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ASYMPTOTIC REPRESENTATIONS OF SOLUTIONS

WITH SLOWLY VARYING DERIVATIVES OF ESSENTIALLY
NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

OF THE SECOND ORDER



Abstract. Differential equations of the second order with nonlinearities of rather general type that
are in some sense near to the power ones are considered. For some class of solutions with derivatives
of the first order that are slowly varying functions as the argument tends to the critical point, the
conditions of the existence and asymptotic representations are found.
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Let us consider the differential equation

y" = aop(t)eo(y)e1(y') exp (R(|In |yy/|])), (1)

where ag € {=1,1}, p : [a,w][—=]0,+0] (—0 < a < w < +00), @; : Ay, —]0,+00[ are continuous
functions, R :]0; +00[ —]0; +00[ is a continuously differentiable function, that is, regularly varying at
infinity of order u, 0 < p < 1, and has a monotone derivative. Here, Y; € {0, +00}, Ay, is either the
interval [y?; Y;[1, or the interval ]Y;; 9] (i = 0,1). Moreover, it is supposed that every function ¢;
(1 = 0,1) is regularly varying of order o; [4, Chapter 1, § 1.1, p. 9] as the argument tends to Y; and
op+ o1 # 1.

The solution y of equation (1) defined on the interval [tg,w[ C [a,w] is called P, (Yo, Y1, Ao)-solution
(=00 < Ag < 400) if the conditions

limyO(8) =V (= 0,1), lim - O

tw tITrS y" (t)y(t) =0 )

are satisfied.

Let the function ¢ : Ay —]0, +00[ be regularly varying of order 0 as z = Y (2 € Ay, Y € {0, 00},
Ay is a one-sided neighborhood of Y'). We say that the function ¢ satisfies the condition S if for any
slowly varying as z — Y (z € Ay) function L : Ay, —]0;4o0[ such that

LI
im 2EG) g

za L)

the equality
O(zL(2)) =0(2)(1+0(1)) as z =Y (2 € Ay)

takes place, where O(z) = p(2)]z]7°.

Some classes of P, (Yp, Y1, Ag)-solutions of equation (1) were investigated earlier (see, e.g., [3]). The
sufficiently important class of P, (Yo, Y1, £00)-solutions of equations like (1) has been considered only
for the cases R(z) = 0 and ¢o(z)|z|~7° satisfies the condition S. Later, it has turned out to extend the
results on more general cases (see, e.g., [1]). But the functions that do not satisfy the condition S, but
contain in the left-hand side the derivative of an unknown function as in a general case of equation
(1), have not been considered before. Notice that the derivative of every P, (Yp, Y1, 00)-solution is a
slowly varying function as ¢t T w. It makes a lot of difficulties when conducting investigations.

We need the following auxiliary notation

Tw(t) =

{t WETT 0e) = @il (i=0,1)

t—w as w < 400,

and in case 1tle |7 (t)| signyd = Yo,
N(t) = aop(t) | ()| 70T 00 (|mu (t)| signy)) as t € [b,w],

To(t) = ag / D7) |7 (7)[70 00 (| ()] sigm o) dr,

AY
b as /p(T)|7rw(7')|"°@o(|7rw(T)| signy]) dr = +o0,
AD = ’

w as /p(T)|7rw(T)|‘7°®0(|7rw(T)|signyg) dr < 400.
b

Here, we choose b € [a,w[ in such a way that |m,(¢)|signy) € Ag as t € [b,w].

Mf Y; = +oo (Y; = —o0), we respectively suppose that y? >0 (y? < 0).
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Theorem 1. The conditions

+ —
Y, = { o0 a8 w=-oo, 7o (O)y0y) >0 as t € [a;w] (3)

0 as w < 400,

are necessary for the existence of P,,(Yo, Y1, £00)-solutions of equation (1). If the function g satisfies
the condition S and ,
R (0D
thw 7w (0) I} (¢)

=0, (4)

then the conditions
Wio(t)(1 — 09 —01) >0 as t € [a,w],

1 7o ()15 (%)
limy?|Io(t)|=oo—=1 =Yy, lim ———-0
tTw yl‘ O( )| ! tTw Io(t)

together with conditions (3) are necessary and sufficient for the existence of the above-mentioned
solutions of equation (1). Moreover, for each P, (Yy, Y1, +00)-solution of equation (1) the asymptotic
representations

iy 5)

y@Oly' )]~
p1(y' (1) exp(R(| In[y(t)y' (1)]]))
y'(@) _ 1
y(t)  mo(t)

= (1 =09 —o1)Io(t)[L + o(1)],

[1+0(1)]

take place ast T w.

