) and

t
J(t) = Ro /exp (= (&) = &(r))) aV(B)(7). (1.3.106)
to
Let k(t) be the integer part of £(t) — £(to) for every t > to, where tg is an arbitrary fixed point.

We put
T; = {1 >to: &(to) +i <&() <&(to) +i+1} (i=0,...,k(t)).

Let the points 79,71, ..., T(;) be defined as follows:
i if T, =@, .
T9o=supTy, 7= Til l (i=1,...,k()).
supT; if T; # 9
Let us show that
7 <v(&)(1iz1) (i=1,...,k(t)). (1.3.107)

If T; = @, then (1.3.107) is evident.
Let now T; # @. It suffices to show that

where
Qi={r>to: &(1) <&(mia+) + 1}

It is easy to verify that
E(ricit) = &(r0)+i (i=1,...,k()). (1.3.108)

Indeed, otherwise there exist ig € {1,...,k(t)} and § > 0 such that
&(Tig—1 +8) < &(19) +ip for 0 < s <.
On the other hand, by the definition of 7;,_1, we have
(o) +io — 1 < &(Tig—1—)

and, therefore,
6(7'0) +i0—1< f(T¢0,1 + S) < f(To) + 149 for 0 < s <4.

But this contradicts the definition of 7, _1.

Let 7€ T; (i=1,...,k(t)). Then from (1.3.108) and the inequality £(7) < &(79) + 4+ 1 it follows
that £(7) < &(mi—1+)+ 1, € Q; (i=1,...,k(t)). Hence (1.3.107) is proved.

Let now tg > t* and let k; = k(7;) (¢ = 1,...,k(t)). Then, according to (1.3.104) and (1.3.107),
we get

1+k(t) Ti

T(t) < Roexp (= n(E(t) — £(t0)) S / exp (1(E(r) — £(t0))) AV(B)(7)

i=1
Ti—1

1+k(t) Ti

= Roexp (—n(&(t) — £(to))) ( > / exp (n(§(7) — £(t0))) dV (B)(7)

i=1,i=1+k

Ti—1
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1+-k(t) Ti
+ Y / exp (n(&(1) — &(t0))) dV(B)(T)>
i=1, i1k
14k(t)
< oo (—(e(t) - €0) ( explod) (VI - V(B)5i)
i=1, i=1+k;
1+k(t) 1+k(t)
+ Z exp(ni)(V(B)(r;) = V(B)(1i—1)) + Z exp ((1+ ki)n) dlB(Ti)>
i=1, i£1+k; i=1, i#1+k;
14k (t) 1+k(t)
< eRoexp (— n(E(D) - £(to)) ( S ewln) e S ew(li+ on)
i=1, iA1+k;
1+k(t)
< 2eRgexp (—n(&(t Z exp(ni)

= 2eRgexp (—n(£(t) — &(to))) exp(n) (exp((1 + k(t))n) — 1) (exp(n) — 1)~
< 2eRg exp(—nk(t)) exp ((2 4 k(t))n) (exp(n) — 1) for t > tg

and, therefore,
J(t) < 2eRgexp(2n) (exp(n) — 1)_1 for ¢ > to.

(1.3.109)

From (1.3.103), (1.3.105) and (1.3.109), it follows that inequality (1.3.84) holds for ¢ty > ¢*, where
H € R™™ is the matrix whose every component equals 1/2n. On the other hand, it can be easily

shown that 1
H —.
r(H) < 3

Consequently, by Lemma 1.3.1, an arbitrary solution x of system (1.3.1p) admits the estimate

2|l < pexp (= n(&(t) — &(t))) for ¢ >to > 17,
where p > 0 is a constant independent of ¢g.
Proof of Corollary 1.3.2. Corollary 1.3.2 follows from Theorem 1.3.6 if we assume that
Ap(t) = diag (au(t), ce ann(t)).
Indeed, by the definition of the operator A, we have

dl (€77 (7')

]. — dlaii (T) dlaik(T)

[A(Ag, A= Ag)(t)],, = ar(t) + Z

- Z dati(r daain (1) = Alasi, ai)(t) for teRy (i#k; i,k=1,...

0<r<t 1+ d2a“ )

and

[A(Ag, A — AO)(t)]“. =0 for teRy (i=1,...,n).
Let now Up(t, ) be the Cauchy matrix of system (1.3.82). Then
Uo(t,7) = diag (uo11 (¢, 7), - - -, uonn (£, 7)),
where
;i (t,7) = exp (sc(ai)(t) — se(aii)(1)) H (1- dlaii(s))_l H (1 + dza11(s))
T<s<t T<s<t

is the Cauchy function of the equation
dx = xda;(t)
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for every i € {1,...,n}.
In view of (1.3.24), we find

luoii (t, )| < exp (—n(&(t) — &(7))) for t>7>0 (i=1,...,n).

Therefore, inequality (1.3.7) is valid. Thus, due to Proposition 1.3.6, the matrix-function Ay is &-
exponentially asymptotically stable. Consequently, by (1.3.23), using Theorem 1.3.6, we find that the
matrix-function A is {-exponentially asymptotically stable, as well. O

Proof of Corollary 1.5.3. Corollary 1.3.3 immediately follows from Theorem 1.3.6 if we observe that
A(Ag, A — Ap)(t) = A(t) — Ao(t) for t € Ry
in this case and, moreover, v(§)(t) = v.(£)(t), because £ is the non-decreasing continuous function. [

Proof of Proposition 1.3.7. By the {-exponentially asymptotic stability of the matrix-function A and

Proposition 1.3.6, there exist positive numbers 1 and py such that the Cauchy matrix U of system

(1.3.1p) satisfies estimate (1.3.102), where Ry is an n X n matrix whose every component equals pg.
Let £ be a positive number. Then, by (1.3.25), there exists ¢ty > 0 such that

v(&)(t)
\/ AA, f) <e for t >t
t

Let x be an arbitrary solution of system (1.3.1). Then by integration-by-parts and variation-of-
constants formulas, we easily show that

t

w(t) = U(t, to)=(to) + / Ult,7)df(r) = Y diU(t,7)-dif(r)+ Y doU(t,7) - dof(7)

i to<T<t to<T<t
t

— Ut to)a(to) + / U(t, ) dA(A, )(r) for ¢ > to.

From this, due to (1.3.102), we have
[2(t)] < Roexp (= n(§(t) — &(to)))|a(to)| + J(t) for ¢ > to,

where B(t) = A(Ag, A — Ap)(t) and J(¢) is defined by (1.3.106).
As in the proof of Theorem 1.3.6, we get

J(t) < 2eRgexp(2n)(exp(n) —1)7" for ¢ > to.
Therefore,

[o(t)| < Roexp (= n(&(t) — &(to))) | (to)| + 22 Ro exp (2n) (exp(n) — 1) for ¢ > o,

where ¢ is an arbitrary positive number, and the function ¢ satisfies condition (1.3.4). Thus condition
(1.3.6) holds. O

Proof of Proposition 1.3.8. Let Uy be the Cauchy matrix of system (1.3.82). Then, as above, by the
integration-by-parts and variation-of-constants formulas we have

x(t) = Up(t,0)x(0) + / Uo(t,7)dA(Ag, A — Ap)(7) - (1) for t € R;.
0

On the other hand, by the exponentially &-asymptotic stability of the matrix-function Ag, there exist
positive numbers 17 and p such that

[Uo(t, 7)|| < pexp (—n(&(t) —&(7))) for t>7>0. (1.3.110)
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Let now € € (0,mp~1). Then, due to (1.3.26), there exists tq € Ry such that

t
\/ A(Ao, A — Ag) < e€(t) for t > to.
0

From this estimate, if we take into account (1.3.27) and (1.3.110), according to Lemma 1.3.1, we
conclude that

la(®)exp (nE(0) < plla(0)l]exp (pE(t) + nE(O)) for > to.
So,
()] < pllz(0)] exp ((pe — n)E(t) +n&(0)) for ¢ > to.

Therefore, by (1.3.4), condition (1.3.6) holds. In view of Proposition 1.3.5, the matrix-function A is
asymptotically stable. O

Proof of Theorem 1.3.7. Let
Ap(t) = diag (a11(t), ..., ann(t)) for t € Ry. (1.3.111)

Then the Cauchy matrix Uy of system (1.3.82) has the form

Uo(t, ) = diag (GXP (sc(a11)(t) — se(ai)(7)) H (1- d1a11(3)>_1 H (1+ d2ar1(s)),. ..,

T<s<t T<s<t

exp (sc(a,m)(t) — sc(am)(T)) H (1 — dlann(s))_1 H (1 + dzann(s)))

T<s<t T<s<t

So, by the definition of the operator J, we get

lUO(tv T)l = diag (exp (J(all)(t) - J(all)(T))ﬂ ..., €XP (J(ann)(t) - J(ann)(T))) (13112)

Therefore, due to (1.3.29), (1.3.30) and (1.3.112), estimates (1.3.83) and (1.3.84) are fulfilled for every
to € [t*, +oo[, where

Q= diag(p07 s 7p0)7

pPo = sup { ZGXP (J(aii)(t) - J(an‘)(to)) Dt > to}7

i=1
and n(t) = 0. According to Lemma 1.3.1, every solution x of system (1.3.1p) admits the estimate
lz(®)]] < p(to)l|z(to)[| for ¢ > to,

where

p(to) = (I — H) " |po(to)-
So, every solution of system (1.3.1¢) is bounded on R and, by Proposition 1.3.2, the matrix-function
A is stable. s

Proof of Theorem 1.3.8. In view of (1.3.32),

Po = sup { Zexp (J(ai)(t) = J(ay) (7)) : t>7 > 0} < +o0. (1.3.113)

i=1

Let the matrix-function Ay be defined by (1.3.111). Then by (1.3.28), (1.3.29), (1.3.112) and
(1.3.113), conditions (1.3.83) and (1.3.84) are fulfilled for every ¢g € [t*, +00[ , where Q =diag(po, - . -, po),
and n(t) = 0. Hence, according to Lemma 1.3.1, every solution z of system (1.3.1¢) admits the estimate

[@)I < pallz(to)|| for t = to > 7,
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where p; = ||(I, — H)7!{|po is the number not depending on = and to. On the other hand, by
Gronwall’s inequality (see Lemma 1.1.4"), we get

[z@) < pallz(to)|| for 0 <to <t <t",

where
t

P2 = Toexp (7‘0 \/ A)

0

and 7g is such that
|(In — di A(t)) ™| <o for t € [0,t7].

The latter two estimates imply estimate (1.3.5) for every ¢ € Ry, where p = pyps. Therefore,
according to Proposition 1.3.3, the matrix-function is uniformly stable. O

Proof of Corollary 1.3.4. According to Remark 1.3.8, the functions J(a;;) and A(a;;,ay) (i =1,...,n)
are non-increasing. So, with regard (1.3.33), (1.3.34) and (1.1.19), we have

t t

/GXP (J(ais)(t) = J(ais)(1)) dv(bir) (1) < —hig /eXp (J(aw)(t) — J(ai) (1)) dA(ais, a:)(T)

= —hik/uOii(t,T) dA(aii,aii)(T) = hzk(l - uoﬁ(t,t*)) S hik for t Z t* (7, = 1, N ,’I’L),
he
where b;i,(t) = A(asi, air)(t) (i #k; i,k=1,...,n), and
ugii(t, 7) = exp (J(ai)(t) — J(ai)(r)) >0 (i=1,...,n).

Therefore, (1.3.29) is valid. Moreover, since J(a;;) (¢ = 1,...,n) are non-increasing functions, it is
evident that

ugii(t,7) <1 for t >7>t" (i=1,...,n).
From this we have (1.3.32). So, the corollary follows from Theorem 1.3.8. O

Proof of Theorem 1.3.9. Let the matrix-function Ay be defined by (1.3.111) and Uy be the Cauchy
matrix of system (1.3.82). Then by (1.3.35), (1.3.36) and (1.3.112), conditions (1.3.83) and (1.3.84)
are fulfilled for every ty € [t*,4o00[. Then, according to Lemma 1.3.1, estimate (1.3.85) is true for
every solution x of system (1.3.1¢), where p = ||(I,, — H)~!||n. Hence, due to Proposition 1.3.5, the
matrix-function A is asymptotically stable, since the function 7 satisfies condition (1.3.4). O

Proof of Corollary 1.5.5. By (1.3.31), there exists € €]0, 1] such that
r(H:) <1, (1.3.114)

where h
H. — ( ik ) .
¢ 1—¢e/ik=1
Let
n(t) = eap(t) and bi(t) = Alay, air)(t) (G k=1,...,n).

Due to Remark 1.3.8, the functions J(a;;) (i = 1,...,n) are non-increasing. From this, by (1.3.40)
and (1.3.41), we have inequalities (1.3.35), and the function 7 satisfies condition (1.3.4).

On the other hand, due to (1.3.37)—(1.3.40), we find

/eXp (n(t) = n(7) + J(@ii)(t) — T (aii) (7)) dv(bix) (1)

< /exp (1 =) (J(au)t) — J(ai) (7)) do(by) (1) for t >t* (i#k; i, k=1,...,n) (1.3.115)

t*
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and

|sc(bir) (t) = se(bir) (T)| < — lhiks (Sc(A((l —e)J(ai), (1 —e)J(ai))(t)

—sc(A((1 = e)J(ai), (1 — s)J(a“—))(T)) for t>7>t" (i#£k;ik=1,...,n). (1.3.116)
Let now j = 1. Then dya;;(t) <0 (i=1,...,n) for t > ¢*. It is not difficult to verify that

hik (1 + In (1 — dlaii(tD)_l In (1 — d1aii(t))
hik
— &

< 1 di A((1 = &) J(ai), (1 —e)J(ay))(t) for t >t* (i#k; i, k=1,...,n).

Hence, by (1.3.39) and the equality |d1bik(t)| = |d1aixk(t)|, the estimates

hi . ,
|dy b ()] < ~7 _kg di A((1 = &) J(ai), (1 —e)J(ay))(t) for t >t* (i#k; i k=1,...,n) (1.3.117)
are valid.
Analogously, we show that
|dabir ()] < — 1hi’“€ doA((1 =€) J(ai), (1 — &) J(ai))(t) for t >t* (i #k;i,k=1,...,n). (1.3.118)

From (1.3.115), by (1.3.116)—(1.3.118), we get

t

/exp ((1 - 5)(J(aii)(t) - J(aii)(T))) dv(bix)(T)

<- 1hik5 /exp (1= &) (J(ain)(t) — J(ai) (7)) dA((1 = ) (), (1 — €)J (ais)) ()
= 1hik8 exp ((1 — s)J(aii)(t)) (exp ((s — 1)J(a¢i)(t)) — exp ((5 — 1)J(aii)(t*)))
< hi’“g for t>t¢* (i#k ik=1,...,n). (1.3.119)

According to Theorem 1.3.9, conditions (1.3.4), (1.3.35), (1.3.114) and (1.3.119) guarantee the
asymptotic stability of the matrix-function A. As to the uniform stability of A, it follows from
Corollary 1.3.4. O

Proof of Corollary 1.3.6. Immediately follows from Corollary 1.3.5, since the functions defined by
(1.3.42)—(1.3.44) satisfy condition (1.3.40). O

Proofs of Theorem 1.3.10 and Corollary 1.3.7 are analogous to those of Theorem 1.3.9 and Corol-
lary 1.3.5.

Proof of Theorem 1.3.11. Let x and ¢y € Ry be an arbitrary solution of system (1.3.1g) and a point,
respectively. It is not difficult to verify that the conditions of the theorem guarantee the fulfilment of
the corresponding conditions of Lemma 1.1.3 for tg =¢; = --- = t,, and of Theorem 1.1.10 on the set
R, . So, using the lemma, we have

dlz(t)] < dAo(t) - |z(t)] for t € R,.
In addition, from this, by Theorem 1.1.10, we obtain
(@) < [[Uo(t, to)l lz(to)|| for ¢ =to =0,

where Uy is the Cauchy matrix of system (1.3.82).
Therefore, by Propositions 1.3.3—1.3.6, we conclude that the stability of the matrix-function Ag in
one or another sense guarantees the stability of the matrix-function A in the same sense. O
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Proof of Theorem 1.3.12. Let us prove the necessity. Let
aii(t) = aupi(t) (i=1,...,n);
aik(t) = auy (Sc(:u‘i)(t) + Jovii| Z Cir(7) + Jovia| " Z Ci2(7)> (t#£k;i,k=1,...,n)

0<r<t 0<r<t
and
hik = (1= i) |evir| || =1 (6, k =1,...,n),
where
Gi) = (1+ (1 + (=1 aud;m(®) " In (14 (=1 sgdps(t)) (G=1,2 i=1,...,n).
Due to (1.3.46), we conclude that the functions s.(a;;) (i = 1,...,n) are non-increasing, since the

functions s.(u;) (¢ =1,...,n) are non-decreasing. Moreover, by (1.3.46), the functions (;; (j = 1, 2;
i =1,...,n) are nonnegative. Thus it is not difficult to verify that conditions (1.3.37) and (1.3.39)
are fulfilled.

From condition (1.3.46) it follows that 1+ (—1)7d, a“( )>0(j=1,2;i=1,...,n). Consequently,
by virtue of Remark 1.3.8, the functions J(a;;) (¢ = 1,...,n) are non-increasing and

—J(ai) () + J(ai) (1) > ag(t) —ao(r) for t >7 (i=1,...,n).

So, condition (1.3.40) is valid. By virtue of Corollary 1.3.5, the sufficiency is proved.
Let us show the necessity. Assume the contrary. Let conditions (1.3.49), (1.3.50), (1.3.51) and
(1.3.52) hold, A be asymptotically stable, but condition (1.3.47) be violated. Then either

Qiyip = 0 (1.3.120)
for some iy € {1,...,n}, or
Qi <0 (i=1,...,n), (1.3.121)
but
r(H) > 1. (1.3.122)

If condition (1.3.120) holds, then, in view of (1.3.49), the non-diagonal components of the matrix-
function A are non-decreasing. By this and (1.3.120), the vector-function x(t) = (d4, )7, satisfies the
system of generalized differential inequalities

dz(t) < dA(t) - z(t) for t € Ry, (1.3.123)

Moreover, with regard to (1.3.50), (1.3.51) and (1.3.52), taking into consideration Hadamard’s con-
dition on the non-singularity of matrices (see [28, p. 382]), it is not difficult to verify that conditions
(1.1.29), (1.1.30) and (1.1.31) of Theorem 1.1.10 are fulfilled for the matrix-function A. By this
theorem,
x(t) < U(t,0)x(0) for t € Ry,

where U(t,7) is the Cauchy matrix of system (1.3.1g). Hence, due to the asymptotic stability of A,
we have

[z@®)[| < ||U(t,0)z(0)]| — 0 as ¢ — +oo. (1.3.124)

But this is impossible, since ||z(t)|| = 1. Therefore, (1.3.121) holds.
Assume now that (1.3.122) is fulfilled. Then there exist a complex vector (¢;)?; and a complex

number A such that .
D el =1, A =r(H)>1
k=1

and
n

Z (1 — )i |esi] rexr = Aes (i=1,...,n).
k=1
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Therefore,

n

vl [es] < > okl lex| (i =1,...,n).

k=1, ki

Since ay; <0 and oy, >0 (1 £ k: i,k=1,...,n), we find

ngazk |Ck| (1: 1;"'3’”’)'
k=1

Consequently, the vector-function z(t) = (|cx|)}_, is a solution of the system of differential inequalities
(1.3.123), since w1, ..., u, are non-decreasing functions. As above, we can show that (1.3.124) holds.
But this is impossible, since ||(¢)|| = 1. The obtained contradiction proves the theorem. O

Proof of Corollary 1.3.8. Let B,(H,A) be the matrix-function defined by (1.3.14), where H(t) =

né(t

)Y ~1(t). Using the formulae of integration-by-parts, the properties of the operator B and equality

(1.1.17), we conclude that

t

By (H, A)(t) = /exp(—nﬁ(ﬂ)d(eXp(nf(T))Yfl(T) + Bexp(n)Y ~', A)(r))

0
t

= /exp(—nﬁ(ﬂ)d(exp(nif(f))Yfl(T)) +/GXP(—nf(T))dB(eXp(nf(T))Yfl,A)(T))
0 0

- / exp(—né(r)) d(exp(ne(r))Y (7))

o

—|—/exp(—77§(7')) dB(exp(n&)L,, B(Y ', A))(r) for t € Ry, (1.3.125)
0

t

/ exp(—n€ (7)) d(exp(ne(r))Y ()

0

and

— [V (15O~ AQQ) + T exp(—n(s) i exple(s) - (1~ ()
0 0<s<t
+ > exp(—né(s)) da exp(nﬁ(S))~(In+d2Q(S))_1) for t € Ry, (1.3.126)
0<s<t
B(Y—l,A)(t):/y -3 vt 3 Y i) diA(r)
o o<r<t 0<r<t
= /Y_l(T> dA(Q,A—Q)(r) for t € Ry, (1.3.127)
0
B(exp(né)I,,B(Y ", A)) /Y Y(7) dB(exp(né)1,, A(Q, A))(r) for t € Ry (1.3.128)
0
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t

/ exp(—n€(r)) dB(exp(n€)Tn, AQ, A)) ()

0

= AQ,A)t) = Y exp(—n&(r)) dyexp(né(1))(In — drQ(7)) " dr A(7)

0<r<t

+ Z exp(—né(1)) da exp(né(1)) (I, + d2Q(7)) "t do A(T) for t € Ry. (1.3.129)

0<r<t

From (1.3.125), by (1.3.126)—(1.3.129), we get
By (H, A)(t) = [ exp(-ng(r) dlexp(né(r))Y ()
+ [yt a( [ explonee) dB(expine)t, 4@ 4)(o))

t
/Yl Gy(&,Q,A)(T) for t € Ry
0

and

\/B (H, A)

/\Y DAVG, (60|
Therefore, from (1.3.53) and the fact that the matrix-function @ is -exponentially asymptotically
stable, it follows that the conditions of Theorem 1.3.4 are fulfilled. O

Proof of Corollary 1.3.9. The corollary follows immediately from Corollaries 1.3.1 and 1.3.6 and Re-
mark 1.3.6 if we note that

Y (t) = exp(Q(t)) and Gy(&,Q, A)(t) = A(t) — Q1) + &) In
in this case. O
Proof of Corollary 1.5.10. For n > 0, the corollary follows from Corollary 1.3.8 if we assume that
Q(t) = diag (a11(t) + 05e(E)(t); - - -, ann(t) + nsc(€)(t)).

Indeed, let A(Q, A — Q)(t) = (Bir (1))} x=1 and Gy (&, Q, A)(t) = (Vik(t))?,k:r Then, by the defini-
tion of the operator A, we have

/sz —azk Z dlazz 1_d1au( )) 1d1aik(7-)
0<r<t
— Y doaii(r) - (1+ daaii(7)) " daain(r) for t eRy (i £ k; i, k=1,...,n)

o<r<t

and
Bii = —nsc(§)(t) for teRy (i=1,...,n).

From the above relations, using (1.3.54), we obtain

/YZ]C - azk Z dlau 1 - dlau( )) ldlaik (T)
o<r<t
- Z d2au ]- + d2an( )) d2a1k Z dlazk 1 - dlau( )) 1(1 - eXp(*Tldlf(’r)))

o<r<t 0<r<t
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- Z daain(7) - (1+ daaii (1)) 7 (1 —exp(nd2é(7))) = gin(t) for t€Ry (i#k; i,k=1,...,n)

o<r<t
and
Yii = Z (1 — exp(—ndi&(7))) + Z (1 —exp(nd2£(7))) for te Ry (i=1,...,n).
0<r<t 0<T<t

On the other hand, the matrix-function Y (t) = diag(yi(t),...,yn(t)) is the fundamental matrix of
system (1.3.17) satisfying the condition Y (0) = I,,. Therefore, by (1.3.55)—(1.3.57), the conditions of
Corollary 1.3.6 are valid. For n = 0, the corollary follows from Corollary 1.3.1 and Remark 1.3.5. O

Proof of Theorem 1.3.13. It is evident that the matrix-function

B(t)=>_ ax(t)By

k=1

satisfies the Lappo—Danilevskii condition. Therefore, in view of Lemma 1.3.4, the matrix-function

X(t) = ﬁ exp(ay(t)By) for t € Ry (1.3.130)
k=1

is a fundamental matrix of system (1.3.1p).

