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fourth-order nonlinear differential equation.
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1 Introduction

In this work we are essentially interested in studding the existence of positive periodic solutions
for certain classes of fourth-order nonlinear differential equations which are ubiquitous in different
scientific disciplines and arise especially in the beam theory, viscoelastic and inelastic flows and electric
circuits.

There is a vast literature related to this topic, for instance, in the middle of the past century,
the existence and uniqueness of solutions for higher-order differential equations have been extensively
studied by many researches (see, e.g., [1-7]). During the last two decades, there has been increasing
activity in the study of periodic problems of higher-order nonlinear differential equations (see [12] and
the references therein).

Some mathematicians used transformation in order to reduce the equation to a more simple one, or
to a system of equations, or used synthetic division, others gave the solution in a form of series which
converges to the exact solution and some of them dealt with the fourth-order differential equations by
using numerical techniques such as the Ritz, finite difference, finite element, cubic spline and multi
derivative methods. In this paper, these usual methods may seem inefficient to establish the existence
of positive periodic solutions for the fourth-order nonlinear differential equations. For this, inspired
by the method presented in [9], we convert the ordinary differential equation to an integral equation
in which the kernel is a Green’s function, before using the fixed point theorem in cones.

The paper is organized as follows.

The main goal of the next section is to give the Green’s functions of the fourth-order constant-
coeflicient linear differential equation

u"" + au + bu” + cu’ + du = h(t), (1.1)

where a,b,¢,d € R and h € C(R, (0, +00)) is a w-periodic function with the period w > 0.
The associated homogeneous equation of (1.1) is

u" +au" + bu" + cu’ + du = 0, (1.2)
where its characteristic equation is
M4 aX A% 4 ed+d=0. (1.3)

In this work we assume that d # 0 and we will study only the situation when the roots A1, A2, A3, A4
are real numbers. These roots satisfy one of the following five cases:

A1 # A2 #F A3 # Ay
A1 = A2 # A3 # Ay

(1)
(2)
(3) M =X # A3 = A
(4)
(5)

2
4) A =X = A3 # Mg
5) A1 =X = A3 = )\4.

In the third section, some useful properties of the obtained Green’s functions are established.
Finally, in the last part, by using the fixed point theorem in cones, we establish the existence of
positive periodic solutions of the fourth-order nonlinear differential equation

W+ au” + bu + eu! +du = f(t,u(t)), (1.4)

where f € C(Rx[0,+00),[0,400)) and f(¢,u) > 0, for u > 0.
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2 Green’s functions

Theorem 2.1. If \y # Ao # A3 # A4, then equation (1.1) has a unique w-periodic solution of the

form
t+w

u(t) = / Gr(t, 5)h(s) ds,

where s € [t,t + w] and

ez\l(w—i-t—s) e)\g(w+t—s)
Gl (t, S) = Y + by
(I —e® ) (A1 = A2) (A1 = A3) (A1 — Ag) (1 —e*2) (A2 — A1) (A2 — Az) (A2 — Ag)
e)\g(w+tfs) e/\4(w+tfs)
+ + .
(1 — 6“’)‘3)()\3 — )\1)()\3 - )\2)()\3 — )\4) (1 - 6“’)‘4)()\4 - /\1)()\4 — )\2)()\4 — )\3)

Proof. For A1 # Ay # A3 # Ay, it is easy to see that the general solution of the homogeneous equation

(1.2) is

At Aot Azt Ayt

u(t) = cre™’ 4 coe™?" + c3e™?t + cqe™

and that u(¢) = 0 is its unique solution. Applying the method of variation of parameters, we obtain
eft)\l 67t)\2

(A1 = A2) (A1 — Az) (A1 — Ag) &) = -hlt) (A1 = A2) (A2 — A3) (A2 — Aa)
eft)\g e*t>\4

YR svsw v v R IOl Oh s vy W vy wIs W WE

c1(t) = h(t)

cy(t) = h(t)

whence
t+w A
e M
t+ = t) + h d ’
ci(t +w) = ci(t) t/ (s) (A1 — A2) (A1 — A3) (A1 — \g) i
t+w A
e 572
ca(t+w) =cot) — h(s ds,
2(t +w) = ea(t) t/ () (A = A2)(A2 = Az) (A2 — Aa)
t+w A
e %3
t+w) = colt) + / h as,
03( U}) 63( ) J (S) ()\1 _ )\3)()\2 — )\3)()\3 - )\4) i
t+w A
e M
t+w)=ca(t)— [ h s
ca(t+w) = ex(t) / ) e )0 )
Since we are looking for w-periodic solutions of (1.1), we have
t+’wh e(w—s)Al d
t =
c1(t) t/ (5) (1 —ewrM)(A1 = A2) (A1 — A3) (A1 — Aa) >
G 7wh( ) i d
co(t) = — s %
2 J (1_610)\2)()\1 —)\2)(/\2—)\3)()\2_)\4)
t+wh e(w—s)A3 d
t =
C3( ) J (8) (1 _ e“’>‘3)(>\1 — )\3)()\2 — )\3)()\3 - >\4) >
t+wh e(w—s)/\4 d
t) = — ’
04( ) (8) (1 _ 611))\4)()\1 — A4)(>\2 — )\4)(A3 — )\4) S

~
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Therefore,

t+w t+w

u(t+w) = /Gl(t+w,9—|—w)h(9+w)d9: /Gl(t,s)h(s)ds:u(t),

which proves the periodicity of w.

Assume that u; and ug are two w-periodic solutions of (1.1), then v(t) = uy(t) — ua(t) is a
w-periodic solution of (1.2), i.e., v(t) = 0, hence the uniqueness of the w-periodic solution for (1.1) is
guaranteed. O

Theorem 2.2. If \y = Ay # A3 # A4, then equation (1.1) has a unique w-periodic solution of the

form
t+w

u(t) = /Gg(t,s)h(s)ds,

where s € [t,t + w] and

eltHw=sIh (A — A3) (A — A1) — (" — 1) (A3 — 2X1 + A — s(A1 — A3) (A1 — Aa)))

Ga(t,s) = ™ — 1200 — A3)2(0 — )2
e(terfs))\l e(t+wfs)/\3
+1 A 2 + As 2
(1 —e¥ 1)()\1 —AMA3 — A+ /\3/\4) (1 —ev 3)()\1 — /\3) (/\3 — )\4)
e(t+wfs))\4

(1 — ew>‘4)()\1 — )\4)2(/\3 — )\4) '
Proof. For A\ = Ay # A3 # Ay, it is easy to see that the general solution of the homogeneous equation
(1.2) is
u(t) = cre™Mt + coteMt + c3eM3t 4 cqeMt.
Applying the method of variation of parameters, we obtain

e*t)\l

Cll(t) = h(t) ()\1 _ )\3)2()\1 _ /\4)2 (
h(t)etA &t) = h(t)e s 4t = — h(t)e A
A=) =) 2 (=) —A) T (= A)2(As— M)

Az — 201 + A — (A1 — A3) (A — )\4)),

cy(t) =

Since u(t), u'(t), v’ (t) and u"(t) are supposed to be continuous functions, we get

cl(t) _ 7wh(s) eAl(w_s) (w()\l—)\3)()\1—)\4)—(ew’\1 —1)(>\3—2)\1 +)\4—S()\1—)\3)()\1—>\4)))

(ewd —1)2(A1 — X3)2 (A1 — A\y)?

ds,

t
t+w

h(s)e(w_s)kl
t) = d
c2(t) / (1 — e M)A = A3 — Mg + Agha) %

t
t+w

h(s e(wfs))\g
c3(t) = ls)

(1 —e®A3)(A1 — A3)% (A3 — Aa)

ds,

t+w
e(w—s))\4

C4(t) = — / h(S) (1 _ GW)‘4)(>\1 — )\4)2()\3 — )\4) ds.

Therefore,

t+w
u(t) = er(t)eMt 4+ co(t)te™! + ca(t)et + cu(t)et = / Go(t, s)h(s) ds.
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In the same way as in the proof of Theorem 2.1, we can prove the uniqueness and periodicity of the
solution. 0

Theorem 2.3. If \y = Ay # A3 = A4, then equation (1.1) has a unique w-periodic solution of the

form
t+w

u(t) = / G (t, $)h(s) ds,

where s € [t,t + w] and

e(WHt=s)A1 (1 — W M) (sAy — sAy +2) + WAy — wAy) elwtt=s)
Gg(t, S) = — E +
e — D20 — AP (= e )00 — )
e(wHt=s)Xa ((ewh — 1)(sAy — sA1 +2) + WAy — wA1) N e(wtt=s)xa
@ 170 AP (ErE N,

Proof. For A\; = Ao # A3 = A4, (1.2) has the general solution
u(t) = creMt 4 cpte™t 4 czeMt 4 cytett

Applying the method of variation of parameters, we obtain

e—th et
i (t) = —h(t) CRESWI (th1 —tha +2), c5(t) = h(t) YR

e—tA4 e_t’\“
cs(t) = h(t) PRESWE (tAa —tA1 +2),  cy(t) = h(t) ISR

Since u(t), u'(t), v’ (t) and «'”(t) are continuous, we have

T - (sfw)( wA
e~ M (1 — €M) (sA1 — sAg + 2) + why — why)
t) = —h d
c1(t) / (s) (e® M — 1)2(A; — Ag)3 5
t+wh e(w7s))\1 ]
CQ(t) - / (5) (1 . ew)\l)()\l _ )\4)2 S,
t
f = e hs) e~ MW ((eWA — 1)(sAg — sA1 +2) + why — wq) P
03( t S (6w>\4 — 1)2(/\1 — )\4)3 S,
t+w

e(wfs))\‘;
ca(t) = / h(s) (PO IS WE ds.

