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ON THE SOLVABILITY AND THE WELL-POSEDNESS
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LINEAR SYSTEMS OF GENERALIZED ORDINARY
DIFFERENTIAL EQUATIONS WITH SINGULARITIES

Abstract. Effective sufficient conditions are given for the unique solvability and for the so-called H-
well-posedness of the modified Cauchy problem for linear systems of generalized ordinary differential
equations with singularities.
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1 Statement of the problem and basic notation
Let I ⊂ R be an interval non-degenerate at the point, t0 ∈ I, and

It0 = I \ {t0}, I−t0 = ]−∞, t0[∩ I, I+t0 =]t0,+∞[∩ I.

Consider the linear system of generalized ordinary differential equations

dx = dA(t) · x+ df(t) for t ∈ It0 , (1.1)

where
A = (aik)

n
i,k=1 ∈ BVloc(It0 ,Rn×n), f = (fk)

n
k=1 ∈ BVloc(It0 ,Rn).

Let H = diag(h1, . . . , hn) : It0 → Rn×n be arbitrary diagonal matrix-functions with continuous
diagonal elements

hk : It0 → ]0,+∞[ (k = 1, . . . , n).

We consider the problem of finding a solution x ∈ BVloc(It0 ,Rn) of system (1.1) satisfying the
modified Cauchy condition

lim
t→t0−

(H−1(t)x(t)) = 0 and lim
t→t0+

(H−1(t)x(t)) = 0. (1.2)

Along with system (1.1), consider the perturbed singular system

dy = dÃ(t) · y + df̃(t) for t ∈ It0 , (1.3)
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where
Ã = (ãik)

n
i,k=1 ∈ BVloc(It0 ,Rn×n), f̃ = (f̃k)

n
k=1 ∈ BVloc(It0 ,Rn)

are, as above, the matrix- and vector-functions, respectively.
In the present paper, we give sufficient conditions for the unique solvability of problem (1.1), (1.2).

Moreover, we investigate the question when the unique solvability of problem (1.1), (1.2) guarantees
unique solvability of problem (1.3), (1.2) and, as well, the nearness of their solutions in the definite
sense if the matrix-functions A and Ã and the vector-functions f and f̃ are near, respectively.

The analogous problems for system of ordinary differential equations with singularities

dx

dt
= P (t)x+ q(t) for t ∈ I, (1.4)

where
P ∈ Lloc(It0 ,Rn×n), q ∈ Lloc(It0 ,Rn),

have been investigated in the papers [6–8].
The singularity of system (1.4) is considered in the sense that the matrix-function P and the

vector-function q are, in general, not integrable at the point t0. In general, a solution of problem
(1.4), (1.2) is not continuous at the point t0 and, therefore, it cannot be a solution in the classical
sense. But its restriction on every interval from It0 is a solution of system (1.4). In this connection
we give the example from [8].

Let α > 0 and ε ∈ ]0, α[ . Then the problem

dx

dt
= −αx

t
+ ε|t|ε−1−α, lim

t→0
(tαx(t)) = 0

has the unique solution x(t) = |t|ε−α sgn t. This function is not a solution of the equation in the set
I = R, but its restrictions on ]−∞, 0[ and ]0,+∞[ are the solutions of these equation.

The singularity of system (1.1) is considered in the sense that the matrix-function A and the
vector-function f may have non-bounded total variation at the point t0, i.e., on some closed interval
[a, b] from I such that t0 ∈ [a, b].

As is known, such a problem for generalized differential system (1.1) has not been studied. So, the
problem remains actual.

Some singular two-point boundary problems for generalized differential system (1.1) are investi-
gated in [3–5].

To a considerable extent, the interest to the theory of generalized ordinary differential equations has
also been stimulated by the fact that this theory enables one to study ordinary differential, impulsive
and difference equations from a unified point of view (see [2–5,10,11] and the references therein).