According to the Jordan theorem,

By = Crpdiag (Jnp, (A1), - -y Jngn, ey ))C b (B =1,...,m),

9’ nlmk

where J,,,, (Aki) = Akiln,; +Zn,,; is the Jordan box corresponding to the elementary divisor (A— Ag; )"
for every k € {1,...,m} and i € {1,...my}, and Cx € C"*" (k = 1,...,m) are nonsingular complex
matrices. Hence

exp(an(t) By) = Cy diag (exp (ar(t) Ty Mk1))s -+ -
exp (ak(t) Jny,, (Akmk)))c,;l for teRy (k=1,...,m), (1.3.131)

where

Ngi—1

exp(a (t)Jn,,; (Aki)) = exp(Akiak(t)) ZO oﬂ,}ft) z) for teRy (k=1,...,m). (1.3.132)

Jj=
In view of (1.3.131) and (1.3.132), it is evident that

n

exp(ay (t)By) = (zk:pkijl(ozk(t)) exp()\;ﬂ»ak(t))) » for teRy (k=1,...,m), (1.3.133)

where pg;ji(s) is a polynomial with respect to the variable s, whose degree is at most ng; — 1 (2,1 =
L,...,nsk=1,...,m).
Substituting (1.3.133) in (1.3.130), we find

o]l (Z(l +ag ()" eXp(ak(t)ReAki)> < |X@l

k=1 \i=1
< By H (Z(l + ()it exp(ak(t)Re/\ki)> for t € Ry,
k=1 \i=1

where 81 and [ are some positive numbers.
The latter estimates imply the validity of the theorem. O
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Proof of Corollary 1.3.11. The corollary follows immediately from Theorem 1.3.13, since conditions
(1.3.60) and (1.3.61) are equivalent to the conditions imposed on the real parts of the eigenvalues Ag;
(k=1,...,m;i=1,...,my) of the matrices By (k=1,...,m). O

Proof of Corollary 1.3.12. Let

ar(t) = aft), ax(t) = fralt) —wi(t), as(t) =va(t) — Baalt)
and
= Ay — SiIn(L, — Ay) + BoIn(I, + Az), By =In(I, — Ay), Bs=In(I, + As).
Then we have s
(t) =Y sclax)(t)- By for t e Ry (j=1,2)
k=1

and

3
exp ((—1)j Zdjak(t) . Bk) exp ((—1)! In(Z, + (—=1)7 4;))
k=1
=1, + (1Y A; = I, + (-1)7d; A(t) if ||d;A®)|| #0 for t e Ry (j=1,2),

since the function « is continuous, and d;v;(t) = é;; (¢, = 1,2), in the case.

Hence the conditions of Theorem 1.3.13 are fulfilled. Moreover, due to (1.3.64), the functions as
and ag are bounded on Ry. So, conditions (1.3.60) and (1.3.61) of Theorem 1.3.13 are equivalent to
the conditions applied to the matrix P in the cases (a) and (b) of the corollary, respectively. O

Proof of C’orollary 1.3.13. The corollary follows from Theorem 1.3.13 if we choose the functions o
(I=1,...,m) and the matrices B; (I =1,...,m) in a suitable way. But the proof of the corollary is
more easy 1f we use the same way as in the proof of Theorem 1.3.13.

By Lemma 1.3.4, the matrix-function

X(t) = Cdiag (exp(Gi(t)),...,exp(Gp(t))C "

is a fundamental matrix of system (1.3.1p). Moreover, obviously,

ne— 1
exp(Gg (¢ H exp akl )
et =/ aj(t) iy
= exp(ako(t H Z ’;_' zZJ for teRy (k=1,...,m).
Hence, the statement of the corollary follows as in Theorem 1.3.13. O

Proof of Theorem 1.3.14. Let x = (x;)_; be a solution of system (1.3.1p) and let

Then, by (0.0.11), we have
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=2 ( / 2i(T)zR(7) dai(1) = Y wi(m)aw(r) diai(r)— Y xi(r)aw(r) dgaik(7)>

s<t<t s<7T<t

On the other hand,

> (si()() = s;(u)(s))

Jj=1

n

Z( Z dyzi(7) (22 (1) — di2i (7)) + Z dQIi(T)(QCCZ‘(T)+d21‘i(T)))

=1 s<t<t s<t<t
-2} ( 3 )xk(r)(dlalk( )= 5> diai(7) dlalm))
k=1 \s<r<t 1=1
+ Z (dgdlk — = Z doay; (T dgalk(T))> for 0 <s<t<+oo.
s<t<t

From this, taking into account (1.3.67) and (1.3.68), we find

n n t
u(t Z / 7)dbi (1) =2 Z /hzk 2 (7) da(r) for 0 < s <t < +o0.
i,k=1" i,k=1"
Therefore, due to (1.3.70),
t " t
u(t) —u(s) < 2/p(7) fo(T) da(t) = /U(T) dB(r) for 0<s<t<+4oo.
s i=1 s

Using now Lemma 1.1.4 (or Lemma 1.1.5), for every ¢, > 0 we get
u(t) < u(to)ys(t)vs ' (to) for t >t > 0.
In addition, it is evident that
u(t) < ||z(t)]|* < nu(t) for t € R,.
So,
el < n'’? (v (875" (t0) " la(to) | for ¢ > to > 0.

From the last estimate and conditions (1.3.72)—(1.3.75) there immediately follow the conclusions (a)-
(d) of the theorem.
As to the proof of the conclusion (e), it suffices to note that, by the last inequality, the estimate

(@)l = n~2ys(8)||2(0)]| for t € Ry
is valid. 0
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Proof of Corollary 1.53.14. If we take into account the equality

n 1 n
i%::lpik(t)l‘il‘k =3 7%::1 (har(t) + i (t) ) i,

then, according to Lemma 1.3.5, the estimates

M) Y a2 < ST ha(®ziar < A0C() Y o?
i=1 i,k=1 i=1

hold. From this and (1.3.77) follow estimates (1.3.70) and (1.3.71), where p(t) = A°(C(t)). Hence,
the conclusions (a)—(d) immediately follow from conclusions (a)—(d) of Theorem 1.3.13, respectively.

As for the conclusion (e) of the corollary, it also follows from the conclusion (e) of Theorem 1.3.13
if we take p(t) = Ao (C(2)). O

Proof of Theorem 1.3.15. We assume Ag(t) = A(t) and fo(t) = f(t). Let (Ag, fr;tr) (K =1,2,...)
and ¢ (kK =0,1,...) be the sequences satisfying the conditions appearing in Definition 1.3.7, where
I = R;. First, consider the case Hy(t) = I, (k = 0,1,...). Then conditions (1.2.11) and (1.2.12)
are obviously satisfied, and according to Remark 1.2.1, conditions (1.2.13) and (1.2.14) coincide with
(1.2.18) and (1.2.19), respectively.

Let tg € Ry and ¢y € R™ be arbitrarily fixed, and let  be a solution of the initial prob-
lem (1.1.1),(1.1.2). By the £-exponentially asymptotic stability of the matrix-function A, condition
(1.3.80) and Proposition 1.3.7, we have

(i) the solution z satisfies condition (1.3.6);

(ii) there exist pg > 0 and n > 0 such that the Cauchy matrix U of system (1.3.1p) admits estimate
(1.3.110) for p = pg, where Uy(t,7) = U(t, 7);

(iii) there exists p; > 0 such that (see the proof of estimate (1.3.109) in Theorem 1.3.6)

t

/exp (=n(Et) —&(r)) d||V(AA, A)(7)|| < p1 for t € Ry. (1.3.134)

to
In view of (1.3.110) and the equality U(t,t—) = (I, — d1 A(t)) ™! (see Theorem 1.1.6(d)), we have
|(In — diA(t)) 7| < po+ 1 for t € Ry. (1.3.135)

Let r1, o and r3 be sufficiently small positive numbers such that

1
rt < 1 exp(—1), (1.3.136)

where

1
dr5*

r* = (pora + (r1(2ra 4+ 75) + 2r3) (1 4 pop1)), 74 = T 12p
0

—————— an

4(1+ popr)

Let € €]0, 1] be an arbitrary number. Due to (1.3.6), there exists t* = t*(e, p) > to + 1 such that
lz(t)|| < rie for t > ¢*. (1.3.137)

Let I =[0,t*]. According to Theorem 1.2.2 and Remark 1.2.1, there exists a natural number k1 (¢)
such that problem (1.2.1j), (1.2.2;) has the unique solution z; on I, satisfying the condition

lx(t) — xx(®)|| < roe for t €I (k=ki(e),ki(e)+1,...). (1.3.138)
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For the proof it suffices to show that there exists a natural number k. (¢) > ki (¢) such that problem
(1.2.1%), (1.2.2%) has the unique solution z; on Ry for sufficiently large k& and

lz(t) — ax(®)]] <& for t >t. (k= ko(e), ke(e) + 1,...). (1.3.139)

First, we show the uniqueness. By conditions (1.2.18) and (1.2.19), there exists a natural number
k«(g) > k1(e) such that

AR(t) — A < r4e for t € Ry (k= ks(e), kule) + 1,...), (1.3.140)

‘ \/ (B(A - A,Ak))) <rse for t € Ry (k=ko(e),kul(e) +1,...) (1.3.141)

and

| fr(t) = f(t) = B(Ax — A, fr)(t) + B(Ax — A, fr)(tx) |
<rze for t e Ry (k=ki(e),ku(e)+1,...). (1.3.142)

According to (1.3.135) and (1.3.140), we have

dyA(t) — dy Ag(8)]| < 2rae < for t € Ry (k= ku(e), ku(e) +1,...)

_
2(po + 1)
and )
||(In —d At) - (dyA(t) — dlAk(t))H < 3 for t e Ry (k=ki(e), ki(e)+1,...).
From this, by the equality
I, — diAg(t) = (In — i AQ)) - (In + (I, — diA(t)) " (d1 A(t) — dlAk(t))) for t € Ry,

we obtain that
det(l, —d1Ar(t)) #0 for t e Ry (k= ki(e), kule)+1,...).

Therefore, problem (1.2.1), (1.2.2;) has the unique solution ) on Ry for k > k. (g).
Let now k € {k.(€),k«(e) +1,...} be a fixed natural number and z(t) = x(t) — z(t). Then, due
to the definition of solutions, we easily show that

t

2(t) = cxo + Alti)ex + folti) + / dA(s) - 2(s)(Ax(t) — A®)) - i (1)

— /dB(Ak—A,Ak>(S) -.Z'k(s)-i-fk(t)—f(t)—B(Ak—A, fk>(t)+B(Ak—A,fk)(tk) for t>tyg,

ty

where cxo = 2z(tr) = e — x(tx).
So, z will be the solution of the system

d=(t) = dA(t) - 2(t) + dg(t) for t > 1, (1.3.143)
where
9(t) = go1(t) + go2(t) + g1(t) + g2(2),
don(t) = / dB(Ay, — A, A)(s) - 2 (s),

go2(t) = (A(t) — A(t)) - 2 (t) — (Ar(t") — A(t")) - 2 (),
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t

g1(t) = /dB(Ak = A, Ap)(s) - x(s) = (Ax(t) = A(2)) - 2(t) + (AR (") = A(E)) - 2(t7),

92(t) = fr(t) = fu(t?) = f(t) + F(") — B(Ar — A, fr)(t) + B(Ar — A, fi)(t").

According to the variation-of-constants formula, we have
() = Uh ¢ /d Ut 7) - g(r) for ¢ > &, (1.3.144)

where U(t,7) is the Cauchy matrix of system (1.3.1p).
By the integration-by-part formula and equality (1.1.19), for every ¢ > tx, we have

(a)

901()—/d Ut 7) - gon (7)

H/ (t,7)dgor (T Z di-U(t,7) - digoi (T Z do-U(t,7) - d2go1(T)

tr<r<t tr <7<t
/ 0D @]V (BA—4,40) )+ Y iUt )] 120 [|dB(Ax— 4. 40|
tr <7<t
+ Y U )l daBAw — A, A0
t* <1<t
<po/|\ | VB~ 4, 40) ()|

+200 Y =@ |diB(Ax — A, A ()| +200 Y Nl2(7)] ||d2B(Ak — A, Ag)(7)

tr <7<t t* <1<t

and, therefore, by (1.3.110), we conclude

gor (t /dUtT - go1 (T

<3p0/|| )| da(r (1.3.145)

where
t

=\ (B(Ax — A, Ay));

t*

goz(t) — /drU(t,T) - go2(7)

P

= gog(t)+/U(t,T)dA(A,A)(T)902(7’)

< [|Ax () — A - IIZ(t)||+/||U(t,T)H 1(Ak(7) = A=) ]| \/ (AC

and, therefore, by (1.3.110) and (1.3.140),

t

dor(t) — / U (t,7) - goal7)

t*

< rye||lz(t)|| + rapopie sup lz(T)1l; (1.3.146)
tr<r<t
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(©)

< ||g1(t)\|+/HU(tyT)|| lgr (7)1l df] \/ (A4, 4))(7)]]

- / d-U(t7) - g1 (7)

and, therefore, by (1.3.134), (1.3.137), (1.3.140) and (1.3.141),

t

o (t) - / 2.0 (7)1 (7)

t*

< r1(2ry +r5)(1 + pop1)e, (1.3.147)

since

lgr (DI <1 A& () = A || [l @)+ [ Ax () = AE)]] ||x(t*)||+/||$(8)lld|\ V (B(A—4, A) ()]

gz(t)—/dTU(th)-gz(T) < ||gz(t)\|+/HU(t,T)II g2 (7)1l df] \/ (A4, 4))(7)]]

and, therefore, by (1.3.110),(1.3.134) and (1.3.142),
t

g2(t) — /dTU(t,’T) ~g2(7) || < 2r3(1 + 2p0p1)e. (1.3.148)

Moreover, it follows from (1.3.110) and (1.3.138) that
WU (&, t)z(t)] < pollz(t")|| < rae for t > t*.

By this and (1.3.145)—(1.3.148), it follows from (1.3.144) that

+

IO < UG, 1)z ||+Z(

)

Srietrs(l+popr)e sup HZ(T)H+3po/||Z(T)||dH\/(B(Ak*AvAk))(T)II for ¢ >¢*.
i

t* <7<t

a0 = [ AU 90, + |50 = [ 4V 507

From this, by the estimate r4(1 4+ pop1) < 1/2, we get

¢
p(t) < 2r*e+ 6p0/<p(7) do(r) for ¢t >t~ (1.3.149)

*

where

o(t) = sup |[lz(7)]].
t. <7<t

Let now 3 : [t*, +00) — R4 be the function defined by S(t*) = a(t*) and B(t) = a(t—) for t > t*.
Then due to (0.0.7) and (1.3.149),

t
o(t) < 2r*e 4 6pop(t)dia(t) + 6p0/<p(7) da(r) for ¢t >t*. (1.3.150)
A
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By the choice of r5, we have 16podia(t) < 1/2 and (I,, — 12podi(t)) ™t < 2. Hence, by (1.3.150),
t
o(t) < dre + 12po/<p(7‘) dp(r) for t >t*.

i
From this, using Gronwall’s inequality (see Lemma 1.1.4), by estimate (1.3.136), we get
l|z(t)]] < dr*eexp(12ppB(t)) < dr*ecexp(e) < e for ¢ > t*.

So, condition (1.3.139) holds.

Consider now the general case, i.e., when the matrix-functions Hy (k =0, 1,...) are not identically
equal I,,. In this case, without loss of generality, we may assume that Hy(t) = I,,.

Let x be a solution of the initial problem (1.2.1%),(1.2.2;) for every natural k. Then according
to Lemma 1.2.2, for every natural k, the function y; = Hyxy will be a solution of the problem

dy(t) = dAk«(t) - y(t) + df«(t),
Y(te) = Cx,

where
Ak*(t) = I(Hk,Ak)(t), fk*(t) = B(Hk,fk)(t) and cpx = Hycg.

In addition,
L+ (—1Yd; A (8) = (Hi(t) + (—17d; Hi(8)) - (I + (—1V d Ac) H () (G = 1,2).

Obviously, the conditions of Theorem 1.2.3 and Remark 1.2.2 are valid for the sequences Ay.(t)
(k=1,2,...), fra(®) (k=1,2,...), ckx (k=1,2,...) and ¢, (k=1,2,...). Consequently,

lim |jzgx(t) —z(¢)]] =0 uniformly on Ri.
k—-+o0

From this, in view of the inequalities
() = 2@ < [|H Oye () — g @] + lyn(t) — (@) for ¢ € Ry,

we, as above, have
lim ||z () — 2(t)|| = 0 uniformly on R,. O
k——+o0

Proof of Theorem 1.3.16. Let (A, fi;tx) (k=1,2,...) and ¢, (k =0,1,...) be the sequences satis-
fying the conditions appearing in Definition 1.3.8, where I =R, Ay(t) = A(¢) and fo(t) = f(¥).

We first consider the case Hy(t) = I, (k = 0,1,...). Then conditions (1.2.11) and (1.2.12) are
obviously satisfied, and according to Remark 1.2.1, condition (1.2.13) coincides with (1.2.18), and the
fulfillment of conditions (1.3.78) and (1.3.79) uniformly on R, implies, respectively, that

t

kETm\O/(A’“ —A)=0 (1.3.151)
and .
Jim \O/(fk - f)=0 (1.3.152)

uniformly on R,.

Let tg € Ry and ¢y € R™ be arbitrarily fixed, « be a solution of the initial problem (1.1.1), (1.1.2),
and U be the Cauchy matrix of system (1.3.1p). By the uniform stability of the matrix-function A
and condition (1.3.81), based on the integration-by-part formula, there exists a number py > 1 such
that

lz(@®)|l < po for and ||U(t,7)|| < po for t > 7 > 0. (1.3.153)
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Let r1, 7o and r3 be sufficiently small positive numbers such that

1
ry < and r* < éexp(—l), (1.3.154)

6(po +1)

where
r* = po(3ry + 1o + 3r3).

Let € €]0,1] be an arbitrary number. Let t* =tg+ 1 and I = [0,¢*]. By (1.3.151) and (1.3.152),
it is not difficult to verify that conditions (1.2.18) and (1.2.19) of Remark 1.2.1 hold.

According to Theorem 1.2.2 and Remark 1.2.1, there exists a natural number k;(e) such that
problem (1.2.1;), (1.2.2;) has the unique solution x, on I for k > k;(e), satisfying condition (1.3.138).

To prove the theorem, it suffices to show that there exists a natural number k. () > ki(e) such
that problem (1.2.1%),(1.2.2;) has the unique solution xp on R, and estimate (1.3.139) holds for
k> ki(e).

By (1.3.151) and (1.3.152), there exists a natural number k. () > ki (¢) such that

t

V(A = A) <rie for t >0 (k=ki(e) kale)+1,...) (1.3.155)
0

and .
\/(Fe = f) <rse for t>0 (k= ki(e), ku(e) +1,...). (1.3.156)
0

The existence and uniqueness of a solution of the problem for k > k,(¢) can be shown as above,
in the proof of Theorem 1.3.15.

Let now k € {k.(€),k«(e)+1,...} be a fixed natural number and z(t) = xj(t) — z(¢). Then z will
be the solution of system (1.3.143), and presentation (1.3.144) is valid, where

t

0(t) = go(®) + 01 (6) + ga(8),  go(t) = / d(Ai(r) — A(r)) - 2(7),

gl(t):/d(A(T)*Ak(T))'x(T), 92(t) = f(t) — fu(t) — f(£7) + fu (7).

t*

By the integration-by-part formula, equality (1.1.19) and estimate (1.3.153), for every t > tx we
have:

(a)

qo(t) - / d-U(t,7) - go(7) = / U(t,7) d(A(r) — A(r) - 2(r)

t*

— Z di Ut 7)dy (Ak(T) — A(7)) - 2(7) + Z do,U(t, 1) do(Ak(7) — A(T)) - 2(7)

tr <7<t tr=r<t

and, therefore,

wl®) ~ [ d.U(E)90(0)| <3 [ ()] da). (1.3.157)

where
t

a(t) = \/(Ax — A);

t*
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t t

g1(t) — /d Ut,7) g1(1) = /U(t,T) d(A(T) — Ag(7)) - 2(7)

+*

= > AUT) - di(A(r) - Al + D dUT) da(AT) = Ag(r)) - 2(7)

tr<r<t tr<r<t

and, therefore,

- > d1 (t,7) - di(f() + D ULT) da(f(7) = fu())

t*<1T<t t*<rt<t

- /thU(t,T) - 92(T)

From (1.3.144), according to (1.3.153)—(1.3.158), we obtain

and, therefore,

t
<3p0 \/(f = fi). (1.3.158)

t

12(0) < poll2(#*)]] + 3p2alt) + 300 \/(f — fi) +3,oo/|| )| da(r) for t>t".

e
Consequently, taking into account (1.3.138), (1.3.155) and (1.3.156), we get

llz(t)]] < r*e+3po / lz(7)|| dae(7) for t > t*. (1.3.159)

Let now S : [t*,+00) — Ry be the function defined as in the proof of Theorem 1.3.15. Then, due
0 (0.0.7) and (1.3.159),

2O < 7% + 3pollz(t)] dre(t) +3Po/|| ) dB(r) for &>t
By the choice of r1, we have 3podia(t) < 1/2 and (I,, — 3podia(t))~! < 2. Hence
t
=) < 20" + 6 [ (]| dB(r) for ¢

From this, using Gronwall’s inequality, by estimate (1.3.154), we get
|z(t)]] < 2r*eexp(6poB(t)) < 2r*cexp(6por1) < e for ¢ > t*.

Thus condition (1.3.139) holds.
The theorem in a general case is proved as Theorem 1.3.15 in the same case. O



Chapter 2

Systems of linear impulsive
differential equations

2.1 The initial problem

In this chapter, we realize the results of Chapter 1 for the initial problem for the following impulsive
differential systems

CC%C = P(t)x 4+ q(t) for a.a. t € I\ T, (2.1.1)
z(n+) —az(n-) = G(n)z(n) +u(n) (=1,2,...); (2.1.2)
z(to) = co, (2.1.3)

where P € Ljoo(I;R™™ ™), q € Lioe(I;R™), G € Bioe(T; R™ ™), u € Bioe(T;R"™), T = {11,72,...},
nel(l=12...),n#mnifl#k(lk=1,2,...),t) €I, and ¢y € R™.
Definition 2.1.1. By a solution of the impulsive differential system (2.1.1), (2.1.2) we understand a
continuous from the left vector-function & € ACV,.(I, T;R™) satisfying both the system

2/ (t) = P(t)x(t) + q(t) fora.a. teI\T
and relation (2.1.2) for every [ € {1,2,...}.

Quite a number of issues of the theory of linear systems of differential equations with impulsive
effect have been studied sufficiently well (for survey of the results on impulsive systems see the refer-
ences in the introduction). But the above-mentioned works do not contain the results analogous to
those obtained in [3,35] for ordinary differential equations. Using the theory of generalized ordinary

differential equations, we extend these results to the systems of impulsive differential equations.
We assume that the condition

det(l, + G(m)) #0 for m; <ty (I=1,2,...) (2.1.4)

holds.
To establish the results dealing with the initial and other problems for the impulsive differential
system (2.1.1), (2.1.2), we use the following conception.

Remark 2.1.1. A vector-function z is a solution of the impulsive system (2.1.1),(2.1.2) if and only
if it is a solution of system (1.1.1), where

A(t)

¢
/P(T) dr + sgn(t — a) Z G(m) foraa. tel,
T1€Ta,t

at (2.1.5)
fi) = /q(T) dr + sgn(t — a) Z u(r) for a.a. t €1,

T1€Ta ¢

101
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and a € [ is an arbitrary fixed point.

It is evident that these matrix- and vector-functions A and f have the following properties:

d1A(t) = Opxn, dif(t)=0 foraa. tel,
daA(t) = Opxn, dof(t)=0 foraa. tel\T, (2.1.6)
drA(m) = G(m), daf(m)=u(n) (=1,2,...);
SL(A)(t) — Su(A)(s) = / P(r)dr, so(f)(t) — se(f)(s) = / g(r)dr for aa. s,teI\T,

S

S1(A)(t) = Onxn, s1(f)(t) =0 foraa. t € I\T, (2.1.7)

So(A)(1)=S2(A)(s)+ Y G(m), s2(f)(t)=s2(f)(s)+ Y u(m) for aa. s,tel; s<t

s<T <t s<tT <t

(in particular, they are continuous from the left everywhere).

So, condition (2.1.4) is equivalent to condition (1.1.3). Moreover, due to the conditions imposed
on P, G, q and u, we have A € BV,.(I[;R" ™) and f € BV,.(I;R"™).

Along with problem (2.1.1)—(2.1.3), we consider the corresponding homogeneous problem

Z—j = P(t)x fora.a. teI\T, (2.1.1p)
2(n+) —a(n—) = Gl)z(n) (1=1,2,...); (2.1.20)

We say that the pair (X,Y) consisting of the matrix-functions X € Ljo.(I;R"*™) and YV €
Bioe(T; R™*™) satisfies the Lappo—Danilevskil conditions if there exists ¢, € I such that

X(t)/tX(T)dT:/tX(T)dT-X(t) and

/X(T)dr~ S v = Y Y(Tl)~/X(T)dT for tel.