Therefore,

t+w
u(t) = c1(£)eM 4 co(t)te™? + ez (t)et + cy(t)tet = / Gs(t, s)h(s) ds.
t

The uniqueness and periodicity of the solution can again be shown in the same way as in the proof
of Theorem 2.1. O

Theorem 2.4. If \y = Ay = A3 # A4, then equation (1.1) has a unique w-periodic solution of the
form
t+w

u(t) = / Galt, s)h(s) ds,
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where s € [t,t + w] and

Jrrnmon =€) = D(((s = O = M)+ 12 +1)) el
2(ewA — 1)3 (A — A\y)3 (ewrs —1)(A1 — A\y)?
e(t+w—s)\1 ((1 _ ew)\l)(w()\l — M) (2(s — )M — M) + 2)))
2(€w)‘1 — 1)‘3()\1 — )\4)3
w2e(t+wfs)/\1 (ew)\l 4 1)()\1 _ )\4)2
2(ewr — 1)3 (A — N\y)3

Proof. For A\; = Ay = A3 # A4, (1.2) has the general solution

G4 (t, 8) =

+

u(t) = Cle)qt + Cgte)\lt + C3t2€/\1t + C4t6)\4t,
The application of the method of variation of parameters gives

e (t2A2 — 242N Ny +12AT 4+ 2tN — 2t0y + 2)

c1(t) = ()

2(A1 — M\1)3 ’
e (N — thy ) e—th ) et

Since u(t), u'(t), v’ (t) and «'”(¢t) are continuous functions, we have

ds

B (WM (5202 — 252 X1 Ny + 5207 + 250 — 250y + 2)
Cl(t) = h(S) 2(1 — €w>‘1)()\1 — /\4)3

t+w
1 e(w=s)h ((e —1)(s(A\1 — A1) + 1) +w(A — Ay))
Tw (1 — ewh) / h(s) (1= e )2(A — Ay)2 ds
.1 Iy
T sy | M s R e
T A (@ - 1) (s(A — Ag) £ 1) +w(Ar — Ag))
ca(t) = t/ h(s) (1— ew/\1)2()\1 — )2 ds,
b w e(w—s))\l
o) = [ o) 5=y 2
e e(w—s)As
ca(t) = / h(s) @ T — ) ds.

t
Therefore,
t+w
u(t) = c1(£)eM + co(t)teMt + cz()t2eMt + cy(t)tet! = / G4(t,s)h(s)ds.
t
In the same way as in the proof of Theorem 2.1 we can prove the uniqueness and periodicity of the

solution. 0

Theorem 2.5. If \y = Ay = A3 = A4, then equation (1.1) has a unique w-periodic solution of the
form
t+w

u(t) = / Gs(t, 5)h(s) ds,
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where s € [t,t + w] and

p(tHw—s)A1 (s —t)3(e®™ —1)3 + 3w(s — t)2(e™ — 1)?
6(ewM —1)4
(tHw—s) 3w?(s —t)(e?WM — 1) + w3 (e2(WA) 4 gewhr 1)
6(6“))‘1 _ 1)4 .

G5 (t, 8) =

+

Proof. For A\; = Ay = A3 = Ay, (1.2) has the general solution
u(t) = 016/\1t + Cgt(i)\lt + 63t2e/\1t + C4t36>‘1t,

By the method of variation of parameters, we arrive at

1 1 1 1
() = 5 htde=M dh(t) = 3 ht?e™™ dh(t) = -5 hte= ¢ (t) = G he ™A,

Since u(t), u'(t), v’ (t) and «”(t) are continuous functions, we get

t+w
536(7075))\1
Cl(t) = 7h(s) 76(1 — QUI)\l) dS
t
t+w
. / hs) wew=s)M (3262(“’)‘1) —252eWM 452 4 25weW M — 25w + wreWM —|—w2) d
° 2(1 — ew™)(ewh — 1) §
t
t+w
w2 e(w=8)A1 (w—s+ sew’\l)
- s ds
(1 _ eu;)\l) 2(1 _ ew)\l)Q
t
w3 t+wh e(wfs))\l J
tazeny ) M gy 48
t
t+w
e(wfs))\l (8262(w)\1) _ 2s2ew/\1 4 82 + 2swew>‘1 — 95w + w2ew)\1 + ’LU2)
ea(t) = / h(s) ds,
S(ewh —1)3
t
t+w
(wfs))\l( _ + wAl)
e w S Se
Cg(t) = / h(s) 2(1 — ew)\l)Q dS,
t
b w e(wfs)kl
t

Therefore,
t+w
u(t) = 1 ()M + ca(t)tet + ez (t)t2eM! + cz(t)tPeMt = / Gs(t,s)h(s) ds.
t

In the same way as in the proof of Theorem 2.1, we can prove the uniqueness and the periodicity of
the solution. O

3 Properties of the Green’s functions

We denote

CH={ueCR,(0,+0)): ut+w)=u(t)},
Cp = {ueC(R,(-00,0)) : u(t+w)=u(t)}.
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Case 1. If \; # Ay # A3 # A\y. For ease of exposition, we use the following abbreviations:

e(’erth)/\l
gra(t,s) = (1 —ePw) (A — A2) (A1 — Ag) (A1 — Ag)
e(w+t75)>\2
g12(t,8) = (1 —eP2)w)( Ay — A1) (A2 — A3) (A2 — A\g)
e(w+t75))\3
g1,3(t,s) = (1 —ePaw)( A3 — A1) (A3 — Xa) (Mg — A\g)
€(w+t—s)>\4
gr,4(t,s) = (1 —ePDw)( Xy —A)(Ag — Xo)(Ag — A3)
ew)\l ew)\g
A= A T M = MO~ Aa) (@ — D0 — A0 — A — A
1 1
RIS V[P VD 5 W W 1§ VR W R IOV } [ VR W D W [ PR WA
. €w>\2
Aig = T e D — A — A3) (O — ) + (ewr2 —1)(A1 — A2) (A2 — Az) (A2 — Aa)
ew)\g 1
_ (e — 1)(M — A3)(hz — A3) (A3 — Aa) + (e M — 1) (A1 — M) (A2 — M)Az — Ag) 7
By =-— 1 - 1
U e — (A — M)A — As) (A — A1) (€9 —1)(A1 — As) (A2 — A3)(As — Ag)
ewkz 6w)\4
+ €2 — 1)(A — ) (ha — A3)(hz — Aa) + (e — 1)(A1 — Ag) (A2 = Ag)(As — Ag)
ew/\1 1
B172 = - <€w,\1 _ 1)()\1 _ )\2)()\1 — )\3)()\1 - )\4) + (ewx\z — 1)()\1 - )\2)()\2 - )\3)(/\2 - )\4)
! ew)\4
T @ — D — Aa)Oe — A3 — M) + (ewA — 1)(A1 — Ag)(A2 — A1) (A3 — \a) ;
ew)\l ew)\g
[ P VR 35 WS VO T 5 VS VAT W W S 72 VR 15 VNS WO T VS W TG W W I
1 1
M2 TR T 00— A) (= A = A) (@ — D0 — Aa)(z — Ag)(hg — Ad)
ew)\4
- (ew>\4 _ 1)()\1 — /\4)()\2 — /\4)(/\3 - )\4) ’
ewkl ew)\g
ni3 = +(6W1 — DA = M)A = A3) (A — Ag) + (ew*s —1)(A1 — A3) (A2 — A3)(Az — A\4)
1
B (ewr —1)(A1 — M) (A2 — M) (A3 — M)’
) ew)\e,
T e 0 )0~ A — ) | (e = D0 — )0 — %) 0 — )
1 1
niys = +(e“’/\1 —1) (A — A2) (AL — As) (A — Ag) + (ewrs —1)(A1 — A3)(A2 — A3) (A3 — Aa)
PLL = Gone Z 1) 0n = )0 — M) 0a — ) T (@ — 10 = 2a) e — ) O — )
8wA2
P12 = (ewr2 — 1) (A1 — A2) (A2 — A3) (A2 — A\g)’
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1
PL3 = (o Z 100 — o) (e — Ag)(ha — M)
ew/\Q 1
D14 = WA + wA ’
(ew22 = 1)(A1 = A2)(A2 = Ag)(Az — Ag)  (e"M = 1)(A1 — Aa) (A2 — Aa)(Az — Ag)
e’LUAQ €w>\4
P15 =

(% — 1) —22) 0z —2a)0z — M) | (@M — D = A (e = A) (s = Ag)

Theorem 3.1. For allt € [0,w] and s € [t,t + w|, we have

t+w 1
/ Gi(t,s)ds = o
t
Proof. We have
t+w
(t,s)ds !
/ LN A (AL = A2) (A1 = A3) (A1 — M)
t+w
(t,5)d !
,5)as = )
t 2 Mo = A2) (s — Ag) (P — Aa)
t+w
(t,5)d .
,8)as = — )
/o s — A3) e — Aa) (s — M)
t+w
(t,s)ds = !
/ LAk Aa(A1 = Aa) (A2 = A) (A3 — Ag)
and
t+w t+w t+w
/ Gi(t,s)ds = / g1.1(t,s)ds + / g1.2(t,s)ds
t t t
t+w t+w 1
+ t,s der/ t,s)ds = ————— . O
t/ sty [t e = 1o

We have four different roots satisfying one of the five cases:
- All roots are positive.

