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Abstract. For the system of generalized linear ordinary differential equations the initial problem
dx = dA(t) · x+ df(t) (t ∈ I),

x(t0) = c0

is considered, where I ⊂ R is an interval, A : I → Rn×n and f : I → Rn are, respectively, matrix- and
vector-functions with components of local bounded variation, t0 ∈ I, c0 ∈ Rn.

Under a solution of the system is understood a vector-function x : I → Rn with components of
bounded local variation satisfying the corresponding integral equality, where the integral is understood
in the Kurzweil sense.

Along with a number of questions, we investigate the problems of the well-posedness and stability in
Liapunov sense. Effective sufficient conditions, as well as effective necessary and sufficient conditions,
are established for each of these problems.

The obtained results are realized for the initial problem for linear impulsive system
dx

dt
= P (t)x+ q(t), x(τl+)− x(τl−) = G(τl)x(τl) + u(τl) (l = 1, 2, . . . ),

where P and q are, respectively, the matrix- and the vector-functions with Lebesgue local integrable
components, τl (l = 1, 2, . . . ) are the points of impulse actions, and G(τl) (l = 1, 2, . . . ) and u(τl)
(l = 1, 2, . . . ) are the matrix– and the vector-functions of discrete variables.

Using the well-posedness results, the effective sufficient conditions, as well as the effective necessary
and sufficient conditions, are established for the convergence of difference schemes to the solution of
the initial problem for the linear systems of ordinary differential equations.
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ÒÄÆÉÖÌÄ. ÂÀÍÆÏÂÀÃÄÁÖË ÜÅÄÖËÄÁÒÉÅ ÃÉ×ÄÒÄÍÝÉÀËÖÒ ÂÀÍÔÏËÄÁÀÈÀ ÓÉÓÔÄÌÉÓÈÅÉÓ ÂÀÍáÉ-
ËÖËÉÀ ÓÀßÚÉÓÉ ÀÌÏÝÀÍÀ

dx = dA(t) · x+ df(t) (t ∈ I),

x(t0) = c0,

ÓÀÃÀÝ I ⊂ R ÀÒÉÓ ÍÄÁÉÓÌÉÄÒÉ ÉÍÔÄÒÅÀËÉ, A : I → Rn×n ÃÀ f : I → Rn ÀÒÉÓ ÛÄÓÀÁÀÌÉÓÀÃ
ÌÀÔÒÉÝÖËÉ ÃÀ ÅÄØÔÏÒÖËÉ ×ÖÍÝÉÄÁÉ, ÒÏÌÄËÈÀ ÊÏÌÐÏÍÄÍÔÄÁÉ ÀÒÉÓ ËÏÊÀËÖÒÀÃ ÓÀÓÒÖËÉ
ÅÀÒÉÀÝÉÉÓ ×ÖÍØÝÉÄÁÉ, t0 ∈ I , c0 ∈ Rn.

ÀÙÍÉÛÍÖËÉ ÓÉÓÔÄÌÉÓ ÀÌÏÍÀáÓÍÉÓ ØÅÄÛ ÂÀÉÂÄÁÀ ÉÓÄÈÉ ËÏÊÀËÖÒÀÃ ÓÀÓÒÖËÉ ÅÀÒÉÀÝÉÉÓ
ÅÄØÔÏÒÖËÉ ×ÖÍØÝÉÀ x : I → Rn, ÒÏÌÄËÉÝ ÀÊÌÀÚÏ×ÉËÄÁÓ ÛÄÓÀÁÀÌÉÓ ÉÍÔÄÂÒÀËÖÒ ÔÏËÏÁÀÓ,
ÓÀÃÀÝ ÉÍÔÄÂÒÀËÉ ÂÀÉÂÄÁÀ ÊÖÒÝÅÀÉËÉÓ ÀÆÒÉÈ.

ÓáÅÀ ÓÀÊÉÈáÄÁÈÀÍ ÄÒÈÀÃ ÂÀÍáÉËÖËÉÀ ÀÌ ÀÌÏÝÀÍÉÓ ÊÏÒÄØÔÖËÏÁÉÓÀ ÃÀ ËÉÀÐÖÍÏÅÉÓ
ÀÆÒÉÈ ÌÃÂÒÀÃÏÁÉÓ ÓÀÊÉÈáÄÁÉ. ÈÉÈÏÄÖËÉ ÀÙÍÉÛÍÖËÉ ÀÌÏÝÀÍÉÓÈÅÉÓ ÃÀÃÂÄÍÉËÉÀ ÒÏÂÏÒÝ
Ä×ÄØÔÖÒÉ ÓÀÊÌÀÒÉÓÉ ÐÉÒÏÁÄÁÉ, ÀÓÄÅÄ Ä×ÄØÔÖÒÉ ÀÖÝÉËÄÁÄËÉ ÃÀ ÓÀÊÌÀÒÉÓÉ ÐÉÒÏÁÄÁÉ.

ÌÉÙÄÁÖËÉ ÛÄÃÄÂÄÁÉ ÒÄÀËÉÆÄÁÖËÉÀ ÓÀßÚÉÓÉ ÀÌÏÝÀÍÉÓÈÅÉÓ ßÒ×ÉÅ ÉÌÐÖËÓÖÒ ÂÀÍÔÏËÄ-
ÁÀÈÀ

dx

dt
= P (t)x+ q(t), x(τl+)− x(τl−) = G(τl)x(τl) + u(τl) (l = 1, 2, . . . ),

ÓÉÓÔÄÌÉÓÈÅÉÓ, ÓÀÃÀÝ P ÃÀ q ÀÒÉÓ ÛÄÓÀÁÀÌÉÓÀÃ ËÄÁÄÂÉÓ ÀÆÒÉÈ ËÏÊÀËÖÒÀÃ ÉÍÔÄÂÒÄÁÀÃÉ
ÌÀÔÒÉÝÖËÉ ÃÀ ÅÄØÔÏÒÖËÉ ×ÖÍØÝÉÄÁÉ, τl (l = 1, 2, . . . ) ÀÒÉÓ ÉÌÐÖËÓÖÒÉ ØÌÄÃÄÁÉÓ ßÄÒÔÉËÄÁÉ,
áÏËÏ G(τl) (l = 1, 2, . . . ) ÃÀ u(τl) (l = 1, 2, . . . ) ÊÉ ÛÄÓÀÁÀÌÉÓÀÃ ÃÉÓÊÒÄÔÖËÉ ÀÒÂÖÌÄÍÔÉÓ
ÌÀÔÒÉÝÖËÉ ÃÀ ÅÄØÔÏÒÖËÉ ×ÖÍØÝÉÄÁÉÀ.

ÊÏÒÄØÔÖËÏÁÉÓ ÛÄÃÄÂÄÁÉÓ ÓÀ×ÖÞÅÄËÆÄ ÃÀÃÂÄÍÉËÉÀ ÒÏÂÏÒÝ Ä×ÄØÔÖÒÉ ÓÀÊÌÀÒÉÓÉ ÐÉÒÏ-
ÁÄÁÉ, ÀÓÄÅÄ Ä×ÄØÔÖÒÉ ÀÖÝÉËÄÁÄËÉ ÃÀ ÓÀÊÌÀÒÉÓÉ ÐÉÒÏÁÄÁÉ, ÒÏÌËÄÁÉÝ ÖÆÒÖÍÅÄËÚÏ×Ó
ÓáÅÀÏÁÉÀÍÉ ÓØÄÌÄÁÉÓ ÊÒÄÁÀÃÏÁÀÓ ÜÅÄÖËÄÁÒÉÅ ÃÉ×ÄÒÄÍÝÉÀËÖÒ ÂÀÍÔÏËÄÁÀÈÀ ÓÉÓÔÄÌÄÁÉÓÈÅÉÓ
ÊÏÛÉ ÀÌÏÝÀÍÉÓ ÀÌÏÍÀáÓÍÉÓÊÄÍ.



Introduction

In the present paper, the initial problem for systems of the so-called linear generalized ordinary
differential equations in the sense of Kurzweil is considered. We present the solvability conditions for
the problem and consider the related questions such as well-posedness of the problem and stability of
solutions in the Liapunov sense. The obtained results are realized for the initial problem for linear
systems of impulsive differential equations. Moreover, the obtained results on the well-posedness are
used for the numerical solvability of the initial problem for systems of linear ordinary differential
equations.

The theory of generalized ordinary differential equations is has been introduced by the Czech
mathematician J. Kurzweil in 1957. In [37], he investigated the question on the well-posedness of the
initial problem for linear ordinary differential equations, i.e., the problem where small perturbations
of the right-hand sides and the initial data of the given problem imply the nearness, in a uniform
sense, of the solutions of the perturbed initial problems to the solutions of the given problem. He
constructed an example of the problem which fails to have a solution in the classical sense, i.e., the
“solution” has the points of discontinuity. The perturbation problems have a classical solution which
converges to the “solution” of the given problem only in a pointwise sense. So, in this case, the
convergence may not be in a uniform sense. In this connection, J. Kurzweil has introduced certain
type of integral (see [37–39,45,53,55,56]) known in literature as the Kurzweil–Hanstock integral. He
considered the solutions of differential equations which were defined as the functions satisfying the
corresponding integral equations, where the integral was understood in the introduced sense. Such
differential equations, called as generalized ordinary differential equations, may have solutions with the
points of discontinuity. For such differential equations J. Kurzweil has proved the well-posed theorem.
In such a case, the convergence occurs only in the pointwise sense. So, the above-constructed example
was in conformity with the theorem.

To a considerable extent, the interest to the theory of generalized ordinary differential equations
has also been stimulated by the fact that this theory enabled one to investigate ordinary differential,
impulsive and difference equations from a unified point of view. In particular, all of them can be
rewritten in the form of generalized ordinary differential equations

dx = dA(t) · x+ df(t),

where A and f are the matrix- and vector-functions of bounded variation, respectively, for the following
systems: (a) the impulsive system

dx

dt
= P (t)x+ q(t), x(τl+)− x(τl−) = G(τl)x(τl) + u(τl) (l = 1, 2, . . . ),

where P and q are, respectively, the matrix- and vector-functions with Lebesgue integrable compo-
nents, τl (l = 1, 2, . . . ) are the points of impulse actions, and G(τl) (l = 1, 2, . . . ) and u(τl) (l = 1, 2, . . . )
are the matrix- and vector-functions of discrete variables; (b) the difference system

∆y(k − 1) = G1(k − 1)y(k − 1) +G2(k)y(k) + g0(k) (k = 1, . . . ,m0),

where m0 is a fixed natural number, and G1, G2 and g0 are, respectively, the matrix- and vector-
functions of the discrete variables; (c) the differential-difference systems, and so on.

Therefore, we can consider the ordinary differential, impulsive differential and difference equations
as equations of the same type. In particular, if for the generalized ordinary differential equations we
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investigate the question of well-posedness in the uniform sense, then, as a particular case, we will
obtain the results on the convergence of difference schemes to the solutions of the initial problem for
the ordinary differential equations. Analogous concept we can use for the investigation of the same
problem for linear boundary value problems and the initial and general boundary value problems for
nonlinear cases. In the present paper, we consider the question dealing only with the initial problem
in the linear case.

Note that another conception of the investigation enabling one to study the continuous and discrete
problems, one can find in [22].

The initial and boundary value problems for generalized ordinary differential equations are in-
vestigated sufficiently well for the linear and nonlinear cases. The questions of the existence and
well-posedness for linear problems are considered, e.g., in [2,4,11–13,15,17,20,21,32,33,39,45,53–56]
(see also the references therein). The same questions for the nonlinear case are studied in [5–10, 14,
31,37–39,45,53,55] (see also the references therein).

We give a short description of the results obtained in the present paper.
The work consists of three chapters. Section 1.1 is devoted to consideration of general properties

of initial problems given for systems of generalized linear ordinary differential equations most of which
are included, e.g., in [45,53,55]. Some of the results are precise and some are given as supplementary.
In particular, we suggest the method of successive approximations for constructing of solutions of the
problem. In addition, both questions on the nonnegativity of the Cauchy matrix and the systems of
linear generalized differential and integral inequalities are investigated. Moreover, the subject on the
relationship between the stability in the Liapunov sense and the well-posedness of the initial problem
on the infinity intervals is studied.

Section 1.2 considers the question of the well-posedness of the initial problem for systems of
generalized linear ordinary differential equations.

In the past century, the question on the well-posedness of the problems for the systems of ordinary
differential equations was of the utmost interest. In particular, such a question for the initial problem
for linear systems was treated very thoroughly (see, e.g., [3,11,34,35,40,46,48,57] and the references
therein). Note that unprovable sufficient conditions, as well as unprovable necessary and sufficient
conditions both for the initial and for the linear boundary value problems were obtained in [3].

The same question for the initial and boundary value problems for the nonlinear systems are
investigated, for example, in [34,36,57] (see also the references therein).

In the same section, we establish new effective sufficient conditions, as well as the effective criterion
for the well-posedness of the problem. Moreover, the effective conditions guaranteeing the uniform
convergence of the solutions of the perturbed problems on every closed subsegment are also established.
Some results obtained in the paper are new for ordinary differential case, as well.

Section 1.3 proposes investigation of the stability in Liapunov sense of the solutions of systems
of generalized linear ordinary differential equations. Such a subject-matter is classical. Our earlier
results concerning the problem for ordinary differential equations can be found in [26,34] (see also the
references therein). As for the case of generalized ordinary differential equations, one can see, e.g.,
the works [2, 13, 20, 53] (see also the references therein). In the present paper, we make more precise
already known results for generalized case: the effective sufficient conditions and effective necessary
and sufficient conditions for stability, uniform stability, asymptotic and the so-called ξ-exponentially
asymptotic stability. The obtained results are new for the case of ordinary differential equations, as
well.

In Chapter 2, the results of Chapter 1 are realized for linear impulsive differential systems.
Some questions, such as solvability, well-posedness, stability in the Liapunov sense, etc., are studied

in [2, 15,16,18,19,23,24,42,44,47,51,58] (see also the references therein).
The results obtained in the monograph is the generalization of our earlier results. In particular, we

obtain effective sufficient and necessary and sufficient conditions for the well-posedness and stability in
the Liapunov sense. Moreover, we also give the method of successive approximations for constructing
of solution of the impulsive initial problem.

In Chapter 3, we realize the results of Chapter 1 for the initial problem for ordinary differential
systems. The results obtained for this case generalize our earlier results. Moreover, we establish the
effective sufficient conditions and the effective necessary and sufficient conditions for the criterion of
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convergence of difference schemes to the solutions of the initial problems for ordinary differential case.
Note that for the convergence of difference schemes we have used the concept that it is possible to
consider both continuous and difference problems as generalized ones, and therefore, the convergence
is a particular case of the well-posedness for the latter problems.

Such problems, and among them the question of the solvability, stability, convergence of difference
schemes and others were investigated earlier in [1, 2, 15, 27, 28, 30, 41, 43, 49, 52] for linear as well as
nonlinear difference systems.
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Basic notation and definitions
In the paper, the use will be made of the following notation and definitions.

N = {1, 2, . . . }, Ñ = {0, 1, . . . }, Z is the set of all integers.
R =]−∞,+∞[, R+ = [0,+∞[; [a, b] and ]a, b[ (a, b ∈ R) are, respectively, closed and open intervals.
C is the space of all complex numbers z; |z| is the modulus of z.
I is an arbitrary finite or infinite interval from R. We say that some properties are valid in I if

they are valid on every closed interval from I.
[t] is the integer part of t ∈ R.
Rn×m (Cn×n) is the space of all real (complex) n×m matrices X = (xij)

n,m
i,j=1 with the norm

∥X∥ = max
j=1,...,m

n∑
i=1

|xij |.

Rn×m
+ =

{
(xij)

n,m
i,j=1 : xij ≥ 0 (i = 1, . . . , n; j = 1, . . . ,m)

}
.

On×m (or O) is the zero n×m matrix. We designate the zero n-vector by 0n or 0.
If X = (xij)

n,m
i,j=1 ∈ Rn×m, then

|X| = (|xij |)n,mi,j=1 .

XT is the matrix transposed to X.
lim sup
k→+∞

xk is the upper limit of the sequence xk ∈ R (k, 2 . . . ).

Sometimes, by [X]ij we denote the element xij in the i-th row and in the j-th column of the matrix
X = (xij)

n,m
i,j=1, i.e., xij = [X]ij (i = 1, . . . , n; j = 1, . . . ,m).

Rn = Rn×1 is the space of all real column n-vectors x = (xi)
n
i=1; Rn

+ = Rn×1
+ .

x ∗ y is the scalar product of the vectors x, y ∈ Rn.
If X ∈ Cn×n, then X−1, det(X) and r(X) are, respectively, the matrix inverse to X, the determi-

nant of X and the spectral radius of X.
diag(X1, . . . , Xm), where Xi ∈ Cni×ni (i = 1, . . . ,m), n1 + · · · + nm = n, is a quasidiagonal

n× n-matrix. In particular, if X = (xij)
n
i,j=1, then diag(X) = diag(x11, , . . . , xnn).

λ0(X) and λ0(X) are, respectively, the minimum and maximum eigenvalue of the symmetric matrix
X ∈ Rn×m,

In is the identity n × n-matrix; diag(λ1, . . . , λn) is the diagonal matrix with diagonal elements
λ1, . . . , λn; δij is the Kroneker symbol, i.e., δii = 1 and δij = 0 for i ̸= j (i, j = 1, . . . ); Zn =
(δi+1 j)

n
i,j=1.

The inequalities between the real matrices are understood componentwise.
We say that some property holds in the set I if it holds on every closed interval from I.
A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each of its components

is such.
b∨
a
(X) is the sum of total variations of components xij (i = 1, . . . ,m; j = 1, . . . ,m) of the matrix-

function X : [a, b] → Rn×m;
a∨
b

(X) = −
b∨
a
(X);

∨
I

(X) = lim
a→α+, b→β−

b∨
a
(X), where α = inf I and

β = sup I;
∨

(b,a)

(X) = −
∨

(b,a)

(X).

If X : I → Rn×m is a matrix-function, then
∨
I

(X) is the sum of total variations on I of its

components xij (i = 1, . . . ,m; j = 1, . . . ,m); V (X)(t) = (v(xij)(t))
n,m
i,j=1 for t ∈ I, where v(xij)(a) = 0,

v(xij)(t) ≡
t∨
a
(xij), and a ∈ I is some fixed point.

X(t−) and X(t+) are, respectively, the left and the right limits of X at the point t (X(α−) = X(α)
if α ∈ I and X(β+) = X(β) if γ ∈ I; if α or β do not belong to I, then X(t) is defined by continuity
outside of I).

d1X(t) = X(t)−X(t−), d2X(t) = X(t+)−X(t).
∥X∥∞ = sup {∥X(t)∥ : t ∈ I} , |X|∞ = (|xij |∞)n,mi,j=1.
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BV(I;Rn×m) is the normed space of all bounded variation matrix-functions X : I → Rn×m (i.e.,
such that

∨
I

(X) < ∞) with the norm ∥X∥s.

BV(I;D), where D ⊂ Rn×m, is the set of all bounded variation matrix-functions X : I → D.
BVloc(I;D) is the set of all X : I → D for which the restriction on [a, b] belongs to BV([a, b];D)

for every closed interval [a, b] from I.
BVloc(I;Rn×m

+ ) =
{
X ∈ BVloc(I;Rn×m) : X(t) ≥ On×m for t ∈ I

}
.

C([a, b];Rn×m) is the space of all continuous on [a, b] matrix-functions X : [a, b] → Rn×m with the
standard norm

∥X∥c = max{∥X(t)∥ : t ∈ [a, b]}.

C(I;Rn×m) is the space of all continuous and bounded matrix-functions X : I → Rn×m with the
norm ∥X∥c,I = sup{∥X(t)∥ : t ∈ I}.

C(I;D), where D ⊂ Rn×m, is the set of all continuous and bounded matrix-functions X : I → D.
Cloc(I;D) is the set of all continuous matrix-functions X : I → D.
AC([a, b];D) is the set of all absolutely continuous matrix-functions X : [a, b] → D.
ACloc(I;D) is the set of all matrix-functions X : I → D whose restrictions to an arbitrary closed

interval [a, b] from I belong to AC([a, b];D).
ACloc(I \ T ;D), where T = {τ1, τ2, . . . }, τl ∈ I (l = 1, 2, . . . ), τl ̸= τk (i ̸= k), is the set of all

matrix-functions X : I → D whose restrictions to an arbitrary closed interval [a, b] from I \ T belong
to AC([a, b];D).

ACV([a, b], T ;Rn) = AC([a, b] \ T ;Rn) ∩ BV([a, b];Rn).
ACVloc([a, b], T ;Rn) = ACloc([a, b] \ T ;Rn) ∩ BVloc([a, b];Rn).
TJ = T ∩ J for every interval J ⊂ I.
Ts,t = TJ if J = [min{s, t},max{s, t}[ for s, t ∈ I.
Bloc(T ;Rn×m) is the set of all matrix-functions G : T → Rn×m such that∑

τl∈T[a,b]

∥G(τl)∥ < +∞ for every [a, b] ⊂ I.

We say that a matrix-function X : I → Rn×n is nonsingular if det(X(t)) ̸= 0 for every t ∈ I.
L([a, b];Rn×m) is the set of all the Lebesgue integrable matrix-functions X : [a, b] → Rn×m.
Lloc(I;Rn×m) is the set of all matrix-functions X : I → Rn×m whose restrictions to an arbitrary

closed interval [a, b] from I belong to L([a, b];Rn×m).
s1, s2, sc and J : BVloc(I;R) → BVloc(I;R) are the operators defined, respectively, as follows:

s1(x)(a) = s2(x)(a) = 0 sc(x) = x(a);

s1(x)(t) = s1(x)(s) +
∑

s<τ≤t

d1x(τ), s2(x)(t) = s2(x)(s) +
∑

s≤τ<t

d2x(τ)

sc(x)(t) = sc(x)(s) + x(t)− x(s)−
2∑

j=1

(sj(x)(t)− sj(x)(s)) for s < t;

J(x)(a) = x(a),

J(x)(t) = J(x)(s) + sc(x)(t)− sc(x)(s)−
∑

s<τ≤t

ln |1− d1x(τ)|+
∑

s≤τ<t

ln |1 + d2x(τ)| for s < t,

where a ∈ I is an arbitrary fixed point.
If g ∈ BV([a, b];R), f : [a, b] → R and a ≤ s < t ≤ b, then we assume

t∫
s

x(τ) dg(τ) = (L− S)

∫
]s,t[

x(τ) dg(τ) + f(t)d1g(t) + f(s)d2g(s),
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where (L−S)
∫

]s,t[

f(τ) dg(τ) is the Lebesgue–Stieltjes integral over the open interval ]s, t[. It is known

(see [45, 55]) that if the integral exists, then the right-hand side of the integral equality equals to the

Kurzeil–Stieltjes integral (K − S)
t∫
s

f(τ) dg(τ) and, therefore,
t∫
s

f(τ) dg(τ) = (K − S)
t∫
s

f(τ) dg(τ).

If a = b, then we assume
b∫

a

x(t) dg(t) = 0.

Moreover, we put

t+∫
s

x(τ) dg(τ) = lim
ε→0, ε>0

t+ε∫
s

x(τ) dg(τ),

t−∫
s

x(τ) dg(τ) = lim
ε→0, ε>0

t−ε∫
s

x(τ) dg(τ).

L([a, b];R; g) is the set of all functions x : [a, b] → R, measurable and integrable with respect to
the measures µ(gi) (i = 1, 2), i.e., such that

b∫
a

|x(t)| dgi(t) < +∞ (i = 1, 2).

If G = (gik)
l,n
i,k=1 ∈ BV([a, b];Rl×n) and X = (xkj)

n,m
k,j=1 : [a, b];→ Rn×m, then

Sc(G)(t) ≡ (cc(gik)(t))
l,n
i,k=1 Sj(G)(t) ≡ (Sj(gik)(t))

l,n
i,k=1 (j = 1, 2)

and
b∫

a

dG(τ) ·X(τ) =

( n∑
k=1

b∫
a

xkj(τ) dgik(τ)

)l,m

i,j=1

.

Sometimes we use the designation
.∫
a

dG(s) · X(s) for the integral
t∫
a

dG(s) · X(s) as the vector-

function to the variable t.
Let a ∈ I be a fixed point. We introduce the operators:
(a) if X ∈ BVloc(I;Rn×n), det(In+(−1)jdjX(t)) ̸= 0 for t ∈ I (j = 1, 2), and Y ∈ BVloc(I;Rn×m),

then

A(X,Y )(a) = On×m,

A(X,Y )(t)−A(X,Y )(s) = Y (t)− Y (s) +
∑

s<τ≤t

d1X(τ) (In − d1X(τ))−1 d1Y (τ)

−
∑

s≤τ<t

d2X(τ) (In + d2X(τ))−1 d2Y (τ) for s < t; (0.0.1)

(b) if X ∈ BVloc(I;Rn×n) and Y ∈ BVloc(I;Rn×m), then

B(X,Y )(t) = X(t)Y (t)−X(a)Y (a)−
t∫

a

dX(τ) · Y (τ) for t ∈ I; (0.0.2)

(c) if X ∈ BVloc(I;Rn×n), detX(t)) ̸= 0, and Y ∈ BVloc(I;Rn×n), then

I(X,Y )(t) =

t∫
a

d
(
X(τ) + B(X,Y )(τ)

)
·X−1(τ) for t ∈ I; (0.0.3)
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(d)

DI(Y1, X1;Y2, X2)(t) = I(X1, Y1)(t)− I(X2, Y2)(t) for t ∈ I (0.0.4)

and

DB(Y1, X1;Y2, X2)(t) = B(X1, Y1)(t)− B(X2, Y2)(t) for t ∈ I. (0.0.5)

moreover, we introduce the following operator: if a ∈ I, and X ∈ BVloc(I,Rl×n) and Y : I → Rn×m,
then we put

∆aX(t) =


−d1X(t) for t < a, t ∈ I,

d2X(t) for t > a, t ∈ I,

Ol×n for t = a.

(0.0.6)

If l ∈ N, then Nl = {1, . . . , l}, Ñl = {0, 1, . . . , l}.
E(J,Rn×m), where J ⊂ Z, is the space of all matrix-functions Y = (yij)

n,m
i,j=1 : J → Rn×m with

the norm
∥Y ∥J = max {∥Y (k)∥ : k ∈ J} , |Y |J = (∥yij∥J)n,mi,j=1 .

∆ is the difference operator of the first order, i.e.,

∆Y (k − 1) = Y (k)− Y (k − 1) for Y ∈ E(Ñl,Rn×m), k ∈ Nl.

If a function Y is defined on Nl or Ñl−1, then we assume Y (0) = On×m, or Y (l) = On×m,
respectively, if necessary.

We say that the matrix-function X ∈ BVloc(I,Rn×n) satisfies the Lappo–Danilevskiĭ condition if
there exists t∗ ∈ I such that the matrices Sc(X)(t)−Sc(X)(t∗), S1(X)(t)−S1(X)(t∗) and S2(X)(t)−
S2(X)(t∗) are pairwise permutable and

t∫
t∗

Sc(X)(τ) dSc(X)(τ) =

t∫
t∗

dSc(X)(τ) · Sc(X)(τ) for t ∈ I.

Here, the use will be made of the following formulas:

b∫
a

f(t) dg(t) =

b∫
a

f(t) dg(t−) + f(b)d1g(b), (0.0.7)

b∫
a

f(t) dg(t) =

b∫
a

f(t) dg(t+) + f(a)d2g(a),

t−∫
a

x(τ) dg(τ) =

t∫
a

x(τ) dg(τ)− x(t) d1g(t), (0.0.8)

t+∫
a

x(τ) dg(τ) =

t∫
a

x(τ) dg(τ) + x(t) d2g(t),

b∫
a

f(t) dg(t) +

b∫
a

f(t) dg(t) = f(b)g(b)− f(a)g(a)

+
∑

a<t≤b

d1f(t) · d1g(t)−
∑

a≤t<b

d2f(t) · d2g(t)

(integration-by-parts formula), (0.0.9)
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b∫
a

h(t) d (f(t)g(t)) =

b∫
a

h(t)f(t) dg(t) +

b∫
a

h(t)g(t) df(t)

−
∑

a<t≤b

h(t)d1f(t) · d1g(t) +
∑

a≤t<b

h(t)d2f(t) · d2g(t)

(general integration-by-parts formula), (0.0.10)
b∫

a

f(t)ds1(g)(t) =
∑

a<t≤b

f(t) d1g(t),

b∫
a

f(t)ds2(g)(t) =
∑

a<t≤b

f(t)d2g(t), (0.0.11)

b∫
a

f(t) d

( s∫
a

g(s)dh(s)

)
=

b∫
a

f(t)g(t) dh(t) for t ∈ I, (0.0.12)

dj

( t∫
a

f(s) dg(s)

)
= f(t) djg(t) for t ∈ I (j = 1, 2) (0.0.13)

and
b∫

a

fk(t) df(t) =
1

k + 1

[
fk+1(b)− fk+1(a) +

k−1∑
m=0

( ∑
a<t≤b

fm(t) d1f(t) · d1fk−m(t)

−
∑

a≤t<b

fm(t) d2f(t) · d2fk−m(t)

)]
(k = 1, 2, . . . ) (0.0.14)

for f, g ∈ BV([a, b];R).
The proof of formulas (0.0.7), (0.0.9) (0.0.11) and (0.0.12) one can find e.g., in [55, Theorems I.4.25,

I.4.33, Lemma I.4.23]). As to formulas (0.0.10) and (0.0.14), they are proved in Subsection 1.1.3 (see
Lemma 1.1.1).



Chapter 1

Systems of generalized linear
ordinary differential equations

1.1 The initial problem. Unique solvability
1.1.1 Statement of the problem and formulation of the results
Let I ⊂ R be some interval, non-degenerate into a point. In this section, for the system of linear
generalized ordinary differential equations

dx = dA(t) · x+ df(t) (1.1.1)

we consider the initial problem
x(t0) = c0, (1.1.2)

where A = (aik)
n
i,k=1 : I → Rn×n and f = (fi)

n
i=1 : I → Rn are, respectively, the matrix- and

the vector-functions with bounded variation components on every closed interval from I, i.e., A ∈
BVloc(I;Rn×n) and f ∈ BVloc(I;Rn); t0 ∈ I, and c0 ∈ Rn.

A vector-function x ∈ BVloc(I;Rn) is said to be a solution of system (1.1.1) if

x(t)− x(s) =

t∫
s

dA(τ) · x(τ) + f(t)− f(s) for s < t; s, t ∈ I.

Note that if the vector-function x ∈ BVloc(I;Rn), then the above integral exists for every s, t ∈ I
(see [55]). If we define a solution of system (1.1.1) as an arbitrary vector-function x : I → Rn such

that the integral
t∫
s

dA(τ) · x(τ) exists for s < t (s, t ∈ I), then by Theorem III.1.3 from [55], x will

have bounded variation on every closed interval from I and so x will be from the set BVloc(I;Rn).
Under a solution of the system of generalized ordinary differential inequalities

dx ≤ dA(t) · x+ df(t) (resp. ≥)

we mean a vector-function x ∈ BVloc(I;Rn) such that

x(t) ≤ x(s) +

t∫
s

dA(τ) · x(τ) + f(t)− f(s) (resp. ≥) for s < t; s, t ∈ I.

Under a solution of problem (1.1.1), (1.1.2) we understand a solution x ∈ BVloc(I;Rn) of system
(1.1.1), satisfying condition (1.1.2).

We give here some known as well as new results concerning the solvability and properties of
solutions of the initial problem (1.1.1), (1.1.2).

11
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Theorem 1.1.1. Let t0 ∈ I. Then:

(a) the initial value problem (1.1.1), (1.1.2) possesses a unique solution x defined on {t ∈ I : t > t0}
for any f ∈ BV([a, b];Rn) and c0 ∈ Rn if and only if det(In − d1A(t)) ̸= 0 for any t ∈ I, t > t0;

(b) the initial value problem (1.1.1), (1.1.2) possesses a unique solution x defined on {t ∈ I : t < t0}
for any f ∈ BV([a, b];Rn) and c0 ∈ Rn if and only if det(In + d2A(t)) ̸= 0 for any t ∈ I, t < t0;

(c) the initial value problem (1.1.1), (1.1.2) possesses a unique solution x defined on I for any
f ∈ BV([a, b];Rn) and c0 ∈ Rn if and only if

det
(
In + (−1)jdjA(t)

)
̸= 0 for t ∈ I, (−1)j(t− t0) < 0 (j = 1, 2). (1.1.3)

Proposition 1.1.1. Let s ∈ I, and α ∈ BVloc(I;R) be such that

1 + (−1)jdjα(t) ̸= 0 for t ∈ I, (−1)j(t− s) < 0 (j = 1, 2).

Then the initial problem
dγ = γdα(t), γ(s) = 1 (1.1.4)

has the unique solution γα( · , s) defined by

γα(t, s) =


exp(s0(α)(t)− s0(α)(s))

∏
s<τ≤t

(1− d1α(τ))
−1

∏
s≤τ<t

(1 + d2α(τ)) for t > s,

exp(s0(α)(t)− s0(α)(s))
∏

t<τ≤s

(1− d1α(τ))
∏

t≤τ<s

(1 + d2α(τ))
−1 for t < s,

1 for t = s.

(1.1.5)

Proposition 1.1.2. Let a vector-function x be a solution of system (1.1.1). Then

djx(t) = djA(t) · x(t) + djf(t) for t ∈ I (j = 1, 2). (1.1.6)

Theorem 1.1.2. Let A ∈ BVloc([a, b];Rn×n) and t0 ∈ [a, b] be such that condition (1.1.3) holds for
I = ]a, b[ . Then there exists a constant r ∈ R+ such that

∥x(t)∥ ≤ r
(
∥x(t0)∥+

t0∨
a

(f)
)

exp
(
r

t0∨
t

(A)
)

for a < t ≤ t0 (1.1.7)

and

∥x(t)∥ ≤ r
(
∥x(t0)∥+

b∨
t0

(f)
)

exp
(
r

t∨
t0

(A)
)

for t0 ≤ t < b, (1.1.8)

where x is an arbitrary solution of system (1.1.1) with f ∈ BV([a, b];Rn).

Alongside with system (1.1.1), we consider the corresponding homogeneous system

dx = dA(t) · x. (1.1.10)

The assumption (1.1.3) on the regularity of the matrices is essential. We present a simple example
of a generalized ordinary differential system from [55] concerning the role of the condition.

Example 1.1.1. Let us set

A(t) =

(
0 0
0 0

)
for t ∈

[
0,

1

2

)
, A(t) =

(
0 0
0 1

)
for t ∈

[1
2
, 1
]
.

It is evident that A ∈ BV([0, 1];R2×2), d2A(t) ≡ O2×2, d1A(t) ≡ O2×2 for t ̸= 1/2, and

d1A
(1
2

)
=

(
0 0
0 1

)
and In − d1A

(1
2

)
=

(
1 0
0 0

)
.
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Thus the matrix In − d1A(1/2) is not regular. Consider the initial value problem

dx(t) = dA(t) · x(t), x(0) = c0, (1.1.9)

where c0 = (c0i)
2
i=1, c01, c02 ∈ R. Let x = (xi)

2
i=1 be a solution of the problem. Then by the

definition of the matrix-function A, we have x(t) = c0 for t ∈ [0, 1/2). Moreover, by (1.1.5) we have
x(1/2−) = (In − d1A(1/2))x(1/2), i.e., c01 = x1(1/2), and c02 = 0. Hence problem (1.1.8) cannot
have a solution on [0, 1/2] when c02 ̸= 0.

Let us now consider the case when c02 = 0. Then the vector (xi(1/2))
2
i=1 = (ci)

2
i=1, where c1 = c01

and c2 ∈ R is arbitrary, satisfying the last equality. Therefore, according to the equality x(t) = x(1/2)
for t ∈ [1/2, 1], the vector-function x = (xi)

2
i=1 ∈ BV([0, 1];R2) defined by x1(t) = c01 for t ∈ [0, 1],

and x2(t) = 0 for t ∈ [0, 1/2), x2(t) = c2 for t ∈ [1/2, 1], will be a solution of problem (1.1.9) for every
c2 ∈ R.

Summarizing the above-said, we have: if c0 = (c0i)
2
i=1, where c02 ̸= 0, then problem (1.1.9) is

unsolvable on the whole interval [0, 1]; if c02 = 0, then problem (1.1.9) has solutions on the whole
interval [0, 1], but the uniqueness is violated.

Note that by equalities (1.1.5), the singularities of matrices (In + (−1)jdjA(t0)) (j = 1, 2) at the
initial point t0, is irrelevant for the existence and uniqueness of solutions to the initial value problem.

Therefore, problem (1.1.1), (1.1.2) is uniquely solvable for every t0 ∈ I and c0 ∈ Rn if and only if

det
(
In + (−1)jdjA(t)

)
̸= 0 for t ∈ I (j = 1, 2). (1.1.10)

Theorem 1.1.3. Let A ∈ BVloc(I;Rn×n) and t0 ∈ I be such that condition (1.1.3) holds. Then the
set of all solutions x of the homogeneous system (1.1.10) is an n-dimensional subset of BVloc(I;Rn).

Theorem 1.1.4. Let A ∈ BVloc(I;Rn×n) and t0 ∈ I be such that the condition (1.1.3) holds. Then
there exists a unique n× n matrix-function U(t, s) defined for a ≤ t ≤ s ≤ t0 and t0 ≤ s ≤ t ≤ b such
that the matrix function X(t) = U(t, s) satisfies the matrix initial value problem

dX = dA(t) ·X, X(s) = In, (1.1.11)

and
U(t, s) = U(t, r)U(r, s) for t, s ∈ I, t ≤ r ≤ s ≤ t0 or t0 ≤ s ≤ r ≤ t. (1.1.12)

In addition, if t1 ∈ I, then every solution of the homogeneous system (1.1.10) defined on {t ∈ I, t ≤ t1}
if t1 ≤ t0 and on {t ∈ I, t ≥ t1} if t0 ≤ t1 is given by the relation

x(t) = U(t, t1)x(t1) (1.1.13)

on the intervals of definition.

Theorem 1.1.5 (Variation-of-constants formula). Let A ∈ BVloc(I;Rn×n) and t0 ∈ I be such that
condition (1.1.3) holds. Then every solution of system (1.1.1) admits the representation

x(t) = U(t, t0)x(t0) + f(t)− f(t0)−
t∫

t0

ds U(t, s) · (f(s)− f(t0)) for t ∈ I (1.1.14)

for every f ∈ BVloc(I;Rn), where U(t, s) is the matrix-function appearing in Theorem 1.1.4.

Proposition 1.1.3. Let the matrix-function A ∈ BVloc(I;Rn×n) satisfy the Lappo–Danilevskiĭ condi-
tion and condition (1.1.10) hold. Then the fundamental matrix X, X(a) = In, where a ∈ I, of system
(1.1.10) is defined by

X(t) =


exp

(
S0(A)(t)− S0(A)(a)

) ∏
a≤τ<t

(In + d2A(τ))
∏

a<τ≤t

(In − d1A(τ))−1 for t > a,

exp
(
S0(A)(t)− S0(A)(a)

) ∏
t<τ≤a

(In − d1A(τ))
∏

t≤τ<a

(In + d2A(τ))−1 for t < a.
(1.1.15)
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Remark 1.1.1. In the general case, the expression of the fundamental matrix can be found, for
example, in [31,33,53].

Theorem 1.1.6. Let the matrix-function A ∈ BVloc(I;Rn×n) be such that condition (1.1.10) holds.
Then there exists a unique n × n matrix-function U : I × I → Rn×n such that the matrix function
X(t) = U(t, s) satisfies the matrix initial value problem (1.1.11) for every s ∈ I. In addition, the
matrix-function U(t, s) has the following properties:

(a) U(t, t) = In for t ∈ I;

(b) relation (1.1.12) holds for r, s, t ∈ I;

(c)

U(t−, s) = (In − d1A(t))U(t, s), U(t+, s) = (In + d2A(t))U(t, s),

U(t, s)− U(t−, s) = d1A(t)U(t, s), U(t+, s)− U(t, s) = d2A(t)C(t, s) for s, t ∈ I;

(d)

U(t, s−) = (In − d1A(t))−1U(t, s), U(t, s+) = (In + d2A(t))−1U(t, s),

U(t, s)− U(t, s−) = −(In − d1A(t))−1d1A(t)U(t, s),

U(t, s+)− U(t, s) = −(In + d2A(t))−1d2A(t)U(t, s) for s, t ∈ I;

(e) det(U(t, s)) ̸= 0 for s, t ∈ I;

(f) the matrices U(t, s) and U(s, t) are mutually reciprocal, i.e., U−1(t, s) = U(s, t) for s, t ∈ I;

(g) U(t, s) = X(t)X−1(s), where X(t) = U(t, a) for s, t ∈ I.

The matrix-function defined in the theorem is called the Cauchy matrix of the homogeneous gen-
eralized differential system (1.1.10), and the matrix-function X(t) = U(t, a) is called the fundamental
matrix of the system.

Theorem 1.1.7 (Variation-of-constants formula). Let the matrix-function A ∈ BVloc(I;Rn×n) be
such that condition (1.1.10) holds. Then every solution of system (1.1.1) admits the representation
(1.1.14) for every t0 ∈ I.

Corollary 1.1.1. Let the matrix-function A ∈ BVloc(I;Rn×n) be such that condition (1.1.10) holds.
Then representation (1.1.14) can be written in the form

x(t) = f(t)− f(t0) +X(t)

{
X−1(t0)x(t0)−

t∫
t0

dX−1(s) · (f(s)− f(t0))

}
for t, t0 ∈ I, (1.1.16)

where X is a fundamental matrix of the homogeneous system (1.1.10).

Proposition 1.1.4. Let the matrix-function A ∈ BVloc(I;Rn×n) be such that condition (1.1.10) holds,
and let X be a fundamental matrix of the homogeneous system (1.1.10). Then

X−1(t) = X−1(s)−X−1(t)A(t) +X−1(s)A(s) +

t∫
s

dX−1(τ) ·A(τ)

= X−1(s)− B(X−1, A)(t) + B(X−1, A)(s) for s, t ∈ I, s < t, (1.1.17)

and
djX

−1(t) = −X−1(t)djA(t) ·
(
In + (−1)jdjA(t)

)−1 for t ∈ [a, b] (j = 1, 2). (1.1.18)
In addition,

dX−1(t) = −X−1(t)dA(A,A)(t) for t ∈ I, (1.1.19)
where A is the operator defined by (0.0.1).
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We give also a method of successive approximations for constructing the solution of the initial
problem (1.1.1), (1.1.2).

Here and in the sequel, we use the following designations:

Jj =
{
t ∈ I : (−1)j(t− t0) < 0

}
(j = 1, 2).

Theorem 1.1.8. Let A ∈ BVloc(I;Rn×n) and t0 ∈ I be such that condition (1.1.3) holds, and let x
be a unique solution of the initial problem (1.1.1), (1.1.2). Then

lim
k→+∞

xk(t) = x(t) uniformly on [a, b] (1.1.20)

for every [a, b] ⊂ I, where

xk(t0) = c0 (k = 0, 1, . . . ),

x0(t) = (In + (−1)jdjA(t)
)−1

c0 for t ∈ Jj (j = 1, 2),

xk(t) =
(
In + (−1)jdjA(t)

)−1
{
c0 +

t∫
t0

dA(τ) · xk−1(τ) + (−1)jdjA(t) · xk−1(t)

+ f(t)− f(t0)

}
for t ∈ Jj (j = 1, 2; k = 1, 2, . . . ). (1.1.21)

1.1.2 Nonnegativity of the Cauchy matrix. The systems of linear
generalized differential and integral inequalities

In this subsection, we establish the sufficient conditions guaranteeing the nonnegativity of the Cauchy
matrix of system (1.1.10). Moreover, we investigate the question of the estimates of solutions of linear
systems of differential and integral inequalities.

Theorem 1.1.9. Let t0 ∈ I, A = (aik)
n
i,k=1 ∈ BVloc(I;Rn×n) and Q = diag(α1, . . . , αn) ∈

BVloc(I;Rn×n) be such that conditions (1.1.3),

1 + (−1)jdjαi(t) > 0 for t ∈ Jj ∪ {t0} (j = 1, 2; i = 1, . . . , n), (1.1.22)
det
(
In + (−1)jdj(Ã(t) +Q(t))

)
̸= 0 for t ∈ Jj (j = 1, 2) (1.1.23)

and (
In + (−1)jdj(Ã(t) +Q(t))

)−1 ≥ On×n for t ∈ Jj (j = 1, 2) (1.1.24)

hold, where Ã(t) = A(t) − diag(A(t)). Let, moreover, for every j ∈ {1, 2}, the functions (−1)j+1aik
(i ̸= k; i, k = 1, . . . , n) be non-decreasing on the set Jj. Then

U(t, s) ≥ On×n for t ≤ s ≤ t0 or t0 ≤ s ≤ t, (1.1.25)

where U is the Cauchy matrix of system (1.1.10).

If the matrix-function Q appearing in Theorem 1.1.9 is continuous, then the theorem has the
following form.

Corollary 1.1.2. Let t0 ∈ I and A = (aik)
n
i,k=1 ∈ BVloc(I;Rn×n) be such that conditions (1.1.3),

det
(
In + (−1)jdj(Ã(t))

)
̸= 0 for t ∈ Jj (j = 1, 2) (1.1.26)

and (
In + (−1)jdj(Ã(t))

)−1 ≥ On×n for t ∈ Jj (j = 1, 2) (1.1.27)

hold, where Ã(t) = A(t) − diag(A(t)). Let, moreover, for every j ∈ {1, 2}, the functions (−1)j+1aik
(i ̸= k; i, k = 1, . . . , n) be non-decreasing on the set Jj. Then the conclusion of Theorem 1.1.9 is true.
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Remark 1.1.2. We will prove an estimate (see estimate (1.1.64) in the proof of the theorem) which
is more strong than (1.1.25). Note also that the condition

∥djA(t)∥ < 1 for t ∈ Jj (j = 1, 2) (1.1.28)

guarantees the validity of condition (1.1.3). If∥∥(In + (−1)jdjA(t))−1 dj(Q(t)− diag(A(t)))
∥∥ < 1 for t ∈ Jj (j = 1, 2),

then condition (1.1.26) follows from (1.1.3). If the condition

(−1)jdj(Ã(t) +Q(t)) ≤ On×n for t ∈ Jj (j = 1, 2)

holds together with (1.1.26), then condition (1.1.27) holds, as well. If Q(t) ≡ diag(A(t)), then condition
(1.1.26) coincides with (1.1.3).

Theorem 1.1.10. Let t0 ∈ I, f ∈ BVloc(I;Rn) and let A = (aik)
n
i,k=1 ∈ BVloc(I;Rn×n) be such that

aik (i ̸= k; i, k = 1, . . . , n) are non-decreasing functions on the sets J1 and J2 and the conditions

det(In − djA(t)) ̸= 0 for t ∈ Jj (j = 1, 2), (1.1.29)
1− djaii(t) > 0 for t ∈ Jj ∪ {t0} (j = 1, 2; i = 1, . . . , n) (1.1.30)

and (
In − djA(t)

)−1 ≥ On×n for t ∈ Jj (j = 1, 2) (1.1.31)
hold. Let, moreover, a vector-function x ∈ BVloc(I\{t0} ,Rn) satisfy be the system of linear differential
inequalities

sgn(t− t0)dx(t) ≤ dA(t) · x(t) + df(t) (1.1.32)
on the intervals J1 and J2, satisfying the condition

x(t0) + (−1)jdjx(t0) ≤ c0 + (−1)jdjA(t0) · c0 + (−1)jdjf(t0) (j = 1, 2), (1.1.33)

where c0 ∈ Rn. Then the estimate

x(t) ≤ y(t) for t ∈ I \ {t0} (1.1.34)

holds, where y ∈ BVloc(I \ {t0};Rn) is a solution of the system

sgn(t− t0) dy = dA(t) · y + df(t) (1.1.35)

on the intervals J1 and J2, satisfying the conditions

(−1)jdjy(t0) = djA(t0) · y(t0) + djf(t0) (j = 1, 2) (1.1.36)

and
y(t0) = c0. (1.1.37)

Remark 1.1.3. It is evident that if we assume

x(t0) ≤ c0

in Theorem 1.1.10, then inequality (1.1.34) is fulfilled on the whole I. Moreover, note that in this
case, inequalities (1.1.33) follow from the inequalities

(−1)j djx(t0) ≤ (−1)j djA(t) · c0 + (−1)j djf(t) (j = 1, 2).

Remark 1.1.4. If for some j ∈ {1, 2} estimate (1.1.28) holds and

djA(t) ≥ On×n for t ∈ Jj ,

then condition (1.1.31) holds, as well.
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It is clear that condition (1.1.31) automatically holds if the matrix-function A is continuous, in
particular, for the case of ordinary differential equations.

Theorem 1.1.11. Let t0 ∈ [a, b], c0 ∈ Rn, f ∈ BVloc(I;Rn) and let A = (aik)
n
i,k=1 : I → Rn×n

be a non-decreasing matrix-function satisfying conditions (1.1.29) and (1.1.31). Let, moreover, x ∈
BVloc(I \ {t0};Rn) be a solution of the system of linear integral inequalities

x(t) ≤ c0 +

( t∫
t0

dA(τ) · x(τ) + f(t)− f(t0)

)
· sgn(t− t0) (1.1.38)

on the sets J1 and J2, satisfying (1.1.33). Then the conclusion of Theorem 1.1.10 is true.

1.1.3 Auxiliary propositions. The lemmas on the general differential and
integral inequalities

Lemma 1.1.1. Let f, g, h ∈ BV([a, b];R). Then equalities (0.0.10) and (0.0.14) hold.

Proof. First we show (0.0.10). Using (0.0.9), (0.0.11) and (0.0.12), we have

b∫
a

h(t) d(f(t)g(t))

=

b∫
a

h(t) d

( t∫
a

f(s) dg(s) +

t∫
a

f(s) dg(s) +
∑

a<s≤t

d1f(s) · d1g(s)−
∑

a≤s<t

d2f(s) · d2g(s)
)

=

b∫
a

h(t)f(t) dg(t) +

b∫
a

h(t)g(t) df(t) +
∑

a<t≤b

h(t)d1f(t) · d1g(t)−
∑

a≤t<b

h(t)d2f(t) · d2g(t).

Let us show (0.0.14). By (0.0.9), we conclude

b∫
a

fm(t) dfk−m+1(t) =

b∫
a

fm+1(t) dfk−m(t) +

b∫
a

fk(t) dβ(t)−

−
∑

a<t≤b

fm(t)d1f(t) · d1fk−m(t) +
∑

a≤t<b

fm(t)d2f(t) · d2fk−m(t) (m = 0, . . . , k − 1).

Summing over m these equalities, we obtain (0.0.14).

Lemma 1.1.2. Let g ∈ BV([a, b];R). Then

b∫
a

sgn g(t) dg(t) = |g(b)| − |g(a)|

+
∑

a<t≤b

(
|g(t−)| − g(t−) sgn g(t)

)
−
∑

a≤t<b

(
|g(t+)| − g(t+) sgn g(t)

)
. (1.1.39)

Proof. It is evident that sgn g(t) is the break function. So, using the integration-by-parts formula and
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equality (0.0.11), we find that

b∫
a

sgn g(t) dg(t) = g(b) sgn g(b)− g(a) sgn g(a)

−
b∫

a

g(t) d sgn g(t) +
∑

a<t≤b

d1g(t)d1 sgn g(t)−
∑

a≤t<b

d2g(t)d2 sgn g(t)

= |g(b)| − |g(a)| −
∑

a<t≤b

g(t) d1 sgn g(t)−
∑

a≤t<b

g(t) d2 sgn g(t)

+
∑

a<t≤b

d1g(t)d1 sgn g(t)−
∑

a≤t<b

d2g(t) d2 sgn g(t)

= |g(b)| − |g(a)| −
∑

a<t≤b

g(t−) d1 sgn g(t)−
∑

a≤t<b

g(t+) d2 sgn g(t).

From this immediately follows equality (1.1.39).

We give here the following lemma dealing with the differential inequalities.

Lemma 1.1.3. Let t1, . . . , tn ∈ [a, b]; q = (qi)
n
i=1 ∈ BV([a, b];Rn) and (bil)

n
i,l=1 ∈ BV([a, b];Rn×n) be

such that the functions bil (i ̸= l; i, l = 1, . . . , n) are non-decreasing. Let, moreover, C = (cil)
n
i,l=1 ∈

BV([a, b];Rn×n) be a matrix-function satisfying the conditions

sc(bii)(t)−sc(bii)(s)≤
(
sc(cii)(t)−sc(cii)(s)

)
sgn(t−s) for (t−s)(s−ti)>0 (i=1, . . . , n), (1.1.40)

(−1)j+m
(
|1+(−1)mdmbii(t)| − 1

)
≤dmcii(t) for (−1)j(t−ti)≥0 (j,m=1, 2; i = 1, . . . , n), (1.1.41)∣∣sc(bil)(t)− sc(bil)(s)

∣∣ ≤ sc(cil)(t)− sc(cil)(s) for a ≤ s < t ≤ b (i ̸= l; i, l = 1, . . . , n) (1.1.42)

and
|djbil(t)| ≤ djcil(t) for t ∈ [a, b] (i ̸= l; i, l = 1, . . . , n). (1.1.43)

Then every solution x = (xi)
n
i=1 of the system

dx = dB(t) · x+ dq(t) (1.1.44)

will be a solution of the system(
d|xi(t)| − sgn(t− ti)

n∑
l=1

|xl(t)|dcil(t)− sgnxi(t)dqi(t)

)
sgn(t− ti) ≤ 0 (i = 1, . . . , n),

(−1)jdj |xi(ti)| ≤
n∑

l=1

|xl(ti)|djcil(ti) + (−1)j sgnxi(ti)djqi(ti) (j = 1, 2; i = 1, . . . , n).

(1.1.45)

Proof. First, we note that from (1.1.41) follows

djcii(ti) ≥ 0, djcii(t) ≥ −1 for (−1)j(t− ti) > 0 (j = 1, 2; i = 1, . . . , n). (1.1.46)

Taking into account (1.1.39) and the definition of the solution of system (1.1.44), it can be easily
shown that

|xi(t)| − |xi(s)| =
t∫

s

|xi(τ)| dsc(bii)(τ)

+

n∑
l ̸=i, l=1

t∫
s

xl(τ) sgnxi(τ) dsc(bil)(τ) +
∑

s<τ≤t

(
|xi(τ)| − |xi(τ−)|

)
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+
∑

s≤τ<t

(
|xi(τ+)| − |xi(τ)|

)
+

t∫
s

sgnxi(τ) dqi(τ) for a ≤ s ≤ t ≤ b (i = 1, . . . , n).

By (1.1.40)–(1.1.43) and (1.1.46), from the above equality, we have

|xi(t)| − |xi(s)| ≤
n∑

l=1

t∫
s

|xl(τ)| dsc(cil)(τ) +
∑

s<τ≤t

[
|xi(τ)| − |xi(τ−)|

]

+
∑

s≤τ<t

(
|xi(τ+)| − |xi(τ)|

)
+

t∫
s

sgnxi(τ) dqi(τ) ≤
n∑

l=1

t∫
s

|xl(τ)| dcil(τ)

+
∑

s<τ≤t

{
|xi(τ)|(1− d1cii(τ)) +

∣∣∣ n∑
l ̸=i, l=1

xl(τ)d1bil(τ)
∣∣∣− |xi(τ)| |1− d1bii(τ)|

}

−
∑

s≤τ<t

{
|xi(τ)|(1 + d2cii(τ))−

∣∣∣ n∑
l ̸=i, l=1

xl(τ)d2bil(τ)
∣∣∣− |xi(τ)| |1 + d2bii(τ)|

}

−
∑

s<τ≤t

n∑
l ̸=i, l=1

|xl(τ)|d1cil(τ)−
∑

s≤τ<t

n∑
l ̸=i, l=1

|xl(τ)|d2cil(τ) +
t∫

s

sgnxi(τ)dqi(τ)

≤
n∑

l=1

t∫
s

|xl(τ)| dcil(τ) +
t∫

s

sgnxi(τ) dqi(τ)

+
∑

s<τ≤t

{
|xi(τ)|

(
1− d1cii(τ)− |1− d1bii(τ)|

)
+

n∑
l ̸=i, l=1

|xl(τ)|
(
|d1bil(τ)| − d1cil(τ)

)}

−
∑

s≤τ<t

{
|xi(τ)|

(
1 + d2cii(τ)− |1 + d2bii(τ)|

)
−

n∑
l ̸=i, l=1

|xl(τ)|
(
|d2bil(τ)| − d2cil(τ)

)}

≤
n∑

l=1

t∫
s

|xl(τ)| dcil(τ) +
t∫

s

sgnxi(τ) dqi(τ) for ti < s ≤ t ≤ b (i = 1, . . . , n).

Therefore inequalities (1.1.45) are fulfilled for t > ti and j = 2.
Analogously, we can show that

|xi(t)| − |xi(s)| ≥ −
n∑

l=1

t∫
s

|xl(τ)| dcil(τ) +
t∫

s

sgnxi(τ) dqi(τ) for a ≤ s ≤ t < ti (i = 1, . . . , n).

The above inequality implies (1.1.45) for t < ti and j = 1.

Lemma 1.1.3 has the following form for n = 1.

Lemma 1.1.4. Let t0 ∈ [a, b], α and q ∈ BVloc([a, t0[,R) ∩ BVloc(]t0, b];R) be such that

1 + (−1)j sgn(t− t0)djα(t) > 0 for t ∈ [a, b] (j = 1, 2).

Let, moreover, x ∈ BVloc([a, t0[,R)∩BVloc(]t0, b];R) satisfy the linear generalized differential inequality

sgn(t− t0) dx(t) ≤ x(t)dα(t) + dq(t)

on the intervals [a, t0[ and ]t0, b], and

x(t0+) ≤ y(t0+) and x(t0−) ≤ y(t0−),
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where y ∈ BVloc([a, t0[,R) ∩ BVloc(]t0, b];R) is a solution of the general differential equality

sgn(t− t0) dy = y dα(t) + dq(t). (1.1.47)

Then
x(t) ≤ y(t) for t ∈ [a, t0[∪ ]t0, b].

Lemma 1.1.5 (Gronwall). Let t0 ∈ [a, b], c0 ∈ R+, x ∈ BV([a, b];R+) and the non-decreasing
functions α, q : [a, b] → R+ be such that

x(t) ≤ c0 +

∣∣∣∣
t∫

t0

x(τ) dα(τ) + q(t)− q(t0)

∣∣∣∣ for t ∈ [a, b]. (1.1.48)

Then

x(t) ≤ q(t)− q(t0) + γα̃(t, t0)

{
c0 +

t∫
t0

γα̃(s, t0) · (q(s)− q(t0)) dA(α̃, α̃)(s)

}
for t ∈ [a, b], (1.1.49)

where α̃(t) ≡ α(t) sgn(t− t0), and the function γα̃(t, t0) is defined according to (1.1.5).

Proof. Let

z(t) = c0 +

∣∣∣∣
t∫

t0

x(τ) dα(τ) + q(t)− q(t0)

∣∣∣∣ for t ∈ [a, b].

By (1.1.48), it is evident that
x(t) ≤ z(t) for t ∈ [a, b]. (1.1.50)

First, consider the case t ∈ [t0, b]. Assume t0 < b. In this case, we have

z(t) = c0 +

t∫
t0

x(τ) dα(τ) + q(t)− q(t0) for t ∈ [t0, b].

Then it is evident that x(t) ≤ z(t) for t ∈ [t0, b]. Using this estimate and the conditions of the lemma,
we have

sgn(t− t0) · (z(t)− z(s)) = z(t)− z(s)

=

t∫
s

x(τ) dg(τ) + q(t)− q(s) ≤
t∫

s

z(τ) dg(τ) + q(t)− q(s) for t0 ≤ s < t < b.

Analogous estimate we obtain for a ≤ s < t < b. Therefore, the function z satisfies the general
differential inequality

sgn(t− t0)dz(t) ≤ z(t)dα(τ) + dq(t) for t ∈ [a, t0) and t ∈ (t0, b].

Let now y be a solution of equation (1.1.47) under the condition y(t0) = c0. It is easy to see that

z(t0+) ≤ y(t0+) and z(t0−) ≤ y(t0 − 0).

Therefore, by Lemma 1.1.4, we obtain

z(t) ≤ y(t) for t ∈ [a, b].

According to (1.1.50), Corollary 1.1.1 (see (1.1.16)) and (1.1.50), estimate (1.1.49) holds.
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Remark 1.1.5. In conditions of Lemma 1.1.5, every function x ∈ BV([a, b];R+) satisfying the integral
inequality

x(t) ≤ c0 +

∣∣∣∣
t∫

t0

x(τ) dα(τ)

∣∣∣∣ for t ∈ [a, b]

admits the estimate

x(t) ≤


c0 exp(sc(α)(t)− sc(α)(t0))

∏
t0<τ≤t

(1− d1α(τ))
−1

∏
t0≤τ<t

(1 + d2α(τ)) for t > t0,

c0 exp(sc(α)(t0)− sc(α)(t))
∏

t<τ≤t0

(1 + d1α(τ))
∏

t≤τ<t0

(1− d2α(τ))
−1 for t < t0.

