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EXACT CONDITIONS FOR THE EXISTENCE
OF HOMOCLINIC ORBITS IN THE LIÉNARD SYSTEMS



Abstract. We consider the Liénard system ẋ = y − F (x) and ẏ = −g(x). Under the assumptions
that the origin is a unique equilibrium, we investigate the existence of homoclinic orbits of this system
which is closely related to the stability of the zero solution, center problem, global attractively of the
origin, and oscillation of solutions of the system. We present the necessary and sufficient conditions
for this system to have a positive orbit which starts at a point on the vertical isocline y = F (x) and
approaches the origin without intersecting the x-axis. Our results solve the problem completely in
some sense.
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ÒÄÆÉÖÌÄ. ÂÀÍÅÉáÉËÀÅÈ ËÉÄÍÀÒÃÉÓ ÓÉÓÔÄÌÀÓ ẋ = y − F (x) ÃÀ ẏ = −g(x). ÉÌ ÃÀÛÅÄÁÉÈ, ÒÏÌ
ÓÀÈÀÅÄ ÀÒÉÓ ÄÒÈÀÃÄÒÈÉ ßÏÍÀÓßÏÒÏÁÉÓ ßÄÒÔÉËÉ, ÅÓßÀÅËÏÁÈ ÀÌ ÓÉÓÔÄÌÉÓ äÏÌÏÊËÉÍÖÒÉ
ÏÒÁÉÔÄÁÉÓ ÀÒÓÄÁÏÁÀÓ, ÒÀÝ ÌàÉÃÒÏÃ ÀÒÉÓ ÃÀÊÀÅÛÉÒÄÁÖËÉ ÍÖËÏÅÀÍÉ ÀÌÏÝÀÍÉÓ ÌÃÂÒÀÃÏÁÀÓ-
ÈÀÍ, ÝÄÍÔÒÉÓ ÐÒÏÁËÄÌÀÓÈÀÍ, ÓÀÈÀÅÉÓ ÂËÏÁÀËÖÒ ÌÉÆÉÃÖËÏÁÀÓÈÀÍ ÃÀ ÓÉÓÔÄÌÉÓ ÀÌÏÍÀáÓÍÈÀ
ÒáÄÅÀÃÏÁÀÓÈÀÍ. ÌÏÚÅÀÍÉËÉÀ ÀÖÝÉËÄÁÄËÉ ÃÀ ÓÀÊÌÀÒÉÓÉ ÐÉÒÏÁÄÁÉ, ÒÀÈÀ ÀÌ ÓÉÓÔÄÌÀÓ
ÂÀÀÜÍÃÄÓ ÃÀÃÄÁÉÈÉ ÏÒÁÉÔÄÁÉ, ÒÏÌËÄÁÉÝ ÉßÚÄÁÀ y = F (x) ÅÄÒÔÉÊÀËÖÒÉ ÉÆÏÊËÉÍÉÓ ßÄÒ-
ÔÉËÛÉ ÃÀ ÖÀáËÏÅÃÄÁÀ ÓÀÈÀÅÄÓ ÉÓÄ, ÒÏÌ ÀÒ ÂÀÃÀÊÅÄÈÓ x ÙÄÒÞÓ. ÛÄÃÄÂÄÁÉ ÂÀÒÊÅÄÖËÉ
ÈÅÀËÓÀÆÒÉÓÉÈ ÓÒÖËÀÃ áÓÍÉÓ ÃÀÓÌÖË ÀÌÏÝÀÍÀÓ.



Exact Conditions for Existence of Homoclinic Orbits in the Liénard Systems 95

1 Introduction
It is well known that the Liénard system

dx

dt
= y − F (x),

dy

dt
= −g(x),

(1.1)

is of great importance in various applications. Hence, asymptotic and qualitative behavior of this
system and some of its extensions have been widely studied by many authors; results can be found in
many books and papers [1–22]. In system (1.1), a trajectory is said to be a homoclinic orbit if its α-
and ω-limit sets are the origin. The existence of homoclinic orbits in the Liénard-type systems (see [5])
is closely connected with the stability of the zero solution and the center problem. If system (1.1) has
a homoclinic orbit, then the zero solution is no longer stable. A homoclinic orbit and a center cannot
exist together in system (1.1). Our subject also has a near relation to the global attractivity of the
origin and oscillation of solutions (see [9, 11]).