- Three roots are positive and one root is negative.

- Three roots are negative and one root is positive.

- Two roots are positive and two roots are negative.

- All roots are negative.

If all roots are positive, we suppose that Ay > Ay > A3 > Ay > 0 (the other situations can be
proved by using the same method), and we have

Theorem 3.2. prl,l >niia and A1 > Ag > A3 > Ay > 0, then

0< A1 <Gi(t,s) < By
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Proof. If Ay > Ay > A3 > Mg > 0, the study of the derivatives of ¢ ;, i = 1,4, with respect to s, gives
% g1.1(t,s) >0, % g1.2(t,s) <0, % g1.3(t,s) > 0 and % g1,4(t,s) < 0. This implies that

g11(t,t) + g1 2(t, t +w) + g1,3(t,t) + g1,4(t,t + w)
< Gi(t,s) S gira(t,t+w)+ gi2(tt) + g3t t +w) + g1,4(t, ).

From the above double inequality and the assumption p; 1 > n1,1, we obtain 0 < A3 1 < G1(t,s) <
Bl,l- ]

Corollary 3.1. If h € C} and p11 > ni1 and Ay > Ay > A3 > Ay > 0, then equation (1.1) has a

unique positive periodic solution
t+w

u(t) = / Gr(t, 5)h(s) ds.

Example 3.1. Consider the equation
u”” —0.56u” +0.0311u" — 5.56 x 10~ 4/ + 3 x 10754 = h(t),

here h is a given 2m-periodic continuous function. The characteristic equation (A —0.5)(A — 0.03)(A —
0.02)(A — 0.01) = 0 has four roots A\; = 0.5, Ay = 0.03, A3 = 0.02, \y = 0.01.
Since p;1 = 2.0864 x 10% > ny,1 = 1.764 3 x 10%, the equation has a unique 27-periodic solution
t+w t+w
u(t) = [ Gi(t,s)h(s)ds, with [ Gi(t,s)ds =3.3333 x 10° and 0 < 32210 < Gy (¢, s) < 73894.
t t
If three roots are positive and one root is negative, we suppose that Ay > Ao > A3 >0 and Ay <0
(the other situations can be proved by using the same method), and we have

Theorem 3.3. Ifp1o <ni2, A1 > Ay > A3 >0 and Ay <0, then
A1 < Gi(t,s) < Bii <0.

Proof. If Ay > Ay > A3 > 0 and A4 < 0, the study of the derivatives of g; ;, ¢ = 1,4, with respect to s
gives % g11(t,s) >0, % g1.2(t,s) <0, % g1,3(t,s) > 0 and % g1.4(t,s) < 0. Similarly, as in the proof
of Theorem 3.2, we obtain A; 1 < G1(¢,s) < By1 <0. O

Corollary 3.2. If h € C, p12 < N2, A1 > A2 > A3 > 0 and Ay < 0, then equation (1.1) has a

unique positive periodic solution
t+w

u(t) = /Gl(t,s)h(s)ds.

Example 3.2. We consider the equation
" —0.59u"" 4+ 0.104u” — 0.0049u” — 0.00006u = h(t),

here h is a given 2m-periodic continuous function. The characteristic equation (A —0.3)(A — 0.2)(A —
0.1)(A 4+ 0.01) = 0 has the roots Ay = 0.3, Ao = 0.2, A3 = 0.1, Ay, = —0.01.

Since p12 = 665.64 < n1o = 2702.1, the equation has a unique 27-periodic solution u(t) =
t+w t+w
[ Gi(t,s)h(s)ds, with [ Gi(t,s)ds = —16667 and —3268.1 < G1(t, s) < —2036.5 < 0.
t

t

If three roots are negative and one root is positive, we suppose that Ay < Ao < A3 <0 and Ay >0
(the other situations can be proved by using the same method), and we have

Theorem 3.4. Ifp13 <ni3z, A < Ay < A3 <0 and Ay > 0, then

By < Gi(t,s) <Ay <0.
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Proof. If \j < Ay < A3 < 0 and A\g > 0, the study of the derivatives of g; ;, i = 1,4, with respect to s
gives % g11(t,s) <0, % g1.2(t,s) >0, % g13(t,s) < 0and % g1.4(t,s) > 0. Similarly, as in the proof
of Theorem 3.2, we obtain By < G1(t,s) < A11 <0<0. O

Corollary 3.3. If h € C,, p13 < nig, M < A2 < A3 < 0 and Ay > 0, then equation (1.1) has a

unique positive periodic solution
t+w

u(t) = /Gl(t,s)h(s)ds.

Example 3.3. Consider the equation
""" +0.59u”" + 0.104u” + 0.0049u” — 0.00006u = h(t),

here h is a given 2m-periodic continuous function. The characteristic equation (A + 0.3)(A 4+ 0.2)(A +
0.1)(A — 0.01) = 0 has the roots A\; = —0.3, A2 = —0.2, A3 = —0.1, Ay = 0.01.

Since p13 = 665.64 < n13 = 2702.1, the equation has a unique 2m-periodic solution u(t) =
t+w t+w
J Gi(t,s)h(s)ds with [ Gi(t,s)ds = —16667 and —3268.1 < G1(t,s) < —2036.5 < 0.
t t

If two roots are negative and two roots are positive, we suppose that A\ < Ay <0 and A3 > Ay >0
(the other situations can be proved by using the same method) and have

Theorem 3.5. pr1,4 > N4, A < XA <0 and /\3 > Ay > 0, then
0< ALQ < Gl(t,S) < BLQ.

Proof. If Ay < Ay < 0 and A3 > A4 > 0, the study of the derivatives of g; ;, ¢ = 1,4, with respect to s
gives % g11(t,s) <0, 8% g1.2(t,s) >0, % g1,3(t,s) > 0 and % g1.4(t,s) < 0. Similarly, as in the proof
of Theorem 3.2, we obtain 0 < A; » < Gy(t,s) < By 2. O

Corollary 3.4. If h € C}, p1a > n1a, M1 < A2 < 0 and X3 > Ay > 0, then equation (1.1) has a

unique positive periodic solution
t+w

u(t) = /G1(t,s)h(s)ds.

Example 3.4. Consider the equation
u”" —0.054u" — 4.9304 x 10732’ + 0.0004u = h(t),

here h is a given 2m-periodic continuous function. The characteristic equation (A + 0.2)(A 4+ 0.1)(A —
0.2)(A — 0.1) = 0 has the roots A\; = —0.2, A2 = —=0.1, A3 = 0.2, Ay, =0.1.
Since p14 = 381.19 > ny4 = 232.97, the equation has a unique 27-periodic solution u(t) =
t+w t+w
J Gi(t,s)h(s)ds with [ Gi(t,s)ds = 2500 and 0 < 148.22 < G4 (t,s) < 648.22.
t

t

If all roots are negative, we suppose that A\; < Ay < A3 < Ay < 0 (the other situations can be
proved by using the same method), and we have

Theorem 3.6. Ifp1 s >ni5 and A\ < A2 < A3 < Ay <0, then
0< Bi1 <Gi(t,s) <A
Proof. It A1 < A2 < A3 < Ay < 0, the study of the derivatives of ¢ ;, i = 1,4, with respect to s gives

%gm(t?s) <0, %gm(t,s) > 0, %91,3(75, s) < 0 and %91,4(1%, s) > 0. Similarly, as in the proof of
Theorem 3.2, we obtain 0 < By 1 < G1(t,s) < Ay 1. O
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Corollary 3.5. If h € C, p15s > ni5 and A\ < Aa < A3 < Ay < 0, then equation (1.1) has a unique

positive periodic solution
t+w

u(t) = / Gr(t, 5)h(s) ds.

