
Memoirs on Differential Equations and Mathematical Physics
Volume 77, 2019, 59–69

Seshadev Padhi, B. S. R. V. Prasad,
Satyam Narayan Srivastava, Shasanka Dev Bhuyan

MONOTONE ITERATIVE METHOD FOR SOLUTIONS
OF FRACTIONAL DIFFERENTIAL EQUATIONS



Abstract. In this paper, we apply the monotone iteration method to establish the existence of a
positive solution for the fractional differential equation

Dα
0+u(t) + q(t)f(t, u(t)) = 0, 0 < t < 1,

together with the boundary conditions (BCs)

u(0) = u′(0) = · · · = un−2(0) = 0, Dβ
0+u(1) =

1∫
0

h(s, u(s)) dA(s),

where n > 2, n − 1 < α ≤ n, β ∈ [1, α − 1], Dα
0+ and Dβ

0+ are the standard Riemann–Liouville
fractional derivatives of order α and β, respectively, and f, h : [0, 1]× [0,∞) → [0,∞) are continuous
functions. The sufficient condition provided in this paper is new, interesting and easy to verify. Our
conditions do not require the sublinearity or superlinearity on the nonlinear functions f and h at 0 or
∞. The paper is supplemented with examples illustrating the applicability of our result.
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ÒÄÆÉÖÌÄ. ÓÔÀÔÉÀÛÉ ÂÀÌÏÚÄÍÄÁÖËÉÀ ÌÏÍÏÔÏÍÖÒÉ ÉÔÄÒÀÝÉÉÓ ÌÄÈÏÃÉ, ÒÀÈÀ ÃÀÅÀÃÂÉÍÏÈ
ÃÀÃÄÁÉÈÉ ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄÁÏÁÀ ßÉËÀÃÖÒÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

Dα
0+u(t) + q(t)f(t, u(t)) = 0, 0 < t < 1,

ÂÀÍÔÏËÄÁÉÓÈÅÉÓ

u(0) = u′(0) = · · · = un−2(0) = 0, Dβ
0+u(1) =

1∫
0

h(s, u(s)) dA(s)

ÓÀÓÀÆÙÅÒÏ ÐÉÒÏÁÄÁÉÈ, ÓÀÃÀÝ n > 2, n− 1 < α ≤ n, β ∈ [1, α− 1], Dα
0+ ÃÀ Dβ

0+, ÛÄÓÀÁÀÌÉÓÀÃ,
α ÃÀ β ÒÉÂÉÓ ÓÔÀÍÃÀÒÔÖËÉ ÒÉÌÀÍ-ËÉÖÅÉËÉÓ ßÉËÀÃÖÒÉ ßÀÒÌÏÄÁÖËÄÁÉÀ ÃÀ f, h : [0, 1] ×
[0,∞) → [0,∞) ÖßÚÅÄÔÉ ×ÖÍØÝÉÄÁÉÀ. ÀÌ ÓÔÀÔÉÀÛÉ ßÀÒÌÏÃÂÄÍÉËÉ ÓÀÊÌÀÒÉÓÉ ÐÉÒÏÁÀ ÀáÀËÉ,
ÓÀÉÍÔÄÒÄÓÏ ÃÀ ÌÀÒÔÉÅÀÃ ÛÄÓÀÌÏßÌÄÁÄËÉÀ. ÜÅÄÍÉ ÐÉÒÏÁÄÁÉ ÀÒ ÌÏÉÈáÏÅÓ ÀÒÀßÒ×ÉÅÉ f ÃÀ h
×ÖÍØÝÉÄÁÉÓ ØÅÄßÒ×ÉÅÏÁÀÓ ÀÍ ÆÄßÒ×ÉÅÏÁÀÓ 0-ÛÉ ÀÍ ∞-ÛÉ. ÓÔÀÔÉÀÛÉ ÀÂÒÄÈÅÄ ÌÏÚÅÀÍÉËÉÀ
ÌÀÂÀËÉÈÄÁÉ ÜÅÄÍÉ ÛÄÃÄÂÉÓ ÂÀÌÏÚÄÍÄÁÉÓ ÓÀÉËÖÓÔÒÀÝÉÏÃ.
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1 Introduction
The aim of the present paper is to demonstrate the applications of the monotone iteration method for
studying the existence of at least one positive solution of the nonlinear fractional differential equation