€T, ¢ T1€T, ¢ .

Remark 2.1.2. By Definition 2.1.1, under a solution of the impulsive system (2.1.1),(2.1.2) we
understand the continuous from the left vector-function. If under a solution we understand the
continuous from the right vector-function, then we have to require the condition

det(l, — G(m)) #0 for 71 >ty (I=1,2,...)
instead of (2.1.4). In this case, the matrix A(t) and vector f(t) will be defined such that

d1A(t) = Onxn, dif(t)=0 fora.a. teI\T,
di1A(m) = G(r), dif(m)=u(n) (1=1,2,...),
daA(t) = Opxn, dof(t)=0 foraa. tel

instead of (2.1.6). In particular, A(t) and f(¢) can be defined as in (2.1.5), where the set Ts; will
be defined by the equality T, =] min{s, ¢}, max{s,t}| for s,t € I. The results corresponding to this
case are analogous to the results corresponding to the first case given in Sections 2.1-2.3 below, if we
replace the expressions of type I, + G(1;) by I, — G(1), the intervals [s, ¢[ by |s, t], and the right limits
by the left ones.

Basing on the results of Section 1.1, we obtain the following results. Some of them are already
well-known.
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Theorem 2.1.1. Let tg € I. The initial value problem (2.1.1)~(2.1.3) possesses a unique solution x
defined on I for any q € Lioe(I; R™) and u € Bjoe(T; R™) if and only if condition (2.1.4) holds.

Proposition 2.1.1. Let s € I, p € Lio.(I;R), and g € Bioe(T; R) be such that
g(n)#-1 (1=1,2,...).

Then the initial problem

Ccil% =p(t)y for a.a. t€ I\ T,
Y(n+) —v(n—=) =g(n)y(n) (=1,2,...);
v(s) =1

has the unique solution v,(-,s) defined by

t

exp(/p(7‘)d7’> [ (+g(m)  fort>s,

s s<T<t
’Yp(tvs) = : 1
exp (/p(T) d7'> H (I+g(m))™" for t<s,
s t<m<s
1 for t =s.

Theorem 2.1.2. Let the matriz-functions P € L([a,b];R"*™) and G € B(T;R"*™) be such that
condition (2.1.4) hold. Then there exist a constant r € Ry such that

ool < r(Jloeo)] + / lalar+ Y uwl))

a<1;<to

xexp{ </|P )| dr + Z |G(m) ||)}f0ra<t<t0

a<t1;<to

and

ool < r(Jloao)] + / lalar+ ¥ futr)

to<T <b

Xexp{ (/”P idr+ > [1G(n) |>} for to<t<b

to<m <b

for every g € L([a,b];R™), u € B(T;R™), where x is a solution of the impulsive system (2.1.1), (2.1.2).

Theorem 2.1.3. The set of all solutions of the homogeneous system (2.1.1p),(2.1.2¢) is an n-
dimensional subset of ACVi,.(I,T;R™).

We have the theorem on the existence of the Cauchy matrix.

Theorem 2.1.4. Let the matriz-functions P € Ljoo(I;R™™) and G € Bjoe(T; R™*™) be such that
condition (2.1.4) holds. Then there exists a unique n X n matriz-function U(t, s) defined for a <t <
s < tg and tg < s <t < b such that the matriz function X(t) = U(t,s) satisfies the matriz initial
value problem

dX

e P#t)X fora.a. telI\T, (2.1.8)
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X(n+)—-X(n—-)=G(n)X(n) (1=1,2,...); (2.1.9)
X(s) =1I,. (2.1.10)
In addition, relation (1.1.12) holds, and every solution of the homogeneous system (2.1.1p), (2.1.29)

defined on {t € I,t < s} if s <to and on {t € I,t > s} if to < s is given by relation (1.1.13) on the
intervals of definition.
Theorem 2.1.5 (Variation-of-constants formula). Let the matriz-functions P € Ljo.(I;R™ ™) and

G € Bioo(T;R™ ™) be such that condition (2.1.4) holds. Then every solution of the impulsive system
(2.1.1), (2.1.2) admits the representation

z(t) =U(t, to)z(to) + / U(t,7)q(7)dr +sgn(t —tp) Z U(t,m)u(m) for tel
to T1€T gt

for every u € Bio(T;R™), where U(t, s) is the matriz-function appearing in Theorem 2.1.4.

Proposition 2.1.2. Let the pair (P,G) consisting of the matriz-functions P € Lioc(I; R™*™) and
G € Bioo(T;R™™™) satisfy the Lappo—Danilevskii condition and inequality (2.1.4) hold for every T
(l=1,2,...). Then the impulsive matriz-system (2.1.8), (2.1.9), under the condition X (a) = I, has
the unique solution X defined by

exp </tP(T) dT) H (I, + G(n))™ for t <a,

t<m<a
X(t) = p (2.1.11)
exp </P(T) dT) H (I, + G(1)) for t > a,
a a<lT<t
I, for t =a.

Representation (2.1.11) follows from (1.2.68), due to (2.1.7).

Theorem 2.1.6. Let the matriz-functions P € Ljoo(I;R™™) and G € Bjoo(T; R™ ™) be such that
inequality (2.1.4) holds for every 7, (I =1,2,...). Then there exists a unique n X n matriz-function
U:IxI—R"™™ such that the matriz function X (t) = U(t, s) satisfies the matriz impulsive problem
(2.1.8),(2.1.9);(2.1.10) for every s € [a,b]. In addition, the matriz-function U(t,s) has the following
properties:

(a) Ut,t) =1I, fortel;
(b) relation (1.1.12) holds for r,s,t € I;

(c) U(t—,s) =Ult,s) fort,s € I; U(t+,s) =U(t,s) fort € I\NT andU(mj+,s) = (L,+G(1))U (7, s)
forsel (1=1,2,...);

(d) det(U(t,s)) #0 fors,tel;
(e) the matrices U(t,s) and U(s,t) are mutually reciprocal, i.e., U=1(t,s) = U(t,s) for s,t € I;
(f) U(t,s) = X ()X 1(s), where X(t) = U(t,a) for s,t € I.

The matrix-function U defined in the theorem is called the Cauchy matrix of impulsive system
(2.1.1p), (2.1.20).

The matrix-function X (t) = U(t,a) is called a fundamental matrix of the impulsive system
(2.1.19), (2.1.2).

Proposition 2.1.3. Let inequality (2.1.4) hold for every 7 (1 =1,2,...). Then

d);_l =-X"'P(t) fora.a teI\T, (2.1.12)
X Yr+) - X' n—-) =-X"'"n)G(n) I, + G(n) ™" (1=1,2,...). (2.1.13)

where X € Lipo(I; R™ ™) is a fundamental matriz of system (2.1.1p), (2.1.29).
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Equality (2.1.12) follows from the definition of the operator A (see (0.0.1)), equality (1.1.19) and
(2.1.5).
Note that equality (2.1.13) follows immediately from condition (c¢) of Theorem 2.1.6, since

X(TlJr) = (In + G(Tl))X(Tl) (l =1,2,... )
Theorem 2.1.7 (Variation-of-constants formula). Let inequality (2.1.4) hold for every 7 (1=1,2,...).
Then every solution of the impulsive system (2.1.1), (2.1.2) admits the representation

x(t) = U(t, s)x(s) + / U(t,m)q(7)dr + sgn(t — s) Z U(t,7)u; for s,tel,

s T€Ts ¢

where U is the Cauchy matrixz of the homogeneous system (2.1.1p), (2.1.29).

The equality follows from (1.1.16) if we take into account the integration-by-parts formula (see
(0.0.9)) and equalities (0.0.11) and (2.1.5).

We give here a method of successive approximations for constructing the solution of the initial
problem (2.1.1)—(2.1.3).

Theorem 2.1.8. Let © be a unique solution of the initial problem (2.1.1)-(2.1.3). Then condition
(1.1.20) holds for every [a,b] C I, where

.’L‘k(to) = Cp (k = 0,17...);
t

zo(t) =co and z(t) = co + / (P(1)xr—1(T) + (7)) dr

to

+ sgn(t — to) Z (G(Tl)l‘k_l(ﬂ) + u(n)) for t<tg, t&T ort>ty (k=1,2,...)

TIE€ET gt
and

to

2o(Tm) = (In + G(Tm))*lco and xg(Tm) = (In + G(Tl))l{CO — / (P(T)l’kfl(T) + q(T)) dr

TI

_ Z (G(n)xk,l(n) + U(Tl)) + G(Tm)l'kl(Tm)} for T, <tp (m=1,2,...; k=1,2,...).

Tm <11 <to
2.1.1 Nonnegativity of the Cauchy matrix. The systems of linear
differential and integral impulsive inequalities

In this subsection, we establish the sufficient conditions guaranteeing the nonnegativity of the Cauchy
matrix of system (2.1.1p), (2.1.2¢). Moreover, we investigate the question of the estimates of solutions
of linear systems of differential and integral inequalities.

Theorem 2.1.9. Letto € I, P = (pik)ﬁkzl € Lipe([;R™™), G = (gik)ﬁk,:l € Bioe(T;R™™ ™) and
Q = diag(a, ..., an) € Bioe(T; R ™) be such that conditions (2.1.4),

1+ a;(n) >0 for ; <ty (I=1,2,...),
det (I, + G(n) + Q()) #0 for m <ty (I1=1,2,...) (2.1.14)

and

(I +G(n)+Q(m)) " >0 for <ty (1=1,2,...)
hold, where G() = G(7;) — diag(G(n)). Let, moreover,

pik(t)sen(t —to) >0 fora.a. t€I\T (i#k; i,k=1,...,n)
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and
gir(l)sgn(m —to) >0 (i #k; i,k=1,...,n; [ =1,2,...).

Then condition (1.1.25) holds, where U is the Cauchy matriz of system (2.1.1p), (2.1.2¢).

Remark 2.1.3. The condition
IG(r)|| <1 for m <ty (1=1,2,...) (2.1.15)
guarantees the validity of condition (2.1.4). If
|(In + G(m)) "1 (Q(7) — diag(G(n)))|| <1 for 7 <ty (I=1,2,...),

then condition (2.1.14) follows from (2.1.4). If the condition

G(11) + Q(71) < Onxn for m <ty (1=1,2,...)

holds together with (2.1.14), then condition (1.1.27) holds, as well. If Q(n) = diag(G(n)) (I =
1,2,...), then condition (2.1.14) coincides with (2.1.4).

Theorem 2.1.10. Let tg € I, P = (pik)z’-szl € Lipe(I;R™™), G = (gik)?,kzl € Bioc(T; R ™),
q € Lioe(I; R™™™) and u € Bjoe(T;R™) be such that the conditions

det(I, —G(m)) #0 for <ty (I=1,2,...), (2.1.16)
1—gii(m) >0 for ; <ty (1=1,2,...),
(I, = G(1)) ™t > Onxn for m <ty (1=1,2,...), (2.1.17)

pik(t) >0 for a.a. t€ IN{to}\T (i #k; i,k=1,...,n)

and
glk(Tl)ZO (Z%k’ Z,kil,,n, 1:1727)

hold. Let, moreover, a vector-function x satisfy the system of linear impulsive inequalities

sgn(t — to) CC% (t)x + q(t) for a.a. t€I\T,
-))

<P
sgn(m; — to)(z(n+) — z(n <G(m)x(n) +uln) (1=1,2,...)
on the intervals J1 and Jo and
x(to) < co if to & {m1,72,...},

2.1.18
x(7,) < (In + G(71,)) co + u(m,) if to =7, for some natural ly, ( )

where ¢y € R™. Then the estimate

z(t) <y(t) fora.a. tel\{to} (2.1.19)
holds, where y is a solution of the impulsive system

dy
==
sgn(n — to) (y(m+) —y(n—)) = Gn)y(n) +u(n) (1=1,2,...)

sgn(t — to) P(t)y +q(t) fora.e teI\T,

on the intervals J1 and Jo satisfying the conditions

y(to) = co if to & {71, 72,...},

and
y(11,) = (In + G(71,)) co + u(m,) if t =1,.
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Remark 2.1.4. It is evident that if in Theorem 2.1.10 we assume
z(to) < o,
then inequality (2.1.19) is fulfilled on the whole I.
Remark 2.1.5. If estimate (2.1.15) holds and
G(11) > Onxn (1=1,2,...),
then condition (2.1.17) holds, as well.

Theorem 2.1.11. Let tg € I, P = (pik)ﬁkzl € Lipe(I;R™™), G = (gik)ﬁkzl € Bioc(T;R™™),
q € Lioe(I;R™ ™) and u € Bjoe(T;R™) be such that conditions (2.1.16), (2.1.17) hold. Let, moreover,
x be a solution of linear impulsive integral inequality

t

z(t) <co+ </ (P(T)x(T) + q(T)) dr + Z (G(Tl)x(n) + u(n))) -sgn(t — tg)

to €Tt 1]

on the sets Jy and Ja, under condition (2.1.18). Then the conclusion of Theorem 2.1.10 is true.

2.2 The well-posedness of the initial problem

2.2.1 Statement of the problem and formulation of the results

Let P() S LlOC(I;Rnxn), go € LZOC(I;Rn), Go c BlOC(T;Rnxn), Ug € BZOC(T;RH), ] 7& T, if [ 7é k

(IL,k=1,...,n), to € I, where I C R is an arbitrary interval non-degenerated at a point. Consider
the system
dx
i Py(t)x + qo(t) for a.a. t € I\ {m};2, (2.2.1)
x(n+) — z(n—) = Go(m)z(m) +uo(my) (1=1,2,...) (2.2.2)

under the initial condition
z(to) = co, (2.2.3)

where ¢y € R" is an arbitrary constant vector.
Let z¢ be a unique solution of problem (2.2.1)—(2.2.3).
Along with the initial problem (2.2.1)—(2.2.3), consider the sequence of the initial problems

% = Py(t)x + qi(t) fora.a. t eI\ {n}2,, (2.2.1)
o(m+) — x(n-) = Gr(m)z(n) + we(n) ((=1,2,...), (2.2.2;)
(t) = ci (2.2.3;)

(k = 1,2,...), where P, € Lloc(I;Rnxn) (k‘ = 1,27...)7 qr € Lloc(I;Rn) (k‘ = 172,...), G €
Bioo(T;R™ ™) (k=1,2,...), ug € Bioe(T;R"), tr €I (k=1,2,...),c, €R" (k=1,2,...).

We assume that Py = (prij)7 ;=1 (k=0,1,...), ¢k = (qri)i=y (k=0,1,...); G = (grij)7 j=1 (k=
0,1,...), up = (urs)y (k=0,1,...), and, without loss of generality, either ¢, <ty (k=1,2,...), or
tr = 1o (k:].,?,...), or ty > 1o (k': 1,2,...).

In this section, we establish the necessary and sufficient and effective sufficient conditions for the
initial problem (2.2.15)—(2.2.3x) to have a unique solution xy, for any sufficiently large k& and condition
(1.2.3) would be satisfied uniformly on I.
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Remark 2.2.1. If we consider the case where for every natural k, the impulses points depend on k in
the impulsive system (2.2.1;), (2.2.2), in particular, the linear algebraic system (2.2.2) has the form

(T +) — (T —) = Gr(te) 2 () + () (0=1,2,...),

where 15 € T (I = 1,2,...), then the last general case will be reduced to case (2.2.2) by using the
following conception.

Let T = ToUTH UTLU. .., where Ty, = {71, Tk2,-.. t (k=0,1,...),and 7oy =7, (I =1,2,...). The
set T' is countable. Therefore T' = {7, 75,... }, where 7/ € I (I =1,2,...). For every k € {0,1,...}
and ! € {1,2,...}, we set Gi(7) = Gj(1i) and uj(7]") = uj(mw) if 7 € T, where I, € N is such
that 7 = 7, , and Gi(7]") = Onxn and uj (7)) = 0 if 7" & T}, So, the last general case is equivalent
to the impulsive system (2.2.13), (2.2.2%), where 7p =7 (1 =1,2,...), Gx(n) = Gi(1) (1=1,2,...)
and ug(n) = up(r) (=1,2,...).

Below, as in Section 2.1, we assume that T' = {7y, 72,... }.

Along with systems (2.2.1),(2.2.2) and (2.2.1;), (2.2.2%), we consider the corresponding homoge-
neous systems

dx

i Py(t)x foraa. te€I\T, (2.2.1p)
z(n+) —x(n—) = Go(n)z(n) (1=1,2,...) (2.2.2¢)
and
f;; = Pi(t)x fora.a. te€I\T, (2.2.1k0)
z(n+) — x(n-) = Gr(n)z(n) (1=1,2,...) (2.2.240)
(k=1,2,...).

Definition 2.2.1. We say that the sequence (Pg,qr; G, ur;ty) (K = 1,2,...) belongs to the set
S(Py, qo0; Go, up; to) if for every ¢y € R™ and a sequence ¢, € R™ (k = 1,2,...) satisfying the condition
(1.2.5), problem (2.2.1;)—(2.2.3;) has a unique solution z;, for any sufficiently large k¥ and condition
(1.2.3) holds uniformly on I.

As in the previous section, the impulsive systems (2.2.1), (2.2.2) and (2.2.1),(2.2.2;) (k=1,2,...)
are the particular case, respectively, of the general systems (1.2.1) and (1.2.1;) (k=1,2,...) 1f we set

Ak(t):/Pk(T)dT+sgn(t—tk.) S Gulm) for tel (k=0,1,...),
TIE€ET Y ¢

(2.2.4)

t

fk(t):/qk(T)dT—l—sgn(t—tk) Z ug(m) for tel (k=0,1,...),

ti TIET +

where a € [ is an arbitrary fixed point.

Let
Ck1 = Ck (k:O,l,...),

Cro =cp if tgp >tg, tr & {7’1,7'2,...} (k:O,l,...), (2.2.5)
Cko = (In + Gk(TZ))Ck —l—uk(n) if [ is such that t, =7 (k =0,1,.. )

To realize and formulate the well-posed results of Section 1.2, we use the following forms of the
operators B(X,Y) and Z(X,Y) (see (0.0.2) and (0.0.3)) for the impulsive case, in particular, when
the matrix-functions X and Y are continuous from the left on I. Using integration-by-parts formula
(0.0.9), (0.0.11) and the definition of the Kurzweil integral, we find

B(X,Y)(t) = B(X,Y)(s)

/X T)dT + sgn(t — s) Z X(m+)dY(m) for s<t, s,tel, (2.2.6)

TLET‘;'{
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if X € BVioe(I;R™ ) and Y € ACV (I, T; RI*™) and

T(X,Y)(t) — T(X, V)(s) = / (X'(7) + X(O)Y' ()X (r) dr

+sgn(t — s) Z (2 X (1) + X(m4+)d2Y (1)) X ' (m) for s <t, s,tel, (2.2.7)

€T ¢

if X,V € ACVio (I, T;R™™), det X (t) # 0. In addition, if

Qi) —Q /Y )dr +sgn(t —s) Z Z(m) for s<t; s,tel,

TleTsf
where Y € Lo (I; R™™) and Z € Bjoe(T; R™™™), we set
B.(X:Y,Z)(t) = B(X,Q)(t) and Z,(X;Y, Z)(t) = Z(X, Q)(t).

Consequently,

B,(X;Y, Z)( /X T)dr+sgu(t—a) Y X(n+)Z(n) and

T1€ETat

L(X;Y, Z)(t) = / (X'(7) + X ()Y (1)) X (r) dr (2.2.8)

a

+sgn(t—a) > (d2X(n)+ X(n+)d2Z(n)) X' (7),

TIETw,t

where a € I is a fixed point.
Analogously to equalities (0.0.5) and (0.0.4), we introduce the operators

DBL (Yla ZlaXl; Y27 ZQaXZ)(t) = BL(Xla Y17 Zl)(t) - BL(X27 ZQa ZQ)(t)
and
DIL(}/I7 Z17X1;}/27 ZQ7X2)(t) = IL(Xla}/l7 Zl)(t) - IL(X27Z27 ZQ)(t)
Note that if X (¢) = I,,, then

t

B.(L:Y, Z)(1) = / Y(r)dr+san(t—a) Y Z(n).

a T1€Tat

Therefore, by (2.2.4),
Ak(t) = BL(In;Pk,Gk)(t) — Bi(In;Pk,Gk)( )
fk(t) = BL(In7Qk7Uk)( ) ﬁl( ankuuk)(tk) (k =0,1,... )

Theorem 2.2.1. Let Py € L(I;R"*"), qo € L(I;R"), Gy € B(T;R™"), ug € B(T;R"), 7, € T
(1=1,2,...), to € I and a sequence of points t € I (k=1,2,...) be such that conditions (1.2.9) and

det(I, + Go(m)) # 0 if 1 <ty and
for =1y if to=m, and tp >ty for every ke {1,2,...} (I=1,2,...) (2.2.9)

hold. Then
o0
((Pe, ar; Gryuns tr)) ., € S(Po, qo; Go, uo; to) (2.2.10)
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if and only if there exists a sequence of matriz-functions Hy, € ACVo. (I, T;R™™) (k =0,1,...) such
that condition (1.2.11) holds, and conditions (1.2.12),

k— 400

lim {HDL (P;.c,Gk,H,C;PO,GO,HO)(T)‘;H(l n ‘ \t/ (DL(P,C,Gk,Hk;Po,GO,HO))‘ )} =0 (2.2.11)
23

and

t
k— 400 th

lim { HDBL (Qk7uk7Hk§QO7UO>HO)(T)‘ H(l + ‘ \t/ (DIL(PthaHk;PO;GO7HO))‘ )} =0 (22.12)
23

hold uniformly on I.
Note that in Theorem 2.2.1, due to (2.2.6), (2.2.7) and (2.2.8), we have

T, (Hy: Py G () = / (H{(r) + Hy(r) Py(r)) HY (7) dr

+ sgn(t — a) Z (doHy (1) + Hi(n+H)Gr(n))Hy (1) (k=0,1,...) (2.2.13)

TLETC,,,t

and

BL(Hk;qk,uk)(t)E/Hk(T)qk(T)dT—i—sgn(t—a) Z Hi(n+)ug(m (k=0,1,...). (2.2.14)

T1€Ta ¢

Theorem 2.2.2. Let Py € L(I;R™™*™), qo € L(I;R"), Gy € B(T;R"™*™), uwg € B(T;R™), 7, € 1
(1=1,2,...), to € I and a sequence of points t, € I (k= 1,2,...) be such that conditions (1.2.9)
and (2.2.9) hold. Let, moreover, the sequences Py € Lijoo(I;R™ ™) (k = 1,2,...), qx € Lioc(I;R")
(k= 1,2,...), Gk € Bioe(T;R™™) (k = 1,2,...), ug € Bioe(T;R™) (k = 1,2,...), and bounded
sequence of constant vectors ¢, € R" (k = 1,2,...) be such that conditions (1.2.5;), (1.2.15) and
(1.2.16) hold if j € {1,2} is such that (—1)7(tx — to) > 0 for every k € {1,2,...}, where cy;
(k=0,1,...) are defined by (2.2.5),

Ap1(t) = —Ak(t), fra(t) = —frt) (k=0,1,...);
Akg(t) = Ak(t)7 fkg = fk(t) Zf tk Q {T17T2,. . } (k = 071,. . .);
Akg(t) = Ak(t) - Gk(n), fkg(t) = fk(t) — uk(n) ’lf tk =T fOT some [ (k‘ = 0,1,. . .), (2215)

and Ag(t) and fr(t) are defined by (2.2.4). Then the initial problem (2.2.1x)—(2.2.3x) has the unique
solution xy, for any sufficiently large k and (1.2.17) holds.