From the above remark, according to estimate (1.1.49), the following lemma given in [55] (see
Theorem I.4.30) immediately follows.

Lemma 1.1.4′. Let g : [a, b] → R+ be a non-decreasing function, and φ : [a, b] → R+ be a bounded
function, i.e., φ(t) ≤ r.

(a) If g is continuous from the right on [a, b) and if there exist nonnegative constants r1 and r2 such
that

φ(t) ≤ r1 + r2

b∫
t

φ(τ) dg(τ) for t ∈ [a, b],

then
φ(t) ≤ r1 exp(r2(g(b)− g(t))) for t ∈ [a, b].

(b) If g is continuous from the left on (a, b] and if there exist nonnegative constants r1 and r2 such
that

φ(t) ≤ r1 + r2

t∫
a

φ(τ) dg(τ) for t ∈ [a, b],

then
φ(t) ≤ r1 exp(r2(g(t)− g(a))) for t ∈ [a, b].

Lemma 1.1.6. Let t0 ∈ [a, b]; α, β ∈ BV([a, b];R) and

1 + (−1)jdjα(t) ̸= 0 for t ∈ [a, b] (j = 1, 2). (1.1.51)

Let, moreover, ξ ∈ BV([a, b];R) be a solution of the equation

dξ = ξ dα(t) + dβ(t).

Then

γ−1(t)ξ(t)− γ−1(s)ξ(s) =

t∫
s

γ−1(τ) dβ(τ)

−
∑

s<τ≤t

d1γ
−1(τ) · d1β(τ) +

∑
s≤τ<t

d2γ
−1(τ) · d2β(τ) for a ≤ s < t ≤ b, (1.1.52)

where γ ∈ BV([a, b];R) is a solution of the problem

dγ = γ dα(t), γ(t0) = 1. (1.1.53)



22 Malkhaz Ashordia

Proof. By (1.1.51), problem (1.1.53) has the unique solution γ and γ(t) ̸= 0 for t ∈ [a, b].
Let a ≤ s < t ≤ b. Due to the integration-by-parts formula (0.0.9) and (1.1.17), we have

γ−1(t)ξ(t)− γ−1(s)ξ(s)

=

t∫
s

γ−1(τ) dξ(τ) +

t∫
s

ξ(τ) dγ−1(τ)−
∑

s<τ≤t

d1γ
−1(τ) · d1β(τ) +

∑
s≤τ<t

d2γ
−1(τ) · d2β(τ)

=

t∫
s

γ−1(τ)ξ(τ) dα(τ) +

t∫
s

γ−1(τ) dβ(τ) +

t∫
s

ξ(τ) dγ−1(τ)

−
∑

s<τ≤t

d1γ
−1(τ) ·

(
ξ(τ) d1α(τ) + d1β(τ)

)
+
∑

s≤τ<t

d2γ
−1(τ) ·

(
ξ(τ) d2α(τ) + d2β(τ)

)
and

γ−1(τ) = γ−1(s)−
τ∫

s

γ−1(σ) dα(σ)

+
∑

s<σ≤τ

d1γ
−1(σ) · d1α(σ)−

∑
s≤σ<τ

d2γ
−1(σ) · d2α(σ) for s < τ ≤ t.

Therefore, (1.1.52) holds, since by the latter equality,
t∫

s

ξ(τ) dγ−1(τ) = −
t∫

s

ξ(τ)γ−1(τ) dα(τ)

+
∑

s<τ≤t

ξ(τ)d1γ
−1(τ) · d1α(τ)−

∑
s≤τ<t

ξ(τ)d2γ
−1(τ) · d2α(τ) for s < t.

1.1.4 Proof of the results
Theorems 1.1.1, 1.1.2 and Propositions 1.1.1, 1.1.2 (except equality (1.1.19)) follow immediately from
the corresponding results of [53] (see Part III).

Let us show equality (1.1.19). By (1.1.17), using the integration-by-parts formula, equalities
(1.1.18) and the definition of the operator A, we obtain

X−1(t)−X−1(s) = −
t∫

s

X−1(τ) dA(τ) +
∑

s<τ≤t

d1X
−1(τ) · d1A(τ)−

∑
s≤τ<t

d2X
−1(τ) · d2A(τ)

= −
t∫

s

X−1(τ) dA(τ)−
∑

s<τ≤t

X−1(τ)d1(τ) · (In − d1A(t))−1d1A(τ)

+
∑

s≤τ<t

X−1(τ)d2A(τ) · (In + d2A(t))−1d2A(τ) = −
t∫

s

X−1(τ) dA(τ)

for a ≤ s < t ≤ b. Thus equality (1.1.19) holds on [a, b].

Proof of Theorem 1.1.8. By (1.1.3), according to Theorem 1.1.1, problem (1.1.1), (1.1.2) has the
unique solution x.

Let us show (1.1.20). Let

Aj(t) =

{
A(t) + (−1)jdjA(t) for t ∈ Jj ,

A(t0) for t ̸∈ Jj (j = 1, 2).
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Then, by (0.0.7) and (1.1.21),

xk(t) =
(
In + (−1)jdjA(t)

)−1

×
{
c0 +

t∫
t0

dAj(τ) · xk−1(τ) + f(t)− f(t0)

}
for t ∈ Jj (j = 1, 2; k = 1, 2, . . . ). (1.1.54)

Besides, in view of (1.1.3), there exists a positive number r such that∥∥(Jn + (−1)jdjA(t))−1
∥∥ ≤ r

n
for t ∈ Jj (j = 1, 2). (1.1.55)

Put

l0j(t) =

∥∥∥∥
t∫

t0

dV (Aj)(τ) · |c0|
∥∥∥∥+ ∥∥V (f)(t)− V (f)(t0)

∥∥ for t ∈ [a, b] (j = 1, 2)

and
l1j(t) =

∥∥V (Aj)(t)− V (Aj)(t0)
∥∥ for t ∈ [a, b] (j = 1, 2).

It is evident that the functions (−1)j+1lmj (m = 0, 1) are non-decreasing on Jj for every j ∈ {1, 2}.
In addition, l11 is continuous from the left on J1, and l12 is continuous from the right on J2. Taking
into account this, (0.0.14), (1.1.54) and (1.1.55), and using the inductive method, it is not difficult to
verify that

∥xk(t)− xk−1(t)∥ ≤ rk

(k − 1)!
l0j(t)l

k−1
1j (t) for t ∈ Jj (j = 1, 2; k = 1, 2, . . . ).

It follows from this that the functional series

x0(t) +

∞∑
k=1

(
xk(t)− xk−1(t)

)
converges uniformly on [a, b], because the convergent series

∥c0∥+ r0j

∞∑
k=1

rkrk−1
1j

(k − 1)!
,

where
rmj = sup

{
lmj(t) : t ∈ Jj

}
(m = 0, 1),

majorizes it on every Jj ∪ {t0} (j = 1, 2).
Let a vector-function x∗ : [a, b] → Rn be such that

lim
k→+∞

xk(t) = x∗(t) uniformly on [a, b]. (1.1.56)

Then, by Theorem I.4.17 from [55], the integral
t∫

t0

dAj(τ) · x∗(τ) exists and

lim
k→+∞

t∫
t0

dAj(τ) · xk−1(τ) =

t∫
t0

dAj(τ) · x∗(τ) for t ∈ [a, b] (j = 1, 2).

The latter equality, (1.1.54), (1.1.56) and the definition of Aj (j = 1, 2) imply

x∗(t) = c0 +

t∫
t0

dA(τ) · x∗(τ) + f(t)− f(t0) for t ∈ [a, b].

Hence x∗ ∈ BV([a, b];Rn) and it is a solution of problem (1.1.1), (1.1.2). But the latter problem has
the unique solution x. Therefore, (1.1.20) follows from (1.1.56).
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Proof of Theorem 1.1.9. Let s ∈ I (s ̸= t0) and j ∈ {1, 2} be such that s ∈ Jj . Let k ∈ { 1, . . . , n} be
fixed, and let uk(t, s) = (uik(t, s))

n
i=1 be the k-th column of the matrix U(t, s).

Assume

y(t) = (yi(t))
n
i=1 for t ∈ Jj ,

yi(t) = γ−1
s (αi)(t) · uik(t, s) (i = 1, . . . , n),

where γs(αi)(t) = γ−1(αi)(s) · γ(αi)(t), and γ(αi)(t) is a solution of problem (1.1.4) for α(t) = αi(t).
Here, in view of (1.1.5) and (1.1.22), γ(aii)(t) is positive for t ∈ Jj .

According to Lemma 1.1.6 and the integration-by-parts formula, we find

yi(t)− yi(r) =

n∑
l ̸=i, l=1

( t∫
r

γ−1
s (αi)(τ) · ulk(τ, s) duil(τ)

−
∑

r<τ≤t

d1γ
−1
s (αi)(τ) · ulk(τ, s) d1uil(τ) +

∑
r≤τ<t

d2γ
−1
s (αi)(τ) · ulk(τ, s) d2uil(τ)

)

=

n∑
l ̸=i, l=1

( t∫
r

γ−1
s (αi)(τ) · ulk(τ, s) dsc(uil)(τ)

+
∑

r<τ≤t

γ−1
s (αi)(τ−) · ulk(τ, s) d1uil(τ) +

∑
r≤τ<t

γ−1
s (αi)(τ+) · ulk(τ, s) d2uil(τ)

)

=

n∑
l ̸=i, l=1

( t∫
r

γ−1
s (αi)(τ) · γs(αl)(τ)yl(τ) dsc(uil)(τ)

+
∑

r<τ≤t

γ−1
s (αi)(τ−) · γs(αi)(τ) d1uil(τ) +

∑
r≤τ<t

γ−1
s (αi)(τ+) · γs(αl)(τ) d2uil(τ)

)
for a ≤ τ ≤ t ≤ b (i = 1, . . . , n).

Hence y = (yi)
n
i=1 is a solution of the initial problem

dy = dA∗(t) · y, y(s) = ek,

where ek = (δik)
n
i=1, A∗(t) = (a∗il(t))

n
i,l=1, a∗ii(t) ≡ 0 and

a∗il(t) ≡
t∫

s

γ−1
s (αi)(τ) · γs(αl)(τ) dail(τ) (i ̸= l; i, l = 1, . . . , n).

In view of the conditions of the lemma, the functions (−1)j+1a∗il (i ̸= l; i, l = 1, . . . , n) are non-
decreasing on Jj .

Let
Λs(t) = diag(γs(α1)(t), . . . , γs(αn)(t)) for t ∈ Jj .

Using (1.1.18), for the matrix-function Q(t), we have

In + (−1)jdjA
∗(t) = In + (−1)j

(
Λ−1
s (t) + (−1)jdjΛ

−1
s (t)

)
djÃ(t) Λs(t)

= In −
(
Λ−1
s (t) + (−1)jdjΛ

−1
s (t)

)(
In + (−1)jdjQ(t)

)
Λs(t)

+
(
Λ−1
s (t) + (−1)j djΛ

−1
s (t)

)(
In + (−1)jdj(Ã(t) +Q(t))

)
Λs(t) for t ∈ Jj

and

In+(−1)jdjA
∗(t) =

(
Λ−1
s (t)+(−1)j djΛ

−1
s (t)

)(
In+(−1)jdj(Ã(t)+Q(t))

)
Λs(t) for t ∈ Jj . (1.1.57)
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Hence, due to (1.1.23), we obtain

det(In + (−1)jdjA
∗(t)) ̸= 0 for t ∈ Jj .

Therefore, according to Theorem 1.1.8,

lim
m→+∞

zm(t) = y(t) uniformly into Jj , (1.1.58)

where

zm(s) = ek (m = 0, 1, . . . ),

z0(t) =
(
In + (−1)jdjA

∗(t)
)−1

ek for (−1)j(t− s) < 0, ; s, t ∈ Jj ,

zm(t) =
(
In + (−1)jdjA

∗(t)
)−1
(
ek +

t∫
s

dA∗(τ) · zm−1(τ) + (−1)j djA
∗(t) · zm−1(t)

)
for (−1)j(t− s) < 0, s, t ∈ Jj (m = 1, 2, . . . ).

(1.1.59)

Taking into account the equalities

djΛs(t) = djQ(t) · Λs(t) for t ∈ Jj ,

from (1.1.57) we get

In + (−1)jdjA
∗(t)

=
(
Λ−1
s (t) + (−1)j djΛ

−1
s (t)

)(
In + (−1)jBj(t)

)(
Λs(t) + (−1)j djΛs(t)

)
for t ∈ Jj , (1.1.60)

where
Bj(t) ≡ djÃ(t)

(
In + (−1)jdjQ(t)

)−1
.

Based on this, it is not difficult to verify that(
In + (−1)jBj(t)

)−1
=
(
In + (−1)j djQ(t)

) (
In + (−1)j dj(Ã(t) +Q(t))

)−1 for t ∈ Jj .

Taking into account the above equality, by (1.1.22) and (1.1.24) we have(
In + (−1)jBj(t)

)−1 ≥ 0 for t ∈ Jj .

Therefore, due to (1.1.60), (
In + (−1)jdjA

∗(t)
)−1 ≥ On×n for t ∈ Jj , (1.1.61)

since by (1.1.22) we have
Λs(t) ≥ On×n for t ∈ Jj . (1.1.62)

(1.1.59) and (1.1.61) imply the estimates

zm(t) ≥
(
In + (−1)jdjA

∗(t)
)−1

ek for (−1)j(t− s) < 0, t, s ∈ Jj (m = 0, 1, . . . ),

where ek = (δik)
n
i,k=1 (δik is the Kronecker symbol).

Using now (1.1.58) and (1.1.59), we obtain

y(s) ≥ ek, y(t) ≥
(
In + (−1)jdjA

∗(t)
)−1

ek for (−1)j(t− s) < 0, t, s ∈ Jj . (1.1.63)

On the other hand, by the equalities

y(t) = Λ−1
s (t)uk(t, s) for t ∈ Jj ,
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inequalities (1.1.63) imply

uk(t, s) ≥ Λs(t)
(
In + (−1)jdjA

∗(t)
)−1

ek for (−1)j(t− s) < 0, t, s ∈ Jj .

Since the latter inequalities are fulfilled for every k ∈ {1, . . . , n}, we have

U(t, s) ≥ Λs(t)
(
In + (−1)jdjA

∗(t)
)−1 for (−1)j(t− s) < 0 (j = 1, 2). (1.1.64)

So, by virtue of (1.1.61) and (1.1.62), condition (1.1.64) implies estimate (1.1.25).

Proof of Theorem 1.1.10. Assume t0 < sup I and consider the interval {t ∈ I : t ≥ t0}. Then problem
(1.1.35)–(1.1.37) has the form

dy = dA(t) · y + df(t) for t ≥ t0, y(t0) = c0.

Let Z (Z(t0) = In) be a fundamental matrix of the system

dz = dA(t) · z for t ≥ t0. (1.1.65)

Then by the variation-of-constants formula (see (1.1.14)),

y(t) = f(t)− f(s) + Z(t)

{
Z−1(s)y(s)−

t∫
s

dZ−1(τ) · (f(τ)− f(s))

}
for s, t ≥ t0. (1.1.66)

Put

g(t) = −x(t) + x(t0) +

t∫
t0

dA(τ) · x(τ) + f(t)− f(t0) for t ≥ t0.

Evidently,
dx(t) = dA(t) · x(t) + d(f(t)− g(t)) for t ≥ t0.

Let ε be an arbitrary small positive number. Then

x(t) = f(t)− f(t0 + ε)− g(t) + g(t0 + ε) + Z(t)

{
Z−1(t0 + ε)x(t0 + ε)

−
t∫

t0+ε

dZ−1(τ) · (f(τ)− f(t0 + ε)− g(τ) + g(t0 + ε))

}
for t ≥ t0 + ε.

Hence, by (1.1.66), we get

x(t) = y(t) + Z(t)Z−1(t0 + ε)
(
x(t0 + ε)− y(t0 + ε)

)
+ gε(t) for t ≥ t0 + ε, (1.1.67)

where

gε(t) = −g(t) + g(t0 + ε) + Z(t)

t∫
t0+ε

dZ−1(τ) · (g(τ)− g(t0 + ε)).

Using the integration-by-parts formula, we have

gε(t) = −
t∫

t0+ε

U(t, τ) dsc(g)(τ)−
∑

t0+ε<τ≤t

U(t, τ−) d1g(τ)

−
∑

t0+ε≤τ<t

U(t, τ+) d2g(τ) for t ≥ t0 + ε, (1.1.68)

where U(t, τ) = Z(t)Z−1(τ) is the Cauchy matrix of system (1.1.65).
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On the other hand, conditions (1.1.29)–(1.1.31) guarantee conditions (1.1.22)–(1.1.24). Hence,
according to Theorem 1.1.9, where Q(t) ≡ diag(A(t)), estimate (1.1.25) holds, and by (1.1.68),

gε(t) ≤ 0 for t ≥ t0 + ε,

since by (1.1.32), the function g is non-decreasing on ]t0, b]. Hence, this and (1.1.67) result in

x(t) ≤ y(t) + U(t, t0 + ε)(x(t0 + ε)− y(t0 + ε)) for t ≥ t0 + ε.

Passing to the limit as ε → 0 in the latter inequality and taking into account (1.1.25) and (1.1.33),
we get

x(t) ≤ y(t) for t > t0

since by (1.1.36) and (1.1.37),

y(t0+) = c0 + d2A(t0) · c0 + d2f(t0).

Analogously, we can show the validity of inequality (1.1.34) for t < t0.

In particular, Theorem 1.1.10 yields Theorem 1.1.11.

Proof of Theorem 1.1.11. Let us introduce the vector-function

z(t) = c0 +

( t∫
t0

dA(τ) · x(τ) + f(t)− f(t0)

)
· sgn(t− t0) for t ∈ I.

It is clear that z ∈ BVloc(I \ {t0};Rn). Moreover, due to (1.1.38), the function z satisfies (1.1.33) and

x(t) ≤ z(t) for t ∈ I. (1.1.69)

Since A is a non-decreasing matrix-function, from the latter inequality we find that x satisfies (1.1.32)
on the intervals J1 and J2. Therefore, according to Theorem 1.1.10 and (1.1.69), the theorem is
proved.

1.2 The well-posedness of the initial problem
1.2.1 Statement of the problem and formulation of the results
Let A0 ∈ BVloc(I;Rn×n), f0 ∈ BVloc(I;Rn) and t0 ∈ I, where I ⊂ R is an arbitrary interval non-
degenerated at the point. Consider the system

dx = dA0(t) · x+ df0(t) for t ∈ I (1.2.1)

under the initial condition
x(t0) = c0, (1.2.2)

where c0 ∈ Rn is an arbitrary constant vector.
Let x0 be a unique solution of problem (1.2.1), (1.2.2).
Along with the initial problem (1.2.1), (1.2.2), consider the sequence of the initial problems

dx = dAk(t) · x+ dfk(t), (1.2.1k)
x(tk) = ck (1.2.2k)

(k = 1, 2, . . . ), where Ak ∈ BVloc(I;Rn×n) (k = 1, 2, . . . ), fk ∈ BVloc(I;Rn) (k = 1, 2, . . . ), tk ∈ I
(k = 1, 2, . . . ) and ck ∈ Rn (k = 1, 2, . . . ).

If t ∈ I, then we denote It = I \ {t}. Moreover, we use the designations

∥x∥kl = sup
{
∥x(t)∥ : t ∈ I; (−1)l(t− tk) > 0

}
for x ∈ BV(I;Rn) (l = 1, 2; k = 0, 1, . . . ).
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We assume that Ak = (akil)
n
i,l=1 and fk = (fkl)

n
l=1 (k = 0, 1, . . . ) and, without loss of generality,

either tk < t0 (k = 1, 2, . . . ), or tk = t0 (k = 1, 2, . . . ), or tk > t0 (k = 1, 2, . . . ).
In this section, we establish the necessary and sufficient and the effective sufficient conditions for

the initial problem (1.2.1k), (1.2.2k) to have a unique solution xk for any sufficiently large k and

lim
k→+∞

xk(t) = x0(t) (1.2.3)

or
lim

k→+∞

(
xk(t) + ∆tkxk(t)

)
= x0(t) + ∆t0x0(t) (1.2.4)

uniformly on I, where ∆tkxk(t) (k = 0, 1, . . . ) are the functions defined by (0.0.6).
Note that by (0.0.6) we have

xk(t) + ∆tkxk(t) =


xk(t−) for t < tk,

xk(tk) for t = tk,

xk(t+) for t > tk

(k = 0, 1, . . . ).

Along with systems (1.2.1) and (1.2.1k), we consider the corresponding homogeneous systems

dx = dA0(t) · x (1.2.10)

and
dx = dAk(t) · x (1.2.1k0)

for any natural k.
Definition 1.2.1. We say that the sequence (Ak, fk; tk) (k = 1, 2, . . . ) belongs to the set S(A0, f0; t0)
if for every c0 ∈ Rn and a sequence ck ∈ Rn (k = 1, 2, . . . ) satisfying the condition

lim
k→+∞

ck = c0, (1.2.5)

problem (1.2.1k), (1.2.2k) has the unique solution xk for any sufficiently large k, and condition (1.2.3)
holds uniformly on I.

We also consider the case where the condition

lim
k→+∞

ckj = c0j , (1.2.5j)

if j ∈ {1, 2} is such that (−1)j(tk − t0) ≥ 0 (k = 0, 1, . . . ), holds instead or along with (1.2.5), where

ckj = ck + (−1)j
(
djAk(tk)ck + djfk(tk)

)
(j = 1, 2; k = 0, 1, . . . ). (1.2.6)

Note that if

lim
k→+∞

djAk(tk) = djA0(t0) and lim
k→+∞

djfk(tk) = djf0(t0) (1.2.7)

for some j ∈ {1, 2}, then condition (1.2.5j) follows from (1.2.5).
Definition 1.2.2. We say that the sequence (Ak, fk; tk) (k = 1, 2, . . . ) belongs to the set S∆(A0, f0; t0)
if for every c0 ∈ Rn and a sequence ck ∈ Rn (k = 1, 2, . . . ) satisfying condition (1.2.5j), problem
(1.2.1k), (1.2.2k) has the unique solution xk for any sufficiently large k, and condition (1.2.4) holds
uniformly on I.

It is evident that S(A0, f0; t0) ⊂ S∆(A0, f0; t0), but the inverse inclusion is not true, in general.
The corresponding example can be easily constructed based on the Example 1.2.1 given below.

From equalities

xk(t−) ≡ (In − d1A(t))xk(t) and xk(t+) ≡ (In + d2A(t))xk(t) (k = 0, 1, . . . )

follow some conditions guaranteeing the inverse inclusion S∆(A0, f0; t0) ⊂ S(A0, f0; t0).
We consider separately the cases of the sets S(A0, f0; t0) and S∆(A0, f0; t0).
First, we give the results concerning the set S(A0, f0; t0).
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Theorem 1.2.1. Let A0 ∈ BV(I;Rn×n), f0 ∈ BV(I;Rn), t0 ∈ I, and the sequence of points tk ∈ I
(k = 1, 2, . . . ) be such that

det
(
In + (−1)jdjA0(t)

)
̸= 0 for t ∈ I, (−1)j(t− t0) < 0

and for t = t0 if j ∈ {1, 2} is such that (−1)j(tk − t0) > 0 for every k ∈ {1, 2, . . . } (1.2.8)

and
lim

k→+∞
tk = t0. (1.2.9)

Then
((Ak, fk; tk))

+∞
k=1 ∈ S(A0, f0; t0) (1.2.10)

if and only if there exists a sequence of matrix-functions Hk ∈ BV(I;Rn×n) (k = 0, 1, . . . ) such that

inf
{
|det(H0(t))| : t ∈ I

}
> 0, (1.2.11)

and the conditions

lim
k→+∞

Hk(t) = H0(t), (1.2.12)

lim
k→+∞

{∥∥∥DI(Ak,Hk;A0,H0)(τ)
∣∣∣t
tk

∥∥∥(1 + ∣∣∣ t∨
tk

(
DI(Ak,Hk;A0,H0)

)∣∣∣)} = 0, (1.2.13)

lim
k→+∞

{∥∥∥DB(fk,Hk; f0,H0)(τ)
∣∣∣t
tk

∥∥∥(1 + ∣∣∣ t∨
tk

(
DI(Ak,Hk;A0,H0)

)∣∣∣)} = 0 (1.2.14)

hold uniformly on I, where the operators DI and DB are defined, respectively, by (0.0.4) and (0.0.5).

The following theorem together with Remark 1.2.1 is analogous of the Opial type theorem (see [46])
concerning the case of ordinary differential equations.

Theorem 1.2.2. Let A0 ∈ BV(I;Rn×n), f0 ∈ BV(I;Rn), c0 ∈ Rn, t0 ∈ I, and the sequence of points
tk ∈ I (k = 1, 2, . . . ) be such that conditions (1.2.8) and (1.2.9) hold. Let, moreover, the sequences of
matrix- and vector-functions Ak ∈ BVloc(I;Rn×n) (k = 1, 2, . . . ) and fk ∈ BVloc(I;Rn) (k = 1, 2, . . . )
and bounded sequences of constant vectors ck ∈ Rn (k = 1, 2, . . . ) be such that conditions (1.2.5j),

lim
k→+∞

sup
t∈I, t ̸=tk

{
∥Akj(t)−A0j(t)∥

(
1 +

∣∣∣ t∨
tk

(Ak −A0)
∣∣∣)} = 0 (1.2.15)

and

lim
k→+∞

sup
t∈I, t ̸=tk

{
∥fkj(t)− f0j∥

(
1 +

∣∣∣ t∨
tk

(Ak −A0)
∣∣∣)} = 0 (1.2.16)

hold if j ∈ {1, 2} is such that (−1)j(tk − t0) ≥ 0 for every k ∈ {1, 2, . . . }, where ckj (k = 0, 1, . . . ) are
defined by (1.2.6),

Akj(t) ≡ (−1)j(Ak(t)−Ak(tk))− djAk(tk) (j = 1, 2; k = 0, 1, . . . )

and

fkj(t) ≡ (−1)j(fk(t)− fk(tk))− djfk(tk) (j = 1, 2; k = 0, 1, . . . ).

Then the initial problem (1.2.1k), (1.2.2k) has the unique solution xk for any sufficiently large k and

lim
k→+∞

sup
t∈I, t ̸=tk

∥xk(t)− x0(t)∥ = 0. (1.2.17)
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Remark 1.2.1. In Theorem 1.2.2, it is evident that the sequence xk (k = 1, 2, . . . ) converges to x0

uniformly on the set {t ∈ I, t ≤ t0} if tk > t0 (k = 1, 2, . . . ), and on the set {t ∈ I, t ≥ t0} if tk < t0
(k = 1, 2, . . . ). Moreover, in Theorem 1.2.2, if conditions (1.2.15) and (1.2.16) hold uniformly on the
set I, then these conditions are equivalent, respectively, to the conditions

lim
k→+∞

{∥∥(Ak(t)−Ak(tk))− (A0(t)−A0(t0))
∥∥(1 + ∣∣∣ t∨

tk

(Ak −A0)
∣∣∣)} = 0 (1.2.18)

and

lim
k→+∞

{∥∥(fk(t)− fk(tk))− (f0(t)− f0(t0))
∥∥(1 + ∣∣∣ t∨

tk

(Ak −A0)
∣∣∣)} = 0 (1.2.19)

uniformly on I, since (1.2.15) and (1.2.16) imply that

lim
k→+∞

djAk(t) = djA0(t) and lim
k→+∞

djfk(t) = djf0(t)

uniformly on I for every j ∈ {1, 2}. In addition, equalities (1.2.7) hold and therefore, in view of
(1.2.4) and (1.2.6), conditions (1.2.5j) (j = 1, 2) hold, too. Thus, in this case, condition (1.2.3) holds
uniformly on I.

Theorem 1.2.3. Let A∗
0 ∈ BV(I;Rn×n), f∗

0 ∈ BV(I;Rn), c∗0 ∈ Rn, t0 ∈ I, and a sequence of points
tk ∈ I (k = 1, 2, . . . ) be such that condition (1.2.9) holds,

det
(
In + (−1)jdjA

∗
0(t)

)
̸= 0 for t ∈ I, (−1)j(t− t0) < 0

and for t = t0 if j ∈ {1, 2} is such that (−1)j(tk − t0) > 0 for every k ∈ {1, 2, . . . }, (1.2.20)

and the initial problem

dx = dA∗
0(t) · x+ df∗

0 (t), (1.2.21)
x(t0) = c∗0 (1.2.22)

has a unique solution x∗
0. Let, moreover, the sequences of matrix- and vector-functions Ak,Hk ∈

BVloc(I;Rn×n) (k = 1, 2, . . . ) and fk, hk ∈ BVloc(I;Rn) (k = 1, 2, . . . ) and the sequence of constant
vectors ck (k = 1, 2, . . . ) be such that the sequence c∗k ∈ Rn (k = 1, 2, . . . ) is bounded and the conditions

inf
{
|det(Hk(t)| : t ∈ Itk

}
> 0 for every sufficiently large k, (1.2.23)

lim
k→+∞

c∗kj = c∗0j , (1.2.24)

lim
k→+∞

sup
t∈I, t ̸=tk

{
∥A∗

kj(t)−A∗
0j(t)∥

(
1 +

∣∣∣ t∨
tk

(A∗
k −A∗

0)
∣∣∣)} = 0 (1.2.25)

lim
k→+∞

sup
t∈I, t ̸=tk

{
∥f∗

kj(t)− f∗
0j∥
(
1 +

∣∣∣ t∨
tk

(A∗
k −A∗

0)
∣∣∣)} = 0 (1.2.26)

hold for j ∈ {1, 2} being such that (−1)j(tk − t0) ≥ 0 for every k ∈ {1, 2, . . . }, where

A∗
kj(t) = (−1)j(A∗

k(t)−A∗
k(tk))− djA

∗
k(tk) and

f∗
kj(t) = (−1)j(f∗

k (t)− f∗
k (tk))− djf

∗
k (tk) for t ∈ I (j = 1, 2; k = 0, 1, . . . );

A∗
k(t) = I(Hk, Ak)(t) and f∗

k (t) = hk(t)− hk(tk) + B(Hk, fk)(t)

−B(Hk, fk)(tk)−
t∫

tk

dA∗
k(s) · hk(s) for t ∈ I (k = 1, 2, . . . );
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c∗k = Hk(tk)ck + hk(tk) (k = 1, 2, . . . ),

c∗kj = c∗k + (−1)j
(
djA

∗
k(tk)c

∗
k + djf

∗
k (tk)

)
(j = 1, 2; k = 0, 1, . . . ).

Then problem (1.2.1k), (1.2.2k) has the unique solution xk for any sufficiently large k and

lim
k→+∞

sup
t∈I, t ̸=tk

∥∥Hk(t)xk(t) + hk(t)− x∗
0(t)

∥∥ = 0. (1.2.27)

Remark 1.2.2. In Theorem 1.2.3, the vector-function x∗
k(t) ≡ Hk(t)xk(t)+hk(t) is a solution of the

problem

dx = dA∗
k(t) · x+ df∗

k (t), (1.2.21k)
x(tk) = c∗k (1.2.22k)

for every sufficiently large k.

Remark 1.2.3. It is evident that if condition (1.2.3) holds uniformly on I, then condition (1.2.17)
holds, as well. But the inverse proposition is not true, in general.

We give the corresponding example, which is simple modification of the one given in [32,56].

Example 1.2.1. Let I = [−1, 1], n = 1, and αk (k = 1, 2, . . . ) and βk (k = 1, 2, . . . ) be, respectively,
an arbitrary increasing in [−1, 0) and decreasing in (0, 1] sequences such that

lim
k→∞

αk = lim
k→∞

βk = 0 and lim
k→∞

γk = γ0 ∈ [0, 1),

where γk = αk(αk − βk)
−1.

Let tk = t0 = 0 (k = 1, 2, . . . ), ck = exp(γk − γ0)c0 (k = 1, 2, . . . ), where c0 is arbitrary, fk(t) =
f0(t) ≡ 0n (k = 1, 2, . . . ),

Ak(t) =


0 for t ∈ [−1, αk[,

(t− αk)/(βk − αk) for t ∈ [αk, βk],

1 for t ∈ ]βk, 1] (k = 1, 2, . . . ).

It is not difficult to verify that the unique solution of the corresponding homogeneous initial
problem has the form

xk(t) =


ck for t ∈ [−1, αk[,

ck exp
(
t(βk − αk)

−1
)

for t ∈ [αk, βk],

ck exp(1) for t ∈]βk, 1] (k = 1, 2, . . . ).

So, condition (1.2.17) holds, where

x0(t) =


c0 for t ∈ [−1, 0[ ,

c0 exp(γ0) for t = 0,

c0 exp(1) for t ∈ ]0, 1],

but (1.2.3) does not hold uniformly on [0, 1], since the function x0(t) is discontinuous at the point
t = 0.

On the other hand, in the “limit” equation

dx = dA∗
0(t) · x,

where the function A∗
0 is defined as

A∗
0(t) =


0 for t ∈ [−1, 0[,

γ0 for t = 0,

1 for t ∈]0, 1],
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and, therefore, the unique solution of the equation under the condition x(0) = c0(1 − γ0)
−1 has the

form

x∗
0(t) =


c0 for t ∈ [−1, 0[ ,

c0(1− γ0)
−1 for t = 0,

c0(2− γ0) (1− γ0)
−1 for t ∈ ]0, 1].

It is evident that x∗
0 ̸= x0.

On the other hand, x0 is the solution of the initial problem

dx = dA0(t) · x, x(0) = c0 exp(γ0),

where

A0(t) =


0 for t ∈ [−1, 0[ ,

1− exp(−γ0) for t = 0,

exp(1− γ0)− exp(−γ0) for t ∈ ]0, 1].

The obtain “anomaly” corresponds to the statement of Theorem 1.2.3, in particular, to condition
(1.2.27), where Hk(t) ≡ In (k = 1, 2, . . . ), and

hk(t) =


c0 − ck for t ∈ [−1, αk[ ,

c0(1− γk)
−1 − ck exp

(
t(βk − αk)

−1
)

for t ∈ [αk, βk],

c0(2− γk) (1− γk)
−1 − ck exp(1) for t ∈ ]βk, 1] (k = 1, 2, . . . ).

Indeed, in view of Remark 1.2.2, the function x∗
k(t) = xk(t) will be a solution of the problem

dx = dA∗
k(t) · x, x(0) = c0(1− γk)

−1

for every natural k, where

A∗
k(t) =


0 for t ∈ [−1, αk[ ,

γk for t ∈ [αk, βk],

1 for t ∈ ]βk, 1]

(k = 1, 2, . . . ).

So, due to the conditions lim
k→+∞

γk = γ0, we have

lim
k→+∞

sup
t∈I, t ̸=tk

∥A∗
k(t)−A∗

0(t)∥ = 0.

Below, we consider, mainly, the well-posedness question only on the whole interval I. For the last
case, instead of (1.2.24) we consider the condition

lim
k→+∞

c∗k = c∗0, (1.2.28)

and instead of conditions (1.2.25) and (1.2.26), we consider, respectively, the conditions

lim
k→+∞

{∥∥(A∗
k(t)−A∗

k(tk))− (A∗
0(t)−A∗

0(t0))
∥∥(1 + ∣∣∣ t∨

tk

(A∗
k −A∗

0)
∣∣∣)} = 0 (1.2.29)

and

lim
k→+∞

{∥∥(f∗
k (t)− f∗

k (tk))− (f∗
0 (t)− f∗

0 (t0))
∥∥(1 + ∣∣∣ t∨

tk

(A∗
k −A∗

0)
∣∣∣)} = 0 (1.2.30)

uniformly on I.
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Corollary 1.2.1. Let A0 ∈ BV(I;Rn×n), f0 ∈ BV(I;Rn), c0 ∈ Rn, t0 ∈ I and the sequences
Ak ∈ BV(I;Rn×n) (k = 1, 2, . . . ), fk ∈ BV(I;Rn) (k = 1, 2, . . . ), ck ∈ Rn (k = 1, 2, . . . ) and tk ∈ I
(k = 1, 2, . . . ) be such that conditions (1.2.8), (1.2.9), (1.2.11) and

lim
k→+∞

(ck − φk(tk)) = c0 (1.2.31)

hold, and conditions (1.2.12), (1.2.13) and

lim
k→+∞

{∥∥∥∥DB(fk − φk,Hk; f0,H0)(τ)
∣∣∣t
tk

+

t∫
tk

dI(Hk, Ak)(τ) · φk(τ)

∥∥∥∥
×
(
1 +

∣∣∣ t∨
tk

(
DI(Ak,Hk;A0,H0)

)∣∣∣)} = 0 (1.2.32)

hold uniformly on I, where Hk ∈ BVloc(I;Rn×n) (k = 0, 1, . . . ), φk ∈ BVloc(I;Rn) (k = 1, 2, . . . ),
and the operators DB and DI are defined, respectively, by (0.0.4) and (0.0.5). Then problem
(1.2.1k), (1.2.2k) has the unique solution xk for any sufficiently large k and

lim
k→+∞

∥xk(t)− φk(t)− x0(t)∥ = 0 (1.2.33)

uniformly on I.

Below, we will give some sufficient conditions guaranteeing inclusion (1.2.10). Towards this end,
we establish a theorem, other than Theorem 1.2.1, concerning the necessary and sufficient conditions
for the inclusion, as well as the corresponding propositions.
Theorem 1.2.1′. Let A0 ∈ BV(I;Rn×n), f0 ∈ BV(I;Rn), t0 ∈ I and the sequence of points tk ∈ I
(k = 1, 2, . . . ) be such that conditions (1.2.8) and (1.2.9) hold. Then inclusion (1.2.10) holds if and
only if there exists a sequence of the matrix-functions Hk ∈ BVloc(I;Rn×n) (k = 0, 1, . . . ) such that
conditions (1.2.11) and

lim sup
k→+∞

∨
I

(Hk + B(Hk, Ak)) < +∞ (1.2.34)

hold, and conditions (1.2.12),

lim
k→+∞

(
B(Hk, Ak)(t)− B(Hk, Ak)(tk)

)
= B(H0, A0)(t)− B(H0, A0)(t0) (1.2.35)

and

lim
k→+∞

(
B(Hk, fk)(t)− B(Hk, fk)(tk)

)
= B(H0, f0)(t)− B(H0, f0)(t0) (1.2.36)

hold uniformly on I.

Remark 1.2.4. Due to (1.2.11), (1.2.12), there exists a positive number r such that

sup
{ ∣∣∣ t∨

t0

(I(Hk, Ak))
∣∣∣ : t ∈ I

}
≤ r

∨
I

(Hk + B(Hk, Ak)) (k = 0, 1, . . . ).

In addition, in view of Lemma 1.2.4 (see below), by conditions (1.2.35) and (1.2.36), we get

lim
k→+∞

∥∥∥DI(Ak,Hk;A0,H0)(τ)
∣∣∣t
tk

∥∥∥ = 0

uniformly on I. Therefore, owing to (1.2.34) and (1.2.36), conditions (1.2.13) and (1.2.14) hold
uniformly on I.
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Theorem 1.2.1′′. Let conditions (1.2.9) and

det
(
In + (−1)jdjAk(t)

)
̸= 0 for t ∈ [a, b] (j = 1, 2; k = 0, 1, . . . )

hold. Then inclusion (1.2.10) holds if and only if the conditions

lim
k→+∞

X−1
k (t) = X−1

0 (t) (1.2.37)

and
lim

k→+∞

(
B(X−1

k , fk)(t)− B(X−1
k , fk)(tk)

)
= B(X−1

0 , f0)(t)− B(X−1
0 , f0)(t0)

hold uniformly on [a, b], where Xk is the fundamental matrix of the homogeneous system (1.2.1k0) for
every k ∈ {0, 1, . . . }.

Theorem 1.2.2′. Let A0 ∈ BV(I;Rn×n), f0 ∈ BV(I;Rn), c0 ∈ Rn, t0 ∈ I and the sequence of points
tk ∈ I (k = 1, 2, . . . ) be such that conditions (1.2.8) and (1.2.9) hold. Let, moreover, the sequences
Ak ∈ BVloc(I;Rn×n) (k = 1, 2, . . . ), fk ∈ BVloc(I;Rn) (k = 1, 2, . . . ) and ck ∈ Rn (k = 1, 2, . . . ) be
such that conditions (1.2.5) and

lim sup
k→+∞

∨
I

(Ak) < +∞ (1.2.38)

hold, and the conditions

lim
k→+∞

(
Ak(t)−Ak(tk)

)
= A0(t)−A0(t0) (1.2.39)

and

lim
k→+∞

(
fk(t)− fk(tk)

)
= f0(t)− f0(t0) (1.2.40)

hold uniformly on I. Then the initial problem (1.2.1k), (1.2.2k) has the unique solution xk for any
sufficiently large k and condition (1.2.3) holds uniformly on I.

Theorem 1.2.3′. Let A∗
0 ∈ BV(I;Rn×n), f∗

0 ∈ BV(I;Rn), c∗0 ∈ Rn, t0 ∈ I and the sequence of
points tk ∈ I (k = 1, 2, . . . ) be such that conditions (1.2.9) and (1.2.20) hold, and the initial problem
(1.2.21), (1.2.22) has a unique solution x∗

0. Let, moreover, the sequences Ak,Hk ∈ BVloc(I;Rn×n)
(k = 1, 2, . . . ), fk, hk ∈ BVloc(I;Rn) (k = 1, 2, . . . ) and ck ∈ Rn (k = 1, 2, . . . ) be such that conditions
(1.2.23),

lim
k→+∞

(Hk(tk)ck + hk(tk)) = c∗0 (1.2.41)

and
lim sup
k→+∞

∨
I

(A∗
k) < +∞ (1.2.42)

hold, and the conditions

lim
k→+∞

(
A∗

k(t)−A∗
k(tk)

)
= A∗

0(t)−A∗
0(t0) (1.2.43)

and

lim
k→+∞

(
f∗
k (t)− f∗

k (tk)
)
= f∗

0 (t)− f∗
0 (t0) (1.2.44)

hold uniformly on I, where the matrix-functions A∗
k(t) (k = 1, 2, . . . ) and vector-functions f∗

k (t)
(k = 1, 2, . . . ) are defined as in Theorem 1.2.3. Then problem (1.2.1k), (1.2.2k) has the unique solution
xk for any sufficiently large k and condition (1.2.27) holds uniformly on I.

Corollary 1.2.1′. Let A0 ∈ BV(I;Rn×n), f0 ∈ BV(I;Rn), c0 ∈ Rn, t0 ∈ I, and the sequences
Ak ∈ BVloc(I;Rn×n) (k = 1, 2, . . . ), fk ∈ BVloc(I;Rn) (k = 1, 2, . . . ), ck ∈ Rn (k = 1, 2, . . . ) and
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tk ∈ I (k = 1, 2, . . . ) be such that conditions (1.2.8), (1.2.9), (1.2.11), (1.2.31) and (1.2.34) hold, and
conditions (1.2.12), (1.2.35) and

lim
k→+∞

(
B(Hk, fk − φk)(t)− B(Hk, fk − φk)(tk) +

t∫
tk

dB(Hk, Ak)(τ) · φk(τ)

)
= B(H0, f0)(t)− B(H0, f0)(t0) (1.2.45)

hold uniformly on I, where Hk ∈ BVloc(I;Rn×n) (k = 0, 1, . . . ), and φk ∈ BVloc(I;Rn) (k = 1, 2, . . . ).
Then problem (1.2.1k), (1.2.2k) has the unique solution xk for any sufficiently large k and condition
(1.2.33) holds uniformly on I.

Corollary 1.2.2. Let A0∈BV(I;Rn×n), f0∈BV(I;Rn), t0∈I, and the sequences Ak∈BVloc(I;Rn×n)
(k = 1, 2, . . . ), fk ∈ BVloc(I;Rn) (k = 1, 2, . . . ) and tk ∈ I (k = 1, 2, . . . ) be such that conditions
(1.2.9), (1.2.11) and (1.2.34) hold, and conditions (1.2.12),

lim
k→+∞

t∫
tk

Hk(s) dAk(s) =

t∫
t0

H0(s) dA0(s), (1.2.46)

lim
k→+∞

t∫
tk

Hk(s) dfk(s) =

t∫
t0

H0(s) df0(s), (1.2.47)

lim
k→+∞

djAk(t) = djA0(t) (j = 1, 2), (1.2.48)

lim
k→+∞

djfk(t) = djf0(t) (j = 1, 2) (1.2.49)

hold uniformly on I, where Hk ∈ BVloc(I;Rn×n) (k = 0, 1, . . . ). Let, moreover, either

lim sup
k→+∞

∑
t∈I

(
∥djAk(t)∥+ ∥djfk(t)∥

)
< +∞ (j = 1, 2) (1.2.50)

or
lim sup
k→+∞

∑
t∈I

∥djHk(t)∥ < +∞ (j = 1, 2). (1.2.51)

Then inclusion (1.2.10) holds.

Corollary 1.2.3. Let A0∈BV(I;Rn×n), f0∈BV(I;Rn), t0∈I, and the sequences Ak∈BVloc(I;Rn×n)
(k = 1, 2, . . . ), fk ∈ BVloc(I;Rn) (k = 1, 2, . . . ) and tk ∈ I (k = 1, 2, . . . ) be such that conditions
(1.2.9), (1.2.11) and (1.2.34) hold, and conditions (1.2.12), (1.2.39), (1.2.40),

lim
k→+∞

t∫
tk

dHk(s) ·Ak(s) = A∗(t)−A∗(t0) (1.2.52)

and

lim
k→+∞

t∫
tk

dHk(s) · fk(s) = f∗(t)− f∗(t0) (1.2.53)

hold uniformly on I, where H0(t) ≡ In, Hk ∈ BVloc(I;Rn×n) (k = 1, 2, . . . ), A∗ ∈ BV(I;Rn×n) and
f∗ ∈ BV(I;Rn). Let, moreover, system (1.2.21), where A∗

0(t) ≡ A0(t)− A∗(t), f∗
0 (t) ≡ f0(t)− f∗(t),

have a unique solution satisfying condition (1.2.2). Then

((Ak, fk; tk))
+∞
k=1 ∈ S(A∗

0, f
∗
0 ; t0).
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Corollary 1.2.4. Let A0∈BV(I;Rn×n), f0∈BV(I;Rn), t0∈I, and the sequences Ak∈BVloc(I;Rn×n)
(k = 1, 2, . . . ), fk ∈ BVloc(I;Rn) (k = 1, 2, . . . ) and tk ∈ I (k = 1, 2, . . . ) be such that conditions
(1.2.8) and (1.2.9) hold. Let, moreover, there exist a natural number m and matrix-functions Bj ∈
BVloc(I;Rn×n) (j = 1, . . . ,m− 1) such that

lim sup
k→+∞

∨
I

(Akm) < +∞ (1.2.54)

and the conditions

lim
k→+∞

(Akj(t)−Akj(tk)) = Bj(t)−Bj(t0) (j = 1, . . . ,m− 1), (1.2.55)

lim
k→+∞

(Akm(t)−Akm(tk)) = A0(t)−A0(t0), (1.2.56)

lim
k→+∞

(fkm(t)− fkm(tk)) = f0(t)− f0(t0) (1.2.57)

hold uniformly on I, where

Akj(t) = Hk j−1(t) + B(Hk j−1, Ak)(t), fkj(t) = B(Hk j−1, fk)(t)

for t ∈ I (j = 1, . . . ,m; k = 1, 2, . . . );

Hk0(t) = In, Hkj(t) =
(
In −Akj(t) +Akj(tk) +Bj(t)−Bj(t0)

)
Hk j−1(t)

for t ∈ I (j = 1, . . . ,m− 1; k = 1, 2, . . . ).

Then inclusion (1.2.10) holds.

If m = 1, then Corollary 1.2.4 coincides with Theorem 1.2.2′.
If m = 2, then Corollary 1.2.4 has the following form.

Corollary 1.2.4′. Let A0 ∈ BV(I;Rn×n), f0 ∈ BV(I;Rn), t0 ∈ I, and the sequences Ak ∈
BVloc(I;Rn×n) (k = 1, 2, . . . ), fk ∈ BVloc(I;Rn) (k = 1, 2, . . . ) and tk ∈ I (k = 1, 2, . . . ) be such that
conditions (1.2.8), (1.2.9) and (1.2.34) hold, and the conditions

lim
k→+∞

(
Ak(t)−Ak(tk)

)
= B(t)−B(t0),

lim
k→+∞

(
B(Hk, Ak)(t)− B(Hk, Ak)(tk)

)
= A0(t)−A0(t0),

lim
k→+∞

(B(Hk, fk)(t)− B(Hk, fk)(tk)) = f0(t)− f0(t0)

hold uniformly on I, where B ∈ BV(I;Rn×n) and

Hk(t) = In −Ak(t) +Ak(tk) +B(t)−B(tk) for t ∈ I (k = 1, 2, . . . ).

Then inclusion (1.2.10) holds.

Corollary 1.2.5. Let A0 ∈ BV(I;Rn×n), f0 ∈ BV(I;Rn), t0 ∈ I, and tk ∈ I (k = 1, 2, . . . ) be
such that conditions (1.2.8) and (1.2.9) hold. Then inclusion (1.2.10) holds if and only if there exist
matrix-functions Bk ∈ BVloc(I;Rn×n) (k = 0, 1, . . . ) such that

lim sup
k→+∞

∨
I

(Ak −Bk) < +∞ (1.2.58)

and
det
(
In + (−1)jdjBk(t)

)
̸= 0 for t ∈ I (j = 1, 2; k = 0, 1, . . . ), (1.2.59)

and the conditions

lim
k→+∞

Z−1
k (t) = Z−1

0 (t), (1.2.60)

lim
k→+∞

(
B(Z−1

k , Ak)(t)− B(Z−1
k , Ak)(tk)

)
= B(Z−1

0 , A0)(t)− B(Z−1
0 , A0)(t0) (1.2.61)
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and

lim
k→+∞

(
B(Z−1

k , fk)(t)− B(Z−1
k , fk)(tk)

)
= B(Z−1

0 , f0)(t)− B(Z−1
0 , f0)(t0) (1.2.62)

hold uniformly on I, where Zk (Zk(tk) = In) is a fundamental matrix of the homogeneous system

dx = dBk(t) · x (1.2.63)

for every k ∈ {0, 1 . . . }.

Corollary 1.2.6. Let A0 ∈ BV(I;Rn×n), f0 ∈ BV(I;Rn), t0 ∈ I, Ak ∈ BVloc(I;Rn×n) (k =
1, 2, . . . ), fk ∈ BVloc(I;Rn) (k = 1, 2, . . . ), and tk ∈ I (k = 1, 2, . . . ) be such that conditions (1.2.8)
and (1.2.9) hold. Let, moreover, there exist matrix-functions Bk ∈ BVloc(I;Rn×n) (k = 0, 1, . . . ),
satisfying the Lappo–Danilevskiĭ condition, such that conditions (1.2.58) and

det
(
In + (−1)jdjB0(t)

)
̸= 0 for t ∈ I (j = 1, 2) (1.2.64)

hold, and the conditions

lim
k→+∞

(Bk(t)−Bk(tk)) = B0(t)−B0(t0), (1.2.65)

lim
k→+∞

t∫
tk

Z−1
k (τ) dA(Bk, Ak)(τ) =

t∫
t0

Z−1
0 (τ) dA(B0, A0)(τ) (1.2.66)

and

lim
k→+∞

t∫
tk

Z−1
k (τ) dA(Bk, fk)(τ) =

t∫
t0

Z−1
0 (τ) dA(B0, f0)(τ) (1.2.67)

hold uniformly on I, where A is the operator defined by (0.0.1), and Zk (Zk(tk) = In) is a fundamental
matrix of the homogeneous system (1.2.63) for every k ∈ {0, 1 . . . }. Then inclusion (1.2.10) holds.

Remark 1.2.5. In Corollary 1.2.6, due to (1.2.65), it follows from (1.2.64) that condition (1.2.59)
holds for every sufficiently large k and, therefore, the fundamental matrices Zk (k = 0, 1, . . . ) exist.
Hence conditions (1.2.66) and (1.2.67) of the corollary are correct.

Remark 1.2.6. In Corollaries 1.2.5 and 1.2.6, if we assume that the matrix functions Bk (k = 0, 1, . . . )
are continuous, then conditions (1.2.59) and (1.2.64) are, obviously, valid. Moreover, due to the
integration-by-parts formula and definitions of operators A and B, each of conditions (1.2.61) and
(1.2.66) has the form

lim
k→+∞

t∫
tk

Z−1
k (τ) dAk(τ) =

t∫
t0

Z−1
0 (τ) dA0(τ),

and each of conditions (1.2.62) and (1.2.67) has the form

lim
k→+∞

t∫
tk

Z−1
k (τ) dfk(τ) =

t∫
t0

Z−1
0 (τ) df0(τ).

Remark 1.2.7. If the matrix-function B ∈ BV(I;Rn×n), satisfying the Lappo–Danilevskiĭ condition,
and s ∈ I are such that det(In + (−1)jdjB(t)) ̸= 0 for t ∈ I, (−1)j(t− s) < 0 (j = 1, 2), then owing
to (1.1.15), the fundamental matrix Z (Z(s) = In) of the homogeneous system

dx = dB(t) · x
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has the form

Z(t) =


exp

(
Sc(B)(t)− Sc(B)(s)

) ∏
s<τ≤t

(In − d1B(τ))−1
∏

s≤τ<t

(In + d2B(τ)) for t > s,

exp
(
Sc(B)(s)− Sc(B)(t)

) ∏
t<τ≤s

(In − d1B(τ))
∏

t≤τ<s

(In + d2B(τ))−1 for t < s,

In for t = s.

(1.2.68)

Corollary 1.2.7. Let A0∈BV(I;Rn×n), f0∈BV(I;Rn), t0∈I, and the sequences Ak∈BVloc(I;Rn×n)
(k = 1, 2, . . . ), fk ∈ BVloc(I;Rn) (k = 1, 2, . . . ) and tk ∈ I (k = 1, 2, . . . ) be such that conditions
(1.2.8), (1.2.9) and

lim sup
k→+∞

∑
t∈I

∥djAk(t)∥ < +∞ (j = 1, 2) (1.2.69)

hold. Let, moreover, the matrix-functions Sc(Ak) (k = 0, 1, . . . ) satisfy the Lappo–Danilevskiĭ condition
and the conditions

lim
k→+∞

(
Sc(Ak)(t)− Sc(Ak)(tk)

)
= Sc(A0)(t)− Sc(A0)(t0), (1.2.70)

lim
k→+∞

Sj(Ak)(t) = Sj(A0)(t) (j = 1, 2), (1.2.71)

lim
k→+∞

t∫
tk

exp
(
− Sc(Ak)(τ) + Sc(Ak)(tk)

)
dAk(τ)

=

t∫
t0

exp(−Sc(A0)(τ) + Sc(A0)(t0)) dA0(τ) (1.2.72)

and

lim
k→+∞

t∫
tk

exp
(
− Sc(Ak)(τ) + Sc(Ak)(tk)

)
dfk(τ)

=

t∫
t0

exp(−Sc(A0)(τ) + Sc(A0)(t0)) df0(τ) (1.2.73)

hold uniformly on I. Then inclusion (1.2.10) holds.

Corollary 1.2.8. Let A0∈BV(I;Rn×n), f0∈BV(I;Rn), t0∈I, and the sequences Ak∈BVloc(I;Rn×n)
(k = 1, 2, . . . ), fk ∈ BVloc(I;Rn) (k = 1, 2, . . . ) and tk ∈ I (k = 1, 2, . . . ) be such that conditions
(1.2.8), (1.2.9),

lim sup
k→+∞

n∑
i,l=1; i ̸=l

∨
I

(akil) < +∞

and
1 + (−1)jdja0ii(t)) ̸= 0 for t ∈ I (j = 1, 2; i = 1, . . . , n)

hold, and the conditions

lim
k→+∞

(
akii(t)− akii(tk)

)
= a0ii(t)− a0ii(t0) (i = 1, . . . , n),

lim
k→+∞

t∫
tk

z−1
kii(τ) dA(akii, akil)(τ) =

t∫
t0

z−1
0ii (τ) dA(a0ii, a0il)(τ) (i ̸= l; i, l = 1, . . . , n)
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and

lim
k→+∞

t∫
tk

z−1
kii(τ) dA(akii, fki)(τ) =

t∫
t0

z−1
0ii (τ) dA(a0ii, f0i)(τ) (i = 1, . . . , n)

hold uniformly on I, where A is the operator defined by (0.0.1), and zkii, defined according to (1.2.68),
is a solution of the initial problem

dz(t) = z(t)dakii(t), z(tk) = 1 (i = 1, . . . , n)

for every sufficiently large k. Then inclusion (1.2.10) holds.

Remark 1.2.8. For Corollary 1.2.8, the remark analogous to Remark 1.2.6 is true, i.e.,

1 + (−1)jdja0ii(t)) ̸= 0 for t ∈ I (j = 1, 2; i = 1, . . . , n)

for every sufficiently large k and, therefore, all conditions of the corollary are correct.

Remark 1.2.9. In Theorems 1.2.1′–1.2.3′ and Corollaries 1.2.1′, 1.2.2–1.2.8, as well as in the state-
ment below, we may, without loss of generality, assume that H0(t) = In. In this case, it is evident
that

I(H0, Y )(t)− I(H0, Y )(s) = Y (t)− Y (s) for Y ∈ BV(I;Rn×n) and t, s ∈ I.

Remark 1.2.10. If for some k the matrix-function Ak is such that Ak(t) = const for t ∈ I0, where
I0 ⊂ I is an interval, then, due to the proof of the necessity in Theorem 1.2.1, we conclude that
Hk(t) = const for t ∈ I0, as well, since Hk(t) = X−1

k (t), where Xk is the fundamental matrix of
homogeneous system (1.2.1k0). Therefore, Xk(t) = const for t ∈ I0. So, everywhere in the results
given above we can assume that the matrix-function Hk has the described property.

Remark 1.2.11. The following example shows that if condition (1.2.69) is violated, then the state-
ment of Corollary 1.2.7 is not true, in general.

Example 1.2.2. Let I = [0, 1], A0(t) = 0, f0(t) = fk(t) = 0, tk = t0 = 0, ck = c0 = 1,

Ak(t) =


k−1 for t ∈

2k2∪
i=1

]t2i−1 k, t2i k],

0 for t ̸∈
2k2∪
i=1

]t2i−1 k, t2i k],

where tik = (2k2 + 1)−1 i (i = 0, . . . , 2k2) for every natural k. Then all conditions of Corollary 1.2.7
are fulfilled except (1.2.69). It is evident that x0(t) ≡ 1. On the other hand, the initial problem
(1.2.1k), (1.2.2k) has the unique solution xk and, in addition, xk(1) = (1− 1

k2 )
k2 . Therefore, condition

(1.2.3) is not valid, since
lim

k→+∞
xk(1) = exp(−1) ̸= x0(1).

Remark 1.2.12. In some results given above, the matrix-functions Ak (k = 1, 2, . . . ) and the vector-
functions fk (k = 1, 2, . . . ) have really bounded total variations on the whole interval I.

The examples concerning the importance of some conditions given in the above results, one can
find in Section 3.1. See Examples 3.1.1, 3.1.2, 3.1.3, etc.

Now, we give the results concerning the set S∆(A0, f0; t0).
In the case under consideration, we use the following notation. Let the matrix-functions A∆k

(k = 0, 1, . . . ) and the vector-functions f∆k (k = 0, 1, . . . ) be defined by the equalities

A∆k(tk) = On×n, f∆k(tk) = 0n; (1.2.74)
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A∆k(t) =

t∫
tk−

dAk(τ+) · (In + d2Ak(τ))
−1 − d1A(tk and

f∆k(t) = fk(t+)− f(tk) +

t∫
tk−

dAk(τ) · d2fk(τ) for t < tk; (1.2.75)

A∆k(t) =

t∫
tk+

dAk(τ−) · (In − d1Ak(τ))
−1 + d2Ak(tk) and

f∆k(t) = fk(t−)− f(tk) +

t∫
tk+

dAk(τ) · d1fk(τ) for t > tk. (1.2.76)

Theorem 1.2.4. Let A0 ∈ BV(I;Rn×n), f0 ∈ BV(I;Rn), t0 ∈ I, and a sequence of points tk ∈ I
(k = 1, 2, . . . ) be such that conditions (1.2.8) and (1.2.9) hold. Let, moreover, the sequence of matrix-
functions Ak ∈ BV(I;Rn×n) (k = 1, 2, . . . ) be such that

det
(
In + (−1)jdjAk(t)

)
̸= 0 for t ∈ I, (−1)j(t− tk) < 0 (j = 1, 2) (1.2.77)

for every sufficiently large k. Then

((Ak, fk; tk))
+∞
k=1 ∈ S∆(A0, f0; t0) (1.2.78)

if and only if there exists a sequence of matrix-functions Hk ∈ BV(I;Rn×n) (k = 0, 1, . . . ) such that
condition (1.2.11) holds, and conditions (1.2.12),

lim
k→+∞

{∥∥∥I(Hk, A∆ k)(τ)
∣∣∣t
tk

− I(H0, A∆0)(τ)
∣∣∣t
t0

∥∥∥(1 + ∣∣∣ t∨
tk

(I(Hk, A∆ k))
∣∣∣)} = 0 (1.2.79)

and

lim
k→+∞

{∥∥∥B(Hk, f∆ k)(τ)
∣∣∣t
tk

− B(H0, f∆0)(τ)
∣∣∣t
t0

∥∥∥(1 + ∣∣∣ t∨
tk

(I(Hk, A∆ k))
∣∣∣)} = 0 (1.2.80)

hold uniformly on I, where the matrix- and the vector-functions A∆ k and f∆ k (k = 0, 1, . . . ) are
defined by (1.2.74)–(1.2.76), respectively.