Dα
0+u(t) + q(t)f(t, u(t)) = 0, 0 < t < 1, (1.1)

together with the boundary conditions (BCs)

u(0) = u′(0) = · · · = u(n−2)(0) = 0, Dβ
0+u(1) =

1∫
0

h(s, u(s)) dA(s), (1.2)

where n − 1 < α ≤ n, n > 2, β ∈ [1, α − 1] is fixed, q : (0, 1) → [0,∞) is a continuous function,

f, h : (0, 1) × [0,∞) → [0,∞) are continuous functions,
1∫
0

h(s, u(s)) dA(s) is a Riemann–Stieltjes

integral with A being nondecreasing and of bounded variation, and Dα
0+, Dβ

0+ are the standard
Riemann–Liouville fractional derivatives of order α and β, respectively.

We define the fractional derivative and fractional integral for a function F of order γ, γ ∈ [0,∞)
as follows.
Definition 1.1. The (left-sided) fractional integral of order γ > 0 of a function F : (0,∞) → R is
given by

(Iγ0+F )(t) =
1

Γ(γ)

t∫
0

(t− s)γ−1F (s) ds, t > 0,

provided that the right-hand side is pointwise defined on (0,∞), where Γ(γ) is the Euler Gamma
function, defined by Γ(γ) =

∞∫
0

tγ−1e−t dt, γ > 0.

Definition 1.2. The Riemann–Liouville fractional derivative of order γ > 0 of a function F :
(0,∞)→ R is given by

(Dγ
0+F )(t) =

( d

dt

)n

(In−γ
0+ F )(t) =

1

Γ(n− γ)

( d

dt

)n
t∫

0

F (s)

(t− s)γ−n+1
ds

for t > 0, where n = [[γ]] + 1 ([[γ]] is the largest integer, not greater than γ), provided that the
right-hand side is pointwise defined on (0,∞).
Definition 1.3. By a positive solution of (1.1), (1.2) we mean a function u ∈ C[0, 1] satisfying
(1.1), (1.2) with u(t) > 0 for all t ∈ (0, 1].

The fixed point theorems have been playing a crucial role in establishing the solutions of fractional
differential equations. For instance, one may refer to [4–6, 8, 12, 15–20] on the use of a fixed point in-
dex property, Krasnoselskii’s, Avery–Peterson’s, Schauder’s fixed point theorems, the Leray–Schauder
alternative, and Guo–Krasnoselskii’s fixed point theorem to study the existence of at least one, two
or three positive solutions of fractional differential equations of form (1.1) with nonlinear BCs of form
(1.2). For a system of fractional differential equations with integral boundary conditions of coupled
or uncoupled type, one may refer to [1, 9–11,13,14].

In their recent work [16], Padhi et al. have used Schauder’s fixed point theorem and the Leray–
Schauder’s alternative along with the Krasnoselskii’s fixed point theorem to study the existence and
uniqueness of positive solutions of (1.1), (1.2). Using the Avery–Peterson’s fixed point theorem, the
authors established the existence of at least three positive solutions of (1.1), (1.2).

In [16], Padhi et al. have shown that the boundary value problem (1.1), (1.2) is equivalent to the
integral equation

u(t) =

1∫
0

G(t, s)q(s)f(s, u(s)) ds+
Γ(α− β)

Γ(α)
tα−1

1∫
0

h(s, u(s)) dA(s),
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where G(t, s) is the Green’s function given by

G(t, s) =
1

Γ(α)

{
tα−1(1− s)α−β−1 − (t− s)α−1, 0 ≤ s ≤ t ≤ 1

tα−1(1− s)α−β−1, 0 ≤ t ≤ s ≤ 1.