Note that in Theorem 2.2.2, we have

. ¢
V| =| [1r@lal+ 5 6wl k=00
tr e TIETY,, ¢

Remark 2.2.2. In Theorem 2.2.2, it is evident that the sequence zy(t) (k = 1,2,...) converges to
xo uniformly on the set {t € I,t <to}iftx >ty (k=1,2,...), and on the set {t € I,t > to} if tx < to
(k=1,2,...). Moreover, in Theorem 2.2.2, if conditions (1.2.15) and (1.2.16) hold uniformly on the
set I instead of sets Iy, (k=1,2,...), then these conditions are equivalent, respectively, to the limit
equalities (1.2.18) and (1.2.19) uniformly on I, since, due to (2.2.4), the matrix- and vector-functions
A, (k=0,1,...) and f5 (k =0,1,...) satisfy the equalities given in condition (2.1.6). In addition,
equalities (1.2.7) hold and, therefore, in view of (1.2.5) and (1.2.6), conditions (1.2.5;) (j = 1,2) hold,
as well. Thus, in this case, condition (1.2.3) holds uniformly on I.
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Theorem 2.2.3. Let Pj € L(I;R"*"), ¢} € L(I;R"), G§ € B(T;R"™™), uy € B(T;R"), 7, € T
(1=1,2,...), ¢§ € R", ty € I and a sequence of points t, € I (k= 1,2,...) be such that condition
(1.2.9) and

det(l, + G§(m)) # 0 if 1 <ty and
for l=1y if to =7, and ty >ty for every k€ {1,2,...} (I1=1,2,...)

hold and the initial problem

Cflit” — Pr()r+qi(t) for aa. t€I\T, (2.2.16)
z(n+) —z(n—) = Go(m)z(n) +ug(n) (1=1,2,...); (2.2.17)

z(to) = ¢

has a unique solution x. Let, moreover, the sequences of matriz-functions Py € Lioe(I; R™*™) (k =
1,2,...), Gk € Bioe(T;R™™™) (k=1,2,...) and Hp € ACV, (I, T;R"*™) (k =0,1,...), of vector-
functions qi € Lioo(I;R™) (k=1,2,...), up € Bioe(T;R™) (k=1,2,...) and hy € ACV,,.(I,T;R")
(k =0,1,...), and the bounded sequence of constant vectors c; € R™ (k = 1,2,...) be such that
conditions (1 2.23) and (1.2.24) hold, and (1.2.25) and (1.2.26) be fulfilled for the matma: functions Ay,

Ay (k=0,1,...) and vector-functions fy; (k=0,1,...) if j € {1,2} is such that (1)’ (ty — o) >0
for every k € {1,2,...}, where c¢; (j = 1,2,k =0,1,...) and Ap; and f; (j=1,2;k=0,1,...)
are defined, respectively, analogously to (2.2.5) and (2.2.15),

¢ = Hk(tk)ck + hk(tk), Ak( ) 7, (Hk,Pk,Gk)( ) (k‘ =1,2,. ..),

t

Jr(t) = ha(t) — hi(tr) + Bo(Hp; qr, ur ) (1) — B (Hy; qr, ur) (tr) — /dAZ(T) chi(r) (k=1,2,...),

tr

and Z,(Hy; P, Gi)(t) and B,(Hg; qi, ui)(t) are defined by (2.2.13) and (2.2.14), respectively. Then
problem (2.2.1})—(2.2.3k) has the unique solution xy, for any sufficiently large k and (1.2.27) holds.

Remark 2.2.3. In Theorem 2.2.3, the vector-function x}(t) = Hy(t)zx(t) + hi(t) is a solution of the
problem

Z—f = Pi(t)x +q;(t) fora.a. teI\T,
r(n+) —z(n—) = Gr(n)z(n) +ugp(n) (1=1,2,...);

x(ty) = ¢

for every sufficiently large k, where

Py (t) = (Hy(t) + He () P (1) Hy  (8),

Gy(m) = ( Hk (1) + Hk(Tl+)le(Tl))Hk_1(Tl) (k=0,1,...;1=1,2,...);
qi(t) = hi(t) + Hi(t) a(t) — Py (he(t) (k=1,2,...),

gu (1) = dahi (1) + Hy(mi+)ur () — G (m)he(n) (B=1,2,...;1=1,2,...).

Below, as in Chapter 2, we consider, mainly, the question on the well-posedness only on the whole
interval I. For the last case, instead of conditions (1.2.25) and (1.2.26), we assume that the limit
equalities (1.2.29) and (1.2.30), where the circumscribed matrix- and vector-functions are defined as
above in this section, hold uniformly on the whole interval I.

Corollary 2.2.1. Let Py € L(I;R™ ™), qo € L(I;R"), Gy € B(T;R™™™), up € B(T;R"), ¢y €
R™, to € I and the sequences P, € Lioe(I;R™ ™) (k = 1,2,...), q&x € Lioe(I;R™) (k = 1,2,...),
=1,2,.

G € Bioe(T;R™™) (k= 1,2,...), ur € Bjoe(T; SR™) (k 1 ), e €RY (BE=1,2,...) and



112 Malkhaz Ashordia

tr €I (k=1,2,...) be such that conditions (1.2.9), (1.2.11), (1.2.24) and (2.2.9) hold, and conditions
(1.2.12), (2.2.11) and

t

k——+oo tw

lim {HDBL(% - (p;g?uk - SQ(@k)aHk;quu07H0)(T)

+/dIL(Hk;Pk,Gk)(T)"Pk(T)

ty

(1 + ‘ \t/ (Dz, (Pi, Gy Hy; POaG07HO))‘ )} =0
ty

hold uniformly on I, where Hy € ACV oo (I, T;R™ ™) (k = 0,1,...), or € ACV;,.(I,T;R™) (k =
1,2,...). Then problem (2.2.1;)—~(2.2.3;) has the unique solution xj for any sufficiently large k and
condition (1.2.33) holds uniformly on I.

Below, as in Section 2.1, we will give certain sufficient conditions guaranteeing inclusion (2.2.10).
Towards this end, we state a theorem, different from Theorem 2.2.1, concerning the necessary and
sufficient conditions for the inclusion, as well.

Theorem 2.2.1'. Let Py € L(I;R™™*™), qo € L(I;R™), Gg € B(T;R" "), ug € B(T;R"™), tg € [ and a
sequence of pointst, € I (k=1,2,...) be such that conditions (1.2.9) and (2.2.9) hold. Then inclusion
(2.2.10) holds if and only if there exists a sequence of matriz-functions Hy € ACV,.(I,T;R"*™)
(k=0,1,...) such that conditions (1.2.11) and

lim sup (/ | Hr(t) + He(t)Pe(t)|| dt + Z | Hi(mi4) — Hi(m) + Hk(Tl—i-)Gk(Tl)H> < +oo (2.2.18)
k—+too T T eT

hold, and conditions (1.2.12),

lim ( / Hy(7)Py(r) dr +sgn(t —tp) Y Hk(TH')Gk(Tl))

k——+o0
TIET ¢

:/Ho(T)Po(T)dT+Sgn(t7t0) Z H()(Tl+)G0(Tl)

TI€ET gt

and

t

lim (/Hk(r)qk(r)dT—i-sgn(t—tk) Z Hk(Tl+)Uk(Tl))

k——+o0
te TLETY, ¢

T1ET gt

= /qO(T) dr + sgn(t — to) Z Ho(7+)uo(m)

hold uniformly on I.

Remark 2.2.4. As in Remark 1.2.4, conditions (2.2.11) and (2.2.12) in Theorem 2.2.1 are fulfilled
uniformly on I.

Theorem 2.2.1". Let Py € L(I;R™™), qo € L(I;R™), Gy € B(T;R™"), uy € B(T;R"), 7 € I
(1=1,2,...), to € I and the sequence of points t, € I (k=1,2,...) be such that conditions (1.2.9)
and

det(In+ Gr(m)) # 0 (Lk=1,2,...)

hold. Then inclusion (2.2.10) holds if and only if conditions (1.2.37) and

lim  (B,(X; "5 qr, ur) () — Bo( Xy s qiy wn) () = Bu(Xg s 90, w0) (t) — Bu(Xg s g0, o) (to)

k— oo
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hold uniformly on I, where X}, is the fundamental matriz of the homogeneous system (2.2.1x0), (2.2.1x0)
for every k € {0,1,...}, and B,(X; "5 g, ur)(t) (k=0,1,...) are defined by (2.2.14).

Theorem 2.2.2'. Let Py € L(I;R"*™), qo € L(I;R"), Gy € B(T;R"*™), ug € B(T;R"), €I (I=
1,2,...), co € R™, tg € I and a sequence of points t,, € I (k=1,2,...) be such that conditions (1.2.9)
and (2.2.9) hold. Let, moreover, the sequences Py € Lioc(I; ]R”X”) (k ), @k € Lioe(I;R™)
(k:1,27...), GkEBlOC(T,Rnxn) (k—1,2,...), ukEBloc( n) (k—12 ) and ¢, € R
(k=1,2,...) be such that conditions (1.2.5) and

hmsup </|Pk |dt+ZHGk Tl |> < +o00

=1

hold, and conditions

t t
kEToo(/Pk( )dr + sgn(t — tx) Z Gkn>:/ o(7T) dT + sgn(t — o) Z Go(m)
te T1€ Ty, t to T1€T gt
and
t t
li - - -
Jlim ( [autryar - snie - 1) Y ukm)) [andr st —t0) Y ()
L €Tyt to T1€T gt

hold uniformly on I. Then problem (1.2.1y), (1.2.2%) has the unique solution xj for any sufficiently
large k and condition (1.2.3) holds uniformly on I.

Corollary 2.2.2. Let Py € L(I;R™"*"), g0 € L(I;R"), Gy € B(T;R"*"), ug € B(T;R"), 7, € I
(1=1,2,...), co € R, ty € I and the sequences Py € Lioe(I;R™™) (k=1,2,...), qx € Lioc(I; R™)
(k =1,2,...), Gk € Bioe(T;R™™) (k = 1,2,...), up € Bioe(T;R") (k = 1,2,...) and t,, € I
(k=1,2,...) be such that conditions (1.2.9) and (2.2.9) hold, conditions (1.2.12),

lim /Hk.(T)Pk(T)dT: /HQ(T)P()(T) dr

k——+oo
and

k—+oco

lim Hy (1) qi(r)dr = /Ho(T) qo(T) dt

tr

hold uniformly on I, and

kgrfoo Gr(m) = Go(m) and kEI—iI-loo ug (1) = wo(m)

hold uniformly on T, where Hy, € ACVoo(I,T;R™ ") (k=0,1,...). Let, moreover, either

hmsupz |G (m) || + lur(m)]]) < +oo or hmsupz |Hy(m+) — Hi(7)]| < +o0.

—>+ool1 —)+ool1

Then inclusion (2.2.10) holds.

Corollary 2.2.3. Let Py € L(I;R™™™), qo € L(I;R™), Gy (T R™™) ug € B(T;
1,2,...), to € I and the sequences Py € Lijoe(I; R™*™) (k o), @k € Lioe(I; R™ 1,2,...
Gr € Bioo(T;R™ ™) (K =1,2,...), ug € Bioe(T;R™) (k = yo..)andty €1 (k=1,2,...) be such
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that conditions (1.2.9), (2.2.9) and (2.2.18) hold, and conditions (1.2.12),

lim (/Hk(T)Pk(T)dT—i-sgn(t—tk) Z Hk(7l+)Gk(Tl)>

k— o0
TIETY, ¢

t

:/P*(T)dr+sgn(t—t0) Z G*(n)

to T1ET gt

and

lim (/Hk(T)qk(T) dr + sgn(t — t) Z Hk(Tl+)uk(Tz)>

k—+o00
TIET ¢

t

:/q*(T)dT+sgn(t—to) > ur(n)

to T1E€ET gt

hold uniformly on I, where Hy, € ACV (I, T;R"™™) (k=1,2,...), P* € L(I;R"™"), ¢* € L(I;R"),
G* € B(T;R™™™), u* € B(T;R™). Let, moreover, system (2.2.16), (2.2.17), where Pj(t) = Py(t) —
P*(t), ¢5(t) = qo(t) — ¢* (1), G§(1) = Go(m) — G*(1), u$(m) = uo(m) — u* (7)), have a unique solution
satisfying condition (2.2.3). Then

((Pk'?qu Gkvukvtk)):.;l € S(P0*7 qa7 GS?U’Sa to)

Corollary 2.2.4. Let Py € L(I;R"*™), qo € L(I;R™), Gy € B(T;R"*™), ug € B(T;R™), €I (I =
1,2,...), to € I and the sequences Py € Lioe(L;R™ ™) (k=1,2,...), qx € Lioc(I;R™) (k=1,2,...),
Gr € Bioo(T;R™ ™) (k = 1,2,...), ur € Bioe(T;R™) (k =1,2,...) and t, € I (k =1,2,...) be
such that conditions (1.2.9) and (2.2.9) hold. Let, moreover, there exist a natural number m and
matriz-functions Bj € ACVioo (I, T;R™™) (j =1,...,m — 1) such that the condition

limsup\/ (Him-1 + B.(Hym—-1; Pr, Gi)) < +00
k—-+o0 I

holds, and conditions

t

lim (ij_1(T) . —|—BL(ij_1;Pk,Gk)(T) ' ) = Bj(t) —Bj(to) (j=1,...,m—1),

k— 400

t
lim (Hkm,l(T)t + B.(Hym—1; Pr, Gr)(T)
k

k— o0

T1€T 1

tk> :/Po(T)dT+Sgn(t_t0> Z GO(Tl)

and
t

:/qO(T)dT+Sgn(t_t0) Z uo(m)

to TI€T gt

t

lim B,(Hkm—1;qr, ur)(T)

k——+oco tr

hold uniformly on I, where

t

Hk;o(t) = I’ru Hk](t) = (In — ij_1<7') .

t
— B/(Hy j—1: Py, Gi)(7)

k

+ B;(7)
tr

ty

fortel (j=1,....m—1;k=12_.).

Then inclusion (2.2.10) holds.
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If m = 1, then Corollary 2.2.4 coincides with Theorem 2.2.2’.

If m = 2, then Corollary 2.2.4 has the following form.
Corollary 2.2.4". Let Py € L(I;R™*™), qo € L(I;R™), Gy € B(T;R"*"), ug € B(T;R™), 1 €I (I =
1,2,...), to € I, and the sequences Py € Lioe(I; R™ ™) (k=1,2,...), qk € Lioc(I;R™) (k=1,2,...),
Gi € Bioe(T;R™ ™) (k=1,2,...), up € Bioe(T;R™) (k=1,2,...) and tp € I (k=1,2,...) be such
that conditions (1.2.9), (2.2.9) and (2.2.18) hold, and the conditions

i ( [ Aeyar +snie - ) P> ka)) — B(t) - Blto),

kEIJPoo (/Hk(T)Pk(T) dT+sgn(t—t;€)T§ Hk(Tl“l‘)Gk(Tl))

t

:/PO(T)dr—f—sgn(t—to) Z Go(m)

to T1E€ET 1

and

Z Hk(rl+)Uk(Tz)>

k—+oo
TIET ¢

lim </Hk(r) g (T) dr + sgn(t — tx)

t

:/qO(T)dT+Sgn(t_tO) Z up(7)

to Tl ETtD ot

hold uniformly on I, where B € ACV,.(I, T;R"™™) and

He(t) = I, — /Pk(r) dr—sen(t—t) 3 Gi(m)+ B(t) — Blto) for tel (k=1,2,...).

th TLET Y ¢

Then inclusion (2.2.10) holds.

Corollary 2.2.5. Let Py € L(I;R™"*"), g9 € L(I;R"), Gy € B(T;R*"*"), ug € B(T;R"), 7, € I
(Il =12...) and tp € I (k =1,2,...) be such that conditions (1.2.9) and (2.2.9) hold. Then
inclusion (2.2.10) holds if and only if there exist matriz-functions Qx € Lioe(I; R™ ™) (k= 0,1,...)
and constant matrices Wi, € Bioe(T;R"™ ™) (k=0,1,...) such that

lim sup (/ 1Ps(t) = Q)| dt + Y |Gr(m) — Wk(Tl)H) < +o0 (2.2.19)
k—+o00 T =1
and
det(L + Wi(m)) 20 (k=0,1,...; 1=1,2,...), (2.2.20)

and the conditions

Jim 20N = Zg (),
lim (B.(Z; ' Py, Ge)(t)—B.(Z; ' Pe, Gr) (th)) =B(Zy Y5 Po, Go) (1) = B.(Z71; Py, Go) (to) (2.2.21)

k—+oco

and

lm  (B(Z; Y5 gy wn)(t) — Bu(Z s answn) (t)) = Bu(Zg 5 40, w0) () — Bu(Z5 5 g0, wo) (to) - (2.2.22)

k— 400
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hold uniformly on I, where Zy, (Zy(tx) = I,) is a fundamental matriz of the homogeneous system

d
d—f = Qu(t) fora.a. teI\T, (2.2.23)
(E(Tl-l-) — (E(’Tl—) = Wk(Tl)ZE(Tl) (l =1,2,.. ) (2224)
for every k € {0,1...}.
Corollary 2.2.6. Let Py € L(I;R"™™), qo € L(I;R"™), Gy € B(T;R"*"), up € B(T;R"), 7, € I
(I =1,2,...) and the sequences Py € Lioe(I;R™™) (k = 1,2,...), gk € Lioe(I; R™) (k = 1,2,...),
Gk S BlOC(T;RnXH) (k = 1727' . ')} ug € BlOC(T7Rn) (k = 1727' . ) and tr €l (k = 17 3. ) b@ SuCh
that conditions (1.2.9) and (2.2.9) hold. Let, moreover, there exist matriz-functions Qi € Lioc(L; R™*™)

(k=0,1,...) and Wi € Bioe(T;R™™) (K = 0,1,...; 1 = 1,2,...) such that the pairs (Q, W)
(k=1,2,...) satisfy the Lappo—Danilevskii condition, conditions (2.2.19) and

det(L, + Wo(m)) #0 (1=1,2,...) (2.2.25)

hold, and the conditions

t
lim (/Qk(T)dT+sgn(t—tk) Z Wi Tl> /QO )dr + sgn(t — to) Z Woi, (2.2.26)

k—+o00
TIET ¢ T1ET 1

t

kkr}r’loo (/Zkl(T)Pk( )dT+SgH t—tk EET: Z +Wk(Tl))_1Gk(Tl))
te TI tg ot

= /ZEI(T)PQ(T) dr + sgn(t — tg) Z Zy N (1) (I, + Wo(m)) "t Go(m) (2.2.27)
to TIET gt

and

S

Z N 7)dr + sgn(t — t1,) Z Zk_l(Tl)(In+Wk(7'l))1Uk(7'l)>

lim (
k——+oo
TLET ¢

t

:/251(T)q0(T)dT+sgn(t—to S 25 ()L + Wo(m) " uo(n)  (2.2.28)

to T1€T ¢

hold uniformly on I, where Zy (Zi(tx) = I,) is a fundamental matriz of the homogeneous system

(2.2.23),(2.2.24) for every k € {0,1...}. Then inclusion (2.2.10) holds.

Remark 2.2.5. In Corollary 2.2.6, due to (2.2.26), it follows from (2.2.25) that condition (2.2.20)
holds for every sufficiently large k and, therefore, conditions (2.2.27) and (2.2.28) of the corollary are
correct.

Remark 2.2.6. In Corollaries 2.2.5 and 2.2.6, if we assume that the constant matrices Wi; = O, xn
(k=0,1,...; 1 =1,2,...), then conditions (2.2.20) and (2.2.25) are valid, obviously. Moreover, due
to the definition of the operator B,, each of conditions (2.2.21) and (2.2.27) has the form

lim </tzk1(T)Pk( Ydr +sgn(t—tp) Y Zy ()Gl n))

k——+oo
th TIET ¢

= /ZJI(T)P()(T> dr + sgn(t — tg) Z Zy N (1) Go(m)

TIET gt
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and each of conditions (2.2.22) and (2.2.28) has the form

t
kEToo</Zk1() w(T) dT + sgn(t — ) Z Z, Tlule)>

tr TIETY ¢

t

:/Z()_l(r)qo(T)dT+sgn(t—to) S Z5 (m)uo(m).

to T1E€ET 1

Remark 2.2.7. If a pair (P,G), satisfied the Lappo—Danilevskii condition, and s € I are such that
det(I, + G(m)) # 0 for 7; < s, then, due to (2.1.11), the fundamental matrix Z (Z(s) = I,,) of the
homogeneous system

d
ditc = P(t) fora.a. teI\T,

z(n+) —x(n-) =G(n)z(n) (1=1,2,...)

has the form

exp (/P ) (I, + G(m)) for t > s,
s<T <t

(2.2.29)
exp (/P ) (I, + G(m))™' for t <s,
t<m<s

1, for ¢t = s.

Corollary 2.2.7. Let Py € L(I;R"™™), qo € L(I;R"), Gy (T;R”X”), wo € B(T;R™), me I (1=
1,2,...), to € I and the sequences Py € Lyoe(I; R™*™) (k )5 Gk € Lioe(I; R™) (k: 1
GkEBlOC(T;Rnxn) (k=1,2,...), ukGBlOC(T;Rn) (k ) andtkef(k—l )
that conditions (1.2.9), (2.2.9) and

limsup Y _[|Gx()]| < 400
k

—400 =1

hold. Let, moreover, the matriz-functions P, (k = 0,1,...) satisfy the Lappo—Danilevskii condition
and the conditions

lim /Pk dT—/ o(7) dr, (2.2.30)

k—+o00
Jim Z Gr(n)= Y Go(n), (2.2.31)
€Ty, ¢ €T sy 0
t T t T
i hrf exp ( — /Pk(s) ds) Py (1) dr = /exp ( — /Po(s) ds) Py(7)dr, (2.2.32)
—+00
tr tr to 0
t T t T
klirf exp ( - /Pk(s) ds> qr(7)dr = /exp < - /Po(s) ds> qo(7) dr (2.2.33)
—+oco
tr tr to to

and

Tl

Jim > exp(—]Pk(s)ds>uk(Tl)= > GXp<—/Po(8)dS>U0(Tl)

TIET ) ¢ T1€ET gt to

hold uniformly on I. Then inclusion (1.2.10) holds.
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Corollary 2.2.8. Let Py = (poij)i ;=1 € L(;R™ ™), g0 = (qoi)i=y € L(L;R™), Go = (g0ij)7 j=1 €
B(T;R™™), uy = (goi)’~y € B(T;R™), m € I (I = 1,2,...), to € I, and the sequences P, =
(pkij)?:j:1 S Lloc(I; Rnxn) (k = 17 ) ) qr = (Qki)?zl € Lloc(I;Rn) (k = 1727 v )7 Gk:(gkij)zj‘zl S
Bioo(T;R™ ™) (k=1,2,...), up = (gri)q € Bioe(T;R™) (k=1,2,...), andtp, € I (k=1,2,...) be
such that conditions (1 2. 9) (2.2.9),
lim sup Z (/|pk” ‘dt+Z|gkz] T > < 400
k——+oco ii=1; i)
and
1+90ii(7—l) #0 (i: 1,...,n; 1= 1,27...)
hold, and the conditions
t
Jim ( / prii(7) dr + sgn(t — 1) Y gmm))
th TIET ¢
t
= /pOii(T) dr + sgn(t — to) Z goii(m) (i=1,...,n),
to TLETtO,f,
t
pm (/Zﬁm( )pkij (T) dr +sgn(t — ) > Zkﬁ(ﬁ)(l+9kii(ﬂ))_1gkz‘j(ﬁ)>
ty TIETY, ¢
t
= /Zo_ul(T)pOij(T) dr +sgn(t — to) Z 200 (1) (1 + goii (1)) "' g0ij (1) (i # 45 4,5 =1,...,n)
to TI€ETtg ¢

and

lim (/Zku qkz dT+Sgn(t_tk) Z Zk;“(Tl)(l+gk”(7—l))_1uki(7—l)>

k—-+o0
TIETY, ¢

:/ZO_“(T)QQZ(T) dT+SgH(t7t0) Z zo_“l(n)(lJrgol-i(n))*lu()i(n) (Z: 1,...,71)

tr TIE€ET ¢

hold uniformly on I, where z;; is a unique solution of the initial problem

ilij prii(t)z for a.a. t € I\T,
2(n+) —2(n-) = gris(n) 2(m) (1=1,2,...);
Z(tk) =1

fori e {l,...,n} and any sufficiently large k (it is defined according to (2.2.29)). Then inclusion
(2.2.10) holds.

Remark 2.2.8. For Corollary 2.2.8, the remark analogous to Remark 2.2.5, is true, i.e.,
14+ grii(n) 20 (i=1,...,n; 1 =1,2,...)
for every sufficiently large k and, therefore, all conditions of the corollary are correct.

Remark 2.2.9. In Theorem 2.2.3 and Corollaries 2.2.1,2.2.2, we can assume without loss of generality
that Ho(t) = I,.

Remark 2.2.10. In some results given above, we really have P, € L(I;R™*™) (k =1,2,...), ¢ €
LLRY) (k=1,2,...), Gy € B(T;R™™) (k=1,2,...) and uy € B(T:R") (k=1,2,...).
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2.3 The stability in Liapunov sense

2.3.1 Statement of the problem and formulation of the results

In this section, we realize the results of Section 1.3 for the stability in the Liapunov sense of the
following impulsive system

dx
i P(t)x + q(t) for a.a. t € R\ T, (2.3.1)

z(n+) —x(n—) = G(n)z(n) +u(n) (=1,2,...), (2.3.2)

where P € Lipe(Ry;R"™™), q € Lige(Ry;R™), G € Bioe(T;R™ ™), u € Bioe(T;R"), T = {T177—2’ cee }7
neRy 1=1,2,...),0<7 <7 <--- and lim 7 =4o0.

l— 400
Below we will mainly consider the case P & L(R;R"™*™) or G ¢ B(T;R"*"), i.e.,
Z G(m) = 4o0.
€T

In this section, we assume that inequality (2.1.4) holds for every [ € {1,2,...}, and the function &
appearing in Section 1.3, in addition, is continuous from the left and belongs to ACV (R4, T;R,).

