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Abstract. We obtain the existence conditions and asymptotic, as t ↑ ω (ω ≤ +∞), representations
of one class of solutions of a binomial nonautonomous third-order differential equation with rapidly
varying nonlinearity and their derivatives of the first and second order.
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ÒÄÆÉÖÌÄ. ÌÄÓÀÌÄ ÒÉÂÉÓ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÉÓÈÅÉÓ ÓßÒÀ×ÀÃ ÝÅÀËÄÁÀÃÉ ÀÒÀßÒ×ÉÅÏ-
ÁÉÈ ÌÉÙÄÁÖËÉÀ ÀÒÓÄÁÏÁÉÓ ÐÉÒÏÁÄÁÉ ÃÀ ÀÓÉÌÐÔÏÔÉÊÖÒÉ ßÀÒÌÏÃÂÄÍÄÁÉ ÁÉÍÏÌÉÀËÖÒÉ ÀÒÀÀÅ-
ÔÏÍÏÌÉÖÒÉ ÀÌÏÍÀáÓÍÄÁÉÓ ÄÒÈÉ ÊËÀÓÉÓÈÅÉÓ ÃÀ ÌÀÈÉ ÐÉÒÅÄËÉ ÃÀ ÌÄÏÒÄ ÒÉÂÉÓ ßÀÒÌÏÄÁÖËÄ-
ÁÉÓÈÅÉÓ.
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1 Introduction
Consider the differential equation

y′′′ = α0p(t)φ(y), (1.1)

where α0 ∈ {−1, 1}, p : [a, ω[→ ]0,+∞[ is a continuous function, −∞ < a < ω ≤ +∞, φ : ∆Y0 →
]0,+∞[ is a twice continuously differentiable function such that

φ′(y) ̸= 0 as y ∈ ∆Y0 , lim
y→Y0
y∈∆Y0

φ(y) =

{
or 0,

or +∞,
lim
y→Y0
y∈∆Y0

φ(y)φ′′(y)

φ′2(y)
= 1, (1.2)

Y0 is equal either to zero or to ±∞, ∆Y0
is some one-sided neighborhood of the point Y0.

From the identity

φ′′(y)φ(y)

φ′2(y)
=

(φ
′(y)

φ(y) )
′

(φ
′(y)

φ(y) )
2
+ 1 as y ∈ ∆Y0

and conditions (1.2) it follows that

φ′(y)

φ(y)
∼ φ′′(y)

φ′(y)
as y → Y0 (y ∈ ∆Y0

) and lim
y→Y0
y∈∆Y0

yφ′(y)

φ(y)
= ±∞. (1.3)

Hence, in the equation under consideration, the function φ and its first-order derivative are (see [10,
Chapter 3, Section 3.4, Lemmas 3.2, 3.3, pp. 91–92]) rapidly varying as y → Y0.

The asymptotic properties of solutions of binomial second-order differential equations with non-
linearities satisfying condition (1.2) were studied in the works of M. Marić [10], V. M. Evtukhov and
his students: N. G. Drik, V. M. Kharkov, A. G. Chernikova [4–6]. Moreover, in the monograph by
M. Marić [10, Chapter 3, Section 3.4, pp. 90–99] in the particular case, where α0 = 1, ω = +∞,
Y0 = 0 and p is a properly varying function as t → +∞, the asymptotic representations of solutions
that tend to zero as t → +∞ were obtained.

In the paper by V. M. Evtukhov and N. G. Drik [5], a special case, where φ(y) = eσy, σ ̸= 0, was
considered.

In [6], V. M. Evtukhov and V. M. Kharkov investigated a class of solutions, which is determined
by using the function φ(y).

In the paper by V. M. Evtukhov and A. G. Chernikova [4], for the second-order differential equation
(1.1) in case φ is a rapidly varying function as t → +∞, the asymptotic properties of the so-called
Pω(Y0, λ0)-solutions were completely investigated. It seems natural to try to extend these results to
the third-order differential equations.

It should be noted that the results obtained by V. M. Evtukhov and V. N. Shinkarenko [9] on the
asymptotic behavior of such solutions of differential equations of higher than the second order in the
case, where φ(y) = eσy, σ ̸= 0, are known.

Definition 1.1. A solution y of the differential equation (1.1) is called a Pω(Y0, λ0)-solution, where
−∞ ≤ λ0 ≤ +∞, if it is defined on the interval [t0, ω[⊂ [a, ω[ and satisfies the conditions

y(t) ∈ ∆Y0
as t ∈ [t0, ω[ , lim

t↑ω
y(t) = Y0,

lim
t↑ω

y(k)(t) =

{
or 0,

or ±∞,
k = 1, 2, lim

t↑ω

y′′2(t)

y′′′(t)y′(t)
= λ0.