Further, it is proved in [16] that the Green’s function G(t, s) satisfies the inequality

tα−1G(1, s) = tα−1 max
0≤t≤1

G(t, s) ≤ G(t, s) ≤ max
0≤t≤1

G(t, s) = G(1, s), (1.3)

where

G(1, s) =
1

Γ(α)
(1− s)α−β−1

[
1− (1− s)β

]
. (1.4)

To establish our results, we assume that the following conditions are satisfied:

(A1) f, h ∈ C([0, 1]× [0,∞), [0,∞));

(A2) q ∈ C((0, 1), [0,∞)), and q does not vanish identically on any subinterval of (0, 1];

(A3) for any positive numbers r1 and r2 with r1 < r2, there exist continuous functions pf and
ph : (0, 1) → [0,∞) such that

f(t, u) ≤ pf (t), h(t, u) ≤ ph(t) for 0 ≤ t ≤ 1,
r1

22(α−1)
≤ u ≤ r2,

and
1∫

0

G(1, s)q(s)pf (s) ds+
Γ(α− β)

Γ(α)

1∫
0

ph(s) dA(s) < ∞,

where G(1, s) is given in (1.4).

In this paper, we apply the monotone iterative method to obtain sufficient conditions on the
existence of one positive solution and an iterative scheme for approximating the solutions. The
following theorem states the main result of this paper.

Theorem 1.1. Assume that there exist constants r and R with 0 < 2r < R such that the following
conditions are satisfied:

(A4) r
1∫
0

G(1, s)q(s) ds

≤ f(t, u) ≤ f(t, v) ≤ R

2
1∫
0

G(1, s)q(s) ds

for µ2r ≤ u ≤ v ≤ R and 1

2
≤ t ≤ 1

and

(A5) h(t, u) ≤ h(t, v) ≤ Γ(α)R

2Γ(α− β)
1∫
0

dA(s)

for µ2r ≤ u ≤ v ≤ R and 1

2
≤ t ≤ 1.

Then problem (1.1), (1.2) has at least one positive solution.
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2 Preliminaries
In this section, we provide some basic concepts on the cones in a Banach space and the monotone
iteration method.

Definition 2.1. Let X be a real Banach space. A nonempty convex closed set P ⊂ X is said to be
a cone provided that

(i) ku ∈ P for all u ∈ P and all k ≥ 0;

(ii) u,−u ∈ P implies u = 0.

In order to prove Theorem 1.1, we use the following well known monotone iteration method im-
ported from [2,3, 7] or Theorem 7.A in [21].

Theorem 2.1. Let X be a real Banach space and K be a cone in X. Assume that there exist constants
v0 and w0 with v0 ≤ w0 and [v0, w0] ⊂ X such that

(i) T : [v0, w0] → X is completely continuous;

(ii) T is a monotonic increasing operator on [v0, w0];

(iii) v0 is a lower solution of T , that is, v0 ≤ Tv0;

(iv) w0 is an upper solution of T , that is, Tw0 ≤ w0.

Then T has a fixed point and the iterative sequences vn+1 = Tvn and wn+1 = Twn, n = 1, 2, 3, . . . ,
with

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ · · · ≤ wn ≤ wn−1 ≤ · · · ≤ w1 ≤ w0

converges to v and w, respectively, which are the greatest and smallest fixed points of T in [v0, w0].

In this paper, we let X = C[0, 1] to be the Banach space endowed with the norm

∥u∥ = max
0≤t≤1

|u(t)|.