If condition (4) is not valid, there takes place the next theorem with another condition (7). Note
that if the limit of the left-hand side of equality (4) is equal to infinity, then condition (7) takes place
in most cases.

Theorem 2. Let the function p in equation (1) be continuously differentiable in its domain. If the
function @q satisfies the condition S and

TN
A R ([ m (O DN )

=0, (7)

then the conditions
a0y’ (1 — o9 —o1)In |7, (t)| >0 as t € [a,w],

L R(mir))) =i

— 0o — 01

(8)

lim 10 (
o P 7

together with conditions (3) are necessary and sufficient for the existence of P, (Yo, Y1, £00)-solutions
of equation (1). Moreover, for every such solution the asymptotic representations

y' Oy ()]~ (I =09 —01)N(t) 0
WO exp ROy @)~ R(lmon o .
v _ 1 [1+40(1)]
y(t)  mu(t)

take place as t T w.

Proof of Theorem 1. The necessity. Let the function y : [tg,w] — Ay, be a B, (Yp, Y1, £00)-solution
of equation (1). By virtue of (2), the equality

- () ()

implies that
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From this, in view of (2), we have the following asymptotic representations:

y'(t)
T (1)

From the first formula we get the first one of representations (6) and condition (3). It also follows
from (10) that there exists a slowly varying continuously differentiable function L : Ay, —]0, +o0|
such that y(t) = 7, (t)L(7,(t)). By the condition S, we obtain Q¢ (y(t)) = O¢(|m.(t)|signyd)[1+ o(1)]
ast T w.

Moreover, from the first formula of (10), using the properties of logarithmic functions and the
function R, we find that the asymptotic representations

R(IIn[y(t)y' 0Il) = R(|In|mu (D) [1+o(1)],  R([Infy@)y'®)]]) = B (I |z ()] [1 +o0(1)] (11)

take place as t T w.
Let us rewrite (1) in the form

y"(1)
e1(y'()ly' ()]0

Suppose now that condition (4) holds and denote

y(t) = mu(Oy (O + 0], y'() = o) as t1w. (10)

= Ig(t) exp (R(|In]y()y' (t)[]))[1 + o(1)] as ¢ T w. (12)

lim [, = Jo.
dmho® = o

Let us show that the function exp(R(|In|y(Iy " (2))y (I *(2))]])) is slowly varying as z — Jy. Here,
Iy " is the function, inverse to Iy. By conditions (4), (11) and (10), we have

z(exp(R(|In |y(I5 " (2))y (Iol(Z))II)))
== exp (R(|In |y (15 (2)y' (1o (2))]])
iy ZOPR(In (7o (2))y ( HDID)R (1 |y (5 (2))y' (g ' ())]]) (y’(fo_l(Z)) LY >
2= Jo Iy(I5 " (2)) exp (R(In [y (Ig ' (2))y' (I (2))]])) yIo'(2)) ¥ (I3 (2)
i PRIy () (g () o' (U (=) (1+ y”(I_l(Z))y(I(?l(Z))) —0
2o (15" (2) y(lo ' (2) (' (Ig ' (2)))?

Therefore, using (12), we get
y' @ly' ()~
p1(y' (1)) exp(R(| In [y @)y ($)]]))

Thus representation (6) is valid. Taking into account the sign of the function y’(t), we obtain the first
and the second of conditions (5). Using the second of relations (10), by (13) and (12), we have

o T OI(01 (4 (1)

ttw |y (t)[* 7o

=(1—-o09—0o1)lo()[l+0(1)] as t T w. (13)

=0.

The third of conditions (5) follows from the latter relation, and thus the necessity is proved.