The aim of the present paper is to obtain the necessary and sufficient existence conditions of
Pω(Y0, λ0)-solutions of equation (1.1) in a non-particular case, where λ0 ∈ R \ {0, 1, 1

2}, as well as
asymptotic, as t ↑ ω, representations of such solutions and their derivatives of order up to two.
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2 Functions from the Γ, ΓY0
(Z0) classes and their asymptotic

properties
Without loss of generality, we will further assume that

∆Y0 =

{
[y0, Y0[ , if ∆Y0

is a left neighborhood of the point Y0,

]Y0, y0], if ∆Y0
is a right neighborhood of the point Y0,

(2.1)

where y0 ∈ R such that |y0| < 1 as Y0 = 0 and y0 > 1 (y0 < −1) as Y0 = +∞ (as Y0 = −∞).
The function f : ∆Y0

→ R \ {0} satisfying condition (1.2), as Y0 = ±∞, and lim
y→+∞

f(y) = +∞,
belongs to the class Γ introduced by L. Khan (see [1, Chapter 3, p. 3.10, p. 175]).

Definition 2.1. The class Γ consists of measurable nondecreasing and right continuous functions
f : [y0,+∞[→ ]0,+∞[ , for each of which there is a measurable function g : [y0,+∞[→ ]0,+∞[ ,
which complements the function f , such that

lim
y→+∞

f(y + ug(y))

f(y)
= eu for any u ∈ R.

In [9], the asymptotic properties of functions from this class were investigated in sufficient detail.
Using the change of variables, the class Γ in the paper by of V. M. Evtukhov and A. G. Chernikova

[4] was extended to the class ΓY0(Z0) of functions f : ∆Y0 → ]0,+∞[ , where Y0 is equal either to zero
or to ±∞, and ∆Y0

is a one-sided neighborhood of the point Y0, for which

lim
y→Y0
y∈∆Y0

f(y) = Z0 =

{
or 0,

or +∞

Definition 2.2. We say that the function f : ∆Y0
→ ]0,+∞[ belongs to the class of functions

ΓY0
(Z0), if:

(1) the function f0(y) =
1

f(y) , as Y0 = +∞ and Z0 = 0;

(2) the function f0(y) = f(−y), as Y0 = −∞ and Z0 = +∞;

(3) the function f0(y) = f( 1y ), as Y0 = 0, where ∆Y0
is a right neighborhood of zero, and Z0 = +∞;

(4) the function f0(y) =
1

f( 1
y )

, as Y0 = 0, where ∆Y0 is a right neighborhood of zero, and Z0 = 0;

(5) the function f0(y) = f(− 1
y ), as Y0 = 0, where ∆Y0

is a left neighborhood of zero, and Z0 = +∞;

(6) the function f0(y) =
1

f(− 1
y )

, as Y0 = 0, where ∆Y0
is a left neighborhood of zero, and Z0 = 0;

(7) the function f0(y) ≡ f(y), as Y0 = +∞ and Z0 = +∞ belongs to the class Γ.

Using these two definitions, we conclude that for the function f ∈ ΓY0
(Z0) the limit relation

lim
y→Y0
y∈∆Y0

f(y + ug(y))

f(y)
= eu for any u ∈ R (2.2)

holds, in which the function g, that is complementary for f , in each of the cases 1) - 7) can be expressed
through the function g0, that is complementary for f0, in the following way (respectively):

(1) g(y) = −g0(y);

(2) g(y) = −g0(−y);

(3) g(y) = −y2g0(
1
y );
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(4) g(y) = y2g0(
1
y );

(5) g(y) = y2g0(− 1
y );

(6) g(y) = −y2g0(− 1
y );

(7) g(y) = g0(y).

Using the properties of the class Γ (see the monograph by Bingham [1]) the following statements
were obtained in [4].

Lemma 2.1.

1. If f ∈ ΓY0(Z0) with the complementary function g, then lim
y→Y0
y∈∆Y0

g(y)
y = 0.

2. If f ∈ ΓY0
(Z0) with the complementary function g, then for any function u : ∆Y0

→ R, satisfying
the conditions

lim
y→Y0
y∈∆Y0

u(y) = u0 ∈ R, lim
y→Y0
y∈∆Y0

f(y + u(y)g(y)) = Z0,

the limit relation
lim
y→Y0
y∈∆Y0

f(y + u(y)g(y))

f(y)
= eu0

holds.

If f ∈ ΓY0(Z0) with the complementary function g and, moreover, is continuous and strictly
monotone, then there exists a continuous strictly monotone inverse function f−1 : ∆Z0

→ ∆Y0
, where

∆Z0
=

{
or [z0, Z0[ ,

or ]Z0, z0],
z0 = f(y0), Z0 = lim

y→Y0
y∈∆Y0

f(y).

By virtue of Theorems 3.10.4, 3.1.16 from the monograph [1, Chapter 3, p. 3.10, p. 176 and p. 3.1,
p. 139] and Definition 2.2, this inverse function has the following properties.

Lemma 2.2. If f ∈ ΓY0
(Z0) with the complementary function g and is a continuous strictly monotone

function on the interval ∆Y0
, then the inverse function f−1 : ∆Z0

→ ∆Y0
is slowly varying as z → Z0

and satisfies the limit relation

lim
z→Z0
z∈∆Z0

f−1(λz)− f(z)

g(f−1(z))
= lnλ for any λ > 0.

Moreover, for any Λ > 1 this limit relation holds uniformly with respect to λ ∈ [ 1Λ ,Λ].