Example 3.5. Consider the equation
u”” +0.56u” + 0.0311u” + 5.56 x 10~/ 4 3.0 x 10754 = h(t),

here h is a given 2m-periodic continuous function. The characteristic equation (A +0.5)(A 4+ 0.03)(A +
0.02)(A + 0.01) = 0 has the roots A\; = —0.5, Ay = —0.03, A3 = —0.02, Ay = —0.01. Since
p1s = 2.0864 x 10° > ny 5 = 1.7643 x 10°, the equation has a unique 27-periodic solution u(t) =

t+w t+w
[ Gi(t,s)h(s)ds, with [ Gi(t,s)ds = 3.333 x 105 and 0 < 32210 < G4 (t, s) < 73894.
¢ t

Case 2. If A\ = Ag # A3 # Mg, A1, A3, Ay € R. We use the following abbreviations:
etHw=sA (1p( A —A3) (A1 —Aa) — (e¥M —1) (A3 —2X 1+ As—s(A1 = A3) (A1 — 1))

g2a(t;s) = (e = 1)2(A1 — Ag)2(A1 — Aa)? ’
(t+w—s)A1
ggwg(t, S) =1 B 26 )
(1 —ewM)(AT = A1A3 — A1 Ay + Az Ay)
e(t+w75))\3
t,s == 9
92009 = e (270 — )
e(t+w—s))\4

92,4(t75) == (1 _ ew/\4)()\1 — )\4)2()\3 - )‘4) ;

(A2 = Xad) (€M — 1) +wAi (M — Az) (A1 — Ag)) et (E=stw)

ha1(s,t) = Ar(ewM —1)2( A — A3)2( A — Ag)? ’
sAy + 1)eM (t—s+w)
ha2(s,t) = /\1(6“’)(‘1 _1 1)()?1 —A3) (A1 — \g) :
Asy = we (A — A3) (A — Ag) — (€M —1)(Ag — 201 4 \g)
, (ew M —1)2(A1 — A3)2(A\1 — \g)2
e eWAs
v (e =)A= A3)(Ar = Aa) (e — 1)\ — A3)2(As — Aa)
+ : ,
(ewrs — 1) (A1 — A1) (A3 — A\g)
Ay = 1 (A2 = A3A0) (€W — 1) + wAr (A1 — Ag) (A1 — Ag))e™™
TN (ewrr —1)2(A1 — A3)2 (M1 — \g)?
L1 2wA; + 1 B wet
A (e = 1)(Ar = A3) (A1 = Ag) (e = 1)(Ad1 — A3) (A1 — Ag)
1 et .
T e D0 208 A @ = D0~ AP0 - Ag)
By = (we“»‘l ()\1 - /\3)(/\1 - )\4) - (ewM B 1)0‘3 -2\ + >‘4))61U)\1
, (ewr —1)2(A1 — A3)2(A1 — Ag)?
1 et
T D0 —2aP0s — ) (@ 10 = A)P0s — A
By s = (A2 = AsAg) (e — 1) + whi (M — As) (A1 — M)

7 Ar(ed —1)2(A1 — A3)2(A1 — A\y)?
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1 e
(@™ — 1) — M)20h — M) (@ — D) = Aa) Ot — )

e’w)\g

T (@ D = )2 — )

_|_

ew)\l ew)\S
Ng 1 =W + ,
o (ew M = 1)(A1 = A3)(A1 = Ag) (% = 1)(A1 — A3)2(A3 — Ag)
S 1 B WA
227 (% — (A — A3)2(As — Ag) (e —1)(A; — Ag)2(As — Ag)
N e'w)\g 1
No3 = — ,
2,3 (e — 1)\ — A3)2(As — A1) (€92 — 1)(Ar — Ma)2(A3 — Ag)
1 1 2w
ng4 =

(@5 =D =27 a = Aa) M (@M =D = A — A

wew/\l ()\1 — )\3)(A1 — )\4) — (6w)\1 — 1)()\3 — 2)\1 + )\4)

P21 = (6“’)‘1 — 1)2()\1 — )\3)2()\1 — )\4)2
1
+ wA 2 ’
(ewr —1)(A1 — Ag)?(A3 — Ag)
6’u))\1
T e TR0 AP~ A
x (we™ (= Ag) (A1 = M) = (€7 = 1)(As = 241 + A) )
_ i ((/\1)()\1) — /\3)\4) (e“’)‘l — 1) + w/\l(/\l - )\3)()\1 — )\4)
P23 = (€M — 1)2(A; — Ag)2(A1 — As)?2
ew)\l
+ 5y s
)\1(6“’ 1 — 1)()\1 — /\3)()\1 — /\4)
- WM (()\% — /\3)\4)(611)/\1 — 1) + ’U)/\l(/\l — )\3)()\1 — )\4))
P2 = A (e — 12001 — A3)2(A; — Ag)2
n 1
)\1(GW)‘1 — 1)()\1 — )\3)()\1 — )\4)
e’UJ>\4 e'UJ)\l
4

—w .
(e —1)(A1 — A0)2(As — Ag) (e = 1)(A1 — A3) (A1 — Ag)
Theorem 3.7. For allt € [0,w] and s € [t,t + w|, we have

t+w

1
Galt,
/ 2(t:9) DYV

Proof. We have

t+w

/ g2.1(t, 8) ds 3)‘2 — 20103 — 2210 + A3y + AT — A3 A3 — tAI, + t)\l)\3>\4
o >‘ (>\1 /\3) ()\1 )\4)

t
t+w

t
g2.2(t,s)ds = —

A(AL = A3) (A1 — Ag)

t
t+w

1
/ g23(t,s)ds = —

A3(A1 = A3)2(A3 — Ag)
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t+w 1
t,s)ds = ,
¢ gaaltss) Aa(A1 = A)2(As — Aa)
and
t+w t+w t+w
/Gg(us)ds: /gg’l(tﬂs)ds—I— /gg’g(t,s)ds
t t t
t+w t+w 1
t,s)d t,s)ds = ———. O
+ /92,3(,5) 5+/92,4(75) s SV
t t

We have three different roots satisfying one of the following four cases:
- All roots are positive.

- Two roots are positive and one root is negative.

- Two roots are negative and one root is positive.

- All roots are negative.

If all roots are positive, we suppose that A\; > A3 > Ay > 0 (the other situations can be proved by
using the same method), and we have

Theorem 3.8. Ifps1 > no 1 and Ay > Az > Ay > 0, then
0< Az <Gs(t,s) < Baj.
Proof. If Ay > A3 > Ay > 0, the study of the derivatives of g1 ;, i = 1,4, with respect to s gives
% g2.1(s,t) <0, % g2.2(s,t) >0, % g2.3(s,t) > 0 and % g2.4(s,t) < 0. This implies that
g2,1(tt +w) + go2(t,t) + g23(t,t) + goa(t, t +w)
< Ga(t,s) < go,1(tt) + g2.2(t, t +w) + g2,3(t, t +w) + g2,4(2,1).

It is easy to check that

we (A = A3) (A1 = Ag) = (e"M = 1)(Az — 201 + )
<
(6w>‘1 _ 1)2()\1 _ )\3)2()\1 — /\4)2 = 92,1(t,t +w)»
(we 1 (A1 — A3)(A1 — Aa) — (€M — 1) (A3 — 2A1 + Ag))e™
(e = 1)2(Ad1 — Ag)* (A1 — Aa)? ’

0<

0<g21(t,t) <

e’w>\1

_ < t,t) <0 t,t <0.
w (6“’)‘1 _1)(}\1 _)\3)()\1 _)\4) —9272( , )_ , 92,2( , +w) >

By using the last double inequality together with the assumption ps 1 > ng 1, we arrive at 0 < Ag; <
Gl(t78) S Bg’l. O

Corollary 3.6. If h € C, P21 > n21 and Ay > Ag > Ay > 0, then equation (1.1) has a unique
positive periodic solution
t+w

u(t) = /Gg(t,s)h(s)ds.

Example 3.6. Consider the equation

""" —0.51u"" + 0.085u” — 0.0048u” + 0.00004u = h(t),
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here h is a given 27-periodic continuous function. The characteristic equation (A —0.2)%(A — 0.1)(\ —
0.01) = 0 has the roots Ay = 0.2, A3 = 0.1, Ay, = 0.01. Since ps1 = 5249.8 > no; = 2844, the

t+w ttw

equation has a unique 27-periodic solution u(t) = [ Ga(t, s)h(s)ds with [ Ga(t,s)ds = 25000 and
t t

0 < 2405.8 < Ga(t, s) < 5552.5.

If two roots are positive and one root is negative, we suppose that Ay > A3 > 0 and Ay < 0 (the
other situations can be proved by using the same method), and we have

Theorem 3.9. Ifps o <ng2, A1 > A3 >0 and Ay <0, then
A1 < Ga(t,s) < By <0.

Proof. If Ay > A3 > 0 and A4 < 0, the study of the derivatives of ¢ ;, i = 1,4, with respect to s gives
%92,1(8715) < 0, %9272(8,75) > 0, %gg,g(s,t) > 0 and %g2,4(s,t) < 0. Similarly, as in the proof of
Theorem 3.8, we obtain Ay 1 < Ga(t,s) < Byq < 0. O

Corollary 3.7. If h € C,,, p22 < nag2, A1 > A3 > 0 and Ay < 0, then equation (1.1) has a unique

positive periodic solution
t+w

u(t) = /Gg(t,s)h(s)ds.