The sufficiency. Suppose that the function ¢, satisfies the condition S and conditions (3)—(5) of
the theorem hold. We denote g(vg,v1) = exp(R(|1n|vgvy||))L1(v1), where Ly : Ay, —]0,400[ is a
slowly varying function as z — Y7 (z € Ay,) such that

L/
Li(z) =01(2)[1+0(1)] as z—= Y7 (€ Ay,), lim 0 (2) =0. (14)
z—Y; Ll(Z)
ZEAYI
According to the properties of the function R and (14), we get
0 9% (vg, v1) o
lim ——*——— =0 uniformly by v; € Ay,, j#1i, i,j=0,1. (15)

vljlezy g(vo,vl)
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So, we can take ﬁyi C Ay, (i =0,1) in a form such that

vi 2 (vo, v1)

g(’Uo,’Ul)

<( (Z =0, 1) as (’U(),’Ul) S &yo X Ayl. (16)
Here, 0 < ¢ < |170+01\7 ¢ is sufficiently small and

- W, Vil if Ay, = [0, Yi[, o) <yl <Vi,
Y; = ~ _ 1=0,1.
Yo, 50l if Ay, =Y, Yi> g0 >,

Consider now the function

|51|1—00—01
F(s0,81) = 9(s0, 51)
) s
S0
on the set Ay, x Ay,. Using (15), we have
a1 (e ).
Sliil%/ lsf’lﬁs_f’;jl_)al *L =1 — 09 — o1 uniformly by sg € Ay, (17)
1 1 L
s1€Ay, g(s0,51)
so(gray )
Slii%/ lsf’lﬁi‘);zl_)al 20 = —R'(|In|sps1]|) sign(sp) = 0 uniformly by s; € Ay,.
0 0 =t
S S ey

Therefore, we get

170'070‘1
. 51 . X
lim L =T uniformly by so € Ay,
s1—Y1 g(So, 81)
S1€EAY,

Let us show that F' establishes the one-to-one correspondence between the set Eyo X Eyl and the

set ~111 11
—0p—01 e —0p—01
|:y0(|,\,0,\,1) N T) X AO as |y0(|,\,0,v1) < T,
F(EYO « zYl) _ 9o s Yo 9o s Yo (18)
‘§1|170'070'1 |g1|170'070'1
(T (),\,()7,\,1} X AO as O,\,Oi,vl > T
9(¥5,Y0) 9(¥5Y0)
Here,
o Yo
[g—OO;YOO) as Mg <0, ﬂoo <Yy,
Ao ° - (19)
(YOO; T%} as Mg <0, %{00 > Yy,
Yo Yo
0 as Yp =0,
Yooz —00 as Yp =0, w<+o0o,

400 as Yp =0, w=4o0.

l—og—0o
Let us consider the behavior of the function % on the straight lines

So = k‘Sl, ke R\ {O} (20)
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On every such a line we have
|81|1—0'0—O'1 B ‘81|1—O'0—0'1

9(s0,51)  g(ksi,s1)
Moreover, we get

81|1_"°_‘”>’ sy ! 70— ( s1L4(s1) ) 211y e 5 )
B — =—(1—-09g—01 — ———% —2ks1 R (| In|ks sign(In |ks .
(g<k51,51> T (R o LR (|1n k2] sign(in ks3]

Taking into account (16), from the latter equality we obtain
A i Y
sign (m)81 = sign(y; (1 — o9 — 01)).
ls1 177077

g(ks1,51)
correspondence F' is not of one-to-one type. Then

Therefore, the function is strongly monotone on every line of type (20). Suppose that the

3(po,p1); (90, @) € Ay, x Ayy, po,p1) # (@0, 1) 0 F(po,p1) = F(qo, q1)-

Taking into account the definitions of the sets EYO, Eyl, the latter equality implies that

|1—0’0—O’1 |1—O’0—0’1

|P1 |<J1 Po q0
= , 2=2—cecR\{0}. 21
9(po, 1) 9(q0, q1) Po@ \ {0} (21)

Thus, the points (pg,p1) and (qo, ¢1) lie on a line of type (20). But in this case equalities (21) fail to

‘81‘1_00_”1
— g(siyesn) . Y
the inverse function F~! : F(Ay, x Ay,) — Ay, x Ay,. Taking into account the character of the
function F', we have

take place, because the function is strongly monotone on the line. Therefore there exists

Ffl(wovwl)

_ Fﬁl(wo wy)
F 1(w07w1)—( 1_ ) = 1
FO 1(11)0,101) 7F1_1(w0,w1)
wo
Since by (16) the Jakobian of the function F is different from zero as (sg, $1) € ﬁyo X EYI, the function
F~1 is continuously differentiable on F(Ay, x Ay,).