Taking the vector field of (1.1) into account, we see that every homoclinic orbit is in the upper or in
the lower half-plane. In other words, no homoclinic orbit crosses the x-axis. When a homoclinic orbit
appears in the upper (resp. lower) half-plane, all other homoclinic orbits exist in the same half-plane.

We say that system (1.1) has property (Z+
1 ) (resp. (Z+

3 )) if there exists a point P (x0, y0) with
y0 = F (x0) and x0 > 0 (resp. x0 < 0) such that the positive semitrajectory of (1.1) starting at P
approaches the origin through only the first (resp. third) quadrant. We also say that system (1.1)
has property (Z−

2 ) (resp. (Z−
4 )) if there exists a point P (x0, y0) with y0 = F (x0) and x0 < 0 (resp.

x0 > 0) such that the negative semitrajectory of (1.1) starting at P approaches the origin through
only the second (resp. fourth) quadrant. If system (1.1) has both properties (Z+

1 ) and (Z−
2 ), then a

homoclinic orbit exists in the upper half-plane. Similarly, if system (1.1) has both properties (Z+
3 )

and (Z−
4 ), then a homoclinic orbit exists in the lower half-plane. Notice that by the transformation

x→ −x and t→ −t, we can transfer any result for property (Z+
1 ) to an analogous result with respect

to property (Z−
2 ). Also, by the transformation x → −x and y → −y, we can transfer any result for

property (Z+
1 ) (resp. (Z−

2 )) to an analogous result with respect to property (Z+
3 ) (resp. (Z−

4 )).
In this paper, we intend to give some conditions on F (x) and g(x) under which system (1.1) has

properties (Z+
1 ), (Z−

2 ), (Z+
3 ), or (Z−

4 ). We assume that F and g are continuous on an open interval
I which contains 0 and satisfy smoothness conditions for uniqueness of solutions of the initial value
problems. We also assume that F (0) = 0 and

xg(x) > 0 for x ̸= 0,

which guarantee that the origin is the unique equilibrium of (1.1). Throughout this paper, in the
results related to property (Z+

1 ) (resp. (Z−
2 )), we assume that F (x) > 0 for x > 0 (resp. x < 0),|x|

sufficiently small. Because if F (x) has an infinite number of positive (resp. negative) zeroes clustering
at x = 0, then the system (1.1) fails to have property (Z+

1 ) (resp. (Z−
2 )). Similarly, in the results

related to property (Z+
3 ) (resp. (Z−

4 )), we assume that F (x) < 0 for x < 0 (resp. x > 0), |x|
sufficiently small.

T. Hara and T. Yoneyama [10] considered system (1.1) and proved that if there exists δ > 0 such
that

F (x) > 0,
1

F (x)

x∫
0

g(η)

F (η)
dη ≤ 1

4

for 0 < x < δ, then system (1.1) has property (Z+
1 ). They also proved that if there exist a > 0 such

that F (x) > 0 for 0 < x ≤ a and some α > 1
4 such that

1

F (x)

x∫
0

g(η)

F (η)
dη ≥ α,
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then system (1.1) fails to have property (Z+
1 ) (see also [6, 9, 15,19]).

In this paper, we present an implicit necessary and sufficient condition for system (1.1) to have
property (Z+

1 ). Then we drive sharp explicit conditions and solve this problem completely in some
sense. We formulate similar results for properties (Z−

2 ), (Z+
3 ), and (Z−

4 ).
The paper is organized as follows. In Section 2, we give implicit conditions for system (1.1) to have

property (Z+
1 ). In Section 3, we use our results obtained in Section 2 and present sufficient conditions

for properties (Z+
1 ), (Z−

2 ), (Z+
3 ), and (Z−

4 ). In Section 4, we present the necessary conditions for
properties (Z+

1 ), (Z−
2 ), (Z+

3 ), and (Z−
4 ) and show that the sufficient conditions presented in Section 3

are best possible.