Example 3.7. Consider the equation
u"" —0.49u"" + 0.075u” — 0.0032u” — 0.00004u = h(t),

here h is a given 27-periodic continuous function. The characteristic equation (A —0.2)2(A —0.1)(\ +

0.01) = 0 has the roots Ay = 0.2, A3 = 0.1, Ay = —0.01. Since pa 2 = 1567.2 < ng o = 4218.5, the
t+w t+w
equation has a unique 2m-periodic solution u(t) = [ Ga(t,s)h(s)ds with [ Ga(t,s)ds = —25000

t t
and —5305.9 < Ga(t, s) < —2651.3 < 0.

If two roots are negative and one root is positive, we suppose that Ay < A3 < 0 and Ay > 0 (the
other situations can be proved by using the same method), and we have

Theorem 3.10. If p23 <no3, A1 < A3 <0 and Ay > 0, then
Ao < Ga(t,s) < Bya <0.
Proof. We have ga.1(s,t) = ha1(s,t) + ha2(s,t). If Ay < A3 < 0 and Ay > 0, the study of the

derivatives with respect to s gives 2 ho1(s,t) > 0, 2 hoo(s,t) <0, & goa(s,t) >0, & ga3(s,t) <0
and 2 go.4(s,t) > 0. This implies that

ha1(t,t) + hoo(t,t +w) 4 ga2(t,t) + g2,3(t, T + w) + g2,4(t, 1)
< Gg(t, 8) < h2,1(t, t+ w) + hg,g(t, t) + 9272(25, t+ w) + 92,3(t, t) + 9274(1‘,,75 + w)

It is easy to check that

e (why + 1) e
<h t,t) < )
(e —1)(A — A3) A — M) — 22(t:1) A (e = 1)(A1 — A3)(A1 — \a)
2wA; + 1 w1 + 1

e S0 = el n =) S et ) S e R T e = )

The above double inequality and the assumption py 3 > ng g lead to 0 < Az 2 < Ga(t, s) < Baa. O

Corollary 3.8. If h € C;), p23 < n23, A1 < A3 < 0 and Ay > 0, then equation (1.1) has a unique

positive periodic solution
t+w

u(t) = / Golt, 5)h(s) ds.
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Example 3.8. Consider the equation
" 4 0.49u"" 4+ 0.075u” + 0.0032u’ — 0.00004u = h(t),

here h is a given 27-periodic continuous function. The characteristic equation (A + 0.2)2(A+0.1)(A —

0.01) = 0 has the roots Ay = —0.2, A3 = —0.1, Ay = 0.01. Since pe 3 = 1329.1 < ng 3 = 4218.5, the
t+w t+w

equation has a unique 27-periodic solution u(t) = [ Ga(t, s)h(s)ds with [ Ga(t,s) ds = —25000,
t i

—5367.0 < Ga(t,s) < —2889.4 < 0.

If all roots are negative, we suppose that A; < A3 < 0 < Ay < 0 (the other situations can be proved
by using the same method), and we have

Theorem 3.11. Ifps 4 > noyg and Ay < Az < My <0, then
0< Az < Gsa(t,s) < Baso.

Proof. The study of the derivatives with respect to s gives %thl(S,t) > 0, %hg;(s,t) < 0,

%gg,g(s,t) > 0, %gz;;(S,t) < 0 and %g274(5,t) > 0. Similarly, as in the proof of Theorem 3.8,

we obtain 0 < A272 < Gg(t, S) < BQ’Q. O

Corollary 3.9. If h € C}, paa > noa and Ay < X3 < Ay < 0, then equation (1.1) has a unique
positive periodic solution

u(t) = / Ga(t,s)h(s)ds.

Example 3.9. Consider the equation
""" +0.51u"" + 0.085u” + 0.0048u” + 0.00004u = h(t),

here h is a given 27-periodic continuous function. The characteristic equation (A +0.2)2(A+0.1)(\ +
0.01) = 0 has the roots A\ = —0.2, A3 = —0.1, Ay = —0.01. Since ps 4 = 5644.5 > ng 4 = 3306.3, the

t+w t+w
equation has a unique 27-periodic solution u(t) = [ Ga(t,s)h(s)ds with [ Ga(t,s)ds = 25000 and
t t
0 < 2338.3 < Ga(t, 5) < 5289.4.

Case 3. If \; = Ay # A3 = \y. We use the following abbreviations:

((1 - 6“’)‘1)(5/\1 S Y 2) _ w(>\1 _ /\4))6(w+t75)>\1 e(wtt—s)X1
93,1(t’s) = w1 _ 1)2 _ 3 +1 _ pWAy _ 27
(ewA —1)2(A; — A\y) (1 —ewr)(A1 — A\g)
((6w>\4 o 1)(5/\4 —sA + 2) _ w(>\1 _ )\4))€(w+t75)>\4 e(w+tfs))\4
93,2(t,s) = - WAy 2 _ 3 +1 _ pwg _ 2 )
(6 4 1) ()\1 /\4) (1 e )(/\1 )\4)
eMmstw) (N (s — t) (€™M — 1) + "M + why — 1)
h31(s,t) = Y 2 2 '
)\4(6 4 — 1) ()\1 — )\4)
e)\4(t—s+w)()\1 + )\4)
h3,2(37t) = _>\4(6u»‘4 — 1)()\1 — A4)3 )
haats) — L EX =D EN = DA Fwd (A = (€ — D) (ha=2A))
3,30, )\1 (ew)\l _ 1)2()\1 _ )\4)3 )
1 6)\1(t75+w)
h34(t,s) = — A
3’4( ’S) A1 4 (ew>\1 — 1)()\1 - /\4)3 ’
Ag(t—s+w) 1— _ _
hoatos) - € (1= (s =D~ A0)

@R =D =M
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e>\4(t75+w) A
haolt o) = - (ewds —1)2(\; — \y)3 (€™ —wAi +why — 1),
L (t ) - 6A1(t7$+w) (w)\l()\l — )\4) + (/\1 + )\4)((2“))‘1 — 1))
3,7 ,8) = )\l(ew)\l — 1)2(/\1 — )\4)3 )
has(ts) = T sk~ +1)
PEDIT N (e — 1) (A = Ag)?
e)\4(t—s+w)
h3o(t,s) =w (ewr —1)2(A; — Ag)? )
b NEEIE (s 0y - \))
3,10( 75) - (€w>‘4 _ 1)()\1 — )\4)3 )
- 2eWM e A — whgeWr — 2 e (A + \y)
31— (6“”\1 — 1)2()\1 — )\4)3 )\4(6“’/\4 — 1)()\1 — )\4)3
(e“’)“L + whge?M — 1)
)\4((3“})‘4 — 1)2(/\1 — )\4)2 ’
Ay — A — 201 + 2)\16“1)‘1 — )\46w/\1 + w)\%ew’\l — w)\1>\4€w)‘1
52 A (e —1)2(A — \g)?
. e 3 (wAg —wAy + 1)
)\1(61”)‘1 — 1)()\1 — A4)3 (GW)‘4 — 1)()\1 — A4)3
(€M —wA; +wly — 1)e?
(e = 1)2(Ar = Ag)? 7
An o — (()\1 + /\4)(6w/\1 — 1) + U})\l()\l — A4))€w>\l i wew”\“
58 A (e M —1)2(A) — Ag)? (e —1)2(A; — A\y)2
1 wA; +1 1
il - Ay — WA 2);
+ )\1 (e'LU)\l — 1)<>\1 — )\4)2 (ew/\4 — 1)()\1 _ )\4)3 (w 4 WAL + )7
v 1 A1+ A\
Bs, = 2e“M 4w —whg —2) — —
3,1 (€w>‘1 — 1)2(}\1 — )\4)3 ( (& —+ w 1 WA4 ) A4 (ewA4 _ 1)(}\1 _ A4)3
i 1 €w>\4 ( wAy 4w 1)
il e WAy —
A (e —1)2(A — Ag)2 LT
Bao— i ewM (/\4 — 2\ + w)\% + 2/\1671))\1 — )\46“»\1 — ’LU/\1/\4)
227N (ew™ —1)2(A; — \g)?
N i )\4 ew)\4
A (ewd — 1A — Ag)3 (ewr —1)(A — Ay)?3
1 w)\4
— — WA A—1
(ew)\471)2()\17)\4)3 (e WAL + WAy )7
1
Bas = —3raom Ty —agp A T AT = et = haet wdady)
1 ew>\1 w ew/\4

BV P T T VR Wy A P Y I YR Wy Al (T P D YR VY

6w>‘4()\1 + )\4)
n3,1 = wh 30
)\4(6 4 — 1)(A1 — )\4)

ey — /\467&})‘1 _ w(/\1 — )\4)

P27 N (e — DA = M) (€M —1)(A — Ag)3

1 w

33 = A4 — WA 2) — ;

n3;3 (ew)\4 _ 1)()\1 _ )\4)3 (’U} 4 WAL + ) (6“’)‘1 — 1)(A1 — )\4)2 )
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2eWM 4 e — wheWM — 2 WM et — 1
P T o D200 — A (e — 120 — M)
Ay — 201 + 2he®A — NP w/\fe“”‘l — WA Age?M
Pa2= A (e — 1)2(A; — Ag)3
1 (€M —w; + why — 1)e?™
TR D0 AP @ D20y A
(A (e = 1)+ whi (Mg — Ag)) e 1
Pas = (e 1200 — Ma)? N S0y = M2

e11)/\4

e PO A2

Theorem 3.12. For allt € [0,w] and s € [t,t + w], we have

t+w 1
/ G3 t S )\2)\2.
Proof. We have
e e s A — 3 A — 3 1
Gs(t, s)ds = t,s)d t,s)ds = ———o 271 Lo . O
ot [t ans [anateo) s i
t t t

We have two different roots satisfying one of the following three cases:
- Two positive roots.