In the paper the use will be made of the following notation and definitions.
R = ] −∞,+∞[ , R+ = [0,+∞[ , [a, b] and ]a, b[ (a, b ∈ R) are, respectively, the closed and open

intervals.
Rn×m is the space of all real n×m matrices X = (xik)

n,m
i,k=1 with the norm ∥X∥ = max

k=1,...,m

n∑
i=1

|xik|.

If X = (xik)
n,m
i,k=1 ∈ Rn×m, then |X| = (|xik|)n,mi,k=1, [X]+ = |X|+X

2 , [X]− = |X|−X
2 .

Rn×m
+ = {(xik)

n,m
i,k=1 : xik ≥ 0 (i = 1, . . . , n; k = 1, . . . ,m)}.

Rn = Rn×1 is the space of all real column n-vectors x = (xi)
n
i=1; Rn

+ = Rn×1
+ .

If X ∈ Rn×n, then X−1, detX and r(X) are, respectively, the matrix inverse to X, the determinant
of X and the spectral radius of X; In is the identity n× n-matrix.

The inequalities between the matrices are understood componentwise.
A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each of its components

is such.
If X : R → Rn×m is a matrix-function, then

b∨
a
(X) is the sum of total variations on [a, b] of its

components xik (i = 1, . . . , n; k = 1, . . . ,m); if a > b, then we assume
b∨
a
(X) = −

a∨
b

(X);
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X(t−) and X(t+) are, respectively, the left and the right limits of the matrix-function X : [a, b] →
Rn×m at the point t (X(a−) = X(a), X(b+) = X(b)).

d1X(t) = X(t)−X(t−), d2X(t) = X(t+)−X(t).
BV([a, b],Rn×m) is the set of all bounded variation matrix-functions X : [a, b] → Rn×m (i.e., such

that
b∨
a
(X) < ∞).

BVloc(J ;D), where J ⊂ R is an interval and D ⊂ Rn×m, is the set of all X : J → D whose
restriction on [a, b] belongs to BV([a, b];D) for every closed interval [a, b] from J .

BVloc(It0 ;D) is the set of all X : I → D whose restriction on [a, b] belongs to BV([a, b];D) for
every closed interval [a, b] from It0 .

Everywhere we assume that a1 ∈ I−t0 and a2 ∈ I+t0 are some fixed points.
If X ∈ BVloc(It0 ;Rn×m), then V (X)(t) = (v(xik)(t))

n,m
i,k=1 for t ∈ It0 , where v(xik)(aj) = 0,

v(xik)(t) ≡
t∨
aj

(xik) for (t− t0)(aj − t0) > 0 (j = 1, 2).

[X(t)]v+ ≡ V (X)(t)+X(t)
2 , [X(t)]v− ≡ V (X)(t)−X(t)

2 .
s1, s2, sc and J : BVloc(It0 ;R) → BVloc(It0 ;R) are the operators defined, respectively, by

s1(x)(aj) = s2(x)(aj) = 0, sc(x)(aj) = x(aj);

s1(x)(t) = s1(x)(s) +
∑

s<τ≤t

d1x(τ), s2(x)(t) = s2(x)(s) +
∑

s≤τ<t

d2x(τ)

sc(x)(t) = sc(x)(s) + x(t)− x(s)−
2∑

j=1

(sj(x)(t)− sj(x)(s))

for s < t < t0 if aj < t0 and for t0 < s < t if aj > t0 (j = 1, 2)

and

J (x)(aj) = x(aj),

J (x)(t) = J (x)(s) + sc(x)(t)− sc(x)(s)−
∑

s<τ≤t

ln |1− d1x(τ)|+
∑

s≤τ<t

ln |1 + d2x(τ)|

for s < t < t0 if aj < t0 and for t0 < s < t < t0 if aj > t0 (j = 1, 2).