Define a cone K on X as K = {u ∈ C[0, 1] : u(t) ≥ 0, t ∈ [0, 1]} and an operator T : K → X as

Tu(t) =

1∫
0

G(t, s)q(s)f(s, u(s)) ds+
Γ(α− β)

Γ(α)
tα−1

1∫
0

h(s, u(s)) dA(s). (2.1)

Then it is easy to verify that u(t) is a positive solution of problem (1.1), (1.2) if and only if u(t) is a
fixed point of the operator T on the cone K.

Let g(s) = G(1, s) with
1∫

1/2

g(s) ds > 0 and c(t) = tα−1. Then (1.3) can be rewritten as

c(t)g(s) ≤ G(t, s) ≤ g(s) for 0 ≤ t, s ≤ 1. (2.2)

Since it is useful to work on a smaller cone than K, we consider a cone K1 of the type

K1 =
{
u ∈ X : u(t) ≥ 0 and min

t∈[a,b]
u(t) ≥ ca,b∥u∥

}
,

where [a, b] is some subinterval of [0, 1] and ca,b > 0. Condition (2.2) ensures that for [a, b] ⊂ [0, 1], if
ca,b = min{c(t) : t ∈ [a, b]} > 0, then T maps K into K1. Since (2.2) is valid for any t ∈ [0, 1], we can
work on the subinterval [1/2, 1] ⊂ [0,1] for which the inequality

µG(1, s) ≤ G(t, s) ≤ G(1, s)
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replaces (1.3) or (2.2), where

µ =
1

2α−1
= min

t∈[1/2,1]
c(t) = min

t∈[1/2,1]
tα−1.

In this case, the operator T , defined in (2.1), maps the cone K into the subcone P , where

P =
{
u ∈ C[0, 1] : min

t∈[1/2,1]
u(t) ≥ µ∥u∥

}
. (2.3)

Also, u(t) is a positive solution of problem (1.1), (1.2) if and only if u(t) is a fixed point of the operator
T on the subcone P .

3 Proof of Theorem 1.1
To prove our theorem, we consider the cone P , defined in (2.3). Let u ∈ P . Then

∥Tu∥ ≤
1∫

0

G(1, s)q(s)f(s, u(s)) ds+
Γ(α− β)

Γ(α)

1∫
0

h(s, u(s)) dA(s)

and

min
t∈[1/2,1]

Tu(t) ≥
(

min
t∈[1/2,1]

tα−1
)[ 1∫

0

G(1, s)q(s)f(s, u(s) ds+
Γ(α− β)

Γ(α)

1∫
0

h(s, u(s)) dA(s)

]

= µ

[ 1∫
0

G(1, s)q(s)f(s, u(s)) ds+
Γ(α− β)

Γ(α)

1∫
0

h(s, u(s)) dA(s)

]
≥ µ∥Tu∥

implies that T : P → P . Also, T is well defined.
Set v0 = µ2r and w0 = R; then v0 < w0. We now prove that T : [v0, w0] → P is completely

continuous. Let {un} ∈ [v0, w0] and u ∈ [v0, w0] be such that lim
n→∞

un = u. Then µ2r ≤ un ≤ R and
µ2r ≤ u ≤ R for t ∈ [0, 1]. Since f is continuous on [0, 1]× [µ2r,R], for ε > 0 there exists δ1 > 0 with
|u1 − u2| < δ1 for u1, u2 ∈ [µ2r,R], and we have

|f(t, u1)− f(t, u2)| <
ε

2
1∫
0

G(1, s)q(s) ds

, t ∈ [0, 1].