- One positive root and one negative root.

- Two negative roots.

If all roots are positive, we suppose that Ay > Ay > 0 (the situation when Ay > A; > 0 can be
proved by using the same method), and we have

Theorem 3.13. If p31 > n3 1 and Ay > A2 > 0, then
0< A3,1 < Gg(t,S) < B371.

Proof. We write g3 2(t,s) = hs1(t, s) + hao(t,s). If A\ > Ay > 0, the study of the derivatives with
respect to s gives (ri g3.1(t,s) <0, 2 5z ha(t,s) <0 and - haat, s) > 0. This implies that

g3t t+w)+ hy(t,t +w)+ hsa(t,t) < Gs(t,s) < gsi(t,t) + hga1(t,t) + haa(t, t +w).
This double inequality together with the assumption p3 1 > ng 1 leadto 0 < As; < Gs(t,s) < Bzp. O

Corollary 3.10. If h € C}, ps1 > ns1 and Ay > \a > 0, then equation (1.1) has a unique positive
periodic solution
t+w

(t) = /G3(t,s)h(s)ds

Example 3.10. Consider the equation

I/I/

—0.06 v 4 0.0013u” — 1.2 x 107%u’ + 4.0 x 10~8u = h(t),

here h is a given 27-periodic continuous function. The characteristic equation is (A—0.02)%(A—0.01)? =

0 has two roots A\; = 0.02 and Ay = 0.01. Since p3; = 5.0241 x 107 > nz1 = 4.9262 x 107, the
t+w t+w

equation has a unique 27-periodic solution u(t) = [ Gs(t,s)h(s)ds with [ Gs(t,s)ds = 2.5 x 107
t

t
and 0 < 9.7887 x 10° < Gs(t, s) < 6.9789 x 106,
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If one root is positive and one root is negative, we suppose that A; > 0 and Ay < 0 (the situation
when A\; < 0 and A4 > 0 can be proved by using the same method), and we have

Theorem 3.14. If p3 2 > n32, A1 > 0 and Ay <0, then
0< A3,2 < Gg(t, S) < B372.

Proof. We write g31(s,t) = hs3(s,t) + hsa(s,t) and gs2(s,t) = hzs(s,t) + hse(s,t). If Ay > 0
and Ay < 0, the study of the derivatives with respect to s gives % hss(t,s) < 0, % hs.a(t,s) > 0,
% hs5(s,t) < 0and % hs.6(s,t) > 0. Similarly, as in the proof of Theorem 3.13, we obtain 0 < Az 5 <
Gs(t,s) < Bz . O

Corollary 3.11. Ifh € Cf}, p32 > n32, A1 > 0 and \y < 0, then equation (1.1) has a unique positive

periodic solution
t+w

u(t) = / Gs(t,s)h(s)ds.

Example 3.11. Consider the equation
u”"" = 0.02u” + 0.0001u = h(t),
here h is a given 2m-periodic continuous function. The characteristic equation
(A=0.1)2(A+0.1)*>=0
has two roots A\ = 0.1 and Ay = —0.1. Since p3 2 = 1609.8 > n3» = 604.66, the equation has a unique
2m-periodic solution u(t) = t}ng (t,s)h(s) ds with t}ng(L s)ds = 10000, 1005.2 < Gs(t,s) <
t t
2178.6.

If all roots are negative, we suppose that A\; < Ay < 0 (the situation when Ay < A; < 0 can be
proved by using the same method), and we have

Theorem 3.15. If p33 > n3 3 and \; < Ay <0, then
0< A373 < Gg(t, 8) < Bg’g.

Proof. We write g3.1(s,t) = hs7(s,t)+hss(s,t), g32(s,t) = h3o(s,t)+h310(s,t). If A1 < A4 <0, the
study of the derivatives with respect to s gives % hs7(t,s) <0, % hss(t,s) <0, % hso(t,s) >0 and
% hs.10(t,s) < 0. Similarly, as in the proof of Theorem 3.13, we obtain 0 < Az 3 < G3(t,s) < Bz3. O

Corollary 3.12. If h € Cf}, ps3 > ns3, A\ < A < 0, then equation (1.1) has a unique positive
periodic solution

u(t) = / Gs(t,s)h(s)ds.

Example 3.12. Consider the equation
o +0.220"" + 0.0141u” + 0.00022u’ + 1.0 x 10~%u = h(t),
here h is a given 2m-periodic continuous function. The characteristic equation
(A+0.1)2(A+0.01)>=0

has two roots A\; = —0.1 and Ay = —0.01. Since 2.027 x 10° > ng 3 = 59450, the equation has a unique

t+w t+w
2m-periodic solution u(t) = [ Gs(t,s)h(s)ds with [ Gs(t,s)ds = 1000000 and 1.4325 x 10° <
t t

G3(t,s) < 1.7506 x 10°.
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Case 4. If \; = Ay = A3 # \y. We use the following abbreviations:
(trw—sn, L= (e = D(((s =t)(M = M) +1)* +1))

gai(t,s)=e (e — 1300 — Aa)?
n €(t+wis)>\l (1 — e“’)‘l) (w(/\1 — )\4)(2(3 — t)(/\l — )\4) + 2))
e — 17O — A
B w2e(t+wfs))\1 (ew)\l + 1)()\1 _ )\4)2
Q(Gw/\l — 1)3()\1 — )\4)3 ’
e(t+wfs))\4
gaza(t,s) = (ewra — 1)(A; — \g)3’
(s —t)(ewM — 1)eMt=stw) N N
hgq(t,s) = — A(s —t)(e®M — 1)+ 2(e"™M A —1
41(t:9) NI ("M — 1)3(A; — Ag) (M- te )+ 2N+ wh - )
e)q(t—s-i-w) 2y2/ wA wA wA
e 1 — ) (w AT (M + 1) + 2(e" — 1) (eV™M +wA; — 1))7
1 e)\l(t—s+w) N
== — ) — ("M — DAy —2
h4,2(t,5) )\% /\4 (6“’)‘1 — 1)2(>\1 — )\4)3 (’LU)\l ()\1 )\4) (6 )()\4 )\1))
_ Ly entstw) s 1
M e (evM —1)(Ap — Ag)?
ha(t,s) (2wAr (€™M — 1) (A1 = Ag) + WX (€M + 1) (A1 = Ag)?)eMr 7t
yS) = —
3 222(ew M — 1)3(A; — Ay)3
_ eAl(tistw) ()\1(8 — t) (QU))\I — 1)2()\1 — )\4)2(S>\1 — t)\l + 2))
222 (ewM —1)3(A; — A\yg)3
B 6)‘1(t—‘9+w)(2(6w)‘1 — 1)2()\% — A+ )\Z))
2)\%(6“’/\1 — 1)3()\1 — )\4)3 ’
1 e)\l(tfs+w) ) iy
haa(t,s) = )\7% (ew M — 1)2(A\; — M\y)2 (sA\1 —tA1 + 1) (Mg — wA] — Mge + WAL Ag);
Ayq = —e¥™ 2(e"M —1)% +w?(eM + 1) (M — Ag)? + 2w(e*M —1)(\ — Ay
’ 2(611))\1 _ 1)3(A1 _ /\4)3
1
T D0 A7
o 1 ewM (wQ)\%(e"’)‘l +1) +2(e¥M —1)2 4 2w (e¥M — 1))
B2 (evd 1) (A — Ag)? 222 (e ™ — 1)3(A — Ay)
>\4 wAp WAL
- R T T (wAse™ (= Aa) = (™ = (A = 2\0) ),
1
Asz=— A= A1)? (WA (€M + 1) +wAy (wAr +2) (¥ — 1)
R V(ST L CTs W W (A=A (@ N 1) b (whi+2) (N -1)2) )
_ 1 wA1 _ wh1_ 1\2()\2_ 2
e T (Qw)\l)\4(e 1A —Aa)+2(e¥M —1)2()2 )\1)\4—1—)\4))
1 GW)\I 2 ’LU)\l
+ E (8w>\1 _ 1)2()\1 — )\4)2 ()\4 - wAl — )\46 + W)\1A4)
e’UJ}\4
+