Theorem 1.2.5. Let A0 ∈ BV(I;Rn×n), f0 ∈ BV(I;Rn), t0 ∈ I, and a sequence of points tk ∈ I
(k = 1, 2, . . . ) be such that conditions (1.2.8) and (1.2.9) hold. Let, moreover, the sequences Ak ∈
BV(I;Rn×n) (k = 1, 2, . . . ) and fk ∈ BV(I;Rn) (k = 1, 2, . . . ) be such that condition (1.2.77) holds
for every sufficiently large k, and the conditions

lim
k→+∞

(
∥A∆ k(t)−A∆0(t)∥+

∣∣∣ t∨
tk

(
B(A∆ k −A∆0, A∆ k)

)∣∣∣) = 0 (1.2.81)

and

lim
k→+∞

∥∥f∆ k(t)− f∆0(t)− B(A∆ k −A∆0, f∆ k)(t) + B(A∆ k −A∆0, f∆ k)(tk)
∥∥ = 0 (1.2.82)

hold uniformly on I. Then inclusion (1.2.78) holds.

Theorem 1.2.4 is analogous to Theorem 1.2.1 for the matrix-functions A∆ k (k = 0, 1, . . . ) and the
vector-functiosn f∆ k (k = 0, 1, . . . ) defined above.

As for Theorem 1.2.5, it is a particular case of Theorem 1.2.4 when Hk(t) ≡ In (k = 0, 1, . . . ).
It is evident that the results, analogous to those given above for the considered case, are true.
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Remark 1.2.13. In Theorem 1.2.2, under condition (1.2.5j), for sufficiently large natural k, we have
the following three cases: a) tk < t0 for k ∈ N−; b) tk = t0 for k ∈ N0 or c) tk > t0 for k ∈ N+, where
N−, N0 and N+ are some infinite subsets of natural numbers. It follows from the proof of theorem
that in addition to the statement of theorem we have the following propositions:

1) if N−=∅ and N0=∅, then condition (1.2.3) is valid uniformly on the set {t∈I : t≤ t0}, as well;
2) if N0=∅ and N+=∅, then condition (1.2.3) is valid uniformly on the set {t∈I : t≥ t0}, as well;
3) if N− = ∅ and N+ = ∅, then condition (1.2.3) is valid uniformly into I \ {t0}, i.e., on the every

closed interval from I.

1.2.2 Auxiliary propositions
Lemma 1.2.1. Let a ∈ I be fixed. Then:

(a) if X ∈ BVloc(I;Rn×m), Y ∈ BVloc(I;Rm×l) and Z ∈ BVloc(I;Rl×k), then

B(X,B(Y, Z))(t) = B(X Y,Z)(t) for t ∈ I (1.2.83)

and

B
(
X,

·∫
a

dY (s) · Z(s)

)
(t) =

t∫
a

dB(X,Y )(s) · Z(s) for t ∈ I; (1.2.84)

(b) if X ∈ BVloc(I;Rn×n), Y ∈ BVloc(I;Rn×n) and Z ∈ BVloc(I;Rn×n), then

I(X, I(Y, Z))(t) = I(X Y,Z)(t) for t ∈ I; (1.2.85)

where the operators B and I are defined by (0.0.2) and (0.0.3), respectively.

Proof. Consider the case t ≥ a. Let us show that (1.2.83) is valid. According to equalities (0.0.9)–
(0.0.12) and (0.0.13), we have

B(X,B(Y, Z))(t) = X(t)B(Y, Z)(t)−
t∫

a

dX(s) · B(Y, Z)(s)

= X(t) ·
(
Y (t)Z(t)− Y (a)Z(a)−

t∫
a

dY (s) · Z(s)

)

−
t∫

a

dX(s) ·
(
Y (s)Z(s)− Y (a)Z(a)−

s∫
a

dY (τ) · Z(τ)

)

= X(t)Y (t)Z(t)−X(a)Y (a)Z(a)−X(t)

t∫
a

dY (s) · Z(s)

−
t∫

a

dX(s) · Y (s)Z(s) +

t∫
a

dX(s) ·
s∫

a

dY (τ) · Z(τ)

= X(t)Y (t)Z(t)−X(a)Y (a)Z(a)−
t∫

a

dX(s) · Y (s)Z(s)

−
t∫

a

X(s) dY (s) · Z(s) +
∑

a<s≤t

d1X(s) · d1Y (s) · Z(s)−
∑

a≤t<s

d2X(s) · d2Y (s) · Z(s)
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= X(t)Y (t)Z(t)−X(a)Y (a)Z(a)−
t∫

a

d

( s∫
a

dX(τ) · Y (τ)

+

s∫
a

X(τ) dY (τ)−
∑

a<τ≤s

d1X(τ) · d1Y (τ) +
∑

a≤τ<s

d2X(τ) · d2Y (τ)

)
· Z(s)

= X(t)Y (t)Z(t)−X(a)Y (a)Z(a)−
t∫

a

d(X(s)Y (s)) · Z(s) = B(XY,Z)(t).

Let us verify (1.2.84). By (0.0.12) and (1.2.83), it can be easily shown that

B
(
X,

·∫
a

dY (s) · Z(s)

)
(t) = B(X,Y Z − B(Y, Z))(t) = B(X,Y Z)(t)− B(XY,Z)(t)

=

t∫
a

d(X(s)Y (s)) · Z(s)−
t∫

a

dX(s) · Y (s)Z(s) =

t∫
a

dB(X,Y )(s) · Z(s).

Finally, using (0.0.12), (1.2.83) and (1.2.84), we have

I(X, I(Y, Z))(t) =

t∫
a

d
[
X(τ) + B(X, I(Y, Z))(τ)

]
·X−1(τ)

=

t∫
a

d

(
X(τ) + B

(
X,

·∫
a

d
[
Y (s) + B(Y, Z)(s)

]
· Y −1(s)

)
(τ)

)
·X−1(τ)

=

t∫
a

d

(
X(τ) +

τ∫
a

dB(X,Y + B(Y, Z))(s) · Y −1(s)

)
·X−1(τ)

=

t∫
a

d

(
X(τ) +

τ∫
a

dB(X,Y )(s) · Y −1(s) +

τ∫
a

dB(X,B(Y, Z))(s) · Y −1(s)

)
·X−1(τ)

=

t∫
a

d

(
X(τ) +

τ∫
a

d

(
X(s)Y (s)−

s∫
a

dX(σ) · Y (σ)

)
· Y −1(s) +

τ∫
a

dB(XY,Z)(s) · Y −1(s)

)
·X−1(τ)

=

t∫
a

d

( τ∫
a

d(X(s)Y (s)) · Y −1(s) +

τ∫
a

dB(XY,Z)(s) · Y −1(s)

)
·X−1(τ)

=

t∫
a

d
[
X(τ)Y (τ) + B(XY,Z)(τ)

]
· Y −1(τ)X−1(τ) = I(XY,Z)(t).

Equalities (1.2.83), (1.2.84) and (1.2.85) for t < a can be proved similarly.

Lemma 1.2.2. Let h ∈ BVloc(I;Rn), and H ∈ BVloc(I;Rn×n) be a nonsingular matrix-function.
Then the mapping

x → y = Hx+ h

establishes a one-to-one correspondence between the solutions x and y of systems (1.1.1) and

dy = dA∗(t) · y + df∗(t), (1.2.86)
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respectively, where the matrix- and vector-functions A∗ and f∗ are defined, respectively, by

A∗(t) ≡ I(H,A)(t) and f∗(t) ≡ h(t)− h(a) + B(H, f)(t)−
t∫

a

dA∗(s) · hk(s),

and a ∈ I is a fixed point. Besides,

In + (−1)jdjA∗(t) = (H(t) + (−1)jdjH(t))(In + (−1)jdjA(t))H−1(t) for t ∈ I (j = 1, 2). (1.2.87)

Proof. Let x be a solution of system (1.1.1) and let y(t) ≡ H(t)x(t) + h(t). In view of (1.2.84) and
the definition of a solution, we have

t∫
a

dB(H,A)(s) · x(s) = B(H,x− f)(t) for t ∈ I.

In view of this and (0.0.12), we obtain

t∫
a

dA∗(s) · y(s) + f∗(t)− f∗(a) =

t∫
a

dA∗(s) · (y(s)− h(s)) + B(H, f)(t) + h(t)− h(a)

=

t∫
a

d

( t∫
a

d
[
H(τ) + B(H,A)(τ)

]
·H−1(τ)

)
·H(s)x(s) + B(H, f)(t) + h(t)− h(a)

=

t∫
a

d
[
H(s) + B(H,A)(s)

]
· x(s) + B(H, f)(t) + h(t)− h(a)

=

t∫
a

dH(s) · x(s) + B(H,x− f)(t) + B(H, f)(t) + h(t)− h(a)

=

t∫
a

dH(s) · x(s) + B(H,x)(t) + h(t)− h(a)

= H(t)x(t)−H(a)x(a) + h(t)− h(a) = y(t)− y(a) for t ∈ I,

i.e., y is a solution of system (1.2.86).
Let us prove the converse assertion. It suffices to show that

I(H−1, A∗)(t) = A(t)−A(a) for t ∈ I (1.2.88)

and

−H−1(t)h(t) +H−1(a)h(a) + I(H−1, f∗)(t)

+

t∫
a

dI(H−1, A∗)(τ) ·H−1(τ)h(τ) = f(t)− f(a) for t ∈ I. (1.2.89)

Indeed, by (1.2.85), we have

I(H−1, A∗)(t) = I(H−1, I(H,A))(t) = I(I, A)(t)

=

t∫
a

d[In + B(In, A)(s)] = B(In, A)(t) = A(t)− f(a) for t ∈ I.
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Therefore, equality (1.2.88) is proved.
Let us show that (1.2.89) is valid. Let R(t) be the left-hand side of the equality. In view of (1.2.83)

and (1.2.84), it is easy to verify that

B
(
H−1,

·∫
a

dB(H,A)(s) ·H−1(s)h(s)

)
(t) =

t∫
a

dA(s) ·H−1(s)h(s) for t ∈ I

and

B
(
H−1,

·∫
a

dH(s) ·H−1(s)h(s)

)
(t) = −

t∫
a

dH(s) · h(s) for t ∈ I.

Taking these equalities, (0.0.12), (1.2.83), (1.2.84) and (1.2.88) into account, we obtain

R(t) = −H−1(t)h(t) +H−1(a)h(a) + B(H−1, h)(t) + B(H−1,B(H, f))(t)

− B
(
H−1,

·∫
a

dA∗(s) · h(s)
)
(t) +

t∫
a

dA(s) ·H−1(s)h(s)

= B(In, f)(t−
t∫

a

dH−1(s) · h(s)− B
(
H−1,

·∫
a

dI(H,A) · h(s)
)
(t)

+

t∫
a

dA(s) ·H−1(s)h(s) = f(t)− f(a)−
t∫

a

dH−1(s) · h(s)

− B
(
H−1,

·∫
a

dH(s) ·H−1h(s)

)
(t)− B

(
H−1,

·∫
a

dB(H,A)(s) ·H−1(s)h(s)

)
(t)

+

t∫
a

dA(s) ·H−1(s)h(s) = f(t)− f(a) for t ∈ I.

Hence (1.2.89) is valid.
Equality (1.2.87) follows from the equalities

djA
∗(t) = dj(H(t) + B(H,A)(t)) ·H−1(t) for t ∈ I (j = 1, 2)

and
djB(H,A)(t) = dj(H(t)A(t)) · djH(t) ·A(t) for t ∈ I (j = 1, 2).

Let ε be an arbitrary positive number and let g : [a, b] → R be a non-decreasing function. We
denote

Dj(a, b, ε; g) =
{
t ∈ [a, b] : djg(t) ≥ ε

}
(j = 1, 2).

Let R(a, b, ε; g) be the set of all subdivisions {α0, τ1, α1, . . . , τm, αm} of [a, b] such that

(a) a = α0 < α1 < · · · < αm = b, α0 ≤ τ1 ≤ α1 ≤ · · · ≤ τm ≤ αm;

(b) if τi ̸∈ D1(a, b, ε; g) then g(τi)− g(αi−1) < ε;
if τi ∈ D1(a, b, ε; g), then αi−1 < τi and g(τi−)− g(αi−1) < ε;

(c) if τi ̸∈ D2(a, b, ε; g), then g(αi)− g(τi) < ε;
if τi ∈ D2(a, b, ε; g), then τi < αi and g(αi)− g(τi+) < ε.

Lemma 1.2.3. The set R(a, b, ε; g) is not empty for an arbitrary positive number ε and a non-
decreasing function g : [a, b] → R.
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We omit the proof of the lemma because it is analogous to that of Lemma 1.1.1 from [37].

Lemma 1.2.4. Let αk, βk ∈ BV([a, b];R) (k = 0, 1, . . . ) be such that

lim
k→+∞

∥βk − β0∥s = 0, (1.2.90)

lim
k→+∞

sup
b∨
a

(αk) < +∞, (1.2.91)

and let the condition
lim

k→+∞
(αk(t)− αk(a)) = α0(t)− α0(a) (1.2.92)

be fulfilled uniformly on [a, b]. Then

lim
k→+∞

t∫
a

βk(τ) dαk(τ) =

t∫
a

β0(τ) dα0(τ) (1.2.93)

is fulfilled uniformly on [a, b], as well.

Proof. Let ε be an arbitrary positive number. By Lemma 1.2.3,

R
(
a, b,

ε

5

)
̸= ∅,

where g(t) ≡ V (β0)(t).
Let

{α0, τ1, α1, . . . , τm, αm} ∈ R
(
a, b,

ε

5

)
be an arbitrary fixed subdivision. We set

η(t) =



β0(t) for t ∈ {α0, τ1, α1, . . . , τm, αm},
β0(τi−) for t ∈ ]αi−1, τi[ , τi ∈ D1(a, b, ε; g),

β0(τi) for t ∈ ]αi−1, τi[ , τi ̸∈ D1(a, b, ε; g) or for t ∈ ]τi, αi[ , τi ̸∈ D2(a, b, ε; g),

β0(τi+) for t ∈ ]τi, αi[ , τi ∈ D1(a, b, ε; g)

(i = 1, . . . ,m).

It can be easily shown that η ∈ BV(a, b;R) and

|β0(t)− η(t)| < 2ε for t ∈ [a, b]. (1.2.94)

For every natural k and t ∈ [a, b], we assume

γk(t) =

t∫
a

βk(τ) dαk(t)−
t∫

a

β0(τ) dα0(τ)

and

δk(t) =

t∫
a

η(t) d(αk(τ)− α0(τ)).

It follows from (1.2.92) that
lim

k→+∞
∥δk∥∞ = 0. (1.2.95)

On the other hand, by (1.2.92) and (1.2.94), we have

∥γk∥∞ ≤ 4rε+ r∥βk − β0∥∞ + ∥δ∥∞ (k = 1, 2, . . . ).

Hence, in view of (1.2.91) and (1.2.95), we obtain lim
k→+∞

∥γk∥∞ = 0, since ε is arbitrary.
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Lemma 1.2.5. Let condition (1.2.8) hold and let

lim
k→+∞

Xk(t) = X0(t) (1.2.96)

uniformly on [a, b] ⊂ I, where X0 and Xk (k = 1, 2, . . . ) are the fundamental matrices, respectively,
of the homogeneous systems (1.2.10) and (1.2.1k0) (k = 1, 2, . . . ). Then

inf
{
|det(X0(t))| : t ∈ [a, b]} > 0, (1.2.97)

inf
{
|det(X−1

0 (t))| : t ∈ [a, b]
}
> 0 (1.2.98)

and condition (1.2.37) holds uniformly on [a, b], as well.

Proof. According to equalities (1.1.6), we have

djX0(t) = djA0(t) ·X0(t) for t ∈ [a, b] (j = 1, 2). (1.2.99)

From this, by (1.2.5), we find

det(X0(t−) ·X0(t+))

=
[

det(X0(t))
]2 · 2∏

j=1

det
(
In + (−1)jdjA0(t)

)
̸= 0 for t ∈ [a, b] (j = 1, 2). (1.2.100)

Let us show that (1.2.97) is valid. Assume the contrary. Then it can be easily shown that there
exists a point t0 ∈ [a, b] such that

det
(
X0(t0−) ·X0(t0+)

)
= 0.

But this equality contradicts (1.2.100). Thus inequality (1.2.97) is proved.
The proof of inequality (1.2.98) is analogous.
In view of (1.2.96) and (1.2.97), there exists a positive number r such that

inf
{
|det(Xk(t))| : t ∈ [a, b]

}
> r > 0

for any sufficiently large k. From this and (1.2.96), we obtain (1.2.37).

Lemma 1.2.6. Let the sequences of the matrix-functions Bk ∈ BV(I;Rn×n) (k = 0, 1, . . . ) and of the
points tk ∈ I be such that conditions (1.2.9),

det
(
In + (−1)jdjB0(t)

)
̸= 0 for t ∈ I, (−1)j(t− t0) < 0 (j = 1, 2) (1.2.101)

and
lim

k→+∞
sup

{
∥djBk(t)− djB0(t)∥ : t ∈ I, (−1)j(t− tk) < 0

}
= 0 (j = 1, 2) (1.2.102)

hold. Then there exists a positive number r0 such that

det
(
In + (−1)jdjBk(t)

)
̸= 0 for t ∈ I, (−1)j(t− tk) < 0 (j = 1, 2), (1.2.103)∥∥(In + (−1)jdjB0(t)

)−1∥∥ ≤ r0 for t ∈ I, (−1)j(t− t0) < 0 and∥∥(In + (−1)jdjBk(t)
)−1∥∥ ≤ r0 for t ∈ I, (−1)j(t− tk) < 0 (j = 1, 2) (1.2.104)

for every sufficiently large k.

Proof. Since
∨
I

B0 < +∞, the series
∑
t∈I

∥djB0(t)∥ (j = 1, 2) converge. Thus for any j ∈ {1, 2} the

inequality
∥djB0(t)∥ ≥ 1

2
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may hold only for some finite number of points tj1, . . . , tj mj in I. Therefore,

∥djB0(t)∥ <
1

2
for t ∈ I, t ̸= tji (i = 1, . . . ,mj). (1.2.105)

First, let us consider the case where j = 2 and tk ≥ t0 for every sufficiently large k. We may assume
that t2i ≥ tk (i = 1, . . . ,m2) for every sufficiently large k.

It follows from (1.2.101), (1.2.102) and (1.2.105) that

det(In + d2Bk(t2i)) ̸= 0 (i = 1, . . . ,m2)

and
∥d2Bk(t)∥ <

1

2
for t ∈ Itk , t ̸= t2i (i = 1, . . . ,m2)

for every sufficiently large k. The latter inequalities imply that the matrices In+d2Bk(t) are invertible
for t ∈ It0 , t ̸= tji (i = 1, . . . ,mj), too. From this, it is evident that condition (1.2.103) is fulfilled
and there exists a positive number r0 for which estimates (1.2.104) hold. Analogously we prove this
estimate for the other cases.

Lemma 1.2.7. Let A ∈ BVloc(I;Rn×n), f ∈ BVloc(I;Rn) and a ∈ I be such that

det
(
In + (−1)jdjA(t)

)
̸= 0 for (−1)j(t− a) < 0 (j = 1, 2). (1.2.106)

Let, moreover, the vector-function x ∈ BVloc(I;Rn) be a solution of the initial problem

dx = dA(t) · x+ df(t), x(a) = c0.

Then the vector-function y ∈ BVloc(I;Rn), defined by y(t) = x(t+) for t < a, y(t) = x(t−) for t > a
and y(a) = x(a), is a solution of the initial problem

dy = dA(t) · y + d f(t), y(a) = c0, (1.2.107)

where A(a) = On×n, f(a) = 0n;

A(t) =

t∫
a−

dA(τ+) · (In + d2A(τ))−1 − d1A(a) and

f(t) = f(t+)− f(a) +

t∫
a−

dA(τ) · d2f(τ) for t < a;

A(t) =

t∫
a+

dA(τ−) · (In − d1A(τ))−1 + d2A(a) and

f(t) = f(t−)− f(a) +

t∫
a

dA(τ) · d1f(τ) for t > a.

Proof. Let j = 1 and a < s < t; s, t ∈ I. Then y(t) ≡ x(t−) and by the definition of the solution of
linear systems we have

y(t) = y(s) +

t−∫
s−

dA(τ) · x(τ) + f(t−)− f(s−).

From this, according to (0.0.8),

y(t) = y(s) +

t∫
s

dA(τ) · x(τ)− d1A(t) · x(t) + d1A(s) · x(s) + f(t−)− f(s−).
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Using now equalities (0.0.7) and

d1x(t) ≡ d1A(t) · x(t) + d1f(t),

due to (1.2.106), we get
x(t) ≡ (In − d1A(t))−1(x(t−) + d1f(t))

and

y(t) = y(s) +

t∫
s

dA(τ−) · (In − d1A(τ))−1(y(τ) + d1f(τ)) + f(t−)− f(s−).

So, by (0.0.13), the vector-function y is the solution of system (1.2.107) for t > a.
Similarly, we can show that y is also the solution of system (1.2.107) for t < a.
In addition, it is not difficult to verify the validity of the equalities

djA(a) = djA(a) and djf(a) = djf(a) (j = 1, 2),

whence djy(a) = djx(a) (j = 1, 2). Therefore, the vector-function y is the solution of system (1.2.107)
on the whole interval I.

1.2.3 Proof of the results
Proof of Theorem 1.2.2. By (1.2.15),

lim
k→+∞

sup
t∈I, t ̸=tk

∥Akj(t)−A0j(t)∥ = 0 (j = 1, 2)

and, therefore,
lim

k→+∞
sup

t∈I, t ̸=tk

∥djAk(t)− djA0(t)∥ = 0 (j = 1, 2) (1.2.108)

if j ∈ {1, 2} is such that (−1)j(t − tk) ≥ 0 for every k ∈ {1, 2, . . . }. So, according to Lemma 1.2.6,
there exists a positive number r0 such that

det
(
In + (−1)ldlAk(t)

)
̸= 0 for t ∈ I, (−1)l(t− tk) < 0 (l = 1, 2)

and ∥∥(In + (−1)ldlAk(t)
)−1∥∥ ≤ r0 for t ∈ I, (−1)l(t− tk) < 0 (l = 1, 2) (1.2.109)

for every sufficiently large k.
Therefore, there exists a natural number k0 such that problem (1.2.1k), (1.2.2k) has a unique

solution xk for every k ≥ k0.
Let zk(t) ≡ xk(t)− x0(t) for k ∈ {k0, k0 + 1, . . . }.
First, consider the case tk > t0 (k = k0, k0 + 1, . . . ), i.e., j = 2.
Let ε be an arbitrarily small positive number.
It is not difficult to check that

zk(t)=zk(tk+ε)+

t∫
tk+ε

dA0(s) · zk(s)+
t∫

tk+ε

dAk2(s) · xk(s)+fk2(t)−fk2(tk + ε) for t≥ tk+ε,

where
Akj(t) ≡ Akj(t)−A0j(t), fkj(t) ≡ fkj(t)− f0j(t) (j = 1, 2; k = 0, 1, . . . ).

Using the integration-by-parts formula (0.0.9), the equalities

dlxk(t) = dlAk(t) · xk(t) + dlf(t) for t ∈ I (j = 1, 2), (1.2.110)

and general integration-by-parts formulas (0.0.10) and (0.0.12), we conclude that
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t∫
tk+ε

dAk2(s) · xk(s) = Ak2(t) · xk(t)−Ak2(tk + ε) · xk(tk + ε)

−
t∫

tk+ε

Ak2(s)dxk(s) +
∑

tk+ε<s≤t

d1Ak2(s) · d1xk(s)−
∑

tk+ε≤s<t

d2Ak2(s) · d2xk(s)

= Ak2(t) · xk(t)−Ak2(tk + ε) · xk(tk + ε)−
t∫

tk+ε

Ak2(s)
(
dAk(s) · xk(s) + dfk(s)

)
+

∑
tk+ε<s≤t

d1Ak2(s) ·
(
d1Ak(s) · xk(s) + d1fk(s)

)
−

∑
tk+ε≤s<t

d2Ak2(s) ·
(
d2Ak(s) · xk(s) + d2fk(s)

)
for t ≥ tk + ε.

Therefore,

zk(t) = zk(tk + ε) + Jk2(t, tk + ε) +Qk2(t, tk + ε) +

t∫
tk+ε

dA0(s) · zk(s) for t ≥ tk + ε. (1.2.111)

where

Jkj(t, τ) = Akj(t) · xk(t)−Akj(τ) · xk(τ)−
t∫

τ

Akj(s)dAk(s) · xk(s)

+
∑

s∈]τ,t]

d1Akj(s) · d1Ak(s) · xk(s)−
∑

s∈[τ,t[

d2Akj(s) · d2Ak(s) · xk(s) for τ < t (j = 1, 2),

Jkj(t, t) ≡ 0 (j = 1, 2) and Jkj(t, τ) = −Jkj(τ, t) for t < τ (j = 1, 2),

and
Qkj(t, τ) ≡ fkj(t)− fkj(τ)− B(Akj , fk)(t) + B(Akj , fk)(τ) (j = 1, 2).

Let B0 be a matrix-function defined by B0(tk+ε) = A0(tk+ε) and B0(s) = A0(s−) for s > tk+ε.
Obviously,

d2B0(tk + ε) = d2A0(tk + ε) and d1(B0(s)−A0(s)) = −d1A0(s) for s > tk + ε.

Therefore, according to (0.0.7),
t∫

tk+ε

dA0(s) · zk(s) =
t∫

tk+ε

dB0(s) · zk(s) + d1A0(t) · zk(t) for t > tk + ε.

Consequently, by (1.2.8), from (1.2.111) it follows that

zk(t) = (In−d1A0(t))
−1

(
zk(tk+ε)+Jk2(t, tk+ε)+Qk2(t, tk+ε)+

t∫
tk+ε

dB0(s) ·zk(s)
)

for t > tk+ε.

From this, due to (1.2.108) and estimate (1.2.109), without loss of generality, for k > k0, we get

∥zk(t)∥ ≤ r1

(
∥zk(tk + ε)∥+ ∥Jk2(t, tk + ε)∥

+ ∥Qk2(t, tk + ε)∥+
t∫

tk+ε

∥zk(τ)∥ d∥V (B0)(τ)∥
)

for t ≥ tk + ε, (1.2.112)
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where r1 = r0 + 1.
Let

ρ0 =
∨
I

(A0), ϱ0 =
∨
I

(f0),

αk = sup
t∈I, t ̸=tk

∥Ak2(t)∥, βk = sup
t∈I, t ̸=tk

∥fk2(t)∥ (k = 1, 2, . . . )

and

γk = sup
t∈I, t ̸=tk

∣∣∣ t∨
tk

(Ak −A0)
∣∣∣ (k = 1, 2, . . . ).

In view of the conditions A0 ∈ BV(I;Rn×n), f0 ∈ BV(I;Rn), (1.2.15) and (1.2.16), we have

lim
k→+∞

αk(1 + γk) = lim
k→+∞

βk(1 + ϱ0 + γk) = 0. (1.2.113)

By the inequalities

t∨
tk

(Ak) ≤
t∨
tk

(Ak −A0) +

t∨
tk

(A0) for t ∈ I (k = 1, 2, . . . ),

we find

∥Jk2(t, tk + ε)∥ ≤ 2αk∥xk∥k2 + αk(γk + ρ0)∥xk∥k2

+ 2αk∥xk∥k2
( ∑

tk+ε<s≤t

(∥∥d1(Ak(s)−A0(s))
∥∥+ ∥d1A0(s)∥

)
+

∑
tk+ε≤s<t

(∥∥d2(Ak(s)−A0(s))
∥∥+ ∥d2A0(s)∥

))

and, therefore, ∥∥Jk2(t, tk + ε)
∥∥ ≤ εk∥xk∥k2 for t ≥ tk + ε, (1.2.114)

where

∥x∥k2 = sup
{
∥x(t)∥ : t ∈ I, t > tk

}
and εk = αk(2 + 3ρ0 + 3γk) (k = 1, 2, . . . ).

Moreover, if we take into account the fact that the operator B is linear with respect to every its
variable and equals zero if the second variable is a constant function, then we conclude that∥∥B(Ak2, fk)(t)− B(Ak2, fk)(tk + ε)

∥∥
≤
∥∥B(Ak2, fk2)(t)− B(Ak2, fk2)(tk + ε)

∥∥+ ∥∥B(Ak2, f0)(t)− B(Ak2, f0)(tk + ε)
∥∥ for t ≥ tk + ε.

By the definition of the operator B, we have∥∥B(Ak2, fk2)(t)− B(Ak2, fk2)(tk + ε)
∥∥ ≤ βk(2αk + γk) for t ≥ tk + ε.

Using the integration-by-part formula, we find∥∥B(Ak2, f0)(t)− B(Ak2, f0)(tk + ε)
∥∥

≤ αk

t∨
tk+ε

(f0) + 2αk

( ∑
tk+ε<s≤t

∥d1f0(s)∥+
∑

tk+ε≤s<t

∥d2f0(s)∥
)

for t ≥ tk + ε
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and, therefore, ∥∥B(Ak2, f0)(t)− B(Ak2, f0)(tk + ε)
∥∥ ≤ 3ϱ0αk for t ≥ tk + ε.

So,
∥Qk2(t, tk + ε)∥ ≤ δk for t ≥ tk + ε, (1.2.115)

where δk = βk(2 + 2αk + γk) + 3ϱ0αk.
From (1.2.112), by (1.2.114) and (1.2.115), we find

∥zk(t)∥ ≤ r1

(
∥zk(tk + ε)∥+ εk∥xk∥k2 + δk +

t∫
tk+ε

∥zk(τ)∥ d∥V (B0)(τ)∥
)

for t ≥ tk + ε. (1.2.116)

Hence, according to Gronwall’s inequality (see Lemma 1.1.4′ (b)),

∥zk(t)∥ ≤ r1
(
∥zk(tk + ε)∥+ εk∥xk∥k2 + δk

)
exp

(
r1∥V (B0)(t)− V (B0)(tk)∥

)
≤ r1

(
∥zk(tk + ε)∥+ εk∥xk∥k2 + δk

)
exp(ρ0r1) for t ≥ tk + ε.

Now, passing to the limit as ε → 0 in the last inequality, we conclude that

∥zk∥k2 ≤ r1

(
∥zk(tk+)∥+ εk∥xk∥k2 + δk

)
exp(ρ0r1). (1.2.117)

Due to (1.2.113), we have
lim

k→+∞
εk = 0. (1.2.118)

Therefore, there exists a natural k1 > k0 such that

r1εk exp(ρ0r1) <
1

2
for k > k1.

By this, from (1.2.117) it follows that

∥xk∥k2 ≤ ∥x0∥k2 + ∥zk∥k2 ≤ ∥x0∥k2 +
1

2
∥xk∥k2 + r1

(
∥zk(tk+)∥+ δk

)
exp(ρ0r1) (k > k1)

and, therefore,
∥xk∥k2 ≤ 2

(
∥x0∥k2 + r1

(
∥zk(tk+)∥+ δk

)
exp(ρ0r1)

)
(k > k1).

which, due to (1.2.52), implies that the sequence ∥xk∥k2 (k = 1, 2, . . . ) is bounded.
In view of conditions (1.2.15) and (1.2.16),

lim
k→+∞

δk = 0. (1.2.119)

Moreover, using (1.2.52), we conclude

lim
k→+∞

zk(tk+) = lim
k→+∞

(
xk(tk+)− x0(tk+)

)
= lim

k→+∞

(
xk(tk+)− x0(t0+)

)
= lim

k→+∞

([
(In + d2Ak(tk))xk(tk) + d2fk(tk)

]
−
[
(In + d2A(t0))x0(t0) + d2f0(t0)

])
= lim

k→+∞
(ck2 − c02) = 0.

Therefore, by this, (1.2.118) and (1.2.119), it follows from (1.2.117) that

lim
k→+∞

∥zk∥k2 = 0.

Analogously to (1.2.111), we show that

zk(t) = zk(tk − ε)− Jk2(tk − ε, t)−Qk2(tk − ε, t)−
tk−ε∫
t

dA0(s) · zk(s) for t ≤ tk − ε. (1.2.120)
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Let now the matrix-function B0 be defined by B0(tk − ε) = A0(tk − ε) and B0(s) = A0(s+) for
s < tk − ε. Obviously,

d1B0(tk − ε) = d1A0(tk − ε) and d2(B0(s)−A0(s)) = −d2A0(s) for s < tk − ε.

Therefore, according to (0.0.7),

tk−ε∫
t

dA0(s) · zk(s) =
tk−ε∫
t

dB0(s) · zk(s) + d2A0(t) · zk(t) for t < tk − ε.

Using these equalities, from (1.2.120) we obtain

zk(t) = (In + d2A0(t))
−1

(
zk(tk − ε)− Jk2(tk − ε, t)

−Qk2(tk − ε, t)−
tk−ε∫
t

dA0(s) · zk(s)
)

for t ≤ tk − ε.

From this, analogously as above, we get

∥zk∥k1 ≤ r1
(
∥zk(tk−)∥+ εk∥xk∥k1 + δk

)
exp(ρ0r1) (1.2.121)

and, in addition, the sequence ∥xk∥k1 (k = 1, 2, . . . ) is bounded.
By (1.2.15) and (1.2.16),

lim
k→+∞

(
∥d1Ak(tk) + d2Ak(tk)∥+ ∥d1fk(tk) + d2fk(tk)∥

)
= 0.

Using the latter equality, (1.2.52) and take into account that the sequence ck (k = 1, 2, . . . ) is bounded,
we can conclude that

lim
k→+∞

zk(tk−) = lim
k→+∞

(xk(tk−)− x0(tk−)) = lim
k→+∞

(xk(tk−)− x0(t0+))

= lim
k→+∞

([
(In − d1Ak(tk))xk(tk)− d1fk(tk)

]
−
[
(In + d2A(t0))x0(t0) + d2f0(t0)

])
= lim

k→+∞

([
(In + d2Ak(tk))ck + d2fk(tk)

]
−
[
(In + d2A(t0))x0(t0) + d2f0(t0)

])
− lim

k→+∞

(
d1Ak(tk) + d2Ak(tk))ck − (d1fk(tk) + d2fk(tk)

)
= lim

k→+∞
(ck2 − c02) = 0.

Therefore, due to (1.2.121), taking into account (1.2.118) and (1.2.119), we get

lim
k→+∞

∥zk∥k1 = 0.

Thus condition (1.2.17) holds for tk > t0 (k = 1, 2, . . . ).
In a similar way we can prove the statement of the theorem for another cases, as well, i.e., when

tk < t0 (k = 1, 2, . . . ) or tk = t0 (k = 1, 2, . . . ).

Proof of Theorem 1.2.3. Due to condition (1.2.20), analogously to the proof of Theorem 1.2.2, we show
that the initial problem (1.2.21k), (1.2.22k) has the unique solution x∗

k for every sufficiently large k.
Moreover, according to Lemma 1.2.2, the mapping x → x∗, x∗ = Hkx + hk, establishes a one-to-one
correspondence between the solutions of problem (1.2.1k), (1.2.2k) and those of the initial problem
(1.2.21k), (1.2.22k) for every natural k. Thus problem (1.2.1k), (1.2.2k) has the unique solution xk and

x∗
k(t) ≡ Hk(t)xk + hk(t)

for every sufficiently large k.
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Conditions (1.2.20), (1.2.23)–(1.2.26) guarantee the fulfillment of the conditions of Theorem 1.2.2
for the initial problem (1.2.21), (1.2.22) and for the sequence of the initial problems (1.2.21k), (1.2.22k)
(k = 1, 2, . . . ). Therefore, according to Theorem 1.2.2,

lim
k→+∞

sup
t∈I, t ̸=tk

∥x∗
k(t)− x∗

0(t)∥ = 0.

So, condition (1.2.27) holds.

Proof of Corollary 1.2.1. Verify the conditions of Theorem 1.2.3. From (1.2.11), (1.2.12) it follows
that condition (1.2.23) holds, and the condition

lim
k→+∞

∥H−1
k (t)−H−1

0 (t)∥ = 0 (1.2.122)

holds uniformly on I.
Put

hk(t) ≡ −Hk(t)φk(t) (k = 1, 2, . . . ).

Due to (1.2.9) and (1.2.12), we get

lim
k→+∞

Hk(tk) = Q0,

where Q0 = H0(t0−) if tk < t0, Q0 = H0(t0) if tk = t0 and Q0 = H0(t0+) if tk > t0 for sufficiently
large k. By this and (1.2.31), condition (1.2.28) is fulfilled for c∗0 = Q0c0.

Moreover, by (1.2.13) and (1.2.32), conditions (1.2.29) and (1.2.30) hold uniformly on I, where

hk(t) ≡ −Hk(t)φk(t), A∗
k(t) ≡ I(Hk, Ak)(t)− I(Hk, Ak)(tk) (k = 0, 1, . . . );

f∗
0 (t) ≡ B(H0, f0)(t)− B(H0, f0)(t0),

f∗
k (t) ≡ B(Hk, fk − φk)(t)− B(Hk, fk − φ)(tk) +

t∫
tk

dI(Hk, Ak)(s) · φk(s) (k = 1, 2, . . . ).

Taking into account Lemma 1.2.2, it is not difficult to see that problem (1.2.21), (1.2.22) has the
unique solution

x∗
0(t) ≡ H0(t)x0(t).

By Theorem 1.2.3 and Remark 1.2.2, we have

lim
k→+∞

∥Hk(t)xk(t)−Hk(t)φk(t)− x∗
0(t)∥ = 0

uniformly on I. Therefore, owing to (1.2.12) and (1.2.122), condition (1.2.33) holds uniformly on I.

Proof of Theorem 1.2.1. The sufficiency follows from Corollary 1.2.1 if we assume φk(t) ≡ 0 (k =
1, 2, . . . ) therein.

Let us show the necessity. Let ck ∈ Rn (k = 0, 1, . . . ) be an arbitrary sequence of constant vectors
satisfying (1.2.5) and let ej = (δij)

n
i=1, where δii = 1 and δij = 0 if i ̸= j (i, j = 1, . . . , n) (the Kroneker

symbol).
In view of (1.2.10), without loss of generality, we may assume that problem (1.2.1k), (1.2.2k) has

a unique solution xk for every natural k.
For any k ∈ {0, 1, . . . } and j ∈ {1, . . . , n}, let us denote

zkj(t) ≡ xk(t)− xkj(t),

where xkj is a unique solution of system (1.2.1k) under the initial condition

x(tk) = ck − ej .

Moreover, let Xk(t) be a matrix-function whose columns are zk1(t), . . . , zkn(t).
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It can be easily shown that X0 and Xk (k = 1, 2, . . . ) satisfy, respectively, the homogeneous systems
(1.2.10) and (1.2.1k0) (k = 1, 2, . . . ) and

zkj(tk) = ej (k = 0, 1, . . . ) (1.2.123)

for every j ∈ {1, . . . , n}.
If we assume

n∑
j=1

αjzkj(t) ≡ 0

for some natural k and αj ∈ R (j = 1, . . . , n), then using (1.2.123) we get
n∑

j=1

αjej = 0

and, therefore,
α1 = · · · = αn = 0,

i.e., X0 and Xk (k = 1, 2, . . . ) are the fundamental matrices, respectively, of the homogeneous systems
(1.2.10) and (1.2.1k0) (k = 1, 2, . . . ). Without loss of generality, we assume that

Xk(tk) = In (k = 0, 1, . . . ).

Owing to (1.2.10), condition (1.2.96) holds uniformly on every closed interval [a, b] from I. There-
fore, due to Lemma 1.2.5, conditions (1.2.97) and (1.2.98) hold, and condition (1.2.37) holds uniformly
on every closed interval [a, b] from I, as well.

Let us verify conditions (1.2.11)–(1.2.14) of the theorem for

Hk(t) ≡ X−1
k (t) (k = 0, 1, . . . ).

Conditions (1.2.11) and (1.2.12) coincide with conditions (1.2.98) and (1.2.37), respectively.
According to Proposition 1.1.5 (see equality (1.1.17)), we have

X−1
k (t) = In − B(X−1

k , Ak)(t) for t ∈ I (k = 0, 1, . . . ). (1.2.124)

Therefore,
Hk(t) + B(Hk, Ak)(t) ≡ In (k = 0, 1, . . . ) (1.2.125)

and, by the definition of the operator I (see (0.0.3)), we conclude

I(Hk, Ak)(t) ≡ O (k = 0, 1, . . . ). (1.2.126)

Thus condition (1.2.13) is evident.
On the other hand, by (1.2.125) and equalities Hk(tk)=In (k = 0, 1, . . . ), according to Lemma 1.2.1

and the definition of the solutions of system (1.2.1k), we have

B(Hk, fk)(t)−B(Hk, fk)(tk) = B
(
Hk, xk−

·∫
tk

dAk(s) ·xk(s)

)
(t)−B

(
Hk, xk−

·∫
tk

dAk(s) ·xk(s)

)
(tk)

= B(Hk, xk)(t)− B(Hk, xk)(tk)− B
(
Hk,

·∫
tk

dAk(s) · xk(s)

)
(t) + B

(
Hk,

·∫
tk

dAk(s) · xk(s)

)
(tk)

= B(Hk, xk)(t)− B(Hk, xk)(tk)−
t∫

tk

dB(Hk, Ak)(s) · xk(s)

= Hk(t)xk(t)−Hk(tk)xk(tk)−
t∫

tk

dHk(s) · xk(s)−
t∫

tk

d(In −Hk(s)) · xk(s)

= Hk(t)xk(t)−Hk(tk)xk(tk) for t ∈ I (k = 0, 1, . . . ).
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Hence

B(Hk, fk)(t)− B(Hk, fk)(tk)− (B(H0, f0)(t)− B(H0, f0)(t0))

= Hk(t)xk(t)−H0(t)x0(t)− (xk(tk)− x0(t0)) for t ∈ I (k = 0, 1, . . . ). (1.2.127)

By this, (1.2.5) and (1.2.126), if we take into account the fact that due to the necessity of the theorem
condition (1.2.3) holds uniformly on I, we conclude that condition (1.2.14) holds uniformly on I, as
well.

Proof of Theorem 1.2.2 ′. It is evident that in view of conditions (1.2.38), (1.2.39) and (1.2.40), con-
ditions (1.2.18) and (1.2.19) hold uniformly on I. So, the theorem follows from Theorem 1.2.2 and
Remark 1.2.1.

Proof of Theorem 1.2.3 ′. In this case, condition (1.2.41) is equivalent to condition (1.2.24). Moreover,
by conditions (1.2.42), (1.2.43) and (1.2.44), conditions (1.2.29) and (1.2.30) hold uniformly on I. So,
the theorem follows from Theorem 1.2.3 and the remark analogous to Remark 1.2.1.

Proof of Corollary 1.2.1 ′. Verify the conditions of Theorem 1.2.3′. The validity of conditions (1.2.23),
(1.2.41) and (1.2.122) we show as in the proof of Corollary 1.2.1. In addition, by (1.2.122), there exists
a positive number M such that

∥H−1
k (t)∥ ≤ M for t ∈ I (k = 0, 1, . . . ).

Using Lemma 1.2.1, from this estimate and also from (1.2.12), (1.2.34), (1.2.35), (1.2.45) and (1.2.122)
we find that condition (1.2.42) holds, and conditions (1.2.43) and (1.2.44) are fulfilled uniformly on
I, where

hk(t) ≡ −Hk(t)φk(t), A∗
k(t) ≡ I(Hk, Ak)(t)− I(Hk, Ak)(tk) (k = 0, 1, . . . );

f∗
0 (t) ≡ B(H0, f0)(t)− B(H0, f0)(t0),

f∗
k (t) ≡ B(Hk, fk − φk)(t)− B(Hk, fk − φ)(tk) +

t∫
tk

dB(Hk, Ak)(s) · φk(s) (k = 1, 2, . . . ).

Further, the proof coincides with that of Corollary 1.2.1.

Proof of Theorem 1.2.1 ′. Sufficiency follows from Corollary 1.2.1′ if we assume φk(t) ≡ 0 (k =
1, 2, . . . ) therein. The proof of necessity is the same as in the proof of Theorem 1.2.1. We only note
that by condition (1.2.12) and equality (1.2.125), condition (1.2.34) is valid, and condition (1.2.35)
holds uniformly on I.

Proof of Theorem 1.2.1 ′′. As it follows from the proof of Theorem 1.2.1, we may assume that Hk(t) ≡
X−1

k (t). In this case, Theorem 1.2.1′ has the form of Theorem 1.2.1′′. We only note that by (1.2.37)
and (1.2.124), condition (1.2.35) holds uniformly on I.

Proof of Corollary 1.2.2. By (1.2.48), (1.2.49) and (1.2.50) (or (1.2.51)), we have

lim
k→+∞

∑
s≤t; s,t∈I

(
d1Hk(s) · d1Ak(s)− d1H0(s) · d1A0(s)

)
= On×n,

lim
k→+∞

∑
s≤t; s,t∈I

(
d1Hk(s) · d1fk(s)− d1H0(s) · d1f0(s)

)
= on,

lim
k→+∞

∑
s≤t; s,t∈I

(
d2Hk(s) · d2Ak(s)− d2H0(s) · d2A0(s)

)
= On×n,

lim
k→+∞

∑
s≤t; s,t∈I

(
d2Hk(s) · d2fk(s)− d2H0(s) · d2f0(s)

)
= on
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uniformly on I. From this, the integration-by-parts formula, (1.2.46) and (1.2.47), we find that
conditions (1.2.35) and (1.2.36) are fulfilled uniformly on I. Condition (1.2.36) coincides with (1.2.45)
for φk(t) ≡ 0 (k = 1, 2, . . . ).

Therefore, the corollary follows from Corollary 1.2.1′.

Proof of Corollary 1.2.3. Using (1.2.12), (1.2.39) and (1.2.52), we conclude

djA
∗(t) ≡ On×n (j = 1, 2).

Hence, in view of (1.2.8), we have

det
(
In + (−1)jdjA

∗
0(t)

)
̸= 0 for t ∈ I, (−1)j(t− t0) < 0

and for t = t0 if j ∈ {1, 2} is such that (−1)j(tk − t0) > 0 for every k ∈ {1, 2, . . . }.

On the other hand, from (1.2.12), (1.2.39), (1.2.40), (1.2.52) and (1.2.53) we obtain that the conditions

lim
k→+∞

(
B(Hk, Ak)(t)− B(Hk, Ak)(tk)

)
= B(In, A∗

0)(t)− B(In, A∗
0)(t0)

and
lim

k→+∞

(
B(Hk, fk)(t)− B(Hk, fk)(tk)

)
= B(In, f∗

0 )(t)− B(In, f∗
0 )(t0)

hold uniformly on I. Thus, Corollary 1.2.3 is a direct consequence of Theorem 1.2.1′.

Proof of Corollary 1.2.4. By virtue of (1.2.9) and (1.2.55), we have

lim
k→+∞

Bj(tk) = Bj(t0) (j = 1, . . . ,m− 1)

and, therefore,
lim

k→+∞
Ckj(t) = In and lim

k→+∞
Hkj(t) = In (j = 1, . . . ,m− 1)

uniformly on I, where

Ckj(t) ≡ In − (Akj(t)−Akj(tk)) + (Bj(t)−Bj(tk)) (j = 1, . . . ,m; k = 1, 2, . . . ).

Thus, without loss of generality, we can assume that the matrix-functions Hkj (j = 1, . . . ,m) and Ckj

(j = 1, . . . ,m) are nonsingular for every natural k. Using now Lemma 1.2.1, we find that

B(Ckj ,B(Hk j−1, Ak))(τ)
∣∣t
tk

≡ B(Hkj , Ak)(τ)
∣∣t
tk
,

B(Ckj ,B(Hk j−1, fk))(τ)
∣∣t
tk

≡ B(Hkj , fk)(τ)
∣∣t
tk

and
I(Ckj , I(Hk j−1, Ak))(τ)

∣∣t
tk

≡ I(Hkj , Ak)(τ)
∣∣t
tk

(j = 1, . . . ,m; k = 1, 2, . . . ).

In addition, by conditions (1.2.54)–(1.2.57), according to Lemma 1.2.4 and the definition of the
operator I, we find that conditions (1.2.12), (1.2.35) and (1.2.36) hold uniformly on I, where H0(t) ≡
In and Hk(t) ≡ Hkm−1(t) (k = 1, 2, . . . ). The corollary follows from Theorem 1.2.1′.

Proof of Corollary 1.2.5. Let us show the sufficiency. Let Hk(t) = Z−1
k (t) (k = 0, 1, . . . ) in Theorem

1.2.1′. In view of (1.2.60), there exists a positive number r such that

∥Z−1
k (t)∥ ≤ r for t ∈ I (k = 0, 1, . . . ).
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Using this estimate, by (1.1.17), the definition of the operator B and the integration-by-parts formula,
we have∥∥Z−1

k (t) + B(Z−1
k , Ak)(t)− Z−1

k (s)− B(Z−1
k , Ak)(s)

∥∥
=
∥∥B(Z−1

k , Ak −Bk)(t)− B(Z−1
k , Ak −Bk)(s)

∥∥ =

∥∥∥∥
t∫

s

Z−1
k (τ) d(Ak(τ)−Bk(τ))

−
∑

s<τ≤t

d1Z
−1
k (τ) · d1(Ak(τ)−Bk(τ)) +

∑
s≤τ<t

d2Z
−1
k (τ) · d2(Ak(τ)−Bk(τ))

∥∥∥∥
≤ r

t∨
s

(Ak −Bk) + 2r
∑

s<τ≤t

∥d1(Ak(τ)−Bk(τ))∥+ 2r
∑

s≤τ<t

∥d2(Ak(τ)−Bk(τ))∥

≤ 5r

t∨
s

(Ak −Bk) for s < t (k = 0, 1, . . . ).

Consequently, ∨
I

(Hk + B(Hk, Ak)) ≤ 5r
∨
I

(Ak −Bk) (k = 0, 1, . . . )

and due to (1.2.58), estimate (1.2.34) holds. Conditions (1.2.35) and (1.2.36) coincide with (1.2.61)
and (1.2.62), respectively. Hence the sufficiency follows from Theorem 1.2.1′.

Let us show the necessity. Let Bk(t) = Ak(t) (k = 0, 1, . . . ). Then Zk(t) ≡ Xk(t) (k = 0, 1, . . . ),
where X0 and Xk (k = 1, 2, . . . ) are the fundamental matrices of systems (1.1.10) and (1.1.1k0),
respectively. Analogously, just as in the proof of Theorem 1.2.1, conditions (1.2.60) and (1.2.127)
are valid. In addition, condition (1.2.61) coincides with (1.2.35), and condition (1.2.62) follows from
(1.2.127).

Proof of Corollary 1.2.6. Due to conditions (1.2.64) and (1.2.65), without loss of generality, we may
assume that condition (1.2.59) holds for every natural k. Condition (1.2.60) follows from (1.2.65) by
representation (1.2.68).

Let us verify condition (1.2.61). Using the integration-by-parts formula, we find that

B(Z−1
k , Ak)(t)− B(Z−1

k , Ak)(s) =

t∫
s

Z−1
k (τ) dAk(τ)

−
∑

s<τ≤t

d1Z
−1
k (τ) · d1Ak(τ) +

∑
s≤τ<t

d2Z
−1
k (τ) · d2Ak(τ) for s < t (k = 0, 1, . . . ).

In addition, by equalities (1.1.18), we have

djZ
−1
k (t) ≡ −Z−1

k (t) djBk(t) · (In + (−1)jdjBk(t))
−1 (j = 1, 2; k = 0, 1, . . . ).

Consequently, due to (0.0.1), we get

B(Z−1
k , Ak)(t)− B(Z−1

k , Ak)(s) =

t∫
s

Z−1
k (τ) dA(Bk, Ak)(τ) (k = 0, 1, . . . )

for s < t. In the same way we establish the last equalities for the case t < s.
Analogously, we check the equalities

B(Z−1
k , fk)(t)− B(Z−1

k , fk)(s) =

t∫
s

Z−1
k (τ) dA(Bk, fk)(τ) for s, t ∈ I (k = 0, 1, . . . ).

Therefore, equalities (1.2.61) and (1.2.62) coincide with equalities (1.2.66) and (1.2.67), respec-
tively. The corollary follows from Corollary 1.2.5.
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Proof of Corollary 1.2.7. The corollary follows from Corollary 1.2.6 if we assume that Bk(t) ≡
Sc(Ak)(t) (k = 0, 1, . . . ) therein. In addition, we note that condition (1.2.58) has form (1.2.69), con-
dition (1.2.65) is equivalent to conditions (1.2.70) and (1.2.71), and by (1.2.68), conditions (1.2.66)
and (1.2.67) coincide with (1.2.72) and (1.2.73), respectively.

Proof of Corollary 1.2.8. The corollary follows from Corollary 1.2.6 if we assume that Bk(t) ≡
diag(Ak(t)) (k = 0, 1, . . . ) therein.

1.3 The stability in the Liapunov sense
1.3.1 Statement of the problem and formulation of the results
In this section, we investigate the question on the stability of the solutions of the system

dx = dA(t) · x+ df(t) for t ∈ R+ (1.3.1)

with respect to the small perturbation of initial data under the assumptions

A ∈ BVloc(R+;Rn×n), f ∈ BVloc(R+;Rn).

We consider, mainly, the case where A /∈ BVloc(R+;Rn×n).
As above, we assume that condition (1.1.10) holds, i.e.,

det
(
In + (−1)jdjA(t)

)
̸= 0 for t ∈ R+ (j = 1, 2),

and, without loss of generality, A(0) = On×n. This condition guarantees the unique solvability of the
initial problem for system (1.3.1) (see Section 1.1).

Definition 1.3.1. A solution x0 of system (1.3.1) is called stable if for every ε > 0 and t0 ∈ R+ there
exists a positive number δ = δ(ε, t0) such that an arbitrary solution x of system (1.3.1), satisfying the
inequality

∥x(t0)− x0(t0)∥ < δ, (1.3.2)

admits the estimate
∥x(t)− x0(t)∥ < ε for t ≥ t0. (1.3.3)

Definition 1.3.2. A solution x0 of system (1.3.1) is called uniformly stable if for every ε > 0 there
exists a positive number δ = δ(ε) such that for every t0 ∈ R+ an arbitrary solution x of system (1.3.1),
satisfying inequality (1.3.2), admits estimate (1.3.3).

Definition 1.3.3. A solution x0 of system (1.3.1) is called asymptotically stable if it is stable and for
every t0 ∈ R+ there exists a positive number δ0 = δ0(t0) such that an arbitrary solution x of system
(1.3.1), satisfying the inequality

∥x(t0)− x0(t0)∥ < δ0,

has the property
lim

t→+∞
∥x(t)− x0(t)∥ = 0.

Definition 1.3.4. Let ξ : R+ → R+ be a non-decreasing function such that

lim
t→+∞

ξ(t) = +∞. (1.3.4)

A solution x0 of system (1.3.1) is called ξ-exponentially asymptotically stable if there exists a positive
number η such that for every ε > 0 there exists a positive number δ = δ(ε) such that an arbitrary
solution x of system (1.3.1), satisfying inequality (1.3.2) for some t0 ∈ R+, admits the estimate

∥x(t)− x0(t)∥ < ε exp
(
− η(ξ(t)− ξ(t0))

)
for t ≥ t0.
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We assume that ξ : R+ → R+ is a non-decreasing function satisfying condition (1.3.4) when we
consider the question of ξ-exponential asymptotic stability.

Note that the exponentially asymptotic stability is a particular case of the ξ-exponentially asymp-
totic stability if we assume ξ(t) ≡ t.

Definition 1.3.5. System (1.3.1) is called stable in one or another sense if every its solution is stable
in the same sense.

Let x0 be some solution of system (1.3.1). Then every solution x of the system has the form
x(t) ≡ y(t) + x0(t), where y is a solution of the homogeneous system

dx = dA(t) · x for t ∈ R+. (1.3.10)

From this and Definitions 1.3.1–1.3.5 we have the following propositions.

Proposition 1.3.1. System (1.3.1) is stable in one or another sense if and only if the zero solution
of the homogeneous system (1.3.10) is stable in the same sense.

Proposition 1.3.2. System (1.3.1) is stable in one or another sense if and only if some of its solutions
is stable in the same sense.

Therefore, the stability is not the property of any solution of system (1.3.1). It is the common
property of all solutions of the system, and the vector-function f does not affect this property. Hence
it is the property only of the matrix-function A. Thus the following definition is natural.

Definition 1.3.6. The matrix-function A is called stable in one or another sense if system (1.3.10)
is stable in the same sense.

By Theorem 1.1.4, it is not difficult to verify the following propositions.

Proposition 1.3.3. The matrix-function A ∈ BVloc(R+;Rn×n) is stable if and only if every solution
of system (1.3.10) is bounded on R+.

Proposition 1.3.4. The matrix-function A ∈ BVloc(R+;Rn×n) is uniformly stable if and only if the
Cauchy matrix U of system (1.3.10) admits the estimate

sup
{
∥U(t, t0)∥ : t ≥ t0 ≥ 0

}
< +∞. (1.3.5)

Proposition 1.3.5. The matrix-function A ∈ BVloc(R+;Rn×n) is asymptotically stable if and only
if every solution x of system (1.3.10) has the property

lim
t→+∞

∥x(t)∥ = 0. (1.3.6)

Proposition 1.3.6. The matrix-function A ∈ BVloc(R+;Rn×n) is ξ-exponentially asymptotically
stable if and only if there exists a positive number η such that the Cauchy matrix U of system (1.3.10)
admits the estimate

sup
{

exp
(
η(ξ(t)− ξ(t0))

)
· ∥U(t, t0)∥ : t ≥ t0 ≥ 0

}
< +∞. (1.3.7)

In connection with Propositions 1.3.3–1.3.6, we present some results (see Theorems 1.3.1–1.3.3)
concerning the necessary and sufficient conditions for the stability in one or another sense of the
matrix-function A.

Below, we assume that H(0) = In in each statement where the matrix-function H appears.

Theorem 1.3.1. The matrix-function A ∈ BVloc(R+;Rn×n) is stable if and only if there exists a
nonsingular matrix-function H ∈ BVloc(R+;Rn×n) such that

sup
{
∥H−1(t)∥ : t ∈ R+

}
< +∞ (1.3.8)

and
+∞∨
0

(H + B(H,A)) < +∞. (1.3.9)
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Theorem 1.3.2. The matrix-function A ∈ BVloc(R+;Rn×n) is uniformly stable if and only if there
exists a nonsingular matrix-function H ∈ BVloc(R+;Rn×n) such that conditions (1.3.9) and

sup
{
∥H−1(t)H(τ)∥ : t ≥ τ ≥ 0

}
< +∞ (1.3.10)

hold.

Theorem 1.3.3. The matrix-function A ∈ BVloc(R+;Rn×n) is asymptotically stable if and only if
there exists a nonsingular matrix-function H ∈ BVloc(R+;Rn×n) such that conditions (1.3.9) and

lim
t→+∞

∥H−1(t)∥ = 0 (1.3.11)

hold.

Theorem 1.3.4. The matrix-function A ∈ BVloc(R+;Rn×n) is ξ-exponentially asymptotically stable
if and only if there exist a positive number η and a nonsingular matrix-function H ∈ BVloc(R+;Rn×n)
such that

sup
{

exp
(
η(ξ(t)− ξ(τ))

)
· ∥H−1(t)H(τ)∥ : t ≥ τ ≥ 0

}
< +∞ (1.3.12)

and
+∞∨
0

Bη(H,A) < +∞, (1.3.13)

where

Bη(H,A)(t) ≡
t∫

0

exp(−ηξ(τ)) d(H(τ) + B(H,A)(τ)). (1.3.14)

Remark 1.3.1. In Theorem 1.3.3, if the function ξ : R+ → R+ is continuous, then condition (1.3.13)
can be rewritten in the form∥∥∥∥

+∞∫
0

d
(
V (I(H,A))(t) + η diag(ξ(t), . . . , ξ(t))

)
· |H(t)|

∥∥∥∥ < +∞.

Corollary 1.3.1. Let the matrix-function Q ∈ BVloc(R+;Rn×n) be such that

det
(
In + (−1)jdjQ(t)

)
̸= 0 for t ∈ R+ (j = 1, 2) (1.3.15)

and
+∞∨
0

B(Y −1, A−Q) < +∞, (1.3.16)

where Y (Y (0) = In) is the fundamental matrix of the system

dy = dQ(t) · y for t ∈ R+. (1.3.17)

Then the stability in one or another sense of the matrix-function Q guarantees the stability of the
matrix-functions A in the same sense.