Definition 2.3.1. The pair (P, G) is said to be stable in one or another sense if the matrix-function
A defined by (2.1.5) is stable in the same sense, according to Definition 1.3.6.

It is evident that the stability of the pair (P, @) is equivalent to that of the corresponding homo-
geneous impulsive system

Lc% = P(t)x for a.a. t € Ry \ T, (2.3.1p)
z(n+) —z(n—) = G(n)z(n) (=1,2,...). (2.3.29)

Theorem 2.3.1. The pair (P,G) is stable if and only if there exists a nonsingular continuous from
the left matriz-function H € ACV o (Ry, T;R™™™) such that conditions (1.3.8) and

+o0 +oo
/ |H'(t) + HE)P(#)|| dt + > ||H(n+) — H(n) + H(m+)G(n)|| < 400 (2.3.3)
0 =1

hold.

Theorem 2.3.2. The pair (P, G) is uniformly stable if and only if there exists a nonsingular continuous
from the left matriz-function H € ACV o (R4, T; R™ ™) such that conditions (1.3.10) and (2.3.3) hold.

Theorem 2.3.3. The pair (P,G) is asymptotically stable if and only if there exists a nonsingular
continuous from the left matriz-function H € ACVo.(Ry, T;R™™™) such that conditions (1.3.11) and
(2.3.3) hold.

Theorem 2.3.4. The pair (P, Q) is £-exponentially asymptotically stable if and only if there exists a
nonsingular continuous from the left matriz-function H € ACV,.(R4, T; R™™™) such that conditions
(1.3.12) and

+oo
/eXp(*ﬁf(T))HH'(t)+H(t)P(t)||dt
0 .
+ Zexp(fng(n))HH(TlJr) — H(m) + H(Tl+)G(Tl)H < 400
1=1

hold.
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Corollary 2.3.1. Let the matriz-functions @ € Lioe(R1;R™ ™) and W € Bjoe(T; R"™™) be such that
det(I, + W(m)) £0 (1=1,2,...) (2.3.4)

and
+oo oo
/ Y1 @)(P(8) = Q| dt + Y |[Y " (m)(In + W (m)) (G (m) = W(m))|| < +o0,
5 =1

where Y (Y (0) = I,,) is the fundamental matriz of the system

dﬁ =Q(t) for a.a. t € RL\T, (2.3.5)

x(n+) - x(n—) =W(n)x(n) (1=1,2,...). (2.3.6)

Then the stability in one or another sense of the pair (Q, W) guarantees the stability of the pair (P, Q)
in the same sense.

Theorem 2.3.5. Let the pair (Py,Go), consisting of matriz-functions Py € Lioe(Ry;R™ ™) and
Go € Bioe(T; R™ ™), be uniformly stable and

det(l,, + Go(m)) #0 (I1=1,2,...). (2.3.7)
Let, moreover, the matriz-functions P € Lijoo(Ry; R™ ™) and G € Bioo(T; R™ ™) be such that

“+oo
/ | (H'(t) + H(t)P(t) — Py(t)H (t))H ' ()| dt
0

“+o0
3 ||t + Golr) (Hmt) = H(m) + Hm4)G(m) = Golm) Hm) H (m)| < +00, (23.8)

where H € ACV oe(Ry, T;R™ ™) is a nonsingular continuous from the left matriz-function satisfying
condition (1.3.10). Then the pair (P,G) is uniformly stable, as well.

Remark 2.3.1. In Theorem 2.3.5, if H(t) = I,,, then condition (2.3.8) has the form

/Hp — Py(t ||dt—|—ZH (In + Go(m)) M (G(n) = Go(n))|| < +oc.

Theorem 2.3.6. Let the pair (Py,Go), consisting of matriz-functions Py € Lioe(Ry;R™ ™) and
Go € Bioc(T; R™ ™), be &-exponentially asymptotically stable and condition (2.3.7) hold. Let, moreover,
the matriz-functions P € Ljoe(Ry;R™ ™) and G € Bioo(T; R™*™) be such that

(€)(®)
lim ( / 1P(7) = Po(r)lldr+ ) H(In+Go(Tz))_1(G(Tz)—Go(Tz))H>=07
0

t—+oo
0<m<v(§)(¢)

where the function v(§) is defined by (1.3.22), and £ € ACV,.(R1;Ry) is a continuous from the left
nondecreasing function satisfying condition (1.3.4). Then the pair (P, G) is {-exponentially asymptot-
ically stable, as well.

Corollary 2.3.2. Let the components of the matriz-functions P = (pik)?,kzl € Lipe(Ry;R™ ™) and
G= (gik);szl € Bioe(T; R™™ ™) be such that

14 gu(m) #0 (i=1,....n; 1=1,2,...), (2.3.9)
v(§)(t)
lim ( / llpir (7) || d7+ Z H(l+gii(ﬂ))_1gik(ﬂ)||>:0 (i#k i k=1,...,n)

t—+4oo
t t<m<v(§)(t)
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and
t

[pateds 3 galn) < e~ €() for t>720 (i=1..m)

T T <t

where 1 > 0, and the function v(§) is defined by (1.3.22). Then the pair (P,G) is -exponentially
asymptotically stable.

Corollary 2.3.3. Let a matriz-function Py € Lioe(Ry; R™™ ™) be £-exponentially asymptotically stable,
and the matriz-functions P € Ljoc(Ry; R™ ™) and G € Bioo(T; R™*™) be such that

£(t)+1
an ([ ir@-neles X jo@i) -

t<m <E(t)+1

where £ : Ry — Ry is a continuous nondecreasing function satisfying condition (1.3.4). Then the pair
(P, Q) is &-exponentially asymptotically stable, as well.

Proposition 2.3.1. Let the pair (P,G) be £-exponentially asymptotically stable, and the wvector-
functions q € Lioe(R4;R™) and u € Byoo(T; R™) be such that

£(t)+1
. —1 _
dn (e ¥ m) )] ) <o
) t<m<€(t)+1

where the function v(€) : Ry — Ry is defined by (1.3.22). Then every solution of system (2.3.1), (2.3.2)
satisfies condition (1.3.6).

Proposition 2.3.2. Let the pair (Py,Gy), consisting of matriz-functions Py € Lioe(Ry; R™™ ™) and
Go € Bioc(T; R™ ™), be &-exponentially asymptotically stable and condition (2.3.7) hold. Let, moreover,
the matriz-functions P € Lijoe(Ry;R™ ™) and G € Bioe(T; R™*™) be such that

t~>+oo (/”P ||d7'+ Z +G0 Tl)) (G(Tl) GO('U))H) =0

o< <t

Then the pair (P, Q) is &-exponentially asymptotically stable, as well.

Theorem 2.3.7. Let the components of the matriz-functions P = (pik)?,kzl € Lioe(R4; R™™ ™) and
G = (9ik)} k=1 € Bioc(T;R™™™) be such that inequality (2.3.9) for i € {1,...,n} and l € {1,2,...}
holds if m; > t* and the conditions

t
sup{/p” )ds + Z In|1+ gii(m)] : tzt*}<—|—oo (t=1,...,n)
0

o< <t
and
t t
[ ( [ i) ds) ()| T 11+ ga(m) dr
pel - T<T<t
=3 e / e ds gl TT 11+ gt
t*<1;<t TS <t

T

<hg for t >t (i#k i k=1,...,n) (2.3.10)

hold, where t* and h;, € Ry (i # k; i,k =1,...,n). Let, moreover, the matrix H = (hik)ﬁkzl, where
hii=0 (i=1,...,n), be such that condition (1.3.31) holds. Then the pair (P, Q) is stable.
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Theorem 2.3.8. Let the components of the matriz-functions P = (pik)?,k:l € Lipe(R4; R™ ™) and
G = (9ik)i k=1 € Bioc(T;R"™™) be such that inequality (2.3.9) fori € {1,...,n} andl € {1,2,...} if
71 > t*, conditions (2.3.10) and

t
sup{/pii(s)ds—&— Z In|1+ gii(m)] : t>72t*}<+oo (i=1,...,n)

- T<T<t

hold, where t* and hy, € Ry (i # k; i,k =1,...,n). Let, moreover, the matriz H = (hix)}';—,, where
hi; =0 (i=1,...,n), be such that condition (1.3.31) holds. Then the pair (P, G) is uniformly stable.

Corollary 2.3.4. Let the components of the matriz-functions P = (pir)j =1 € Lioc(R;R" ") and
G= (gik)zkzl € Bioe(T; R™™ ™) be such that

pii(t) <0, |pin(t)] < —hixpii(t) for t >t (i #k; i,k=1,...,n) (2.3.11)
and
—1<gi(n) <0, |gin(m)| < —hirgus(n) if m>t* (i#k; i, k=1,...,n; 1=1,2,...),
where t. and hyy, € Ry (i # k; i,k = 1,...,n). Let, moreover, the matrix H = (hik)ﬁkzl, where

hii=0 (i=1,...,n), be such that condition (1.3.31) holds. Then the pair (P,G) is uniformly stable.

Theorem 2.3.9. Let the components of the matriz-functions P = (pik)i'j—1 € Lioc(R4;R"™*") and
G = (9ik)i k=1 € Bioc(T;R™ ™) be such that inequality (2.3.9) fori € {1,...,n} andl € {1,2,...} if
71 > t*, the conditions

t
/pn‘(s)ds-i- Z In |1+ gis(m)| < =€) + &) for t>t" (i=1,...,n)

i <<t
and
t t
[ (c0r-)+ [ patras ol TT 1+ autmlar
2 J r<m<t

t

= 3 e (e -em)+ [ puds)lanl T 1+ outm)

t*<1; <t T <m<t

<hg for t>t" (i#k;i,k=1,...,n)

Tj

hold, where t. and hy, € Ry (i # k; i,k =1,...,n). Let, moreover, the matriz H = (hix)}';.—,, where
hii=0(i=1,...,n), be such that condition (1.3.31) holds. Then the pair (P,G) is &-asymptotically
stable.

Corollary 2.3.5. Let the components of the matriz-functions P = (pir);x—1 € Lioc(R4;R"*") and
G= (gik)gszl € Bioe(T; R™ ™) be such that conditions (2.3.11),

9ii(11)>0 or —1<gii(m)<exp(—1)—1 if m;>t* (i#k; i,k=1,...,n;1=1,2,...), (2.3.12)
|gir (7)) | < —hir, (14+In(1 + g45(7) )_1ln(1+gii(7'l)) ifr >t (i#k; i k=1,...,n; [=1,2,...) (2.3.13)

hold, where t, and hy, € Ry (i # k; i,k = 1,...,n) are such that the matric H = (h’ik)zn,kzlf
where hy; = 0 (i = 1,...,n), satisfies condition (1.3.31). Let, moreover, there exist a function
ap € ACV (R4, T;R), satisfying condition (1.3.41), such that

ao(t)aO(T)Smin{‘/tpii(s)der > In(1+gi(n))

<1<t

: (il,...,n)} for t > 71 >1t".

Then the pair (P,G) is asymptotically and also uniformly stable.
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Corollary 2.3.6. Let the components of the matriz-functions P = (pik)?,kzl € Lipe(R1;R™ ™) and
G = (9ik)i k=1 € Bioc(T;R" ") be such that conditions (2.3.11), (2.3.12) and (2.3.13) hold, where
te and hy, € Ry (i # k; i,k = 1,...,n) are such that the matric H = (hik)zk:b where hy; = 0

(i=1,...,n), satisfies condition (1.3.31). Let, moreover,
+o0 oo
/ no(s)ds + > _In(1 +n(n)) = —oo, (2.3.14)
0 1=1
where
no(t) = max {p;(t): i=1,...,n} (2.3.15)

n(n) =max{g;(n): i=1,....,n} (1=1,2,...).
Then the pair (P, Q) is asymptotically and also uniformly stable.
Theorem 2.3.10. Let the components of the matriz-functions P = (pir)}y—1 € Lioc(R4;R™ ™) and
G= (gik)ﬁkzl € Bioe(T; R™ ™) be such that conditions (2.3.9),

t

sup{ ()~ ) [putds + 3 mit+gutml)

T T <t

t>712>1t% &) #E(r); t,TER+\T} <—y (i=1,...,n) (2.3.16)
and

/texp (7(§(t)—§(T))+/tpii(5)d5) |pir(T)] H |1+ gii(m)| dr

<1<t

> exp(v@(t)—g(mw / pii<s>ds)|gik<m| [T 1+ gum)

t*<7; <t T <<t

<hy for t>t" (i #k;i,k=1,...,n)

i

hold, where v > 0, t. and hiy, € Ry (i # k; i,k =1,...,n). Let, moreover, the matriz H = (hik){;_1,
where hy; = 0 (i = 1,...,n), be such that condition (1.3.31) holds. Then the pair (P,G) is &-
asymptotically stable.

Corollary 2.3.7. Let the components of the matriz-functions P = (pir)j y—1 € Lioc(R;R" ™) and
G = (9ik)i1=1 € Bioc(T;R™™™ be such that conditions (2.3.11), (2.3.12), (2.3.13) and (2.3.16) hold,
where y > 0, t. and hy, € Ry (i #k; i,k =1,...,n). Let, moreover, the matriz H = (hix)}';—,, where
hii=0(i=1,...,n), be such that condition (1.3.31) holds. Then the pair (P,G) is &-asymptotically
stable.

Theorem 2.3.11. Let the matriz-functions P = (pir);1—; and Po = (poik)i =1 € Lioc(R4;R™™),
G = (9ik)} =1 and Go = (goir)} k=1 € Bioc(T; R™™™) be such that

Gl <1 (1 =1,2,...),
pii(t) < poii(t) and |pi(t)| < poix(t) for a.a. teRy (i#k; i,k=1,...,n), (2.3.17)
9ii(11) < goii(m) and |gix(7)| < goir(11) (i, k=1,...,n;1=1,2,...).
Let, moreover, the pair (Py, Go) be stable (uniformly stable, asymptotically stable or -exponentially

asymptotically stable). Then the pair (P, G;) will be stable (uniformly stable, asymptotically stable or
&-exponentially asymptotically stable), as well.



124 Malkhaz Ashordia

Theorem 2.3.12. Let a;, €R (i, k=1,...,n), ;€ Bioe(T; R) (i=1,...,n), and p; € AC1oc(Ry;Ry)
(i,...,n) be nondecreasing functions such that conditions (2.3.14) and

a;ivi(m) >0 or —1<ayuvi(n) <exp(—1)—1 (i=1,...,n; 1=1,2,...)
hold, where
no(t) = min {oipi(t) 1 i=1,...,n},
n(n) = max {a;vi(n): i=1,...,n} (I=1,2,...).

Then conditions (1.3.31) and (1.3.47), where the constant matriz H is defined by (1.3.48), are sufficient
for the pair (P,G), where P(t) = (aur pi(t));y=y and G(n) = (qirvi(11))} =1, to be asymptotically
stable; and if conditions (1.3.49),

n
Z Cklez Tl <|1 aii”i(ﬁ)' or

I=1; 1#i
Z apvi(m) < |1 — ageve(m)| (Gk=1,...,n; 1=1,2,...),
I=1; I£k
auvi(m) <1 for (i=1,...,n;1=1,2,...)
and

n —1 )
((5114; _aikl/i(Tl))i,k):l) Z Onxn (.7 = 1727 l= 1a27)
hold, then conditions (1.3.31) and (1.3.47) are necessary, as well.

Corollary 2.3.8. Let the pair (Q,W) be uniformly stable, where Q € Lijoe(Ry;R™™ ™) and W €
Bioe(T; R™ ™) are such that conditions (2.3.4) and

H/|Y DI|P() — QM) + €' ()1, |dtH+HZ|Y ()1 [(L + W ()™ (G ) = W(m))|
+ f(ew(ndaﬁ(n»—l)w1<n>||<fn+w<n>>1<zn+c<n>>|H<+oo (2.3.18)
=1

hold, where Y (Y (0) = I,,) is the fundamental matriz of system (2.3.5),(2.3.6), and n is a positive
number. Then the pair (P, G) is £-exponentially asymptotically stable.

Remark 2.3.2. In Corollary 2.3.8, if the function £ : Ry — R is continuous, then

exp(nd2€(m)) —1=0.

So, the last term in the left-hand sides of conditions (2.3.18) vanishes.
Moreover, Corollary 2.3.8 is true for the limit case (7 = 0), too, if instead of the uniform stability
we require the -exponentially asymptotic stability of the matrix-function Q.

Corollary 2.3.9. Let Q € Ljpe(Ry;R™ ™) be a continuous matriz-function satisfying the Lappo—
Danilevskit condition. Let, moreover, there exist a nonnegative number n such that

H/exp( /Q )ar ) [P6) - Q0+ 1€ ()1 | + (—ZQ(r)dT)|G(n>|H<+oo,

where £ : Ry — Ry is a continuous nondecreasing function satisfying condition (1.3.4). Then

(a) the uniform stability of the matriz-function Q guarantees the §-exponentially asymptotic stability
of the pair (P,G) if n > 0;
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(b) the &-exponentially asymptotic stability of the matriz-function Q guarantees the &-exponentially
asymptotic stability of the pair (P,G) if n = 0.

Corollary 2.3.10. Let there exist a nonnegative number n such that the components of the matriz-
functions P = (pij)}'j—1 € Lioc(R1;R™™) and G = (gij)7 ;=1 € Bioc(T;R"") satisfy the conditions
(2.3.9),

t

/pii(s) ds+ Y In|l+giu(n)]

T <t

< =n(se(E)(t) = 5:(8)(7)) — u(€(t) = &(7)) for t>7>0 (i=1,...,n),

T

3 lyi (@) (exp(ndaé(m) — 1) < +o00 (j=1,2i=1,...,n)

and
+o0
/ ly; ()] pak (8)| dE+ D exp(nda&(m))gin(m1) - (1 + gia(r)) ™' < 400 (i £ k; ik =1,...,n),

=1

where p=014fn >0 and >0 if n=0,

t
yi(t) = exp (/(p”(s) +né'(s)) ds) . H I+gu(m) (i=1,...,n).
Fd 0<m <t
Then the pair (P,G) is {-exponentially asymptotically stable.
Remark 2.3.3. In Corollary 2.3.10, if the condition
gik(n)(1+gii(7’l))71 >0 (i#£ki,k=1,....,n; 1 =1,2,...)

holds together with condition (2.3.9), then without loss of generality we can assume that n > 0 and
w=0.

Theorem 2.3.13. Let the matriz-functions P € Lioe(R4; R™*™) and G € Bioe(T; R™*™) be such that

P(t) = aj(t) By foraa. teR, (2.3.19)
k=1
and
m
I, + G(1) = exp (Z ag(n+) — Oék(Tl))Bk) (1=12,...), (2.3.20)
k=1
where a, € ACVioo(Ry, T;R) (k=1,...,m), and By € R™*" (k=1,...,m) are pairwise permutable
my
constant matrices. Let, moreover, (A — \g;)™ (i =1,...,mg; Y. ng; = n) be elementary divisors of
i=1

the matriz By, for every k € {1,...,m}. Then
(a) the pair (P,G) is stable if and only if condition (1.3.60) holds;
(b) the pair (P,G) is asymptotically stable if and only if condition (1.3.61) holds.

Corollary 2.3.11. Let conditions (2.3.19) and (2.3.20) hold, where By, € R"*™ (k= 1,...,m) are
pairwise permutable constant matrices, and ap € ACVio(Ry, T;R) (kK = 1,...,m) are such that
condition (1.3.62) holds. Then
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(a) the pair (P,G) is stable if and only if every eigenvalue of the matrices By (k = 1,...,m) has
the nonpositive real part; in addition, every elementary divisor corresponding to the eigenvalue
with the zero real part is simple;

(b) the pair (P,G) is asymptotically stable if and only if every eigenvalue of the matrices By (k =
1,...,m) has the negative real part.

By v(t) we denote a number of points 7, (I = 1,2,...) belonging to [0,¢[ for every ¢t € Ry. It is
evident that v(t) is finite for every ¢t € R..

Corollary 2.3.12. Let the matriz-functions P € Lioe(R4; R™ ™) and G € Bioe(T; R™*™) be such that
P(t)=d' (t)Py for a.a. t € Ry

and

G(n) = Go if G(1) # Opxn (1 =1,2,...),

where a € ACV,.(R1;R) is a function satisfying condition (1.3.63), and Py and Gy € R™ ™ are
permutable constant matrices. Let, moreover, there exist a number 8 € Ry such that condition
(1.3.64) holds. Then

(a) the pair (P,G) is stable if and only if every eigenvalue of the matrizr A = Py + B1n(I, + Go) has
the nonpositive real part; in addition, every elementary divisor corresponding to the eigenvalue
with the zero real part is simple;

(b) the pair (P, Q) is asymptotically stable if and only if every eigenvalue of the matriz A has the
negative real part.

If a(t) = t, then Corollary 2.3.12 has the following form.

Corollary 2.3.13. Let P(t) = Py and G(1;) = Go (I = 1,2,...), where Py and Gy are permutable
constant matrices. Let, moreover, there exist a number 5 € Ry such that

limsup |v(t) — Bt] < +oo.

t—s+00
Then the conclusion of Corollary 2.3.12 is true.
Corollary 2.3.14. Let Py and Go be constant n X n-matrices circumscribed in Corollary 2.3.13, and
Ti41 — 7 = 0 = constant (1=1,2,...).
Then the conclusion of Corollary 2.3.12, where A = Py + 0~ In(I,, + Gy), is true.

Corollary 2.3.15. Let the matriz-functions P € Lijoe(Ry; R™ ™) and G € Bioo(T;R™ ™) be such that

P(t) = Cdiag(Ji(t), ..., Jm(t))C™" for t € Ry

and
I, + G(r) = Cdiag (exp(Ju), ..., exp(Jm))C™" (1=1,2,...),
ng—1 m
where C € C" "™ s a nonsingular complex matriz, Ji(t) = kz ()2}, (k=1,...,m; Y np=n),
i=0 k=1

nEg—1 .
Ju = d2aki(7—l)Z}1k (k:L . ,m;l:l,2,. ..), akiGACVlOC(R+7T;R) (kzl, ceompi=1,... ,ng—
=0

1), and ago s a complex-valued function such that Re(ayg) and Im(ayg) EACV 0. (R4, T;Ry). Then
(a) the pair (P, Q) is stable if and only if condition (1.3.65) holds;

(b) the pair (P,G) is asymptotically stable if and only if condition (1.3.66) holds.
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We use the following notation.

Let a € ACVioc(Ry, T5R) and g € Bjoe(T;R) be nondecreasing functions and H = (hix)}'—;
€ Lipe(Ry; R™™ ™). Then by Q(H; «, g) we denote a set of all pairs (P, G) consisting of matrix-functions
P = (i)} =1 € Lioc(R1;R™™) and G = (gik )} =1 € Bioc(T; R"*") such that

pir(t) = o/ (h(t) foraa. te R N\T (k=1,...,n;1=1,2,...)

and

1 ¢ ,
gik('rl) + 5 Zgji(Tl)gjk(Tl) = g(Tl)hik(Tl) (Z,k = ]_7 B 1N | = 1,2, e )
j=1

Theorem 2.3.14. Let (P,G) € Q(H; «, g), inequality (1.3.70) hold for a.a. t € Rx \T and (z;)}—, €
R" and
1+2¢(n)p(m) >0 (1=1,2,...),

where p € Lioe(Ry;R). Let, moreover,

t

y(t) = exp (2/17(7')0/(T) d7'> H (14 2g9(m)p(m)) for t € Ry.
0

0<m<t
Then
(a) condition (1.3.72) guarantees the stability of the pair (P, G);
) condition (1.3.73) guarantees the uniform stability of the pair (P,G);
(c) condition (1.3.74) guarantees the asymptotic stability of the pair (P,G);
)

condition (1.3.75), where t* € Ry is some point, guarantees the &-exponentially asymptotic
stability of the pair (P,G);

(e) if the inequality opposite to inequality (1.3.70) and condition (1.3.76) hold, then the pair (P, Q)
is monstable.