(X =10 — A
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2we M (e — 1)( A — Ag) + w?e® M (e¥M 4+ 1) (A — M\g)? + 2(e?? — 1)2

By, = —
o 2(e™ — 1)3(\ — Ag)?
N ew)\4
(e = 1)(A = Ag)?
ew)\4
B =
4,2 (ew™ —1)(A; — Ag)?
B wz)\%ew‘l(ew‘l +1)+ 2(@“’)‘1 —-1)2+ 2w)\1€W‘1(eW‘1 -1
2207 (ew —1)3(A1 — \g)
1 )\4€w>‘1 A
- = MM — M) — (¥ —1) (g — 2
3 T = 10 e (WA A = (=10 = 20),
et () w1 212/ wA; 2
Bas = ~gxaramm gy —agp (UMM D0 A+t e +1) 0 -A)?)
_ 6>\1(w> (2(610/\1 o 1)2(}\2 — M+ )\2))
222(ew M —1)3(A — \y)3 LA
n (WAL +1)(Ag—wA2 = Age® 1 +wi \y) B 2eM —wA e M fwhe M — 2
)\%(eﬂﬁq — 1)2()\1—)\4)2 (e"’)“l — 1)2()\1—)\4)3 ’
ny 1 — WM 2(e"M — 1)2 + w?(e¥™ + 1)(A\1 — Ag)? + 2w(e™  —1)(A; — Ay)
s 2(e™ — 1)3( Ay — Ag)? ’
ewk4
Ngo = —

(ew>‘4 — 1)()\1 — /\4)3
N w2 (WM 4 1) + 2(eWM — 1)2 4+ 2wA ev M (ev M — 1)
2)\%(6“’)‘1 — 1)3(>\1 — )\4) ’

_ (2wA1A4(eW1—1)(A1—A4)+w2A§(e“’*1+1)(A1—A4)2)

1
TS T NI (M —1)3 (A —\g)
2(e® M — 1)2(A2 — A Ay + A2 wA(wA) (e — 12N — \y)?
(e 1P —A)® T 22 (e 1P - A
1 ew)q
N e e

A — wAT — Ay FwA\y);

1
Pa1 = e — 1)\ — A
B e (w/\l(/\l — ) — (e¥M —1)(\y — 2)\1))
b= N (e =120\ = M) ’
Pas = e (WA @)™ 1200 — A0)?)
X2 (A — 1)3 (A — \y)3
wAg

(w2 = 1)(Ar = Ag)?

+

Theorem 3.16. For allt € [0,w] and s € [t,t + w], we have

t+w

/ Gy(t,s)ds = !

XAy



Green's Functions for the Fourth-Order Differential Equations 35

Proof. We have

t+w t+w
3X3 — B + A3 1 1
t)d t)ds = —=~% : = : O
/ gaa(s,t)ds + / A [ VS W D WS WS W AR © W

We have two different roots satisfying one of the three cases:
- Two positive roots.

- One positive root and one negative root.

- Two negative roots.

If all roots are positive, we suppose that Ay > Ay > 0 (the situation when Ay > A\ > 0 can be
proved by using the same method), and we have

Theorem 3.17. If ps1 > na1 and Ay > Xy > 0, then
0< Ay < Gy(t,s) < Bys.

Proof. If Ay > Ay > 0, the study of the derivatives with respect to s gives %9471(3,15) > 0 and
%g4,2(s,t) < 0. So g471(t,t) + g472(t,t —+ w) S g471(t, S) S g471(t7t + ’UJ) + g47g(t,t). This double
inequality together with the assumption ps1 > n41 give 0 < Ay < Gu(t,s) < By. O

Corollary 3.13. If h € C, ps1 > naq and Ay > Ay > 0, then equation (1.1) has a unique positive
periodic solution
t+w

u(t) = /G4(t,s)h(s)ds.

Example 3.13. Consider the equation
" —0.61u"" + 0.126u” — 0.0092u” + 0.00008u = h(t),

here h is a given 2m-periodic continuous function. The characteristic equation (A—0.2)3(A—0.01) = 0
has the roots Ay = 0.2 and Ay = 0.01. We compute ps; = 2248.2 > ny; = 404.33, and hence the

t+w t+w

equation has a unique 27-periodic solution u(t) = [ Gu(t,s)h(s)ds with [ Ga(t,s)ds = 2.5 x 10°
t t

and 0 < 1843.9 < G4(t, s) < 2135.5.

If one root is positive and one root is negative, we suppose that Ay > 0 and Ay < 0 (the situation
when A\; < 0 and A4 > 0 can be proved by using the same method), and we have

Theorem 3.18. Ifpso < nag, A1 >0 and Ay <0 then
Ay < Gy(t,s) < Byo <0.

Proof. We have g4,1(t,s)r: ha(t,s) + h47g(t, s). If Ay > 0 and Aq < 0, the study of the derivatives
with respect to s gives % ha (s, t) > 0, %h4,2(s,t) < 0 and %94,2(5715) < 0. Similarly, as in the
proof of Theorem 3.17, we obtain Ay 2 < G4(t,5) < By 2 < 0. O

Corollary 3.14. Ifh € C,;, pa2 < M2, A1 > 0 and Ay <0, then equation (1.1) has a unique positive
periodic solution
t+w

u(t) = / Galt, s)h(s) ds.
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Example 3.14. Consider the equation
" —0.29u"" 4 0.027u” — 0.0007u" — 0.00001u = h(t),

here h is the given continuous and 27-periodic function. The characteristic equation (A — 0.1)3(\ +
0.01) = 0 has the roots Ay = 0.1 and Ay = —0.01. Since py 2 = 465.49 < ny o = 15472, the equation

t+w t+w
has a unique 27-periodic solution u(t) = [ Ga(t,s)h(s)ds with [ Ga(t,s)ds = 10° and —16824 <
¢ t
Gu(t,s) < —15006 < 0.

If all roots are negative, we suppose that A\ < Ay < 0 (the situation when Ay < A\; < 0 can be
proved by using the same method), and we have

Theorem 3.19. Ifps3 > na3z and Ay < Ay <0, then
0< A473 < G4(t, 8) < B4’3.

Proof. We have g4.1(t,8) = has(t,s) + haa(t,s). If A1 < Ay < 0, the study of the derivatives with
respect to s gives % hys(s,t) <0, % hy,a(s,t) > 0 and % ga2(s,t) > 0. Similarly, as in the proof of
Theorem 3.17, we obtain 0 < Ay 3 < G4(t,s) < Bag. O

Corollary 3.15. If h € C}}', pa3 > nas and A\ < Ay < 0, then equation (1.1) has a unique positive

periodic solution
t+w

u(t) = / Galt, s)h(s) ds.

Example 3.15. Consider the equation
a4+ 0.601u" 4 0.1206u” 4 0.00812u" + 8.0 x 10~ %u = h(t),

here h is a given 27-periodic continuous function. The characteristic equation (A+0.2)%(A+0.001) = 0
has the roots A\; = —0.2, Ay = —0.001. Since ps 3 = 20353 > ny 3 = 748.34, the equation has a unique

t+w ttw

2m-periodic solution u(t) = [ Gu(t,s)h(s)ds with [ Ga(t,s)ds =2.5x107, 0 < 20134 < Ga(t,s) <
t t

3.9784 x 109.

Case 5. If \; = Ay = A3 = \y. We use the following abbreviations:

1 WA WA 2 333 wA 2(wA wA
Ao = ey (B0Ae™ (€ = )7 4w X (@) 40 1 1)
L w w w
+ e T (BN @ 1)+ (e - 1))
— L (2(611;)\1 _ 1)(ew>\1 +wh — 1) +w2)\2(€w>\1 + 1))
223 (ev™ — 1)3 1 ,
As o =w? P + et 44 wieWM e2(WA)  gewt 4 .
) 6(ew)\1 _ 1)3 6(67”)‘1 _ 1)4 )
1 WA WA 2 2y2 wA 2(wA
B = gyt (00Mem™ @ = 1 4 3uaer (@00 - 1))
1 333 wA 2(wA wA wA WA 3
+W(w AWt (2(WA1) | gewht 1) 4 g (e — 1) )
3 2(ew>\1 _ 1)(610)\1 ('Z,U)\l + 1) _ 1) + wZ)\%ew)\l (ew)\l 4 1)
2)\?(6“'))\1 _ 1)3 )
2 2(wA1) _ pwAr 2
Bso = ut= c e

: 3(evd — 1)t
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v (Q(ew)‘l —1)(e® M 4 wA; — 1) + w3 (eWM + 1))

o1 = 2N (cwhi — 1)3 ’
3 e?(w)\l) + ew)\l 14

Ngo = —W ;

5,2 6(6“1)\1 — 1)3 3

1 A1 A1 2 3y3 wA1 (,2(wA1) A1
D51 = X3 — 1) (6w)\16w (e"M —1)% + woATe™M (2 4 4N 4 1))
1 242 w1 (,2(wA1) A1 3
+W(3w )\1€w (6 w —1>+6(€w —1) ),

P52 = wie?M e2w2) + de M +1 .