If X ∈ BVloc(It0 ;Rn×n), det(In+(−1)jdjX(t)) ̸= 0 for t ∈ It0 (j = 1, 2), and Y ∈BVloc(It0 ;Rn×m),
then

A(X,Y )(aj) = On×m,

A(X,Y )(t)−A(X,Y )(s) = Y (t)− Y (s) +
∑

s<τ≤t

d1X(τ) · (In − d1X(τ))−1 d1Y (τ)

−
∑

s≤τ<t

d2X(τ) · (In + d2X(τ))−1 d2Y (τ)

for s < t < t0 if aj < t0 and for t0 < s < t < t0 if aj > t0 (j = 1, 2).

If g : [a, b] → R is a nondecreasing function, x : [a, b] → R and a ≤ s < t ≤ b, then
t∫

s

x(τ) dg(τ) =

∫
]s,t[

x(τ) dsc(g)(τ) +
∑

s<τ≤t

x(τ) d1g(τ) +
∑

s≤τ<t

x(τ) d2g(τ),

where
∫

]s,t[

x(τ) dsc(g)(τ) is the Lebesgue–Stieltjes integral over the open interval ]s, t[ with respect to

the measure µ0(sc(g)) corresponding to the function sc(g). If a = b, then we assume
b∫
a

x(t) dg(t) = 0,

and if a > b, then
b∫
a

x(t) dg(t) = −
a∫
b

x(t) dg(t). So,
t∫
s

x(τ) dg(τ) is the Kurzweil integral [9–11].
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Moreover, we put
t+∫
s

x(τ) dg(τ) = lim
δ→0+

t+δ∫
s

x(τ) dg(τ),

t−∫
s

x(τ) dg(τ) = lim
δ→0+

t−δ∫
s

x(τ) dg(τ).

If g(t) ≡ g1(t)− g2(t), where g1 and g2 are nondecreasing functions, then
t∫

s

x(τ) dg(τ) =

t∫
s

x(τ) dg1(τ)−
t∫

s

x(τ) dg2(τ) for s, t ∈ R.

If G = (gik)
l,n
i,k=1 : [a, b] → Rl×n is a nondecreasing matrix-function and X = (xkj)

n,m
k,j=1 : [a, b] →

Rn×m, then
t∫

s

dG(τ) ·X(τ) =

( n∑
k=1

t∫
s

xkj(τ) dgik(τ)

)l,m

i,j=1

for a ≤ s ≤ t ≤ b,

Sc(G)(t) ≡ (sc(gik)(t))
l,n
i,k=1, Sj(G)(t) ≡

(
sj(gik)(t)

)l,n
i,k=1

(j = 1, 2).

If Gj : [a, b] → Rl×n (j = 1, 2) are nondecreasing matrix-functions, G = G1 −G2 and X : [a, b] →
Rn×m, then

t∫
s

dG(τ) ·X(τ) =

t∫
s

dG1(τ) ·X(τ)−
t∫

s

dG2(τ) ·X(τ) for s, t ∈ R,

Sc(G) = Sc(G1)− Sc(G2), Sj(G) = Sj(G1)− Sj(G2) (j = 1, 2).

A vector-function x : It0 → Rn is said to be a solution of system (1.1) if x ∈ BV([a, b],Rn) for
every closed interval [a, b] from It0 and

x(t) = x(s) +

t∫
s

dA(τ) · x(τ) + f(t)− f(s) for a ≤ s < t ≤ b.

We assume that
det(In + (−1)jdjA(t)) ̸= 0 for t ∈ It0 (j = 1, 2).

The above inequalities guarantee the unique solvability of the Cauchy problem for the correspond-
ing nonsingular systems (see [9–11]), i.e., for the case when A ∈ BVloc(I,Rn×n) and f ∈ BVloc(I,Rn).

Let the matrix-function A0 ∈ BVloc(It0 ,Rn×n) be such that

det
(
In + (−1)jdjA0(t)

)
̸= 0 for t ∈ It0 (j = 1, 2). (1.5)

Then a matrix-function C0 : It0 × It0 → Rn×n is said to be the Cauchy matrix of the generalized
differential system

dx = dA0(t) · x, (1.6)
if for every interval and J ⊂ I and τ ∈ J , the restriction of the matrix-function C0(., τ) : It0 → Rn×n

on J is the fundamental matrix of system (1.6) satisfying the condition

C0(τ, τ) = In.