Theorem 1.3.5. Let the matrix-function A0 ∈ BVloc(R+;Rn×n) be uniformly stable and

det
(
In + (−1)jdjA0(t)

)
̸= 0 for t ∈ R+ (j = 1, 2). (1.3.18)

Let, moreover, the matrix-function A ∈ BVloc(R+;Rn×n) be such that
+∞∨
0

A
(
A0, I(H,A)−A0

)
< +∞, (1.3.19)

where H ∈ BVloc(R+;Rn×n) is a nonsingular matrix-function satisfying condition (1.3.10). Then the
matrix-function A is uniformly stable, as well.
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Remark 1.3.2. In Theorem 1.3.5, if H(t) ≡ In, then condition (1.3.19) has the form
+∞∨
0

A(A0, A−A0) < +∞. (1.3.20)

If the matrix-function A0 is stable, but not uniformly stable, then condition (1.3.20) does not
guarantee the uniform stability of A. We give a corresponding example which is a simple modification
of the analogous one from [35]. Let

A0(t) =

−1

8
t 0

0 −t(1 + cos2 t)i

 , A(t) =

 −1

8
t 0

−8 exp
(
− t

8

)
−t(1 + cos2 t)

 .

It is not difficult to verify that A0 is not only stable, but also asymptotically stable. As to the
matrix-function A, it is not uniformly stable.

Theorem 1.3.6. Let the matrix-function A0 ∈ BVloc(R+;Rn×n) be ξ-exponentially asymptotically
stable and condition (1.3.18) hold. Let, moreover, the matrix-function A ∈ BVloc(R+;Rn×n) be such
that

lim
t→+∞

ν(ξ)(t)∨
t

A(A0, A−A0) = 0, (1.3.21)

where
ν(ξ)(t) = sup

{
τ ≥ t : ξ(τ) ≤ ξ(t+) + 1

}
. (1.3.22)

Then the matrix-function A is also ξ-exponentially asymptotically stable.

Corollary 1.3.2. Let the components of the matrix-function A = (aik)
n
i,k=1 ∈ BVloc(R+;Rn×n) be

such that

1 + (−1)jdjaii(t) ̸= 0 for t ∈ R+ (j = 1, 2; i = 1, . . . , n),

lim
t→+∞

ν(ξ)(t)∨
t

A(aii, aik) = 0 (i, k = 1, . . . , n) (1.3.23)

and
aii(t)− aii(τ) ≤ −η(ξ(t)− ξ(τ)) for 0 ≤ τ < t (i = 1, . . . , n), (1.3.24)

where η > 0, and the function ν(ξ) : R+ → R+ is defined by (1.3.22). Then the matrix-function A is
ξ-exponentially asymptotically stable.

Corollary 1.3.3. Let a matrix-function P ∈ Lloc(R+;Rn×n) be ξ-exponentially asymptotically stable,
and the matrix-function A ∈ BVloc(R+;Rn×n) be such that

lim
t→+∞

νc(ξ)(t)∨
t

(A−A0) = 0,

where

νc(ξ)(t) = max
{
τ ≥ t : ξ(τ) = ξ(t) + 1

}
, A0(t) ≡

t∫
0

P (τ) dτ,

and ξ : R+ → R+ is a continuous non-decreasing function satisfying condition (1.3.4). Then the
matrix-function A is ξ-exponentially asymptotically stable, as well.

Remark 1.3.3. If the function ξ is strongly increasing, then

νc(ξ)(t) = ξ−1(ξ(t) + 1).

In particular, if ξ(t) = t, then νc(ξ)(t) = t + 1, and the obtained results coincide with ones given
in [35] for the case of ordinary differential equations.
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Proposition 1.3.7. Let the matrix-function A ∈ BVloc(R+;Rn×n) be ξ-exponentially asymptotically
stable, and the vector-function f ∈ BVloc(R+;Rn) be such that

lim
t→+∞

ν(ξ)(t)∨
t

A(A, f) = 0, (1.3.25)

where the function ν(ξ) : R+ → R+ is defined by (1.3.22). Then each solution x of system (1.3.1)
satisfies condition (1.3.6).

Proposition 1.3.8. Let the matrix-function A0 ∈ BVloc(R+;Rn×n) be ξ-exponentially asymptotically
stable and condition (1.3.18) hold. Let, moreover, the matrix-function A ∈ BVloc(R+;Rn×n) be such
that

lim
t→+∞

1

ξ(t)

t∨
0

A(A0, A−A0) = 0 (1.3.26)

and ∥∥d1A(A0, A−A0)(t)
∥∥ < 1 for t ∈ R+. (1.3.27)

Then the matrix-function A is ξ-exponentially asymptotically stable, as well.

Theorem 1.3.7. Let the matrix-function A = (aik)
n
i,k=1 ∈ BVloc(R+;Rn×n) be such that

1 + (−1)jdjaii(t) ̸= 0 for t ≥ t∗ (j = 1, 2; i = 1, . . . , n), (1.3.28)
t∫

t∗

exp
(
J(aii)(t)− J(aii)(τ)

)
dv(bik)(τ) ≤ hik for t ≥ t∗ (i ̸= k; i, k = 1, . . . , n) (1.3.29)

and
sup

{
J(aii)(t) : t ∈ R+

}
< +∞ (i = 1, . . . , n), (1.3.30)

where bik(t) ≡ A(aii, aik)(t) (i ̸= k; i, k = 1, . . . , n), t∗ and hik ∈ R+ (i ̸= k; i, k = 1, . . . , n). Let,
moreover, the matrix H = (hik)

n
i,k=1, where hii = 0 (i = 1, . . . , n), be such that

r(H) < 1. (1.3.31)

Then the matrix-function A is stable.

Theorem 1.3.8. Let the matrix-function A = (aik)
n
i,k=1 ∈ BVloc(R+;Rn×n) be such that conditions

(1.3.28), (1.3.29) and

sup
{
J(aii)(t)− J(aii)(τ) : t ≥ τ ≥ t∗

}
< +∞ (i = 1, . . . , n) (1.3.32)

hold, where bik(t) ≡ A(aii, aik)(t) (i ̸= k; i, k = 1, . . . , n), t∗ and hik ∈ R+ (i ̸= k; i, k = 1, . . . , n).
Let, moreover, the matrix H = (hik)

n
i,k=1, where hii = 0 (i = 1, . . . , n), be such that condition (1.3.31)

holds. Then the matrix-function A is uniformly stable.

Remark 1.3.4. In Theorem 1.3.8, condition (1.3.32) cannot be replaced by (1.3.30). We give the
corresponding example from [35]. Let n = 1, A(t) = −t(1 + cos2 t). Then every solution of system
(1.3.10) has the form

x(t) = exp
(
− t(1 + cos2 t) + t0(1 + cos2 t0)

)
x(t0).

Therefore, the matrix-function A is asymptotically stable, since each solution of (1.3.10) satisfies
condition (1.3.6). On the other hand,

x(t) = exp
(
kπ − π

2

)
x(t0)

for t = kπ+ π
2 and t0 = kπ for every natural k. From this, it is evident that for every ρ > 0, condition

(1.3.5) is violated for some t0 ∈ R+ and t > t0. So, the matrix-function A is not uniformly stable.
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Corollary 1.3.4. Let the components of the matrix-function A = (aik)
n
i,k=1 ∈ BVloc(R+;Rn×n) be

such that the conditions

1 + (−1)jdjaii(t) > 0 for t ≥ t∗ (j = 1, 2; i = 1, . . . , n) (1.3.33)

and∣∣A(aii, aik)(t)−A(aii, aik)(τ)
∣∣

≤ −hik

(
A(aii, aii)(t)−A(aii, aii)(τ)

)
for t ≥ τ ≥ t∗ (i ̸= k; i, k = 1, . . . , n) (1.3.34)

hold, where aii (i = 1, . . . , n) are non-increasing functions, t∗ and hik ∈ R+ (i ̸= k; i, k = 1, . . . , n).
Let, moreover, the matrix H = (hik)

n
i,k=1, where hii = 0 (i = 1, . . . , n), be such that condition (1.3.31)

holds. Then the matrix-function A is uniformly stable.

Theorem 1.3.9. Let the matrix-function A = (aik)
n
i,k=1 ∈ BVloc(R+;Rn×n) be such that conditions

(1.3.28),
J(aii)(t)− J(aii)(t

∗) ≤ −η(t) + η(t∗) for t ≥ t∗ (i = 1, . . . , n), (1.3.35)

and
t∫

t∗

exp
(
η(t)−η(τ)+J(aii)(t)−J(aii)(τ)

)
dv(bik)(τ)≤hik for t≥ t∗ (i ̸=k; i, k=1, . . . , n) (1.3.36)

hold, where bik(t) ≡ A(aii, aik)(t) (i ̸= k; i, k = 1, . . . , n), t∗ and hik ∈ R+ (i ̸= k; i, k = 1, . . . , n), and
the function η ∈ BVloc(R+;R) satisfies condition (1.3.4). Let, moreover, the matrix H = (hik)

n
i,k=1,

where hii = 0 (i = 1, . . . , n), be such that condition (1.3.31) holds. Then the matrix-function A is
asymptotically stable.

Corollary 1.3.5. Let the components of the matrix-function A = (aik)
n
i,k=1 ∈ BVloc(R+;Rn×n) be

such that the conditions∣∣sc(aik)(t)− sc(aik)(τ)
∣∣

≤ −hik

(
sc(aii)(t)− sc(aii)(τ)

)
for t ≥ τ ≥ t∗ (i ̸= k; i, k = 1, . . . , n), (1.3.37)

(−1)jdjaii(t) > 0 or − 1 < (−1)jdjaii(t) < exp−1(1)− 1

for t ≥ t∗ (j = 1, 2; i = 1, . . . , n), (1.3.38)

and

|djaik(t)| ≤ hik

(
1 + ln

(
1 + (−1)jdjaii(t)

))−1

× ln
(
1 + (−1)jdjaii(t)

)
for t ≥ t∗ (j = 1, 2; i ̸= k; i, k = 1, . . . , n) (1.3.39)

hold, where sc(aii) (i = 1, . . . , n) are non-increasing functions, t∗ and hik ∈ R+ (i ̸= k; i, k = 1, . . . , n)
are such that the matrix H = (hik)

n
i,k=1, where hii = 0 (i = 1, . . . , n), satisfies condition (1.3.31). Let,

moreover, there exists a function a0 ∈ BVloc(R+;R) such that

a0(t)− a0(τ) ≤ min
{∣∣J(aii)(t)− J(aii)(τ)

∣∣ : i = 1, . . . , n
}

for t ≥ τ ≥ t∗ (1.3.40)

and
lim

t→+∞
a0(t) = +∞. (1.3.41)

Then the matrix-function A is asymptotically, as well as uniformly stable.

Corollary 1.3.6. Let the components of the matrix-function A = (aik)
n
i,k=1 ∈ BVloc(R+;Rn×n) be

such that conditions (1.3.37)–(1.3.39) hold, where aii (i = 1, . . . , n) are non-increasing functions such
that sc(aii) ∈ ACloc(R+;R) (i = 1, . . . , n), t∗ and hik ∈ R+ (i ̸= k; i, k = 1, . . . , n) are such that
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the matrix H = (hik)
n
i,k=1, where hii = 0 (i = 1, . . . , n), satisfies condition (1.3.31). Let, moreover,

condition (1.3.41) hold, where

a0(t) ≡
t∫

0

η0(s) ds+
∑

0<s≤t

ln(1− η1(s))−
∑

0≤s<t

ln(1 + η2(s)), (1.3.42)

η0(t) ≡ min
{
|(sc(aii)(t))′| : i = 1, . . . , n

}
(1.3.43)

and
η1(t) ≡ max

{
d1aii(t) : i = 1, . . . , n

}
, η2(t) ≡ min

{
d2aii(t) : i = 1, . . . , n

}
. (1.3.44)

Then the matrix-function A is asymptotically, as well as uniformly stable.

Theorem 1.3.10. Let the matrix-function A = (aik)
n
i,k=1 ∈ BVloc(R+;Rn×n) be such that conditions

(1.3.28),

sup
{J(aii)(t)− J(aii)(τ)

ξ(t)− ξ(τ)
: t ≥ τ ≥ t∗, ξ(t) ̸= ξ(τ)

}
< −γ (i = 1, . . . , n) (1.3.45)

and

t∫
t∗

exp
(
γ(ξ(t)− ξ(τ)) + J(aii)(t)− J(aii)(τ)

)
dv(bik)(τ)

≤ hik for t ≥ t∗ (i ̸= k; i, k = 1, . . . , n) ∗

hold, where γ > 0, t∗ and hik ∈ R+ (i ̸= k; i, k = 1, . . . , n), bik(t) ≡ A(aii, aik)(t) (i, k = 1, . . . , n).
Let, moreover, the matrix H = (hik)

n
i,k=1, where hii = 0 (i = 1, . . . , n), be such that condition (1.3.31)

holds. Then the matrix-function A is ξ-exponentially asymptotically stable.

Corollary 1.3.7. Let the components of the matrix-function A = (aik)
n
i,k=1 ∈ BVloc(R+;Rn×n) be

such that conditions (1.3.33), (1.3.37), (1.3.39) and (1.3.45) hold, where γ > 0, t∗ and hik ∈ R+

(i ̸= k; i, k = 1, . . . , n), aii (i = 1, . . . , n) are non-decreasing functions. Let, moreover, the matrix
H = (hik)

n
i,k=1, where hii = 0 (i = 1, . . . , n), be such that condition (1.3.31) holds. Then the matrix-

function A is ξ-exponentially asymptotically stable.

Theorem 1.3.11. Let A=(aik)
n
i,k=1∈BVloc(R+;Rn×n), and let the matrix-function A0=(a0ik)

n
i,k=1∈

BVloc(R+;Rn×n), with non-decreasing components a0ik (i ̸= k; i, k = 1, . . . , n), be such that

∥djA(t)∥ < 1 for t ∈ R+ (j = 1, 2),

sc(aii)(t)− sc(aii)(τ) ≤ sc(a0ii)(t)− sc(a0ii)(τ) for t > τ ≥ 0 (i = 1, . . . , n),∣∣sc(aik)(t)− sc(aik)(τ)
∣∣ ≤ sc(a0ik)(t)− sc(a0ik)(τ) for t > τ ≥ 0 (i ̸= k; i, k = 1, . . . , n)

and

djaii(t)| ≤ dja0ii(t) and |djaik(t)| ≤ dja0ik(t) for t ∈ R+ (j = 1, 2; i, k = 1, . . . , n).

Let, moreover, the matrix-function A0 be stable (uniformly stable, asymptotically stable or ξ-exponen-
tially asymptotically stable). Then the matrix-function A is also stable (uniformly stable, asymptoti-
cally stable or ξ-exponentially asymptotically stable).

Theorem 1.3.12. Let αik ∈ R (i, k = 1, . . . , n) and µi : R+ → R (i = 1, . . . , n) be the functions such
that sc(µi) (i = 1, . . . , n) are absolutely continuous and non-decreasing functions, conditions (1.3.41)
and

(−1)jαiidjµi(t) > 0 or − 1 < (−1)jαiidjµi(t) < exp−1(1)− 1

for t ∈ R+ (j = 1, 2; i = 1, . . . , n) (1.3.46)
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hold, where the function a0(t) is defined by (1.3.42),

η0(t) ≡ min
{
|αii|(sc(µi)(t))

′ : i = 1, . . . , n
}

and
η1(t) ≡ max

{
αiid1µi(t) : i = 1, . . . , n

}
, η2(t) ≡ min

{
αiid2µi(t) : i = 1, . . . , n

}
.

Then conditions (1.3.31) and
αii < 0 (i = 1, . . . , n), (1.3.47)

where
H =

(
(1− δik)

|αik|
|αii|

)n
i,k=1

, (1.3.48)

are sufficient for the matrix-function A(t) = (αikµi(t))
n
i,k=1 to be asymptotically stable; and if the

conditions

αik ≥ 0 (i ̸= l; i, k = 1, . . . , n), (1.3.49)
n∑

l=1; l ̸=i

αildjµi(t) < |1− αiidjµi(t)| or

n∑
l=1; l ̸=k

αlkdjµi(t) < |1− αkkdjµk(t)| for t ∈ R+ (j = 1, 2; i, k = 1, . . . , n), (1.3.50)

αiidjµi(t) < 1 for t ∈ R+ (j = 1, 2; i = 1, . . . , n) (1.3.51)

and (
(δik − αikdjµi(t))

n
i,k=1

)−1 ≥ On×n for t ∈ R+ (j = 1, 2) (1.3.52)

hold, then conditions (1.3.31) and (1.3.47) are necessary, as well.

Corollary 1.3.8. Let the matrix-function Q ∈ BVloc(R+;Rn×n) satisfying condition (1.3.15) be
uniformly stable and there exist a number η > 0 such that

∥∥∥∥
+∞∫
0

|Y −1(t)| dV (Gη(ξ,Q,A))(t)

∥∥∥∥ < +∞, (1.3.53)

where Y (Y (0) = In) is the fundamental matrix of system (1.3.17), and

Gη(ξ,Q,A)(t) ≡ A(Q,A−Q)(t) + ηsc(ξ)(t)In

+
∑

0<τ≤t

exp(−ηξ(τ)) d1 exp(ηξ(τ))(In − d1Q(τ))−1(In − d1A(τ))

+
∑

0≤τ<t

exp(−ηξ(τ)) d2 exp(ηξ(τ))(In + d2Q(τ))−1(In + d2A(τ)). (1.3.54)

Then the matrix-function A is ξ-exponentially asymptotically stable.

Remark 1.3.5. In Corollary 1.3.8, if the function ξ : R+ → R+ is continuous, then

Gη(ξ,Q,A)(t) ≡ A(Q,A−Q)(t) + ηξ(t)In.

Remark 1.3.6. As

B(Z−1, A−Q)(t) =

t∫
0

Z−1(τ) dA(Q,A−Q)(τ) for t ∈ R+,
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then the condition ∥∥∥∥
+∞∫
0

|Y −1(t)| dV (A(Q,A−Q))(t)

∥∥∥∥ < +∞

guarantees the fulfillment of condition (1.3.16) in Corollary 1.3.1. On the other hand,

lim
η→0+

Gη(ξ,Q,A)(t) = A(Q,A−Q)(t) for t ∈ R+,

where Gη(ξ,Q,A)(t) is defined by (1.3.54). Therefore, Corollary 1.3.8 is true for the limit case (η = 0),
as well, if require the ξ-exponentially asymptotic stability of the matrix-function Q instead of the
uniform stability of that matrix-function.
Corollary 1.3.9. Let Q ∈ BVloc(R+;Rn×n) be a continuous matrix-function satisfying the Lappo–
Danilevskiĭ condition. Let, moreover, there exist a nonnegative number η such that∥∥∥∥

+∞∫
0

exp(−Q(t)) dV (A−Q+ ηξIn)(t)

∥∥∥∥ < +∞.

Then:
(a) the uniform stability of the matrix-function Q guarantees the ξ-exponentially asymptotically

stability of the matrix-function A if η > 0;

(b) the ξ-exponentially asymptotic stability of the matrix-function Q guarantees the ξ-exponentially
asymptotically stability of the matrix-function A if η = 0.

Corollary 1.3.10. Let there exist a nonnegative number η such that the components aik (i, k =
1, . . . , n) of the matrix-function A satisfy the conditions

1 + (−1)jdjaii(t) ̸= 0 for t ∈ R+ (i = 1, . . . , n), (1.3.55)

sc(aii)(t)− sc(aii)(τ)−
∑

τ<s≤t

ln |1− d1aii(s)|+
∑

τ≤s<t

ln |1 + d2aii(s)|

≤ −η
(
sc(ξ)(t)− sc(ξ)(τ)

)
− µ(ξ(t)− ξ(τ)) for t ≥ τ ≥ 0 (i = 1, . . . , n), (1.3.56)

(−1)j
∑

0≤t<+∞

|y−1
i (t)|

(
exp

(
(−1)jηdjξ(τ)

)
− 1
)
< +∞ (j = 1, 2; i = 1, . . . , n) (1.3.57)

and
+∞∫
0

|y−1
i (t)| dv(gik)(t) < +∞ (i ̸= k; i, k = 1, . . . , n),

where µ = 0 if η > 0 and µ > 0 if η = 0,

yi(t) ≡ exp
(
sc(aii)(t) + ηsc(ξ)(t)

) ∏
0<τ≤t

(1− d1aii(τ))
−1

∏
0≤τ<t

(1 + d2aii(τ)) (i = 1, . . . , n),

gik(t) ≡ sc(aik)(t) +
∑

0<τ≤t

exp(−ηd1ξ(τ)) d1aik(τ) · (1− d1aii(τ))
−1

+
∑

0≤τ<t

exp(ηd2ξ(τ)) d2aik(τ) · (1 + d2aii(τ))
−1 (i ̸= k; i, k = 1, . . . , n).

Then the matrix-function A is ξ-exponentially asymptotically stable.
Remark 1.3.7. In Corollary 1.3.10, if the components aik (i, k = 1, . . . , n) of the matrix-function A
satisfy the condition

(−1)jdjaik(t) ·
(
1 + (−1)jdjaii(t)

)−1
> 0 for t ∈ R+ (i ̸= k; i, k = 1, . . . , n; j = 1, 2)

together with condition (1.3.55), then we can assume without loss of generality that η > 0 and µ = 0
in Corollary 1.3.10.
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Theorem 1.3.13. Let the matrix-function A ∈ BVloc(R+;Rn×n) be such that

Sc(A)(t) =

m∑
k=1

sc(αk)(t) ·Bk for t ∈ R+ (1.3.58)

and
In + (−1)jdjA(t) = exp

(
(−1)j

m∑
k=1

djαk(t) ·Bk

)
for t ∈ R+ (j = 1, 2), (1.3.59)

where αk ∈ BVloc(R+;R+) (k = 1, . . . ,m), and Bk ∈ Rn×n (k = 1, . . . ,m) are pairwise permutable
constant matrices. Let, moreover, (λ− λki)

nki (i = 1, . . . ,mk;
mk∑
i=1

nki = n) be the elementary divisors

of the matrix Bk for every k ∈ {1, . . . ,m}. Then

(a) the matrix-function A is stable if and only if

sup
{ m∏

k=1

( mk∑
i=1

(1 + αk(t))
nki−1 exp(αk(t)Reλki)

)
: t ∈ R+

}
< +∞; (1.3.60)

(b) the matrix-function A is asymptotically stable if and only if

lim
t→+∞

m∏
k=1

( mk∑
i=1

(1 + αk(t))
nki−1 exp(αk(t)Reλki)

)
= 0. (1.3.61)

Corollary 1.3.11. Let conditions (1.3.58) and (1.3.59) hold, where Bk ∈ Rn×n (k = 1, . . . ,m) are
pairwise permutable constant matrices and αk ∈ BVloc(R+;R+) (k = 1, . . . ,m) are such that

lim
t→+∞

ak(t) = +∞ (k = 1, . . . ,m). (1.3.62)

Then

(a) the matrix-function A is stable if and only if every eigenvalue of the matrices Bk (k = 1, . . . ,m)
has the nonpositive real part; in addition, every elementary divisor corresponding to the eigen-
values with the zero real part is simple;

(b) the matrix-function A is asymptotically stable if and only if every eigenvalue of the matrices Bk

(k = 1, . . . ,m) has a negative real part.

If the matrix-function A ∈ BVloc(R+;Rn×n) has at most a finite number of discontinuity points
in [a, t] for every t > 0, then by ν1(t) and ν2(t) we denote, respectively, a number of points τ ∈ ]0, t]
for which ∥d1A(τ)∥ ̸= 0 and a number of points τ ∈ [0, t[ for which ∥d2A(τ)∥ ̸= 0.

Corollary 1.3.12. Let the matrix-function A ∈ BVloc(R+;Rn×n) be such that

S0(A)(t) = α(t)A0 for t ∈ R+

and
djA(t) = Aj if ∥djA(t)∥ ̸= 0 (t ∈ R+; j = 1, 2),

where α ∈ BVloc(R+;R+) is a continuous function such that

lim
t→+∞

α(t) = +∞, (1.3.63)

and A0, A1 and A2 ∈ Rn×n are the pairwise permutable constant matrices. Let, moreover, there exist
numbers β1, β2 ∈ R+ such that

lim sup
t→+∞

|νj(t)− βjα(t)| < +∞ (j = 1, 2). (1.3.64)

Then
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(a) the matrix-function A is stable if and only if every eigenvalue of the matrix P = A0−β1 ln(In−
A1) + β2 ln(In + A2) has the nonpositive real part; in addition, every elementary divisor corre-
sponding to the eigenvalue with the zero real part is simple;

(b) the matrix-function A is asymptotically stable if and only if every eigenvalue of the matrix P
has the negative real part.

Corollary 1.3.13. Let the matrix-function A ∈ BVloc(R+;Rn×n) be such that

Sc(A)(t) = C diag
(
Sc(G1)(t), . . . , Sc(Gm)(t)

)
C−1 for t ∈ R+

and

In + (−1)jdjA(t) = C diag
(

exp
(
(−1)jdjG1(t)

)
, . . . , exp

(
(−1)jdjGm(t)

))
C−1

for t ∈ R+ (j = 1, 2),

where C ∈ Cn×n is a nonsingular complex matrix, Gk(t) =
nk−1∑
i=0

αki(t)Z
i
nk

(k = 1, . . . ,m;
m∑

k=1

nk = n),

αki ∈ BVloc(R+;R+) (k = 1, . . . ,m; i = 1, . . . , nk − 1), and αk0 is a complex-valued function such
that Re(αk0) and Im(αk0) ∈ BVloc(R+;R). Then

(a) the matrix-function A is stable if and only if

sup
{

exp
(
Re(αk0(t))

) nk−1∏
i=1

(1 + αki(t))
[
nk−1

i ] : t ∈ R+

}
< +∞ (k = 1, . . . ,m); (1.3.65)

(b) the matrix-function A is asymptotically stable if and only if

lim
t→+∞

exp
(
Re(αk0(t))

) nk−1∏
i=1

(1 + αki(t))
[
nk−1

i ] = 0 (k = 1, . . . ,m). (1.3.66)

Later, we will use the following notation.
Let H = (hik)

n
i,k=1 ∈ Lloc(R+;Rn×n;α), where α : R+ → R is a non-decreasing function. Then by

Q(H;α) we denote the set of all matrix-functions A = (aik)
n
i,k=1 ∈ BVloc(R+;Rn×n) such that

bik(t) =

t∫
0

hik(τ) dα(τ) for t ∈ R+ (i, k = 1, . . . , n), (1.3.67)

where

bik ≡ aik(t)−
1

2

n∑
l=1

( ∑
0<τ≤t

d1ali(τ) · d1alk(τ)−
∑

0≤τ<t

d2ali(τ) · d2alk(τ)
)

(i, k = 1, . . . , n). (1.3.68)

If β ∈ BVloc(R+;R) is such that

1 + (−1)jdjβ(t) ̸= 0 for t ∈ R+ (j = 1, 2),

then by γβ we denote the unique solution of the initial problem

dγ(t) = γ(t) dβ(t), γ(0) = 1.

By (1.1.5),

γβ(t) = exp
(
sc(β)(t)− sc(β)(0)

) ∏
0<τ≤t

(1− d1β(τ))
−1

∏
0≤τ<t

(1 + d2β(τ)) for t ∈ R+. (1.3.69)



The Initial Problem. Numerical Solvability 69

Theorem 1.3.14. Let A = (aik)
n
i,k=1 ∈ Q(H;α),

n∑
i,k=1

hik(t)xixk ≤ p(t)
n∑

i=1

x2
i for t ∈ R+, (xi)

n
i=1 ∈ Rn (1.3.70)

and
1 + 2(−1)jp(t) djα(t) > 0 for t ∈ R+ (j = 1, 2), (1.3.71)

where H = (hik)
n
i,k=1 ∈ Lloc(R+;Rn×n;α), α : R+ → R is a non-decreasing function, and p ∈

Lloc(R+;R;α). Let, moreover, β(t) ≡ 2
t∫
0

p(τ) dα(τ), and γβ(t) be defined by (1.3.69). Then

(a) the condition
lim sup
t→+∞

γ
1/2
β (t) < +∞ (1.3.72)

guarantees the stability of the matrix-function A;

(b) the condition
sup

{
γ
1/2
β (t)γ

−1/2
β (τ) : t ≥ τ ≥ 0

}
< +∞ (1.3.73)

guarantees the uniform stability of the matrix-function A;

(c) the condition
lim

t→+∞
γ
1/2
β (t) = 0 (1.3.74)

guarantees the asymptotic stability of the matrix-function A;

(d) the condition

sup
{

ln γβ(t)− ln γβ(τ)

2(ξ(t)− ξ(τ))
: t ≥ τ ≥ t∗, ξ(t) ̸= ξ(τ)

}
< 0, (1.3.75)

where t∗ ∈ R+, guarantees the ξ-exponentially asymptotic stability of the matrix-function A;

(e) if the inequality, opposite to inequality (1.3.70), holds and

lim sup
t→+∞

γ
1/2
β (t) = +∞, (1.3.76)

then the matrix-function A is nonstable.

Corollary 1.3.14. Let A ∈ Q(H;α) and

(−1)jλ0(C(t)) djα(t) > −1

2
for t ∈ R+ (j = 1, 2), (1.3.77)

where
C(t) ≡ 1

2

(
H(t) +HT (t)

)
,

H = (hik)
n
i,k=1 ∈ Lloc(R+;Rn×n;α), and α : R+ → R is a non-decreasing function. Then

(a) the condition

lim sup
t→+∞

( t∫
0

λ0(C(τ)) dsc(α)(τ)−
1

2

∑
0<τ≤t

ln
(
1− 2λ0(C(τ)) d1α(τ)

)
+

1

2

∑
0≤τ<t

ln
(
1 + 2λ0(C(τ)) d2α(τ)

))
< +∞

guarantees the stability of the matrix-function A;
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(b) the condition

sup
{ t∫

τ

λ0(C(s)) dsc(α)(s)−
1

2

∑
τ<s≤t

ln
(
1− 2λ0(C(s)) d1α(s)

)
+

1

2

∑
τ≤s<t

ln
(
1 + 2λ0(C(s)) d2α(s)

)
: t ≥ τ ≥ 0

}
< +∞

guarantees the uniform stability of the matrix-function A;

(c) the condition

lim
t→+∞

( t∫
0

λ0(C(τ)) dsc(α)(τ)

− 1

2

∑
τ<s≤t

ln
(
1− 2λ0(C(τ)) d1α(τ)

)
+

1

2

∑
τ≤s<t

ln
(
1 + 2λ0(C(τ)) d2α(τ)

))
= −∞

guarantees the asymptotic stability of the matrix-function A;

(d) the condition

sup
{

1

ξ(t)− ξ(τ)

( t∫
τ

λ0(C(s)) dsc(α)(s)−
1

2

∑
τ<s≤t

ln
(
1− 2λ0(C(s)) d1α(s)

)
+

1

2

∑
τ≤s<t

ln
(
1 + 2λ0(C(s)) d2α(s)

))
: t ≥ τ ≥ t∗, ξ(t) ̸= ξ(τ)

}
< 0,

where t∗ ∈ R+, guarantees the ξ-exponentially asymptotic stability of the matrix-function A;

(e) if instead of condition (1.3.77), the condition

(−1)jλ0(C(t)) djα(t) > −1

2
for t ∈ R+ (j = 1, 2)

holds and

lim sup
t→+∞

( t∫
0

λ0(C(τ)) dsc(α)(τ)

− 1

2

∑
0<τ≤t

ln
(
1− 2λ0(C(τ)) d1α(τ)

)
+

1

2

∑
0≤τ<t

ln
(
1 + 2λ0(C(τ)) d2α(τ)

))
= +∞,

then the matrix-function A is nonstable.

1.3.2 The well-posedness of the initial problem on infinite intervals and
stability

In this section, we consider the question on the well-posedness of problem (1.2.1), (1.2.2) for the case
I = R+, A0 = A ∈ BVloc(R+;Rn×n) and f0 = f ∈ BVloc(R+;Rn).

Definition 1.3.7. The initial problem (1.2.1), (1.2.2), where A0 ∈ BVloc(I;Rn×n) is the matrix-
function satisfying condition (1.2.8), and f0 ∈ BVloc(I;Rn), is said to be well-posed if condition
(1.2.10) holds for every sequences Ak (k = 1, 2, . . . ), fk (k = 1, 2, . . . ), tk (k = 0, 1, . . . ) and ck
(k = 0, 1, . . . ) for which there exists a sequence Hk (k = 0, 1, . . . ) such that conditions (1.2.5), (1.2.9)
and (1.2.11) hold, and conditions (1.2.12)–(1.2.14) are fulfilled uniformly on I.
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It is evident that the statements of Theorems 1.2.1, 1.2.1′ and Corollary 1.2.2 imply that the initial
problem (1.2.1), (1.2.2) is well-posed.

Definition 1.3.8. The initial problem (1.2.1), (1.2.2), where A0 ∈ BVloc(I;Rn×n) is the matrix-
function satisfying condition (1.2.8), and f0 ∈ BVloc(I;Rn), is said to be weakly well-posed if condition
(1.2.10) holds for every sequences Ak (k = 1, 2, . . . ), fk (k = 1, 2, . . . ), tk (k = 0, 1, . . . ) and ck
(k = 0, 1, . . . ) for which there exists a sequence Hk (k = 0, 1, . . . ) such that conditions (1.2.5), (1.2.9)
and (1.2.11) hold, and the conditions (1.2.12),

lim
k→+∞

t∨
a

(
I(Hk, Ak)− I(H0, A0)

)
= 0 (1.3.78)

and

lim
k→+∞

t∨
a

(
B(Hk, fk)− B(H0, f0)

)
= 0 (1.3.79)

hold uniformly on I, where a ∈ I is a fixed point.

Theorem 1.3.15. Let A ∈ BVloc(R+;Rn×n) and f ∈ BVloc(R+;Rn) be such that

lim sup
t→+∞

ν(ξ)(t)∨
t

A(A,A) < +∞ (1.3.80)

and

lim
t→+∞

ν(ξ)(t)∨
t

A(A, f) = 0,

where the function ν(ξ) is defined by (1.3.22). Then ξ-exponentially asymptotic stability of the matrix-
function A guarantees the well-posedness of problem (1.2.1), (1.2.2) on the R+.

Theorem 1.3.16. Let A ∈ BVloc(R+;Rn×n) and

f ∈ BV(R+;Rn). (1.3.81)

Then uniform stability of the matrix-function A guarantees the weakly well-posedness of problem
(1.2.1), (1.2.2) on the R+.

1.3.3 Auxiliary propositions
Lemma 1.3.1. Let the matrix-function A0 ∈ BVloc(R+;Rn×n) satisfy condition (1.3.18). Let, more-
over, the following conditions hold:

(a) the Cauchy matrix U0 of the system

dx = dA0(t) · x (1.3.82)

satisfies the inequality

|U0(t, t0)| ≤ Ω exp
(
− η(t) + η(t0)

)
for t ≥ t0 (1.3.83)

for some t0 ∈ R+, where Ω = (ρik)
n
i,k=1 ∈ Rn×n

+ , and η ∈ BVloc(R+;R);

(b) there exists a matrix H ∈ Rn×n
+ such that conditions (1.3.31) and

t∫
t0

exp(η(t)− η(τ)) · |U0(t, τ)| dV (A(A0, A−A0))(τ) ≤ H for t ≥ t0 (1.3.84)

hold.
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Then an arbitrary solution x of system (1.3.10) admits the estimate

|x(t)| ≤ R|x(t0)| exp
(
− η(t) + η(t0)

)
for t ≥ t0, (1.3.85)

where R = (In −H)−1Ω.

Proof. Let A = (aik)
n
i,k=1, A0 = (a0ik)

n
i,k=1, U0 = (u0ik)

n
i,k=1, and x = (xi)

n
i=1 be an arbitrary solution

of system (1.3.10).
It is evident that

dx(t) ≡ dA0(t) · x(t) + d(A(t)−A0(t)) · x(t).

From this, according to the variation-of-constant formula (see (1.1.14)), the integration-by-parts for-
mula and properties of the Cauchy matrix U0 (see Theorem 1.1.6(d)), we have

x(t) = U0(t, t0)x(t0) +

t∫
t0

d(A(τ)−A0(τ)) · x(τ)−
t∫

t0

dU0(t, τ)

( τ∫
t0

d(A(s)−A0(s)) · x(s)
)

= U0(t, t0)x(t0) +

t∫
t0

U0(t, τ) d(A(τ)−A0(τ)) · x(τ)

−
∑

t0<τ≤t

d1U0(t, τ) · d1(A(τ)−A0(τ)) · x(τ)

+
∑

t0≤τ<t

d2U0(t, τ) · d2(A(τ)−A0(τ)) · x(τ)

= U0(t, t0)x(t0) +

t∫
t0

U0(t, τ) d(A(τ)−A0(τ)) · x(τ)

+
∑

t0<τ≤t

U0(t, τ) d1A0(τ) · (In − d1A0(τ))
−1 · d1(A(τ)−A0(τ)) · x(τ)

−
∑

t0≤τ<t

U0(t, τ) d2A0(τ) · (In + d2A0(τ))
−1 · d2

(
A(τ)−A0(τ)

)
· x(τ).

Therefore,

x(t) = U0(t, t0)x(t0) +

t∫
t0

U0(t, τ) dA(A0, A−A0)(τ) · x(τ) for t ≥ t0. (1.3.86)

Let

yk(t) = sup
{

exp
(
η(τ)− η(t0)

)
· |xk(τ)| : t0 ≤ τ ≤ t

}
,

y(t) = (yk(t))
n
k=1.

Then

∣∣∣∣ n∑
k,j=1

t∫
t0

u0ij(t, τ)xk(τ) dbjk(τ)

∣∣∣∣ ≤ n∑
k,j=1

yk(t)

t∫
t0

|u0ij(t, τ)||xk(τ)| dv(bjk)(τ)

≤
n∑

k,j=1

t∫
t0

exp(−η(τ) + η(t0))|u0ij(t, τ)| dv(bjk)(τ) for t ≥ t0,

where bik(t) ≡ A(a0ik, aik − a0ik)(t) (i, k = 1, . . . , n). From this and (1.3.86) we find



The Initial Problem. Numerical Solvability 73

exp(η(t)− η(t0)) · |xi(t)| ≤
n∑

k=1

exp(η(t)− η(t0))|u0ik(t, t0)| |xk(t0)|

+

n∑
k,j=1

yk(t)

t∫
t0

exp(η(t)− η(τ))|u0ij(t, τ)| dv(bjk)(τ) for t ≥ t0 (i = 1, . . . , n).

Therefore, by (1.3.83) and (1.3.84), we obtain

y(t) ≤ Ω|x(t0)|+Hy(t) for t ≥ t0.

Hence,
(In −H)y(t) ≤ Ω|x(t0)| for t ≥ t0. (1.3.87)

On the other hand, due to (1.3.31), the matrix In −H is nonsingular and the matrix (In −H)−1

is nonnegative, since H is nonnegative. From this, by (1.3.87) and the definition of y, we get

y(t) ≤ (In −H)−1Ω|x(t0)| for t ≥ t0

and
|x(t)| ≤ (In −H)−1Ω|x(t0)| exp(−η(t) + η(t0)) for t ≥ t0.

Thus estimate (1.3.85) is proved.

Lemma 1.3.2. Let h ∈ BV([a, b];Rn) and β ∈ BV([a, b];R). Then

b∫
a

h(t) exp(−β(t)) d exp(β(t)) =
b∫

a

h(t) dβ(t)

+
∑

a<t≤b

h(t)
(
1− d1β(t)− exp(−d1β(t))

)
+
∑

a≤t<b

h(t)
(

exp(d2β(t))− d2β(t)− 1
)
.

Proof. Let ξ(t) ≡ s1(β)(t) + s2(β)(t). Using (0.0.10), (0.0.11) and (0.0.12), we have

b∫
a

h(t) exp(−β(t)) d exp(β(t)) =
b∫

a

h(t) exp(−sc(β)(t)− ξ(t)) d exp(sc(β)(t) + ξ(t))

=

b∫
a

h(t) exp(−sc(β)(t)) d exp(sc(β)(t)) +
b∫

a

h(t) exp(−ξ(t)) d exp(ξ(t))

−
∑

a<t≤b

h(t) exp(−sc(β)(t)− ξ(t)) d1 exp(sc(β)(t)) · d1 exp(ξ(t))

+
∑

a≤t<b

h(t) exp(−sc(β)(t)− ξ(t)) d2 exp
(
sc(β)(t)

)
· d2 exp(ξ(t))

=

b∫
a

h(t) exp(−sc(β)(t)) d exp(sc(β)(t)) +
2∑

j=1

b∫
a

h(t) exp(−sj(β)(t)) d exp(sj(β)(t))

=

b∫
a

h(t) dsc(β)(t) +
∑

a<t≤b

h(t)(1− exp(−d1β(t))) +
∑

a≤t<b

h(t)(exp(d2β(t))− 1)

=

b∫
a

h(t) dβ(t) +
∑

a<t≤b

h(t)
(
1− d1β(t)− exp(−d1β(t))

)
+
∑

a≤t<b

h(t)
(

exp(d2β(t))− d2β(t)− 1
)
.
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Lemma 1.3.3. Let the matrix-function B ∈ BVloc(R+;Rn×n) satisfy the Lappo–Danilevskiǐ condition.
Then

b∫
a

d exp(B(t)) · exp(−B(t)) = Sc(B)(b)− Sc(B)(a)

+
∑

a<t≤b

(
In − exp(−d1B(t))

)
+
∑

a≤t<b

(exp(d2B(t))− In) for 0 ≤ a < b. (1.3.88)

Proof. Since Sc(B)(t), S1(B)(t) and S2(B)(t) (t ∈ R+) are pairwise permutable matrices, we, in
addition, have

Sc(B)(t) · djB(t) = djB(t) · Sc(B)(t) for t ∈ R+ (j = 1, 2)

and

Sj(B)(t) · d3−jB(t) = d3−jB(t) · Sj(B)(t) for t ∈ R+ (j = 1, 2).

Therefore, according to the general integration-by-parts formula (0.0.10) and (0.0.11), we find that

b∫
a

d exp(B(t)) · exp(−B(t)) =

b∫
a

d exp(Sc(B)(t)) · exp
(
S1(B)(t) + S2(B)(t)

)
· exp(−B(t))

+

b∫
a

exp(Sc(B)(t)) d exp
(
S1(B)(t) + S2(B)(t)

)
· exp(−B(t))

=

b∫
a

d exp(Sc(B)(t)) · exp(−Sc(B)(t))

+
∑

a<t≤b

exp(Sc(B)(t)) d1 exp
(
S1(B)(t) + S2(B)(t)

)
· exp(−B(t))

+
∑

a≤t<b

exp(Sc(B)(t)) d2 exp
(
S1(B)(t) + S2(B)(t)

)
· exp(−B(t)).

Hence

b∫
a

d exp(B(t)) · exp(−B(t)) =

b∫
a

d exp(Sc(B)(t)) · exp(−Sc(B)(t))

+
∑

a<t≤b

(
In − exp(−d1B(t))

)
+
∑

a≤t<b

(
exp(d2B(t))− In

)
. (1.3.89)

Due to the Lappo–Danilevskiǐ condition, we easily get

b∫
a

dSk
c (B)(t) · Sm

c (B)(t) =
k

k +m

(
Sk+m
c (B)(b)− Sk+m

c (B)(a)
)

for every natural k and m.
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By this and the definition of the exponential matrix, we obtain

b∫
a

d exp(Sc(B)(t)) · exp(−Sc(B)(t))

= exp(Sc(B)(b))− exp(Sc(B)(a)) +

∞∑
m=1

m∑
k=1

(−1)m−k+1

k!(m− k + 1)!

b∫
a

dSk
c (B)(t) · Sm−k+1

c (B)(t)

= exp(Sc(B)(b))− exp(Sc(B)(a)) +

∞∑
m=1

Sm+1
c (B)(b)− Sm+1

c (B)(a)

m+ 1

m−1∑
k=0

(−1)m−k

k!(m− k)!

= exp(Sc(B)(b))− exp(Sc(B)(a))−
∞∑

m=1

Sm+1
c (B)(b)− Sm+1

c (B)(a)

(m+ 1)!
.

Thus
b∫

a

d exp(Sc(B)(t)) · exp(−Sc(B)(t)) = Sc(B)(b)− Sc(B)(a). (1.3.90)

By (1.3.89) and (1.3.90), equality (1.3.88) holds.

Lemma 1.3.4. Let the matrix-function A ∈ BVloc(R+;Rn×n) be such that

Sc(A)(t) ≡ Sc(B)(t) and In + (−1)jdjA(t) ≡ exp
(
(−1)jdjB(t)

)
(j = 1, 2),

where the matrix-function B ∈ BVloc(R+;Rn×n) satisfies the Lappo–Danilevskiǐ condition. Then the
matrix-function exp(B(t)) is a solution of system (1.3.10).

Proof. By (1.3.88),

t∫
s

d exp(B(τ)) · exp(−B(τ)) = A(t)−A(s) for 0 ≤ t < s.

Consequently, using the substitution formula (0.0.12), we get

t∫
s

dA(τ) · exp(B(τ)) =

t∫
s

d

( τ∫
s

d exp(B(σ)) · exp(−B(σ))

)
· exp(B(τ))

= exp(B(t))− exp(B(s)) for 0 ≤ t < s.

Remark 1.3.8. Let the function β ∈ BVloc(R+;R) be such that

1 + (−1)jdjβ(t) > 0 for t ∈ R+ (j = 1, 2).

Then if one of the functions β, J(β) and A(β, β) is non-decreasing (non-increasing), then all the others
will be the same. This fact immediately follows from equalities (1.1.4), (1.1.5) and (1.1.19).

For completeness, we give the following lemma from [35].

Lemma 1.3.5. Let P = (pik)
n
i,k=1 ∈ Rn×n be the symmetric matrix. Then

λ0(P )(x ∗ x) ≤ Px ∗ x ≤ λ0(P )(x ∗ x).
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1.3.4 Proof of the results
Proof of Theorem 1.3.1. First, we show the sufficiency. According to Lemma 1.2.2, the mapping

x → y = Hx

establishes a one-to-one correspondence between the solutions of systems (1.3.10) and

dy = dA∗(t) · y, (1.3.91)

respectively, where
A∗(t) ≡ I(H,A)(t).

On the other hand, by (1.3.8),

inf
{

det(H(t)) : t ∈ R+

}
> 0

and so,
detH(t−) ̸= 0 and detH(t+) ̸= 0 for t ∈ R+. (1.3.92)

Therefore, by (1.2.87), we have

det
(
In + (−1)jdjA

∗(t)
)
̸= 0 for t ∈ R+ (j = 1, 2).

Let X (X(0) = In) and Y (Y (0) = In) be the fundamental matrices of systems (1.3.10) and
(1.3.91), respectively. Then

X(t) = H−1(t)Y (t) = H−1(t)

(
In +

t∫
0

dA∗(τ) · Y (τ)

)

= H−1(t)

(
In +

t∫
0

d(H(τ) + B(H,A))(τ) ·X(τ)

)
for t ∈ R+.

From this, by virtue of (1.3.8), we have

u(t) ≤ r +

t∫
0

u(τ) da(τ) for t ∈ R+, (1.3.93)

where
u(t) ≡ ∥X(t)∥, a(t) ≡ r∥V (H + B(H,A))(t)∥,

and
r = sup

{
∥H−1(t)∥ : t ∈ R+

}
.

It is evident that a(t) (t ∈ R+) is the non-decreasing function and the series
∑

t∈R+

dja(t) (j = 1, 2)

contain at most countable nonzero terms. On the other hand, in view of (1.3.9), these series converge.
Therefore, there exists t∗ ∈ R+ such that

0 ≤ dja(t) ≤
1

2
for t ≥ t∗ (j = 1, 2). (1.3.94)

Due to (1.3.93), (1.3.94) and equality (0.0.7), we get

t∫
0

u(τ) da(τ) = u(t) d1a(t) +

t∫
0

u(τ) db(τ) for t ≥ 0,



The Initial Problem. Numerical Solvability 77

where b(t) ≡ a(t−). So,

u(t) ≤ (1− d1a(t))
−1

(
r +

t∗∫
0

u(τ) da(τ) +

t∫
t∗

u(τ) db(τ)

)
for t ≥ t∗

and

u(t) ≤ r1 + 2

t∫
t∗

u(τ) db(τ) for t ≥ t∗, (1.3.95)

where

r1 = 2

(
r +

t∗∫
0

u(τ) da(τ)

)
.

From (1.3.95), according to the Gronwall’s inequality (see Lemma 1.1.4), we get

u(t) ≤ r1 exp
(
2

t∨
t∗

(b)
)
≤ r1 exp

(+∞∨
0

(H + B(H,A))
)

for t ≥ t∗.

Hence, by (1.3.9),
sup

{
∥X(t)∥ : t ∈ R+

}
< +∞.

In view of Proposition 1.3.3, the stability of the matrix-function A is proved.
Let us show the necessity. Let the matrix-function A be stable. Then, due to Proposition 1.3.2,

there exists r > 0 such that
∥X(t)∥ < r for t ∈ R+,

where X (X(0) = In) is the fundamental matrix of system (1.3.10).
If we assume H(t) ≡ X−1(t), then by (1.1.17) we conclude that

H(t) + B(H,A)(t) = X−1(t) + B(X−1, A)(t) = X−1(t) + In −X−1(t) = In for t ∈ R+.

Therefore, estimates (1.3.8) and (1.3.9) hold.

Proof of Theorem 1.3.2. Let us show the sufficiency. Let U∗ be the Cauchy matrices of system
(1.3.91). Then, by Lemma 1.2.2, for every fixed s ∈ R+, we have

U(t, s) = H−1(t)U∗(t, s)H(s) = H−1(t)

(
In +

t∫
s

dL(H,A)(τ) · U∗(τ, s)

)
H(s)

= H−1(t)H(s) +H−1(t)

t∫
s

d
(
H(τ) + B(H,A)(τ)

)
·H−1(τ)U∗(τ, s)H(s) for t ∈ R+.

Therefore,

U(t, s) = H−1(t)H(s) +H−1(t)

t∫
s

d
(
H(τ) + B(H,A)(τ)

)
· U(τ, s) for t ≥ s.

From this, if we take into account (1.3.10), we find that

∥U(t, s)∥ ≤ r +

t∫
s

∥U(τ, s)∥ da(τ) for t ≥ s,
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where
a(t) ≡ r

∥∥V (H + B(H,A))(t)
∥∥

and
r = sup

{
∥H−1(t)H(s)∥ : t ≥ s ≥ 0

}
.

Let t∗ ∈ R+ be such that estimates (1.3.94) hold and let s ≥ t∗ be fixed. Analogously, as in the
proof of Theorem 1.3.1, we get

∥U(t, s)∥ ≤ 2r exp
(
2

t∨
s

(b)
)
≤ 2r exp

(
2

+∞∨
0

(H + B(H,A))
)

for t ≥ s ≥ t∗,

where b(t) ≡ a(t−). Thus, estimate (1.3.5) is valid. Therefore, due to Proposition 1.3.4, the matrix-
function A is uniformly stable.

The proof of the necessity is analogous to that of Theorem 1.3.2, but with the use of Proposi-
tion 1.3.4.

Proof of Theorem 1.3.3. Let ε > 0 be an arbitrary positive number. According to (1.3.11), there
exists t∗ ∈ R+ such that estimates (1.3.94) and

∥H−1(t)∥ < ε for t ≥ t∗

hold. From the last estimate, due to Theorem 1.3.1, the matrix-function A is stable. Therefore, there
exists r > 0 such that

∥X(t)∥ < r for t ∈ R+,

where X (X(0) = In) is the fundamental matrix of system (1.3.10).
As in the proof of Theorem 1.3.1, we obtain

u(t) ≤ εr +

t∫
t∗

u(τ) daε(τ) for t ≥ t∗,

where
u(t) ≡ ∥X(t)∥

and
aε(t) ≡ ε

∥∥V (H + B(H,A))(t)
∥∥.

Therefore, by Gronwall’s inequality, we have

∥X(t)∥ ≤ ε exp
(
ε

+∞∨
0

(
H + B(H,A)

))
for t ≥ t∗.

Consequently, with regard to (1.3.9), we have

lim
t→+∞

∥X(t)∥ = 0.

Hence, in view of Proposition 1.3.5, the matrix-function A is asymptotically stable.
The proof of the necessity is analogous to that of Theorem 1.3.1, but with the use of Proposi-

tion 1.3.5.

Proof of Theorem 1.3.4. Let U and U∗ be the Cauchy matrices of systems (1.3.10) and (1.3.93),
respectively, where

A∗(t) ≡ I(H,A)(t).

According to Lemma 1.2.2,

U∗(t, s) = H(t)U(t, s)H−1(s) for t, s ∈ R+.
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From this, by definition of the operator I, we conclude that

exp
(
η(ξ(t)− ξ(s))

)
· U(t, s) = H−1

1 (t)U∗(t, s)H1(s)

= H−1
1 (t)

(
In +

t∫
s

dI(H,A)(τ) · U∗(τ, s)

)
H1(s)

= H−1
1 (t)H1(s) +H−1

1 (t)

t∫
s

exp
(
η(ξ(τ)− ξ(s))

)
dBη(H,A)(τ) · U(τ, s) for t, s ∈ R+,

where
H1(t) ≡ exp(−ηξ(t)) ·H(t).

As in the proof of Theorem 1.3.1, we get

W (t, s) = H−1
1 (t)H1(s) +H−1

1 (t) d1Bη(H,A)(t) ·W (t, s)

+H−1
1 (t)

t∫
s

dG(τ) ·W (τ, s) for t, s ∈ R+, (1.3.96)

where

W (t, s) ≡ exp
(
η(ξ(t)− ξ(s))

)
· U(t, s),

G(t) ≡ Bη(H,A)(t−).

On the other hand, as above, by (1.3.12), inequalities (1.3.92) hold. Therefore, taking into account
this and the equalities

In + (−1)jH−1
1 (t) djBη(H,A)(t) = H−1(t)

(
In + (−1)jdjA

∗(t)
)
H(t) for t, s ∈ R+ (j = 1, 2),

by (1.1.10) and (1.2.87), we have

det
(
In + (−1)jH−1

1 (t) djBη(H,A)(t)
)
̸= 0 for t ∈ R+ (j = 1, 2). (1.3.97)

Moreover, according to conditions (1.3.12) and (1.3.13), there exists a positive number r0 such that∥∥∥(In + (−1)jH−1
1 (t) djBη(H,A)(t)

)−1
∥∥∥ < r0 for t ∈ R+ (j = 1, 2). (1.3.98)

From (1.3.96), by (1.3.12), (1.3.97) and (1.3.98), we find that

∥W (t, s)∥ ≤ r0

(
ρ+ ρ1

t∫
s

∥W (τ, s)∥ d∥V (G)(τ)∥
)

for t ≥ s ≥ 0,

where

ρ = sup
{

exp
(
η(ξ(t)− ξ(τ))

)
· ∥H−1(t)H(τ)∥ : t ≥ τ ≥ 0

}
,

ρ1 = ρ exp(η(ξ(0)).

Hence, according to Gronwall’s inequality,

∥W (t, s)∥ ≤ r < +∞ for t ≥ s ≥ 0,

where

r = r0ρ exp
(
r0ρ1

+∞∨
0

Bη(H,A)
)
.
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Therefore,
∥U(t, s)∥ ≤ r exp

(
− η(ξ(t)− ξ(s))

)
for t ≥ s ≥ 0.

So, estimate (1.3.7) is valid and, due to Proposition 1.3.6, the matrix-function A is ξ-exponentially
asymptotically stable.

Let us show the necessity. Let the matrix-function A be ξ-exponentially asymptotically stable.
Then, due to Proposition 1.3.6, there exist a positive numbers η and ρ such that

∥X(t)X−1(s)∥ ≤ ρ exp
(
− η(ξ(t)− ξ(s))

)
for t ≥ s ≥ 0,

where X (X(0) = In) is the fundamental matrix of system (1.3.10).
Let

H(t) ≡ X−1(t).

Then, due to the definition of Bη(H,A), using equality (1.1.17), we have

exp
(
η(ξ(t)− ξ(s))

)
· ∥H−1(t)H(s)∥ ≤ ρ for t ≥ s ≥ 0

and
Bη(H,A)(t) = Bη(X

−1, A)(t) = 0 for t ∈ R+.

Consequently, conditions (1.3.12) and (1.3.13) are fulfilled.

Proof of Corollary 1.3.1. The cases of stability, uniform stability and asymptotic stability of the
matrix-function A follow from Theorems 1.3.1–1.3.3, respectively, if we assume that H(t) ≡ Y −1(t)
in these theorems. Indeed, by definition of the operator B, (1.1.17) and (1.3.16), it is easy to verify
that

Y −1(t) + B(Y −1, A)(t) = Y −1(t) + B(Y −1, A−Q)(t) + B(Y −1, Q)(t)

= B(Y −1, A−Q)(t) + In for t ∈ R+

and
+∞∨
0

(H + B(H,A)) =

+∞∨
0

B(Z−1, A−Q) < +∞.

Let now the matrix-function Q be ξ-exponentially asymptotically stable. Then there exist positive
numbers η and ρ such that

∥Y (t)Y −1(s)∥ ≤ ρ exp
(
− η(ξ(t)− ξ(s))

)
for t ≥ s ≥ 0.

Therefore, estimate (1.3.12) is valid, where H(t) ≡ Y −1(t). On the other hand, by (1.1.17),

Y −1(t) = In + B(Y −1,−Q)(t) for t ∈ R+.

Then

Bη(H,A)(t) =

t∫
0

exp(−ηξ(τ)) dB(Y −1, A−Q)(τ) for t ∈ R+,

where Bη(H,A) is the matrix-function defined by (1.3.14). From this, by (1.3.16), we conclude that
condition (1.3.13) holds. Hence, due to Theorem 1.3.4, the matrix-function A is ξ-exponentially
asymptotically stable, as well.

Proof of Theorem 1.3.5. According to Lemma 1.2.2, the mapping

x → y = Hx

establishes a one-to-one correspondence between the solutions of systems (1.3.10) and (1.3.91), respec-
tively, where A∗(t) ≡ I(H,A)(t). On the other hand, by the uniform stability of the matrix-function
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A0 there exists a constant matrix Ω ∈ Rn×n
+ such that the Cauchy matrix U0 of system (1.3.82) admits

the estimate
|U0(t, t0)| ≤ Ω for t ≥ t0 ≥ 0.

Taking into account the latter estimate, we conclude that

t∫
t0

|U0(t, τ)| dV (A(A0, A
∗ −A0))(τ) ≤ Ω

t∫
t0

dV
(
A(A0, A

∗ −A0)
)
(τ)

= Ω ·
(
V (A(A0, A

∗ −A0))(t)− V (A(A0, A
∗ −A0))(t0)

)
for t ≥ t0 ≥ 0. (1.3.99)

Moreover, by inequality (1.3.19), the constant matrix

Q = Ω

+∞∨
t∗

A(A0, A
∗ −A0) (1.3.100)

admits estimate (1.3.31), i.e., r(Q) < 1 for some sufficiently large t∗ ∈ R+.
According to (1.3.99) and (1.3.100),

t∫
t0

|U0(t, τ)| dV
(
A(A0, A

∗ −A0)
)
(τ) ≤ Q for t ≥ t0 ≥ t∗.

Therefore, by Lemma 1.3.1, every solution y of system (1.3.91) admits the estimate

∥y(t)∥ ≤ ρ∥y(t0)∥ for t ≥ t0 ≥ t∗,

where ρ > 0 is a number independent of t0. The latter estimate guarantees the uniform stability of
the matrix-function A∗. Hence there exist a positive number ρ1 such that

∥U∗(t, t0)∥ ≤ ρ1 for t ≥ t0 ≥ t∗, (1.3.101)

where U∗ is the Cauchy matrix of system (1.3.91).
Let now U be the Cauchy matrix of system (1.3.10). Then, according to Lemma 1.2.2,

U(t, t0) = H−1(t)U∗(t, t0)H(t0) for t ≥ t0 ≥ 0.

From this, in view of (1.3.10) and (1.3.101), we get

∥U(t, t0)∥ ≤ ρ1ρ2 for t ≥ t0 ≥ t∗,

where
ρ2 = sup

{
∥H−1(t)H(τ)∥ : t ≥ τ ≥ 0

}
.

Consequently, the matrix-function A is uniformly stable, as well.