We present some of the important properties of the class of twice continuously differentiable func-
tions f : ∆Y0

→ R \ {0}, where Y0 is equal either to zero or to ±∞, and ∆Y0
is some one-sided

neighborhood of the point Y0, each of which satisfies the conditions

f ′(y) ̸= 0 as y ∈ ∆Y0
, lim

y→Y0
y∈∆Y0

f(y) =

{
or 0,

or ±∞,
lim
y→Y0
y∈∆Y0

f(y)f ′′(y)

f ′2(y)
= 1,

the proof of which is given in the work of V. M. Evtukhov and A. G. Chernikova [4].
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Lemma 2.3. If a twice continuously differentiable function f : ∆Y0 → ]0,+∞[ satisfies conditions
(2.1), then it belongs to the class ΓY0

(Z0) with the complementary function g : ∆Y0
→ R, which is

uniquely determined up to the equivalent, as y → Y0, functions, which can, for example, be one of the
following functions:

y∫
Y

( t∫
Y

f(u) du
)
dt

y∫
Y

f(x) dx

∼

y∫
Y

f(x) dx

f(y)
∼ f(y)

f ′(y)
∼ f ′(y)

f ′′(y)
as y → Y0,

where

Y =


y0, or lim

y→Y0
y∈∆Y0

f(y) = +∞,

Y0, or lim
y→Y0
y∈∆Y0

f(y) = 0.

Remark 2.1. The given Lemmas 2.1 and 2.2 refer to the case, where f : ∆Y0 → ]0,+∞[ (i.e., it takes
positive values). In the case of the function f : ∆Y0 → ]−∞, 0[ we will say that it belongs to the class
ΓY0

(Z0), if (−f) ∈ ΓY0
(−Z0). Then it is not difficult to verify that Lemmas 2.1 and 2.2 also remain

valid.

3 The main results
Let us introduce the necessary auxiliary notation. We assume that the domain of the function φ in
equation (1.1) is determined by formula (2.2). Next, we set

µ0 = signφ′(y), ν0 = sign y0, ν1 =

{
1, if ∆Y0

= [y0, Y0[ ,

−1, if ∆Y0
=]Y0, y0],

and introduce the following functions:

J(t) =

t∫
A

π2
ω(τ)p(τ) dτ, Φ(y) =

y∫
B

ds

φ(s)
,

where

πω(t) =

{
t, if ω = +∞,

t− ω, if ω < +∞,
(3.1)

A =


ω, if

ω∫
a

π2
ω(τ)p(τ) dτ = const,

a, if
ω∫

a

π2
ω(τ)p(τ) dτ = ±∞,

B =


Y0, if

Y0∫
y0

ds

φ(s)
= const,

y0, if
Y0∫

y0

ds

φ(s)
= ±∞.

Taking into account the definition of Pω(Y0, λ0)-solutions of the differential equation (1.1), we note
that the numbers ν0, ν1 determine the signs of any Pω(Y0, λ0)-solution, its first derivative (respectively)
in some left neighborhood of ω. It is clear that the condition

ν0ν1 < 0 if Y0 = 0, ν0ν1 > 0 if Y0 = ±∞,

is necessary for the existence of such solutions.
Now we turn our attention to some properties of the function Φ. It retains a sign on the interval

∆Y0 , tends either to zero or to ±∞, as y → Y0, and is increasing on ∆Y0 , since on this interval
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Φ′(y) = 1
φ(y) > 0. Therefore, there is an inverse function Φ−1 : ∆Z0 → ∆Y0 , where due to the second

of conditions (1.2) and the monotone increase of Φ−1,

Z0 = lim
y→Y0
y∈∆Y0

Φ(y) =

{
or 0,

or +∞,
∆Z0

=

{
[z0, Z0[ , if ∆Y0

= [y0, Y0[ ,

]Z0, z0], if ∆Y0 =]Y0, y0],
z0 = φ(y0). (3.2)

By virtue of the L’Hospital rule in the form of Stolz and the last of conditions (1.2), we get

lim
y→Y0
y∈∆Y0

Φ(y)
1

φ′(y)

= lim
y→Y0
y∈∆Y0

1
φ(y)

− φ′′(y)
φ′2(y)

= − lim
y→Y0
y∈∆Y0

φ′2(y)

φ′′(y)φ(y)
= −1.

Hence,
Φ(y) ∼ − 1

φ′(y)
as y → Y0 and signΦ(y) = −µ0 as y ∈ ∆Y0 . (3.3)

From the first of these relations it also follows that

Φ′(y)

Φ(y)
=

1
φ(y)

Φ(y)
∼ −φ′(y)

φ(y)
,

Φ′′(y)Φ(y)

Φ′2(y)
=

− φ′(y)
φ2(y)Φ(y)

1
φ2(y)

∼ 1 as y → Y0.