2 Implicit conditions for property (Z+
1 )

In this section we present implicit conditions for system (1.1) to have property (Z+
1 ). First, we

introduce a system which is equivalent to (1.1). Let the function λ(x) be defined by

λ(x) =

{√
2G(x) for x ≥ 0,

−
√

2G(x) for x < 0

and the mapping Λ : R2 → R2 by

Λ(x, y) = (λ(x), y) ≡ (u, v).

Consider the canonical form of the Liénard systems

du

dτ
= v − F ∗(u),

dv

dτ
= −u,

(2.1)

in which dτ = [g(x) sgn(x)/
√
2G(x)] dt and a continuous function F ∗ is defined by

F ∗(u) =


F (G−1

(1
2
u2

)
if u ≥ 0,

F (G−1
(
− 1

2
u2

)
if u < 0,

where G−1(w) is the inverse function to G(x) sgn(x). Then the mapping Λ is a homeomorphism of
the (x, y)-plane onto an open subset of the (u, v)-plane which contains zero. It is obvious that Λ maps
the x-axis into the u-axis. Consequently, we have only to determine whether system (2.1), instead of
(1.1), has property (Z+

1 ) or not. Hereafter we denote τ by t again.

Theorem 2.1. Let F ∗ ∈ C1([0, α]) for some α > 0. Then system (2.1) has property (Z+
1 ) if and only

if there exist a constant b ≤ α and a function φ ∈ C1([0, b]) such that φ(0) = 0,

φ(u) > 0, (F ∗)′(u) ≥ u

φ(u)
+ φ′(u) for 0 < u ≤ b. (2.2)

Proof. Sufficiency. Consider the positive semitrajectory of (2.1) starting at a point (b, F ∗(b)). This
trajectory is considered as a solution v(u) of

dv

du
= − u

v − F ∗(u)
(2.3)

with v(b) = F ∗(b). Suppose that the positive semitrajectory v(u) crosses the negative y-axis. Then it
also meets the curve v = F ∗(u)− φ(u) at a point (s, F ∗(s)− φ(s)) with s < b such that

dv

du
(s) =

−s
(F ∗(s)− φ(s))− F ∗(s)

> (F ∗)′(s)− φ′(s).
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Thus
(F ∗)′(s) <

s

φ(s)
+ φ′(s).

This is a contradiction. Hence, the trajectory v(u) does not cross the negative y-axis, and, therefore,
system (2.1) has property (Z+

1 ).

Necessity. Suppose that system (2.1) has property (Z+
1 ). Then there exists a positive semitra-

jectory of (2.1) starting at a point (b, F ∗(b)) with b > 0, which does not meet the negative y-axis.
This trajectory can be regarded as the graph of a continuously differentiable function ψ(u) which is
a solution of (2.3). Let φ(u) = F ∗(u)− ψ(u). Then it is clear that φ(0) = 0,

φ(u) > 0, (F ∗)′(u) =
u

φ(u)
+ φ′(u) for 0 < u ≤ b.

Hence, the condition (2.2) is verified.

Theorem 2.2. Suppose that system (2.1) with F1 has property (Z+
1 ). If

F2(u) ≥ F1(u) (2.4)

for u > 0 sufficiently small, then system (2.1) corresponding to F2 has property (Z+
1 ).

Proof. Since system (2.1) with F1(u) has property (Z+
1 ), there exists a positive semitrajectory of

(2.1) starting at a point (u0, v0) with u0 > 0, which approaches the origin through only the first
quadrant. This trajectory can be regarded as the graph of a function v = ψ1(u) which is a solution
of (2.3). Let v = ψ2(u) be the graph of the solution of system (2.3) corresponding to F2 such that
(u(0), v(0)) = (u0, v0). We can assume that u0 is sufficiently small, thus from (2.4) we have

ψ′
2(u) =

−u
v − F2(u)

≤ −u
v − F1(u)

= ψ′
1(u) for 0 < u ≤ u0.