Taking
ly (O] = (1— 00— o1)To(t) sign(y)[1 + 21 (2)]
e1(y") exp(R(|In [y (t)y' (t)]])) ’ (22)
y't) 1 ol
y0) (L)
where

2= Binlru(t), 8= {1 as w = —+00,

-1 as w < oo,

we can reduce equation (1) to the system

\Pl(xa 21, ZQ)Lll(\Ill(xwzla ZQ)))
Li(Vy(, 21, 22))

Ki(x, 21, 22) R (|In|m,(t)|]) Ki(z, 21, 22)Go(x)
[+ allt + 22l G T RR) ) e

r Go($)K1(IIﬁ721,22) _
22—5[1+22]<(1_00_01)[1+21] [+ 2570 2>7

21 = BGo(z)[1 + 2] ((1 — 09— 01 —

— Ks(x,21,22)
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where
\Ifo(l' 21722 ( 1—00 — 01 Io( (X))[1+Z1($)],m [1+22(1‘)]>,

(2,20, 2) = B ( 1= 00— o) a(t(@)l1 + 5 ()], s +z2<:c>1),

Go(z) = t(x( (Im); )),
_ O0(Yo(t(x), 21,22))
Ki(x,21,22) = (1 — 00 — 01)O0 ([ (t(x))| signy?)
Ky(x,21,22) = R (|In[¥o(t(x), 21, 22) ¥ 1(t(|x)721a22)|> :

R/ (| In [ (#(2))1])
By (3), it is clear that

lim —— =Y.
o 7w (t) !

Moreover, it follows from the first and the second of conditions (5) that

hm(l — 0o — Ul)Io(t) =7.

ttw
Therefore, we can choose ty € [a,w[ in a form such that

((1 — 0o I 0’1)[0(75)[1 + Zl(!E)]
0 1+ z2(x)]

Then we consider the system of differential equations (23) on the set

l\JM—\

) € F(Ay, x Ay,) as t € [to,w], |z <

O = [xg, +oo[ xD, where xg = S1n|m,(to)l,
1
D= {(2172’2) al <5, 0= 1,2}.
Rewrite the system in the form

Zi = Go(x)(AHZl + Aoz + Rl(ﬂf, 21, 2’2) + RQ(ZQ)),
2y = Ap121 + Agezo + R3(x, 21, 22) + Ry(22),

where

Al = A = -8B, A = —Boo, Aoy = 0,
_ R (| In | (t(2))]]) Ki (2, 21, 22)Go(z)
Ri(z,21,22) = =B[1 + 2] <K2(35721722) Go(@) (1 + (1+21)(1 + 22)00—1>
Ky(z, 21, 22) ‘1’1(90,21,22)171(‘1’1(30’21722)))
(14 21)|1 + 2|00 Li(¥i (2, 21, 22))
|Ki (2, 21,22)|(1 =09 —01) — 1
+ ﬁ |1 + 22|oo

Ra(22) = B(|1 + 22| 77° + 0022),

[1+ 20)Go(x)K1(z, 21, 22)
(1 — 00 — 0'1)[1 + 2’1] [1 + 22]‘70

)

R3(w,21,22) = B . Ry(z0) = —B23.

For (wo,w1) € F(Ay, x Ay,), we have the equality

|F{ ™ (wo, wy ) |10~

Q(Fo_l(wovw1)7F1_1(w0,w1))

= wq.
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Since (16), (3) and the second of conditions (4) are filfilled, it follows from this equality that
lim U;(t(x), 2z1,22) = Y; uniformly by (z1,22) € [—11} X [—11}
proo 8 sy <1y <2) — L4 y by 1, <2 2°9 2°9

as ¢ = 0,1. Therefore, by (14), we have

hIn \I’l(t(l‘), 21, Zg)L’l(\I’l(t(I), 21, ZQ))
T—00 Ll(\Ifl(t(x),Zl,ZQ))

11 11
= 0 uniformly by (21, 22) € [— 5,5} X [— 3 5} (25)
Moreover, it follows from the properties of the function F and conditions (3)—(5) that the function
Wy (t, 21, 22) is slowly varying as ¢ 1 w uniformly by (z1,20) € [-3 ;3] x [-2; 3]. Since