Therefore, according to Lemma 2.3, Φ ∈ ΓY0
(Z0) with a complementary function, which can be

selected as one of the equivalent functions

Φ′(y)

Φ′′(y)
∼ Φ(y)

Φ′(y)
∼ − φ(y)

φ′(y)
as y → Y0. (3.4)

In addition to the above notation, as λ0 ∈ R \ {0; 1; 1
2}, we introduce the auxiliary functions

q(t) =
α0(λ0 − 1)2π3

ω(t)p(t)φ
(
Φ−1(α0

(λ0−1)2

λ0
(λ0 − 1)J(t))

)
λ0Φ−1(α0

(λ0−1)2

λ0
J(t))

,

H(t) =
Φ−1(α0

(λ0−1)2

λ0
J(t))φ′(Φ−1(α0

(λ0−1)2

λ0
J(t))

)
φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) ,

In addition to the above properties of the twice continuously differentiable functions f : ∆Y0
→

R\{0} satisfying conditions (2.1), we will need one more auxiliary statement about a priori asymptotic
properties of Pω(Y0, λ0)-solutions of the differential equation (1.1) which follows from Corollary 10.1
of [8].

Lemma 3.1. If λ0 ∈ R \ {0; 1; 1
2}, then for each Pω(Y0, λ0)-solution of differential equation (1.1) the

asymptotic relations

πω(t)y
′(t)

y(t)
=

2λ0 − 1

λ0 − 1
[1 + o(1)],

πω(t)y
′′(t)

y′(t)
=

λo

λ0 − 1
[1 + o(1)],

πω(t)y
′′′(t)

y′′(t)
=

1 + o(1)

λ0 − 1
(3.5)

as t ↑ ω hold, where πω(t) is defined by (3.1).

For equation (1.1), the following assertions hold.

Theorem 3.1. Let λ0 ∈ R\{0; 1; 1
2}. Then for the existence of Pω(Y0, λ0)-solutions of the differential

equation (1.1), it is necessary that the conditions

α0ν1λ0 > 0, (3.6)
ν0ν1(2λ0 − 1)(λ0 − 1)πω(t) > 0 as t ∈ (a, ω), (3.7)

α0µ0λ0J(t) < 0 as t ∈ (a, ω), (3.8)
α0

λ0
lim
t↑ω

J(t) = Z0, lim
t↑ω

πω(t)J
′(t)

J(t)
= ±∞, lim

t↑ω
q(t) =

2λ0 − 1

λ0 − 1
(3.9)
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hold. Moreover, each solution of that kind admits the asymptotic representations

y(t) = Φ−1
(
α0

(λ0 − 1)2

λ0
J(t)

)[
1 +

o(1)

H(t)

]
as t ↑ ω, (3.10)

y′(t) =
(2λ0 − 1)

(λ0 − 1)

Φ−1
(
α0

(λ0−1)2

λ0
J(t)

)
πω(t)

[1 + o(1)] as t ↑ ω, (3.11)

y′′(t) =
λ0(2λ0 − 1)

(λ0 − 1)2
Φ−1

(
α0

(λ0−1)2

λ0
J(t)

)
π2
ω(t)

[1 + o(1)] as t ↑ ω. (3.12)

Theorem 3.2. Let λ0 ∈ R \ {0; 1; 1
2}, conditions (3.6)–(3.9) hold, there exist a limit

lim
t↑ω

[2λ0 − 1

λ0 − 1
− q(t)

]
|H(t)| 23 = 0 (3.13)

and a finite or equal to ±∞ limit

lim
y→Y0
y∈∆Y0

(φ
′(y)

φ(y) )
′

(φ
′(y)

φ(y) )
2

3

√(yφ′(y)

φ(y)

)2

. (3.14)

Then the differential equation (1.1) has at least one Pω(Y0, λ0)-solution admitting the asymptotic, as
t ↑ ω, representations

y(t) = Φ−1
(
α0

(λ0 − 1)2

λ0
J(t)

)[
1 +

o(1)

H(t)

]
, (3.15)

y′(t) =
2λ0 − 1

(λ0 − 1)πω(t)
Φ−1

(
α0

(λ0 − 1)2

λ0
J(t)

)
[1 + o(1)H− 2

3 ], (3.16)

y′′(t) =
λ0(2λ0 − 1)

(λ0 − 1)2π2
ω(t)

Φ−1
(
α0

(λ0 − 1)2

λ0
J(t)

)
[1 + o(1)H− 1

3 ]. (3.17)

Moreover, there exist one-parameter family of such solutions in case µ0λ0ν1 < 0, and two-parameter
family, when µ0λ0ν1 > 0.

Proof of Theorem 3.1. Let y : [t0, ω[→ R be an arbitrary Pω(Y0, λ0)-solution of the differential equa-
tion (1.1). Then, according to Lemma 3.1, the asymptotic relations (3.5) hold. By virtue of these
relations and (1.1), this solution and its derivatives of the first, second and third order retain the
signs on a certain interval [t1, ω[⊂ [t0, ω[ , and for these signs the asymptotic relations (3.5) hold,
from which follow condition (3.6) and inequality (3.7). In addition, from (1.1), taking into account
the second of the asymptotic relations (3.4), it follows that

y′(t)

φ(y(t))
= α0

(λ0 − 1)2

λ0
π2
ω(t)p(t)[1 + o(1)] as t ↑ ω. (3.18)

Integrating this relation from t0 to t, we get

y(t)∫
y(t0)

ds

φ(s)
= α0

(λ0 − 1)2

λ0

t∫
t0

π2
ω(τ)p(τ)[1 + o(1)] dτ as t ↑ ω.