Proof of Theorem 1.3.6. By the ξ-exponentially asymptotic stability of the matrix-function A0 and
Proposition 1.3.6, there exist positive numbers η and ρ0 such that the Cauchy matrix U0 of system
(1.3.82) satisfies the estimate

|U0(t, τ)| ≤ R0 exp
(
− η(ξ(t)− ξ(τ))

)
for t ≥ τ ≥ 0, (1.3.102)

where R0 is an n× n matrix whose every component equals ρ0.
Let

ε = (4nρ0)
−1(exp(η)− 1) exp(−2η). (1.3.103)

Due to (1.3.21), there exists t∗ ∈ R+ such that

ν(ξ)(t)∨
t

A(A0, A−A0) < ε for t ≥ t∗. (1.3.104)
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On the other hand, by (1.3.102), we have

t∫
t0

exp
(
η(ξ(t)− ξ(τ))

)
|U0(t, τ)| dV (B)(τ) ≤ J (t) (t ≥ t0) (1.3.105)

for every t0 ≥ 0, where B(t) ≡ A(A0, A−A0)(t) and

J (t) ≡ R0

t∫
t0

exp
(
− η
(
ξ(t)− ξ(τ)

))
dV (B)(τ). (1.3.106)

Let k(t) be the integer part of ξ(t)− ξ(t0) for every t ≥ t0, where t0 is an arbitrary fixed point.
We put

Ti =
{
τ ≥ t0 : ξ(t0) + i ≤ ξ(τ) < ξ(t0) + i+ 1

}
(i = 0, . . . , k(t)).

Let the points τ0, τ1, . . . , τk(t) be defined as follows:

τ0 = supT0, τi =

{
τi−1 if Ti = ∅,

supTi if Ti ̸= ∅
(i = 1, . . . , k(t)).

Let us show that
τi ≤ ν(ξ)(τi−1) (i = 1, . . . , k(t)). (1.3.107)

If Ti = ∅, then (1.3.107) is evident.
Let now Ti ̸= ∅. It suffices to show that

Ti ⊂ Qi (i = 1, . . . , k(t)),

where
Qi =

{
τ ≥ t0 : ξ(τ) < ξ(τi−1+) + 1

}
.

It is easy to verify that
ξ(τi−1+) ≥ ξ(τ0) + i (i = 1, . . . , k(t)). (1.3.108)

Indeed, otherwise there exist i0 ∈ {1, . . . , k(t)} and δ > 0 such that

ξ(τi0−1 + s) < ξ(τ0) + i0 for 0 ≤ s ≤ δ.

On the other hand, by the definition of τi0−1, we have

ξ(τ0) + i0 − 1 ≤ ξ(τi0−1−)

and, therefore,
ξ(τ0) + i0 − 1 ≤ ξ(τi0−1 + s) < ξ(τ0) + i0 for 0 ≤ s ≤ δ.

But this contradicts the definition of τi0−1.
Let τ ∈ Ti (i = 1, . . . , k(t)). Then from (1.3.108) and the inequality ξ(τ) < ξ(τ0) + i+ 1 it follows

that ξ(τ) < ξ(τi−1+) + 1, τi ∈ Qi (i = 1, . . . , k(t)). Hence (1.3.107) is proved.
Let now t0 ≥ t∗ and let ki = k(τi) (i = 1, . . . , k(t)). Then, according to (1.3.104) and (1.3.107),

we get

J (t) ≤ R0 exp
(
− η(ξ(t)− ξ(t0))

) 1+k(t)∑
i=1

τi∫
τi−1

exp
(
η
(
ξ(τ)− ξ(t0)

))
dV (B)(τ)

= R0 exp
(
− η(ξ(t)− ξ(t0))

)( 1+k(t)∑
i=1, i=1+ki

τi∫
τi−1

exp
(
η(ξ(τ)− ξ(t0))

)
dV (B)(τ)



The Initial Problem. Numerical Solvability 83

+

1+k(t)∑
i=1, i ̸=1+ki

τi∫
τi−1

exp
(
η(ξ(τ)− ξ(t0))

)
dV (B)(τ)

)

≤ R0 exp
(
− η(ξ(t)− ξ(t0))

)( 1+k(t)∑
i=1, i=1+ki

exp(η i)
(
V (B)(τi)− V (B)(τi−1)

)
+

1+k(t)∑
i=1, i ̸=1+ki

exp(η i)
(
V (B)(τi)− V (B)(τi−1)

)
+

1+k(t)∑
i=1, i ̸=1+ki

exp
(
(1 + ki)η

)
d1B(τi)

)

≤ εR0 exp
(
− η(ξ(t)− ξ(t0))

)( 1+k(t)∑
i=1

exp(η i) +
1+k(t)∑

i=1, i ̸=1+ki

exp((1 + ki)η)

)

≤ 2εR0 exp
(
− η(ξ(t)− ξ(t0))

) 1+k(t)∑
i=1

exp(η i)

= 2εR0 exp
(
− η(ξ(t)− ξ(t0))

)
exp(η)

(
exp((1 + k(t))η)− 1

)
(exp(η)− 1)−1

≤ 2εR0 exp(−ηk(t)) exp
(
(2 + k(t))η

)
(exp(η)− 1) for t ≥ t0

and, therefore,
J (t) ≤ 2εR0 exp(2η)

(
exp(η)− 1

)−1 for t ≥ t0. (1.3.109)
From (1.3.103), (1.3.105) and (1.3.109), it follows that inequality (1.3.84) holds for t0 ≥ t∗, where
H ∈ Rn×n is the matrix whose every component equals 1/2n. On the other hand, it can be easily
shown that

r(H) <
1

2
.

Consequently, by Lemma 1.3.1, an arbitrary solution x of system (1.3.10) admits the estimate

∥x(t)∥ ≤ ρ exp
(
− η(ξ(t)− ξ(t0))

)
for t ≥ t0 ≥ t∗,

where ρ > 0 is a constant independent of t0.

Proof of Corollary 1.3.2. Corollary 1.3.2 follows from Theorem 1.3.6 if we assume that

A0(t) ≡ diag
(
a11(t), . . . , ann(t)

)
.

Indeed, by the definition of the operator A, we have

[
A(A0, A−A0)(t)

]
ik

= aik(t) +
∑

0<τ≤t

d1aii(τ)

1− d1aii(τ)
d1aik(τ)

−
∑

0≤τ<t

d2aii(τ)

1 + d2aii(τ)
d2aik(τ) = A(aii, aik)(t) for t ∈ R+ (i ̸= k; i, k = 1, . . . , n)

and [
A(A0, A−A0)(t)

]
ii
= 0 for t ∈ R+ (i = 1, . . . , n).

Let now U0(t, τ) be the Cauchy matrix of system (1.3.82). Then

U0(t, τ) = diag
(
u011(t, τ), . . . , u0nn(t, τ)

)
,

where

u0ii(t, τ) ≡ exp
(
sc(aii)(t)− sc(aii)(τ)

) ∏
τ<s≤t

(
1− d1aii(s)

)−1 ∏
τ≤s<t

(
1 + d2a11(s)

)
is the Cauchy function of the equation

dx = xdaii(t)
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for every i ∈ {1, . . . , n}.
In view of (1.3.24), we find

|u0ii(t, τ)| ≤ exp
(
− η(ξ(t)− ξ(τ))

)
for t ≥ τ ≥ 0 (i = 1, . . . , n).

Therefore, inequality (1.3.7) is valid. Thus, due to Proposition 1.3.6, the matrix-function A0 is ξ-
exponentially asymptotically stable. Consequently, by (1.3.23), using Theorem 1.3.6, we find that the
matrix-function A is ξ-exponentially asymptotically stable, as well.

Proof of Corollary 1.3.3. Corollary 1.3.3 immediately follows from Theorem 1.3.6 if we observe that

A(A0, A−A0)(t) = A(t)−A0(t) for t ∈ R+

in this case and, moreover, ν(ξ)(t) ≡ νc(ξ)(t), because ξ is the non-decreasing continuous function.

Proof of Proposition 1.3.7. By the ξ-exponentially asymptotic stability of the matrix-function A and
Proposition 1.3.6, there exist positive numbers η and ρ0 such that the Cauchy matrix U of system
(1.3.10) satisfies estimate (1.3.102), where R0 is an n× n matrix whose every component equals ρ0.

Let ε be a positive number. Then, by (1.3.25), there exists t0 > 0 such that

ν(ξ)(t)∨
t

A(A, f) < ε for t ≥ t0.

Let x be an arbitrary solution of system (1.3.1). Then by integration-by-parts and variation-of-
constants formulas, we easily show that

x(t) = U(t, t0)x(t0) +

t∫
t0

U(t, τ) df(τ)−
∑

t0<τ≤t

d1U(t, τ) · d1f(τ) +
∑

t0≤τ<t

d2U(t, τ) · d2f(τ)

= U(t, t0)x(t0) +

t∫
t0

U(t, τ) dA(A, f)(τ) for t ≥ t0.

From this, due to (1.3.102), we have

|x(t)| ≤ R0 exp
(
− η(ξ(t)− ξ(t0))

)
|x(t0)|+ J(t) for t ≥ t0,

where B(t) ≡ A(A0, A−A0)(t) and J (t) is defined by (1.3.106).
As in the proof of Theorem 1.3.6, we get

J (t) ≤ 2εR0 exp(2η)(exp(η)− 1)−1 for t ≥ t0.

Therefore,

|x(t)| ≤ R0 exp
(
− η(ξ(t)− ξ(t0))

)
|x(t0)|+ 2εR0 exp

(
2η)
(

exp(η)− 1
)−1 for t ≥ t0.

where ε is an arbitrary positive number, and the function ξ satisfies condition (1.3.4). Thus condition
(1.3.6) holds.

Proof of Proposition 1.3.8. Let U0 be the Cauchy matrix of system (1.3.82). Then, as above, by the
integration-by-parts and variation-of-constants formulas we have

x(t) = U0(t, 0)x(0) +

t∫
0

U0(t, τ) dA(A0, A−A0)(τ) · x(τ) for t ∈ R+.

On the other hand, by the exponentially ξ-asymptotic stability of the matrix-function A0, there exist
positive numbers η and ρ such that

∥U0(t, τ)∥ ≤ ρ exp
(
− η(ξ(t)− ξ(τ))

)
for t ≥ τ ≥ 0. (1.3.110)
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Let now ε ∈ (0, ηρ−1). Then, due to (1.3.26), there exists t0 ∈ R+ such that

t∨
0

A(A0, A−A0) < εξ(t) for t ≥ t0.

From this estimate, if we take into account (1.3.27) and (1.3.110), according to Lemma 1.3.1, we
conclude that

∥x(t)∥ exp
(
ηξ(t)

)
≤ ρ∥x(0)∥ exp

(
ρεξ(t) + ηξ(0)

)
for t ≥ t0.

So,
∥x(t)∥ ≤ ρ∥x(0)∥ exp

(
(ρε− η)ξ(t) + ηξ(0)

)
for t ≥ t0.

Therefore, by (1.3.4), condition (1.3.6) holds. In view of Proposition 1.3.5, the matrix-function A is
asymptotically stable.

Proof of Theorem 1.3.7. Let

A0(t) = diag
(
a11(t), . . . , ann(t)

)
for t ∈ R+. (1.3.111)

Then the Cauchy matrix U0 of system (1.3.82) has the form

U0(t, τ) = diag
(

exp
(
sc(a11)(t)− sc(a11)(τ)

) ∏
τ<s≤t

(
1− d1a11(s)

)−1 ∏
τ≤s<t

(
1 + d2a11(s)

)
, . . . ,

exp
(
sc(ann)(t)− sc(ann)(τ)

) ∏
τ<s≤t

(
1− d1ann(s)

)−1 ∏
τ≤s<t

(
1 + d2ann(s)

))
.

So, by the definition of the operator J , we get

|U0(t, τ)| = diag
(

exp
(
J(a11)(t)− J(a11)(τ)

)
, . . . , exp

(
J(ann)(t)− J(ann)(τ)

))
. (1.3.112)

Therefore, due to (1.3.29), (1.3.30) and (1.3.112), estimates (1.3.83) and (1.3.84) are fulfilled for every
t0 ∈ [t∗,+∞[ , where

Ω = diag(ρ0, . . . , ρ0),

ρ0 = sup
{ n∑

i=1

exp
(
J(aii)(t)− J(aii)(t0)

)
: t ≥ t0

}
,

and η(t) ≡ 0. According to Lemma 1.3.1, every solution x of system (1.3.10) admits the estimate

∥x(t)∥ ≤ ρ(t0)∥x(t0)∥ for t ≥ t0,

where
ρ(t0) = ∥(In −H)−1∥ρ0(t0).

So, every solution of system (1.3.10) is bounded on R+ and, by Proposition 1.3.2, the matrix-function
A is stable.

Proof of Theorem 1.3.8. In view of (1.3.32),

ρ0 = sup
{ n∑

i=1

exp
(
J(aii)(t)− J(aii)(τ)

)
: t ≥ τ ≥ 0

}
< +∞. (1.3.113)

Let the matrix-function A0 be defined by (1.3.111). Then by (1.3.28), (1.3.29), (1.3.112) and
(1.3.113), conditions (1.3.83) and (1.3.84) are fulfilled for every t0∈ [t∗,+∞[ , where Ω=diag(ρ0, . . . , ρ0),
and η(t) ≡ 0. Hence, according to Lemma 1.3.1, every solution x of system (1.3.10) admits the estimate

∥x(t)∥ ≤ ρ1∥x(t0)∥ for t ≥ t0 ≥ t∗,
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where ρ1 = ∥(In − H)−1∥ρ0 is the number not depending on x and t0. On the other hand, by
Gronwall’s inequality (see Lemma 1.1.4′), we get

∥x(t)∥ ≤ ρ2∥x(t0)∥ for 0 ≤ t0 ≤ t ≤ t∗,

where

ρ2 = r0 exp
(
r0

t∨
0

A
)

and r0 is such that ∥∥(In − d1A(t))−1
∥∥ ≤ r0 for t ∈ [0, t∗].

The latter two estimates imply estimate (1.3.5) for every t ∈ R+, where ρ = ρ1ρ2. Therefore,
according to Proposition 1.3.3, the matrix-function is uniformly stable.

Proof of Corollary 1.3.4. According to Remark 1.3.8, the functions J(aii) and A(aii, aii) (i = 1, . . . , n)
are non-increasing. So, with regard (1.3.33), (1.3.34) and (1.1.19), we have

t∫
t∗

exp
(
J(aii)(t)− J(aii)(τ)

)
dv(bik)(τ) ≤ −hik

t∫
t∗

exp
(
J(aii)(t)− J(aii)(τ)

)
dA(aii, aii)(τ)

= −hik

t∫
t∗

u0ii(t, τ) dA(aii, aii)(τ) = hik

(
1− u0ii(t, t

∗)
)
≤ hik for t ≥ t∗ (i = 1, . . . , n),

where bik(t) ≡ A(aii, aik)(t) (i ̸= k; i, k = 1, . . . , n), and

u0ii(t, τ) = exp
(
J(aii)(t)− J(aii)(τ)

)
> 0 (i = 1, . . . , n).

Therefore, (1.3.29) is valid. Moreover, since J(aii) (i = 1, . . . , n) are non-increasing functions, it is
evident that

u0ii(t, τ) ≤ 1 for t ≥ τ ≥ t∗ (i = 1, . . . , n).

From this we have (1.3.32). So, the corollary follows from Theorem 1.3.8.

Proof of Theorem 1.3.9. Let the matrix-function A0 be defined by (1.3.111) and U0 be the Cauchy
matrix of system (1.3.82). Then by (1.3.35), (1.3.36) and (1.3.112), conditions (1.3.83) and (1.3.84)
are fulfilled for every t0 ∈ [t∗,+∞[. Then, according to Lemma 1.3.1, estimate (1.3.85) is true for
every solution x of system (1.3.10), where ρ = ∥(In −H)−1∥n. Hence, due to Proposition 1.3.5, the
matrix-function A is asymptotically stable, since the function η satisfies condition (1.3.4).

Proof of Corollary 1.3.5. By (1.3.31), there exists ε ∈ ]0, 1[ such that

r(Hε) < 1, (1.3.114)

where
Hε =

( hik

1− ε

)n
i,k=1

.

Let
η(t) ≡ εa0(t) and bik(t) ≡ A(aii, aik)(t) (i, k = 1, . . . , n).

Due to Remark 1.3.8, the functions J(aii) (i = 1, . . . , n) are non-increasing. From this, by (1.3.40)
and (1.3.41), we have inequalities (1.3.35), and the function η satisfies condition (1.3.4).

On the other hand, due to (1.3.37)–(1.3.40), we find

t∫
t∗

exp
(
η(t)− η(τ) + J(aii)(t)− J(aii)(τ)

)
dv(bik)(τ)

≤
t∫

t∗

exp
(
(1− ε)

(
J(aii)(t)− J(aii)(τ)

))
dv(bik)(τ) for t ≥ t∗ (i ̸= k; i, k = 1, . . . , n) (1.3.115)
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and∣∣sc(bik)(t)− sc(bik)(τ)
∣∣ ≤ − hik

1− ε

(
sc
(
A
(
(1− ε)J(aii), (1− ε)J(aii)

)
(t)

− sc
(
A
(
(1− ε)J(aii), (1− ε)J(aii)

)
(τ)
)

for t ≥ τ ≥ t∗ (i ̸= k; i, k = 1, . . . , n). (1.3.116)

Let now j = 1. Then d1aii(t) ≤ 0 (i = 1, . . . , n) for t ≥ t∗. It is not difficult to verify that

hik

(
1 + ln

(
1− d1aii(t)

))−1 ln
(
1− d1aii(t)

)
≤ − hik

1− ε
d1A

(
(1− ε)J(aii), (1− ε)J(aii)

)
(t) for t ≥ t∗ (i ̸= k; i, k = 1, . . . , n).

Hence, by (1.3.39) and the equality |d1bik(t)| = |d1aik(t)|, the estimates

|d1bik(t)| ≤ − hik

1− ε
d1A

(
(1− ε)J(aii), (1− ε)J(aii)

)
(t) for t ≥ t∗ (i ̸= k; i, k = 1, . . . , n) (1.3.117)

are valid.
Analogously, we show that

|d2bik(t)| ≤ − hik

1− ε
d2A

(
(1− ε)J(aii), (1− ε)J(aii)

)
(t) for t ≥ t∗ (i ̸= k; i, k = 1, . . . , n). (1.3.118)

From (1.3.115), by (1.3.116)–(1.3.118), we get
t∫

t∗

exp
(
(1− ε)

(
J(aii)(t)− J(aii)(τ)

))
dv(bik)(τ)

≤ − hik

1− ε

t∫
t∗

exp
(
(1− ε)

(
J(aii)(t)− J(aii)(τ)

))
dA
(
(1− ε)J(aii), (1− ε)J(aii)

)
(τ)

=
hik

1− ε
exp

(
(1− ε)J(aii)(t)

)(
exp

(
(ε− 1)J(aii)(t)

)
− exp

(
(ε− 1)J(aii)(t

∗)
))

≤ hik

1− ε
for t ≥ t∗ (i ̸= k; i, k = 1, . . . , n). (1.3.119)

According to Theorem 1.3.9, conditions (1.3.4), (1.3.35), (1.3.114) and (1.3.119) guarantee the
asymptotic stability of the matrix-function A. As to the uniform stability of A, it follows from
Corollary 1.3.4.

Proof of Corollary 1.3.6. Immediately follows from Corollary 1.3.5, since the functions defined by
(1.3.42)–(1.3.44) satisfy condition (1.3.40).

Proofs of Theorem 1.3.10 and Corollary 1.3.7 are analogous to those of Theorem 1.3.9 and Corol-
lary 1.3.5.

Proof of Theorem 1.3.11. Let x and t0 ∈ R+ be an arbitrary solution of system (1.3.10) and a point,
respectively. It is not difficult to verify that the conditions of the theorem guarantee the fulfilment of
the corresponding conditions of Lemma 1.1.3 for t0 = t1 = · · · = tn and of Theorem 1.1.10 on the set
R+. So, using the lemma, we have

d|x(t)| ≤ dA0(t) · |x(t)| for t ∈ R+.

In addition, from this, by Theorem 1.1.10, we obtain

∥x(t)∥ ≤ ∥U0(t, t0)∥ ∥x(t0)∥ for t ≥ t0 ≥ 0,

where U0 is the Cauchy matrix of system (1.3.82).
Therefore, by Propositions 1.3.3–1.3.6, we conclude that the stability of the matrix-function A0 in

one or another sense guarantees the stability of the matrix-function A in the same sense.
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Proof of Theorem 1.3.12. Let us prove the necessity. Let

aii(t) ≡ αiiµi(t) (i = 1, . . . , n);

aik(t) ≡ αik

(
sc(µi)(t) + |αii|−1

∑
0<τ≤t

ζi1(τ) + |αii|−1
∑

0≤τ<t

ζi2(τ)
)

(i ̸= k; i, k = 1, . . . , n)

and

hik = (1− δik)|αik| |αii|−1 (i, k = 1, . . . , n),

where

ζij(t) ≡
(
1 + ln(1 + (−1)jαiidjµi(t))

)−1 ln
(
1 + (−1)jαiidjµi(t)

)
(j = 1, 2; i = 1, . . . , n).

Due to (1.3.46), we conclude that the functions sc(aii) (i = 1, . . . , n) are non-increasing, since the
functions sc(µi) (i = 1, . . . , n) are non-decreasing. Moreover, by (1.3.46), the functions ζij (j = 1, 2;
i = 1, . . . , n) are nonnegative. Thus it is not difficult to verify that conditions (1.3.37) and (1.3.39)
are fulfilled.

From condition (1.3.46) it follows that 1+(−1)jdjaii(t) > 0 (j = 1, 2; i = 1, . . . , n). Consequently,
by virtue of Remark 1.3.8, the functions J(aii) (i = 1, . . . , n) are non-increasing and

−J(aii)(t) + J(aii)(τ) ≥ a0(t)− a0(τ) for t ≥ τ (i = 1, . . . , n).

So, condition (1.3.40) is valid. By virtue of Corollary 1.3.5, the sufficiency is proved.
Let us show the necessity. Assume the contrary. Let conditions (1.3.49), (1.3.50), (1.3.51) and

(1.3.52) hold, A be asymptotically stable, but condition (1.3.47) be violated. Then either

αi0i0 ≥ 0 (1.3.120)

for some i0 ∈ {1,. . . , n}, or
αii < 0 (i = 1, . . . , n), (1.3.121)

but
r(H) ≥ 1. (1.3.122)

If condition (1.3.120) holds, then, in view of (1.3.49), the non-diagonal components of the matrix-
function A are non-decreasing. By this and (1.3.120), the vector-function x(t) ≡ (δii0)

n
i=1 satisfies the

system of generalized differential inequalities

dx(t) ≤ dA(t) · x(t) for t ∈ R+. (1.3.123)

Moreover, with regard to (1.3.50), (1.3.51) and (1.3.52), taking into consideration Hadamard’s con-
dition on the non-singularity of matrices (see [28, p. 382]), it is not difficult to verify that conditions
(1.1.29), (1.1.30) and (1.1.31) of Theorem 1.1.10 are fulfilled for the matrix-function A. By this
theorem,

x(t) ≤ U(t, 0)x(0) for t ∈ R+,

where U(t, τ) is the Cauchy matrix of system (1.3.10). Hence, due to the asymptotic stability of A,
we have

∥x(t)∥ ≤
∥∥U(t, 0)x(0)

∥∥ −→ 0 as t → +∞. (1.3.124)
But this is impossible, since ∥x(t)∥ ≡ 1. Therefore, (1.3.121) holds.

Assume now that (1.3.122) is fulfilled. Then there exist a complex vector (ci)
n
i=1 and a complex

number λ such that
n∑

k=1

|ck| = 1, |λ| = r(H) ≥ 1

and
n∑

k=1

(1− δik)|αik| |αii|−1ck = λci (i = 1, . . . , n).
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Therefore,

|αii| |ci| ≤
n∑

k=1, k ̸=i

|αik| |ck| (i = 1, . . . , n).

Since αii < 0 and αik ≥ 0 (i ̸= k : i, k = 1, . . . , n), we find

0 ≤
n∑

k=1

αik |ck| (i = 1, . . . , n).

Consequently, the vector-function x(t) ≡ (|ck|)nk=1 is a solution of the system of differential inequalities
(1.3.123), since µ1, . . . , µn are non-decreasing functions. As above, we can show that (1.3.124) holds.
But this is impossible, since ∥x(t)∥ ≡ 1. The obtained contradiction proves the theorem.

Proof of Corollary 1.3.8. Let Bη(H,A) be the matrix-function defined by (1.3.14), where H(t) ≡
ηξ(t)Y −1(t). Using the formulae of integration-by-parts, the properties of the operator B and equality
(1.1.17), we conclude that

Bη(H,A)(t) =

t∫
0

exp(−ηξ(τ)) d
(

exp(ηξ(τ))Y −1(τ) + B(exp(ηξ)Y −1, A)(τ)
)

=

t∫
0

exp(−ηξ(τ)) d(exp(ηξ(τ))Y −1(τ)) +

t∫
0

exp(−ηξ(τ)) dB
(

exp(ηξ(τ))Y −1, A)(τ)
)

=

t∫
0

exp(−ηξ(τ)) d(exp(ηξ(τ))Y −1(τ))

+

t∫
0

exp(−ηξ(τ)) dB
(

exp(ηξ)In,B(Y −1, A)
)
(τ) for t ∈ R+, (1.3.125)

t∫
0

exp(−ηξ(τ)) d(exp(ηξ(τ))Y −1(τ))

=

t∫
0

Y −1(τ) d

(
ηsc(ξ)(τ)In −A(Q,Q)(τ) +

∑
0<s≤t

exp(−ηξ(s)) d1 exp(ηξ(s)) · (In − d1Q(s))−1

+
∑

0≤s<t

exp(−ηξ(s)) d2 exp(ηξ(s)) · (In + d2Q(s))−1

)
for t ∈ R+, (1.3.126)

B(Y −1, A)(t) =

t∫
0

Y −1(τ) dA(τ)−
∑

0<τ≤t

d1Y
−1(τ) · d1A(τ) +

∑
0≤τ<t

d2Y
−1(τ) · d1A(τ)

=

t∫
0

Y −1(τ) dA(Q,A−Q)(τ) for t ∈ R+, (1.3.127)

B
(

exp(ηξ)In,B(Y −1, A)
)
(t) =

t∫
0

Y −1(τ) dB
(

exp(ηξ)In,A(Q,A)
)
(τ) for t ∈ R+ (1.3.128)

and
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t∫
0

exp(−ηξ(τ)) dB
(

exp(ηξ)In,A(Q,A)
)
(τ)

= A(Q,A)(t)−
∑

0<τ≤t

exp(−ηξ(τ)) d1 exp(ηξ(τ))(In − d1Q(τ))−1 d1A(τ)

+
∑

0≤τ<t

exp(−ηξ(τ)) d2 exp(ηξ(τ))(In + d2Q(τ))−1 d2A(τ) for t ∈ R+. (1.3.129)

From (1.3.125), by (1.3.126)–(1.3.129), we get

Bη(H,A)(t) =

t∫
0

exp(−ηξ(τ)) d(exp(ηξ(τ))Y −1(τ))

+

t∫
0

Y −1(τ) d

( τ∫
0

exp(−ηξ(s)) dB
(

exp(ηξ)In,A(Q,A)
)
(s)

)

=

t∫
0

Y −1(τ) dGη(ξ,Q,A)(τ) for t ∈ R+

and
+∞∨
0

Bη(H,A) ≤
∥∥∥∥

+∞∫
0

|Y −1(t) dV Gη(ξ,Q,A)(t)

∥∥∥∥.
Therefore, from (1.3.53) and the fact that the matrix-function Q is ξ-exponentially asymptotically
stable, it follows that the conditions of Theorem 1.3.4 are fulfilled.

Proof of Corollary 1.3.9. The corollary follows immediately from Corollaries 1.3.1 and 1.3.6 and Re-
mark 1.3.6 if we note that

Y (t) ≡ exp(Q(t)) and Gη(ξ,Q,A)(t) ≡ A(t)−Q(t) + ηξ(t)In

in this case.

Proof of Corollary 1.3.10. For η > 0, the corollary follows from Corollary 1.3.8 if we assume that

Q(t) ≡ diag
(
a11(t) + ηsc(ξ)(t), . . . , ann(t) + ηsc(ξ)(t)

)
.

Indeed, let A(Q,A−Q)(t) ≡ (βik(t))
n
i,k=1 and Gη(ξ,Q,A)(t) ≡ (γik(t))

n
i,k=1. Then, by the defini-

tion of the operator A, we have

βik(t) = aik(t) +
∑

0<τ≤t

d1aii(τ) · (1− d1aii(τ))
−1d1aik(τ)

−
∑

0≤τ<t

d2aii(τ) · (1 + d2aii(τ))
−1 d2aik(τ) for t ∈ R+ (i ̸= k; i, k = 1, . . . , n)

and
βii = −ηsc(ξ)(t) for t ∈ R+ (i = 1, . . . , n).

From the above relations, using (1.3.54), we obtain

γik(t) = aik(t) +
∑

0<τ≤t

d1aii(τ) · (1− d1aii(τ))
−1d1aik(τ)

−
∑

0≤τ<t

d2aii(τ) · (1 + d2aii(τ))
−1d2aik(τ)−

∑
0<τ≤t

d1aik(τ) · (1− d1aii(τ))
−1
(
1− exp(−ηd1ξ(τ))

)
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−
∑

0≤τ<t

d2aik(τ) · (1+ d2aii(τ))
−1
(
1− exp(ηd2ξ(τ))

)
= gik(t) for t ∈ R+ (i ̸= k; i, k = 1, . . . , n)

and

γii =
∑

0<τ≤t

(
1− exp(−ηd1ξ(τ))

)
+
∑

0≤τ<t

(
1− exp(ηd2ξ(τ))

)
for t ∈ R+ (i = 1, . . . , n).

On the other hand, the matrix-function Y (t) = diag(y1(t), . . . , yn(t)) is the fundamental matrix of
system (1.3.17) satisfying the condition Y (0) = In. Therefore, by (1.3.55)–(1.3.57), the conditions of
Corollary 1.3.6 are valid. For η = 0, the corollary follows from Corollary 1.3.1 and Remark 1.3.5.

Proof of Theorem 1.3.13. It is evident that the matrix-function

B(t) ≡
m∑

k=1

αk(t)Bk

satisfies the Lappo–Danilevskiǐ condition. Therefore, in view of Lemma 1.3.4, the matrix-function

X(t) =

m∏
k=1

exp(αk(t)Bk) for t ∈ R+ (1.3.130)

is a fundamental matrix of system (1.3.10).
According to the Jordan theorem,

Bk = Ck diag
(
Jnk1

(λk1), . . . , Jnlmk
(λkmk

)
)
C−1

k (k = 1, . . . ,m),

where Jnki
(λki) = λkiInki

+Znki
is the Jordan box corresponding to the elementary divisor (λ−λki)

nki

for every k ∈ {1,. . . ,m} and i ∈ {1,. . .mk}, and Ck ∈ Cn×n (k = 1,. . . ,m) are nonsingular complex
matrices. Hence

exp(αk(t)Bk) = Ck diag
(

exp
(
αk(t)Jnk1

(λk1)
)
, . . . ,

exp
(
αk(t)Jnkmk

(λkmk
)
))

C−1
k for t ∈ R+ (k = 1, . . . ,m), (1.3.131)

where

exp(αk(t)Jnki
(λki)) = exp(λkiαk(t))

nki−1∑
j=0

αj
k(t)

j!
Zj
nki

for t ∈ R+ (k = 1, . . . ,m). (1.3.132)

In view of (1.3.131) and (1.3.132), it is evident that

exp(αk(t)Bk) =

( mk∑
i=1

pkijl(αk(t)) exp(λkiαk(t))

)n

i,l=1

for t ∈ R+ (k = 1, . . . ,m), (1.3.133)

where pkijl(s) is a polynomial with respect to the variable s, whose degree is at most nki − 1 (i, l =
1, . . . , n; k = 1, . . . ,m).

Substituting (1.3.133) in (1.3.130), we find

β1

m∏
k=1

( mk∑
i=1

(1 + αk(t))
nki−1 exp(αk(t)Reλki)

)
≤ ∥X(t)∥

≤ β2

m∏
k=1

( mk∑
i=1

(1 + αk(t))
nki−1 exp(αk(t)Reλki)

)
for t ∈ R+,

where β1 and β2 are some positive numbers.
The latter estimates imply the validity of the theorem.
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Proof of Corollary 1.3.11. The corollary follows immediately from Theorem 1.3.13, since conditions
(1.3.60) and (1.3.61) are equivalent to the conditions imposed on the real parts of the eigenvalues λki

(k = 1, . . . ,m; i = 1, . . . ,mk) of the matrices Bk (k = 1, . . . ,m).

Proof of Corollary 1.3.12. Let

α1(t) ≡ α(t), α2(t) ≡ β1α(t)− ν1(t), α3(t) ≡ ν2(t)− β2α(t)

and
B1 = A0 − β1 ln(In −A1) + β2 ln(In +A2), B2 = ln(In −A1), B3 = ln(In +A2).

Then we have

Sc(A)(t) =

3∑
k=1

sc(αk)(t) ·Bk for t ∈ R+ (j = 1, 2)

and

exp
(
(−1)j

3∑
k=1

djαk(t) ·Bk

)
exp

(
(−1)j ln(In + (−1)jAj)

)
= In + (−1)jAj = In + (−1)jdjA(t) if ∥djA(t)∥ ̸= 0 for t ∈ R+ (j = 1, 2),

since the function α is continuous, and djνi(t) ≡ δij (i, j = 1, 2), in the case.
Hence the conditions of Theorem 1.3.13 are fulfilled. Moreover, due to (1.3.64), the functions α2

and α3 are bounded on R+. So, conditions (1.3.60) and (1.3.61) of Theorem 1.3.13 are equivalent to
the conditions applied to the matrix P in the cases (a) and (b) of the corollary, respectively.

Proof of Corollary 1.3.13. The corollary follows from Theorem 1.3.13 if we choose the functions αl

(l = 1, . . . ,m) and the matrices Bl (l = 1, . . . ,m) in a suitable way. But the proof of the corollary is
more easy if we use the same way as in the proof of Theorem 1.3.13.

By Lemma 1.3.4, the matrix-function

X(t) ≡ C diag
(

exp(G1(t)), . . . , exp(Gm(t))
)
C−1

is a fundamental matrix of system (1.3.10). Moreover, obviously,

exp(Gk(t)) =

nk−1∏
i=0

exp
(
αki(t)Z

i
nk

)
= exp(αk0(t))

nk−1∏
i=1

[(nk−1)/i]∑
j=1

αj
k(t)

j!
Zij
nk

for t ∈ R+ (k = 1, . . . ,m).

Hence, the statement of the corollary follows as in Theorem 1.3.13.

Proof of Theorem 1.3.14. Let x = (xi)
n
i=1 be a solution of system (1.3.10) and let

u(t) ≡
n∑

i=1

x2
i (t).

Then, by (0.0.11), we have

u(t)− u(s) =

n∑
i=1

(
2

t∫
s

xi(τ) dxi(τ)−
∑

s<τ≤t

(d1xi(τ))
2 +

∑
s≤τ<t

(d2xi(τ))
2

)

=

n∑
i=1

(
2

n∑
k=1

t∫
s

xi(τ)xk(τ) daik(τ) +
∑

s<τ≤t

(
x2
i (τ)− x2

i (τ−)− 2xi(τ)d1xi(τ)
)



The Initial Problem. Numerical Solvability 93

+
∑

s≤τ<t

(
x2
i (τ+)− x2

i (τ)− 2xi(τ)d2xi(τ)
))

=2

n∑
i,k=1

( t∫
s

xi(τ)xk(τ) daik(τ)−
∑

s<τ≤t

xi(τ)xk(τ) d1aik(τ)−
∑

s≤τ<t

xi(τ)xk(τ) d2aik(τ)

)

+

2∑
j=1

(sj(u)(t)− sj(u)(τ)) for 0 ≤ s ≤ t < +∞.

Hence

u(t)− u(s) = 2

n∑
i,k=1

t∫
s

xi(τ)xk(τ) dsc(aik)(τ) +

2∑
j=1

(sj(u)(t)− sj(u)(s)) for 0 ≤ s ≤ t < +∞.

On the other hand,
2∑

j=1

(sj(u)(t)− sj(u)(s))

=

n∑
i=1

( ∑
s<τ≤t

d1xi(τ)(2xi(τ)− d1xi(τ)) +
∑

s≤τ<t

d2xi(τ)(2xi(τ) + d2xi(τ))

)

= 2

n∑
i,k=1

( ∑
s<τ≤t

xi(τ)xk(τ)
(
d1aik(τ)−

1

2

n∑
l=1

d1ali(τ) · d1alk(τ)
)

+
∑

s≤τ<t

xi(τ)xk(τ)
(
d2aik(τ)−

1

2

n∑
l=1

d2ali(τ) · d2alk(τ)
))

for 0 ≤ s ≤ t < +∞.

From this, taking into account (1.3.67) and (1.3.68), we find

u(t)− u(s) = 2

n∑
i,k=1

t∫
s

xi(τ)xk(τ) dbik(τ) = 2

n∑
i,k=1

t∫
s

hik(τ)xi(τ)xk(τ) dα(τ) for 0 ≤ s ≤ t < +∞.

Therefore, due to (1.3.70),

u(t)− u(s) ≤ 2

t∫
s

p(τ)

n∑
i=1

x2
i (τ) dα(τ) =

t∫
s

u(τ) dβ(τ) for 0 ≤ s ≤ t < +∞.

Using now Lemma 1.1.4 (or Lemma 1.1.5), for every t0 ≥ 0 we get

u(t) ≤ u(t0)γβ(t)γ
−1
β (t0) for t ≥ t0 ≥ 0.

In addition, it is evident that

u(t) ≤ ∥x(t)∥2 ≤ nu(t) for t ∈ R+.

So,
∥x(t)∥ ≤ n1/2

(
γβ(t)γ

−1
β (t0)

)1/2∥x(t0)∥ for t ≥ t0 ≥ 0.

From the last estimate and conditions (1.3.72)–(1.3.75) there immediately follow the conclusions (a)–
(d) of the theorem.

As to the proof of the conclusion (e), it suffices to note that, by the last inequality, the estimate

∥x(t)∥ ≥ n−1/2γβ(t)∥x(0)∥ for t ∈ R+

is valid.
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Proof of Corollary 1.3.14. If we take into account the equality
n∑

i,k=1

pik(t)xixk ≡ 1

2

n∑
i,k=1

(
hik(t) + hki(t)

)
xixk,

then, according to Lemma 1.3.5, the estimates

λ0(C(t))

n∑
i=1

x2
i ≤

n∑
i,k=1

hik(t)xixk ≤ λ0(C(t))

n∑
i=1

x2
i

hold. From this and (1.3.77) follow estimates (1.3.70) and (1.3.71), where p(t) ≡ λ0(C(t)). Hence,
the conclusions (a)–(d) immediately follow from conclusions (a)–(d) of Theorem 1.3.13, respectively.

As for the conclusion (e) of the corollary, it also follows from the conclusion (e) of Theorem 1.3.13
if we take p(t) ≡ λ0(C(t)).

Proof of Theorem 1.3.15. We assume A0(t) ≡ A(t) and f0(t) ≡ f(t). Let (Ak, fk; tk) (k = 1, 2, . . . )
and ck (k = 0, 1, . . . ) be the sequences satisfying the conditions appearing in Definition 1.3.7, where
I = R+. First, consider the case Hk(t) ≡ In (k = 0, 1, . . . ). Then conditions (1.2.11) and (1.2.12)
are obviously satisfied, and according to Remark 1.2.1, conditions (1.2.13) and (1.2.14) coincide with
(1.2.18) and (1.2.19), respectively.

Let t0 ∈ R+ and c0 ∈ Rn be arbitrarily fixed, and let x be a solution of the initial prob-
lem (1.1.1), (1.1.2). By the ξ-exponentially asymptotic stability of the matrix-function A, condition
(1.3.80) and Proposition 1.3.7, we have

(i) the solution x satisfies condition (1.3.6);

(ii) there exist ρ0 > 0 and η > 0 such that the Cauchy matrix U of system (1.3.10) admits estimate
(1.3.110) for ρ = ρ0, where U0(t, τ) ≡ U(t, τ);

(iii) there exists ρ1 > 0 such that (see the proof of estimate (1.3.109) in Theorem 1.3.6)

t∫
t0

exp
(
− η(ξ(t)− ξ(τ))

)
d
∥∥V (A(A,A))(τ)

∥∥ ≤ ρ1 for t ∈ R+. (1.3.134)

In view of (1.3.110) and the equality U(t, t−) = (In − d1A(t))−1 (see Theorem 1.1.6(d)), we have∥∥(In − d1A(t))−1
∥∥ < ρ0 + 1 for t ∈ R+. (1.3.135)

Let r1, r2 and r3 be sufficiently small positive numbers such that

r∗ <
1

4
exp(−1), (1.3.136)

where

r∗ =
(
ρ0r2 + (r1(2r4 + r5) + 2r3)(1 + ρ0ρ1)

)
, r4 =

1

4(1 + ρ0ρ1)
and r5 =

1

12ρ0
.

Let ε ∈ ]0, 1[ be an arbitrary number. Due to (1.3.6), there exists t∗ = t∗(ε, ρ) > t0 + 1 such that

∥x(t)∥ < r1ε for t ≥ t∗. (1.3.137)

Let I = [0, t∗]. According to Theorem 1.2.2 and Remark 1.2.1, there exists a natural number k1(ε)
such that problem (1.2.1k), (1.2.2k) has the unique solution xk on I, satisfying the condition

∥x(t)− xk(t)∥ < r2ε for t ∈ I (k = k1(ε), k1(ε) + 1, . . . ). (1.3.138)
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For the proof it suffices to show that there exists a natural number k∗(ε) ≥ k1(ε) such that problem
(1.2.1k), (1.2.2k) has the unique solution xk on R+ for sufficiently large k and

∥x(t)− xk(t)∥ < ε for t > t∗ (k = k∗(ε), k∗(ε) + 1, . . . ). (1.3.139)

First, we show the uniqueness. By conditions (1.2.18) and (1.2.19), there exists a natural number
k∗(ε) ≥ k1(ε) such that

∥Ak(t)−A(t)∥ < r4ε for t ∈ R+ (k = k∗(ε), k∗(ε) + 1, . . . ), (1.3.140)∣∣∣ t∨
tk

(
B(Ak −A,Ak)

)∣∣∣ < r5ε for t ∈ R+ (k = k∗(ε), k∗(ε) + 1, . . . ) (1.3.141)

and∥∥fk(t)− f(t)− B(Ak −A, fk)(t) + B(Ak −A, fk)(tk)
∥∥

< r3ε for t ∈ R+ (k = k∗(ε), k∗(ε) + 1, . . . ). (1.3.142)

According to (1.3.135) and (1.3.140), we have

∥d1A(t)− d1Ak(t)∥ < 2r4ε <
1

2(ρ0 + 1)
for t ∈ R+ (k = k∗(ε), k∗(ε) + 1, . . . )

and ∥∥(In − d1A(t))−1 · (d1A(t)− d1Ak(t))
∥∥ <

1

2
for t ∈ R+ (k = k∗(ε), k∗(ε) + 1, . . . ).

From this, by the equality

In − d1Ak(t) = (In − d1A(t)) ·
(
In + (In − d1A(t))−1(d1A(t)− d1Ak(t))

)
for t ∈ R+,

we obtain that
det(In − d1Ak(t)) ̸= 0 for t ∈ R+ (k = k∗(ε), k∗(ε) + 1, . . . ).

Therefore, problem (1.2.1k), (1.2.2k) has the unique solution xk on R+ for k ≥ k∗(ε).
Let now k ∈ {k∗(ε), k∗(ε) + 1, . . . } be a fixed natural number and z(t) ≡ xk(t)− x(t). Then, due

to the definition of solutions, we easily show that

z(t) = ck0 +A(tk)ck + f0(tk) +

t∫
tk

dA(s) · z(s)(Ak(t)−A(t)) · xk(t)

−
t∫

tk

dB(Ak−A,Ak)(s) · xk(s)+fk(t)−f(t)−B(Ak−A, fk)(t)+B(Ak−A, fk)(tk) for t≥ tk,

where ck0 = z(tk) = ck − x(tk).
So, z will be the solution of the system

dz(t) = dA(t) · z(t) + dg(t) for t ≥ t∗, (1.3.143)

where

g(t) = g01(t) + g02(t) + g1(t) + g2(t),

g01(t) = −
t∫

t∗

dB(Ak −A,Ak)(s) · zk(s),

g02(t) = (Ak(t)−A(t)) · zk(t)− (Ak(t
∗)−A(t∗)) · zk(t∗),
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g1(t) =

t∫
t∗

dB(Ak −A,Ak)(s) · x(s)− (Ak(t)−A(t)) · x(t) + (Ak(t
∗)−A(t∗)) · x(t∗),

g2(t) = fk(t)− fk(t
∗)− f(t) + f(t∗)− B(Ak −A, fk)(t) + B(Ak −A, fk)(t

∗).

According to the variation-of-constants formula, we have

z(t) = U(t, t∗)z(t∗) + g(t)−
t∫

t∗

dτU(t, τ) · g(τ) for t ≥ t∗, (1.3.144)

where U(t, τ) is the Cauchy matrix of system (1.3.10).
By the integration-by-part formula and equality (1.1.19), for every t ≥ t∗, we have

(a)

∥∥∥∥g01(t)−
t∫

t∗

dτU(t, τ) · g01(τ)
∥∥∥∥

=

∥∥∥∥
t∫

t∗

U(t, τ) dg01(τ)−
∑

t∗<τ≤t

d1τU(t, τ) · d1g01(τ) +
∑

t∗≤τ<t

d2τU(t, τ) · d2g01(τ)
∥∥∥∥

≤
t∫

t∗

∥U(t, τ)∥ ∥z(τ)∥d
∨(

B(Ak−A,Ak)
)
(τ)+

∑
t∗<τ≤t

∥d1τU(t, τ)∥ ∥z(τ)∥
∥∥d1B(Ak−A,Ak)(τ)

∥∥
+

∑
t∗≤τ<t

∥d2τU(t, τ)∥ ∥z(τ)∥
∥∥d2B(Ak −A,Ak)(τ)

∥∥
≤ ρ0

t∫
t∗

∥z(τ)∥ d
∥∥∨(B(Ak −A,Ak))(τ)

∥∥
+ 2ρ0

∑
t∗<τ≤t

∥z(τ)∥
∥∥d1B(Ak −A,Ak)(τ)

∥∥+ 2ρ0
∑

t∗≤τ<t

∥z(τ)∥
∥∥d2B(Ak −A,Ak)(τ)

∥∥
and, therefore, by (1.3.110), we conclude∥∥∥∥g01(t)−

t∫
t∗

dτU(t, τ) · g01(τ)
∥∥∥∥ ≤ 3ρ0

t∫
t∗

∥z(τ)∥ dα(τ), (1.3.145)

where

α(t) =

t∨
t∗

(
B(Ak −A,Ak)

)
;

(b)

∥∥∥∥g02(t)−
t∫

t∗

dτU(t, τ) · g02(τ)
∥∥∥∥ =

∥∥∥∥g02(t) +
t∫

t∗

U(t, τ) dA(A,A)(τ) · g02(τ)
∥∥∥∥

≤ ∥Ak(t)−A(t)∥ · ∥z(t)∥+
t∫

t∗

∥U(t, τ)∥ ∥(Ak(τ)−A(τ))∥ ∥z(τ)∥ d
∥∥∨(A(A,A))(τ)

∥∥
and, therefore, by (1.3.110) and (1.3.140),∥∥∥∥g02(t)−

t∫
t∗

dτU(t, τ) · g02(τ)
∥∥∥∥ ≤ r4ε∥z(t)∥+ r4ρ0ρ1ε sup

t∗≤τ≤t
∥z(τ)∥; (1.3.146)
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(c) ∥∥∥∥g1(t)−
t∫

t∗

dτU(t, τ) · g1(τ)
∥∥∥∥ ≤ ∥g1(t)∥+

t∫
t∗

∥U(t, τ)∥ ∥g1(τ)∥ d
∥∥∨(A(A,A))(τ)

∥∥
and, therefore, by (1.3.134), (1.3.137), (1.3.140) and (1.3.141),

∥∥∥∥g1(t)−
t∫

t∗

dτU(t, τ) · g1(τ)
∥∥∥∥ ≤ r1(2r4 + r5)(1 + ρ0ρ1)ε, (1.3.147)

since

∥g1(t)∥≤∥Ak(t)−A(t)∥ ∥x(t)∥+∥Ak(t
∗)−A(t∗)∥ ∥x(t∗)∥+

t∫
t∗

∥x(s)∥ d
∥∥∨(B(Ak−A,Ak))(s)

∥∥;
(d) ∥∥∥∥g2(t)−

t∫
t∗

dτU(t, τ) · g2(τ)
∥∥∥∥ ≤ ∥g2(t)∥+

t∫
t∗

∥U(t, τ)∥ ∥g2(τ)∥ d
∥∥∨(A(A,A))(τ)

∥∥
and, therefore, by (1.3.110),(1.3.134) and (1.3.142),

∥∥∥∥g2(t)−
t∫

t∗

dτU(t, τ) · g2(τ)
∥∥∥∥ ≤ 2r3(1 + 2ρ0ρ1)ε. (1.3.148)

Moreover, it follows from (1.3.110) and (1.3.138) that

∥U(t, t∗)z(t∗)∥ ≤ ρ0∥z(t∗)∥ < r2ε for t ≥ t∗.

By this and (1.3.145)–(1.3.148), it follows from (1.3.144) that

∥z(t)∥ ≤ ∥U(t, t∗)z(t∗)∥+
2∑

j=1

(∥∥∥∥g0j(t)−
t∫

t∗

dτU(t, τ) · g0j(τ)
∥∥∥∥+ ∥∥∥∥gj(t)−

t∫
t∗

dτU(t, τ) · gj(τ)
∥∥∥∥)

≤ r∗ε+ r3(1 + ρ0ρ1)ε sup
t∗≤τ≤t

∥z(τ)∥+ 3ρ0

t∫
t∗

∥z(τ)∥ d∥
∨

(B(Ak −A,Ak))(τ)∥ for t ≥ t∗.

From this, by the estimate r4(1 + ρ0ρ1) < 1/2, we get

φ(t) ≤ 2r∗ε+ 6ρ0

t∫
t∗

φ(τ) dα(τ) for t ≥ t∗, (1.3.149)

where
φ(t) = sup

t∗≤τ≤t
∥z(τ)∥.

Let now β : [t∗,+∞) → R+ be the function defined by β(t∗) = α(t∗) and β(t) = α(t−) for t > t∗.
Then due to (0.0.7) and (1.3.149),

φ(t) ≤ 2r∗ε+ 6ρ0φ(t)d1α(t) + 6ρ0

t∫
t∗

φ(τ) dα(τ) for t ≥ t∗. (1.3.150)



98 Malkhaz Ashordia

By the choice of r5, we have 16ρ0d1α(t) < 1/2 and (In − 12ρ0d1α(t))
−1 < 2. Hence, by (1.3.150),

φ(t) ≤ 4r∗ε+ 12ρ0

t∫
t∗

φ(τ) dβ(τ) for t ≥ t∗.

From this, using Gronwall’s inequality (see Lemma 1.1.4′), by estimate (1.3.136), we get

∥z(t)∥ ≤ 4r∗ε exp(12ρ0β(t)) ≤ 4r∗ε exp(ε) < ε for t ≥ t∗.

So, condition (1.3.139) holds.
Consider now the general case, i.e., when the matrix-functions Hk (k = 0, 1, . . . ) are not identically

equal In. In this case, without loss of generality, we may assume that H0(t) ≡ In.
Let xk be a solution of the initial problem (1.2.1k), (1.2.2k) for every natural k. Then according

to Lemma 1.2.2, for every natural k, the function yk = Hkxk will be a solution of the problem

dy(t) = dAk∗(t) · y(t) + dfk∗(t),

y(tk) = ck∗,

where
Ak∗(t) ≡ I(Hk, Ak)(t), fk∗(t) ≡ B(Hk, fk)(t) and ck∗ = Hkck.

In addition,

In + (−1)jdjAk∗(t) ≡
(
Hk(t) + (−1)jdjHk(t)

)
·
(
In + (−1)jdjAk(t)

)
H−1

k (t) (j = 1, 2).

Obviously, the conditions of Theorem 1.2.3 and Remark 1.2.2 are valid for the sequences Ak∗(t)
(k = 1, 2, . . . ), fk∗(t) (k = 1, 2, . . . ), ck∗ (k = 1, 2, . . . ) and tk (k = 1, 2, . . . ). Consequently,

lim
k→+∞

∥xk(t)− x(t)∥ = 0 uniformly on R+.

From this, in view of the inequalities

∥xk(t)− x(t)∥ ≤
∥∥H−1

k (t)yk(t)− yk(t)
∥∥+ ∥yk(t)− x(t)∥ for t ∈ R+,

we, as above, have
lim

k→+∞
∥xk(t)− x(t)∥ = 0 uniformly on R+.

Proof of Theorem 1.3.16. Let (Ak, fk; tk) (k = 1, 2, . . . ) and ck (k = 0, 1, . . . ) be the sequences satis-
fying the conditions appearing in Definition 1.3.8, where I = R+, A0(t) ≡ A(t) and f0(t) ≡ f(t).

We first consider the case Hk(t) ≡ In (k = 0, 1, . . . ). Then conditions (1.2.11) and (1.2.12) are
obviously satisfied, and according to Remark 1.2.1, condition (1.2.13) coincides with (1.2.18), and the
fulfillment of conditions (1.3.78) and (1.3.79) uniformly on R+ implies, respectively, that

lim
k→+∞

t∨
0

(Ak −A) = 0 (1.3.151)

and

lim
k→+∞

t∨
0

(fk − f) = 0 (1.3.152)

uniformly on R+.
Let t0 ∈ R+ and c0 ∈ Rn be arbitrarily fixed, x be a solution of the initial problem (1.1.1), (1.1.2),

and U be the Cauchy matrix of system (1.3.10). By the uniform stability of the matrix-function A
and condition (1.3.81), based on the integration-by-part formula, there exists a number ρ0 > 1 such
that

∥x(t)∥ ≤ ρ0 for and ∥U(t, τ)∥ ≤ ρ0 for t ≥ τ ≥ 0. (1.3.153)
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Let r1, r2 and r3 be sufficiently small positive numbers such that

r1 <
1

6(ρ0 + 1)
and r∗ <

1

2
exp(−1), (1.3.154)

where
r∗ = ρ0(3r1 + r2 + 3r3).

Let ε ∈ ]0, 1[ be an arbitrary number. Let t∗ = t0 + 1 and I = [0, t∗]. By (1.3.151) and (1.3.152),
it is not difficult to verify that conditions (1.2.18) and (1.2.19) of Remark 1.2.1 hold.

According to Theorem 1.2.2 and Remark 1.2.1, there exists a natural number k1(ε) such that
problem (1.2.1k), (1.2.2k) has the unique solution xk on I for k ≥ k1(ε), satisfying condition (1.3.138).

To prove the theorem, it suffices to show that there exists a natural number k∗(ε) ≥ k1(ε) such
that problem (1.2.1k), (1.2.2k) has the unique solution xk on R+ and estimate (1.3.139) holds for
k ≥ k∗(ε).

By (1.3.151) and (1.3.152), there exists a natural number k∗(ε) ≥ k1(ε) such that

t∨
0

(Ak −A) < r1ε for t ≥ 0 (k = k∗(ε), k∗(ε) + 1, . . . ) (1.3.155)

and
t∨
0

(fk − f) < r3ε for t ≥ 0 (k = k∗(ε), k∗(ε) + 1, . . . ). (1.3.156)

The existence and uniqueness of a solution of the problem for k ≥ k∗(ε) can be shown as above,
in the proof of Theorem 1.3.15.

Let now k ∈ {k∗(ε), k∗(ε) + 1, . . . } be a fixed natural number and z(t) ≡ xk(t)− x(t). Then z will
be the solution of system (1.3.143), and presentation (1.3.144) is valid, where

g(t) = g0(t) + g1(t) + g2(t), g0(t) =

t∫
t∗

d(Ak(τ)−A(τ)) · z(τ),

g1(t) =

t∫
t∗

d(A(τ)−Ak(τ)) · x(τ), g2(t) = f(t)− fk(t)− f(t∗) + fk(t
∗).

By the integration-by-part formula, equality (1.1.19) and estimate (1.3.153), for every t ≥ t∗ we
have:

(a)

g0(t)−
t∫

t∗

dτU(t, τ) · g0(τ) =
t∫

t∗

U(t, τ) d(Ak(τ)−A(τ)) · z(τ)

−
∑

t∗<τ≤t

d1τU(t, τ) d1(Ak(τ)−A(τ)) · z(τ) +
∑

t∗≤τ<t

d2τU(t, τ) d2(Ak(τ)−A(τ)) · z(τ)

and, therefore, ∥∥∥∥g0(t)−
t∫

t∗

dτU(t, τ) · g0(τ)
∥∥∥∥ ≤ 3ρ0

t∫
t∗

∥z(τ)∥ dα(τ), (1.3.157)

where

α(t) =

t∨
t∗

(Ak −A);
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(b)

g1(t)−
t∫

t∗

dτU(t, τ) · g1(τ) =
t∫

t∗

U(t, τ) d(A(τ)−Ak(τ)) · x(τ)

−
∑

t∗<τ≤t

d1U(t, τ) · d1(A(τ)−Ak(τ)) · x(τ) +
∑

t∗≤τ<t

d2U(t, τ) · d2(A(τ)−Ak(τ)) · x(τ)

and, therefore, ∥∥∥∥g1(t)−
t∫

t∗

dτU(t, τ) · g1(τ)
∥∥∥∥ ≤ 3ρ20α(t);

(c)

g2(t)−
t∫

t∗

dτU(t, τ) · g2(τ) =
t∫

t∗

U(t, τ) d(f(τ)− fk(τ))

−
∑

t∗<τ≤t

d1U(t, τ) · d1(f(τ)− fk(τ)) +
∑

t∗≤τ<t

d2U(t, τ) · d2(f(τ)− fk(τ))

and, therefore, ∥∥∥∥g2(t)−
t∫

t∗

dτU(t, τ) · g2(τ)
∥∥∥∥ ≤ 3ρ0

t∨
t∗

(f − fk). (1.3.158)

From (1.3.144), according to (1.3.153)–(1.3.158), we obtain

∥z(t)∥ ≤ ρ0∥z(t∗)∥+ 3ρ20α(t) + 3ρ0

t∨
t∗

(f − fk) + 3ρ0

t∫
t∗

∥z(τ)∥ dα(τ) for t ≥ t∗.

Consequently, taking into account (1.3.138), (1.3.155) and (1.3.156), we get

∥z(t)∥ ≤ r∗ε+ 3ρ0

t∫
t∗

∥z(τ)∥ dα(τ) for t ≥ t∗. (1.3.159)

Let now β : [t∗,+∞) → R+ be the function defined as in the proof of Theorem 1.3.15. Then, due
to (0.0.7) and (1.3.159),

∥z(t)∥ ≤ r∗ε+ 3ρ0∥z(t)∥ d1α(t) + 3ρ0

t∫
t∗

∥z(τ)∥ dβ(τ) for t ≥ t∗.

By the choice of r1, we have 3ρ0d1α(t) < 1/2 and (In − 3ρ0d1α(t))
−1 < 2. Hence

∥z(t)∥ ≤ 2r∗ε+ 6ρ0

t∫
t∗

∥z(τ)∥ dβ(τ) for t ≥ t∗.

From this, using Gronwall’s inequality, by estimate (1.3.154), we get

∥z(t)∥ ≤ 2r∗ε exp(6ρ0β(t)) ≤ 2r∗ε exp(6ρ0r1) < ε for t ≥ t∗.

Thus condition (1.3.139) holds.
The theorem in a general case is proved as Theorem 1.3.15 in the same case.



Chapter 2

Systems of linear impulsive
differential equations

2.1 The initial problem
In this chapter, we realize the results of Chapter 1 for the initial problem for the following impulsive
differential systems

dx

dt
= P (t)x+ q(t) for a.a. t ∈ I \ T, (2.1.1)

x(τl+)− x(τl−) = G(τl)x(τl) + u(τl) (l = 1, 2, . . . ); (2.1.2)
x(t0) = c0, (2.1.3)

where P ∈ Lloc(I;Rn×n), q ∈ Lloc(I;Rn), G ∈ Bloc(T ;Rn×n), u ∈ Bloc(T ;Rn), T = {τ1, τ2, . . . },
τl ∈ I (l = 1, 2, . . . ), τl ̸= τk if l ̸= k (l, k = 1, 2, . . . ), t0 ∈ I, and c0 ∈ Rn.
Definition 2.1.1. By a solution of the impulsive differential system (2.1.1), (2.1.2) we understand a
continuous from the left vector-function x ∈ ACVloc(I, T ;Rn) satisfying both the system

x′(t) = P (t)x(t) + q(t) for a.a. t ∈ I \ T

and relation (2.1.2) for every l ∈ {1, 2, . . . }.
Quite a number of issues of the theory of linear systems of differential equations with impulsive

effect have been studied sufficiently well (for survey of the results on impulsive systems see the refer-
ences in the introduction). But the above-mentioned works do not contain the results analogous to
those obtained in [3, 35] for ordinary differential equations. Using the theory of generalized ordinary
differential equations, we extend these results to the systems of impulsive differential equations.