Therefore, C0 is the Cauchy matrix of system (1.6) if and only if the restriction of C0 on every interval
J × J is the Cauchy matrix of the system in the sense of definition given in [11].

We assume

I−t0(δ) = [t0 − δ, t0[∩It0 , I+t0(δ) = ]t0, t0 + δ] ∩ It0 , It0(δ) = I−t0(δ) ∪ I+t0(δ)

for every δ > 0.
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2 Existence and uniqueness of solutions of the Cauchy prob-
lem

In this section we give sufficient conditions for the unique solvability of problem (1.1), (1.2).

Theorem 2.1. Let there exist a matrix-function A0 ∈ BVloc(It0 ,Rn×n) and constant matrices B0

and B from Rn×n
+ such that conditions (1.5) and

r(B) < 1 (2.1)

hold, and the estimates

|C0(t, τ)| ≤ H(t)B0 H
−1(τ) for t ∈ It0(δ), (t− t0)(τ − t0) > 0, |τ − t0| ≤ |t− t0| (2.2)

and ∣∣∣∣
t∫

t0∓

|C0(t, τ)| dV (A(A0, A−A0)(τ)) ·H(τ)

∣∣∣∣ ≤ H(t)B

for t ∈ I−t0(δ) and t ∈ I+t0(δ), respectively, (2.3)

are valid for some δ > 0, where C0 is the Cauchy matrix of system (1.4). Let, moreover, respectively,

lim
t→t0∓

∥∥∥∥
t∫

t0∓

H−1(τ) |C0(t, τ)| dV (A(A0, f))(τ)

∥∥∥∥ = 0. (2.4)

Then problem (1.1), (1.2) has the unique solution.

Theorem 2.2. Let there exist a constant matrix B = (bik)
n
i,k=1 ∈ Rn×n

+ such that conditions (2.1)
and [

(−1)jdjaii(t)
]
+
> −1 for t < t0 (j = 1, 2; i = 1, . . . , n),[

(−1)jdjaii(t)
]
− < 1 for t > t0 (j = 1, 2; i = 1, . . . , n)

(2.5)

hold, and the estimates

|ci(t, τ)| ≤ b0
hi(t)

hi(τ)
for t ∈ It0(δ), (t− t0)(τ − t0) > 0, |τ − t0| ≤ |t− t0| (i = 1, . . . , n), (2.6)

∣∣∣∣
t∫

t0∓

ci(t, τ)hi(τ) d
[
aii(τ) sgn(τ − t0)

]v
+

∣∣∣∣
≤ bii(t)hi(t) for t ∈ I−t0(δ) and t ∈ I+t0(δ), respectively (i = 1, . . . , n) (2.7)

and ∣∣∣∣
t∫

t0∓

ci(t, τ)hk(τ) dV (A(a0ii, aik))(τ)

∣∣∣∣ ≤ bik(t)hi(t)

for t ∈ I−t0(δ) and t ∈ I+t0(δ), respectively (i ̸= k; i, k = 1, . . . , n) (2.8)

are valid for some b0 > 0 and δ > 0. Let, moreover, respectively,

lim
t→t0∓

t∫
t0∓

ci(t, τ)

hi(t)
dV (A(a0ii, fi))(τ) = 0 (i = 1, . . . , n), (2.9)

where a0ii(t) ≡ −[aii(t) sgn(t − t0)]
v
− sgn(t − t0) (i = 1, . . . , n) and ci is the Cauchy function of the

equation dx = x da0ii(t) for i ∈ {1, . . . , n}. Then problem (1.1), (1.2) has the unique solution.
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Remark 2.1. The Cauchy functions ci(t, τ) (i = 1, . . . , n), mentioned in the theorem, for t, τ ∈ I−t0
and t, τ ∈ I+t0 , have the form

ci(t, τ) =



exp
(
s0(a0ii)(t)− s0(a0ii)(τ)