Similarly, from the continuity of h on [0, 1]× [µ2r,R], we get

|h(t, u1)− h(t, u2)| <
Γ(α)ε

2Γ(α− β)
1∫
0

dA(s)

, t ∈ [0, 1],

for ε > 0 and δ2 > 0 with |u1 − u2| < δ2, u1, u2 ∈ [µ2r,R]. Set δ = min{δ1, δ2}; then it follows
from limn→∞ un = u that there exists a positive number N such that for every n ≥ N , we have
|un(t)− u(t)| < δ, t ∈ [0, 1]. Then the inequality

|Tun(t)− Tu(t)| ≤
1∫

0

G(1, s)q(s)
∣∣f(s, un(s))− f(s, u(s))

∣∣ ds
+

Γ(α− β)

Γ(α)

1∫
0

∣∣h(s, un(s))− h(s, u(s))
∣∣ dA(s) < ε
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shows that T : [v0, w0] → P is continuous.
Setting

f∗ = max
t∈[0,1],u∈[µ2r,R]

f(t, u) and h∗ = max
t∈[0,1], u∈[µ2r,R]

h(t, u),

we have

|Tu(t)| ≤ f∗
1∫

0

G(1, s)q(s) ds+ h∗ Γ(α− β)

Γ(α)

1∫
0

dA(s).

Thus, T is uniformly bounded on P .
Since G(t, s) is continuous on [0, 1]× [0, 1], it is uniformly continuous there. Similarly, the function

tα−1 is uniformly continuous on [0, 1], because it is continuous there. So, for every ε > 0, there exists
δ > 0 such that |G(t1, s) − G(t2, s)| < ε and |tα−1

1 − tα−1
2 | < ε for |t1 − t2| < δ, (t1, s), (t2, s) ∈

[0, 1] × [0, 1]. Consequently, for any u ∈ [µ2r,R] := [v0, w0] and t1, t2 ∈ [0, 1] with |t1 − t2| < δ, we
have

|Tu(t1)− Tu(t2)| ≤
1∫

0

|G(t1, s)−G(t2, s)|q(s)f(s, u(s)) ds

+
Γ(α− β)

Γ(α)
|tα−1
1 − tα−1

2 |
1∫

0

h(s, u(s)) dA(s) < ε

[ 1∫
0

q(s)pf (s) ds+
Γ(α− β)

Γ(α)

1∫
0

ph(s) dA(s)

]
.

Hence the family {Tx : x ∈ [v0, w0]} is equicontinuous on [0, 1], and so T is relatively compact. By
the Arzela–Ascoli theorem, T : [v0, w0] → P is completely continuous.

Let u, v ∈ [v0, w0] be such that u ≤ v. Then v0 ≤ u ≤ v ≤ w0. By (A4) and (A5), we have

Tu(t) =

1∫
0

G(t, s)q(s)f(s, u(s)) ds+
Γ(α− β)

Γ(α)
tα−1

1∫
0

h(s, u(s)) dA(s)

≤
1∫

0

G(t, s)q(s)f(s, v(s)) ds+
Γ(α− β)

Γ(α)
tα−1

1∫
0

h(s, v(s)) dA(s)

= Tv(t).

Thus, T is monotonic increasing in [v0, w0].
Now we prove that v0 = µ2r is a lower solution of T , that is, v0 ≤ Tv0. Indeed, for v0 ∈ P , we

have Tv0 ∈ P and so

Tv0(t) ≥ µ∥Tv0(t)∥ ≥ µ min
t∈[1/2,1]

Tv0(t)

= µ

(
min

t∈[1/2,1]

1∫
0

G(t, s)q(s)f(s, v0(s)) ds+
Γ(α− β)

Γ(α)
tα−1

1∫
0

h(s, v0(s)) dA(s)

)

≥ µ

1∫
0

(
min

t∈[1/2,1]
G(t, s)

)
q(s)f(s, v0(s)) ds ≥ µ2

1∫
0

G(1, s)q(s)f(s, u(s)) ds ≥ µ2r = v0(t).