We assume that the condition

det(In +G(τl)) ̸= 0 for τl < t0 (l = 1, 2, . . . ) (2.1.4)

holds.
To establish the results dealing with the initial and other problems for the impulsive differential

system (2.1.1), (2.1.2), we use the following conception.
Remark 2.1.1. A vector-function x is a solution of the impulsive system (2.1.1), (2.1.2) if and only
if it is a solution of system (1.1.1), where

A(t) =

t∫
a

P (τ) dτ + sgn(t− a)
∑

τl∈Ta,t

G(τl) for a.a. t ∈ I,

f(t) =

t∫
a

q(τ) dτ + sgn(t− a)
∑

τl∈Ta,t

u(τl) for a.a. t ∈ I,

(2.1.5)

101
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and a ∈ I is an arbitrary fixed point.

It is evident that these matrix- and vector-functions A and f have the following properties:

d1A(t) = On×n, d1f(t) = 0 for a.a. t ∈ I,

d2A(t) = On×n, d2f(t) = 0 for a.a. t ∈ I \ T,
d2A(τl) = G(τl), d2f(τl) = u(τl) (l = 1, 2, . . . );

(2.1.6)

Sc(A)(t)− Sc(A)(s) =

t∫
s

P (τ) dτ, sc(f)(t)− sc(f)(s) =

t∫
s

q(τ) dτ for a.a. s, t ∈ I \ T,

S1(A)(t) = On×n, s1(f)(t) = 0 for a.a. t ∈ I \ T,

S2(A)(t)=S2(A)(s)+
∑

s≤τl<t

G(τl), s2(f)(t)=s2(f)(s)+
∑

s≤τl<t

u(τl) for a.a. s, t∈I; s<t

(2.1.7)

(in particular, they are continuous from the left everywhere).
So, condition (2.1.4) is equivalent to condition (1.1.3). Moreover, due to the conditions imposed

on P , G, q and u, we have A ∈ BVloc(I;Rn×n) and f ∈ BVloc(I;Rn).
Along with problem (2.1.1)–(2.1.3), we consider the corresponding homogeneous problem

dx

dt
= P (t)x for a.a. t ∈ I \ T, (2.1.10)

x(τl+)− x(τl−) = G(l)x(τl) (l = 1, 2, . . . ); (2.1.20)
x(t0) = 0. (2.1.30)

We say that the pair (X,Y ) consisting of the matrix-functions X ∈ Lloc(I;Rn×n) and Y ∈
Bloc(T ;Rn×n) satisfies the Lappo–Danilevskiĭ conditions if there exists t∗ ∈ I such that

X(t)

t∫
t∗

X(τ) dτ =

t∫
t∗

X(τ) dτ ·X(t) and

t∫
t∗

X(τ) dτ ·
∑

τl∈Tt∗,t

Y (τl) =
∑

τl∈Tt∗,t

Y (τl) ·
t∫

t∗

X(τ) dτ for t ∈ I.

Remark 2.1.2. By Definition 2.1.1, under a solution of the impulsive system (2.1.1), (2.1.2) we
understand the continuous from the left vector-function. If under a solution we understand the
continuous from the right vector-function, then we have to require the condition

det(In −G(τl)) ̸= 0 for τl > t0 (l = 1, 2, . . . )

instead of (2.1.4). In this case, the matrix A(t) and vector f(t) will be defined such that

d1A(t) = On×n, d1f(t) = 0 for a.a. t ∈ I \ T,
d1A(τl) = G(τl), d1f(τl) = u(τl) (l = 1, 2, . . . ),

d2A(t) = On×n, d2f(t) = 0 for a.a. t ∈ I

instead of (2.1.6). In particular, A(t) and f(t) can be defined as in (2.1.5), where the set Ts,t will
be defined by the equality Ts,t =]min{s, t},max{s, t}] for s, t ∈ I. The results corresponding to this
case are analogous to the results corresponding to the first case given in Sections 2.1–2.3 below, if we
replace the expressions of type In+G(τl) by In−G(τl), the intervals [s, t[ by ]s, t], and the right limits
by the left ones.

Basing on the results of Section 1.1, we obtain the following results. Some of them are already
well-known.
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Theorem 2.1.1. Let t0 ∈ I. The initial value problem (2.1.1)–(2.1.3) possesses a unique solution x
defined on I for any q ∈ Lloc(I;Rn) and u ∈ Bloc(T ;Rn) if and only if condition (2.1.4) holds.

Proposition 2.1.1. Let s ∈ I, p ∈ Lloc(I;R), and g ∈ Bloc(T ;R) be such that

g(τl) ̸= −1 (l = 1, 2, . . . ).

Then the initial problem

dγ

dt
= p(t)γ for a.a. t ∈ I \ T,

γ(τl+)− γ(τl−) = g(τl)γ(τl) (l = 1, 2, . . . );

γ(s) = 1

has the unique solution γp(·, s) defined by

γp(t, s) =



exp
( t∫

s

p(τ) dτ

) ∏
s≤τl<t

(1 + g(τl)) for t > s,

exp
( t∫

s

p(τ) dτ

) ∏
t≤τl<s

(1 + g(τl))
−1 for t < s,

1 for t = s.

Theorem 2.1.2. Let the matrix-functions P ∈ L([a, b];Rn×n) and G ∈ B(T ;Rn×n) be such that
condition (2.1.4) hold. Then there exist a constant r ∈ R+ such that

∥x(t)∥ ≤ r

(
∥x(t0)∥+

t0∫
a

∥q(τ)∥ dτ +
∑

a≤τl≤t0

∥u(τl)∥
)

× exp
{
r

( t0∫
a

∥P (τ)∥ dτ +
∑

a≤τl≤t0

∥G(τl)∥
)}

for a ≤ t ≤ t0

and

∥x(t)∥ ≤ r

(
∥x(t0)∥+

b∫
t0

∥q(τ)∥ dτ +
∑

t0≤τl≤b

∥u(τl)∥
)

× exp
{
r

( b∫
t0

∥P (τ)∥ dτ +
∑

t0≤τl≤b

∥G(τl)∥
)}

for t0 ≤ t ≤ b

for every q ∈ L([a, b];Rn), u ∈ B(T ;Rn), where x is a solution of the impulsive system (2.1.1), (2.1.2).

Theorem 2.1.3. The set of all solutions of the homogeneous system (2.1.10), (2.1.20) is an n-
dimensional subset of ACVloc(I, T ;Rn).

We have the theorem on the existence of the Cauchy matrix.

Theorem 2.1.4. Let the matrix-functions P ∈ Lloc(I;Rn×n) and G ∈ Bloc(T ;Rn×n) be such that
condition (2.1.4) holds. Then there exists a unique n× n matrix-function U(t, s) defined for a ≤ t ≤
s ≤ t0 and t0 ≤ s ≤ t ≤ b such that the matrix function X(t) = U(t, s) satisfies the matrix initial
value problem

dX

dt
= P (t)X for a.a. t ∈ I \ T, (2.1.8)
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X(τl+)−X(τl−) = G(τl)X(τl) (l = 1, 2, . . . ); (2.1.9)
X(s) = In. (2.1.10)

In addition, relation (1.1.12) holds, and every solution of the homogeneous system (2.1.10), (2.1.20)
defined on {t ∈ I, t ≤ s} if s ≤ t0 and on {t ∈ I, t ≥ s} if t0 ≤ s is given by relation (1.1.13) on the
intervals of definition.
Theorem 2.1.5 (Variation-of-constants formula). Let the matrix-functions P ∈ Lloc(I;Rn×n) and
G ∈ Bloc(T ;Rn×n) be such that condition (2.1.4) holds. Then every solution of the impulsive system
(2.1.1), (2.1.2) admits the representation

x(t) = U(t, t0)x(t0) +

t∫
t0

U(t, τ) q(τ) dτ + sgn(t− t0)
∑

τl∈Tt0,t

U(t, τl)u(τl) for t ∈ I

for every u ∈ Bloc(T ;Rn), where U(t, s) is the matrix-function appearing in Theorem 2.1.4.
Proposition 2.1.2. Let the pair (P,G) consisting of the matrix-functions P ∈ Lloc(I;Rn×n) and
G ∈ Bloc(T ;Rn×n) satisfy the Lappo–Danilevskiĭ condition and inequality (2.1.4) hold for every τl
(l = 1, 2, . . . ). Then the impulsive matrix-system (2.1.8), (2.1.9), under the condition X(a) = In, has
the unique solution X defined by

X(t) =



exp
( t∫

a

P (τ) dτ

) ∏
t≤τl<a

(In +G(τl))
−1 for t < a,

exp
( t∫

a

P (τ) dτ

) ∏
a≤τl<t

(In +G(τl)) for t > a,

In for t = a.

(2.1.11)

Representation (2.1.11) follows from (1.2.68), due to (2.1.7).
Theorem 2.1.6. Let the matrix-functions P ∈ Lloc(I;Rn×n) and G ∈ Bloc(T ;Rn×n) be such that
inequality (2.1.4) holds for every τl (l = 1, 2, . . . ). Then there exists a unique n × n matrix-function
U : I × I → Rn×n such that the matrix function X(t) = U(t, s) satisfies the matrix impulsive problem
(2.1.8), (2.1.9); (2.1.10) for every s ∈ [a, b]. In addition, the matrix-function U(t, s) has the following
properties:

(a) U(t, t) = In for t ∈ I;

(b) relation (1.1.12) holds for r, s, t ∈ I;

(c) U(t−, s) = U(t, s) for t, s ∈ I; U(t+, s) = U(t, s) for t ∈ I\T and U(τl+, s) = (In+G(τl))U(τl, s)
for s ∈ I (l = 1, 2, . . . );

(d) det(U(t, s)) ̸= 0 for s, t ∈ I;

(e) the matrices U(t, s) and U(s, t) are mutually reciprocal, i.e., U−1(t, s) = U(t, s) for s, t ∈ I;

(f) U(t, s) = X(t)X−1(s), where X(t) = U(t, a) for s, t ∈ I.
The matrix-function U defined in the theorem is called the Cauchy matrix of impulsive system

(2.1.10), (2.1.20).
The matrix-function X(t) = U(t, a) is called a fundamental matrix of the impulsive system

(2.1.10), (2.1.20).
Proposition 2.1.3. Let inequality (2.1.4) hold for every τl (l = 1, 2, . . . ). Then

dX−1

dt
= −X−1 P (t) for a.a. t ∈ I \ T, (2.1.12)

X−1(τl+)−X−1(τl−) = −X−1(τl)G(τl)(In +G(τl))
−1 (l = 1, 2, . . . ). (2.1.13)

where X ∈ Lloc(I;Rn×n) is a fundamental matrix of system (2.1.10), (2.1.20).
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Equality (2.1.12) follows from the definition of the operator A (see (0.0.1)), equality (1.1.19) and
(2.1.5).

Note that equality (2.1.13) follows immediately from condition (c) of Theorem 2.1.6, since

X(τl+) = (In +G(τl))X(τl) (l = 1, 2, . . . ).

Theorem 2.1.7 (Variation-of-constants formula). Let inequality (2.1.4) hold for every τl (l=1, 2, . . . ).
Then every solution of the impulsive system (2.1.1), (2.1.2) admits the representation

x(t) = U(t, s)x(s) +

t∫
s

U(t, τ)q(τ) dτ + sgn(t− s)
∑

τl∈Ts,t

U(t, τl)ul for s, t ∈ I,

where U is the Cauchy matrix of the homogeneous system (2.1.10), (2.1.20).

The equality follows from (1.1.16) if we take into account the integration-by-parts formula (see
(0.0.9)) and equalities (0.0.11) and (2.1.5).

We give here a method of successive approximations for constructing the solution of the initial
problem (2.1.1)–(2.1.3).

Theorem 2.1.8. Let x be a unique solution of the initial problem (2.1.1)–(2.1.3). Then condition
(1.1.20) holds for every [a, b] ⊂ I, where

xk(t0) = c0 (k = 0, 1, . . . );

x0(t) = c0 and xk(t) = c0 +

t∫
t0

(
P (τ)xk−1(τ) + q(τ)

)
dτ

+ sgn(t− t0)
∑

τl∈Tt0,t

(
G(τl)xk−1(τl) + u(τl)

)
for t < t0, t ̸∈ T or t > t0 (k = 1, 2, . . . )

and

x0(τm) = (In +G(τm))−1c0 and xk(τm) = (In +G(τl))
−1

{
c0 −

t0∫
τl

(
P (τ)xk−1(τ) + q(τ)

)
dτ

−
∑

τm≤τl<t0

(
G(τl)xk−1(τl) + u(τl)

)
+G(τm)xk−1(τm)

}
for τm < t0 (m = 1, 2, . . . ; k = 1, 2, . . . ).

2.1.1 Nonnegativity of the Cauchy matrix. The systems of linear
differential and integral impulsive inequalities

In this subsection, we establish the sufficient conditions guaranteeing the nonnegativity of the Cauchy
matrix of system (2.1.10), (2.1.20). Moreover, we investigate the question of the estimates of solutions
of linear systems of differential and integral inequalities.

Theorem 2.1.9. Let t0 ∈ I, P = (pik)
n
i,k=1 ∈ Lloc(I;Rn×n), G = (gik)

n
i,k=1 ∈ Bloc(T ;Rn×n) and

Q = diag(α1, . . . , αn) ∈ Bloc(T ;Rn×n) be such that conditions (2.1.4),

1 + αi(τl) > 0 for τl ≤ t0 (l = 1, 2, . . . ),

det
(
In + G̃(τl) +Q(τl)

)
̸= 0 for τl < t0 (l = 1, 2, . . . ) (2.1.14)

and (
In + G̃(τl) +Q(τl)

)−1 ≥ 0 for τl < t0 (l = 1, 2, . . . )

hold, where G̃(τl) = G(τl)− diag(G(τl)). Let, moreover,

pik(t) sgn(t− t0) ≥ 0 for a.a. t ∈ I \ T (i ̸= k; i, k = 1, . . . , n)
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and
gik(l) sgn(τl − t0) ≥ 0 (i ̸= k; i, k = 1, . . . , n; l = 1, 2, . . . ).

Then condition (1.1.25) holds, where U is the Cauchy matrix of system (2.1.10), (2.1.20).

Remark 2.1.3. The condition

∥G(τl)∥ < 1 for τl < t0 (l = 1, 2, . . . ) (2.1.15)

guarantees the validity of condition (2.1.4). If∥∥(In +G(τl))
−1
(
Q(τl)− diag(G(τl))

)∥∥ < 1 for τl < t0 (l = 1, 2, . . . ),

then condition (2.1.14) follows from (2.1.4). If the condition

G̃(τl) +Q(τl) ≤ On×n for τl < t0 (l = 1, 2, . . . )

holds together with (2.1.14), then condition (1.1.27) holds, as well. If Q(τl) = diag(G(τl)) (l =
1, 2, . . . ), then condition (2.1.14) coincides with (2.1.4).

Theorem 2.1.10. Let t0 ∈ I, P = (pik)
n
i,k=1 ∈ Lloc(I;Rn×n), G = (gik)

n
i,k=1 ∈ Bloc(T ;Rn×n),

q ∈ Lloc(I;Rn×n) and u ∈ Bloc(T ;Rn) be such that the conditions

det(In −G(τl)) ̸= 0 for τl < t0 (l = 1, 2, . . . ), (2.1.16)
1− gii(τl) > 0 for τl ≤ t0 (l = 1, 2, . . . ),

(In −G(τl))
−1 ≥ On×n for τl < t0 (l = 1, 2, . . . ), (2.1.17)

pik(t) ≥ 0 for a.a. t ∈ I \ {t0} \ T (i ̸= k; i, k = 1, . . . , n)

and
gik(τl) ≥ 0 (i ̸= k; i, k = 1, . . . , n; l = 1, 2, . . . )

hold. Let, moreover, a vector-function x satisfy the system of linear impulsive inequalities

sgn(t− t0)
dx

dt
≤ P (t)x+ q(t) for a.a. t ∈ I \ T,

sgn(τl − t0)(x(τl+)− x(τl−)) ≤ G(τl)x(τl) + u(τl) (l = 1, 2, . . . )

on the intervals J1 and J2 and

x(t0) ≤ c0 if t0 ̸∈ {τ1, τ2, . . . },
x(τl0) ≤ (In +G(τl0)) c0 + u(τl0) if t0 = τl0 for some natural l0,

(2.1.18)

where c0 ∈ Rn. Then the estimate

x(t) ≤ y(t) for a.a. t ∈ I \ {t0} (2.1.19)

holds, where y is a solution of the impulsive system

sgn(t− t0)
dy

dt
= P (t)y + q(t) for a.e. t ∈ I \ T,

sgn(τl − t0)
(
y(τl+)− y(τl−)

)
= G(τl)y(τl) + u(τl) (l = 1, 2, . . . )

on the intervals J1 and J2 satisfying the conditions

y(t0) = c0 if t0 ̸∈ {τ1, τ2, . . . },

and
y(τl0) = (In +G(τl0)) c0 + u(τl0) if t = τl0 .
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Remark 2.1.4. It is evident that if in Theorem 2.1.10 we assume

x(t0) ≤ c0,

then inequality (2.1.19) is fulfilled on the whole I.

Remark 2.1.5. If estimate (2.1.15) holds and

G(τl) ≥ On×n (l = 1, 2, . . . ),

then condition (2.1.17) holds, as well.

Theorem 2.1.11. Let t0 ∈ I, P = (pik)
n
i,k=1 ∈ Lloc(I;Rn×n), G = (gik)

n
i,k=1 ∈ Bloc(T ;Rn×n),

q ∈ Lloc(I;Rn×n) and u ∈ Bloc(T ;Rn) be such that conditions (2.1.16), (2.1.17) hold. Let, moreover,
x be a solution of linear impulsive integral inequality

x(t) ≤ c0 +

( t∫
t0

(
P (τ)x(τ) + q(τ)

)
dτ +

∑
τl∈T[t0,t[

(
G(τl)x(τl) + u(τl)

))
· sgn(t− t0)

on the sets J1 and J2, under condition (2.1.18). Then the conclusion of Theorem 2.1.10 is true.

2.2 The well-posedness of the initial problem
2.2.1 Statement of the problem and formulation of the results
Let P0 ∈ Lloc(I;Rn×n), q0 ∈ Lloc(I;Rn), G0 ∈ Bloc(T ;Rn×n), u0 ∈ Bloc(T ;Rn), τl ̸= τk if l ≠ k
(l, k = 1, . . . , n), t0 ∈ I, where I ⊂ R is an arbitrary interval non-degenerated at a point. Consider
the system

dx

dt
= P0(t)x+ q0(t) for a.a. t ∈ I \ {τl}∞l=1, (2.2.1)

x(τl+)− x(τl−) = G0(τl)x(τl) + u0(τl) (l = 1, 2, . . . ) (2.2.2)

under the initial condition
x(t0) = c0, (2.2.3)

where c0 ∈ Rn is an arbitrary constant vector.
Let x0 be a unique solution of problem (2.2.1)–(2.2.3).
Along with the initial problem (2.2.1)–(2.2.3), consider the sequence of the initial problems

dx

dt
= Pk(t)x+ qk(t) for a.a. t ∈ I \ {τl}∞l=1, (2.2.1k)

x(τl+)− x(τl−) = Gk(τl)x(τl) + uk(τl) (l = 1, 2, . . . ), (2.2.2k)
x(tk) = ck (2.2.3k)

(k = 1, 2, . . . ), where Pk ∈ Lloc(I;Rn×n) (k = 1, 2, . . . ), qk ∈ Lloc(I;Rn) (k = 1, 2, . . . ), Gk ∈
Bloc(T ;Rn×n) (k = 1, 2, . . . ), uk ∈ Bloc(T ;Rn), tk ∈ I (k = 1, 2, . . . ), ck ∈ Rn (k = 1, 2, . . . ).

We assume that Pk = (pkij)
n
i,j=1 (k = 0, 1, . . . ), qk = (qki)

n
i=1 (k = 0, 1, . . . ); Gk = (gkij)

n
i,j=1 (k =

0, 1, . . . ), uk = (uki)
n
i=1 (k = 0, 1, . . . ), and, without loss of generality, either tk < t0 (k = 1, 2, . . . ), or

tk = t0 (k = 1, 2, . . . ), or tk > t0 (k = 1, 2, . . . ).
In this section, we establish the necessary and sufficient and effective sufficient conditions for the

initial problem (2.2.1k)–(2.2.3k) to have a unique solution xk for any sufficiently large k and condition
(1.2.3) would be satisfied uniformly on I.
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Remark 2.2.1. If we consider the case where for every natural k, the impulses points depend on k in
the impulsive system (2.2.1k), (2.2.2k), in particular, the linear algebraic system (2.2.2k) has the form

x(τkl+)− x(τkl−) = Gk(τkl)x(τkl) + uk(τkl) (l = 1, 2, . . . ),

where τkl ∈ I (l = 1, 2, . . . ), then the last general case will be reduced to case (2.2.2k) by using the
following conception.

Let T = T0∪T1∪T2∪ . . . , where Tk = {τk1, τk2, . . . } (k = 0, 1, . . . ), and τ0l = τl (l = 1, 2, . . . ). The
set T is countable. Therefore T = {τ∗1 , τ∗2 , . . . }, where τ∗l ∈ I (l = 1, 2, . . . ). For every k ∈ {0, 1, . . . }
and l ∈ {1, 2, . . . }, we set G∗

k(τ
∗
l ) = G∗

k(τkl) and u∗
k(τ

∗
l ) = u∗

k(τkl) if τ∗l ∈ Tk, where lk ∈ N is such
that τ∗l = τklk , and G∗

k(τ
∗
l ) = On×n and u∗

k(τ
∗
l ) = 0 if τ∗l ̸∈ Tk. So, the last general case is equivalent

to the impulsive system (2.2.1k), (2.2.2k), where τl = τ∗l (l = 1, 2, . . . ), Gk(τl) = G∗
k(τ

∗
l ) (l = 1, 2, . . . )

and uk(τl) = u∗
k(τ

∗
l ) (l = 1, 2, . . . ).

Below, as in Section 2.1, we assume that T = {τ1, τ2, . . . }.
Along with systems (2.2.1), (2.2.2) and (2.2.1k), (2.2.2k), we consider the corresponding homoge-

neous systems
dx

dt
= P0(t)x for a.a. t ∈ I \ T, (2.2.10)

x(τl+)− x(τl−) = G0(τl)x(τl) (l = 1, 2, . . . ) (2.2.20)

and
dx

dt
= Pk(t)x for a.a. t ∈ I \ T, (2.2.1k0)

x(τl+)− x(τl−) = Gk(τl)x(τl) (l = 1, 2, . . . ) (2.2.2k0)

(k = 1, 2, . . . ).
Definition 2.2.1. We say that the sequence (Pk, qk;Gk, uk; tk) (k = 1, 2, . . . ) belongs to the set
S(P0, q0;G0, u0; t0) if for every c0 ∈ Rn and a sequence ck ∈ Rn (k = 1, 2, . . . ) satisfying the condition
(1.2.5), problem (2.2.1k)–(2.2.3k) has a unique solution xk for any sufficiently large k and condition
(1.2.3) holds uniformly on I.

As in the previous section, the impulsive systems (2.2.1), (2.2.2) and (2.2.1k), (2.2.2k) (k = 1, 2, . . . )
are the particular case, respectively, of the general systems (1.2.1) and (1.2.1k) (k = 1, 2, . . . ) if we set

Ak(t) =

t∫
tk

Pk(τ) dτ + sgn(t− tk)
∑

τl∈Ttk,t

Gk(τl) for t ∈ I (k = 0, 1, . . . ),

fk(t) =

t∫
tk

qk(τ) dτ + sgn(t− tk)
∑

τl∈Ttk,t

uk(τl) for t ∈ I (k = 0, 1, . . . ),

(2.2.4)

where a ∈ I is an arbitrary fixed point.
Let

ck1 = ck (k = 0, 1, . . . ),

ck2 = ck if tk ≥ t0, tk ̸∈ {τ1, τ2, . . . } (k = 0, 1, . . . ),

ck2 = (In +Gk(τl)) ck + uk(τl) if l is such that tk = τl (k = 0, 1, . . . ).

(2.2.5)

To realize and formulate the well-posed results of Section 1.2, we use the following forms of the
operators B(X,Y ) and I(X,Y ) (see (0.0.2) and (0.0.3)) for the impulsive case, in particular, when
the matrix-functions X and Y are continuous from the left on I. Using integration-by-parts formula
(0.0.9), (0.0.11) and the definition of the Kurzweil integral, we find

B(X,Y )(t)− B(X,Y )(s)

=

t∫
s

X(τ)Y ′(τ) dτ + sgn(t− s)
∑

τl∈Ts,t

X(τl+) d2Y (τl) for s < t, s, t ∈ I, (2.2.6)
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if X ∈ BVloc(I;Rn×j) and Y ∈ ACVloc(I, T ;Rj×m), and

I(X,Y )(t)− I(X,Y )(s) =

t∫
s

(
X ′(τ) +X(τ)Y ′(τ)

)
X−1(τ) dτ

+ sgn(t− s)
∑

τl∈Ts,t

(
d2X(τl) +X(τl+)d2Y (τl)

)
X−1(τl) for s < t, s, t ∈ I, (2.2.7)

if X,Y ∈ ACVloc(I, T ;Rn×n), detX(t) ̸= 0. In addition, if

Q(t)−Q(s) =

t∫
s

Y (τ) dτ + sgn(t− s)
∑

τl∈Ts,t

Z(τl) for s < t; s, t ∈ I,

where Y ∈ Lloc(I;Rn×m) and Z ∈ Bloc(T ;Rn×n), we set

Bι(X;Y, Z)(t) ≡ B(X,Q)(t) and Iι(X;Y, Z)(t) ≡ I(X,Q)(t).

Consequently,

Bι(X;Y, Z)(t) ≡
t∫

a

X(τ)Y (τ) dτ + sgn(t− a)
∑

τl∈Ta,t

X(τl+)Z(τl) and

Iι(X;Y, Z)(t) ≡
t∫

a

(
X ′(τ) +X(τ)Y (τ)

)
X−1(τ) dτ

+ sgn(t− a)
∑

τl∈Ta,t

(
d2X(τl) +X(τl+)d2Z(τl)

)
X−1(τl),

(2.2.8)

where a ∈ I is a fixed point.
Analogously to equalities (0.0.5) and (0.0.4), we introduce the operators

DBι(Y1, Z1, X1;Y2, Z2, X2)(t) ≡ Bι(X1, Y1, Z1)(t)− Bι(X2, Z2, Z2)(t)

and
DIι(Y1, Z1, X1;Y2, Z2, X2)(t) ≡ Iι(X1, Y1, Z1)(t)− Iι(X2, Z2, Z2)(t).

Note that if X(t) ≡ In, then

Bι(In;Y, Z)(t) ≡
t∫

a

Y (τ) dτ + sgn(t− a)
∑

τl∈Ta,t

Z(τl).

Therefore, by (2.2.4),

Ak(t) ≡ Bι(In;Pk, Gk)(t)−Bi(In;Pk, Gk)(tk) and
fk(t) ≡ Bι(In; qk, uk)(t)− βi(In; qk, uk)(tk) (k = 0, 1, . . . ).

Theorem 2.2.1. Let P0 ∈ L(I;Rn×n), q0 ∈ L(I;Rn), G0 ∈ B(T ;Rn×n), u0 ∈ B(T ;Rn), τl ∈ I
(l = 1, 2, . . . ), t0 ∈ I and a sequence of points tk ∈ I (k = 1, 2, . . . ) be such that conditions (1.2.9) and

det(In +G0(τl)) ̸= 0 if τl < t0 and
for l = l0 if t0 = τl0 and tk > t0 for every k ∈ {1, 2, . . . } (l = 1, 2, . . . ) (2.2.9)

hold. Then (
(Pk, qk;Gk, uk; tk)

)∞
k=1

∈ S(P0, q0;G0, u0; t0) (2.2.10)
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if and only if there exists a sequence of matrix-functions Hk ∈ ACVloc(I, T ;Rn×n) (k = 0, 1, . . . ) such
that condition (1.2.11) holds, and conditions (1.2.12),

lim
k→+∞

{∥∥∥DIι
(Pk, Gk,Hk;P0, G0,H0)(τ)

∣∣∣t
tk

∥∥∥(1 + ∣∣∣ t∨
tk

(
DIι

(Pk, Gk,Hk;P0, G0,H0)
)∣∣∣ )} = 0 (2.2.11)

and

lim
k→+∞

{∥∥∥DBι
(qk, uk,Hk; q0, u0,H0)(τ)

∣∣∣t
tk

∥∥∥(1 + ∣∣∣ t∨
tk

(
DIι

(Pk, Gk,Hk;P0, G0,H0)
)∣∣∣ )} = 0 (2.2.12)

hold uniformly on I.

Note that in Theorem 2.2.1, due to (2.2.6), (2.2.7) and (2.2.8), we have

Iι(Hk;Pk, Gk)(t) ≡
t∫

a

(
H ′

k(τ) +Hk(τ)Pk(τ)
)
H−1

k (τ) dτ

+ sgn(t− a)
∑

τl∈Ta,t

(
d2Hk(τl) +Hk(τl+)Gk(τl)

)
H−1

k (τl) (k = 0, 1, . . . ) (2.2.13)

and

Bι(Hk; qk, uk)(t) ≡
t∫

a

Hk(τ) qk(τ) dτ + sgn(t− a)
∑

τl∈Ta,t

Hk(τl+)uk(τl (k = 0, 1, . . . ). (2.2.14)

Theorem 2.2.2. Let P0 ∈ L(I;Rn×n), q0 ∈ L(I;Rn), G0 ∈ B(T ;Rn×n), u0 ∈ B(T ;Rn), τl ∈ I
(l = 1, 2, . . . ), t0 ∈ I and a sequence of points tk ∈ I (k = 1, 2, . . . ) be such that conditions (1.2.9)
and (2.2.9) hold. Let, moreover, the sequences Pk ∈ Lloc(I;Rn×n) (k = 1, 2, . . . ), qk ∈ Lloc(I;Rn)
(k = 1, 2, . . . ), Gk ∈ Bloc(T ;Rn×n) (k = 1, 2, . . . ), uk ∈ Bloc(T ;Rn) (k = 1, 2, . . . ), and bounded
sequence of constant vectors ck ∈ Rn (k = 1, 2, . . . ) be such that conditions (1.2.5j), (1.2.15) and
(1.2.16) hold if j ∈ {1, 2} is such that (−1)j(tk − t0) ≥ 0 for every k ∈ {1, 2, . . . }, where ckj
(k = 0, 1, . . . ) are defined by (2.2.5),

Ak1(t) ≡ −Ak(t), fk1(t) ≡ −fk(t) (k = 0, 1, . . . );

Ak2(t) ≡ Ak(t), fk2 ≡ fk(t) if tk ̸∈ {τ1, τ2, . . . } (k = 0, 1, . . . );

Ak2(t) ≡ Ak(t)−Gk(τl), fk2(t) ≡ fk(t)− uk(τl) if tk = τl for some l (k = 0, 1, . . . ), (2.2.15)

and Ak(t) and fk(t) are defined by (2.2.4). Then the initial problem (2.2.1k)–(2.2.3k) has the unique
solution xk for any sufficiently large k and (1.2.17) holds.

Note that in Theorem 2.2.2, we have

∣∣∣ t∨
tk

(Ak)
∣∣∣ ≡ ∣∣∣∣

t∫
tk

∥Pk(τ)∥ dτ
∣∣∣∣+ ∑

τl∈Ttk,t

∥Gk(τl)∥ (k = 0, 1, . . . ).

Remark 2.2.2. In Theorem 2.2.2, it is evident that the sequence xk(t) (k = 1, 2, . . . ) converges to
x0 uniformly on the set {t ∈ I, t ≤ t0} if tk > t0 (k = 1, 2, . . . ), and on the set {t ∈ I, t ≥ t0} if tk < t0
(k = 1, 2, . . . ). Moreover, in Theorem 2.2.2, if conditions (1.2.15) and (1.2.16) hold uniformly on the
set I instead of sets Itk (k = 1, 2, . . . ), then these conditions are equivalent, respectively, to the limit
equalities (1.2.18) and (1.2.19) uniformly on I, since, due to (2.2.4), the matrix- and vector-functions
Ak (k = 0, 1, . . . ) and fk (k = 0, 1, . . . ) satisfy the equalities given in condition (2.1.6). In addition,
equalities (1.2.7) hold and, therefore, in view of (1.2.5) and (1.2.6), conditions (1.2.5j) (j = 1, 2) hold,
as well. Thus, in this case, condition (1.2.3) holds uniformly on I.
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Theorem 2.2.3. Let P ∗
0 ∈ L(I;Rn×n), q∗0 ∈ L(I;Rn), G∗

0 ∈ B(T ;Rn×n), u∗
0 ∈ B(T ;Rn), τl ∈ I

(l = 1, 2, . . . ), c∗0 ∈ Rn, t0 ∈ I and a sequence of points tk ∈ I (k = 1, 2, . . . ) be such that condition
(1.2.9) and

det(In +G∗
0(τl)) ̸= 0 if τl < t0 and

for l = l0 if t0 = τl0 and tk > t0 for every k ∈ {1, 2, . . . } (l = 1, 2, . . . )

hold and the initial problem

dx

dt
= P ∗

0 (t)x+ q∗0(t) for a.a. t ∈ I \ T, (2.2.16)

x(τl+)− x(τl−) = G∗
0(τl)x(τl) + u∗

0(τl) (l = 1, 2, . . . ); (2.2.17)
x(t0) = c∗0

has a unique solution x∗
0. Let, moreover, the sequences of matrix-functions Pk ∈ Lloc(I;Rn×n) (k =

1, 2, . . . ), Gk ∈ Bloc(T ;Rn×n) (k = 1, 2, . . . ) and Hk ∈ ACVloc(I, T ;Rn×n) (k = 0, 1, . . . ), of vector-
functions qk ∈ Lloc(I;Rn) (k = 1, 2, . . . ), uk ∈ Bloc(T ;Rn) (k = 1, 2, . . . ) and hk ∈ ACVloc(I, T ;Rn)
(k = 0, 1, . . . ), and the bounded sequence of constant vectors c∗k ∈ Rn (k = 1, 2, . . . ) be such that
conditions (1.2.23) and (1.2.24) hold, and (1.2.25) and (1.2.26) be fulfilled for the matrix-functions A∗

kj,
A∗

k (k = 0, 1, . . . ) and vector-functions f∗
kj (k = 0, 1, . . . ) if j ∈ {1, 2} is such that (−1)j(tk − t0) ≥ 0

for every k ∈ {1, 2, . . . }, where c∗kj (j = 1, 2; k = 0, 1, . . . ) and A∗
kj and f∗

kj (j = 1, 2; k = 0, 1, . . . )
are defined, respectively, analogously to (2.2.5) and (2.2.15),

c∗k = Hk(tk)ck + hk(tk), A∗
k(t) ≡ Iι(Hk;Pk, Gk)(t) (k = 1, 2, . . . ),

f∗
k (t) = hk(t)− hk(tk) + Bι(Hk; qk, uk)(t)− Bι(Hk; qk, uk)(tk)−

t∫
tk

dA∗
k(τ) · hk(τ) (k = 1, 2, . . . ),

and Iι(Hk;Pk, Gk)(t) and Bι(Hk; qk, uk)(t) are defined by (2.2.13) and (2.2.14), respectively. Then
problem (2.2.1k)–(2.2.3k) has the unique solution xk for any sufficiently large k and (1.2.27) holds.

Remark 2.2.3. In Theorem 2.2.3, the vector-function x∗
k(t) ≡ Hk(t)xk(t) + hk(t) is a solution of the

problem

dx

dt
= P ∗

k (t)x+ q∗k(t) for a.a. t ∈ I \ T,

x(τl+)− x(τl−) = G∗
k(τl)x(τl) + u∗

k(τl) (l = 1, 2, . . . );

x(tk) = c∗k

for every sufficiently large k, where

P ∗
k (t) ≡

(
H ′

k(t) +Hk(t)P
∗
k (t)

)
H−1

k (t),

G∗
kl(τl) =

(
d2Hk(τl) +Hk(τl+)Gkl(τl)

)
H−1

k (τl) (k = 0, 1, . . . ; l = 1, 2, . . . );

q∗k(t) ≡ h′
k(t) +Hk(t) qk(t)− P ∗

k (t)hk(t) (k = 1, 2, . . . ),

g∗kl(τl) = d2hk(τl) +Hk(τl+)ukl(τl)−G∗
kl(τl)hk(τl) (k = 1, 2, . . . ; l = 1, 2, . . . ).

Below, as in Chapter 2, we consider, mainly, the question on the well-posedness only on the whole
interval I. For the last case, instead of conditions (1.2.25) and (1.2.26), we assume that the limit
equalities (1.2.29) and (1.2.30), where the circumscribed matrix- and vector-functions are defined as
above in this section, hold uniformly on the whole interval I.

Corollary 2.2.1. Let P0 ∈ L(I;Rn×n), q0 ∈ L(I;Rn), G0 ∈ B(T ;Rn×n), u0 ∈ B(T ;Rn), c0 ∈
Rn, t0 ∈ I and the sequences Pk ∈ Lloc(I;Rn×n) (k = 1, 2, . . . ), qk ∈ Lloc(I;Rn) (k = 1, 2, . . . ),
Gk ∈ Bloc(T ;Rn×n) (k = 1, 2, . . . ), uk ∈ Bloc(T ;SRn) (k = 1, 2, . . . ), ck ∈ Rn (k = 1, 2, . . . ) and
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tk ∈ I (k = 1, 2, . . . ) be such that conditions (1.2.9), (1.2.11), (1.2.24) and (2.2.9) hold, and conditions
(1.2.12), (2.2.11) and

lim
k→+∞

{∥∥∥∥DBι(qk − φ′
k, uk − s2(φk),Hk; q0, u0,H0)(τ)

∣∣∣t
tk

+

t∫
tk

dIι(Hk;Pk, Gk)(τ) · φk(τ)

∥∥∥∥(1 + ∣∣∣ t∨
tk

(
DIι

(Pk, Gk,Hk;P0, G0,H0)
)∣∣∣ )} = 0

hold uniformly on I, where Hk ∈ ACVloc(I, T ;Rn×n) (k = 0, 1, . . . ), φk ∈ ACVloc(I, T ;Rn) (k =
1, 2, . . . ). Then problem (2.2.1k)–(2.2.3k) has the unique solution xk for any sufficiently large k and
condition (1.2.33) holds uniformly on I.

Below, as in Section 2.1, we will give certain sufficient conditions guaranteeing inclusion (2.2.10).
Towards this end, we state a theorem, different from Theorem 2.2.1, concerning the necessary and
sufficient conditions for the inclusion, as well.
Theorem 2.2.1′. Let P0 ∈ L(I;Rn×n), q0 ∈ L(I;Rn), G0 ∈ B(T ;Rn×n), u0 ∈ B(T ;Rn), t0 ∈ I and a
sequence of points tk ∈ I (k = 1, 2, . . . ) be such that conditions (1.2.9) and (2.2.9) hold. Then inclusion
(2.2.10) holds if and only if there exists a sequence of matrix-functions Hk ∈ ACVloc(I, T ;Rn×n)
(k = 0, 1, . . . ) such that conditions (1.2.11) and

lim sup
k→+∞

(∫
I

∥∥H ′
k(t) +Hk(t)Pk(t)

∥∥ dt+ ∑
τl∈T

∥∥Hk(τl+)−Hk(τl) +Hk(τl+)Gk(τl)
∥∥) < +∞ (2.2.18)

hold, and conditions (1.2.12),

lim
k→+∞

( t∫
tk

Hk(τ)Pk(τ) dτ + sgn(t− tk)
∑

τl∈Ttk,t

Hk(τl+)Gk(τl)

)

=

t∫
t0

H0(τ)P0(τ) dτ + sgn(t− t0)
∑

τl∈Tt0,t

H0(τl+)G0(τl)

and

lim
k→+∞

( t∫
tk

Hk(τ)qk(τ) dτ + sgn(t− tk)
∑

τl∈Ttk,t

Hk(τl+)uk(τl)

)

=

t∫
t0

q0(τ) dτ + sgn(t− t0)
∑

τl∈Tt0,t

H0(τl+)u0(τl)

hold uniformly on I.

Remark 2.2.4. As in Remark 1.2.4, conditions (2.2.11) and (2.2.12) in Theorem 2.2.1 are fulfilled
uniformly on I.

Theorem 2.2.1′′. Let P0 ∈ L(I;Rn×n), q0 ∈ L(I;Rn), G0 ∈ B(T ;Rn×n), u0 ∈ B(T ;Rn), τl ∈ I
(l = 1, 2, . . . ), t0 ∈ I and the sequence of points tk ∈ I (k = 1, 2, . . . ) be such that conditions (1.2.9)
and

det(In +Gk(τl)) ̸= 0 (l, k = 1, 2, . . . )

hold. Then inclusion (2.2.10) holds if and only if conditions (1.2.37) and

lim
k→+∞

(
Bι(X

−1
k ; qk, uk)(t)− Bι(X

−1
k ; qk, uk)(tk)

)
= Bι(X

−1
0 ; q0, u0)(t)− Bι(X

−1
0 ; q0, u0)(t0)
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hold uniformly on I, where Xk is the fundamental matrix of the homogeneous system (2.2.1k0), (2.2.1k0)
for every k ∈ {0, 1, . . . }, and Bι(X

−1
k ; qk, uk)(t) (k = 0, 1, . . . ) are defined by (2.2.14).

Theorem 2.2.2′. Let P0 ∈ L(I;Rn×n), q0 ∈ L(I;Rn), G0 ∈ B(T ;Rn×n), u0 ∈ B(T ;Rn), τl ∈ I (l =
1, 2, . . . ), c0 ∈ Rn, t0 ∈ I and a sequence of points tk ∈ I (k = 1, 2, . . . ) be such that conditions (1.2.9)
and (2.2.9) hold. Let, moreover, the sequences Pk ∈ Lloc(I;Rn×n) (k = 1, 2, . . . ), qk ∈ Lloc(I;Rn)
(k = 1, 2, . . . ), Gk ∈ Bloc(T ;Rn×n) (k = 1, 2, . . . ), uk ∈ Bloc(T ;Rn) (k = 1, 2, . . . ) and ck ∈ Rn

(k = 1, 2, . . . ) be such that conditions (1.2.5) and

lim sup
k→+∞

(∫
I

∥Pk(t)∥ dt+
∞∑
l=1

∥Gk(τl)∥
)

< +∞

hold, and conditions

lim
k→+∞

( t∫
tk

Pk(τ) dτ + sgn(t− tk)
∑

τl∈Ttk,t

Gk(τl)

)
=

t∫
t0

P0(τ) dτ + sgn(t− t0)
∑

τl∈Tt0,t

G0(τl)

and

lim
k→+∞

( t∫
tk

qk(τ) dτ + sgn(t− tk)
∑

τl∈Ttk,t

uk(τl)

)
=

t∫
t0

q0(τ) dτ + sgn(t− t0)
∑

τl∈Tt0,t

u0(τl)

hold uniformly on I. Then problem (1.2.1k), (1.2.2k) has the unique solution xk for any sufficiently
large k and condition (1.2.3) holds uniformly on I.

Corollary 2.2.2. Let P0 ∈ L(I;Rn×n), q0 ∈ L(I;Rn), G0 ∈ B(T ;Rn×n), u0 ∈ B(T ;Rn), τl ∈ I
(l = 1, 2, . . . ), c0 ∈ Rn, t0 ∈ I and the sequences Pk ∈ Lloc(I;Rn×n) (k = 1, 2, . . . ), qk ∈ Lloc(I;Rn)
(k = 1, 2, . . . ), Gk ∈ Bloc(T ;Rn×n) (k = 1, 2, . . . ), uk ∈ Bloc(T ;Rn) (k = 1, 2, . . . ) and tk ∈ I
(k = 1, 2, . . . ) be such that conditions (1.2.9) and (2.2.9) hold, conditions (1.2.12),

lim
k→+∞

t∫
tk

Hk(τ)Pk(τ) dτ =

t∫
t0

H0(τ)P0(τ) dτ

and

lim
k→+∞

t∫
tk

Hk(τ) qk(τ) dτ =

t∫
t0

H0(τ) q0(τ) dτ

hold uniformly on I, and

lim
k→+∞

Gk(τl) = G0(τl) and lim
k→+∞

uk(τl) = u0(τl)

hold uniformly on T, where Hk ∈ ACVloc(I, T ;Rn×n) (k = 0, 1, . . . ). Let, moreover, either

lim sup
k→+∞

∞∑
l=1

(
∥Gk(τl)∥+ ∥uk(τl)∥

)
< +∞ or lim sup

k→+∞

∞∑
l=1

∥Hk(τl+)−Hk(τl)∥ < +∞.

Then inclusion (2.2.10) holds.

Corollary 2.2.3. Let P0 ∈ L(I;Rn×n), q0 ∈ L(I;Rn), G0 ∈ B(T ;Rn×n), u0 ∈ B(T ;Rn), τl ∈ I (l =
1, 2, . . . ), t0 ∈ I and the sequences Pk ∈ Lloc(I;Rn×n) (k = 1, 2, . . . ), qk ∈ Lloc(I;Rn) (k = 1, 2, . . . ),
Gk ∈ Bloc(T ;Rn×n) (k = 1, 2, . . . ), uk ∈ Bloc(T ;Rn) (k = 1, 2, . . . ) and tk ∈ I (k = 1, 2, . . . ) be such
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that conditions (1.2.9), (2.2.9) and (2.2.18) hold, and conditions (1.2.12),

lim
k→+∞

( t∫
tk

Hk(τ)Pk(τ) dτ + sgn(t− tk)
∑

τl∈Ttk,t

Hk(τl+)Gk(τl)

)

=

t∫
t0

P ∗(τ) dτ + sgn(t− t0)
∑

τl∈Tt0,t

G∗(τl)

and

lim
k→+∞

( t∫
tk

Hk(τ)qk(τ) dτ + sgn(t− tk)
∑

τl∈Ttk,t

Hk(τl+)uk(τl)

)

=

t∫
t0

q∗(τ) dτ + sgn(t− t0)
∑

τl∈Tt0,t

u∗(τl)

hold uniformly on I, where Hk ∈ ACVloc(I, T ;Rn×n) (k = 1, 2, . . . ), P ∗ ∈ L(I;Rn×n), q∗ ∈ L(I;Rn),
G∗ ∈ B(T ;Rn×n), u∗ ∈ B(T ;Rn). Let, moreover, system (2.2.16), (2.2.17), where P ∗

0 (t) ≡ P0(t) −
P ∗(t), q∗0(t) ≡ q0(t)− q∗(t), G∗

0(τl) ≡ G0(τl)−G∗(τl), u∗
0(τl) ≡ u0(τl)−u∗(τl), have a unique solution

satisfying condition (2.2.3). Then(
(Pk, qk;Gk, uk; tk)

)∞
k=1

∈ S(P ∗
0 , q

∗
0 ;G

∗
0, u

∗
0; t0).

Corollary 2.2.4. Let P0 ∈ L(I;Rn×n), q0 ∈ L(I;Rn), G0 ∈ B(T ;Rn×n), u0 ∈ B(T ;Rn), τl ∈ I (l =
1, 2, . . . ), t0 ∈ I and the sequences Pk ∈ Lloc(I;Rn×n) (k = 1, 2, . . . ), qk ∈ Lloc(I;Rn) (k = 1, 2, . . . ),
Gk ∈ Bloc(T ;Rn×n) (k = 1, 2, . . . ), uk ∈ Bloc(T ;Rn) (k = 1, 2, . . . ) and tk ∈ I (k = 1, 2, . . . ) be
such that conditions (1.2.9) and (2.2.9) hold. Let, moreover, there exist a natural number m and
matrix-functions Bj ∈ ACVloc(I, T ;Rn×n) (j = 1, . . . ,m− 1) such that the condition

lim sup
k→+∞

∨
I

(
Hkm−1 + Bι(Hkm−1;Pk, Gk)

)
< +∞

holds, and conditions

lim
k→+∞

(
Hk j−1(τ)

∣∣∣t
tk

+ Bι(Hk j−1;Pk, Gk)(τ)
∣∣∣t
tk

)
= Bj(t)−Bj(t0) (j = 1, . . . ,m− 1),

lim
k→+∞

(
Hkm−1(τ)

∣∣∣t
tk

+ Bι(Hkm−1;Pk, Gk)(τ)
∣∣∣t
tk

)
=

t∫
t0

P0(τ) dτ + sgn(t− t0)
∑

τl∈Tt0,t

G0(τl)

and

lim
k→+∞

Bι(Hkm−1; qk, uk)(τ)
∣∣∣t
tk

=

t∫
t0

q0(τ) dτ + sgn(t− t0)
∑

τl∈Tt0,t

u0(τl)

hold uniformly on I, where

Hk0(t) = In, Hkj(t) =

(
In −Hk j−1(τ)

∣∣∣t
tk

− Bι(Hk j−1;Pk, Gk)(τ)
∣∣∣t
tk

+Bj(τ)
∣∣∣t
tk

)
Hk j−1(t)

for t ∈ I (j = 1, . . . ,m− 1; k = 1, 2, . . . ).

Then inclusion (2.2.10) holds.
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If m = 1, then Corollary 2.2.4 coincides with Theorem 2.2.2′.
If m = 2, then Corollary 2.2.4 has the following form.

Corollary 2.2.4′. Let P0 ∈ L(I;Rn×n), q0 ∈ L(I;Rn), G0 ∈ B(T ;Rn×n), u0 ∈ B(T ;Rn), τl ∈ I (l =
1, 2, . . . ), t0 ∈ I, and the sequences Pk ∈ Lloc(I;Rn×n) (k = 1, 2, . . . ), qk ∈ Lloc(I;Rn) (k = 1, 2, . . . ),
Gk ∈ Bloc(T ;Rn×n) (k = 1, 2, . . . ), uk ∈ Bloc(T ;Rn) (k = 1, 2, . . . ) and tk ∈ I (k = 1, 2, . . . ) be such
that conditions (1.2.9), (2.2.9) and (2.2.18) hold, and the conditions

lim
k→+∞

( t∫
tk

Pk(τ) dτ + sgn(t− tk)
∑

τl∈Ttk,t

Gk(τl)

)
= B(t)−B(t0),

lim
k→+∞

( t∫
tk

Hk(τ)Pk(τ) dτ + sgn(t− tk)
∑

τl∈Ttk,t

Hk(τl+)Gk(τl)

)

=

t∫
t0

P0(τ) dτ + sgn(t− t0)
∑

τl∈Tt0,t

G0(τl)

and

lim
k→+∞

( t∫
tk

Hk(τ) qk(τ) dτ + sgn(t− tk)
∑

τl∈Ttk,t

Hk(τl+)uk(τl)

)

=

t∫
t0

q0(τ) dτ + sgn(t− t0)
∑

τl∈Tt0,t

u0(τl)

hold uniformly on I, where B ∈ ACVloc(I, T ;Rn×n) and

Hk(t) = In −
t∫

tk

Pk(τ) dτ − sgn(t− tk)
∑

τl∈Ttk,t

Gk(τl) +B(t)−B(t0) for t ∈ I (k = 1, 2, . . . ).

Then inclusion (2.2.10) holds.

Corollary 2.2.5. Let P0 ∈ L(I;Rn×n), q0 ∈ L(I;Rn), G0 ∈ B(T ;Rn×n), u0 ∈ B(T ;Rn), τl ∈ I
(l = 1, 2, . . . ) and tk ∈ I (k = 1, 2, . . . ) be such that conditions (1.2.9) and (2.2.9) hold. Then
inclusion (2.2.10) holds if and only if there exist matrix-functions Qk ∈ Lloc(I;Rn×n) (k = 0, 1, . . . )
and constant matrices Wk ∈ Bloc(T ;Rn×n) (k = 0, 1, . . . ) such that

lim sup
k→+∞

(∫
I

∥Pk(t)−Qk(t)∥ dt+
∞∑
l=1

∥Gk(τl)−Wk(τl)∥
)

< +∞ (2.2.19)

and
det(In +Wk(τl)) ̸= 0 (k = 0, 1, . . . ; l = 1, 2, . . . ), (2.2.20)

and the conditions

lim
k→+∞

Z−1
k (t) = Z−1

0 (t),

lim
k→+∞

(
Bι(Z

−1
k ;Pk, Gk)(t)−Bι(Z

−1
k ;Pk, Gk)(tk)

)
=Bι(Z

−1
0 ;P0, G0)(t)−Bι(Z

−1;P0, G0)(t0) (2.2.21)

and

lim
k→+∞

(
Bι(Z

−1
k ; qk, uk)(t)− Bι(Z

−1
k ; qk, uk)(tk)

)
= Bι(Z

−1
0 ; q0, u0)(t)− Bι(Z

−1
0 ; q0, u0)(t0) (2.2.22)
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hold uniformly on I, where Zk (Zk(tk) = In) is a fundamental matrix of the homogeneous system

dx

dt
= Qk(t) for a.a. t ∈ I \ T, (2.2.23)

x(τl+)− x(τl−) = Wk(τl)x(τl) (l = 1, 2, . . . ) (2.2.24)

for every k ∈ {0, 1 . . . }.

Corollary 2.2.6. Let P0 ∈ L(I;Rn×n), q0 ∈ L(I;Rn), G0 ∈ B(T ;Rn×n), u0 ∈ B(T ;Rn), τl ∈ I
(l = 1, 2, . . . ) and the sequences Pk ∈ Lloc(I;Rn×n) (k = 1, 2, . . . ), qk ∈ Lloc(I;Rn) (k = 1, 2, . . . ),
Gk ∈ Bloc(T ;Rn×n) (k = 1, 2, . . . ), uk ∈ Bloc(T ;Rn) (k = 1, 2, . . . ) and tk ∈ I (k = 1, 2, . . . ) be such
that conditions (1.2.9) and (2.2.9) hold. Let, moreover, there exist matrix-functions Qk ∈ Lloc(I;Rn×n)
(k = 0, 1, . . . ) and Wk ∈ Bloc(T ;Rn×n) (k = 0, 1, . . . ; l = 1, 2, . . . ) such that the pairs (Qk,Wk)
(k = 1, 2, . . . ) satisfy the Lappo–Danilevskiĭ condition, conditions (2.2.19) and

det(In +W0(τl)) ̸= 0 (l = 1, 2, . . . ) (2.2.25)

hold, and the conditions

lim
k→+∞

( t∫
tk

Qk(τ) dτ + sgn(t− tk)
∑

τl∈Ttk,t

Wk(τl)

)
=

t∫
t0

Q0(τ) dτ + sgn(t− t0)
∑

τl∈Tt0,t

W0l, (2.2.26)

lim
k→+∞

( t∫
tk

Z−1
k (τ)Pk(τ) dτ + sgn(t− tk)

∑
τl∈Ttk,t

Z−1
k (τl)(In +Wk(τl))

−1Gk(τl)

)

=

t∫
t0

Z−1
0 (τ)P0(τ) dτ + sgn(t− t0)

∑
τl∈Tt0,t

Z−1
0 (τl)(In +W0(τl))

−1G0(τl) (2.2.27)

and

lim
k→+∞

( t∫
tk

Z−1
k (τ)qk(τ) dτ + sgn(t− tk)

∑
τl∈Ttk,t

Z−1
k (τl)(In +Wk(τl))

−1uk(τl)

)

=

t∫
t0

Z−1
0 (τ)q0(τ) dτ + sgn(t− t0)

∑
τl∈Tt0,t

Z−1
0 (τl)(In +W0(τl))

−1u0(τl) (2.2.28)

hold uniformly on I, where Zk (Zk(tk) = In) is a fundamental matrix of the homogeneous system
(2.2.23), (2.2.24) for every k ∈ {0, 1 . . . }. Then inclusion (2.2.10) holds.

Remark 2.2.5. In Corollary 2.2.6, due to (2.2.26), it follows from (2.2.25) that condition (2.2.20)
holds for every sufficiently large k and, therefore, conditions (2.2.27) and (2.2.28) of the corollary are
correct.

Remark 2.2.6. In Corollaries 2.2.5 and 2.2.6, if we assume that the constant matrices Wkl = On×n

(k = 0, 1, . . . ; l = 1, 2, . . . ), then conditions (2.2.20) and (2.2.25) are valid, obviously. Moreover, due
to the definition of the operator Bι, each of conditions (2.2.21) and (2.2.27) has the form

lim
k→+∞

( t∫
tk

Z−1
k (τ)Pk(τ) dτ + sgn(t− tk)

∑
τl∈Ttk,t

Z−1
k (τl)Gk(τl)

)

=

t∫
t0

Z−1
0 (τ)P0(τ) dτ + sgn(t− t0)

∑
τl∈Tt0,t

Z−1
0 (τl)G0(τl)
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and each of conditions (2.2.22) and (2.2.28) has the form

lim
k→+∞

( t∫
tk

Z−1
k (τ)qk(τ) dτ + sgn(t− tk)

∑
τl∈Ttk,t

Z−1
k (τl)uk(τl)

)

=

t∫
t0

Z−1
0 (τ)q0(τ) dτ + sgn(t− t0)

∑
τl∈Tt0,t

Z−1
0 (τl)u0(τl).

Remark 2.2.7. If a pair (P,G), satisfied the Lappo–Danilevskiĭ condition, and s ∈ I are such that
det(In + G(τl)) ̸= 0 for τl < s, then, due to (2.1.11), the fundamental matrix Z (Z(s) = In) of the
homogeneous system

dx

dt
= P (t) for a.a. t ∈ I \ T,

x(τl+)− x(τl−) = G(τl)x(τl) (l = 1, 2, . . . )

has the form

Z(t) =



exp
( s∫

t

P (τ) dτ

) ∏
s≤τl<t

(In +G(τl)) for t > s,

exp
( s∫

t

P (τ) dτ

) ∏
t≤τl<s

(In +G(τl))
−1 for t < s,

In for t = s.

(2.2.29)

Corollary 2.2.7. Let P0 ∈ L(I;Rn×n), q0 ∈ L(I;Rn), G0 ∈ B(T ;Rn×n), u0 ∈ B(T ;Rn), τl ∈ I (l =
1, 2, . . . ), t0 ∈ I and the sequences Pk ∈ Lloc(I;Rn×n) (k = 1, 2, . . . ), qk ∈ Lloc(I;Rn) (k = 1, 2, . . . ),
Gk ∈ Bloc(T ;Rn×n) (k = 1, 2, . . . ), uk ∈ Bloc(T ;Rn) (k = 1, 2, . . . ) and tk ∈ I (k = 1, 2, . . . ) be such
that conditions (1.2.9), (2.2.9) and

lim sup
k→+∞

∞∑
l=1

∥Gk(τl)∥ < +∞

hold. Let, moreover, the matrix-functions Pk (k = 0, 1, . . . ) satisfy the Lappo–Danilevskiĭ condition
and the conditions

lim
k→+∞

t∫
tk

Pk(τ) dτ =

t∫
t0

P0(τ) dτ, (2.2.30)

lim
k→+∞

∑
τl∈Ttk,t

Gk(τl) =
∑

τl∈Tt0,t

G0(τl), (2.2.31)

lim
k→+∞

t∫
tk

exp
(
−

τ∫
tk

Pk(s) ds

)
Pk(τ) dτ =

t∫
t0

exp
(
−

τ∫
t0

P0(s) ds

)
P0(τ) dτ, (2.2.32)

lim
k→+∞

t∫
tk

exp
(
−

τ∫
tk

Pk(s) ds

)
qk(τ) dτ =

t∫
t0

exp
(
−

τ∫
t0

P0(s) ds

)
q0(τ) dτ (2.2.33)

and

lim
k→+∞

∑
τl∈Ttk,t

exp
(
−

τl∫
tk

Pk(s) ds

)
uk(τl) =

∑
τl∈Tt0,t

exp
(
−

τl∫
t0

P0(s) ds

)
u0(τl)

hold uniformly on I. Then inclusion (1.2.10) holds.
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Corollary 2.2.8. Let P0 = (p0ij)
n
i,j=1 ∈ L(I;Rn×n), q0 = (q0i)

n
i=1 ∈ L(I;Rn), G0 = (g0ij)

n
i,j=1 ∈

B(T ;Rn×n), u0 = (g0i)
n
i=1 ∈ B(T ;Rn), τl ∈ I (l = 1, 2, . . . ), t0 ∈ I, and the sequences Pk =

(pkij)
n
i,j=1 ∈ Lloc(I;Rn×n) (k = 1, 2, . . . ), qk = (qki)

n
i=1 ∈ Lloc(I;Rn) (k = 1, 2, . . . ), Gk=(gkij)

n
i,j=1 ∈

Bloc(T ;Rn×n) (k = 1, 2, . . . ), uk = (gki)
n
i=1 ∈ Bloc(T ;Rn) (k = 1, 2, . . . ), and tk ∈ I (k = 1, 2, . . . ) be

such that conditions (1.2.9), (2.2.9),

lim sup
k→+∞

n∑
i,j=1; i ̸=j

(∫
I

|pkij(t)| dt+
∞∑
l=1

|gkij(τl)|
)

< +∞

and
1 + g0ii(τl) ̸= 0 (i = 1, . . . , n; l = 1, 2, . . . )

hold, and the conditions

lim
k→+∞

( t∫
tk

pkii(τ) dτ + sgn(t− tk)
∑

τl∈Ttk,t

gkii(τl)

)

=

t∫
t0

p0ii(τ) dτ + sgn(t− t0)
∑

τl∈Tt0,t

g0ii(τl) (i = 1, . . . , n),

lim
k→+∞

( t∫
tk

z−1
kii(τ)pkij(τ) dτ + sgn(t− tk)

∑
τl∈Ttk,t

z−1
kii(τl)(1 + gkii(τl))

−1gkij(τl)

)

=

t∫
t0

z−1
0ii (τ)p0ij(τ) dτ + sgn(t− t0)

∑
τl∈Tt0,t

z−1
0ii (τl)(1 + g0ii(τl))

−1g0ij(τl) (i ̸= j; i, j = 1, . . . , n)

and

lim
k→+∞

( t∫
tk

z−1
kii(τ)qki(τ) dτ + sgn(t− tk)

∑
τl∈Ttk,t

z−1
kii(τl)(1 + gkii(τl))

−1uki(τl)

)

=

t∫
tk

z−1
0ii (τ)q0i(τ) dτ + sgn(t− t0)

∑
τl∈Ttk,t

z−1
0ii (τl)(1 + g0ii(τl))

−1u0i(τl) (i = 1, . . . , n)

hold uniformly on I, where zkii is a unique solution of the initial problem
dz

dt
= pkii(t)z for a.a. t ∈ I \ T,

z(τl+)− z(τl−) = gkii(τl) z(τl) (l = 1, 2, . . . );

z(tk) = 1

for i ∈ {1, . . . , n} and any sufficiently large k (it is defined according to (2.2.29)). Then inclusion
(2.2.10) holds.
Remark 2.2.8. For Corollary 2.2.8, the remark analogous to Remark 2.2.5, is true, i.e.,

1 + gkii(τl) ̸= 0 (i = 1, . . . , n; l = 1, 2, . . . )

for every sufficiently large k and, therefore, all conditions of the corollary are correct.
Remark 2.2.9. In Theorem 2.2.3 and Corollaries 2.2.1, 2.2.2, we can assume without loss of generality
that H0(t) = In.
Remark 2.2.10. In some results given above, we really have Pk ∈ L(I;Rn×n) (k = 1, 2, . . . ), qk ∈
L(I;Rn) (k = 1, 2, . . . ), Gk ∈ B(T ;Rn×n) (k = 1, 2, . . . ) and uk ∈ B(T ;Rn) (k = 1, 2, . . . ).
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2.3 The stability in Liapunov sense
2.3.1 Statement of the problem and formulation of the results
In this section, we realize the results of Section 1.3 for the stability in the Liapunov sense of the
following impulsive system

dx

dt
= P (t)x+ q(t) for a.a. t ∈ R+ \ T, (2.3.1)

x(τl+)− x(τl−) = G(τl)x(τl) + u(τl) (l = 1, 2, . . . ), (2.3.2)

where P ∈ Lloc(R+;Rn×n), q ∈ Lloc(R+;Rn), G ∈ Bloc(T ;Rn×n), u ∈ Bloc(T ;Rn), T = {τ1, τ2, . . . },
τl ∈ R+ (l = 1, 2, . . . ), 0 ≤ τl < τ2 < · · · and lim

l→+∞
τl = +∞.