Here in conditions (1.3.72)—(1.3.75) we take va(t) = y(t).
Corollary 2.3.16. Let (P,G) € Q(H;«,g) and

g(m) \(C(m)) > —% (1=1,2,...), (2.3.21)

where

C(t) = = (H(t) + H"(t)).
Then

(a) the condition

lim sup </o/(s) AO(C(S))ds—&-% > ln(1+2ng°(C(n)))> < +oo

t—=+oo o< <t

guarantees the stability of the pair (P,G);

(b) the condition

sup { /a’(s))\O(C(s))ds + % Z In(1+2gX°(C(n))): t>7> 0} < 400

T o< <t

guarantees the uniform stability of the pair (P,G);
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(c) the condition

t——+o00
o< <t

lim ( [areedst; ¥ 1“(1+2gz/\0(0(n)))> = —o0

guarantees the asymptotically stability of the pair (P,G);

(d) the condition

su # ta/S 0 s P 1 0 0 - .
p{g(t) — () (/ (s)A°(C(s)) ds + QO;Ql (1+29:2°(0( ,)))) :

t>1 >t (1) #5(7))} <0,

where t* € Ry is some point, guarantees the &-exponentially asymptotic stability of the pair

(P,G);

(e) if, instead of condition (2.3.21), the condition
1
g X(C(m)) < —5 (1=1,2,...)

hold and

lim sup (0/0/(5))\0(0(5)) ds + % Z In (1+ Zgl)\o(C(Tl))> = o0,

=400 0<m <t

then the pair (P, G) is nonstable.

2.3.2 The well-posedness of the initial problem
on infinite intervals and stability

In this section, we consider the question of the well-posedness of problem (2.2.1)—(2.2.3) for the case
I =Ry, Py(t) = P(t), qo(t) = q(t), Go(n) = G(n) 1 =1,2,...), up(m) = u(mn), 0 <7 < 79... and
lim 7, = +oo0.

l—+o0
Definition 2.3.2. Let Py € Lioe(L;R™™ ™), go € Lioe(I;R™), Go € B(T;R™ ™), ug € B(T;R™) and
nel(l=12..)mn# 7y if Il # m, be such that condition (2.2.9) holds. Then the initial
problem (2.2.1), (2.2.2); (2.2.3) is said to be well-posed if condition (2.2.10) holds for every sequences
P € Lipe(I;R™™) (K =1,2,...), qk € Lioe(I;R™) (k= 1,2,...); G € B(T;R"™™) (k =1,2,...),
up € B(T;R™) (k=1,2,...),tx (k=0,1,...) and ¢, (k=0,1,...) for which there exists a sequence
Hy € ACVyo (I, T;R™™ ™) (k = 0,1,...) such that conditions (1.2.5), (1.2.9) and (1.2.11) hold, and
conditions (1.2.12), (2.2.11) and (2.2.12) are fulfilled uniformly on I.

It is evident that the statements of Theorems 2.2.1, 2.2.1’ and Corollaries 2.2.2 imply that the
initial problem (2.2.1),(2.2.2); (2.2.3) is well-posed.

Definition 2.3.3. Let Py € Ljoe(I; R™™ ™), qo € Lioc(I;R™), Go € B(T;R™ "), ug € B(T;R"™)n and
el (l=1,2,...), 71 # 7 if | # m, be such that condition (2.2.9) holds. Then the initial problem
(2.2.1),(2.2.2); (2.2.3) is said to be weakly well-posed if condition (2.2.10) holds for every sequences
P € Lipe(I; R™™™) (k= 1,2,...), qx € Lioe(I;R™) (k= 1,2,...); G € B(T;R™™) (k =1,2,...),
up € B(T;R™™) (k = 1,2,...), tx (k = 0,1,...) and ¢ (k = 0,1,...) for which there exists a
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sequence Hy € ACV,.(I,T;R™*™) (k = 0,1,...) such that conditions (1.2.5), (1.2.9) and (1.2.11)
hold, and conditions (1.2.12),

t
lim \/ (Z,(Hy; Py, Gx) — Z.(Ho; Po, Go)) =0

k——+o0
Qs

and
t

kglfoo\/ (B.(Hy; i, u) — B.(Ho; qo, ug)) =0

*

hold uniformly on I, where the operators Z, and B, are defined by (2.2.13) and (2.2.14), respectively.

Theorem 2.3.15. Let P€ Lipo(R; R"™™), g€ Lipe(R1;R™), G € Bioo(T;R™™) and u € Bioe(T;R™)
be such that inequality (2.1.4) holds for everyl € {1,2,...},

v()(t)
lim sup ( / |P(7)| dr + Z | (1 + G(Tl>)_1GlH> < o0,
t

oo t<m<u(€)(t)

and
v(€)(t)

in ([ lalare 0+ Gl ) <o,

t——+o0
t<m <v(€)(t)
where the function v is defined by (1.3.22). Then the &-exponentially asymptotic stability of the pair
(P,G) guarantees the well-posedness of problem (2.2.1)—(2.2.3) on the R,.

Theorem 2.3.16. Let P € Ljoc(Ry;R™™) and G € Bioe(T;R™ ™) be such that inequality (2.1.4)
holds for everyl € {1,2,...}. Let, moreover,

+oo
q € L(R4;R™) and Z llur]| < +oc.
=1

Then uniform stability of the pair (P, Q) guarantees a weak well-posedness of problem (2.2.1)—(2.2.3)
on the R4.



Chapter 3

Systems of ordinary differential
equations

3.1 The well-posedness and stability of systems
of ordinary differential equations

3.1.1 The well-posedness of the initial problem

In this section, we use the results of Section 2.1 for the initial problem

d
di; = Py(t)z + qo(t) for te I, (3.1.1)

l‘(to) = Cop, (312)

where Py € Lioe(I;R™™ ™), qo € Lioe(I; R™), tg € I and ¢y € R™.
The results given below are the particular cases of analogous ones established for impulsive systems
if we assume that G(7;) = Opxn (I =1,2,...,7n) and the set of impulsive points is empty therein.
We formulate the results in a clear form because they differ from the earlier known results.
As above, let xo € ACjoc(L;R™) be a unique solution of the initial problem (3.1.1), (3.1.2).
Along with the initial problem (3.1.1), (3.1.2), consider the sequence of initial problems

Z—f = Pp(t)z + qx(t) for t €1, (3.1.1%)

z(tg) = ¢k, (3.1.2;)

(k = 172,...), where P, € LZOC(I;RTLX") (k = 1,2,...), qr € LlOC(I;Rn) (k‘ = 1,27...), tr € 1
(k=1,2,...)and ¢t e R™ (k=1,2,...).

Definition 3.1.1. We say that the sequence (P, qr;tr) (K =1,2,...) belongs to the set S(Py, qo;to)
if for every ¢y € R™ and a sequence ¢, € R™ (k = 1,2,...), satisfying condition (1.2.5), condition
(1.2.3) holds uniformly on I, where zj, is a unique solution of the initial problem (3.1.1), (3.1.2;) for
any sufficiently large k.

In this case, the operators B and Z have the forms:
t
B(X,Y)(t) = /X(T) Y'(r)dr for tel (3.1.3)

if X € Lige(I; R and Y € ACy,.(I; RX™), and

I(X,Y)(t) = / (X'(7) + X(F)Y' ()XY (r) dr for tel (3.1.4)

130
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if X,V € ACoc(I;R™ ™), det X (t) # 0, where a, is some fixed point from I.
Due to (2.2.8), it is evident that

B,(X,Y)(t) =B(X,Y)(t) and Z,(X,Y)(t) = Z(X,Y)(¢). (3.1.5)
Note that if X (¢) = I,,, then
B(I,,Y)(t) =Z(I,,Y)(#) =Y (t) — Y(a.).

Theorem 3.1.1. Let Py € L(I;R™ ™) qo € L(I;R™), to € I and a sequence of points t, € I
(k=1,2,...) be such that condition (1.2.9) holds. Then

((Pr, g tr)) pz1 € S(Po, 05 to) (3.1.6)

if and only if there exists a sequence of matriz-functions Hy € ACjo.(I; R™ ™) (k= 0,1,...) such that
condition (1.2.11) holds and conditions (1.2.12),

. t
lim {“DZ(Hk,Pk;HO,PO)(T)]tk

’(1—1—’g/(DI(Hk,Pk;HO,PO))D} =0 (3.1.7)

k—+o00
and .
kggloo { HDB(Hka Py; Ho, Po)(7)|:k H <1 + ’ \/ (Dz(Hy, Py; Ho, Py)) D} =0 (3.1.8)
tr

hold uniformly on I, where the operators Dz and Dg are defined, respectively, analogously to (0.0.5)
and (0.0.4).

Note that, in Theorem 3.1.1, due to (3.1.3), (3.1.4) and (3.1.5), we have

IHk,Pk E/ +Hk )Pk(T))Hk_l(T)dT (k;:O,l,...)

and

Hka /Hk Qk dT (kio, 7)

Theorem 3.1.2. Let Py € L(I;R™™™), qo € L(I;R™), to € I, Py € Lioe(I;R™™™) (k = 1,2,...),
gk € Lioc(I;R™) (k= 1,2,...), ty € I (k=1,2,...) and ¢ € R™ (k = 1,2,...) be such that

conditions (1.2.5), (1.2.9),
t
lim  sup {H /(Pk(r) - (1 + ‘ / |1Pu(r) — Po(7)]| dr )} 0
k=400 ter, t£ty,
123
lim  sup {H/qk —qo(7))dr <1+’/|Pk )||d7’>}:0
k=400 ter, t£ty,
hold. Then condition (1.2.17) holds, where xy, is the unique solution of the initial problem (3.1.1y),
(3.1.2%) for any natural k.

and

Theorem 3.1.3. Let Pj € L(I;R™*"™), ¢4 € L(I;R"), ¢f € R™ and x{ be a unique solution of the
initial problem

dzr

= =Py (t)x+q5(t) for tel,

x(tg) = ¢fy.
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Let, moreover, the sequences Py € Lioe([; R™™) (k=1,2,...), Hy € ACjoc(I;R™™) (k=0,1,...),
G € Lige(I;R™) (k= 1,2,...), hp € AC1oe(I;R™) (k =0,1,...), ty € I (k=1,2,...) and ¢} € R
(k=1,2,...) be such that conditions (1.2.9),

lim ¢ =cj
k—+o00 k 0

(1+\/||Pk B (7l dr

lim  sup {H/Pk — Py(r))dr

k=00 e, t£ty,

>} =0 (3.1.9)
(1+’/||Pk P dr )} —0

¢ = Holtw)ew + he(tn),  PL(t) = (HL(®) + H(OP(OH (1) (k=1,2,...),
G () = Wy(t) — P (Ohi(t) + He(®)au(t) (k=1,2,...).

Then condition (1.2.27) holds, where x, is a unique solution of the initial problem (3.1.1;), (3.1.2x)
for any natural k.

and

lim  sup {H/qk —qy(7))dr
k—+o00 e, t£t,

hold, where

Remark 3.1.1. In Theorem 3.1.3, the vector-function xj (t) = H(t) zx(t) + hi(t) is a solution of the
problem

d

CT;U = Pi(t)x +qj(t) for tel,
z(ty) = cj,

for every natural k.

Corollary 3.1.1. Let Py € L(I;R™"™), qo € L(I;R"™), ¢g € R", tg € I and the sequences Py €
Lioe(L;R™™) (k = 1,2,...), qx € Lioe(I;R™) (k= 1,2,...), cg € R" (k= 1,2,...) and t;, € I
(k = 1,2,...) be such that conditions (1.2.9), (1.2.11) and (1.2.31) hold, and conditions (1.2.12),
(3.1.9) and

i { || [ (#u0)0u(0) = Horhalr) - Br)ghi0) + P(rhon(o)) ar

Gm
(1+’/||Pk )||dr)}:0

hold uniformly on I, where Hy, € AC “Goc (I R™ ™) (B =0,1,...), pr € ACjoe(I;R™) (K =1,2,...),
Pr(t) = (H.(t) + Hk( )Pe()H, ' (t) (k= 0,1,...). Then condition (1.2.33) holds uniformly on I,
where xy, is a unique solution of the initial problem (2.2.1y),(2.2.3;) for any natural k.

Below, as in Section 2.1, we give some sufficient conditions guaranteeing inclusion (3.1.6). To
this end, we present a theorem, different from Theorem 3.1.1, concerning the necessary and sufficient
conditions for inclusion (3.1.6), as well as corresponding propositions.

Theorem 3.1.1'. Let Py € L(I;R™"*™), qo € L(I;R™), ¢cg € R™, tg € I and the sequence of points
trp eI (k=1,2,...) be such that condition (1.2.9) is satisfied. Then inclusion (3.1.6) holds if and only
if there exists a sequence of matriz-functions Hy, € ACjoe(I;R™™™) (k= 0,1,...) such that conditions
(1.2.11) and

lim sup / () + Hy() Pe(t)]] dt < +00 (3.1.10)

k—+4o0
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hold, and conditions (1.2.12),

kEIJ?oo/Hk(T)Pk(T) dr = /HO(T)PO(T) dr (3.1.11)
and
kggr_loo/Hk(T)qk(T) dr = /HO(T)qO(T) dr (3.1.12)

hold uniformly on I.

Theorem 3.1.1". Let Py € L(I;R™™™), qo € L(I;R"), tg € I and the sequence t, € I (k=1,2,...)
be such that condition (1.2.9) is satisfied. Then inclusion (3.1.6) holds if and only if conditions (1.2.37)
and

lim X, (Ma(r)dr = / Xy

k—>+oo

hold uniformly on I, where Xy is the fundamental matrixz of the homogeneous system

Z—CE =P(t)x for tel (3.1.1x0)

for every k € {0,1,...}.

Theorem 3.1.2'. Let Py € L(I;R™™ "), qo € L(I;R™), ¢cg € R, ty € I, the sequences P, €
Lige(I;R™™) (K = 1,2,...), gr € Lioe(IR™) (k= 1,2,...), ty € I (k=1,2,...) and ¢, € R"
(k=1,2,...) be such that conditions (1.2.5), (1.2.9) a d

limsup/ | Pk (t)] dt < 400 (3.1.13)
k—4o00
hold, and the conditions
t t
lim /Pk(’]’) dr = /PO(T) dr (3.1.14)
k— 400
to
and
t t
lim /qk(T) dr = /qo(T) dr (3.1.15)
k—4o0c0
tr to

hold uniformly on I. Then condition (1.2.3) holds uniformly on I, where x is a unique solution of
the initial problem (3.1.1), (3.1.2) for any natural k.

Corollary 3.1.2. Let Py € L(I;R™ ™), qo € L(I;R™), to € I, the sequences Py € Ljo.(I;R™ ™)
(k=1,2,...), qr € Lioc(I; R") (k =1,2,...) and ty, € I (k=1,2,...) be such that conditions (1.2.9),
(1.2.11) and (3.1.10) hold, and conditions (1.2.12), (3.1.11) and (3.1.12) hold uniformly on I, where
Hy € ACoc(I;R™™) (k=0,1,...). Then inclusion (3.1.6) is valid.

Corollary 3.1.3. Let Py € L(I;R™*"), qo € L(I;R™), tg € I, the sequences Py € Lioo(I;R™*™)
(k=1,2,...), qk € Lioc(I;R™) (k=1,2,...) and ty, € I (k=1,2,...) be such that conditions (1.2.9)
and (3.1.10) hold, and conditions (1.2.12),

t t

lim Hy(7)Py(7)dr = /P* (1) dr
k—4o00
tk tO
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and

k—+o0

¢ ¢
lim /Hk(r)qk(T) dr = /q*(T) dr
tr to
hold uniformly on I, where Ho(t) = I,, Hp € ACjoe(I;R™™™) (k = 1,2,...), P* € L(I;R™"),
q* € L(I;R™). Then
((Pr, gis t))izr € S(Fg 5 4o5 to),
where Pi(t) = Py(t) — P*(t) and ¢(t) = qo(t) — ¢*(¢).

Corollary 3.1.4. Let Py € L(I;R™*"), qo € L(I;R"™), ty € I, the sequences Py € Lio.(I;R™*™)
(k =1,2,...), qx € Lioe(;R™) (k= 1,2,...) and t, € I (k = 1,2,...) be such that condition
(1.2.9) hold and let there exist a natural number m and the matriz-functions B; € ACo.(I; R™™™)
(j=1,...,m—1) such that condition

k—+o0

tinsup [ [[Hf 1 (8) + Hna (O Pe(0)] de < +oc
I

holds, and conditions

lim (H,’vj_l(r) + Hy j_1(7)Py(7))dr = Bj(t) — Bj(to) (j=1,...,m—1),

k—+oc0
23

t

t
Jin [, 1) + Hns (VP dr = [ Po(r)dr
tr to

and

k——+o0

lim /tHkm_l(T)qk(T) dr = /tqo(T) dr

to

hold uniformly on I, where

Hyo(t) = In,
Hy;(t) = <In */(Hz'cj_l(T)Jerj—l(T)Pk(T)) dr + B;(t) Bj(tk)>ij—1(t)
k fortel (j=1,....m—1;k=1,2,...).

Then inclusion (3.1.6) is valid.

If m = 1, then Corollary 3.1.4 coincides with Theorem 3.1.2’.
If m = 2, then Corollary 3.1.4 has the following form.

Corollary 3.1.4'. Let Py € L(I;R™ ™), qo € L(I;R™), ty € I, the sequences Py € Ljoc(I;R™ ™)
(k=1,2,...), qk € Lioc(I;R™) (k=1,2,...) and ty, € I (k=1,2,...) be such that conditions (1.2.9)
and (3.1.10) hold, and the conditions

k— 400

lim /Pk(T) dr = B(t) — B(to),

k—+o00

lim j Hy,(7)Py(7) dr = j Py(r)dr
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and

lim / Hy(T)qi(7) dr = /t qo(7)dr

k— 400
ty to

hold uniformly on I, where B € AC,c(I; R™"*™) and
t
Hi(t) =1, — /Pk(’l') dr+ B(t) — B(tg) for tel (k=1,2,...).
ty
Then inclusion (3.1.6) is valid.

Corollary 3.1.5. Let Py € L(I;R™"™), qo € L(I;R™), and ty, € I (k =1,2,...) be such that the
condition (1.2.9) hold. Then inclusion (3.1.6) holds if and only if there exist the matriz-functions
Qr € Lipe(I; R™™™) (k=0,1,...) such that

k— 400

limsup/ 1Ps(t) — Qu(t)] dt < +oc (3.1.16)
I

and the conditions

lim 7, '(t) = Z,'(t),

koo
/tzkl(T) Py(r)dr = /tzol(T)Po(T) dr
and k IO
/t Z N (r) ai(7) dr = /t Zg ' (T)qo(7) dr

hold uniformly on I, where Zy (Zy(tx) = I,) is the fundamental matriz of the homogeneous system

dr _ Qr(t)x for a.a. te€l
dt
for every k € {0,1...}.

Corollary 3.1.6. Let Py € L(I;R™™™), qo € L(I;R"), Px € Lioe(L;R™™™) (k = 1,2,...), qx €
Lioe(I;R™) (k= 1,2,...), and t,, € I (k = 1,2,...) be such that condition (1.2.9) is satisfied.
Let, moreover, there exist matriz-functions Qy € Lioe(I;R™™ ™) (k= 0,1,...), satisfying the Lappo—
Danilevskit condition, such that condition (3.1.16) hold, and the conditions

k—+o00

lim /tQk(T)dTZ/tQO(T) dr,

to

tr tr 0 ty
and
t T t T
kgrfoo exp ( — /Qk(s) ds) qr(T)dr = /exp (— /Qo(s) ds> qo(T)dr
tr tr to th

hold uniformly on I. Then inclusion (3.1.6) is valid.
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Remark 3.1.2. In Corollaries 3.1.5 and 3.1.6, if Qx(t) = Pi(t) for any sufficiently large k, then
condition (3.1.16) vanishes.

Corollary 3.1.7. Let Py € L(I;R™"™™), qo € L(I;R™), to € I, Py € Lioo(I;R™™) (k = 1,2,...),
Gk € Lioc(I;R™) (k=1,2,...), and t,, € I (k =1,2,...) be such that condition (1.2.9) is satisfied.
Let, moreover, the matriz-functions P, (k = 0,1,...) satisfy the Lappo—Danilevskii condition and
conditions (2.2.30), (2.2.32) and (2.2.33) hold uniformly on I. Then inclusion (3.1.6) is valid.

Corollary 3.1.8. Let Py = (poij)ij—y € L(LR™™), qo = (qoi)f~y € L(I;R"™), tg € I, P =
(Prij)Tjm1 € Lioc(l;R™™) (k = 1,2,...), qr = (qri)l=y € Lioe(I;R™) (k= 1,2,...) and t € I
(k=1,2,...) be such that conditions (1.2.9) and

lim sup Z /|szg )| dt < +oo

k—4o0

i,7=1,1#7 T
hold, and conditions
t t
lim /pkii (7’) dr = /pOii(T) d7’7
k—+o00
T to

lim </tzkﬁ(7)pk”(7') d7> = /tin%(T)pOij(T) dr i#j;4,j=1,...,n)

k—+oco
tr to

and

kﬁlfoo(/tzk“( Jas(r)r =/tzo“< Jao (1) dr (i =1,....n)

tr 123
hold uniformly on I, where z;; is a unique solution of the initial problem

dz
dt

Then inclusion (3.1.6) is valid.

=prii(t), z(tx)=1 (i=1,...,n; k=1,2,...).

Remark 3.1.3. In Theorem 3.1.3 and Corollaries 3.1.1,3.1.2, without loss of generality, we can
assume that Hy(t) = I,.

Remark 3.1.4. Theorem 3.1.2" has been obtained in earlier works (see [34,40]). In this theorem,
condition (3.1.13) is essential and it cannot be neglected. So, if condition (3.1.13) is not satisfied, the
statement of the theorem is not true. In this connection, we give an example from [34,37,40, 46].

Example 3.1.1. Let I = [0,27],n=1,c, =co =0 (k=1,2,...), Py(t) = q(t) = 0, P(t) = k cos k*t
(k=1,2,...), qp(t) = —ksink?t (k=1,2,...). Then

t
2 1.2
xo(t) =0, ) = k;/exp Mnk bm: 7—)sinkQT (k=1,2,...)
0

and ;

tim (ai(t) - 5) =0
uniformly on [0,7]. In this case, all conditions of Theorem 3.1.2', except condition (3.1.13), are
fulfilled. On the other hand, this case is consistent with Corollary 3.1.3, since all its conditions are

satisfied for P*(t) =0, ¢*(t) = 1/2 and

sin k2t
Hk(t)zexp(— ) (k=1,2,...),
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and the function z*(t) = ¢/2 is the solution of the initial problem
dr _

dt

Below, based on the above example, we construct a homogeneous system (n = 2) for which condi-
tion (3.1.13) is violated, but the situation analogous to the given above is explained in Theorem 3.1.1".

Example 3.1.2. Let I = [0,27], n = 2,

1 , .
1 kcosk“t O
cp = (;) , Co = <0) , Pi(t) = (-ksink2t O))’ Py(t) = (_; 0) 7

qr(t) = qo(t) = (8) (k=1,2,...).

P*(t)x +¢*(t), =(0)=0.

Then zo(t) = <_1t
2

of Theorem 3.1.1" are satisfied for Hy(t) = Yy(t) Y, '(t), where Y}, Y3(0) = I, is the fundamental
matrix of system (3.1.1x9) for every k € {0,1,...}.

). In this case, condition (3.1.13) does not hold, as well. But all the conditions

Remark 3.1.5. In Theorem 3.1.1’, as opposed to Theorem 3.1.2, it was not assumed that equalities
(3.1.14) and (3.1.15) hold uniformly on I. Below we will give an example of a sequence of the initial
problems for which inclusion (3.1.6) holds but condition (3.1.14) is not fulfilled uniformly on 1.

Example 3.1.3. Let I = [0,27], n = 2, and for every natural k and ¢ € [0, 2],

ro=(g 29). mio=(5 o). w0 =a0=u6=(0):

(\/E—l— f/ﬁ)sinkt for t € Iy,
VEsin kt for ¢ € [0, 27 \ Iy;

Pr1(t)

=g () - (1= ag(t)" for t e I,
Pra(t) = {0 ' for t € [0,27] \ Ii;
Br(t) = [ (L= k(7)) - pra(7) dr
/
) = 47r*1(\‘7E+ 1)7lsinkt for t € I,
=0 for ¢ € [0,2] \ I,

k—1
where I}, = | ]2mk=m, (2m + 1)k~ x[. Let, moreover, Yj(t), Y5 (0) = I,,, be a fundamental matrix
m=0
of system (3.1.1y0) for every k € {0,1,...}.
It can easily be shown that for every natural k& we have

Yo(t) =1, Yi(t) = ((1) 1 fko(zi)(t)) for t € [0, 2]

and
lim Yk(t) = Yo(t)

k—4o0c0
uniformly on [0, 27], since

lim [l = lim [l = 0.
k—+oco k—+oco

Note that
27

lim /pkl(t) dt =2 lim Vk=+o0
k— 400 k— 400
0
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and, in addition,
27

lim [ pei(t)dt =2 lim Vk = +oo0.
k—+o0 k—+oo
0

Therefore, the conditions of Theorem 3.1.2’ are not satisfied.
On the other hand, if we assume that

Hy(t) =Y, '(t) for t€0,2n] (k=1,2,...),

then the conditions of Theorems 3.1.1" are fulfilled.