Hence, ψ2(u) ≥ ψ1(u) > 0 for 0 < u ≤ u0. Therefore, system (2.1) corresponding to F2 has property
(Z+

1 ).

3 Explicit sufficient conditions for property (Z+
1 )

In this section we use our implicit conditions to drive explicit sufficient conditions for properties (Z+
1 ),

(Z−
2 ), (Z+

3 ), and (Z−
4 ). To this end, for u > 0 sufficiently small we define

L1(u) = log ku

and
Ln(u) = log ku× log(b| log ku|)× · · · × log log · · · log︸ ︷︷ ︸

(n−1)-times

(
b| log ku|

)
for n ≥ 2,

where k, b > 0. Notice that Ln(u) < 0 for u > 0 sufficiently small.

Theorem 3.1. Let k, b > 0. If

F ∗(u) ≥ 2u− 1

4

n−1∑
j=1

u

(Lj(u))2

for some n ≥ 2 and u > 0 sufficiently small, then system (2.1) has property (Z+
1 ).

Proof. By Theorem 2.2, it suffices to prove the theorem when

F ∗(u) = 2u− 1

4

n−1∑
j=1

u

(Lj(u))2
.
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Let

Mn(u) =

n−1∑
j=1

( 1

Lj(u)

j∑
i=1

1

Li(u)

)
, (3.1)

Nn(u) =

n−1∑
j=1

1

Lj(u)
, φn(u) = u+

1

2
uNn+1(u). (3.2)

We have

u
d

du
(Ln(u)) = Nn(u)Ln(u) + 1, 2Mn(u)− (Nn(u))

2 =

n−1∑
j=1

1

(Lj(u))2

and
d

du
(Nn(u)) = −Mn(u)

u
.

Thus
u

φn(u)
+ φ′

n(u) = 2− 1

4(1 + 1
2Nn+1(u))

( n∑
j=1

1

(Lj(u))2
+Nn+1(u)Mn+1(u)

)
,

or
u

φn(u)
+ φ′

n(u) = 2− 1

4

n∑
j=1

1

(Lj(u))2
− (Nn+1(u))

3

8(1− 1
2Nn+1(u))

(3.3)

for u > 0 sufficiently small. On the other hand,

(F ∗)′(u) = 2− 1

4

n−1∑
j=1

1

(Lj(u))2
+

1

2

n−1∑
j=1

Nj(u)Lj(u) + 1

(Lj(u))3
. (3.4)

It is easy to check that
(F ∗)′(u) >

u

φn(u)
+ φ′

n(u)

for u > 0 sufficiently small. Hence, (2.2) holds and, by Theorem 2.1, system (2.1) has property
(Z+

1 ).

Recall defining the function F ∗(u) as follows:

F ∗(u) = F
(
G−1

(1
2
u2

))
for u ≥ 0.

Put x = G−1( 12u
2). Then for system (1.1) to have property (Z+

1 ) we have the following sufficient
condition.

Theorem 3.2. Assume k, b > 0. If

F (x) ≥
√
8G(x)− 1

4

n−1∑
j=1

√
2G(x)

(Lj(
√
2G(x)))2

for some n ≥ 2 and x > 0 sufficiently small, then system (1.1) has property (Z+
1 ).

Similarly, for system (1.1) to have properties (Z−
2 ), (Z+

3 ), and (Z−
4 ), we have the following sufficient

conditions.

Theorem 3.3. Assume k, b > 0. If

F (x) ≥
√
8G(x)− 1

4

n−1∑
j=1

√
2G(x)

(Lj(
√
2G(x)))2

for some n ≥ 2 and x < 0, |x| sufficiently small, then system (1.1) has property (Z−
2 ).
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Theorem 3.4. Assume k, b > 0. If

F (x) ≤ −
√
8G(x) +

1

4

n−1∑
j=1

√
2G(x)

(Lj(
√
2G(x)))2

,

for some n ≥ 2 and x < 0, |x| sufficiently small, then system (1.1) has property (Z+
3 ).