Below we will mainly consider the case P ̸∈ L(R+;Rn×n) or G ̸∈ B(T ;Rn×n), i.e.,∑
τl∈T

G(τl) = +∞.

In this section, we assume that inequality (2.1.4) holds for every l ∈ {1, 2, . . . }, and the function ξ
appearing in Section 1.3, in addition, is continuous from the left and belongs to ACVloc(R+, T ;R+).

Definition 2.3.1. The pair (P,G) is said to be stable in one or another sense if the matrix-function
A defined by (2.1.5) is stable in the same sense, according to Definition 1.3.6.

It is evident that the stability of the pair (P,G) is equivalent to that of the corresponding homo-
geneous impulsive system

dx

dt
= P (t)x for a.a. t ∈ R+ \ T, (2.3.10)

x(τl+)− x(τl−) = G(τl)x(τl) (l = 1, 2, . . . ). (2.3.20)

Theorem 2.3.1. The pair (P,G) is stable if and only if there exists a nonsingular continuous from
the left matrix-function H ∈ ACVloc(R+, T ;Rn×n) such that conditions (1.3.8) and

+∞∫
0

∥H ′(t) +H(t)P (t)∥ dt+
+∞∑
l=1

∥∥H(τl+)−H(τl) +H(τl+)G(τl)
∥∥ < +∞ (2.3.3)

hold.

Theorem 2.3.2. The pair (P,G) is uniformly stable if and only if there exists a nonsingular continuous
from the left matrix-function H ∈ ACVloc(R+, T ;Rn×n) such that conditions (1.3.10) and (2.3.3) hold.

Theorem 2.3.3. The pair (P,G) is asymptotically stable if and only if there exists a nonsingular
continuous from the left matrix-function H ∈ ACVloc(R+, T ;Rn×n) such that conditions (1.3.11) and
(2.3.3) hold.

Theorem 2.3.4. The pair (P,G) is ξ-exponentially asymptotically stable if and only if there exists a
nonsingular continuous from the left matrix-function H ∈ ACVloc(R+, T ;Rn×n) such that conditions
(1.3.12) and

+∞∫
0

exp(−ηξ(τ))∥H ′(t) +H(t)P (t)∥ dt

+

+∞∑
l=1

exp(−ηξ(τl))
∥∥H(τl+)−H(τl) +H(τl+)G(τl)

∥∥ < +∞

hold.
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Corollary 2.3.1. Let the matrix-functions Q ∈ Lloc(R+;Rn×n) and W ∈ Bloc(T ;Rn×n) be such that

det(In +W (τl)) ̸= 0 (l = 1, 2, . . . ) (2.3.4)

and
+∞∫
0

∥∥Y −1(t)(P (t)−Q(t))
∥∥ dt+ +∞∑

l=1

∥∥Y −1(τl)(In +W (τl))
−1(G(τl)−W (τl))

∥∥ < +∞,

where Y (Y (0) = In) is the fundamental matrix of the system

dx

dt
= Q(t) for a.a. t ∈ R+ \ T, (2.3.5)

x(τl+)− x(τl−) = W (τl)x(τl) (l = 1, 2, . . . ). (2.3.6)

Then the stability in one or another sense of the pair (Q,W ) guarantees the stability of the pair (P,G)
in the same sense.

Theorem 2.3.5. Let the pair (P0, G0), consisting of matrix-functions P0 ∈ Lloc(R+;Rn×n) and
G0 ∈ Bloc(T ;Rn×n), be uniformly stable and

det(In +G0(τl)) ̸= 0 (l = 1, 2, . . . ). (2.3.7)

Let, moreover, the matrix-functions P ∈ Lloc(R+;Rn×n) and G ∈ Bloc(T ;Rn×n) be such that

+∞∫
0

∥∥(H ′(t) +H(t)P (t)− P0(t)H(t)
)
H−1(t)

∥∥ dt
+

+∞∑
l=1

∥∥∥(In +G0(τl)
−1
(
H(τl+)−H(τl) +H(τl+)G(τl)−G0(τl)H(τl)

)
H−1(τl)

∥∥∥ < +∞, (2.3.8)

where H ∈ ACVloc(R+, T ;Rn×n) is a nonsingular continuous from the left matrix-function satisfying
condition (1.3.10). Then the pair (P,G) is uniformly stable, as well.

Remark 2.3.1. In Theorem 2.3.5, if H(t) ≡ In, then condition (2.3.8) has the form
+∞∫
0

∥P (t)− P0(t)∥ dt+
+∞∑
l=1

∥∥(In +G0(τl))
−1(G(τl)−G0(τl))

∥∥ < +∞.

Theorem 2.3.6. Let the pair (P0, G0), consisting of matrix-functions P0 ∈ Lloc(R+;Rn×n) and
G0 ∈ Bloc(T ;Rn×n), be ξ-exponentially asymptotically stable and condition (2.3.7) hold. Let, moreover,
the matrix-functions P ∈ Lloc(R+;Rn×n) and G ∈ Bloc(T ;Rn×n) be such that

lim
t→+∞

( ν(ξ)(t)∫
0

∥P (τ)− P0(τ)∥ dτ +
∑

0≤τl<ν(ξ)(t)

∥∥(In +G0(τl))
−1(G(τl)−G0(τl))

∥∥) = 0,

where the function ν(ξ) is defined by (1.3.22), and ξ ∈ ACVloc(R+;R+) is a continuous from the left
nondecreasing function satisfying condition (1.3.4). Then the pair (P,G) is ξ-exponentially asymptot-
ically stable, as well.

Corollary 2.3.2. Let the components of the matrix-functions P = (pik)
n
i,k=1 ∈ Lloc(R+;Rn×n) and

G = (gik)
n
i,k=1 ∈ Bloc(T ;Rn×n) be such that

1 + gii(τl) ̸= 0 (i = 1, . . . , n; l = 1, 2, . . . ), (2.3.9)

lim
t→+∞

( ν(ξ)(t)∫
t

∥pik(τ)∥ dτ+
∑

t≤τl<ν(ξ)(t)

∥∥(1 + gii(τl))
−1gik(τl)

∥∥)=0 (i ̸= k; i, k = 1, . . . , n)
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and
t∫

τ

pii(s) ds+
∑

τ≤τl<t

gii(τl) ≤ −η(ξ(t)− ξ(τ)) for t > τ ≥ 0 (i = 1, . . . , n),

where η > 0, and the function ν(ξ) is defined by (1.3.22). Then the pair (P,G) is ξ-exponentially
asymptotically stable.

Corollary 2.3.3. Let a matrix-function P0 ∈ Lloc(R+;Rn×n) be ξ-exponentially asymptotically stable,
and the matrix-functions P ∈ Lloc(R+;Rn×n) and G ∈ Bloc(T ;Rn×n) be such that

lim
t→+∞

( ξ(t)+1∫
t

∥P (τ)− P0(τ)∥ dτ +
∑

t≤τl<ξ(t)+1

∥G(τl)∥
)

= 0,

where ξ : R+ → R+ is a continuous nondecreasing function satisfying condition (1.3.4). Then the pair
(P,G) is ξ-exponentially asymptotically stable, as well.

Proposition 2.3.1. Let the pair (P,G) be ξ-exponentially asymptotically stable, and the vector-
functions q ∈ Lloc(R+;Rn) and u ∈ Bloc(T ;Rn) be such that

lim
t→+∞

( ξ(t)+1∫
t

∥q(τ)∥ dτ +
∑

t≤τl<ξ(t)+1

∥∥(In +G(τl))
−1u(τl)

∥∥) = 0,

where the function ν(ξ) : R+ → R+ is defined by (1.3.22). Then every solution of system (2.3.1), (2.3.2)
satisfies condition (1.3.6).

Proposition 2.3.2. Let the pair (P0, G0), consisting of matrix-functions P0 ∈ Lloc(R+;Rn×n) and
G0 ∈ Bloc(T ;Rn×n), be ξ-exponentially asymptotically stable and condition (2.3.7) hold. Let, moreover,
the matrix-functions P ∈ Lloc(R+;Rn×n) and G ∈ Bloc(T ;Rn×n) be such that

lim
t→+∞

1

ξ(t)

( t∫
0

∥P (τ)− P0(τ)∥ dτ +
∑

0≤τl<t

∥∥(In +G0(τl))
−1(G(τl)−G0(τl))

∥∥) = 0.

Then the pair (P,G) is ξ-exponentially asymptotically stable, as well.

Theorem 2.3.7. Let the components of the matrix-functions P = (pik)
n
i,k=1 ∈ Lloc(R+;Rn×n) and

G = (gik)
n
i,k=1 ∈ Bloc(T ;Rn×n) be such that inequality (2.3.9) for i ∈ {1, . . . , n} and l ∈ {1, 2, . . . }

holds if τl ≥ t∗ and the conditions

sup
{ t∫

0

pii(s) ds+
∑

0≤τl<t

ln |1 + gii(τl)| : t ≥ t∗
}

< +∞ (i = 1, . . . , n)

and

t∫
t∗

exp
( t∫

τ

pii(s) ds

)
|pik(τ)|

∏
τ≤τl<t

|1 + gii(τl)| dτ

+
∑

t∗≤τj<t

exp
( t∫

τj

pii(s) ds

)
|gik(τj)|

∏
τj≤τl<t

|1 + gii(τl)|

≤ hik for t ≥ t∗ (i ̸= k; i, k = 1, . . . , n) (2.3.10)

hold, where t∗ and hik ∈ R+ (i ̸= k; i, k = 1, . . . , n). Let, moreover, the matrix H = (hik)
n
i,k=1, where

hii = 0 (i = 1, . . . , n), be such that condition (1.3.31) holds. Then the pair (P,G) is stable.
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Theorem 2.3.8. Let the components of the matrix-functions P = (pik)
n
i,k=1 ∈ Lloc(R+;Rn×n) and

G = (gik)
n
i,k=1 ∈ Bloc(T ;Rn×n) be such that inequality (2.3.9) for i ∈ {1, . . . , n} and l ∈ {1, 2, . . . } if

τl ≥ t∗, conditions (2.3.10) and

sup
{ t∫

τ

pii(s) ds+
∑

τ≤τl<t

ln |1 + gii(τl)| : t > τ ≥ t∗
}

< +∞ (i = 1, . . . , n)

hold, where t∗ and hik ∈ R+ (i ̸= k; i, k = 1, . . . , n). Let, moreover, the matrix H = (hik)
n
i,k=1, where

hii = 0 (i = 1, . . . , n), be such that condition (1.3.31) holds. Then the pair (P,G) is uniformly stable.
Corollary 2.3.4. Let the components of the matrix-functions P = (pik)

n
i,k=1 ∈ Lloc(R+;Rn×n) and

G = (gik)
n
i,k=1 ∈ Bloc(T ;Rn×n) be such that

pii(t) ≤ 0, |pik(t)| ≤ −hikpii(t) for t ≥ t∗ (i ̸= k; i, k = 1, . . . , n) (2.3.11)

and

−1 < gii(τl) ≤ 0, |gik(τl)| ≤ −hikgii(τl) if τl > t∗ (i ̸= k; i, k = 1, . . . , n; l = 1, 2, . . . ),

where t∗ and hik ∈ R+ (i ̸= k; i, k = 1, . . . , n). Let, moreover, the matrix H = (hik)
n
i,k=1, where

hii = 0 (i = 1, . . . , n), be such that condition (1.3.31) holds. Then the pair (P,G) is uniformly stable.
Theorem 2.3.9. Let the components of the matrix-functions P = (pik)

n
i,k=1 ∈ Lloc(R+;Rn×n) and

G = (gik)
n
i,k=1 ∈ Bloc(T ;Rn×n) be such that inequality (2.3.9) for i ∈ {1, . . . , n} and l ∈ {1, 2, . . . } if

τl > t∗, the conditions
t∫

t∗

pii(s) ds+
∑

t∗≤τl<t

ln |1 + gii(τl)| ≤ −ξ(t) + ξ(t∗) for t ≥ t∗ (i = 1, . . . , n)

and
t∫

t∗

exp
(
ξ(t)− ξ(τ) +

t∫
τ

pii(s) ds

)
|pik(τ)|

∏
τ≤τl<t

|1 + gii(τl)| dτ

+
∑

t∗≤τj<t

exp
(
ξ(t)− ξ(τj) +

t∫
τj

pii(s) ds

)
|gik(τj)|

∏
τj≤τl<t

|1 + gii(τl)|

≤ hik for t ≥ t∗ (i ̸= k; i, k = 1, . . . , n)

hold, where t∗ and hik ∈ R+ (i ̸= k; i, k = 1, . . . , n). Let, moreover, the matrix H = (hik)
n
i,k=1, where

hii = 0 (i = 1, . . . , n), be such that condition (1.3.31) holds. Then the pair (P,G) is ξ-asymptotically
stable.
Corollary 2.3.5. Let the components of the matrix-functions P = (pik)

n
i,k=1 ∈ Lloc(R+;Rn×n) and

G = (gik)
n
i,k=1 ∈ Bloc(T ;Rn×n) be such that conditions (2.3.11),

gii(τl)>0 or − 1<gii(τl)≤exp(−1)− 1 if τl>t∗ (i ̸=k; i, k=1, . . . , n; l=1, 2, . . . ), (2.3.12)

|gik(τl)|≤−hik

(
1+ln(1 + gii(τl))

)−1ln(1+gii(τl)) if τl > t∗ (i ̸=k; i, k=1, . . . , n; l=1, 2, . . . ) (2.3.13)

hold, where t∗ and hik ∈ R+ (i ̸= k; i, k = 1, . . . , n) are such that the matrix H = (hik)
n
i,k=1,

where hii = 0 (i = 1, . . . , n), satisfies condition (1.3.31). Let, moreover, there exist a function
a0 ∈ ACVloc(R+, T ;R), satisfying condition (1.3.41), such that

a0(t)− a0(τ) ≤ min
{∣∣∣∣

t∫
τ

pii(s) ds+
∑

τ≤τl<t

ln(1 + gii(τl))

∣∣∣∣ : (i = 1, . . . , n)

}
for t ≥ τ ≥ t∗.

Then the pair (P,G) is asymptotically and also uniformly stable.
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Corollary 2.3.6. Let the components of the matrix-functions P = (pik)
n
i,k=1 ∈ Lloc(R+;Rn×n) and

G = (gik)
n
i,k=1 ∈ Bloc(T ;Rn×n) be such that conditions (2.3.11), (2.3.12) and (2.3.13) hold, where

t∗ and hik ∈ R+ (i ̸= k; i, k = 1, . . . , n) are such that the matrix H = (hik)
n
i,k=1, where hii = 0

(i = 1, . . . , n), satisfies condition (1.3.31). Let, moreover,

+∞∫
0

η0(s) ds+

+∞∑
l=1

ln(1 + η(τl)) = −∞, (2.3.14)

where

η0(t) ≡ max
{
pii(t) : i = 1, . . . , n

}
(2.3.15)

η(τl) = max
{
gii(τl) : i = 1, . . . , n

}
(l = 1, 2, . . . ).

Then the pair (P,G) is asymptotically and also uniformly stable.

Theorem 2.3.10. Let the components of the matrix-functions P = (pik)
n
i,k=1 ∈ Lloc(R+;Rn×n) and

G = (gik)
n
i,k=1 ∈ Bloc(T ;Rn×n) be such that conditions (2.3.9),

sup
{
(ξ(t)− ξ(τ))−1

( t∫
τ

pii(s) ds+
∑

τ≤τl<t

ln |1 + gii(τl)|
)

:

t > τ ≥ t∗, ξ(t) ̸= ξ(τ); t, τ ∈ R+ \ T
}

≤ −γ (i = 1, . . . , n) (2.3.16)

and

t∫
t∗

exp
(
γ(ξ(t)− ξ(τ)) +

t∫
τ

pii(s) ds

)
|pik(τ)|

∏
τ≤τl<t

|1 + gii(τl)| dτ

+
∑

t∗≤τj<t

exp
(
γ(ξ(t)− ξ(τj)) +

t∫
τj

pii(s) ds

)
|gik(τj)|

∏
τj≤τl<t

|1 + gii(τl)|

≤ hik for t ≥ t∗ (i ̸= k; i, k = 1, . . . , n)

hold, where γ > 0, t∗ and hik ∈ R+ (i ̸= k; i, k = 1, . . . , n). Let, moreover, the matrix H = (hik)
n
i,k=1,

where hii = 0 (i = 1, . . . , n), be such that condition (1.3.31) holds. Then the pair (P,G) is ξ-
asymptotically stable.

Corollary 2.3.7. Let the components of the matrix-functions P = (pik)
n
i,k=1 ∈ Lloc(R+;Rn×n) and

G = (gik)
n
i,k=1 ∈ Bloc(T ;Rn×n be such that conditions (2.3.11), (2.3.12), (2.3.13) and (2.3.16) hold,

where γ > 0, t∗ and hik ∈ R+ (i ̸= k; i, k = 1, . . . , n). Let, moreover, the matrix H = (hik)
n
i,k=1, where

hii = 0 (i = 1, . . . , n), be such that condition (1.3.31) holds. Then the pair (P,G) is ξ-asymptotically
stable.

Theorem 2.3.11. Let the matrix-functions P = (pik)
n
i,k=1 and P0 = (p0ik)

n
i,k=1 ∈ Lloc(R+;Rn×n),

G = (gik)
n
i,k=1 and G0 = (g0ik)

n
i,k=1 ∈ Bloc(T ;Rn×n) be such that

∥Gl(τl)∥ < 1 (l = 1, 2, . . . ),

pii(t) ≤ p0ii(t) and |pik(t)| ≤ p0ik(t) for a.a. t ∈ R+ (i ̸= k; i, k = 1, . . . , n), (2.3.17)
gii(τl) ≤ g0ii(τl) and |gik(τl)| ≤ g0ik(τl) (i, k = 1, . . . , n; l = 1, 2, . . . ).

Let, moreover, the pair (P0, G0) be stable (uniformly stable, asymptotically stable or ξ-exponentially
asymptotically stable). Then the pair (P,Gl) will be stable (uniformly stable, asymptotically stable or
ξ-exponentially asymptotically stable), as well.
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Theorem 2.3.12. Let αik∈R (i, k=1, . . . , n), νi∈Bloc(T ;R) (i=1, . . . , n), and µi∈ACloc(R+;R+)
(i, . . . , n) be nondecreasing functions such that conditions (2.3.14) and

αiiνi(τl) > 0 or − 1 < αiiνi(τl) < exp(−1)− 1 (i = 1, . . . , n; l = 1, 2, . . . )

hold, where

η0(t) ≡ min
{
αiiµi(t) : i = 1, . . . , n

}
,

η(τl) = max
{
αiiνi(τl) : i = 1, . . . , n

}
(l = 1, 2, . . . ).

Then conditions (1.3.31) and (1.3.47), where the constant matrix H is defined by (1.3.48), are sufficient
for the pair (P,G), where P (t) ≡ (αik µi(t))

n
i,k=1 and G(τl) = (αikνi(τl))

n
i,k=1, to be asymptotically

stable; and if conditions (1.3.49),

n∑
l=1; l ̸=i

αilνi(τl) < |1− αiiνi(τl)| or

n∑
l=1; l ̸=k

αlkνi(τl) < |1− αkkνk(τl)| (i, k = 1, . . . , n; l = 1, 2, . . . ),

αiiνi(τl) < 1 for (i = 1, . . . , n; l = 1, 2, . . . )

and (
(δik − αikνi(τl))

n
i,k=1

)−1 ≥ On×n (j = 1, 2; l = 1, 2, . . . )

hold, then conditions (1.3.31) and (1.3.47) are necessary, as well.

Corollary 2.3.8. Let the pair (Q,W ) be uniformly stable, where Q ∈ Lloc(R+;Rn×n) and W ∈
Bloc(T ;Rn×n) are such that conditions (2.3.4) and

∥∥∥∥
+∞∫
0

|Y −1(t)|
∣∣P (t)−Q(t) + ηξ′(t)In

∣∣ dt∥∥∥∥+ ∥∥∥+∞∑
l=1

|Y −1(τl)|
∣∣(In +W (τl))

−1 (G(τl)−W (τl))
∣∣∥∥∥

+

∥∥∥∥+∞∑
l=1

(
exp(ηd2ξ(τl))− 1

)
· |Y −1(τl)|

∣∣(In +W (τl))
−1 (In +G(τl))

∣∣∥∥∥∥ < +∞ (2.3.18)

hold, where Y (Y (0) = In) is the fundamental matrix of system (2.3.5), (2.3.6), and η is a positive
number. Then the pair (P,G) is ξ-exponentially asymptotically stable.

Remark 2.3.2. In Corollary 2.3.8, if the function ξ : R+ → R+ is continuous, then

exp(ηd2ξ(τl))− 1 = 0.

So, the last term in the left-hand sides of conditions (2.3.18) vanishes.
Moreover, Corollary 2.3.8 is true for the limit case (η = 0), too, if instead of the uniform stability

we require the ξ-exponentially asymptotic stability of the matrix-function Q.

Corollary 2.3.9. Let Q ∈ Lloc(R+;Rn×n) be a continuous matrix-function satisfying the Lappo–
Danilevskiĭ condition. Let, moreover, there exist a nonnegative number η such that∥∥∥∥

+∞∫
0

exp
(
−

t∫
0

Q(τ) dτ

)∣∣P (t)−Q(t) + ηξ′(t)In
∣∣ dt∥∥∥∥+ ∥∥∥∥+∞∑

l=1

exp
(
−

τl∫
0

Q(τ) dτ

)
|G(τl)|

∥∥∥∥ < +∞,

where ξ : R+ → R+ is a continuous nondecreasing function satisfying condition (1.3.4). Then

(a) the uniform stability of the matrix-function Q guarantees the ξ-exponentially asymptotic stability
of the pair (P,G) if η > 0;
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(b) the ξ-exponentially asymptotic stability of the matrix-function Q guarantees the ξ-exponentially
asymptotic stability of the pair (P,G) if η = 0.

Corollary 2.3.10. Let there exist a nonnegative number η such that the components of the matrix-
functions P = (pij)

n
i,j=1 ∈ Lloc(R+;Rn×n) and G = (gij)

n
i,j=1 ∈ Bloc(T ;Rn×n) satisfy the conditions

(2.3.9),

t∫
τ

pii(s) ds+
∑

τ≤τl<t

ln |1 + gii(τl)|

≤ −η(sc(ξ)(t)− sc(ξ)(τ))− µ(ξ(t)− ξ(τ)) for t > τ ≥ 0 (i = 1, . . . , n),

+∞∑
l=1

|y−1
i (τl)|

(
exp(ηd2ξ(τl))− 1

)
< +∞ (j = 1, 2; i = 1, . . . , n)

and
+∞∫
0

|y−1
i (t)| |pik(t)| dt+

+∞∑
l=1

exp(ηd2ξ(τl))gik(τl) · (1 + gii(τl))
−1 < +∞ (i ̸= k; i, k = 1, . . . , n),

where µ = 0 if η > 0 and µ > 0 if η = 0,

yi(t) ≡ exp
( t∫

0

(pii(s) + ηξ′(s)) ds

)
·
∏

0≤τl<t

(1 + gii(τl)) (i = 1, . . . , n).

Then the pair (P,G) is ξ-exponentially asymptotically stable.

Remark 2.3.3. In Corollary 2.3.10, if the condition

gik(τl) (1 + gii(τl))
−1 > 0 (i ̸= k; i, k = 1, . . . , n; l = 1, 2, . . . )

holds together with condition (2.3.9), then without loss of generality we can assume that η > 0 and
µ = 0.

Theorem 2.3.13. Let the matrix-functions P ∈ Lloc(R+;Rn×n) and G ∈ Bloc(T ;Rn×n) be such that

P (t) =

m∑
k=1

α′
k(t)Bk for a.a. t ∈ R+ (2.3.19)

and

In +G(τl) = exp
( m∑

k=1

(αk(τl+)− αk(τl))Bk

)
(l = 1, 2, . . . ), (2.3.20)

where αk ∈ ACVloc(R+, T ;R) (k = 1, . . . ,m), and Bk ∈ Rn×n (k = 1, . . . ,m) are pairwise permutable
constant matrices. Let, moreover, (λ− λki)

nki (i = 1, . . . ,mk;
ml∑
i=1

nki = n) be elementary divisors of

the matrix Bk for every k ∈ {1, . . . ,m}. Then

(a) the pair (P,G) is stable if and only if condition (1.3.60) holds;

(b) the pair (P,G) is asymptotically stable if and only if condition (1.3.61) holds.

Corollary 2.3.11. Let conditions (2.3.19) and (2.3.20) hold, where Bk ∈ Rn×n (k = 1, . . . ,m) are
pairwise permutable constant matrices, and αk ∈ ACVloc(R+, T ;R) (k = 1, . . . ,m) are such that
condition (1.3.62) holds. Then
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(a) the pair (P,G) is stable if and only if every eigenvalue of the matrices Bk (k = 1, . . . ,m) has
the nonpositive real part; in addition, every elementary divisor corresponding to the eigenvalue
with the zero real part is simple;

(b) the pair (P,G) is asymptotically stable if and only if every eigenvalue of the matrices Bk (k =
1, . . . ,m) has the negative real part.

By ν(t) we denote a number of points τl (l = 1, 2, . . . ) belonging to [0, t[ for every t ∈ R+. It is
evident that ν(t) is finite for every t ∈ R+.

Corollary 2.3.12. Let the matrix-functions P ∈ Lloc(R+;Rn×n) and G ∈ Bloc(T ;Rn×n) be such that

P (t) = α′(t)P0 for a.a. t ∈ R+

and
G(τl) = G0 if G(τl) ̸= On×n (j = 1, 2, . . . ),

where α ∈ ACVloc(R+;R) is a function satisfying condition (1.3.63), and P0 and G0 ∈ Rn×n are
permutable constant matrices. Let, moreover, there exist a number β ∈ R+ such that condition
(1.3.64) holds. Then

(a) the pair (P,G) is stable if and only if every eigenvalue of the matrix A = P0 + β ln(In +G0) has
the nonpositive real part; in addition, every elementary divisor corresponding to the eigenvalue
with the zero real part is simple;

(b) the pair (P,G) is asymptotically stable if and only if every eigenvalue of the matrix A has the
negative real part.

If α(t) ≡ t, then Corollary 2.3.12 has the following form.

Corollary 2.3.13. Let P (t) ≡ P0 and G(τl) = G0 (l = 1, 2, . . . ), where P0 and G0 are permutable
constant matrices. Let, moreover, there exist a number β ∈ R+ such that

lim sup
t→+∞

|ν(t)− βt| < +∞.

Then the conclusion of Corollary 2.3.12 is true.

Corollary 2.3.14. Let P0 and G0 be constant n× n-matrices circumscribed in Corollary 2.3.13, and

τl+1 − τl = θ = constant (l = 1, 2, . . . ).

Then the conclusion of Corollary 2.3.12, where A = P0 + θ−1 ln(In +G0), is true.

Corollary 2.3.15. Let the matrix-functions P ∈ Lloc(R+;Rn×n) and G ∈ Bloc(T ;Rn×n) be such that

P (t) = C diag(J1(t), . . . , Jm(t))C−1 for t ∈ R+

and
In +G(τl) = C diag

(
exp(J1l), . . . , exp(Jml)

)
C−1 (l = 1, 2, . . . ),

where C ∈Cn×n is a nonsingular complex matrix, Jk(t) =
nk−1∑
i=0

αki(t)Z
i
nk

(k=1, . . . ,m;
m∑

k=1

nk = n),

Jkl=
nk−1∑
i=0

d2αki(τl)Z
i
nk

(k=1, . . . ,m; l=1, 2, . . . ), αki∈ACVloc(R+, T ;R) (k=1, . . . ,m; i=1, . . . , nk−

1), and αk0 is a complex-valued function such that Re(αk0) and Im(αk0)∈ACVloc(R+, T ;R+). Then

(a) the pair (P,G) is stable if and only if condition (1.3.65) holds;

(b) the pair (P,G) is asymptotically stable if and only if condition (1.3.66) holds.
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We use the following notation.
Let α ∈ ACVloc(R+, T ;R) and g ∈ Bloc(T ;R) be nondecreasing functions and H = (hik)

n
i,k=1

∈ Lloc(R+;Rn×n). Then by Q(H;α, g) we denote a set of all pairs (P,G) consisting of matrix-functions
P = (pik)

n
i,k=1 ∈ Lloc(R+;Rn×n) and G = (gik)

n
i,k=1 ∈ Bloc(T ;Rn×n) such that

pik(t) = α′(t)hik(t) for a.a. t ∈ R+ \ T (i, k = 1, . . . , n; l = 1, 2, . . . )

and
gik(τl) +

1

2

n∑
j=1

gji(τl)gjk(τl) = g(τl)hik(τl) (i, k = 1, . . . , n; l = 1, 2, . . . ).

Theorem 2.3.14. Let (P,G) ∈ Q(H;α, g), inequality (1.3.70) hold for a.a. t ∈ R+ \T and (xi)
n
i=1 ∈

Rn and
1 + 2g(τl) p(τl) > 0 (l = 1, 2, . . . ),

where p ∈ Lloc(R+;R). Let, moreover,

γ(t) = exp
(
2

t∫
0

p(τ)α′(τ) dτ

) ∏
0≤τl<t

(1 + 2g(τl)p(τl)) for t ∈ R+.

Then

(a) condition (1.3.72) guarantees the stability of the pair (P,G);

(b) condition (1.3.73) guarantees the uniform stability of the pair (P,G);

(c) condition (1.3.74) guarantees the asymptotic stability of the pair (P,G);

(d) condition (1.3.75), where t∗ ∈ R+ is some point, guarantees the ξ-exponentially asymptotic
stability of the pair (P,G);

(e) if the inequality opposite to inequality (1.3.70) and condition (1.3.76) hold, then the pair (P,G)
is nonstable.

Here in conditions (1.3.72)–(1.3.75) we take γβ(t) ≡ γ(t).

Corollary 2.3.16. Let (P,G) ∈ Q(H;α, g) and

g(τl)λ
0(C(τl)) > −1

2
(l = 1, 2, . . . ), (2.3.21)

where
C(t) ≡ 1

2
(H(t) +HT (t)).

Then

(a) the condition

lim sup
t→+∞

( t∫
0

α′(s)λ0(C(s)) ds+
1

2

∑
0≤τl<t

ln
(
1 + 2glλ

0(C(τl))
))

< +∞

guarantees the stability of the pair (P,G);

(b) the condition

sup
{ t∫

τ

α′(s)λ0(C(s)) ds+
1

2

∑
0≤τl<t

ln
(
1 + 2glλ

0(C(τl))
)
: t ≥ τ ≥ 0

}
< +∞

guarantees the uniform stability of the pair (P,G);
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(c) the condition

lim
t→+∞

( t∫
0

α′(s)λ0(C(s)) ds+
1

2

∑
0≤τl<t

ln
(
1 + 2glλ

0(C(τl))
))

= −∞

guarantees the asymptotically stability of the pair (P,G);

(d) the condition

sup
{

1

ξ(t)− ξ(τ)

( t∫
τ

α′(s)λ0(C(s)) ds+
1

2

∑
0≤τl<t

ln
(
1 + 2glλ

0(C(τl))
))

:

t ≥ τ ≥ t∗, ξ(t) ̸= ξ(τ))

}
< 0,

where t∗ ∈ R+ is some point, guarantees the ξ-exponentially asymptotic stability of the pair
(P,G);

(e) if, instead of condition (2.3.21), the condition

g(τl)λ
0(C(τl)) < −1

2
(l = 1, 2, . . . )

hold and

lim sup
t→+∞

( t∫
0

α′(s)λ0(C(s)) ds+
1

2

∑
0≤τl<t

ln
(
1 + 2glλ0(C(τl)

))
= +∞,

then the pair (P,G) is nonstable.

2.3.2 The well-posedness of the initial problem
on infinite intervals and stability

In this section, we consider the question of the well-posedness of problem (2.2.1)–(2.2.3) for the case
I = R+, P0(t) ≡ P (t), q0(t) ≡ q(t), G0(τl) ≡ G(τl) (l = 1, 2, . . . ), u0(τl) ≡ u(τl), 0 ≤ τl < τ2 . . . and
lim

l→+∞
τl = +∞.

Definition 2.3.2. Let P0 ∈ Lloc(I;Rn×n), q0 ∈ Lloc(I;Rn), G0 ∈ B(T ;Rn×n), u0 ∈ B(T ;Rn) and
τl ∈ I (l = 1, 2, . . . ), τl ̸= τm if l ̸= m, be such that condition (2.2.9) holds. Then the initial
problem (2.2.1), (2.2.2); (2.2.3) is said to be well-posed if condition (2.2.10) holds for every sequences
Pk ∈ Lloc(I;Rn×n) (k = 1, 2, . . . ), qk ∈ Lloc(I;Rn) (k = 1, 2, . . . ); Gk ∈ B(T ;Rn×n) (k = 1, 2, . . . ),
uk ∈ B(T ;Rn) (k = 1, 2, . . . ), tk (k = 0, 1, . . . ) and ck (k = 0, 1, . . . ) for which there exists a sequence
Hk ∈ ACVloc(I, T ;Rn×n) (k = 0, 1, . . . ) such that conditions (1.2.5), (1.2.9) and (1.2.11) hold, and
conditions (1.2.12), (2.2.11) and (2.2.12) are fulfilled uniformly on I.

It is evident that the statements of Theorems 2.2.1, 2.2.1′ and Corollaries 2.2.2 imply that the
initial problem (2.2.1), (2.2.2); (2.2.3) is well-posed.

Definition 2.3.3. Let P0 ∈ Lloc(I;Rn×n), q0 ∈ Lloc(I;Rn), G0 ∈ B(T ;Rn×n), u0 ∈ B(T ;Rn)n and
τl ∈ I (l = 1, 2, . . . ), τl ̸= τm if l ̸= m, be such that condition (2.2.9) holds. Then the initial problem
(2.2.1), (2.2.2); (2.2.3) is said to be weakly well-posed if condition (2.2.10) holds for every sequences
Pk ∈ Lloc(I;Rn×n) (k = 1, 2, . . . ), qk ∈ Lloc(I;Rn) (k = 1, 2, . . . ); Gk ∈ B(T ;Rn×n) (k = 1, 2, . . . ),
uk ∈ B(T ;Rn×n) (k = 1, 2, . . . ), tk (k = 0, 1, . . . ) and ck (k = 0, 1, . . . ) for which there exists a
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sequence Hk ∈ ACVloc(I, T ;Rn×n) (k = 0, 1, . . . ) such that conditions (1.2.5), (1.2.9) and (1.2.11)
hold, and conditions (1.2.12),

lim
k→+∞

t∨
a∗

(
Iι(Hk;Pk, Gk)− Iι(H0;P0, G0)

)
= 0

and

lim
k→+∞

t∨
a∗

(
Bι(Hk; qk, uk)− Bι(H0; q0, u0)

)
= 0

hold uniformly on I, where the operators Iι and Bι are defined by (2.2.13) and (2.2.14), respectively.

Theorem 2.3.15. Let P ∈ Lloc(R+;Rn×n), q∈ Lloc(R+;Rn), G ∈ Bloc(T ;Rn×n) and u ∈ Bloc(T ;Rn)
be such that inequality (2.1.4) holds for every l ∈ {1, 2, . . . },

lim sup
t→+∞

( ν(ξ)(t)∫
t

∥P (τ)∥ dτ +
∑

t≤τl<ν(ξ)(t)

∥∥(In +G(τl))
−1Gl

∥∥) < +∞,

and

lim
t→+∞

( ν(ξ)(t)∫
t

∥q(τ)∥ dτ +
∑

t≤τl<ν(ξ)(t)

∥∥(In +G(τl))
−1ul

∥∥) = 0,

where the function ν is defined by (1.3.22). Then the ξ-exponentially asymptotic stability of the pair
(P,G) guarantees the well-posedness of problem (2.2.1)–(2.2.3) on the R+.

Theorem 2.3.16. Let P ∈ Lloc(R+;Rn×n) and G ∈ Bloc(T ;Rn×n) be such that inequality (2.1.4)
holds for every l ∈ {1, 2, . . . }. Let, moreover,

q ∈ L(R+;Rn) and
+∞∑
l=1

∥ul∥ < +∞.

Then uniform stability of the pair (P,G) guarantees a weak well-posedness of problem (2.2.1)–(2.2.3)
on the R+.



Chapter 3

Systems of ordinary differential
equations

3.1 The well-posedness and stability of systems
of ordinary differential equations

3.1.1 The well-posedness of the initial problem
In this section, we use the results of Section 2.1 for the initial problem

dx

dt
= P0(t)x+ q0(t) for t ∈ I, (3.1.1)

x(t0) = c0, (3.1.2)

where P0 ∈ Lloc(I;Rn×n), q0 ∈ Lloc(I;Rn), t0 ∈ I and c0 ∈ Rn.
The results given below are the particular cases of analogous ones established for impulsive systems

if we assume that G(τl) ≡ On×n (l = 1, 2, . . . , n) and the set of impulsive points is empty therein.
We formulate the results in a clear form because they differ from the earlier known results.
As above, let x0 ∈ ACloc(I;Rn) be a unique solution of the initial problem (3.1.1), (3.1.2).
Along with the initial problem (3.1.1), (3.1.2), consider the sequence of initial problems

dx

dt
= Pk(t)x+ qk(t) for t ∈ I, (3.1.1k)

x(tk) = ck, (3.1.2k)

(k = 1, 2, . . . ), where Pk ∈ Lloc(I;Rn×n) (k = 1, 2, . . . ), qk ∈ Lloc(I;Rn) (k = 1, 2, . . . ), tk ∈ I
(k = 1, 2, . . . ) and ck ∈ Rn (k = 1, 2, . . . ).
Definition 3.1.1. We say that the sequence (Pk, qk; tk) (k = 1, 2, . . . ) belongs to the set S(P0, q0; t0)
if for every c0 ∈ Rn and a sequence ck ∈ Rn (k = 1, 2, . . . ), satisfying condition (1.2.5), condition
(1.2.3) holds uniformly on I, where xk is a unique solution of the initial problem (3.1.1k), (3.1.2k) for
any sufficiently large k.

In this case, the operators B and I have the forms:

B(X,Y )(t) =

t∫
a∗

X(τ)Y ′(τ) dτ for t ∈ I (3.1.3)

if X ∈ Lloc(I;Rn×l) and Y ∈ ACloc(I;Rl×m), and

I(X,Y )(t) =

t∫
a∗

(X ′(τ) +X(τ)Y ′(τ))X−1(τ) dτ for t ∈ I (3.1.4)
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if X,Y ∈ ACloc(I;Rn×n), detX(t) ̸= 0, where a∗ is some fixed point from I.
Due to (2.2.8), it is evident that

Bι(X,Y )(t) ≡ B(X,Y )(t) and Iι(X,Y )(t) ≡ I(X,Y )(t). (3.1.5)

Note that if X(t) ≡ In, then

B(In, Y )(t) = I(In, Y )(t) ≡ Y (t)− Y (a∗).

Theorem 3.1.1. Let P0 ∈ L(I;Rn×n) q0 ∈ L(I;Rn), t0 ∈ I and a sequence of points tk ∈ I
(k = 1, 2, . . . ) be such that condition (1.2.9) holds. Then

((Pk, qk; tk))
∞
k=1 ∈ S(P0, q0; t0) (3.1.6)

if and only if there exists a sequence of matrix-functions Hk ∈ ACloc(I;Rn×n) (k = 0, 1, . . . ) such that
condition (1.2.11) holds and conditions (1.2.12),

lim
k→+∞

{∥∥∥DI(Hk, Pk;H0, P0)(τ)
∣∣t
tk

∥∥∥(1 + ∣∣∣ t∨
tk

(
DI(Hk, Pk;H0, P0)

)∣∣∣)} = 0 (3.1.7)

and

lim
k→+∞

{∥∥∥DB(Hk, Pk;H0, P0)(τ)
∣∣t
tk

∥∥∥(1 + ∣∣∣ t∨
tk

(
DI(Hk, Pk;H0, P0)

)∣∣∣)} = 0 (3.1.8)

hold uniformly on I, where the operators DI and DB are defined, respectively, analogously to (0.0.5)
and (0.0.4).

Note that, in Theorem 3.1.1, due to (3.1.3), (3.1.4) and (3.1.5), we have

I(Hk;Pk)(t) ≡
t∫

a

(
H ′

k(τ) +Hk(τ)Pk(τ)
)
H−1

k (τ) dτ (k = 0, 1, . . . )

and

B(Hk; qk)(t) ≡
t∫

a

Hk(τ)qk(τ) dτ (k = 0, 1, . . . ).

Theorem 3.1.2. Let P0 ∈ L(I;Rn×n), q0 ∈ L(I;Rn), t0 ∈ I, Pk ∈ Lloc(I;Rn×n) (k = 1, 2, . . . ),
qk ∈ Lloc(I;Rn) (k = 1, 2, . . . ), tk ∈ I (k = 1, 2, . . . ) and ck ∈ Rn (k = 1, 2, . . . ) be such that
conditions (1.2.5), (1.2.9),

lim
k→+∞

sup
t∈I, t ̸=tk

{∥∥∥∥
t∫

tk

(Pk(τ)− P0(τ)) dτ

∥∥∥∥(1 + ∣∣∣∣
t∫

tk

∥Pk(τ)− P0(τ)∥ dτ
∣∣∣∣)} = 0

and

lim
k→+∞

sup
t∈I, t ̸=tk

{∥∥∥∥
t∫

tk

(qk(τ)− q0(τ)) dτ

∥∥∥∥(1 + ∣∣∣∣
t∫

tk

∥Pk(τ)− P0(τ)∥ dτ
∣∣∣∣)} = 0

hold. Then condition (1.2.17) holds, where xk is the unique solution of the initial problem (3.1.1k),
(3.1.2k) for any natural k.

Theorem 3.1.3. Let P ∗
0 ∈ L(I;Rn×n), q∗0 ∈ L(I;Rn), c∗0 ∈ Rn and x∗

0 be a unique solution of the
initial problem

dx

dt
= P ∗

0 (t)x+ q∗0(t) for t ∈ I,

x(t0) = c∗0.
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Let, moreover, the sequences Pk ∈ Lloc(I;Rn×n) (k = 1, 2, . . . ), Hk ∈ ACloc(I;Rn×n) (k = 0, 1, . . . ),
qk ∈ Lloc(I;Rn) (k = 1, 2, . . . ), hk ∈ ACloc(I;Rn) (k = 0, 1, . . . ), tk ∈ I (k = 1, 2, . . . ) and c∗k ∈ Rn

(k = 1, 2, . . . ) be such that conditions (1.2.9),

lim
k→+∞

c∗k = c∗0,

lim
k→+∞

sup
t∈I, t ̸=tk

{∥∥∥∥
t∫

tk

(P ∗
k (τ)− P ∗

0 (τ)) dτ

∥∥∥∥(1 + ∣∣∣∣
t∫

tk

∥P ∗
k (τ)− P ∗

0 (τ)∥ dτ
∣∣∣∣)} = 0 (3.1.9)

and

lim
k→+∞

sup
t∈I, t ̸=tk

{∥∥∥∥
t∫

tk

(q∗k(τ)− q∗0(τ)) dτ

∥∥∥∥(1 + ∣∣∣∣
t∫

tk

∥P ∗
k (τ)− P ∗

0 (τ)∥ dτ
∣∣∣∣)} = 0

hold, where

c∗k = Hk(tk)ck + hk(tk), P ∗
k (t) ≡ (H ′

k(t) +Hk(t)Pk(t))H
−1
k (t) (k = 1, 2, . . . ),

q∗k(t) = h′
k(t)− P ∗

k (t)hk(t) +Hk(t)qk(t) (k = 1, 2, . . . ).

Then condition (1.2.27) holds, where xk is a unique solution of the initial problem (3.1.1k), (3.1.2k)
for any natural k.

Remark 3.1.1. In Theorem 3.1.3, the vector-function x∗
k(t) ≡ Hk(t)xk(t)+hk(t) is a solution of the

problem

dx

dt
= P ∗

k (t)x+ q∗k(t) for t ∈ I,

x(tk) = c∗k

for every natural k.

Corollary 3.1.1. Let P0 ∈ L(I;Rn×n), q0 ∈ L(I;Rn), c0 ∈ Rn, t0 ∈ I and the sequences Pk ∈
Lloc(I;Rn×n) (k = 1, 2, . . . ), qk ∈ Lloc(I;Rn) (k = 1, 2, . . . ), ck ∈ Rn (k = 1, 2, . . . ) and tk ∈ I
(k = 1, 2, . . . ) be such that conditions (1.2.9), (1.2.11) and (1.2.31) hold, and conditions (1.2.12),
(3.1.9) and

lim
k→+∞

{∥∥∥∥
t∫

tk

(
Hk(τ)qk(τ)−H0(τ)q0(τ)−Hk(τ)φ

′
k(τ) + P ∗

k (τ)φk(τ)
)
dτ

∥∥∥∥
×
(
1 +

∣∣∣∣
t∫

tk

∥P ∗
k (τ)− P ∗

0 (τ)∥ dτ
∣∣∣∣)} = 0

hold uniformly on I, where Hk ∈ AC ‘loc(I;Rn×n) (k = 0, 1, . . . ), φk ∈ ACloc(I;Rn) (k = 1, 2, . . . ),
P ∗
k (t) ≡ (H ′

k(t) + Hk(t)Pk(t))H
−1
k (t) (k = 0, 1, . . . ). Then condition (1.2.33) holds uniformly on I,

where xk is a unique solution of the initial problem (2.2.1k), (2.2.3k) for any natural k.

Below, as in Section 2.1, we give some sufficient conditions guaranteeing inclusion (3.1.6). To
this end, we present a theorem, different from Theorem 3.1.1, concerning the necessary and sufficient
conditions for inclusion (3.1.6), as well as corresponding propositions.
Theorem 3.1.1′. Let P0 ∈ L(I;Rn×n), q0 ∈ L(I;Rn), c0 ∈ Rn, t0 ∈ I and the sequence of points
tk ∈ I (k = 1, 2, . . . ) be such that condition (1.2.9) is satisfied. Then inclusion (3.1.6) holds if and only
if there exists a sequence of matrix-functions Hk ∈ ACloc(I;Rn×n) (k = 0, 1, . . . ) such that conditions
(1.2.11) and

lim sup
k→+∞

∫
I

∥H ′
k(t) +Hk(t)Pk(t)∥ dt < +∞ (3.1.10)
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hold, and conditions (1.2.12),

lim
k→+∞

t∫
tk

Hk(τ)Pk(τ) dτ =

t∫
t0

H0(τ)P0(τ) dτ (3.1.11)

and

lim
k→+∞

t∫
tk

Hk(τ)qk(τ) dτ =

t∫
t0

H0(τ)q0(τ) dτ (3.1.12)

hold uniformly on I.

Theorem 3.1.1′′. Let P0 ∈ L(I;Rn×n), q0 ∈ L(I;Rn), t0 ∈ I and the sequence tk ∈ I (k = 1, 2, . . . )
be such that condition (1.2.9) is satisfied. Then inclusion (3.1.6) holds if and only if conditions (1.2.37)
and

lim
k→+∞

t∫
a∗

X−1
k (τ)qk(τ) dτ =

t∫
a∗

X−1
0 (τ)q0(τ) dτ

hold uniformly on I, where Xk is the fundamental matrix of the homogeneous system

dx

dt
= Pk(t)x for t ∈ I (3.1.1k0)

for every k ∈ {0, 1, . . . }.

Theorem 3.1.2′. Let P0 ∈ L(I;Rn×n), q0 ∈ L(I;Rn), c0 ∈ Rn, t0 ∈ I, the sequences Pk ∈
Lloc(I;Rn×n) (k = 1, 2, . . . ), qk ∈ Lloc(I;Rn) (k = 1, 2, . . . ), tk ∈ I (k = 1, 2, . . . ) and ck ∈ Rn

(k = 1, 2, . . . ) be such that conditions (1.2.5), (1.2.9) and

lim sup
k→+∞

∫
I

∥Pk(t)∥ dt < +∞ (3.1.13)

hold, and the conditions

lim
k→+∞

t∫
tk

Pk(τ) dτ =

t∫
t0

P0(τ) dτ (3.1.14)

and

lim
k→+∞

t∫
tk

qk(τ) dτ =

t∫
t0

q0(τ) dτ (3.1.15)

hold uniformly on I. Then condition (1.2.3) holds uniformly on I, where xk is a unique solution of
the initial problem (3.1.1k), (3.1.2k) for any natural k.

Corollary 3.1.2. Let P0 ∈ L(I;Rn×n), q0 ∈ L(I;Rn), t0 ∈ I, the sequences Pk ∈ Lloc(I;Rn×n)
(k = 1, 2, . . . ), qk ∈ Lloc(I;Rn) (k = 1, 2, . . . ) and tk ∈ I (k = 1, 2, . . . ) be such that conditions (1.2.9),
(1.2.11) and (3.1.10) hold, and conditions (1.2.12), (3.1.11) and (3.1.12) hold uniformly on I, where
Hk ∈ ACloc(I;Rn×n) (k = 0, 1, . . . ). Then inclusion (3.1.6) is valid.

Corollary 3.1.3. Let P0 ∈ L(I;Rn×n), q0 ∈ L(I;Rn), t0 ∈ I, the sequences Pk ∈ Lloc(I;Rn×n)
(k = 1, 2, . . . ), qk ∈ Lloc(I;Rn) (k = 1, 2, . . . ) and tk ∈ I (k = 1, 2, . . . ) be such that conditions (1.2.9)
and (3.1.10) hold, and conditions (1.2.12),

lim
k→+∞

t∫
tk

Hk(τ)Pk(τ) dτ =

t∫
t0

P ∗(τ) dτ
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and

lim
k→+∞

t∫
tk

Hk(τ)qk(τ) dτ =

t∫
t0

q∗(τ) dτ

hold uniformly on I, where H0(t) ≡ In, Hk ∈ ACloc(I;Rn×n) (k = 1, 2, . . . ), P ∗ ∈ L(I;Rn×n),
q∗ ∈ L(I;Rn). Then

((Pk, qk; tk))
∞
k=1 ∈ S(P ∗

0 , q
∗
0 ; t0),

where P ∗
0 (t) ≡ P0(t)− P ∗(t) and q∗0(t) ≡ q0(t)− q∗(t).

Corollary 3.1.4. Let P0 ∈ L(I;Rn×n), q0 ∈ L(I;Rn), t0 ∈ I, the sequences Pk ∈ Lloc(I;Rn×n)
(k = 1, 2, . . . ), qk ∈ Lloc(I;Rn) (k = 1, 2, . . . ) and tk ∈ I (k = 1, 2, . . . ) be such that condition
(1.2.9) hold and let there exist a natural number m and the matrix-functions Bj ∈ ACloc(I;Rn×n)
(j = 1, . . . ,m− 1) such that condition

lim sup
k→+∞

∫
I

∥H ′
km−1(t) +Hkm−1(t)Pk(t)∥ dt < +∞

holds, and conditions

lim
k→+∞

t∫
tk

(H ′
k j−1(τ) +Hk j−1(τ)Pk(τ)) dτ = Bj(t)−Bj(t0) (j = 1, . . . ,m− 1),

lim
k→+∞

t∫
tk

(H ′
km−1(τ) +Hkm−1(τ)Pk(τ)) dτ =

t∫
t0

P0(τ) dτ

and

lim
k→+∞

t∫
tk

Hkm−1(τ)qk(τ) dτ =

t∫
t0

q0(τ) dτ

hold uniformly on I, where

Hk0(t) = In,

Hkj(t) =

(
In −

t∫
tk

(
H ′

k j−1(τ) +Hk j−1(τ)Pk(τ)
)
dτ +Bj(t)−Bj(tk)

)
Hk j−1(t)

for t ∈ I (j = 1, . . . ,m− 1; k = 1, 2, . . . ).

Then inclusion (3.1.6) is valid.

If m = 1, then Corollary 3.1.4 coincides with Theorem 3.1.2′.
If m = 2, then Corollary 3.1.4 has the following form.

Corollary 3.1.4′. Let P0 ∈ L(I;Rn×n), q0 ∈ L(I;Rn), t0 ∈ I, the sequences Pk ∈ Lloc(I;Rn×n)
(k = 1, 2, . . . ), qk ∈ Lloc(I;Rn) (k = 1, 2, . . . ) and tk ∈ I (k = 1, 2, . . . ) be such that conditions (1.2.9)
and (3.1.10) hold, and the conditions

lim
k→+∞

t∫
tk

Pk(τ) dτ = B(t)−B(t0),

lim
k→+∞

t∫
tk

Hk(τ)Pk(τ) dτ =

t∫
t0

P0(τ) dτ
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and

lim
k→+∞

t∫
tk

Hk(τ)qk(τ) dτ =

t∫
t0

q0(τ) dτ

hold uniformly on I, where B ∈ ACloc(I;Rn×n) and

Hk(t) = In −
t∫

tk

Pk(τ) dτ +B(t)−B(tk) for t ∈ I (k = 1, 2, . . . ).

Then inclusion (3.1.6) is valid.
Corollary 3.1.5. Let P0 ∈ L(I;Rn×n), q0 ∈ L(I;Rn), and tk ∈ I (k = 1, 2, . . . ) be such that the
condition (1.2.9) hold. Then inclusion (3.1.6) holds if and only if there exist the matrix-functions
Qk ∈ Lloc(I;Rn×n) (k = 0, 1, . . . ) such that

lim sup
k→+∞

∫
I

∥Pk(t)−Qk(t)∥ dt < +∞ (3.1.16)

and the conditions

lim
k→+∞

Z−1
k (t) = Z−1

0 (t),

t∫
tk

Z−1
k (τ)Pk(τ) dτ =

t∫
t0

Z−1
0 (τ)P0(τ) dτ

and
t∫

tk

Z−1
k (τ) qk(τ) dτ =

t∫
t0

Z−1
0 (τ)q0(τ) dτ

hold uniformly on I, where Zk (Zk(tk) = In) is the fundamental matrix of the homogeneous system
dx

dt
= Qk(t)x for a.a. t ∈ I

for every k ∈ {0, 1 . . . }.
Corollary 3.1.6. Let P0 ∈ L(I;Rn×n), q0 ∈ L(I;Rn), Pk ∈ Lloc(I;Rn×n) (k = 1, 2, . . . ), qk ∈
Lloc(I;Rn) (k = 1, 2, . . . ), and tk ∈ I (k = 1, 2, . . . ) be such that condition (1.2.9) is satisfied.
Let, moreover, there exist matrix-functions Qk ∈ Lloc(I;Rn×n) (k = 0, 1, . . . ), satisfying the Lappo–
Danilevskiĭ condition, such that condition (3.1.16) hold, and the conditions

lim
k→+∞

t∫
tk

Qk(τ) dτ =

t∫
t0

Q0(τ) dτ,

lim
k→+∞

t∫
tk

exp
(
−

τ∫
tk

Qk(s) ds

)
Pk(τ) dτ =

t∫
t0

exp
(
−

τ∫
tk

Q0(s) ds

)
P0(τ) dτ

and

lim
k→+∞

t∫
tk

exp
(
−

τ∫
tk

Qk(s) ds

)
qk(τ) dτ =

t∫
t0

exp
(
−

τ∫
tk

Q0(s) ds

)
q0(τ) dτ

hold uniformly on I. Then inclusion (3.1.6) is valid.
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Remark 3.1.2. In Corollaries 3.1.5 and 3.1.6, if Qk(t) ≡ Pk(t) for any sufficiently large k, then
condition (3.1.16) vanishes.

Corollary 3.1.7. Let P0 ∈ L(I;Rn×n), q0 ∈ L(I;Rn), t0 ∈ I, Pk ∈ Lloc(I;Rn×n) (k = 1, 2, . . . ),
qk ∈ Lloc(I;Rn) (k = 1, 2, . . . ), and tk ∈ I (k = 1, 2, . . . ) be such that condition (1.2.9) is satisfied.
Let, moreover, the matrix-functions Pk (k = 0, 1, . . . ) satisfy the Lappo–Danilevskiĭ condition and
conditions (2.2.30), (2.2.32) and (2.2.33) hold uniformly on I. Then inclusion (3.1.6) is valid.

Corollary 3.1.8. Let P0 = (p0ij)
n
i,j=1 ∈ L(I;Rn×n), q0 = (q0i)

n
i=1 ∈ L(I;Rn), t0 ∈ I, Pk =

(pkij)
n
i,j=1 ∈ Lloc(I;Rn×n) (k = 1, 2, . . . ), qk = (qki)

n
i=1 ∈ Lloc(I;Rn) (k = 1, 2, . . . ) and tk ∈ I

(k = 1, 2, . . . ) be such that conditions (1.2.9) and

lim sup
k→+∞

n∑
i,j=1, i ̸=j

∫
I

|pkij(t)| dt < +∞

hold, and conditions

lim
k→+∞

t∫
tk

pkii(τ) dτ =

t∫
t0

p0ii(τ) dτ,

lim
k→+∞

( t∫
tk

z−1
kii(τ)pkij(τ) dτ

)
=

t∫
t0

z−1
0ii (τ)p0ij(τ) dτ (i ̸= j; i, j = 1, . . . , n)

and

lim
k→+∞

( t∫
tk

z−1
kii(τ)qki(τ) dτ

)
=

t∫
tk

z−1
0ii (τ)q0i(τ) dτ (i = 1, . . . , n)

hold uniformly on I, where zkii is a unique solution of the initial problem

dz

dt
= pkii(t), z(tk) = 1 (i = 1, . . . , n; k = 1, 2, . . . ).

Then inclusion (3.1.6) is valid.

Remark 3.1.3. In Theorem 3.1.3 and Corollaries 3.1.1, 3.1.2, without loss of generality, we can
assume that H0(t) = In.

Remark 3.1.4. Theorem 3.1.2′ has been obtained in earlier works (see [34, 40]). In this theorem,
condition (3.1.13) is essential and it cannot be neglected. So, if condition (3.1.13) is not satisfied, the
statement of the theorem is not true. In this connection, we give an example from [34,37,40,46].