3.1.2 The stability in the Liapunov sense

In this section, we use the results of Section 2.1 for the stability in the Liapunov sense of the ordinary
differential system (2.3.1), where P € Ljoe(Ry; R™ ™) and q € Ljo.(R4; R™).

The results of this section are the particular cases of the corresponding results of Section 2.1 if we
assume that G(I) = Opxy, and ul) =0 for [ € {1,2,... }.

Mainly, we consider the case P ¢ L(R;;R™*"™) and assume that the function £ that appears in
Section 1.3 is nondecreasing continuous and belongs to ACj,.(R1;Ry). So we have the following
definition.

In this subsection, we will assume that £, in addition, is from ACj,.(|R1;R4).

Definition 3.1.2. The matrix-function P € Lj,.(R4; R™*"™) is said to be stable in one or other sense
if the zero solution of the homogeneous system (2.3.1p) is stable in the same sense.

Theorem 3.1.4. The matriz-function P € Ljoe(Ry;R™ ™) is stable if and only if there exists a
nonsingular matriz-function H € ACjoe(Ry; R™ ™) such that conditions (1.3.8) and

+oo
/ |H'(t) + H(t)P(t)| dt < o0 (3.1.17)
0

hold.

Theorem 3.1.5. The matriz-function P € Lioe(Ry; R™ ™) is uniformly stable if and only if there
exists a nonsingular matriz-function H € ACjoc(Ry; R™ ™) such that conditions (1.3.10) and (3.1.17)
hold.

Theorem 3.1.6. The matriz-function P € Lj,.(Ry : R™™™) is asymptotically stable if and only if

there exists a nonsingular matriz-function H € ACoe(Ry; R™ ™) such that conditions (1.3.11) and
(3.1.17) hold.

Theorem 3.1.7. The matriz-function P € Ljoc(Ro; R™ ™) is £-exponentially asymptotically stable if
and only if there exists a nonsingular H € ACc(Ry;R™™ ™) such that conditions (1.3.12) and

+oo

/kme%wmmﬁHJMMwmm<+w
0

hold.
Corollary 3.1.9. Let a matriz-function Q € Lijoe(Ry; R™*™) be such that

+o0
[ e - Qudi < 4o
0

where Y (Y (0) = I,) is the fundamental matriz of system (2.3.5). Then the stability in one or another
sense of the matriz-function @ guarantees the stability of the matriz-function P in the same sense.
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Theorem 3.1.8. Let a matriz-function Py € Lioe(Ry; R™ ™) be uniformly stable. Let, moreover, the
matriz-function P € Ljpe(Ry; R™ ™) be such that

+oo

/ H (H'(t)+ H(t)P(t) — Po(t)H(t))H—l(t)H dt < +o0, (3.1.18)

where H € AC,e(Ry;R™ ™) is a nonsingular matriz-function satisfying condition (1.3.10). Then the
matriz-function P is also uniformly stable.

Remark 3.1.6. In Theorem 3.1.8, if H(t) = I,,, then condition (3.1.18) has the form
+o0
/ |1P(t) — Po(t)] dt < +o0.
0

Theorem 3.1.9. Let a matriz-function Py € Lioc(Ry; R™*™) be £-exponentially asymptotically stable.
Let, moreover, the matriz-function P € Lijoe(R4; R™ ™) be such that

v(€)(t)
Jdin [ 1P - Rl dr =0,
0

where the function v(€)(t) is defined by (1.3.22). Then the matriz-function P is also {-exponentially
asymptotically stable.

Corollary 3.1.10. Let the components of the matriz-function P = (pi;)i';—1 € Lioc(Ry;R™™™) be

such that
o0
Jim / pir () dr =0 (i £ ks ik =1,....n) (3.1.19)

t——+oo

and
t

/pii(s) ds < —n(&(t) —&(7)) for t>72>0 (i=1,...,n),

T

where 7 > 0, and the function v(§)(t) is defined by (1.3.22). Then the matriaz-function P is &-
exponentially asymptotically stable.

Corollary 3.1.11. Let a matriz-function Py € Ljoe(Ry;R™™ ™) be E-exponentially asymptotically
stable, and the matriz-function P € Ljoe(R4; R™ ™) be such that

&(t)+1
Jim / |P(r) — Po(r)]| dr = 0.
t

Then the matriz-function P is also £-exponentially asymptotically stable.

Proposition 3.1.1. Let a matriz-function P € Ljoe(Ri;R™ ™) be E-exponentially asymptotically
stable and a vector-function q € Lioe(R4;R™) be such that

£(t)+1
i [ )l dr =0,

t—+4oo
t

where the function v(§)(t) is defined by (1.3.22). Then every solution x of system (3.1.1) satisfies
condition (1.3.6).
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Proposition 3.1.2. Let a matriz-function Py € Lioe(Ry;R™ ™) be &-exponentially asymptotically
stable. Let, moreover, the matriz-function P € Ljoc(Ry; R™ ™) be such that

t—+oo

1 B
lim §(t)o/||p(7)po(7)|d7o.

Then the matriz-function P is also £-exponentially asymptotically stable.

Theorem 3.1.10. Let the components of the matriz-function P = (pir)i y—1 € Lioc(R4; R™™™) satisfy
the conditions

t
SUP{/Pii(S)dSI t>t*}<+oo (i=1,...,n),
0

and

t t
/exp (/ Dii(8) ds) |pik(T)| < hge for t >t* (i #k; i,k=1,...,n),
t* T

where t* and hy, € Ry (i # k; i,k = 1,...,n). Let, moreover, the matrizx H = (hix)}';—,, where
hiyi=0 (i=1,...,n), be such that condition (1.3.31) holds. Then the matriz-function P is stable.

Theorem 3.1.11. Let the components of the matriz-function P = (pix)i =1 € Lioc(Ry;R™™™) be
such that conditions (3.1.19) and

t

Sup{/pii(s)d55 t>7'2t*}<+oo (i=1,...,n)

T

hold, where t* and hi, € Ry (i # k; i,k =1,...,n). Let, moreover, a matriz H = (hiy)}'y—,, where
hi=0(=1,...,n), be such that condition (1.3.31) holds. Then the matriz-function P is uniformly
stable.

Corollary 3.1.12. Let the components of the matriz-function P = (pir)y—1 € Lioc(R+;R"*™) be
such that condition (2.3.11) holds, where t. and h;x, € Ry (i # k; i,k =1,...,n). Let, moreover, the
matriz H = (hig)} 1, where hy; =0 (i = 1,...,n), be such that condition (1.3.31) holds. Then the
matriz-function P is uniformly stable.

Theorem 3.1.12. Let the components of the matriz-function P = (pik)i =1 € Lioc(R;R™ ™) be
such that the conditions

/pii(s) ds < =E(t)+&(t") for t>t* (i=1,...,n)

and

t t

/exp (f(t) —&(n)+ /p,»i(s) ds) |pie ()| dT < hig for t>t" (i#k; i,k=1,...,n)

t* T

hold, where t. and hy, € Ry (i # k; i,k = 1,...,n). Let, moreover, a matriv H = (hi)}_;,
where hy; =0 (i = 1,...,n), be such that condition (1.3.31) holds. Then the matriz-function P is
E-asymptotically stable.

Corollary 3.1.13. Let the components of the matriz-function P = (pir);y—1 € Lioc(R+;R"™*™) be
such that condition (2.3.11) holds, where t, and h;x € Ry (i # k; i,k =1,...,n), and let hy, € Ry
(i # k; i,k =1,...,n) be such that the matriv H = (hix)}—,, where h;; =0 (i = 1,...,n), satisfies
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condition (1.3.31). Let, moreover, there exists a function ag € ACi,.(R1;R) satisfying condition
(1.3.41) such that

ao(t)—ao(T)Smin{‘/tpii(s)ds : (izl,...,n)} for t>71 >t

Then the matriz-function P is asymptotically and also uniformly stable.

Corollary 3.1.14. Let the components of the matriz-function P = (pir)}y—, € Lioe(Ry; R™™) be
such that condition (2.3.11) holds, where t. and hy, € Ry (i # k; i,k =1,...,n), and let hjr, € Ry
(t#k;i,k=1,...,n) be such that the matric H = (h;)}._,, where hy; =0 (i = 1,...,n), satisfies
condition (1.3.31). Let, moreover, 7

“+oo

0/ no(s) ds = —oo,

where the function no(t) is defined by (2.3.15). Then the matriz-function P is asymptotically and also
uniformly stable.

Theorem 3.1.13. Let the components of the matriz-function P = (pi){ =1 € Lioc(R4;R"*") be
such that conditions (2.3.9),

t

Sup{(f(t)—f(T))_l(/pii(s) ds) Ct>T >R E(H) #E(T); t,T€R+}§—'y (i=1,...,n) (3.1.20)

T

and

t t

/exp (’y(f(t) &)+ / pii(s) ds) Ipik(T)|dT < hye for t>¢* (i £ k;i,k=1,...,n)

t* T

hold, where v > 0, t. and hiy, € Ry (i # k; i,k =1,...,n). Let, moreover, the matriz H = (hix){ —;,
where hy; =0 (i = 1,...,n), be such that condition (1.3.31) holds. Then the matriz-function P is
E-asymptotically stable.

Corollary 3.1.15. Let the components of the matriz-function P = (pir);y—1 € Lioc(R+;R™ ™) be
such that conditions (2.3.11) and (3.1.20) hold, where v > 0, t. and hy, € Ry (i #k; i,k=1,...,n).
Let, moreover, the matriz H = (hix)}'}—,, where hi; =0 (i =1,...,n), be such that condition (1.3.31)
hold. Then the matriz-function P is &-asymptotically stable.

Theorem 3.1.14. Let the matriz-functions P = (pik);szl € Lioe(Ry;R™™ ™) and Py = (pOik)?,kzl €
Lioe(Ry; R ™) be such that condition (2.3.17) holds. Let, moreover, the matriz-function Py be stable
(uniformly stable, asymptotically stable or £-exponentially asymptotically stable). Then the matriz-
function P is also stable (uniformly stable, asymptotically stable or &-exponentially asymptotically

stable).

Theorem 3.1.15. Let a;; € R (i,k=1,...,n) and p; € ACjoc(R4;R) (4,...,n) be nondecreasing

functions such that
—+oo

/ no(s) ds = —oo,
0
where
no(t) = min {Ja|pi(t) : i=1,...,n}.
Then conditions (1.3.31) and (1.3.47), where the constant matriz H is defined by (1.3.48), are sufficient
for the matriz-function P(t) = (aur pi(t))} 1=, to be asymptotically stable; and if condition (1.3.49)
holds, then conditions (1.3.31) and (1.3.47) are necessary, as well.
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Corollary 3.1.16. Let a matriz-function Q € Lioe(Ry; R™*™) be uniformly stable and the condition

H +/OO|Y1(t)|P(t)—Q(t)+ng'(t)In|dtH < 4o
0

hold, where Y (Y (0) = I,,) is the fundamental matriz of system (2.3.5), and n is a positive number.
Then the matriz-function P is &-exponentially asymptotically stable.

Remark 3.1.7. Corollary 3.1.16 is likewise true for the limit case (n = 0), if we require the -
exponentially asymptotically stability of the matrix-function @ instead of the uniform stability.

Corollary 3.1.17. Let Q € Ljoe(Ry; R™™ ™) be a continuous matriz-function satisfying the Lappo—
Danilevskii condition and

H +/006Xp <_ /tQ(T) dT) [P(t) — Q(t) + ng' (t) I dtH < o0, (3.1.21)
0 0

where 1 is a nonnegative number. Then:

(a) the uniform stability of the matriz-function Q guarantees -exponentially asymptotical stability
of the matrixz-function P if n > 0;

(b) &-exponentially asymptotical stability of the matriz-function Q guarantees &-exponentially asymp-
totical stability of the matriz-function P if n = 0.

Corollary 3.1.18. Let there exist a positive number n such that the components of the matriz-function
pP= (pz-k):-szl € Lipe(Ry; R™ ™) satisfy the conditions
pii(t) < —n&'(t) foraa teRy (i=1,...,n)

and
“+ o0
/|y;1<t>|\pik<t>|dt<+oo (ks ik =1,....n),
0

where
t

)= exp ([l + €6 ds) (= 1..om)
0

Then the matriz-function P is &-exponentially asymptotical stable.
Corollary 3.1.19. Let a matriz-function Q € Lioe(R; R™*™) be stable and

“+ o0

[ exp (= w@N)IP@) - Q)] de < +oc.

0
Then the matriz-function P is also stable.

Theorem 3.1.16. Let the matriz-function P € Lio.(Ry; R™ ™) be such that

P(t) = Za;(t) By, for a.a. t € Ry, (3.1.22)
k=1
where ap € AC,.(Ry;R) (k= 1,...,m) and By € R™"™ (k = 1,...,m) are pairwise permutable
my
constant matrices. Let, moreover, (A — \g;)™ (i =1,...,mg; Y. ng; = n) be elementary divisors of
i=1

the matriz By, for every k € {1,...,m}. Then:
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(a) the matriz-function P is stable if and only if condition (1.3.60) holds;
(b) the matriz-function P is asymptotically stable if and only if condition (1.3.61) holds.

Corollary 3.1.20. Let the matriz-function P € Ljo.(R4; R™ ™) be such that conditions (3.1.22) hold,
where By, € R™*" (k= 1,...,m) are pairwise permutable constant matrices, and ai € AC,.(Ry;R)
are such that condition (1.3.62) holds. Then:

(a) the matriz-function P is stable if and only if every eigenvalue of the matrices B (k=1,...,m)
has a nonpositive real part; in addition, every elementary divisor corresponding to the eigenvalue
with a zero real part is simple;

(b) the matriz-function P is asymptotically stable if and only if every eigenvalue of the matrices By,
(k=1,...,m) has a negative real part.

Theorem 3.1.17. Let P(t) = o'(t) H(t) and
(H(t)xxz) <p(t)(z*xx) for aa. t€Ry, zeR", (3.1.23)
where a € ACoc(Ry;R) is a nondecreasing function, H € Ljpe(R4; R™ ™) and p € Lioe(R;R). Let,

¢
moreover, y(t) = exp( [ p(T)/ (1) dr). Then:
0

condition (1.3.72) guarantees the stability of the matriz-function P;

(a
(

( )
b) condition (1.3.73) guarantees the uniform stability of the matriz-function P;
( )

)
)
(¢) condition (1.3.74) guarantees the asymptotical stability of the matrix-function P;
(d)

condition (1.3.75), where t* € Ry is some point, guarantees the &-exponentially asymptotical
stability of the matriz-function P;

(e) if the inequality, opposite to inequality (3.1.23), and condition (1.3.76) hold, then the matriz-
function P is nonstable.

Here in conditions (1.3.72)—(1.3.75) we take va(t) = v(t).

Corollary 3.1.21. Let P(t) = o/(t) H(t), where o € ACyo.(R1;R) is a nondecreasing function and
H e LZOC(R+;R7L><”), and let

(H(t)+ H"(t)).
Then:

(a) the condition

lim sup/o/(s))\o(C'(s)) ds < +00

t——+o0
guarantees the stability of the matriz-function P;

(b) the condition

sup { /a’(s)AO(C(s)) ds: t>1> 0} < 400

i
guarantees the uniform stability of the matrixz-function P;

(¢) the condition
t

tETm/a’(s)AO(C(S))ds = —00
0

guarantees the asymptotical stability of the matrixz-function P;
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(d) the condition

su __ to/s 9(C(s))ds >t T
ol it [ ERCENdss 1z dn £ e} <o,

2
where t* € Ry is some point, guarantees the &-exponentially asymptotical stability of the matrix-
function P;

(e) if

t

s ([ o/(90(Co) ds ) = +oc,

t——+oo

then the matriz-function P is nonstable.

3.1.3 The well-posedness of the initial problem on infinite intervals
and stability

In this section, we consider the question on the well-posedness of problem (3.1.1), (3.1.2) for the case
I=R;, Phy=P € Linc(R4; R™™™), g0 = q € Lipe(Ry;R™).

It is evident that the statements of Theorems 2.2.1, 2.2.1’ and Corollary 2.2.2 mean that the initial
problem (3.1.1), (3.1.2) is well-posed.

Definition 3.1.3. The initial problem (3.1.1), (3.1.2), where Py € Lioe(I; R™ ™), qo € Lioe(I;R™), is
said to be well-posed if inclusion (3.1.6) holds for every sequences Py € Lio.(I;R™*") (k =1,2,...),
Gk € Lioe(;R™™ ™) (K = 1,2,...), tx (k=0,1,...) and ¢, (k = 0,1,...) for which there exists a
sequence Hy € ACjoc(I;R™™) (k= 0,1,...) such that conditions (1.2.5), (1.2.9) and (1.2.11) hold,
and conditions (1.2.12), (3.1.7) and (3.1.8) are fulfilled uniformly on I.

Definition 3.1.4. The initial problem (3.1.1),(3.1.2), where Py € Ljoe(I;R"*™), qo € Lioc(I;R™),
is said to be weakly well-posed if condition (3.1.6) holds for every sequences P € Ljoc(I;R"*™)
(k=1,2,...), ¢k € Lioe(;R™™) (k =1,2,...), tx (k=0,1,...) and ¢, (k = 0,1,...) for which
there exists a sequence Hy € AC,.(I;R™*™) (k = 0,1,...) such that conditions (1.2.5), (1.2.9) and
(1.2.11) hold, and conditions (1.2.12),

lim Vi(Z(Hy,Py) - Z(Ho, Py) =0

k—+o00

and

lim VE(B(Hg,q.) — B(Ho,q) = 0,
k——+oo

where a € R is a fixed point, are fulfilled uniformly on I.
Theorem 3.1.18. Let P € Lipe(R;R™ ™) and q € Lipe(Ry;R™) be such that
v(§)(t)
lim sup / | P(7)| dr < +o0,
t——+o00
and
v(§)(t)
iim [ a(r)dr=o.

t—+o0
t

where the function v(§) is defined by (1.3.22). Then &-exponentially asymptotical stability of the
matriz-function P guarantees the well-posedness of problem (3.1.1),(3.1.2) on Ry.

Theorem 3.1.19. Let P € Ljpo(R;R™ ™) and
q € L(R4;R™).

Then uniform stability of the matriz-function P guarantees the weak well-posedness of problem (3.1.1),
(3.1.2) on Ry.
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3.2 The numerical solvability of the initial problem for
the linear systems of ordinary differential equations

In this section, we investigate the question of numerical solvability of the initial problem for the system
of ordinary differential equations

dr _ P(t)z+q(t), (3.2.1)

dt
[L‘(to) = Cop, (322)

where P and q are, respectively, real matrix- and vector-functions with the Lebesque integrable com-
ponents defined on a closed interval [a, ], to € [a,b], co € R™.

We assume that the absolutely continuous vector-function g : [a,b] — R™ is the unique solution
of problem (3.2.1), (3.2.2).

Along with problem (3.2.1),(3.2.2), we consider the difference scheme

Ay(k=1)= - (G (B)y () + Gom (k= Dy(k =1+ 9100 (F) 92 (B 1)) (B=L...m),  (3:21,)

Y(km) = Ym (3.2.2,,)
(m =1,2,...), where G}, (j = 1,2) and g;,» (j = 1,2) are, respectively, discrete real matrix- and
vector-functions acting from the set {1,...,m} into R"*" ~,, € R", and k,, € {0,1,...,m} for every

natural m.

In this section, we establish the effective necessary and sufficient and effective sufficient condi-
tions for the convergence of difference scheme (3.2.1,,),(3.2.2,,) (m = 1,2,...) to the solution xg
of problem (3.2.1),(3.2.2). Moreover, the stability criteria are obtained for the difference scheme
(3.2.1,,,), (3.2.2,0).

The question of the numerical solvability is classical. There are a lot of papers where the problem
has been investigated (see, for example, the references in the introduction, and the references therein).
In the earlier papers, the sufficient conditions for the convergence and stability of difference schemes
were established for the linear and nonlinear cases with continuous right sides. In addition, it should
be noted that the method of investigation of the convergence of difference schemes depended on the
type of the right-hand side of system (3.2.1).

Let

Tom = @, Thm = a+ kT and T =1Th—1m, Tem| (K=1,...,m;m=1,2,...),

where 7, =
Let vy, (m =1,2,...) be the functions defined by equalities

vm(®) = |

b—a
el

t—a
b—a

m} for t €a,b] (m=1,2,...).
It is evident that
U (Tkm) =k (k=0,...,m; m=1,2,...).
We introduce the operators py, : BV([a, b]; R™) = E(Ny,; R™) and gy, : B(Npm; R™) — BV([a, b]; R™)
defined as follows:
P () (k) = (T ) for x € BV([a,b;R™) (k=0,...,m)
and

y(k) for t =7 (E=0,...,m),

am(y)(t) = _ % (Gim(K)y(k) + gim (k) for t €)mh—1m,Tem|[ (E=0,...,m)

for every m € {1,2,...}.
We assume that P € L([a,b);R"*"), ¢ € L([a,b;R™); Gjm € E(Nm; R™*™) (j = 1,2), gjm €
E(N,,; R™). In addition, if necessary, we assume

G1m(0) = Gam(m) = Opxn, g1m(0) = gom(m) =0, (m=1,2,...).
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Definition 3.2.1. We say that a sequence (G1im, Gam, 91m, 92m; km) (m = 1,2,...) belongs to the
set CS(P, q,to) if for every ¢y € R™ and the sequence 7, € R" (m = 1,2,...), satisfying the condition

lim  ~, = co, (3.2.3)

m——+oo

the difference problem (3.2.1,,), (3.2.2,,) has a unique solution y,, € E(]vm;R”) for any sufficiently
large m and the condition

=0 (3.2.4)

hmoo [Ym — Pm(20)] Nom

m—+

holds.

The proofs of the results given below are based on the following concept.

We rewrite both problems (3.2.1),(3.2.2) and (3.2.1,,), (3.2.2,,) (m =1,2,...) as the initial prob-
lem for the systems of generalized ordinary differential equations considered in Section 1.1. So, the
continuous system (3.2.1) and the discrete systems (3.2.1,,) (m = 1,2,...) are really the equations of
the same type. Therefore, the convergence of the difference scheme (3.2.1,,), (3.2.2,,) (m =1,2,...)
to the solution of problem (3.2.1),(3.2.2) is equivalent to the question of the well-posedness of the
initial problem for the systems of the latter type. So, using the results of Section 1.1, we establish the
results presented in this section.

As above, it is evident that problem (3.2.1), (3.2.2) is equivalent to problem (1.2.1), (1.2.2), where

t

/P ydr,  fo(t) = /(T)dT.

a

Consider now the difference initial problem (3.2.1,,), (3.2.2,,,), where m € {1,2,...}.
Let the matrix-function A,, and the vector-function f,, be defined by the equalities

k
AM(a) = Am(TOm) = Opxn, Am Tkm = % (ZGlm + ZGQm(i — 1)),

(ZG1m )+ZG2m(i—1)> for ¢ €T 1msTem[ (k=1,...,m); (3.2.5)

1

m
1 k

fm(a):f(TOm): ns fm Tkm :E(Zglm +292m(l—1)),
i=1

(Zglm +Zggm(i—1)) for t €]m_1msThm| (k=1,....,m) (3.2.6)

1
m

for every natural m.
Due to (3.2.5) and (3.2.6), the matrix- and the vector functions have the following properties:

An(mm) = - Gin(), o (i) = - Gam(K) (E=1,...,m),
d; Ap(t) = Opsen for t € [a,b)\ {Tim, -, 7em} (G =1,2); (3.2.7)

B fn(Thom) = - g0 (K)s dafon(Tim) =~ gam(K) (k= 1,....,m),
d; fon(t) = 0, for t € [a,b]\ {Tim, .. Tom} (j = 1,2). (3.2.8)

Lemma 3.2.1. Let m be fized. Then the discrete vector-function y € E(Nm;R") is a solution of
problem (3.2.1,,),(3.2.2,,) if and only if the vector-function x = ¢ (y) € BV([a,b];R™) is a solution
of the generalized problem (1.2.1,,),(1.2.2,,), where the matriz-function A,, and the vector-function
fm are defined by (3.2.5) and (3.2.6), respectively, t,, = a + %kzm and ¢, = Y-
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Proof of Lemma 3.2.1. In view of equalities (0.0.11), (3.2.7) and (3.2.8), if we take into account the
fact that by the definition of the operator ¢, we have z(Tkm) = ¢m () (Tkm) = y(k) (k =1,...,m),
we can find

[ dAn(m)on(m) + Frim) = i)
= %Glm(k)mm('rkm) + %G%n(k’ - 1)$m(7—k71 m) + %glm(k) + %QZm(k - 1)
= — G (Wy(8) + - Gom (b = Dyl = 1)+ — g1 (K) + — gam (k1)
=Ay(k=1) = 2 (Tkm) — Tm(Th—1m) (k=1,...,m)
and

A1 (i) = T (Tm) = T (om =) = - G (R (K) + = g ()
= dlAm(Tkm) + dlfm(Tkm) (k = ]-7 e 7m);
1

doZm (Tk—1m) = Tm(Thk—1m+) = Tm (The—1m) = y(k) —y(k — 1) — %Glm(k)y(k) o gim (k)

1 1
= ooy Gom(k —Ly(k—1) + EQQm(k - 1)
= dQAm(Tk—l m) + d2fm(7-k:—1 m) (k =1,... 7m)

for every m € {1,2,...}.