Since, according to the definition of Pω(Y0, λ0)-solution, y(t) → Y0 as t ↑ ω, it follows that the
improper integrals

Y0∫
y(t0)

ds

φ(s)
and

ω∫
t0

π2
ω(τ)p(τ) dτ
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converge or diverge simultaneously. In view of this fact and the rule for choosing the integration limits
A and B in the functions J and Φ, introduced at the beginning of this section, the aforementioned
relation can be written as

Φ(y(t)) = α0
(λ0 − 1)2

λ0
J(t)[1 + o(1)] as t ↑ ω. (3.19)

From here, taking into account (3.2) and (3.3), it follows that inequality (3.8) and the first of conditions
(3.9) are true. By virtue of the first of conditions (3.3), it follows from (3.18) and (3.19) that

y′′(t)φ′(y′(t))

φ(y(t))
= − λ0πω(t)p(t)

(λ0 − 1)J(t)
[1 + o(1)] as t ↑ ω,

and, therefore, taking into account the first and second of the asymptotic relations (3.4) and the
asymptotic relations (3.5),

y(t)φ′(y(t))

φ(y(t))
= − (λ0 − 1)π3

ω(t)p(t)

(2λ0 − 1)J(t)
as t ↑ ω.

From this relation, by virtue of (1.3) and the definition of the Pω(Y0, λ0)-solution, it directly follows
that the second of the limit conditions (3.9) holds.

Now, from (3.19) we find that

y(t) = Φ−1
(
α0

(λ0 − 1)2

λ0
J(t)[1 + o(1)]

)
as t ↑ ω. (3.20)

The function Φ, as is stated earlier, belongs to the class ΓY0
(Z0), where Z0 = lim

y→Y0
y∈∆Y0

Φ(y), and

the function g(y) = − φ(y)
φ′(y) can be chosen as its complementary function. Then, according to the

conditions α0

λ0
lim
t↑ω

J(t) = Z0 and α0
(λ0−1)2

λ0
J(t) ∈ ∆Z0 as t ∈ [t0, ω[ , which follow from (3.8) and the

first condition of (3.1), according to Lemma 2.2, we have

lim
t↑ω

Φ−1
(
α0

(λ0−1)2

λ0
J(t)[1 + o(1)]

)
− Φ−1

(
α0

(λ0−1)2

λ0
J(t)

)
−

φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

)
φ′
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) = lim
z→Z0
z∈∆Z0

Φ−1(z(1 + o(1)))− Φ−1(z)

− φ(z)
φ′(z)

= 0,

whence it follows that

Φ−1
(
α0

(λ0 − 1)2

λ0
J(t)[1 + o(1)]

)
= Φ−1

(
α0

(λ0 − 1)2

λ0
J(t)

)
+

φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

)
φ′
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) o(1) as t ↑ ω.

By virtue of this relation, from (3.20) we obtain the asymptotic representation (3.10). If we consider
that

lim
t↑ω

Φ−1
(
α0

(λ0−1)2

λ0
J(t)

)
φ′(Φ−1(α0

(λ0−1)2

λ0
J(t))

)
φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) = lim
y→Y0
y∈∆Y0

yφ′(y)

φ(y)
= ±∞,

then (3.9) can be written as

y(t) = Φ−1
(
α0

(λ0 − 1)2

λ0
J(t)

)
[1 + o(1)] as t ↑ ω

and, therefore, according to the first of the asymptotic relations (3.4), the asymptotic representations
(3.11) and (3.12) hold.
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It remains to establish the validity of the third of conditions (3.1). According to (3.10), from (3.1)
we have

y′′′(t) = α0p(t)φ

(
Φ−1

(
α0

(λ0 − 1)2

λ0
J(t)

)
+

φ
(
α0

(λ0−1)2

λ0
J(t)

)
φ′
(
α0

(λ0−1)2

λ0
J(t)

) o(1)) as t ↑ ω. (3.21)

Since φ ∈ ΓY0(Z0), where Z0 = lim
y→Y0
y∈∆Y0

φ(y), which according to the second conditions of (1.2) is equal

either to zero or to +∞, and the function g(y) = φ(y)
φ′(y) can be chosen as its complementary function,

on the basis of Lemma 2.1, taking into account the conditions lim
t↑ω

Φ−1
(
α0

(λ0−1)2

λ0
J(t)

)
= Y0 and

Φ−1
(
α0

(λ0−1)2

λ0
J(t)

)
∈ ∆Y0

as t ∈ [t0, ω[ , we obtain

lim
t↑ω

φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t)

)
+

φ
(
α0

(λ0−1)2

λ0
J(t)

)
φ′
(
α0

(λ0−1)2

λ0
J(t)

) o(1))
φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) = lim
y→Y0
y∈∆Y0

φ
(
y + φ(y)

φ′(y) o(1)
)

φ(y)
= 1.