) ∏
τ<s≤t

(1− d1a0ii(s))
−1

∏
τ≤s<t

(1 + d2a0ii(s)) for t > τ,

exp
(
s0(a0ii)(t)− s0(a0ii)(τ)

) ∏
t<s≤τ

(1− d1a0ii(s))
∏

t≤s<τ

(1 + d2a0ii(s))
−1 for t < τ,

1 for t = τ.

Corollary 2.1. Let there exist a constant matrix B = (bik)
n
i,k=1 ∈ Rn×n

+ such that conditions (2.1)
and (2.5) hold, and the estimates

∣∣∣∣
t∫

t0∓

|τ − t0| d
[
aii(τ) sgn(τ − t0)

]v
+

∣∣∣∣
≤ bii |t− t0| for t ∈ I−t0(δ) and t ∈ I+t0(δ), respectively (i = 1, . . . , n) (2.10)

and∣∣∣∣
t∫

t0∓

|τ − t0| dV (A(a0ii, aik))(τ)

∣∣∣∣
≤ bik |t− t0| for t ∈ I−t0(δ) and t ∈ I+t0(δ), respectively (i ̸= k; i, k = 1, . . . , n) (2.11)

are valid for some δ > 0. Let, moreover, respectively,

lim
t→t0∓

1

|t− t0|

∣∣∣ t∨
t0

(A(a0ii, fi))(τ)
∣∣∣ = 0 (i = 1, . . . , n), (2.12)

where a0ii(t) ≡ −[aii(t) sgn(t − t0))]
v
− sgn(t − t0) (i = 1, . . . , n). Then system (1.1) has the unique

solution satisfying the initial condition

lim
t→t0∓

∥x(t)∥
t− t0

= 0. (2.13)

Remark 2.2. In Corollary 2.2, if the estimates∣∣∣∣
t∫

s

|τ − t0| d
[
aii(τ) sgn(τ − t0)

]v
+

∣∣∣∣ ≤ bii|t− s|

for t, s ∈ It0(δ), (t− t0)(s− t0) > 0, |s− t0| ≤ |t− t0| (i = 1, . . . , n)

and ∣∣∣∣
t∫

s

|τ − t0| dV (A(a0ii, aik))(τ)

∣∣∣∣ ≤ bik |t− s|

for t, s ∈ It0(δ), (t− t0)(s− t0) > 0, |s− t0| ≤ |t− t0| (i ̸= k; i, k = 1, . . . , n)

hold instead of (2.10) and (2.11), respectively, then the solution of problem (1.1), (2.13) belongs to
BVloc(I,Rn).

Corollary 2.2. Let conditions (2.5) and

J (a0ii)(t)− J (a0ii)(τ) ≤ −λi ln t− t0
τ − t0

+ a∗ii(t)− a∗ii(τ)

for t, τ ∈ It0 , (t− t0)(τ − t0) > 0, |τ − t0| ≤ |t− t0| (i = 1, . . . , n) (2.14)
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hold, where a0ii(t) ≡ −[aii(t) sgn(t − t0)]
v
− sgn(t − t0) (i = 1, . . . , n), λi ≥ 0 (i = 1, . . . , n), a∗ii

(i = 1, . . . , n) are nondecreasing functions on the intervals I−t0 and I+t0 . Let, moreover,

∣∣∣∣
t∫

t0∓

|τ−t0|λi−λk dV (A(a0ii, aik))(τ)

∣∣∣∣<+∞

for t∈I−t0 and t∈I+t0 , respectively (i ̸=k; i, k=1, . . . , n), (2.15)

and ∣∣∣∣
t∫

t0∓

|τ − t0|λi dV (A(a0ii, fi))(τ)