Example 3.1.1. Let I = [0, 2π], n = 1, ck = c0 = 0 (k = 1, 2, . . . ), P0(t) = q(t) ≡ 0, Pk(t) = k cos k2t
(k = 1, 2, . . . ), qk(t) = −k sin k2t (k = 1, 2, . . . ). Then

x0(t) ≡ 0, xk(t) ≡ −k

t∫
0

exp
( sin k2t

k
− sin k2τ

k

)
sin k2τ (k = 1, 2, . . . )

and
lim

k→+∞

(
xk(t)−

t

2

)
= 0

uniformly on [0, π]. In this case, all conditions of Theorem 3.1.2′, except condition (3.1.13), are
fulfilled. On the other hand, this case is consistent with Corollary 3.1.3, since all its conditions are
satisfied for P ∗(t) ≡ 0, q∗(t) ≡ 1/2 and

Hk(t) ≡ exp
(
− sin k2t

k

)
(k = 1, 2, . . . ),
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and the function x∗(t) ≡ t/2 is the solution of the initial problem

dx

dt
= P ∗(t)x+ q∗(t), x(0) = 0.

Below, based on the above example, we construct a homogeneous system (n = 2) for which condi-
tion (3.1.13) is violated, but the situation analogous to the given above is explained in Theorem 3.1.1′.

Example 3.1.2. Let I = [0, 2π], n = 2,

ck =

(
1
1

k

)
, c0 =

(
1
0

)
, Pk(t) =

(
k cos k2t 0
−k sin k2t 0

)
), P0(t) =

(
0 0

−1

2
0

)
,

qk(t) = q0(t) =

(
0
0

)
(k = 1, 2, . . . ).

Then x0(t) ≡
(

1
− t

2

)
. In this case, condition (3.1.13) does not hold, as well. But all the conditions

of Theorem 3.1.1′ are satisfied for Hk(t) ≡ Y0(t)Y
−1
k (t), where Yk, Yk(0) = I2, is the fundamental

matrix of system (3.1.1k0) for every k ∈ {0, 1, . . . }.

Remark 3.1.5. In Theorem 3.1.1′, as opposed to Theorem 3.1.2′, it was not assumed that equalities
(3.1.14) and (3.1.15) hold uniformly on I. Below we will give an example of a sequence of the initial
problems for which inclusion (3.1.6) holds but condition (3.1.14) is not fulfilled uniformly on I.

Example 3.1.3. Let I = [0, 2π], n = 2, and for every natural k and t ∈ [0, 2π],

Pk(t) =

(
0 pk1(t)
0 pk2(t)

)
, P0(t) =

(
0 0
0 0

)
, φk(t) = qk(t) = q0(t) =

(
0
0

)
;

pk1(t) =

{(√
k + 4

√
k
)

sin kt for t ∈ Ik,√
k sin kt for t ∈ [0, 2π] \ Ik;

pk2(t) =

{
−α′

k(t) · (1− αk(t))
−1 for t ∈ Ik,

0 for t ∈ [0, 2π] \ Ik;

βk(t) =

t∫
0

(1− αk(τ)) · pk1(τ) dτ ;

αk(t) =

{
4π−1

(
4
√
k + 1

)−1 sin kt for t ∈ Ik,

0 for t ∈ [0, 2π] \ Ik,

where Ik =
k−1∪
m=0

]2mk−1π, (2m+ 1)k−1π[ . Let, moreover, Yk(t), Yk(0) = In, be a fundamental matrix

of system (3.1.1k0) for every k ∈ {0, 1, . . . }.
It can easily be shown that for every natural k we have

Y0(t) = In, Yk(t) =

(
1 βk(t)
0 1− αk(t)

)
for t ∈ [0, 2π]

and
lim

k→+∞
Yk(t) = Y0(t)

uniformly on [0, 2π], since
lim

k→+∞
∥αk∥c = lim

k→+∞
∥βk∥c = 0.

Note that

lim
k→+∞

2π∫
0

pk1(t) dt = 2 lim
k→+∞

4
√
k = +∞
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and, in addition,

lim
k→+∞

2π∫
0

pk1(t) dt = 2 lim
k→+∞

4
√
k = +∞.

Therefore, the conditions of Theorem 3.1.2′ are not satisfied.
On the other hand, if we assume that

Hk(t) = Y −1
k (t) for t ∈ [0, 2π] (k = 1, 2, . . . ),

then the conditions of Theorems 3.1.1′ are fulfilled.

3.1.2 The stability in the Liapunov sense
In this section, we use the results of Section 2.1 for the stability in the Liapunov sense of the ordinary
differential system (2.3.1), where P ∈ Lloc(R+;Rn×n) and q ∈ Lloc(R+;Rn).

The results of this section are the particular cases of the corresponding results of Section 2.1 if we
assume that G(l) ≡ On×n and u(l) ≡ 0 for l ∈ {1, 2, . . . }.

Mainly, we consider the case P /∈ L(R+;Rn×n) and assume that the function ξ that appears in
Section 1.3 is nondecreasing continuous and belongs to ACloc(R+;R+). So we have the following
definition.

In this subsection, we will assume that ξ, in addition, is from ACloc(|R+;R+).

Definition 3.1.2. The matrix-function P ∈ Lloc(R+;Rn×n) is said to be stable in one or other sense
if the zero solution of the homogeneous system (2.3.10) is stable in the same sense.

Theorem 3.1.4. The matrix-function P ∈ Lloc(R+;Rn×n) is stable if and only if there exists a
nonsingular matrix-function H ∈ ACloc(R+;Rn×n) such that conditions (1.3.8) and

+∞∫
0

∥H ′(t) +H(t)P (t)∥ dt < +∞ (3.1.17)

hold.

Theorem 3.1.5. The matrix-function P ∈ Lloc(R+;Rn×n) is uniformly stable if and only if there
exists a nonsingular matrix-function H ∈ ACloc(R+;Rn×n) such that conditions (1.3.10) and (3.1.17)
hold.

Theorem 3.1.6. The matrix-function P ∈ Lloc(R+ : Rn×n) is asymptotically stable if and only if
there exists a nonsingular matrix-function H ∈ ACloc(R+;Rn×n) such that conditions (1.3.11) and
(3.1.17) hold.

Theorem 3.1.7. The matrix-function P ∈ Lloc(R+;Rn×n) is ξ-exponentially asymptotically stable if
and only if there exists a nonsingular H ∈ ACloc(R+;Rn×n) such that conditions (1.3.12) and

+∞∫
0

exp(−ηξ(τ))∥H ′(t) +H(t)P (t)∥ dt < +∞

hold.

Corollary 3.1.9. Let a matrix-function Q ∈ Lloc(R+;Rn×n) be such that
+∞∫
0

∥∥Y −1(t)(P (t)−Q(t))
∥∥ dt < +∞,

where Y (Y (0) = In) is the fundamental matrix of system (2.3.5). Then the stability in one or another
sense of the matrix-function Q guarantees the stability of the matrix-function P in the same sense.



The Initial Problem. Numerical Solvability 139

Theorem 3.1.8. Let a matrix-function P0 ∈ Lloc(R+;Rn×n) be uniformly stable. Let, moreover, the
matrix-function P ∈ Lloc(R+;Rn×n) be such that

+∞∫
0

∥∥∥(H ′(t) +H(t)P (t)− P0(t)H(t)
)
H−1(t)

∥∥∥ dt < +∞, (3.1.18)

where H ∈ ACloc(R+;Rn×n) is a nonsingular matrix-function satisfying condition (1.3.10). Then the
matrix-function P is also uniformly stable.

Remark 3.1.6. In Theorem 3.1.8, if H(t) ≡ In, then condition (3.1.18) has the form

+∞∫
0

∥P (t)− P0(t)∥ dt < +∞.

Theorem 3.1.9. Let a matrix-function P0 ∈ Lloc(R+;Rn×n) be ξ-exponentially asymptotically stable.
Let, moreover, the matrix-function P ∈ Lloc(R+;Rn×n) be such that

lim
t→+∞

ν(ξ)(t)∫
0

∥P (τ)− P0(τ)∥ dτ = 0,

where the function ν(ξ)(t) is defined by (1.3.22). Then the matrix-function P is also ξ-exponentially
asymptotically stable.

Corollary 3.1.10. Let the components of the matrix-function P = (pij)
n
i,j=1 ∈ Lloc(R+;Rn×n) be

such that

lim
t→+∞

ν(ξ)(t)∫
t

∥pik(τ)∥ dτ = 0 (i ̸= k; i, k = 1, . . . , n) (3.1.19)

and
t∫

τ

pii(s) ds ≤ −η
(
ξ(t)− ξ(τ)

)
for t > τ ≥ 0 (i = 1, . . . , n),

where η > 0, and the function ν(ξ)(t) is defined by (1.3.22). Then the matrix-function P is ξ-
exponentially asymptotically stable.

Corollary 3.1.11. Let a matrix-function P0 ∈ Lloc(R+;Rn×n) be ξ-exponentially asymptotically
stable, and the matrix-function P ∈ Lloc(R+;Rn×n) be such that

lim
t→+∞

ξ(t)+1∫
t

∥P (τ)− P0(τ)∥ dτ = 0.

Then the matrix-function P is also ξ-exponentially asymptotically stable.

Proposition 3.1.1. Let a matrix-function P ∈ Lloc(R+;Rn×n) be ξ-exponentially asymptotically
stable and a vector-function q ∈ Lloc(R+;Rn) be such that

lim
t→+∞

ξ(t)+1∫
t

∥q(τ)∥ dτ = 0,

where the function ν(ξ)(t) is defined by (1.3.22). Then every solution x of system (3.1.1) satisfies
condition (1.3.6).
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Proposition 3.1.2. Let a matrix-function P0 ∈ Lloc(R+;Rn×n) be ξ-exponentially asymptotically
stable. Let, moreover, the matrix-function P ∈ Lloc(R+;Rn×n) be such that

lim
t→+∞

1

ξ(t)

t∫
0

∥P (τ)− P0(τ)∥ dτ = 0.

Then the matrix-function P is also ξ-exponentially asymptotically stable.

Theorem 3.1.10. Let the components of the matrix-function P = (pik)
n
i,k=1 ∈ Lloc(R+;Rn×n) satisfy

the conditions

sup
{ t∫

0

pii(s) ds : t ≥ t∗
}

< +∞ (i = 1, . . . , n),

and
t∫

t∗

exp
( t∫

τ

pii(s) ds

)
|pik(τ)| ≤ hik for t ≥ t∗ (i ̸= k; i, k = 1, . . . , n),

where t∗ and hik ∈ R+ (i ̸= k; i, k = 1, . . . , n). Let, moreover, the matrix H = (hik)
n
i,k=1, where

hii = 0 (i = 1, . . . , n), be such that condition (1.3.31) holds. Then the matrix-function P is stable.

Theorem 3.1.11. Let the components of the matrix-function P = (pik)
n
i,k=1 ∈ Lloc(R+;Rn×n) be

such that conditions (3.1.19) and

sup
{ t∫

τ

pii(s) ds : t > τ ≥ t∗
}

< +∞ (i = 1, . . . , n)

hold, where t∗ and hik ∈ R+ (i ̸= k; i, k = 1, . . . , n). Let, moreover, a matrix H = (hik)
n
i,k=1, where

hii = 0 (i = 1, . . . , n), be such that condition (1.3.31) holds. Then the matrix-function P is uniformly
stable.

Corollary 3.1.12. Let the components of the matrix-function P = (pik)
n
i,k=1 ∈ Lloc(R+;Rn×n) be

such that condition (2.3.11) holds, where t∗ and hik ∈ R+ (i ̸= k; i, k = 1, . . . , n). Let, moreover, the
matrix H = (hik)

n
i,k=1, where hii = 0 (i = 1, . . . , n), be such that condition (1.3.31) holds. Then the

matrix-function P is uniformly stable.

Theorem 3.1.12. Let the components of the matrix-function P = (pik)
n
i,k=1 ∈ Lloc(R+;Rn×n) be

such that the conditions
t∫

t∗

pii(s) ds ≤ −ξ(t) + ξ(t∗) for t ≥ t∗ (i = 1, . . . , n)

and
t∫

t∗

exp
(
ξ(t)− ξ(τ) +

t∫
τ

pii(s) ds

)
|pik(τ)| dτ ≤ hik for t ≥ t∗ (i ̸= k; i, k = 1, . . . , n)

hold, where t∗ and hik ∈ R+ (i ̸= k; i, k = 1, . . . , n). Let, moreover, a matrix H = (hik)
n
i,k=1,

where hii = 0 (i = 1, . . . , n), be such that condition (1.3.31) holds. Then the matrix-function P is
ξ-asymptotically stable.

Corollary 3.1.13. Let the components of the matrix-function P = (pik)
n
i,k=1 ∈ Lloc(R+;Rn×n) be

such that condition (2.3.11) holds, where t∗ and hik ∈ R+ (i ̸= k; i, k = 1, . . . , n), and let hik ∈ R+

(i ̸= k; i, k = 1, . . . , n) be such that the matrix H = (hik)
n
i,k=1, where hii = 0 (i = 1, . . . , n), satisfies
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condition (1.3.31). Let, moreover, there exists a function a0 ∈ ACloc(R+;R) satisfying condition
(1.3.41) such that

a0(t)− a0(τ) ≤ min
{∣∣∣∣

t∫
τ

pii(s) ds

∣∣∣∣ : (i = 1, . . . , n)

}
for t ≥ τ ≥ t∗.

Then the matrix-function P is asymptotically and also uniformly stable.

Corollary 3.1.14. Let the components of the matrix-function P = (pik)
n
i,k=1 ∈ Lloc(R+;Rn×n) be

such that condition (2.3.11) holds, where t∗ and hik ∈ R+ (i ̸= k; i, k = 1, . . . , n), and let hik ∈ R+

(i ̸= k; i, k = 1, . . . , n) be such that the matrix H = (hik)
n
i,k=1, where hii = 0 (i = 1, . . . , n), satisfies

condition (1.3.31). Let, moreover,
+∞∫
0

η0(s) ds = −∞,

where the function η0(t) is defined by (2.3.15). Then the matrix-function P is asymptotically and also
uniformly stable.

Theorem 3.1.13. Let the components of the matrix-function P = (pik)
n
i,k=1 ∈ Lloc(R+;Rn×n) be

such that conditions (2.3.9),

sup
{
(ξ(t)−ξ(τ))−1

( t∫
τ

pii(s) ds

)
: t>τ≥ t∗, ξ(t) ̸=ξ(τ); t, τ ∈R+

}
≤−γ (i=1, . . . , n) (3.1.20)

and
t∫

t∗

exp
(
γ(ξ(t)− ξ(τ)) +

t∫
τ

pii(s) ds

)
|pik(τ)| dτ ≤ hik for t ≥ t∗ (i ̸= k; i, k = 1, . . . , n)

hold, where γ > 0, t∗ and hik ∈ R+ (i ̸= k; i, k = 1, . . . , n). Let, moreover, the matrix H = (hik)
n
i,k=1,

where hii = 0 (i = 1, . . . , n), be such that condition (1.3.31) holds. Then the matrix-function P is
ξ-asymptotically stable.

Corollary 3.1.15. Let the components of the matrix-function P = (pik)
n
i,k=1 ∈ Lloc(R+;Rn×n) be

such that conditions (2.3.11) and (3.1.20) hold, where γ > 0, t∗ and hik ∈ R+ (i ̸= k; i, k = 1, . . . , n).
Let, moreover, the matrix H = (hik)

n
i,k=1, where hii = 0 (i = 1, . . . , n), be such that condition (1.3.31)

hold. Then the matrix-function P is ξ-asymptotically stable.

Theorem 3.1.14. Let the matrix-functions P = (pik)
n
i,k=1 ∈ Lloc(R+;Rn×n) and P0 = (p0ik)

n
i,k=1 ∈

Lloc(R+;Rn×n) be such that condition (2.3.17) holds. Let, moreover, the matrix-function P0 be stable
(uniformly stable, asymptotically stable or ξ-exponentially asymptotically stable). Then the matrix-
function P is also stable (uniformly stable, asymptotically stable or ξ-exponentially asymptotically
stable).

Theorem 3.1.15. Let αik ∈ R (i, k = 1, . . . , n) and µi ∈ ACloc(R+;R+) (i, . . . , n) be nondecreasing
functions such that

+∞∫
0

η0(s) ds = −∞,

where
η0(t) ≡ min

{
|αii|µ′

i(t) : i = 1, . . . , n
}
.

Then conditions (1.3.31) and (1.3.47), where the constant matrix H is defined by (1.3.48), are sufficient
for the matrix-function P (t) ≡ (αik µi(t))

n
i,k=1 to be asymptotically stable; and if condition (1.3.49)

holds, then conditions (1.3.31) and (1.3.47) are necessary, as well.
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Corollary 3.1.16. Let a matrix-function Q ∈ Lloc(R+;Rn×n) be uniformly stable and the condition

∥∥∥∥
+∞∫
0

|Y −1(t)| |P (t)−Q(t) + ηξ′(t)In| dt
∥∥∥∥ < +∞

hold, where Y (Y (0) = In) is the fundamental matrix of system (2.3.5), and η is a positive number.
Then the matrix-function P is ξ-exponentially asymptotically stable.

Remark 3.1.7. Corollary 3.1.16 is likewise true for the limit case (η = 0), if we require the ξ-
exponentially asymptotically stability of the matrix-function Q instead of the uniform stability.

Corollary 3.1.17. Let Q ∈ Lloc(R+;Rn×n) be a continuous matrix-function satisfying the Lappo–
Danilevskiĭ condition and∥∥∥∥

+∞∫
0

exp
(
−

t∫
0

Q(τ) dτ

)
|P (t)−Q(t) + ηξ′(t)In| dt

∥∥∥∥ < +∞, (3.1.21)

where η is a nonnegative number. Then:

(a) the uniform stability of the matrix-function Q guarantees ξ-exponentially asymptotical stability
of the matrix-function P if η > 0;

(b) ξ-exponentially asymptotical stability of the matrix-function Q guarantees ξ-exponentially asymp-
totical stability of the matrix-function P if η = 0.

Corollary 3.1.18. Let there exist a positive number η such that the components of the matrix-function
P = (pik)

n
i,k=1 ∈ Lloc(R+;Rn×n) satisfy the conditions

pii(t) ≤ −ηξ′(t) for a.a. t ∈ R+ (i = 1, . . . , n)

and
+∞∫
0

|y−1
i (t)| |pik(t)| dt < +∞ (i ̸= k; i, k = 1, . . . , n),

where

yi(t) ≡ exp
( t∫

0

(pii(s) + ηξ′(s)) ds

)
(i = 1, . . . , n).

Then the matrix-function P is ξ-exponentially asymptotical stable.

Corollary 3.1.19. Let a matrix-function Q ∈ Lloc(R+;Rn×n) be stable and

+∞∫
0

exp
(
− tr(Q(t))

)
∥P (t)−Q(t)∥ dt < +∞.

Then the matrix-function P is also stable.

Theorem 3.1.16. Let the matrix-function P ∈ Lloc(R+;Rn×n) be such that

P (t) =

m∑
k=1

α′
k(t)Bk for a.a. t ∈ R+, (3.1.22)

where αk ∈ ACloc(R+;R) (k = 1, . . . ,m) and Bk ∈ Rn×n (k = 1, . . . ,m) are pairwise permutable
constant matrices. Let, moreover, (λ− λki)

nki (i = 1, . . . ,mk;
ml∑
i=1

nki = n) be elementary divisors of

the matrix Bk for every k ∈ {1, . . . ,m}. Then:
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(a) the matrix-function P is stable if and only if condition (1.3.60) holds;

(b) the matrix-function P is asymptotically stable if and only if condition (1.3.61) holds.

Corollary 3.1.20. Let the matrix-function P ∈ Lloc(R+;Rn×n) be such that conditions (3.1.22) hold,
where Bk ∈ Rn×n (k = 1, . . . ,m) are pairwise permutable constant matrices, and αk ∈ ACloc(R+;R)
are such that condition (1.3.62) holds. Then:

(a) the matrix-function P is stable if and only if every eigenvalue of the matrices Bk (k = 1, . . . ,m)
has a nonpositive real part; in addition, every elementary divisor corresponding to the eigenvalue
with a zero real part is simple;

(b) the matrix-function P is asymptotically stable if and only if every eigenvalue of the matrices Bk

(k = 1, . . . ,m) has a negative real part.

Theorem 3.1.17. Let P (t) ≡ α′(t)H(t) and

(H(t)x ∗ x) ≤ p(t)(x ∗ x) for a.a. t ∈ R+, x ∈ Rn, (3.1.23)

where α ∈ ACloc(R+;R) is a nondecreasing function, H ∈ Lloc(R+;Rn×n) and p ∈ Lloc(R+;R). Let,

moreover, γ(t) ≡ exp(
t∫
0

p(τ)α′(τ) dτ). Then:

(a) condition (1.3.72) guarantees the stability of the matrix-function P ;

(b) condition (1.3.73) guarantees the uniform stability of the matrix-function P ;

(c) condition (1.3.74) guarantees the asymptotical stability of the matrix-function P ;

(d) condition (1.3.75), where t∗ ∈ R+ is some point, guarantees the ξ-exponentially asymptotical
stability of the matrix-function P ;

(e) if the inequality, opposite to inequality (3.1.23), and condition (1.3.76) hold, then the matrix-
function P is nonstable.

Here in conditions (1.3.72)–(1.3.75) we take γβ(t) ≡ γ(t).

Corollary 3.1.21. Let P (t) ≡ α′(t)H(t), where α ∈ ACloc(R+;R) is a nondecreasing function and
H ∈ Lloc(R+;Rn×n), and let

C(t) ≡ 1

2

(
H(t) +HT (t)

)
.

Then:

(a) the condition

lim sup
t→+∞

t∫
0

α′(s)λ0(C(s)) ds < +∞

guarantees the stability of the matrix-function P ;

(b) the condition

sup
{ t∫

τ

α′(s)λ0(C(s)) ds : t ≥ τ ≥ 0

}
< +∞

guarantees the uniform stability of the matrix-function P ;

(c) the condition

lim
t→+∞

t∫
0

α′(s)λ0(C(s)) ds = −∞

guarantees the asymptotical stability of the matrix-function P ;
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(d) the condition

sup
{

1

ξ(t)− ξ(τ)

t∫
τ

α′(s)λ0(C(s)) ds : t ≥ τ ≥ t∗, ξ(t) ̸= ξ(τ)

}
< 0,

where t∗ ∈ R+ is some point, guarantees the ξ-exponentially asymptotical stability of the matrix-
function P ;

(e) if

lim sup
t→+∞

( t∫
0

α′(s)λ0(C(s)) ds

)
= +∞,

then the matrix-function P is nonstable.

3.1.3 The well-posedness of the initial problem on infinite intervals
and stability

In this section, we consider the question on the well-posedness of problem (3.1.1), (3.1.2) for the case
I = R+, P0 ≡ P ∈ Lloc(R+;Rn×n), q0 ≡ q ∈ Lloc(R+;Rn).

It is evident that the statements of Theorems 2.2.1, 2.2.1′ and Corollary 2.2.2 mean that the initial
problem (3.1.1), (3.1.2) is well-posed.
Definition 3.1.3. The initial problem (3.1.1), (3.1.2), where P0 ∈ Lloc(I;Rn×n), q0 ∈ Lloc(I;Rn), is
said to be well-posed if inclusion (3.1.6) holds for every sequences Pk ∈ Lloc(I;Rn×n) (k = 1, 2, . . . ),
qk ∈ Lloc(I;Rn×n) (k = 1, 2, . . . ), tk (k = 0, 1, . . . ) and ck (k = 0, 1, . . . ) for which there exists a
sequence Hk ∈ ACloc(I;Rn×n) (k = 0, 1, . . . ) such that conditions (1.2.5), (1.2.9) and (1.2.11) hold,
and conditions (1.2.12), (3.1.7) and (3.1.8) are fulfilled uniformly on I.
Definition 3.1.4. The initial problem (3.1.1), (3.1.2), where P0 ∈ Lloc(I;Rn×n), q0 ∈ Lloc(I;Rn),
is said to be weakly well-posed if condition (3.1.6) holds for every sequences Pk ∈ Lloc(I;Rn×n)
(k = 1, 2, . . . ), qk ∈ Lloc(I;Rn×n) (k = 1, 2, . . . ), tk (k = 0, 1, . . . ) and ck (k = 0, 1, . . . ) for which
there exists a sequence Hk ∈ ACloc(I;Rn×n) (k = 0, 1, . . . ) such that conditions (1.2.5), (1.2.9) and
(1.2.11) hold, and conditions (1.2.12),

lim
k→+∞

∨t
a(I(Hk, Pk)− I(H0, P0) = 0

and
lim

k→+∞
∨t
a(B(Hk, qk)− B(H0, q0) = 0,

where a ∈ R+ is a fixed point, are fulfilled uniformly on I.
Theorem 3.1.18. Let P ∈ Lloc(R+;Rn×n) and q ∈ Lloc(R+;Rn) be such that

lim sup
t→+∞

ν(ξ)(t)∫
t

∥P (τ)∥ dτ < +∞,

and

lim
t→+∞

ν(ξ)(t)∫
t

∥q(τ)∥ dτ = 0,

where the function ν(ξ) is defined by (1.3.22). Then ξ-exponentially asymptotical stability of the
matrix-function P guarantees the well-posedness of problem (3.1.1), (3.1.2) on R+.
Theorem 3.1.19. Let P ∈ Lloc(R+;Rn×n) and

q ∈ L(R+;Rn).

Then uniform stability of the matrix-function P guarantees the weak well-posedness of problem (3.1.1),
(3.1.2) on R+.
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3.2 The numerical solvability of the initial problem for
the linear systems of ordinary differential equations

In this section, we investigate the question of numerical solvability of the initial problem for the system
of ordinary differential equations

dx

dt
= P (t)x+ q(t), (3.2.1)

x(t0) = c0, (3.2.2)

where P and q are, respectively, real matrix- and vector-functions with the Lebesque integrable com-
ponents defined on a closed interval [a, b], t0 ∈ [a, b], c0 ∈ Rn.

We assume that the absolutely continuous vector-function x0 : [a, b] → Rn is the unique solution
of problem (3.2.1), (3.2.2).

Along with problem (3.2.1), (3.2.2), we consider the difference scheme

∆y(k−1)=
1

m

(
G1m(k)y(k)+G2m(k−1)y(k−1)+g1m(k)+g2m(k−1)

)
(k=1, . . . ,m), (3.2.1m)

y(km) = γm (3.2.2m)

(m = 1, 2, . . . ), where Gjm (j = 1, 2) and gjm (j = 1, 2) are, respectively, discrete real matrix- and
vector-functions acting from the set {1, . . . ,m} into Rn×n, γm ∈ Rn, and km ∈ {0, 1, . . . ,m} for every
natural m.

In this section, we establish the effective necessary and sufficient and effective sufficient condi-
tions for the convergence of difference scheme (3.2.1m), (3.2.2m) (m = 1, 2, . . . ) to the solution x0

of problem (3.2.1), (3.2.2). Moreover, the stability criteria are obtained for the difference scheme
(3.2.1m), (3.2.2m).

The question of the numerical solvability is classical. There are a lot of papers where the problem
has been investigated (see, for example, the references in the introduction, and the references therein).
In the earlier papers, the sufficient conditions for the convergence and stability of difference schemes
were established for the linear and nonlinear cases with continuous right sides. In addition, it should
be noted that the method of investigation of the convergence of difference schemes depended on the
type of the right-hand side of system (3.2.1).

Let

τ0m = a, τkm = a+ kτm and Ikm = ]τk−1m, τkm[ (k = 1, . . . ,m; m = 1, 2, . . . ),

where τm = b−a
m .

Let νm (m = 1, 2, . . . ) be the functions defined by equalities

νm(t) =
[ t− a

b− a
m
]

for t ∈ [a, b] (m = 1, 2, . . . ).

It is evident that
νm(τkm) = k (k = 0, . . . ,m; m = 1, 2, . . . ).

We introduce the operators pm : BV([a, b];Rn) → E(Ñm;Rn) and qm : E(Ñm;Rn) → BV([a, b];Rn)
defined as follows:

pm(x)(k) = x(τkm) for x ∈ BV([a, b];Rn) (k = 0, . . . ,m)

and

qm(y)(t) =

y(k) for t = τkm (k = 0, . . . ,m),

y(k)− 1

m
(G1m(k)y(k) + g1m(k)) for t ∈ ]τk−1m, τkm[ (k = 0, . . . ,m)

for every m ∈ {1, 2, . . . }.
We assume that P ∈ L([a, b];Rn×n), q ∈ L([a, b];Rn); Gjm ∈ E(Nm;Rn×n) (j = 1, 2), gjm ∈

E(Nm;Rn). In addition, if necessary, we assume

G1m(0) = G2m(m) = On×n, g1m(0) = g2m(m) = 0n (m = 1, 2, . . . ).
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Definition 3.2.1. We say that a sequence (G1m, G2m, g1m, g2m; km) (m = 1, 2, . . . ) belongs to the
set CS(P, q, t0) if for every c0 ∈ Rn and the sequence γm ∈ Rn (m = 1, 2, . . . ), satisfying the condition

lim
m→+∞

γm = c0, (3.2.3)

the difference problem (3.2.1m), (3.2.2m) has a unique solution ym ∈ E(Ñm;Rn) for any sufficiently
large m and the condition

lim
m→+∞

∥ym − pm(x0)∥Ñm
= 0 (3.2.4)

holds.

The proofs of the results given below are based on the following concept.
We rewrite both problems (3.2.1), (3.2.2) and (3.2.1m), (3.2.2m) (m = 1, 2, . . . ) as the initial prob-

lem for the systems of generalized ordinary differential equations considered in Section 1.1. So, the
continuous system (3.2.1) and the discrete systems (3.2.1m) (m = 1, 2, . . . ) are really the equations of
the same type. Therefore, the convergence of the difference scheme (3.2.1m), (3.2.2m) (m = 1, 2, . . . )
to the solution of problem (3.2.1), (3.2.2) is equivalent to the question of the well-posedness of the
initial problem for the systems of the latter type. So, using the results of Section 1.1, we establish the
results presented in this section.

As above, it is evident that problem (3.2.1), (3.2.2) is equivalent to problem (1.2.1), (1.2.2), where

A0(t) ≡
t∫

a

P (τ) dτ, f0(t) ≡
t∫

a

q(τ) dτ.

Consider now the difference initial problem (3.2.1m), (3.2.2m), where m ∈ {1, 2, . . . }.
Let the matrix-function Am and the vector-function fm be defined by the equalities

Am(a) = Am(τ0m) = On×n, Am(τkm) =
1

m

( k∑
i=0

G1m(i) +

k∑
i=1

G2m(i− 1)
)
,

Am(t) =
1

m

( k−1∑
i=0

G1m(i) +

k∑
i=1

G2m(i− 1)
)

for t ∈ ]τk−1m, τkm[ (k = 1, . . . ,m); (3.2.5)

fm(a) = f(τ0m) = 0n, fm(τkm) =
1

m

( k∑
i=0

g1m(i) +

k∑
i=1

g2m(i− 1)
)
,

fm(t) =
1

m

( k−1∑
i=0

g1m(i) +

k∑
i=1

g2m(i− 1)
)

for t ∈ ]τk−1m, τkm[ (k = 1, . . . ,m) (3.2.6)

for every natural m.
Due to (3.2.5) and (3.2.6), the matrix- and the vector functions have the following properties:

d1Am(τkm) =
1

m
G1m(k), d2Am(τkm) =

1

m
G2m(k) (k = 1, . . . ,m),

djAm(t) = On×n for t ∈ [a, b] \ {τ1m, . . . , τkm} (j = 1, 2); (3.2.7)

d1fm(τkm) =
1

m
g1m(k), d2fm(τkm) =

1

m
g2m(k) (k = 1, . . . ,m),

djfm(t) = 0n for t ∈ [a, b] \ {τ1m, . . . , τkm} (j = 1, 2). (3.2.8)

Lemma 3.2.1. Let m be fixed. Then the discrete vector-function y ∈ E(Ñm;Rn) is a solution of
problem (3.2.1m), (3.2.2m) if and only if the vector-function x = qm(y) ∈ BV([a, b];Rn) is a solution
of the generalized problem (1.2.1m), (1.2.2m), where the matrix-function Am and the vector-function
fm are defined by (3.2.5) and (3.2.6), respectively, tm = a+ b−a

m km and cm = γm.
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Proof of Lemma 3.2.1. In view of equalities (0.0.11), (3.2.7) and (3.2.8), if we take into account the
fact that by the definition of the operator qm we have x(τkm) = qm(y)(τkm) = y(k) (k = 1, . . . ,m),
we can find

τkm∫
τk−1m

dAm(τ)xm(τ) + f(τkm)− f(τk−1m)

=
1

m
G1m(k)xm(τkm) +

1

m
G2m(k − 1)xm(τk−1m) +

1

m
g1m(k) +

1

m
g2m(k − 1)

=
1

m
G1m(k)y(k) +

1

m
G2m(k − 1)y(k − 1) +

1

m
g1m(k) +

1

m
g2m(k − 1)

= ∆y(k − 1) = xm(τkm)− xm(τk−1m) (k = 1, . . . ,m)

and

d1xm(τkm) = xm(τkm)− xm(τkm−) =
1

m
G1m(k)y(k) +

1

m
g1m(k)

= d1Am(τkm) + d1fm(τkm) (k = 1, . . . ,m);

d2xm(τk−1m) = xm(τk−1m+)− xm(τk−1m) = y(k)− y(k − 1)− 1

m
G1m(k)y(k)− 1

m
g1m(k)

=
1

m
G2m(k − 1)y(k − 1) +

1

m
g2m(k − 1)

= d2Am(τk−1m) + d2fm(τk−1m) (k = 1, . . . ,m)

for every m ∈ {1, 2, . . . }.
Analogously, we show that if the vector-function x ∈ BV([a, b];Rn) is a solution of the generalized

problem (1.2.1m), (1.2.2m) defined above, then the vector-function y(k) = pm(x)(k) (k = 1, . . . ,m)
will be a solution of the difference problem (3.2.1m), (3.2.2m) for every natural m.

So, we have shown that the convergence of the difference scheme is equivalent to the question of
the well-posedness of the initial problem (1.2.1), (1.2.2). Therefore, the inclusion(

(G1m, G2m, g1m, g2m; km)
)+∞
m=1

∈ CS(P, q; l) (3.2.9)

is equivalent to inclusion (1.2.10).

Remark 3.2.1. In view of (3.2.5) and (3.2.6), we have Am(t) = const and fm(t) = const for
t ∈]τk−1m, τkm[ (k = 1, . . . ,m; m = 1, 2, . . . ), i.e., they are the break matrix- and vector-functions.
Therefore, all solutions of system (1.2.1m) (m = 1, 2, . . . ) have the same property. Such property
have also the matrix-functions Hm (m = 1, 2, . . . ) appearing in the results of Section 1.2 (see Re-
mark 1.2.10). So they are also break matrix-functions, and hence

Hm(τk−1m+) = Hm(τkm−) (k = 0, . . . ,m; m = 1, 2, . . . ). (3.2.10)

Here we use some results of Chapter 2. For this, we give the following lemma.

Lemma 3.2.2. Let the matrix-functions Am ∈ BV([a, b];Rn×n) (m = 1, 2, . . . ) and the vector-
functions fm ∈ BV([a, b];Rn) (m = 1, 2, . . . ) be defined by (3.2.5) and (3.2.6), respectively, and Qm ∈
BV([a, b];Rn×n) (m = 1, 2, . . . ). Then there exist discrete matrix-functions Q1m, Q2m ∈ E(Ñm;Rn×n)
(m = 1, 2, . . . ) such that

B(Qm, Am)(t) ≡ 1

m

νm(t)∑
k=1

(
Q1m(k)G1m(k) +Q2m(k)G2m(k − 1)

)
(m = 1, 2, . . . ) (3.2.11)

and

B(Qm, fm)(t) ≡ 1

m

νm(t)∑
k=1

(
Q1m(k)g1m(k) +Q2m(k)+)g2m(k − 1)

)
(m = 1, 2, . . . ). (3.2.12)
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Proof. By the definition of operator B(H,A), the integration-by-parts formulae and equalities (0.0.11)
we have

B(Qm, Am)(t) =

t∫
a

Qm(τ) dAm(τ)−
∑

a<τ≤t

d1Qm(τ) d1Am(τ) +
∑

0≤τ<t

d2Q(τ) d2Am(τ)

=
∑

a<τkm≤t

Qm(τkm−) d1Am(τkm) +
∑

a≤τkm<t

Qm(τkm+) d2Am(τkm)

=

νm(t)∑
k=1

Qm(τkm−) d1Am(τkm) +

νm(t)−1∑
k=0

Qm(τkm+) d2Am(τkm)

=

νm(t)∑
k=1

(
Qm(τkm−) d1Am(τkm) +Qm(τk−1m+) d2Am(τk−1m)

)
for t∈ [a, b] (m=1, 2, . . . ). (3.2.13)

Owing to (3.2.7), from (3.2.13) we get (3.2.11), where Q1m(k) ≡ Qm(τkm−) and Q2m(k) ≡
Qm(τk−1m+) (m = 1, 2 . . . ). Analogously, using (3.2.8), we obtain presentation (3.2.12).

Theorem 3.2.1. Let
lim

m→+∞

km
m

=
t0 − a

b− a
. (3.2.14)

Then inclusion (3.2.9) holds if and only if there exist a matrix-function H ∈ AC([a, b];Rn×n) and the
sequences of discrete matrix-functions Hjm ∈ E(Ñm;Rn×n) (j = 1, 2; m = 1, 2, . . . ) such that

lim
m→+∞

sup
m∑

k=1

(∥∥∥H2m(k)−H1m(k) +
1

m
H1m(k)G1m(k)

∥∥∥
+
∥∥∥H1m(k)−H2m(k − 1) +

1

m
H1m(k)G2m(k − 1)

∥∥∥) < +∞, (3.2.15)

inf
{
|det(H(t))| : t ∈ [a, b]

}
> 0, (3.2.16)

and the conditions

lim
m→+∞

Hm(t) = H(t), (3.2.17)

lim
m→+∞

1

m

νm(t)∑
k=1

H1m(k)
(
G1m(k) +G2m(k − 1)

)
=

t∫
a

H(τ)P (τ) dτ, (3.2.18)

and

lim
m→+∞

1

m

νm(t)∑
k=1

H1m(k)
(
g1m(k) + g2m(k − 1)

)
=

t∫
a

H(τ)q(τ) dτ (3.2.19)

hold uniformly on [a, b], where the matrix-functions Hm ∈ BV([a, b];Rn) (m = 1, 2, . . . ) are defined by
equalities

Hm(t) = H1m(k) for τk−1m < t < τkm, Hm(τkm) = H2m(k) (k = 1, . . . ,m; m = 1, 2, . . . ).

Proof. To prove the theorem, we use Theorem 1.2.1′.
Let us show the sufficiency. It is evident that Hm (m = 1, 2, . . . ) are break matrix-functions that

are constants on the intervals ]τk−1m, τkm[ , respectively. Hence equalities (3.2.10) hold, and

d1Hm(τkm) = H2m(k)−H1m(k), d2Hm(τkm) = H1m(k+1)−H2m(k) (k = 1, . . . ,m; m = 1, 2, . . . ).
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Owing to Lemma 3.2.2, Remark 3.2.1 and equalities (3.2.10), we get

B(Hm, Am)(t) ≡ 1

m

νm(t)∑
k=1

H1m(k)
(
G1m(k) +G2m(k − 1)

)
(m = 1, 2, . . . ). (3.2.20)

and

B(Hm, fm)(t) ≡ 1

m

νm(t)∑
k=1

H1m(k)
(
g1m(k) + g2m(k − 1)

)
(m = 1, 2, . . . ).

On the other hand, condition (1.2.34) is equivalent to condition (3.2.15). Thus, conditions (3.2.14),
(3.2.15), (3.2.16), (3.2.17), (3.2.18) and (3.2.19) guarantee the fulfilment of the condition of Theo-
rem 1.2.1′.

Let us show the necessity. Inclusion (3.2.9) is equivalent to inclusion (1.2.10), where Am and
fm (m = 1, 2, . . . ) are defined as above. Due to Theorem 1.2.1′, there exists a sequence Hm ∈
BV([a, b];Rn) (m = 1, 2, . . . ) satisfying the conditions given in the theorem. Let

H1m(k) ≡ Hm(τkm−), H2m(k) ≡ Hm(τkm) (m = 1, 2, . . . ).

According to Remark 3.2.1, equality (3.2.10) holds. Using Lemma 3.2.1, we can easily show that
the above-defined discrete matrix-functions H1m and H2m (m = 1, 2, . . . ) satisfy the condition of
Theorem 3.2.1.

Remark 3.2.2. The limit equality (3.2.17) holds uniformly on [a, b] if and only if

lim
m→+∞

max
{
∥H1m(k)−H(t)∥ : t ∈ ]τk−1m, τkm[ , k = 1, . . . ,m

}
= 0

and
lim

m→+∞
max

{
∥H2m(k)−H(τkm)∥ : k = 0, . . . ,m

}
= 0.

The limit equalities (3.2.18) and (3.2.19) hold uniformly on [a, b] if and only if the conditions

lim
m→+∞

max
{

1

m

l∑
i=1

H1m(i)(G1m(i) +G2m(i− 1))−
τlm∫
a

H(τ)P (τ) dτ : l = 1, . . . ,m

}
= On×n

and

lim
m→+∞

max
{

1

m

l∑
i=1

H1m(i)(g1m(i) + g2m(i− 1))−
τlm∫
a

H(τ)q(τ) dτ : l = 1, . . . ,m

}
= 0n

hold, respectively. Moreover, in Theorem 3.2.1, without loss of generality, we can assume that
H(t)≡ In.

Let X, X(a) = In, be the fundamental matrix of the homogeneous system

dx

dt
= P (t)x (3.2.10)

and let Ym, Ym(0) = In, be the fundamental matrix of the homogeneous difference system

∆y(k − 1) =
1

m

(
G1m(k)y(k) +G2m(k − 1)y(k − 1)

)
(k = 1, . . . ,m) (3.2.22m0

)

for every natural m.
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Theorem 3.2.2. Let conditions (3.2.14) and

det
(
In + (−1)j

1

m
Gjm(k)

)
̸= 0 (j = 1, 2; k = 1, . . . ,m; m = 1, 2, . . . ) (3.2.23)

hold. Then inclusion (3.2.9) holds if and only if the conditions

lim
m→+∞

max
{
∥Y −1

m (k)−X−1(τkm)∥ : k = 0, . . . ,m
}
= 0 (3.2.24)

and

lim
m→+∞

max
{

1

m

l∑
i=1

Y −1
m (i)(g1m(i) + g2m(i− 1))−

τlm∫
a

X−1(τ)q(τ) dτ : l = 1, . . . ,m

}
= 0n (3.2.25)

are satisfied.

Proof. The theorem is a realization of Theorem 1.2.1′′ for this case.

Remark 3.2.3.

(a) By the evident equality (X−1(t))′ ≡ −X−1(t)P (t), the right-hand side of (3.2.18) equals In −
X−1(t) if H(t) ≡ X−1(t); moreover, in view of (1.1.17) and (3.2.20), the left-hand side of equality
(3.2.18) equals In − Y −1

m (k) if H1m(k) ≡ Y −1
m (k) for every natural m. Hence condition (3.2.18)

is equivalent to (3.2.24);

(b) if

P (t)

t∫
t0

P (τ) dτ ≡
t∫

t0

P (τ) dτ P (t),

then

X(t) ≡ exp
( t∫

t0

P (τ) dτ

)
;

(c) by (3.2.23), we conclude that

Ym(k) =

1∏
i=k

(
In − 1

m
G1m(i)

)−1(
In +

1

m
G2m(i− 1)

)
(k = 1, . . . ,m) (3.2.26)

for every natural m;

(d) in Theorem 3.2.2, condition (3.2.15) is automatically satisfied, since Ym is the fundamental
matrix of the homogeneous system (3.2.22m0

) for every natural m.

Now we present a method of constructing discrete real matrix- and vector-functions Gjm (j = 1, 2)
and gjm (j = 1, 2) (m = 1, 2, . . . ), respectively, for which the conditions of Theorem 3.2.2 are satisfied.

To this end, we use the inductive method. Let Em : Ñm → Rn×n and ξm : Ñm → Rn (m = 1, 2, . . . )
be discrete matrix- and vector-functions, respectively, such that

lim
m→+∞

∥Em∥Ñm
= 0 and lim

m→+∞
m∥ξm∥Ñm

= 0.

Let
Plm = X(τlm) + Em(l) (l = 0, . . . ,m; m = 1, 2, . . . ).

Let m be an arbitrary natural number and G1m(1) and G2m(0) be such that

Ym(1) = P1m.
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According to (3.2.26) we get(
In − 1

m
G1m(1)

)−1(
In +

1

m
G2m(0)

)
= P1m.

Therefore, G1m(1) and G2m(0) will be arbitrary matrices such that

G1m(1) = m(In − P−1
1m)−G2m(0)P−1

1m .

Assume now that G1m(k), G2m(k − 1) and Ym(k) (k = 1, . . . , l − 1) are constructed. For the
construction of G1m(l) and G2m(l − 1) we use the equalities

Ym(l) = Plm

and
Ym(l) =

(
In − 1

m
G1m(l)

)−1(
In +

1

m
G2m(l − 1)

)
Ym(l − 1).

As above, we obtain the relation

G1m(l) = m(In − Pl−1mP−1
lm )−G2m(l − 1)Pl−1mP−1

lm .

So, G1m(l) and G2m(l − 1) will be arbitrary matrices satisfying the latter equality.
Let now construct the discrete vector-functions g1m and g2m (m = 1, 2, . . . ). As g1m(l) and

g2m(l − 1), we choose arbitrary vectors satisfying the equalities

1

m
Y −1
m (l)

(
g1m(l) + g2m(l − 1)

)
= qlm (l = 1, . . . ,m),

where

qlm = ξm(l) +

τlm∫
a

X−1(τ)q(τ) dτ (l = 1, . . . ,m)

for every natural m. Therefore, we have the equalities

g1m(l) + g2m(l − 1) = mYm(l)qlm (l = 1, . . . ,m; m = 1, 2, . . . )

for the definition of the vector-functions g1m and g2m (m = 1, 2, . . . ).
It is evident that the above-constructed vector-functions satisfy condition (3.2.25).
We realize the above-constructed discrete matrix- and vectors-functions by the following example.

Example 3.2.1. Let

X(t) ≡ exp
( t∫

a

P (τ) dτ

)
be the fundamental matrix of system (3.2.10) and let Em ≡ On×n and ξm ≡ 0n (m = 1, 2, . . . ). Then

Plm = exp
( τlm∫

a

P (τ) dτ

)
(l = 0, . . . ,m; m = 1, 2, . . . ).

If we choose

G2m(l − 1) = PlmP−1
l−1m = exp

( τlm∫
τl−1m

P (τ) dτ

)
(l = 1, . . . ,m; m = 1, 2, . . . ),

then

G1m(l) = (m− 1)In −m exp
(
−

τlm∫
τl−1m

P (τ) dτ

)
(l = 1, . . . ,m; m = 1, 2, . . . ).
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For the definition of the discrete vector-functions g1m and g2m (m = 1, 2, . . . ) we have the relations

g1m(l) + g2m(l − 1) = m

τlm∫
a

U(τlm, τ)q(τ) dτ (l = 1, . . . ,m; m = 1, 2, . . . ),

where U(t, τ) is the Cauchy matrix of system (3.2.1).
In particular, we can take

g1m(l) = αm

τlm∫
a

C(τlm, τ)q(τ) dτ and g2m(l − 1) = (1− α)m

τlm∫
a

C(τlm, τ)q(τ) dτ

(l = 1, . . . ,m; m = 1, 2, . . . ),

where α is some number.
Moreover, we can choose these discrete vector-functions in connection with the Cauchy formulae

for system (3.2.1).

Theorem 3.2.3. Let condition (3.2.14) be satisfied. Let, moreover, the sequences Gjm ∈ E(Ñm;Rn×n)

(j = 1, 2; m = 1, 2, . . . ), gjm ∈ E(Ñm;Rn) (j = 1, 2; m = 1, 2, . . . ) and γm (m = 1, 2, . . . ) be such
that conditions (3.2.3) and

lim
m→+∞

sup
( 1

m

m∑
k=0

(
∥Gjm(k)∥+ ∥gjm(k)∥

))
< +∞ (j = 1, 2) (3.2.27)

hold, and the conditions

lim
m→+∞

1

m

νm(t)∑
k=1

(
G1m(k) +G2m(k − 1)

)
=

t∫
a

P (τ) dτ,

and

lim
m→+∞

1

m

νm(t)∑
k=1

(
g1m(k) + g2m(k − 1)

)
=

t∫
a

q(τ) dτ

hold uniformly on [a, b]. Then the difference initial problem (3.2.1m), (3.2.2m) has the unique solution
ym for any sufficiently large m and condition (3.2.4) holds.

Proof. The validity of the theorem follows from the sufficiency of Theorem 3.2.1 if we assume H1m(k) =
H2m(k) ≡ In and H(t) ≡ In therein.

Proposition 3.2.1. Let conditions (3.2.14)–(3.2.16) and

lim
m→+∞

1

m
max

{
∥Gjm(k)∥+ ∥gjm(k)∥ : k = 0, . . . ,m

}
= 0 (j = 1, 2) (3.2.28)

hold and let conditions (3.2.17)–(3.2.19) be fulfilled uniformly on [a, b], where H ∈ AC([a, b];Rn×n),
H1m,H2m ∈ E(Ñm;Rn×n) (m = 1, 2, . . . ). Let, moreover, either condition (3.2.27) or the condition

lim
m→+∞

sup
m∑

k=0

(
∥H2m(k)−H1m(k)∥+ ∥H1m(k)−H2m(k − 1)∥

)
< +∞

be satisfied. Then inclusion (3.2.9) holds.

Proof. The proposition is a realization of Corollary 1.2.2 for this case.
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Theorem 3.2.4. Let conditions (3.2.14), (3.2.15) and (3.2.28) hold and let conditions (3.2.17),

lim
m→+∞

1

m

νm(t)∑
k=1

(
G1m(k) +G2m(k − 1)

)
=

t∫
a

P (τ) dτ, (3.2.29)

lim
m→+∞

1

m

νm(t)∑
k=1

(
g1m(k) + g2m(k − 1)

)
=

t∫
a

q(τ) dτ, (3.2.30)

lim
m→+∞

1

m

νm(t)∑
k=1

H1m(k)(G1m(k) +G2m(k − 1)) =

t∫
a

P∗(τ) dτ

and

lim
m→+∞

1

m

νm(t)∑
k=1

H1m(k)(g1m(k) + g2m(k − 1)) =

t∫
a

q∗(τ) dτ

hold uniformly on [a, b], where P∗ ∈ L([a, b];Rn×n), q∗ ∈ L([a, b];Rn); H1m,H2m ∈ E(Ñm;Rn×n)
(m = 1, 2, . . . ). Let, moreover, the system

dx

dt
= (P (t)− P∗(t))x+ q(t)− q∗(t)

have a unique solution under the initial condition (3.2.2). Then

(
(G1m, G2m, g1m, g2m; τkm)

)+∞
m=1

∈ CS(P − P∗, q − q∗; l).

Proof. The theorem is a realization of Corollary 1.2.3 for this case.

Proposition 3.2.2. Let conditions (3.2.14) hold and there exist a natural µ and matrix-functions
Bjl ∈ E(Ñm;Rn×n), Bjl(a) = On×n (j = 1, 2; l = 0, . . . , µ− 1) such that

lim
m→+∞

sup
m∑

k=1

(∥∥H2mµ(k)−H1mµ(k) +
1

m
H1mµ(k)G1mµ(i)

∥∥
+
∥∥H1mµ(k)−H2mµ(k − 1) +

1

m
H1mµ(k)G2mµ(k − 1)

∥∥) < +∞,

lim
m→+∞

max
{
∥Hjmµ(k)− In∥ : k = 0, . . . ,m

}
= 0 (j = 1, 2),

and the conditions

lim
m→+∞

1

m

νm(t)∑
k=1

(
G1mµ(k) +G2mµ(k − 1)

)
=

t∫
a

P (τ) dτ,

lim
m→+∞

1

m

νm(t)∑
k=1

(
g1mµ(k) + g2mµ(k − 1)

)
=

t∫
a

q(τ) dτ
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are fulfilled uniformly on [a, b], where

H1m0(k) = H2m0(k) ≡ In,

H1ml+1(k) ≡
( 1

m
H1ml(k)G1m(k) +Q1(H1ml, G1m, G2m)(k) +B1 l+1(k)

)
H1ml(k),

H2ml+1(k) ≡
(
Q2(H1ml, G1m, G2m)(k) +B2 l+1(k)

)
H2ml(k),

G1ml+1(k) ≡ H1ml(k)G1m(k), G2ml+1(k) ≡ H1ml(k + 1)G2m(k),

g1ml+1(k) ≡ Hml(k)g1m(k), g2ml+1(k) ≡ Hml(k + 1)g2m(k),

Qj(H1ml, G1m, G2m)(k) ≡ 2In −Hjml(k)−
1

m

k∑
i=1

H1ml(i)(G1m(i) +G2m(i− 1))

(j = 1, 2; l = 0, . . . , µ− 1; m = 1, 2, . . . ).

Then inclusion (3.2.9) holds.

Proof. The proposition is a realization of Corollary 1.2.4 for this case.

If µ = 1 and Bj0(t) ≡ On×n (j = 1, 2), then Proposition 3.2.2 takes the following form.

Proposition 3.2.3. Let conditions (3.2.14) and

lim
m→+∞

sup
( 1

m

m∑
k=1

(∥G1m(k)∥+ ∥G2m(k)∥)
)
< +∞

hold and conditions (3.2.29) and (3.2.30) be fulfilled uniformly on [a, b]. Then inclusion (3.2.9) holds.

Remark 3.2.4. In Theorem 3.2.3 and Propositions 3.2.1–3.2.3, if condition (3.2.23) holds, we can
assume that Hm(t) ≡ Y −1

m (t), where Ym is the fundamental matrix of the homogeneous system
(3.2.22m0

) defined by (3.2.26) for every natural m. Moreover, condition (3.2.15) and the analogous
conditions hold automatically everywhere in the results described above.

Consider now the question on the stability of a solution of the difference initial problem

∆y(k − 1) = G10(k)y(k) +G20(k − 1)y(k − 1) + g10(k) + g20(k − 1) (k = 1, . . . ,m0), (3.2.31)
y(k0) = γ0, (3.2.32)

where m0 ≥ 2 is a fixed natural number, Gj0 ∈ E(Nm0 ;Rn×n) (j = 1, 2), gj0 ∈ E(Nm0 ;Rn) (j = 1, 2),
k0 ∈ {0, . . . ,m0} and γ0 ∈ Rn.

Along with problem (3.2.31), (3.2.32), consider the sequence of problems

∆y(k − 1) = G1m(k)y(k) +G2m(k − 1)y(k − 1) + g1m(k) + g2m(k − 1) (k = 1, . . . ,m0), (3.2.31m)
y(k0) = γm (3.2.32m)

(m = 1, 2, . . . ), where Gjm ∈ E(Nm0
;Rn×n) (j = 1, 2), gm ∈ E(Nm0

;Rn), Bm ∈ E(Nm0
;Rn), and

γm ∈ Rn for every natural m.
As above, if necessary, we assume that

G1m(0) = On×n, g1m(0) = 0n (m = 0, 1, . . . ),

G2m(m0) = On×n, g2m(m0) = 0n (m = 0, 1, . . . )

and problem (3.2.31), (3.2.32) has a unique solution y0 ∈ E(Ñm0 ;Rn).
In (3.2.32m), if instead of k0 we take k0m, k0m ̸= k0 (m = 1, 2, . . . ), then it follows from the

condition lim
m→+∞

k0m = k0 that k0m = k0 for any sufficiently large m.
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Definition 3.2.2. We say that a sequence (G1m, G2m, g1m, g2m; k0) (m = 1, 2, . . . ) belongs to the set
S(G10, G20, g10, g20; k0) if for every γ0 ∈ Rn and the sequence γm ∈ Rn (m = 1, 2, . . . ) satisfying the
condition

lim
m→+∞

γm = γ0,

the difference problem (3.2.31m), (3.2.32m) has a unique solution ym ∈ E(Ñm0 ;Rn) for any sufficiently
large m and the condition

lim
m→+∞

ym(k) = y0(k) (k = 0, . . . ,m0)

holds.

Theorem 3.2.5. Let

det
(
In + (−1)jGj0(k)

)
̸= 0 (j = 1, 2; k = 0, . . . ,m0). (3.2.33)

Then (
(G1m, G2m, g1m, g2m; k0)

)+∞
m=1

∈ S(G10, G20, g10, g20; k0) (3.2.34)

if and only if there exist the sequences of matrix-functions Hjm ∈ E(Ñm;Rn×n) (j = 1, 2; m =
1, 2, d . . . ) such that

lim
m→+∞

sup
m0∑
k=1

(∥∥H2m(k)−H1m(k) +H1m(k)G1m(k)
∥∥

+
∥∥H1m(k)−H2m(k − 1) +H1m(k)G2m(k − 1)

∥∥) < +∞,

lim
m→+∞

Hjm(k) = In (j = 1, 2, k = 0, . . . ,m0),

lim
m→+∞

H1m(k)
(
G1m(k) +G2m(k − 1)

)
= G10(k) +G20(k − 1) (k = 1, . . . ,m0)

and
lim

m→+∞
H1m(k)

(
g1m(k) + g2m(k − 1)

)
= g10(k) + g20(k − 1) (k = 1, . . . ,m0).

Proof. The theorem is a realization of Theorem 1.2.1′, where H0(t) ≡ In, for this case.

Theorem 3.2.6. Let the condition

det(In + (−1)jGjm(k)) ̸= 0 (j = 1, 2; k = 0, . . . ,m0; m = 1, 2, . . . )

be satisfied. Then inclusion (3.2.34) holds if and only if

lim
m→+∞

Gjm(k) = Gj0(k) (j = 1, 2; k = 0, . . . ,m0)

and
lim

m→+∞
gjm(k) = gj0(k) (j = 1, 2; k = 0, . . . ,m0).

Proof. The theorem is a realization of Theorem 1.2.1′′ for this case.

Proposition 3.2.4. Let conditions (3.2.33),

lim
m→+∞

Gjm(k) = Gj0(k) (j = 1, 2; k = 0, . . . ,m0)

and
lim

m→+∞
gjm(k) = gj0(k) (j = 1, 2; k = 0, . . . ,m0)

be satisfied. Then inclusion (3.2.34) holds.

Proof. The theorem is a realization of Theorem 1.2.2′ for this case.
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Proposition 3.2.5. Let condition (3.2.33) hold and there exist a natural µ and matrix-functions
Bjl ∈ E(Ñm0 ;Rn×n), Bjl(a) = On×n (j = 1, 2; l = 0, . . . , µ− 1) such that the conditions

lim
m→+∞

sup
m0∑
k=0

(∥∥H2mµ(k)−H1mµ(k) +H1mµ(k)G1mµ(i)
∥∥

+
∥∥H1mµ(k)−H2mµ(k − 1) +H1mµ(k)G2mµ(k − 1)

∥∥) < +∞,

lim
m→+∞

Hjmµ(k) = In (j = 1, 2; k = 0, . . . ,m0),

lim
m→+∞

H1mµ(k)
(
G1mµ(k) +G2mµ(k − 1)

)
= G10(k) +G20(k − 1) (k = 1, . . . ,m0)

and
lim

m→+∞
H1mµ(k)

(
g1mµ(k) + g2mµ(k − 1)

)
= g10(k) + g20(k − 1) (k = 1, . . . ,m0)

are satisfied, where

H1m0(k) = H2m0(k) ≡ In,

H1ml+1(k) ≡
(
H1ml(k)G1m(k) +Q1(H1ml, G1m, G2m)(k) +B1 l+1(k)

)
H1ml(k),

H2ml+1(k) ≡
(
Q2(H1ml, G1m, G2m)(k) +B2 l+1(k)

)
H2ml(k),

G1ml+1(k) ≡ H1ml(k)G1m(k), G2ml+1(k) ≡ H1ml(k + 1)G2m(k),

g1ml+1(k) ≡ Hml(k)g1m(k), g2ml+1(k) ≡ Hml(k + 1)g2m(k),

Qj(H1ml, G1m, G2m)(k) ≡ 2In −Hjml(k)−
k∑

i=1

H1ml(i) (G1m(i) +G2m(i− 1))

(j = 1, 2; l = 0, . . . , µ− 1; m = 1, 2, . . . ).

Then inclusion (3.2.34) holds.

Proof. The proposition is a realization of Corollary 1.2.4 for this case.

If µ = 1 and Bj0(t) = On×n (j = 1, 2), then Proposition 3.2.5 takes the following form.

Proposition 3.2.6. Let conditions (3.2.33),

lim
m→+∞

sup
m0∑
k=1

(
∥G1m(k)∥+ ∥G2m(k)∥

)
< +∞,

lim
m→+∞

(
G1m(k) +G2m(k − 1)

)
= G10(k) +G20(k − 1) (k = 1, . . . ,m0)

and
lim

m→+∞

(
g1m(k) + g2m(k − 1)

)
= g10(k) + g20(k − 1) (k = 1, . . . ,m0)

be satisfied. Then inclusion (3.2.34) holds.
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