Finally, we show that w0 = R is an upper solution of T , that is, Tw0 ≤ w0. Clearly,

Tw0(t) ≤
1∫

0

G(1, s)q(s)f(s, w0(s)) ds+
Γ(α− β)

Γ(α)
tα−1

1∫
0

h(s, w0(s)) dA(s) ≤ R = w0(t),

so w0 = R is an upper solution of T .
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If we construct the sequences {vn}∞n=1 and {wn}∞n=1 as

vn = Tvn−1, wn = Twn−1, n = 1, 2, . . . ,

then it follows that

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ · · · ≤ wn ≤ wn−1 ≤ · · · ≤ w1 ≤ w0,

and {vn}∞n=1 and {wn}∞n=1 converge, respectively, to v and w, which are the greatest and smallest
fixed points of T in [v0, w0]. Since v ≤ w, Theorem 2.1 guarantees that w is the positive solution of
problem (1.1), (1.2). This completes the proof of the theorem.

Remark. One may observe from the assumptions (A4) and (A5) that we do not require any superlin-
earity or sublinearity on f and h either at 0 or ∞. The only assumption we require on f and g is that
they must be monotonically nondecreasing in the subinterval [1/2, 1], which shows that the functions
f and h may be decreasing or nonincreasing and also may be identically zero or zero at some points
in [0, 1/2). This fact is evident from Examples 4.1 and 4.2.

4 An illustration
In this section, we provide two examples illustrating Theorem 1.1.

Example 4.1. Consider the fractional differential equation

D
5/2
0+ u(t) + Γ

(5
2

)[
1− (1− t)3/2

]−1
f(t, u(t)) = 0, 0 < t < 1, (4.1)

with the multipoint BCs

u(0) = u′(0) = 0, D
3/2
0+ u(1) =

1∫
0

h(s, u(s)) dA(s), (4.2)

where

A(t) =



t if t ∈
[
0,

4

9

)
∪
[5
9
,
8

9

)
,

4

9
if t ∈

[4
9
,
5

9

)
,

8

9
if t ∈

[8
9
, 1
]
,

(4.3)

f(t, u) =


1

2
(35 + e−

1
u−32 ) if u > 32,

35

2
if u ≤ 32,

and

h(t, u) =

{
28 + e−

1
u−2 if u > 2,

28 if u ≤ 2.

Here α = 5
2 , β = 3

2 and q(t) = Γ( 52 )[1− (1− t)3/2]−1. Clearly,

G(1, t) =
1

Γ( 52 )

[
1− (1− t)3/2

]
, 0 < t ≤ 1,

implies that q(t)G(1, t) ≡ 1, hence
1∫

0

G(1, t)q(t) dt ≡ 1.
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Also,
µ =

1

2α−1
=

1

23/2
=

1

2
√
2
.

For u ≤ v, we have e−
1

u−32 ≤ e−
1

v−32 , which implies that f(t, u) ≤ f(t, v) for u ≤ v. In a similar way,
we can prove that h(t, u) ≤ h(t, v) for u ≤ v.

Set r = 16 and R = 40; then

f(t, u) ≥ 35

2
= 17.5 > 16 = r

and
f(t, u) ≤ 1

2
(35 + e−

1
u−32 ) ≤ 1

2
(35 + e−

1
40−32 ) ≤ 1

2
(35 + e−

1
8 ) ≤ 18 < 20 =

R

2

imply that
r ≤ f(t, u) ≤ f(t, v) ≤ R

2
for r

8
≤ u ≤ v ≤ R and 1

2
≤ t ≤ 1,

that is, condition (A4) is satisfied. Similarly, h(t, u) ≤ 29 < 135
8

√
π implies that condition (A5) is

satisfied. Thus, by Theorem 1.1, problem (4.1), (4.2) has at least two positive solutions.

Example 4.2. Consider the fractional differential equation (4.1) together with the BCs (4.2) and
A(t) in (4.3) with f(t, u(t)) = 1

2 + t sin u
3 and h(t, u) = t + 1

2 + 0.88 sinu. Set r = 1
2 and R = 3.