5 Glcon —1)E

o (s.1) — 20T DAEN fwdy 2 1) IG5~ )7)
s,t) = —
S 21 (€W —1)2 6A3 — 6ATewh
bttty SM it L (z(ew*l —1)% 4 2wAi (€M = 1) + wAT (e + 1))
2X3 (ewh — 1)3 !
w3e)\1(t—s+w)(82(11))\1) +4ew)\1 + 1)
6(cor — 1) ’
eh(imstw) A 2712 2
— WAL
h572(8,t) = —m ((6 — ].) (/\1(5 - t) + 2(}\1(8 — t) + 1)))
e/\l(tfs+w)

- WAL . 242/ why
P (C—E (2w)\1(e (s — 1) + 1) + w2r2(e +1)),

_ A(t—stw) s—1t 2/, wA _ 1)\2 2/ _w
hs3(s,t) = e e =18 (65 = %™ =17+ 3™ 4 1)),
ehilimstw) 2/ wA 2 2( 2(wA1) wA
h574(5,t) = wm <3(S — t) (6 11— 1) + w (6 1 + 46 1 + ].))

Theorem 3.20. For allt € [0,w] and s € [t,t + w], we have

t+w 1
/ Gs(t,s)ds = YR
t

Proof. We have

t+w t+w t+w

/G5(t,s)d8: /h,g,’l(t,S)dS—i- / hso(t, s) ds.
t t t
So
t+w

/ G (t S) ds — 311)2)\%(@“&1 +1)+ w3)\51”(ew/\1 +2) — 6<ew)\1 _ 1)2
5(2, =

GA I (evdr — 1)2

w3k (e +2)  Bw?(e”M +1) 1 O
6A7(ewr —1)2 7 6AZ(ewr —1)2 A}

Theorem 3.21. If Ay > 0 and ps1 > ns1, then

0< A5,1 < G5($,t) < B571.

Proof. We have Gs(s,t) = hs1(t,s) + hs2(t,s). If Ax > 0, the study of the derivatives gives
%hg,,l(t, 8) < 0 and % h512(t, 8) > 0, so h5’1(t,t+’U)) + h5’2(t, t) < G5(S,t) < h571(t,t) + h5,2(t,t+w).
If we use this double inequality together with the assumption ps 1 > ns 1, we arrive at 0 < As; <
G5(S,t) S B571. O
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Corollary 3.16. Ifh € C}, A1 > 0 and ps1 > ns.1, then equation (1.1) has a unique positive periodic

solution
t+w

u(t) = /G5(t,s)h(s)ds.

Example 3.16. Consider the equation
""" —0.4u"" + +0.06u” — 0.004u" + 0.0001u = h(t),

here h is a given 27-periodic continuous function. The characteristic equation (A — 0.1)* = 0 has the

root Ay = 0.1. Since p5; = 5866.2 > n5; = 5274.3, the equation has a unique 27-periodic solution
t+w t+w
u(t) = [ Gs(t,s)h(s)ds with [ Gs(t,s)ds =10° and 0 < 591.86 < G5(t,s) < 2591.9.
t

t

Theorem 3.22. If \y <0 and ps 2 > ns2, then
0 < As2 <G5(s,t) < Bs .

Proof. We have Gs(s,t) = hss(t,s) + hsa(t,s). If A&y < 0, the study of the derivatives gives
%h&g(t,s) < 0 and %h5}4(t,s) > 0. Similarly, as in the proof of Theorem 3.21, we obtain
0< A572 < G5(S,t) < B5,2. O

Corollary 3.17. Ifh € C}, A1 < 0 and ps 2 > ns 2, then equation (1.1) has a unique positive periodic

solution
t+w

u(t) = / Gs(t, 5)h(s) ds.

Example 3.17. Consider the equation
o +0.04u”" + 0.0006u” + 4.0 x 107%' + 1.0 x 107 3u = h(t),

here h is a given 27-periodic continuous function. The characteristic equation (A + 0.01)* = 0 has

the root Ay = —0.01. Since ps o = 1.5915 x 107 > n5 o = 1.0655 x 10°, the equation has a unique
t+w t+w

2m-periodic solution u(t) = [ Gs(t,s)h(s)ds with [ Gs(t,s)ds = 10% and 0 < 1.4850 x 107 <
t t

Gs(t,s) < 1.6981 x 107.

4 Positive periodic solutions

Lemma 4.1 ([10,11]). Let X be a Banach space and let K C X be a cone. Assume that 21 and Qs
are bounded open subsets of X with 0 € Q, Q1 C Qa, and let

T:KN(Q\ Q) — K
be a completely continuous operator such that either
() | Tul| < |lu|| for we KN OQ, and | Tul| > |ul| for u e K N oN,,
or
(ii) 1Tu|l > |Ju|| for v e KNoQy, and ||Tu| < ||u| for u € K NoQs.
Then T has a fized point in K N (Q2\ Q1).
Denote

t t
fo= lim sup ) and fo, = lim inf ft,) .
u—=0% te[0,w] U u—00 t€[0,w] U
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Theorem 4.1. If \y > Ao > A3 > Ay > 0, then equation (1.4) has at least one positive periodic
solution in the cases

(i) fo=0 and fo = oo,
or
(i) fo=00 and fo = 0.

Proof. To apply the Guo—Krasnosel’skii’s theorem, let
X ={ueCRR): ult+w)=u(t), tcR}

with the norm |jul]| = sup |u(t)]. Then (X, || - ||) is a Banach space and we define the cone K by
te[0,w]

A
K= {u e X: u(t) > ﬁ lu|| for all ¢ e [O,w]}.

For u € K, we define
t+w

Tu(t) = /Gl(t,s)f(s,u(s))ds.

In view of Theorem 3.2, we have

t4w t+w

0 < Tu(t) = / G (t, ) f (s, u(s)) ds < Bya / F(s,u(s)) ds.

t+w
So [|[Tul| < B11 [ f(s,u(s))ds. Also, we have
t

t+w t+w
_ A1
Tu(t) = / Ga(t,3) (s, () ds > Avy [ fs.u)ds > G2 Tl

t

which shows that T(K) C K. Moreover, T : K — K is a completely continuous operator and the
fixed point of T is a solution of (1.4).
(i) If fo =0 and fo = 0.

Since fo = 0, we may choose 0 < r; < 1 such that f(¢t,u) < eu, for 0 < u < ry and t € [0, w],
where ¢ > 0 satisfies weB1 1 < 1.

Thus, if u € K and ||u|| = 1, we have

t+w t+w

Tu(t) = / Gi(t,s)f(s,u(s))ds < By / f(s,u(s))ds < weByq|lul < ry. (4.1)

t

Now, if we set Q1 = {u € X : |lul]| < 1}, then (4.1) shows that || Tu|| < ||u|| for u € K N O;.
Since foo = 00, there exists r > ry such that f(¢,u) > nu for u > r and ¢ € [0, w], where n > 0, so

A%,lwﬁ
Bl > 1.
Let
(. 22}
ro = max < 2r
2 1, A171 )
and Qy = {u € X : |Ju|| < rg}, then u € K and |u|| = ro imply that
A A
u(t) = Fo flul = Z=rs =,

B B

) )
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and hence

t+w t+w

Tu(t) = / Gi(t,s)f(s,u(s))ds > A1 1 / f(s,u(s))ds >

t

(A?,lwn)

ull > ||ull. 4.2
Bl >l (42

Thus (4.2) shows that ||Tu|| > ||u|| for u € K N0Qs. -
It follows from Lemma 4.1 that T has a fixed point u* € KN (Q2\ ;). Consequently, the equation
has a positive w-periodic solution 0 < r1 < u(t) < ro.
(ii) If fo = 0o and fo = 0.
2
We choose r3 > 0 such that f(u) > Au for 0 < u < rg, where A > 0 satisfies /\2,1% > 1. Then for
u € K and ||u|]| = r3, we have

t+w t+w
Tu(t) = / Gi(t,s)f(s,u(s))ds > A1 1 / f(s,u(s))ds >

t t

AAT Jw
By

)

[l = ffee]]- (4.3)

If we put Q3 = {u € X : |ul| <rs}, (4.3) shows that |Tu| > |u| for u € K NINs.
Since foo = 0, there exists M > 0 such that f(t,u) < &u for u > M and & > 0 satisfies {B; jw < 1.
We choose

Bl’lM}

r4 = max {27“3,
A

then w € K and ||u|| = ry4, this implies that u(t) > gi’i |lu|]| > M, and so

t+w t+w

M@:/G%ﬂmﬂwﬁﬁﬁg/ﬂw@wms

t ¢
t+w
< Buaé [ uls)ds < Buywgul < fu. (44)
t
We set Q4 = {u € X : ||ul]| < r4}, then for u € K N OQy we have ||[Tul| < [jull.
In view of Lemma 4.1, equation (1.4) has at least one positive solution 0 < r3 < u(t) < r4. O
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