Hence,

φ

(
Φ−1

(
α0

(λ0 − 1)2

λ0
J(t)

)
+

φ
(
α0

(λ0−1)2

λ0
J(t)

)
φ′
(
α0

(λ0−1)2

λ0
J(t)

) o(1)) = φ
(
Φ−1

(
α0

(λ0 − 1)2

λ0
J(t)

))
as t ↑ ω

and the asymptotic relation (3.21) can be written as

y′′′(t) = α0p(t)φ
(
Φ−1

(
α0

(λ0 − 1)2

λ0
J(t)

))
[1 + o(1)] as t ↑ ω.

By virtue of this representation and (3.12),

πω(t)y
′′′(t)

y′′(t)
=

α0(λ0 − 1)2π3
ω(t)p(t)φ

(
Φ−1(α0

(λ0−1)2

λ0
J(t))

)
λ0(2λ0 − 1)Φ−1

(
α0

(λ0−1)2

λ0
J(t)

) [1 + o(1)] as t ↑ ω.

According to the third of the asymptotic relations (3.5), we obtain the validity of the third of conditions
(3.9).

Proof of Theorem 3.2. Suppose that there exists a limit (3.13) that is finite or equal to ±∞ and
for some λ0 ∈ R \ {0, 1, 1

2} conditions (3.7), (3.8) and one of the conditions either (3.14) or (3.16)
and (3.17) hold. Under these conditions, we establish the existence of Pω(Y0, λ0)-solutions of the
differential equation (1.1) that admit asymptotic representations (3.9), (3.10), (3.11) and find the
number of such solutions.

First, taking into account the existence of limit (3.13) that is finite or equal to ±∞, we show that
this limit can only be zero. Assume the opposite. Then the relation

(φ
′(y)

φ(y) )
′

(φ
′(y)

φ(y) )
4
3

=
z(y)

y
2
3

holds, where the function z : ∆Y0
→ R is continuous and such that

lim
y→Y0
y∈∆Y0

z(y) =

{
or c = const ̸= 0,

or ±∞.
(3.22)

Integrating this relation on the interval from y0 to y, we obtain

−3
(φ′(y)

φ(y)

)− 1
3

= c0 +

y∫
y0

z(s)

s
2
3

ds, (3.23)
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where c0 is some constant.

If
Y0∫
y0

z(s)

s
2
3
ds = ±∞, then after dividing by y

1
3 , we have

−3
(yφ′(y)

φ(y)

)− 1
3

=

y∫
y0

z(s)

s
2
3
ds

y
1
3

[1 + o(1)] as y → Y0.

Here, the expression on the left, by virtue of (1.3), tends to zero as y → Y0, and that of on the
right, by virtue of condition (3.22), tends either to a nonzero constant or to ±∞, as according to the
L’Hospital rule in the form of Stolz

lim
y→Y0
y∈∆Y0

y∫
y0

z(s)

s
2
3
ds

y
1
3

= 3 lim
y→Y0
y∈∆Y0

z(y),

which is impossible.

If
Y0∫
y0

z(s)

s
2
3
ds converges, which is possible only in the case Y0 = 0, then we rewrite (3.23) in the form

−3µ0

(φ′(y)

φ(y)

)− 1
3

= c1 +

y∫
0

z(s)

s
2
3

ds,

where c1 = c0 +
0∫

y0

z(s)

s
2
3
ds. Let us prove that c1 = 0. Indeed, if c1 ̸= 0, then from this relation it

follows that
φ′(y)

φ(y)
= −27

c31
+ o(1) as y → 0.

Hence, as a result of integration on the interval from y0 to y, we get

ln |φ(y)| = const+ o(1) as y → 0,

which contradicts the second of conditions (1.2). Hence, c1 = 0 and, therefore, we have

−3
(φ′(y)

φ(y)

)− 1
3

=

y∫
0

z(s)

s
2
3

ds.

Dividing both sides of this equality by y
1
3 , we note that, by virtue of conditions (1.3), the left-hand side

of the resulting relation tends to zero as y → 0, and the right-hand side, by virtue of the L’Hospital
rule and (3.22), tends either to a nonzero constant or to ±∞.

The contradictions obtained in each of the two possible cases lead to the conclusion that

lim
y→Y0
y∈∆Y0

(φ
′(y)

φ(y) )
′

(φ
′(y)

φ(y) )
2

3

√(yφ′(y)

φ(y)

)2

= 0. (3.24)

Now, applying the transformation to equation (1.1),

y(t) = Φ−1
(
α0

(λ0 − 1)2

λ0
J(t)

)[
1 +

y1
H(t)

]
,

y′(t) =
2λ0 − 1

(λ0 − 1)πω(t)
Φ−1

(
α0

(λ0 − 1)2

λ0
J(t)

)
[1 + y2(t)],

y′′(t) =
λ0(2λ0 − 1)

(λ0 − 1)2π2
ω(t)

Φ−1
(
α0

(λ0 − 1)2

λ0
J(t)

)
[1 + y3(t)],

(3.25)
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we obtain a system of differential equations

y′1 =
H(t)

πω(t)

[
2λ0 − 1

λ0 − 1
− q(t) + h(t)y1 +

2λ0 − 1

λ0 − 1
y2

]
,

y′2 =
1

πω(t)

[(2λ0 − 1

λ0 − 1
− q(t)

)
+ (1− q(t))y2 +

λ0

λ0 − 1
y3

]
,

y′3 =
1

πω(t)

[
2− 2q(t)(λ0 − 1)

2λ0 − 1
+

q(t)

2λ0 − 1
y1 + (2− q(t))y3 +

q(t)

2λ0 − 1
R(t, y1)

]
,

(3.26)

where

h(t) = q(t)
(φ

′(y)
φ(y) )

′

(φ
′(y)

φ(y) )
2

∣∣∣∣∣
y=Φ−1

(
α0

(λ0−1)2

λ0
J(t)

),

R(t, y1) =

φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t)) +

φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

)
φ′
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) y1)
φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) − 1− y1.