Theorem 3.5. Assume k, b > 0. If

F (x) ≤ −
√
8G(x) +

1

4

n−1∑
j=1

√
2G(x)

(Lj(
√

2G(x)))2
,

for some n ≥ 2 and x > 0 sufficiently small, then system (1.1) has property (Z−
4 ).

4 Explicit necessary conditions for property (Z+
1 )

In this section we drive explicit necessary conditions for properties (Z+
1 ), (Z−

2 ), (Z+
3 ), and (Z−

4 ) and
show that the sufficient conditions presented in Section 2 are best possible.

Definition 4.1. Let f1(u) and f2(u) be real-valued functions. By f1(u) ≼ f2(u) we mean that there
exists b > 0 such that f1(u) ≤ f2(u) for 0 < u ≤ b.

In proving Theorem 4.1 we will need the following

Lemma 4.1. Suppose that φ ∈ C1([0, α]) for some α > 0, φ(0) = 0, and φ(u) > 0 for u > 0
sufficiently small. If

d

du

(
2u− 1

4

n−1∑
j=1

u

(Lj(u))2
− λu

(Ln(u))2

)
≥ u

φ(u)
+ φ′(u), λ ≥ 1

4
, (4.1)

for some n ≥ 2, k > 0, b > 0, and u > 0 sufficiently small, then

(i) lim
u→0+

φ(u)
u = 1,

(ii) |φ(u)−u
u | ≤ 1

| log ku| for every k > 0 and u > 0 sufficiently small.

Proof. It is easy to check that the left-hand side of inequality (4.1) tends to 2 as u→ 0+. Thus, from
(4.1) we get

lim
u→0+

( u

φ(u)
+ φ′(u)

)
=

1

φ′(0+)
+ φ′(0+) ≤ 2.

Hence,
lim

u→0+

φ(u)

u
= φ′(0+) = 1.

This completes the proof of (i). Now let φ(u) = u+ h(u). Then we have

−
( u

φ(u)
+ φ′(u)

)
= −2 +

h(u)

u+ h(u)
− h′(u). (4.2)

From (4.1) and (4.2) we conclude that

h(u)

u+ h(u)
− h′(u) > 0 (4.3)

for u sufficiently small. Suppose that {un} tends to zero and h(un) = 0, then there exists a sequence
{cn} such that cn tends to zero as n→ ∞, h′(cn) = 0, and h(cn) ≤ 0. This contradicts (4.3). Hence,



100 R. P. Agarwal, A. Aghajani, M. Mirafzal

h(u) is positive or negative for u > 0 sufficiently small, and we can let h(u) = u
f(u) for 0 < u ≤ c with

c sufficiently small. Notice that, by (i), |f(u)| → ∞ as u→ 0. Since φ(u) > 0 for u sufficiently small,

f(u) + 1

f(u)
=
φ(u)

u
> 0. (4.4)

Thus, from (4.3) and (4.4) we have

f ′(u)
(f(u) + 1

f(u)

)
>

1

u

for 0 < u ≤ b with b sufficiently small. Integration of the above leads to

f(u) + log(|f(u)|)− f(b)− log(|f(b)|) ≤ log(u)− log(b)

for 0 < u ≤ b. Hence, f(u) → −∞ as u → 0+, and |f(u)| > | log ku| for every k > 0 and u > 0
sufficiently small.

Theorem 4.1. Suppose that there exist λ > 1/4, n ≥ 2, and k, b > 0 such that

F ∗(u) ≤ 2u− 1

4

n−1∑
j=1

u

(Lj(u))2
− λu

(Ln(u))2

for u > 0 sufficiently small. Then system (2.1) fails to have property (Z+
1 ).