T () U1 (2, 21, 22)

U (t =
0( 721722) 1+22
and the function ¢ together with the logarithmic function satisfy the condition S, we have
1 11 11
wh_)noloKl(x,Zl,ZQ) = Fp— uniformly by (z1,22) € [— 3 5] X {— 3 5}7 (26)
lim K ( ) =1 uniformly by (21,2) € | 11}x[ 11} (27)
im x,z1,22) = 1 uniform 21,2 — == ==
Yoo 2\by <1y <2 y by 1, <2 29 279
Since the function R is regularly varying at infinity of order u, 0 < p < 1, we obtain
lim R (| In |7, (¢ =0. 28
lim /(|1 | (0)]]) (28)
Third of conditions (5) implies
lim Go(x) = 0. (29)
Tr—r00
By (4) and (25)—(29), we get the limit relations

Rz’ (ZQ)

im ———— =0 uniformly by z: x €]xg, +o0
|1 |+z2] =0 [21] + |22 Y fro. ol

as i = 2,4 and

lirf R;(x, 21, 22) = 0 uniformly by 21,29 : (21,22) € D
Tr—r+00

as1=1,3.

oo
By the definition of the function Gy it is clear that [ Go(z)dx = .
xo
So, for the system of differential equations (24) all conditions of Theorem 2.8 from [2] are fulfilled.
According to this theorem, system (24) has at least one solution {2;}7_; : [z1, +0o[— R? (21 > )
tending to zero as x — +o00. By (22) and (23), this solution corresponds to such solution y of equation
(1) that admits asymptotic representations (6) as ¢t T w. By our representations and (1), it is clear
that the obtained solution is indeed the P, (Yp, Y1, £00)-solution. O

Proof of Theorem 2. The necessity. Let the function y : [tg,w[— R be a P, (Y, Y1, £00)-solution of
equation (1). We obtain (10) and (12) just as in the proof of Theorem 1. The second of representations
(9) follows from these relations. Let us rewrite (12) by using the first of asymptotic representations
(10) in the form

"(t N(t R(|1 t)y (¢ "1 1
YO NOepR(w Oy 0D Ol o] 50
e1(y' (0)ly' (£)|7 y(t)
Suppose that conditions (7) are valid. By the properties of the function R, there exists a twice
continuously differentiable function R :]0; 4+00[ — ]0; +-00[ such that

B2 = RO +o()], F()=REL+o)]. lim_ i/éfgj)(j) - ey
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By conditions (2), (11), (31), (7) and the first of asymptotic representations (10), from the equality

<N<t> exp(R(| In y(t)y'mn)))’ _ V@) exp(R( I ly@y 01Dy ()
R (| ()] y(0) B
y(t) Nm(t) _B(wlm@l) B(hmoDY |, vbue
X<m<t>y’<t> <N(t)R’(|1H|m(t)ll) @ (|1n ()] R'<|1n|7rw<t>||>)+ T )
we have the following representation
(N(t) exp(R( 1ny<t>y’<t>|>))’ _ N@es(A( 0y ©ID)
7 ([Infru (1)) R (| (1))

+o(1)]

as i = 1,3. So, using the properties of the function ¢; and (30), we get

v NOepBEIn O OD) (L) s e,

o1 (y'(t)]y (t)]°0 R'(|In|my(t)]])

The first of representations (9) follows from this relations by using (31). Taking into account the sign
of the function y'(t), we obtain conditions (8). The necessity is proved.

The sufficiency. Suppose that the function ¢ satisfies the condition S and there take place
conditions (3), (7), (8). Consider the twice continuously differentiable function R :]0;+oo[ — ]0; +00[
that satisfies (31), just as in the proof of Theorem 1. We use the same function F' with the same
properties as in the proof of Theorem 1.