Since sinu is an increasing function for 1
16 ≤ u ≤ 1, then f(t, u) and h(t, u) satisfy the properties

f(t, u) ≤ f(t, v) and h(t, u) ≤ h(t, v) for u ≤ v, 1
2 ≤ t ≤ 1 and 1

16 = µ2r ≤ u ≤ v ≤ R = 3. Further,
since sinu > 0 for 1

16 ≤ u ≤ 3, we have

r ≤ 1

2
≤ 1

2
+ t sin u

3
= f(t, u) ≤ 1

2
+ sin 1 ≤ 3

2
=

R

2

and

h(t, u) ≤ 1 +
1

2
+ 0.88 sinu

≤ 1 +
1

2
+ (0.88)(0.8415)

≤ 2.24049

≤ 2.243216

=
27

√
π

64
R,

that is, conditions (A4) and (A5) are satisfied. Hence, by Theorem 1.1, problem (4.1), (4.2), with the
considered f(t, u(t)) and h(t, u), has at least two positive solutions.

5 Discussion and conclusions
The fixed point theorems are playing a vital role in studying, analysing the systems of fractional
differential equations and also in establishing positive solutions. These fixed point theorems are also
helpful in examining the existence/non-existence conditions for various coexistence equilibria in many
dynamical systems with applications to natural, biological and epidemiological sciences. Many of the
existing fixed point theorems require the superlinearity and sublinearity conditions.

In [16], Padhi et al. applied Schauder’s fixed point theorem (see [16, Theorems 4.2 and 4.4]) to
prove the existence of a positive solution of (1.1), (1.2), where the function f is assumed to be either
superlinear or sublinear at 0 or ∞. In another attempt, Theorem 4.5 in [16] requires the existence of
two reals r1 and r2 with 0 < r1 < r2 such that either one of the following conditions is required to
prove the existence of a positive solution of (1.1), (1.2):



68 Seshadev Padhi, B. S. R. V. Prasad, Satyam Narayan Srivastava, Shasanka Dev Bhuyan

(A6)

r1 ≤
1∫

0

G(1, s)q(s)f1(s, r1) ds+
Γ(α− β)

Γ(α)

1∫
0

h1(s, r1) dA(s) < ∞,

1∫
0

G(1, s)q(s)f2(s, r2) ds+
Γ(α− β)

Γ(α)

1∫
0

h2(s, r2) dA(s) ≤ r2,

(A7)

1∫
0

G(1, s)q(s)f2(s, r1) ds+
Γ(α− β)

Γ(α)

1∫
0

h2(s, r1) dA(s) < ∞,

r2 ≤
1∫

0

G(1, s)q(s)f1(s, r2) ds+
Γ(α− β)

Γ(α)

1∫
0

h1(s, r2) dA(s) < ∞,

where

f1(t, r) =min
{
f(t, u) : tα−1r ≤ u ≤ r

}
, 0 < t < 1,

f2(t, r) =max
{
f(t, u) : tα−1r ≤ u ≤ r

}
, 0 < t < 1,

h1(t, r) =min
{
h(t, u) : tα−1r ≤ u ≤ r

}
, 0 < t < 1,

h2(t, r) =max
{
h(t, u) : tα−1r ≤ u ≤ r

}
, 0 < t < 1.

The present work proposes the fixed point theorem with the use of the monotone iterative method
for establishing the existence of one positive solution and also the method for approximating the solu-
tion. In this process, the obtained sufficient conditions require no superlinearity and/or sublinearity
on the functions under consideration at 0 or ∞. Thus, Theorem 1.1 cannot be comparable with Theo-
rems 4.2 and 4.4 in [16]. Instead, the conditions in Theorem 1.1 require the only monotonic increase of
the functions in the subinterval [1/2, 1] and they may decrease or nonincrease or identically be zero in
the other half of the interval [0, 1/2). This shows that assumptions (A4) and (A5) are not comparable
with (A6) and (A7). We strongly feel that Theorem 1.1 simplifies the calculations in establishing the
existence of positive solutions of the boundary value fractional differential equations.
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