Proof. By Theorem 2.2, it suffices to prove the theorem when

F ∗(u) = 2u− 1

4

n−1∑
j=1

u

(Lj(u))2
− λu

(Ln(u))2
, λ >

1

4
,

for u > 0 sufficiently small. We prove the theorem by contradiction. Suppose that there exists a
continuously differentiable function φ such that φ(0) = 0, φ(u) > 0 for u > 0 sufficiently small, and

(F ∗)′(u) ≽ u

φ(u)
+ φ′(u). (4.5)

Let
h(u) = φ(u)− φn−1(u) = φ(u)− u

(
1 +

1

2
Nn(u)

)
.

From (4.5), (3.3), and (3.4) we have

u

φn−1(u)
− u

φn−1(u) + h(u)
− h′(u) ≽ u

φn−1(u)
+ φ′

n−1(u)− (F ∗)′(u)

=
λ

(Ln(u))2
−

(
2λ+

1

2

) n−1∑
j=1

Nj(u)Lj(u) + 1

(Lj(u))3
− (Nn+1(u))

3

8(1− 1
2Nn+1(u))

.

Then
λ′

(Ln(u))2
≼ u

φn−1(u)
− u

φn−1(u) + h(u)
− h′(u), (4.6)

where 1/4 < λ′ < λ. Suppose that {un} tends to zero and h(un) = 0, then there exists a sequence
{cn} such that cn tends to zero as n→ ∞, h′(cn) = 0, and h(cn) ≤ 0. This contradicts (4.6). Hence,
h(u) ̸= 0 for x > 0 sufficiently small, and we can let f(u) = u

h(u) for 0 < u ≤ c with c sufficiently
small. From (4.5), Lemma 4.1, and the fact that |Nn(u)| ≼ 2

| log ku| , we conclude that

1

|f(u)|
= |φ(u)− u

u
− Nn(u)

2
| ≤ 2

| log ku| (4.7)
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for u > 0 sufficiently small.
Let

Tn(u) =
(
1 +

Nn(u)

2

)(
1 +

Nn(u)

2
+

1

f(u)

)
and

g(u) =
f(u)

Ln(u)
.

Then from (3.2) and (4.6) we have

λ′

(Ln(u))2
≼ 1

1 + 1
2Nn(u)

− 1

1 + 1
2 Nn(u) +

1
f(u)

− f(u)− f ′(u)u

f2(u)
=

1

f(u)Tn(u)
− 1

f(u)
+
f ′(u)u

f2(u)
.

Hence,
λ′ ≼ Ln(u)

g(u)Tn(u)
− Ln(u)

g(u)
+

(g(u)Ln(u))
′u

g2(u)
. (4.8)

Notice that u(Ln(u))
′ = Nn(u)Ln(u) + 1, thus, from (4.8),

λ′g2(u) ≼ g′(u)uLn(u) + g(u)Ln(u)
(1− Tn(u) +Nn(u)Tn(u)

Tn(u)

)
+ g(u),

or(
λ′ − 1

4

)
g2(u) +

(g(u)
2

− 1
)2

≼ g′(u)uLn(u) +
(
1− 1

Tn(u)

)
− Nn(u)

2Tn(u)
−
g(u)

(
Nn(u)Ln(u)(1− Tn(u)) +

(Nn(u))
2

4 Ln(u)
)

Tn(u)
.

Now, let

A(u) = −
(Nn(u)Ln(u)(1− Tn(u)) +

(Nn(u))
2

4 Ln(u))

Tn(u)

and
B(u) = 1− 1

Tn(u)
− Nn(u)

2Tn(u)
.

It is easy to check that
lim

u→0+
(1− Tn(u)) = lim

u→0+
(Nn(u))

2Ln(u) = 0.