Taking | N
1-— g — 01 N(t
- 1+ 21 ()
F(y'(t),y(t)) = R/(|In|m, ()]])
— L+ =a(e)]
where

v = Bln |my(t)], 5{1 a8 W= oo,

-1 as w=4o0,
we can reduce equation (1) to the system

K1($,21,2’2)|1 + ZQ|UO
(1 — 00 — 0'1)

\1/1(1'7 21, ZQ)Lll(\Ill(x7zlv ZZ)))
Ly (Y1 (z, 21, 22))
Ky (x,21,22)Go(x)|1 + Z2|U°>

‘1—00—01|

(170’07(717

4 = 6Goa)|

—G1($)[1 + 2:1] — KQ(JZ, 21, 2’2)(1 + 21 +

R(|In|m,(0)[]) )
Ky (z, z1,22)Go(x)|1 + 22|7° _ ]
[1— 09— o1][1+ 2] 7

4=l +2] |

where

)

Gola) = B (I frott@)l), Gr(a) = DD

_ B( e (t())I ) R(| o [ (t(2)) 1)
(R/(|In |7 (t())]1))?

a0 eIN @) 1
Yotz z) = 1y < Ry et 2]>’

2)

(1= 0 — o )N(t(x)

\I/l T, 21,22 :Fl = 1 Z1], 1 Z2] |,
(21,22) ( Rt [+ ]>

Ga(z)

)

o
o (t(z))
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O (Vo (t(), 21, 22))

Ki(z, 21, 22) = ,
1(z, 21, 22) Oo(|mu (t@))])
R (|1n | (t U, (t
Ko, 20) = LU V0(t@): 21,2001 (a). 21, 2)ID)
R ([T |y, (¢(2))]])
We get

i ~ 1 uni 11 11
leI&Ki($;Zlaz2) = 1 uniformly by (z1,22) € [_ 5,5} « [_ 575}, (33)

as in the proof of Theorem 1.
By (3), it is clear that

1
lim —— = Y.
to mo(t) O
Moreover, it follows from (7) and (8) that
lim |1: o0 — 0'1|N(t)
e R(|In[m, (2)]])

Therefore, we can choose ty € [a,w[ such that

(1~7 oo — Ul)N(t)
R ([T |y, (4)]])

Lta@)) 1
) € F(Ay, x Ay,) as t € [to,w], |zz\§§ (i=1,2).
m[l + 22()]
Further, we consider system (32) on the set
Q = [xg,+oo[ xD, where xg = S1n|to],
D:{@ngmg%@:Lm}

and rewrite system (32) in the form

21 = Go(x) [Anzl + Aio21 + Ry(x, 21, 22) + RQ(ZQ)],
zy = Ag121 + Agaza + Ra(x, 21, 22) + Ra(22),

where
Apn = Agp = =B, Ao = Pog, Aa =0,

Rl(x,zl,zg) = ﬁ((Kl(.%‘,Zl,Zg) — l)ll + ZQlUO — (Kg(l‘,Zl,ZQ) — 1) — Gl(x)[l + 21]

n Ga(z)  Ki(w,21,20) Vi(w, 21, 20) LY (W (, 21, 22))
R(|In|m, (@)1 + 22]  [1 =00 — 0] Ly (W1(x, 21, 22))
B Go(x)Kz(x,zth)Kl(%Zhz2)|1+z2|(,0>7
|]. — 0o — O'1|
RQ(ZQ) = (|]_ + 22|00 — 0pk2 — 1),
Go(i)Kl (SC, 21, 22) ‘1 + 22|00+1
R =
3(1:7217Z2) |1—0’0—O’1| 1+Zl ’
R4(2’2) = —623
It follows from (3) and (7) that
w—1

lim Gi(z) =0 (:=0,1), lim Ga(z)=—.

Tr—r00 T—00 /J
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By the character of the function Gy, it is clear that

oo

/%@M:w

zo
So, using (33), we have

R.
im ﬂ =0 uniformly by x : = €]zg, +00]
|21 ]+ 22 =0 [21] + [22]

asi=2,4 and

lim R;(z,z21,22) =0 uniformly by 21,22 : (21,22) € D
r—r+00
asi1=1,3.

Thus, for the system of differential equations (32) all conditions of Theorem 2.8 from [2] are
fulfilled. According to this theorem, system (32) has at least one solution {z;}72_; : [z1,+o0o[ — R?
(z1 > x0) that tends to zero as x — +oo. This solution corresponds to such solution y of equation (1)
that admits asymptotic representations (9) as t T w. By our representations and (1), it is clear that
the obtained solution is indeed the P, (Yy, Y7, £00)-solution. O
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