We consider this system of equations on the set

Ω = [t0, ω[×D1 ×D2 ×D3, where Di = {yi : |yi| ≤ 1} (i = 1, 2, 3),

and the number t0 ∈ [a, ω[ is chosen, by taking into account conditions (3.2), (3.3), (3.8), the first two
conditions (3.9) and (1.3), so that

α0
(λ0 − 1)2

λ0
J(t) ∈ ∆Z0

as t ∈ [t0, ω[ ,

Φ−1
(
α0

(λ0 − 1)2

λ0
J(t)

)
+

φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

)
φ′
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) v1 ∈ ∆Y0
as t ∈ [t0, ω[ , and |v1| ≤ 1.

On this set, the right-hand sides of the system of differential equations (3.26) are continuous and
the function R has on the set [t0, ω[×D1 continuous partial derivatives up to the second order inclusive
with respect to the variable v1. At the same time, we have

R′
y1
(t, y1) =

φ′
(
Φ−1(α0

(λ0−1)2

λ0
J(t)) +

φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

)
φ′
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) y1)
φ′
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) − 1.

Here φ′ ∈ ΓY0
(Z0) with the complementary function g(y) = φ(y)

φ′(y) . Therefore,

lim
t↑ω

φ′
(
Φ−1

(
α0

(λ0−1)2

λ0
J(t)

)
+

φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

)
φ′
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) y1)
φ′
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) = lim
y→Y0
y∈∆Y0

φ′(y + y1
φ(y)
φ′(y) )

φ′(y)
= ey1 .

If, for any fixed t ∈ [t0, ω[ , the function R is expanded according to the Maclaurin formula with
the residual Lagrange term to the second-order terms, then we obtain

R(t, v1) =
1

2

φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

)
φ′2

(
Φ−1(α0

(λ0−1)2

λ0
J(t))

)
× φ′′

(
Φ−1

(
α0

(λ0 − 1)2

λ0
J(t)

)
+

φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

)
φ′
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) ξ)y21 ,
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where |ξ| < |y1|. Here, by virtue of the last of conditions (1.2),

φ′′
(
Φ−1

(
α0

(λ0 − 1)2

λ0
J(t)

)
+

φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

)
φ′
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) ξ)

=

φ′2
(
Φ−1

(
α0

(λ0−1)2

λ0
J(t)

)
+

φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

)
φ′
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) ξ)
φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t)) +

φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

)
φ′
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) ξ)
[
1 + r1(t, y1)

]
,

where lim
t↑ω

r1(t, y1) = 0 uniformly with respect to y1 ∈ D1. Therefore, considering that the functions

φ,φ′ ∈ ΓY0
(Z0) with the complementary function g(y) = φ(y)

φ′(y) , we have

φ′′
(
Φ−1

(
α0(λ0 − 1)J(t)

)
+

φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

)
φ′
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) ξ)

=
φ′2(Φ−1(α0

(λ0−1)2

λ0
J(t))

)
φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) eξ
[
1 + r2(t, y1)

]
,

where lim
t↑ω

r2(t, y1) = 0 uniformly with respect to y1 ∈ D1. Therefore, (3.23) can be written as

R(t, y1) =
1

2
eξ
[
1 + r1(t, y1)

][
1 + r2(t, y1)

]
y21 .

It is clear from the above that for any ε > 0 there are δ > 0 and t1 ∈ [t0, ω[ such that

|R(t, y1)| ≤ (0.5 + ε)|y1|2 as t ∈ [t1, ω[ and y1 ∈ D1δ =
{
y1 : |y1| ≤ δ

}
. (3.27)

Choosing arbitrarily the number ε > 0, we select for it, taking into account the aforementioned about
the properties of the function R, the numbers δ > 0 and t1 ∈ [t0, ω[ such that inequality (3.27) holds,
and consider system (3.30) on the set

Ω1 =
{
(t, z1, z2, z3) ∈ R4 : t ∈ [t1, ω[ , z1 ∈ [−δ, δ], z2 ∈ [−1, 1], z3 ∈ [−1, 1]

}
.

In addition, in the system of equations (3.26), due to conditions (3.6) − (3.8), (3.13), (1.2) and
(1.3),

lim
t↑ω

q(t) =
2λ0 − 1

λ0 − 1
, lim

t↑ω
h(t) = 0, lim

t↑ω
H(t) = ±∞. (3.28)

To establish the existence of Pω(Y0, λ0)-solutions of equation (1.1) admitting asymptotic repre-
sentations (3.10)–(3.12), it is necessary, according to transformation (3.25), to prove the existence of
solutions that tend to zero, as t ↑ ω, of the system of differential equations (3.26). In order to use the
well-known results on the existence of solutions of quasilinear systems of differential equations that
disappear at a singular point, we reduce system (3.26) to the form that allows us to use such results.