Analogously, we show that if the vector-function z € BV([a, b]; R™) is a solution of the generalized
problem (1.2.1,,),(1.2.2,,) defined above, then the vector-function y(k) = p,,(x)(k) (k = 1,...,m)
will be a solution of the difference problem (3.2.1,,), (3.2.2,,) for every natural m.

So, we have shown that the convergence of the difference scheme is equivalent to the question of
the well-posedness of the initial problem (1.2.1),(1.2.2). Therefore, the inclusion

((GlmaGQmaglm;QQmakm))j;;;ol € CS(PaQa l) (329)

is equivalent to inclusion (1.2.10). O

Remark 3.2.1. In view of (3.2.5) and (3.2.6), we have A,,(t) = const and f,,(t) = const for
t €)Tk—1msTkm| (K =1,...,m; m =1,2,...), ie., they are the break matrix- and vector-functions.
Therefore, all solutions of system (1.2.1,,) (m = 1,2,...) have the same property. Such property
have also the matrix-functions H,, (m = 1,2,...) appearing in the results of Section 1.2 (see Re-
mark 1.2.10). So they are also break matrix-functions, and hence

H, (The—1m+) = Ho(Tem—) (k=0,...,m;m=1,2,...). (3.2.10)
Here we use some results of Chapter 2. For this, we give the following lemma.
Lemma 3.2.2. Let the matriz-functions A, € BV([a,b;R™*™) (m = 1,2,...) and the vector-
functions fn, € BV([a,b];R™) (m =1,2,...) be defined by (3.2.5) and (3.2.6), respectively, and Q, €
BV([a,b; R™*™) (m =1,2,...). Then there exist discrete matriz-functions Qim, Qam € E(Ny,; R"*™)
(m=1,2,...) such that

Ui ()
(Qun(B)G1m(k) + Qen(W)Gam(k = 1)) (m=1,2,...)  (3211)

1

3

1
m

B(Qm, Am)(t) =
k

and

VUm ( t)

! > (Qm(k)glm(k) + Qam (k) +)gam (k — 1)) (m=1,2,...). (3.2.12)
k=1

m

B(Qum, fm)(t) =
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Proof. By the definition of operator B(H, A), the integration-by-parts formulae and equalities (0.0.11)
we have

B(Qu: A / Q1) dd(r) = 3 dQu(r) diAn(r) + S dQ(r) dpAp(r)
a<t<t 0<r<t
Z Qm Tkm Tkm Z Qm Tkm+) dQAm(Tkm)
a<Tlm <t a<Tpm<t
Vm(t) Vrn(t) 1

= Z Qm(’rkm*) dl Tkm Z Qm Tkm+) dQAm(Tkm)

m

Z (Qm Thm—) d1Am (Tkm) Jer(Tk_ler)dgAm(Tk_lm)) for t€fa,b (m=1,2,...). (3.2.13)
k=1

Owing to (3.2.7), from (3.2.13) we get (3.2.11), where Qim(k) = Qm(Tkm—) and Qo (k) =
Qm(Th—1m~+) (m=1,2...). Analogously, using (3.2.8), we obtain presentation (3.2.12). O

Theorem 3.2.1. Let .
t —
lim =0 (3.2.14)

m—+oo M b—a

Then inclusion (3.2.9) holds if and only if there exist a matriz-function H € AC([a, b]; R™*™) and the
sequences of discrete matriz-functions Hjp, € E(N,;R™ ™) (j=1,2; m=1,2,...) such that

lim supi (HHgm(k:) — Him (k) + %Hlm(k)Glm(k)H
k=1

m——+00
1
+HH1m(k) — Ha(k = 1) + — Hup (k) G (k - 1)”) < +oo, (3.2.15)
inf {| det(H(t))| : ¢ € [a,b]} >0, (3.2.16)
and the conditions
ml_l}r_rgoo H,,(t) = H(t), (3.2.17)
1 VM(t) t
ml_lg_loQ - ; Hip (k) (Gim (k) + Gam(k — 1)) = /H(T)P(T) dr, (3.2.18)
and
V7n(t)

hold uniformly on [a,b], where the matriz-functions Hy, € BV([a,b; R™) (m =1,2,...) are defined by
equalities

H,,(t) = Him(k) for Tkc1m <t < Tiem, Hm(Tem) = Hom(k) (k=1,...,m; m=1,2,...).

Proof. To prove the theorem, we use Theorem 1.2.1'.
Let us show the sufficiency. It is evident that H,, (m = 1,2,...) are break matrix-functions that
are constants on the intervals |74 _1m, Tem[, respectively. Hence equalities (3.2.10) hold, and

di1H (Tkm) Hgm(k‘> —Hlm(k’), dgHm(Tkm) = Hlm(k—l-l) —Hgm(k) (k‘ =1,....m;m=1,2,.. )
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Owing to Lemma 3.2.2, Remark 3.2.1 and equalities (3.2.10), we get

(1)
B(H,,, Ap)(t) = % Z k) (Gim (k) + Gam(k — 1)) (m=1,2,...). (3.2.20)

and

B(Hpp, f)(t) = — Z Him (k) (gim (k) + gam(k — 1)) (m=1,2,...).

On the other hand, condition (1.2.34) is equivalent to condition (3.2.15). Thus, conditions (3.2.14),
(3.2.15), (3.2.16), (3.2.17), (3.2.18) and (3.2.19) guarantee the fulfilment of the condition of Theo-
rem 1.2.1".

Let us show the necessity. Inclusion (3.2.9) is equivalent to inclusion (1.2.10), where A,, and
fm (m = 1,2,...) are defined as above. Due to Theorem 1.2.1’, there exists a sequence H,, €
BV([a,b];R™) (m =1,2,...) satisfying the conditions given in the theorem. Let

Him(k) = Hy(Tem—), Hom (k) = Hp(Tem) (m=1,2,...).

According to Remark 3.2.1, equality (3.2.10) holds. Using Lemma 3.2.1, we can easily show that
the above-defined discrete matrix-functions Hy,, and Ha,, (m = 1,2,...) satisfy the condition of
Theorem 3.2.1. 0

Remark 3.2.2. The limit equality (3.2.17) holds uniformly on [a, b] if and only if

lim max {||Hym (k) — H®)|| : ¢t €]Th—1m,Tkm[, k=1,...,m} =0

m——+oo
and

hm max {||Ham (k) — H(Tem)|| : k=0,...,m} =0.

m*} oo
The limit equalities (3.2.18) and (3.2.19) hold uniformly on [a, b] if and only if the conditions

Tim

mlirilmmax{ ZH“” N (G1m (i) + Gom (i — 1)) — /H(T)P(T) dr : ll,...,m} = Onxn
and
ml_i)r_rgoomax{ ZHlm (g1m(7) + gam (i — 1)) — /H(T)q(T) dr: 1= 1,...,m} =0,

a

hold, respectively. Moreover, in Theorem 3.2.1, without loss of generality, we can assume that
H(t)=I,.

Let X, X (a) = I,,, be the fundamental matrix of the homogeneous system

dx
o =Pz (3.2.10)

and let Y, Y;,(0) = I,,, be the fundamental matrix of the homogeneous difference system

Ay(k—1) = %(Glm(k)y(k) + Gom(k—1)y(k—1)) (k=1,...,m) (3.2.22,)

for every natural m.
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Theorem 3.2.2. Let conditions (3.2.14) and
det (In + (1) - Gjm(k)) #0 (j=1,2,k=1,....,m; m=1,2,...) (3.2.23)

hold. Then inclusion (3.2.9) holds if and only if the conditions

im max {||Y,, ' (k) = X Y(rkm)||: k=10,....,m} =0 (3.2.24)
and
1 Tim
lim max 1 ZYﬁl(i)( (i) + (i—1)— | X Yr)g(r)dr: 1=1 mp =0, (3.2.25)
Mot oo m at m glm ng q . PRI} n L.
are satisfied.
Proof. The theorem is a realization of Theorem 1.2.1” for this case. O

Remark 3.2.3.

(a) By the evident equality (X ~1(¢)) = —X () P(t), the right-hand side of (3.2.18) equals I,, —
X~L(t)if H(t) = X ~1(t); moreover, in view of (1.1.17) and (3.2.20), the left-hand side of equality
(3.2.18) equals I,, — Y, 1(k) if Hy,,(k) =Y, (k) for every natural m. Hence condition (3.2.18)
is equivalent to (3.2.24);

(b) if
P(t)/P(T) dr = /P(T) dr P(t),
then 0 Z
X(t) = exp </P(T) d7>,
(c) by (3.2.23), we conclude that
Yo (k) = f[ (In - %Glm(i))il(ln + %sz(i - 1)) (k=1,....m) (3.2.26)

i=k
for every natural m;

(d) in Theorem 3.2.2, condition (3.2.15) is automatically satisfied, since Y, is the fundamental
matrix of the homogeneous system (3.2.22,,,) for every natural m.

Now we present a method of constructing discrete real matrix- and vector-functions G, (j = 1, 2)
and g;m, (j =1,2) (m =1,2,...), respectively, for which the conditions of Theorem 3.2.2 are satisfied.

To this end, we use the inductive method. Let &,, : N,,, =& R™"*™ and &, : Iglm - R*"(m=1,2,...)
be discrete matrix- and vector-functions, respectively, such that

Let
P = X(1im) +En(l) (1=0,...,m; m=1,2,...).

Let m be an arbitrary natural number and G1,,(1) and Gs,,(0) be such that

V(1) = Pip..
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According to (3.2.26) we get

1 =1 1
(=~ GinV) (Lo + — Con(0)) = Pin.
Therefore, G1,,, (1) and Ga,,(0) will be arbitrary matrices such that
Gim(1) = m(I, — Pl_vrlb) — Gan(0) Pl_"}.

Assume now that Gy, (k), Gam(k — 1) and Y, (k) (kK = 1,...,1 — 1) are constructed. For the
construction of Gy, (1) and Gap, (I — 1) we use the equalities

Yo (l) = Pim
" Yin(l) = (In L Glm(z))_1 (In +Lama- 1))Ym(z — ).
m m
As above, we obtain the relation
Gim(l) = m(ly = Py mPr,)) = Gam(l = DPim Py,

S0, G1m (1) and Gop, (I — 1) will be arbitrary matrices satisfying the latter equality.

Let now construct the discrete vector-functions g1, and gon (m = 1,2,...). As g1,,(I) and
g2m(l — 1), we choose arbitrary vectors satisfying the equalities
1

E Y,ﬂ:l(l)(glm(l) + g2m(l — 1)) = Qim (l =1,... ,m),

where

Qm = Em(l) + /X*l(f)q(T)dT (I1=1,...,m)

a

for every natural m. Therefore, we have the equalities
Gm() + g2m(l—=1) =mY,(Dgm (=1,...,m; m=1,2,...)

for the definition of the vector-functions g1, and go,, (m =1,2,...).
It is evident that the above-constructed vector-functions satisfy condition (3.2.25).
We realize the above-constructed discrete matrix- and vectors-functions by the following example.

xt) = [ P )

a

be the fundamental matrix of system (3.2.19) and let &, = O, xy and &, =0, (m =1,2,...). Then

Example 3.2.1. Let

Tim
le:exp</P(T)dT) (I=0,....om;m=1,2,...).
If we choose
Tim
Gom(l — 1) = Py, P :exp< / P(T)dT) (I=1,....,m; m=12,...),
Ti—1m

then

Glm(l):(m—l)ln—mexp(— 7 P(T)d7‘> (I=1,....m;m=12.).

Ti—1m
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For the definition of the discrete vector-functions g1, and g (m =1,2,...) we have the relations

Tim
gim (D) + gam(l—1)=m / U(Tim,T)g(T)dr (I=1,...;,m; m=1,2,...),

a

where U(t,7) is the Cauchy matrix of system (3.2.1).
In particular, we can take

Tim Tim

am(l) = am / C(Tim,7)q(r)dr and gop(I—1) = (1 —a)m / C(Tim, 7)q(7) dT

(l=1,....mm=1,2,...),

where « is some number.
Moreover, we can choose these discrete vector-functions in connection with the Cauchy formulae
for system (3.2.1).

Theorem 3.2.3. Let condition (3.2.14) be satisfied. Let, moreover, the sequences G, € E(Nyy; R
=12 m=12,...), gjm € E(Ny;R") (j =1,2; m=1,2,...) and v, (m =1,2,...) be such
that conditions (3.2.3) and

m

tim_sup (3" (1Gm (] + lgm (B ) < +o0 (i=1,2) (3.2.27)

m——+oo
k=0

hold, and the conditions

Vi (t) l
lim = 3 (Gim(k) + Gam(k— 1)) = / P(r)dr,

m——+o0 M,

k=1 2

and
V'm(t) t

mgr_fi_loo m Z (glm(k) + g2m(k — 1)) = /q(T) dr

k=1 .

hold uniformly on [a,b]. Then the difference initial problem (3.2.1,,), (3.2.2,,,) has the unique solution
ym for any sufficiently large m and condition (3.2.4) holds.

Proof. The validity of the theorem follows from the sufficiency of Theorem 3.2.1 if we assume Hy,, (k) =
Hom (k) = I, and H(t) = I, therein. O

Proposition 3.2.1. Let conditions (3.2.14)—(3.2.16) and

. 1 .
lim  — max {||Gjm (k)| + lgjm(K)| : k=0,....m} =0 (j =1,2) (3.2.28)

m——+0o0 M

hold and let conditions (3.2.17)—(3.2.19) be fulfilled uniformly on [a,b], where H € AC([a,b]; R™*™),
Hipm, Hop, € E(Npp; R™™) (m =1,2,...). Let, moreover, either condition (3.2.27) or the condition

A 00 32 (1o (06) = k)] (k) = Ho(k = D) < 49

be satisfied. Then inclusion (3.2.9) holds.

Proof. The proposition is a realization of Corollary 1.2.2 for this case. O
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Theorem 3.2.4. Let conditions (3.2.14), (3.2.15) and (3.2.28) hold and let conditions (3.2.17),

er(t) t
. 1

m ; (G (k) + Gom (k — 1)) = / P(r)dr, (3.2.29)

Vm(t) ¢
m1~l>r~rkloo . I; (g1m (k) + gam(k — 1)) = /q(T) dr, (3.2.30)

Vi (t) ¢

Jim — ; Him (k) (Gim (k) + Gam(k — 1)) = /P*(T) dr
and
er(t) ¢

. 1
lim —
m——+oo0 M,

> Hin(®)(gm() + gan(t ~ 1)) = [ a.(r)dr
k=1

a

hold uniformly on [a,b], where P. € L([a,b];R™™*™), q. € L([a,b];R™); Hipm, Hom € E(NW;R"X")
(m=1,2,...). Let, moreover, the system

%”; — (P(t) = Pu(t)2 + q(t) — q.(t)

have a unique solution under the initial condition (3.2.2). Then

((Grms Gom: Gims G2m3 T,,)) o) € CS(P = Pyyq — qus 1),

m=1

Proof. The theorem is a realization of Corollary 1.2.3 for this case. O

Proposition 3.2.2. Let conditions (3.2.14) hold and there exist a natural p and matriz-functions

Bji € E(Np; R™™), Bji(a) = Opxn (j =1,2;1=0,...,u— 1) such that
_ m 1 .
gggw;wmmwmmw+mmmw&mwn

1
| v () = Hzma (= 1) + — Humga(F) G = D) < +oc,
lim max {||Hjmu(k) — L] : k=0,....m} =0 (j =1,2),

m——+o0

and the conditions

Vi (1) t
. 1
m1—1>r—ri-loo E ’; (Glm;J,(k) + G2mu(k - 1)) = /P(T) dT7

1 Vi, () t

lim = (g (k) + g2mp(k — 1)) = / q(r) dr

m——+oo M
k=1 a
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are fulfilled uniformly on [a,b], where
HlmO(k) = H2m0(k) = Ina

1

Himisi(k) = (E Hip(B)Gim (k) + Q1(Himis Gim, Gom) (k) + B: l+1(k))H1ml(k)a

Homig1(k) = (Qa(Himi, Gim, Gom) (k) + Bai11(k)) Hamu (),

Gimi+1(k) = Hipi(R)Gim(k),  Gomig1(k) = Hipu(k + 1)Gap (K),

glml+1(k) = Hml(k)glm(k)a g2ml+1(k) = ml(k + 1)92m(k)7

Qj (Hlmh Glma G2m)(k) = 2In jml - Z Hlml Glm ) + G2m(i - 1))
(j=1,2 l:0,...,u—1; m=1,2,...).
Then inclusion (3.2.9) holds.

Proof. The proposition is a realization of Corollary 1.2.4 for this case. O

If u=1and Bj(t) = Opnxn (j = 1,2), then Proposition 3.2.2 takes the following form.

Proposition 3.2.3. Let conditions (3.2.14) and

m——+oo

tim sup (- > (IGu (k)] + |Gk ) < +oc

hold and conditions (3.2.29) and (3.2.30) be fulfilled uniformly on [a,b]. Then inclusion (3.2.9) holds.

Remark 3.2.4. In Theorem 3.2.3 and Propositions 3.2.1-3.2.3, if condition (3.2.23) holds, we can
assume that H,,(t) = Y, 1(t), where Y,, is the fundamental matrix of the homogeneous system
(3.2.22,,,) defined by (3.2.26) for every natural m. Moreover, condition (3.2.15) and the analogous
conditions hold automatically everywhere in the results described above.

Consider now the question on the stability of a solution of the difference initial problem

Ay(kﬁ — 1) = Glo(kﬁ)y(k) + GQo(k‘ - 1)y(k — 1) + glo(k‘) + ggo(k‘ — 1) (k =1,... 7’r)’Lo), (3.2.31)
y(ko) =0, (3.2.32)

where mgy > 2 is a fixed natural number, G,o € E(Ny,,; R™™") (§ = 1,2), gjo € E(Nmy; R™) (j =1, 2),
ko € {0,...,mp} and y9 € R™.
Along with problem (3.2.31), (3.2.32), consider the sequence of problems

Ay(k —1) = Gim(k)y(k) + Gom(k — Dy(k — 1) + g1m (k) + gom(E—1) (k=1,...,mg), (3.2.31,,)
y(ko) = Ym (3.2.32,,)

(m =1,2,...), where Gjm € E(Nyy; R™*™) (j = 1,2), gm € E(Nyy; R™), By, € E(Nyy,y; R™), and
Ym € R™ for every natural m.
As above, if necessary, we assume that

Gim(0) = Onsens 1 (0) =0, (m=0,1,...),
GQm(mO) = OTLXH, ng(mO) - O’n (m = 0, 1, .. )

and problem (3.2.31), (3.2.32) has a unique solution yy € E(N,n,; R™).
In (3.2.32,,), if instead of kg we take kom, kom # ko (m = 1,2,...), then it follows from the

condition lim kg, = ko that ko, = ko for any sufficiently large m.
m——+o0
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Definition 3.2.2. We say that a sequence (G1m, Gam, G1m, gam; ko) (m = 1,2,...) belongs to the set
S(G1o, G20, 910, 920; ko) if for every vy € R™ and the sequence v, € R™ (m = 1,2,...) satisfying the
condition

lim Tm = 70,
m——+o0

the difference problem (3.2.31,,), (3.2.32,,) has a unique solution y,, € E(N,,,; R™) for any sufficiently
large m and the condition

oy (k) = yo(k) (k= 0,...,mo)

holds.
Theorem 3.2.5. Let

det (I, + (=1)7Gjo(k)) #0 (j=1,2; k=0,...,mp). (3.2.33)

Then .
((Gims Gam, g1m, gami ko)), — € S(G1o, G20, 9105 920; ko) (3.2.34)

if and only if there exist the sequences of matriz-functions Hj,, € E(Nm;R"X") (G =12 m=
1,2,d...) such that

lim supy (HHgm(k) — Hyp (k) + Him (k) G1on (K)]|
k=1

m—+o00o

+|| Him (k) = Hop(k = 1) + Hup (k) Gan (k — 1)y|) < +o0,
lim Hjm(k}) = In (_] = 1,2, k= 0, ce ,?’)’Lo)7

m——+oo
lim Hlm(k) (Glm(k) + sz(k - 1)) = Glo(k?) + GQO(k -1) (k =1,... ,mo)
m—»—+00
and
m1~1>I<Ikloc Hlm(k) (glm(k) + ggm(k — ].)) = glo(k) + ggo(k — ].) (k = 1, ey mo).
Proof. The theorem is a realization of Theorem 1.2.1’, where Hy(t) = I, for this case. O

Theorem 3.2.6. Let the condition
det(l, + (=1)7Gm(k)) #0 (j=1,2; k=0,...,mo; m=1,2,...)
be satisfied. Then inclusion (3.2.34) holds if and only if

lim Gjm(k) = Gjo(k) (j = 1,2, k= 0,. . .,mo)

m=+o0
and
oim g (k) = gjo(k) (7 =1,2 k=0,...,mo).
Proof. The theorem is a realization of Theorem 1.2.1” for this case. O

Proposition 3.2.4. Let conditions (3.2.33),

m—+00

and
lim  gjm(k) =gjo(k) (j=1,2; k=0,...,mo)

m——+oo

be satisfied. Then inclusion (3.2.34) holds.

Proof. The theorem is a realization of Theorem 1.2.2’ for this case. O
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Proposition 3.2.5. Let condition (3.2.33) hold and there exist a natural p and matriz-functions
Bji € E(Npyy; R™*™), Bji(a) = Opxn (j =1,2;1=0,...,u— 1) such that the conditions

lim sup Z (HHgmM(k) — Hipmp (k) + Hipp (k) Glmu(i)”
k=0

m—+oo

[ Himpn (k) = Hopp(k = 1) + Hypp (k) Gognp(k — 1) H) < +oo,
lim Hjp,(k)=1, (j=1,2; k=0,...,mp),

m——+oo

lim Hlmu( )(Glmu( ) + GQmu(k — 1)) = GIO(k> + Ggo(k/’ — 1) (k‘ = 1, ce ,mo)

m——+00
and
hrn Hlmu(k) (glmu(k) —|— 92mu(k — 1)) = glO(k) —|— 920(]{} — 1) (]f = 1, ey mo)

m——+oo

are satisfied, where

Hypmo(k) = Homo(k) = I,

Hipmi11(k) = (Hipu (k)G (k) + Q1 (Himis Gim, Gam) (k) + Brig1 (k) Him(k),
Hop141(k) = (Q2(Himi, Gim, Gam) (k) 4+ Baiy1(k)) Hapu (K),
Gimit1(k) = Hipi(k)Gim(k),  Gamiti(k) = Hipu(k + 1)Gam(k),
Gimi+1(k) = Hpi (k) gim (k), 92m1+1(k) = Hpu(k + 1)gam(k),

Qj(Himi, Gim, Gam) (k) = 21, — Hjmi(k Z H1pi (1) (Gim () + Gam (i — 1))
(3:1,2, l:(),..., ~Lm=12...).
Then inclusion (3.2.34) holds.
Proof. The proposition is a realization of Corollary 1.2.4 for this case. O

If u=1and Bjo(t) = Opxn (j = 1,2), then Proposition 3.2.5 takes the following form.

Proposition 3.2.6. Let conditions (3.2.33),

mo
im0 (1Gum ()] [Gon @) < .

limoo (Glm(k) + Ggm(k} — 1)) = Glo(kﬁ) + Ggo(k‘ - 1) (k‘ =1,... ,mo)

m—+

and
hm (glrm(k) =+ ggm(k — 1)) = glO(k) —|— ggo(k — 1) (k = 1, . ,mo)

m——+o0

be satisfied. Then inclusion (3.2.34) holds.
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