Also, by (4.7), we conclude that

lim
u→0+

Nn(u)Ln(u)(1− Tn(u)) = 0,

thus, A(u) and B(u) tend to 0 as u→ 0+, and we have(
λ′ − 1

4

)
g2(u) +

(g(u)
2

− 1
)2

≼ g′(u)uLn(u) +A(u)g(u) +B(u), λ′ >
1

4
, (4.9)

and (g(u)
2

− 1
)2

≼ g′(u)uLn(u) +A(u)g(u) +B(u). (4.10)

We now prove that if (4.10) holds, then

lim
u→0+

g(u) = 2. (4.11)

Suppose un > 0 tends to zero and g′(un) = 0. Then from (4.10) we conclude that

lim
n→∞

g(un) = 2.
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Since g′ vanishes at the extremum points, if g(u) is not increasing or decreasing for u > 0 sufficiently
small, then

lim inf
u→0+

g(u) = lim sup
u→0+

g(u) = 2,

and (4.11) holds. Suppose now that g(u) is increasing or decreasing for u > 0 sufficiently small. If
lim

u→0+
g(u) ̸= 2, then from (4.10) we conclude that there exists c > 0 such that

c

uLn(u)
>

g′(u)

( g(u)2 − 1)2

for 0 < u ≤ l with l sufficiently small. Integration of the above leads to

c
(

log log · · · log︸ ︷︷ ︸
(n−1)-times

(
b| log kl|

)
− log log · · · log︸ ︷︷ ︸

(n−1)-times

(
b| log ku|

))
>

−2
g(l)
2 − 1

+
2

g(u)
2 − 1

and, therefore, lim
u→0+

g(u) = 2. This is a contradiction, thus lim
u→0+

g(u) = 2. But if lim
u→0+

g(u) = 2,
then from (4.9) we conclude that there exists d > 0 such that

g′(u) ≤ d

uLn(u)

for u > 0 sufficiently small. Hence, lim
u→0+

g(u) = −∞. This is a contradiction and condition (2.2) does
not hold. Thus, by Theorem 2.1, system (2.1) fails to have property (Z+

1 ).

The following theorem gives a necessary condition for system (1.1) to have property (Z+
1 ).

Theorem 4.2. If there exist λ > 1/4, n ≥ 2, and k, b > 0 such that

F (x) ≤
√
8G(x)− 1

4

n−1∑
j=1

√
2G(x)

(Lj(
√

2G(x))2
−

λ
√
2G(x)

(Ln)(
√
2G(x))2

for x > 0 sufficiently small, then system (1.1) fails to have property (Z+
1 ).

Similarly, we have the following necessary conditions for the properties (Z−
2 ), (Z+

3 ), and (Z−
4 ).

Theorem 4.3. If there exist λ > 1/4, n ≥ 2, and k, b > 0 such that

F (x) ≤
√
8G(x)− 1

4

n−1∑
j=1

√
2G(x)

(Lj(
√

2G(x))2
−

λ
√
2G(x)

(Ln)(
√
2G(x))2

for x < 0, |x| sufficiently small, then system (1.1) fails to have property (Z−
2 ).

Theorem 4.4. If there exist λ > 1/4, n ≥ 2, and k, b > 0 such that

F (x) ≥ −
√
8G(x) +

1

4

n−1∑
j=1

√
2G(x)

(Lj(
√
2G(x))2

+
λ
√

2G(x)

(Ln)(
√

2G(x))2

for x < 0, |x| sufficiently small, then system (1.1) fails to have property (Z+
3 ).

Theorem 4.5. If there exist λ > 1/4, n ≥ 2, and k, b > 0 such that

F (x) ≥ −
√
8G(x) +

1

4

n−1∑
j=1

√
2G(x)

(Lj(
√
2G(x))2

+
λ
√

2G(x)

(Ln)(
√

2G(x))2

for x > 0 sufficiently small, then system (1.1) fails to have property (Z−
4 ).

Remark 4.1. Paying attention to the explicit sufficient and necessary conditions presented for prop-
erties (Z+

1 ), (Z−
2 ), (Z+

3 ), and (Z−
4 ), it seems that these results have solved the problem of the existence

of homoclinic orbits in system (1.1) completely in some sense.
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