Applying to system (3.26) an additional transformation

v1 = z1, v2 = H− 2
3 (t)z2, v3 = H− 1

3 (t)z3, (3.29)

we get a system of differential equations of the form

z′1 =
H

1
3 (t)

πω(t)

[
f1(t) + c11(t)z1 + c12(t)z2 + c13(t)z3

]
,

z′2 =
H

1
3 (t)

πω(t)

[
f2(t) + c21(t)z1 + c22(t)z2 + c23(t)z3

]
,

z′3 =
H

1
3 (t)

πω(t)

[
f3(t) + c31(t)z1 + c32(t)z2 + c33(t)z3 +

q(t)

2λ0 − 1
V (t, z1)

]
,

(3.30)
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where

f1(t) =
[2λ0 − 1

λ0 − 1
− q(t)

]
H

2
3 (t), f2(t) =

[2λ0 − 1

λ0 − 1
− q(t)

]
H

1
3 (t), f3(t) = 2− 2q(t)(λ0 − 1)

2λ0 − 1
,

c11(t) = h(t)H
2
3 (t), c12(t) =

2λ0 − 1

λ0 − 1
, c13(t) = 0, c21(t) = 0, c23(t) =

λ0

λ0 − 1
,

c22(t) = H− 2
3 (t)

(
1− 1

3
q(t) +

2

3
q(t)h(t)H(t)

)
, c31(t) =

q(t)

2λ0 − 1
, c32(t) = 0,

c33(t) = H− 2
3 (t)

(
2− 2

3
q(t) +

1

3
q(t)h(t)H(t)

)
, V (t, z1) =

q(t)

2λ0 − 1
R(t, z1).

Choosing arbitrarily the number ε > 0, we select for it, taking into account the aforementioned
about the properties of the function R, the numbers δ > 0 and t1 ∈ [t0, ω[ such that inequality (3.27)
holds, and consider system (3.30) on the set

Ω1 =
{
(t, z1, z2, z3) ∈ R4 : t ∈ [t1, ω[ , z1 ∈ [−δ, δ], z2 ∈ [−1, 1], z3 ∈ [−1, 1]

}
.

By virtue of (3.28), the replacement of y1 by z1 and the first of conditions (3.28),

lim
z1→0

V (t, z1)

z21
= 0 uniformly with respect to t ∈ [t1, ω[ .

In addition, according to conditions (3.28), (3.24) and the notation introduced at the beginning of
this section, we have signH(t)πω(t) = µ0ν0πω(t) as t ∈ (a, ω) and

lim
t↑ω

f1(t) = 0, lim
t↑ω

f2(t) = 0,

lim
t↑ω

f3(t) = 0, lim
t↑ω

c11(t) = 0, lim
t↑ω

c12(t) =
(2λ0 − 1)

λ0 − 1
,

lim
t↑ω

c22(t) =
1

λ0 − 1
, lim

t↑ω
c23(t) =

λ0

λ0 − 1
,

lim
t↑ω

c31(t) =
1

λ0 − 1
, lim

t↑ω
c33(t) = 0,

ω∫
t1

|H(τ)| 13
πω(τ)

dτ = ±∞.

This, in particular, implies that the limit matrix of coefficients, standing at v1, v2 and v3 in square
brackets of system (3.30), has the form

C =


0

(2λ0 − 1)

λ0 − 1
0

0 0
λ0

λ0 − 1
1

λ0 − 1
0 0


and its characteristic equation is that of the form

ρ3 − λ0(2λ0 − 1)

(λ0 − 1)3
= 0. (3.31)

If λ0(2λ0−1)(λ0−1) > 0, then in this case the algebraic equation (3.31) has two complex-conjugate
roots with negative real part and one positive real root.

If λ0(2λ0 − 1)(λ0 − 1) < 0, then equation (3.31) has two complex-conjugate roots with a positive
real part and one negative real root.
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Suppose further that conditions (3.13) are satisfied. It follows that for the system of differential
equations (3.30) all the conditions of Theorem 2.2 from [7] are satisfied. According to this theorem,
we find that when µ0ν1λ0 > 0, the system of differential equations (3.29) has a two-parameter family
of solutions (z1, z2, z3) : [t∗, ω[→ R3 (t∗ ∈ [t1, ω[) that disappear at t ↑ ω. To each of them, due
to substitutions (3.25) and (3.29), there corresponds a solution y : [t∗, ω[→ R admitting asymptotic
representations (3.10)–(3.12) and (3.15)–(3.17).

If µ0ν1λ<0, the system of differential equations (3.30) has a one-parameter family of solutions
(z1, z2, z3) : [t∗, ω[→ R3 (t∗ ∈ [t1, ω[) that disappear at t ↑ ω. To each of them, due to substitutions
(3.25) and (3.29), there corresponds a solution y : [t∗, ω[→ R admitting asymptotic representations
(3.10)–(3.12) and (3.15)–(3.17).
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