∣∣∣∣ < +∞

for t ∈ I−t0 and t ∈ I+t0 , respectively (i = 1, . . . , n). (2.16)

Then system (1.1) has the unique solution satisfying the initial condition

lim
t→t0∓

(
|t− t0|λi xi(t)

)
= 0 (i = 1, . . . , n). (2.17)

3 Well-posedness of the Cauchy problem
Let It0t = ]min{t0, t},max{t0, t}[ for t ∈ I.

Definition 3.1. Problem (1.1), (1.2) is said to be H-well-posed if it has the unique solution x and
for every ε > 0 there exists η > 0 such that problem (1.3), (1.2) has the unique solution y and the
estimate

∥H(t) (x(t)− y(t))∥ < ε for t ∈ I

holds for every Ã ∈ BVloc(It0 ,Rn×n) and f̃ ∈ BVloc(It0 ,Rn) such that

det
(
In + (−1)jdjÃ(t)

)
̸= 0 for t ∈ It0 (j = 1, 2);

∥∥∥∥
t∫

t0∓

H−1(s) dV (Ã−A)(s) ·H(s)

∥∥∥∥+

2∑
j=1

∥∥∥∥∥ ∑
τ∈It0t

H−1(τ)|dj(Ã−A)(τ)|H(τ)

∥∥∥∥∥ < η

for t ∈ I−t0 and t ∈ I+t0 , respectively (j=1,2),

and

∥∥∥∥
t∫

t0∓

H−1(s) dV (f̃ − f)(s) ·H(s)

∥∥∥∥+

2∑
j=1

∥∥∥∥∥ ∑
τ∈It0t

H−1(τ)|dj(f̃ − f)(τ)|H(τ)

∥∥∥∥∥ < η

for t ∈ I−t0 and t ∈ I+t0 , respectively (j=1,2).

Theorem 3.1. Let I be a closed interval and there exist a matrix-function A0 ∈ BVloc(It0 ,Rn×n) and
constant matrices B0 and B from Rn×n

+ such that conditions (1.5), (2.1) hold and estimates (2.2),

|C0(t, τ)| |djA0(τ)(In + (−1)jdjA0(τ))
−1| ≤ H(t)B0 H

−1(τ)

for t ∈ It0(δ), (t− t0)(τ − t0) > 0, |τ − t0| ≤ |t− t0| (j = 1, 2)
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and

∥∥∥∥
t∫

t0∓

|C0(t, τ)| dV (A)(s) ·H(s)

∥∥∥∥
+

2∑
j=1

∥∥∥∥∥ ∑
l∈It0t

|C0(t, τ)||djA0(τ) · (In + (−1)jdjA0(τ))
−1| |djA(τ)|H(τ)

∥∥∥∥∥ < η

for t ∈ I−t0 and t ∈ I+t0 , respectively,

are valid for some δ > 0, where C0 is the Cauchy matrix of system (1.6). Let, moreover, respectively,

lim
t→t0∓

(∥∥∥∥
t∫

t0∓

H−1(t) |C0(t, τ)| dV (f)(τ)

∥∥∥∥
+

2∑
j=1

∥∥∥∥ ∑
l∈It0t

H−1(t)|C0(t, τ)| |djA0(τ) · (In + (−1)jdjA0(τ))
−1| |djf(τ)|

∥∥∥∥) = 0.

Then problem (1.1), (1.2) is H-well-posed.

Theorem 3.2. Let I be a closed interval and there exist a constant matrix B = (bik)
n
i,k=1 ∈ Rn×n

+

such that conditions (2.1), (2.5) hold and estimates (2.6), (2.7),

|ci(t, τ)| |dja0ii(τ) · (1 + (−1)jdja0ii(τ))
−1| ≤ b0

hi(t)

hi(τ)

for t ∈ It0(δ), (t− t0)(τ − t0) > 0, |τ − t0| ≤ |t− t0| (i = 1, . . . , n; j = 1, 2)

and

∣∣∣∣
t∫

t0∓

|ci(t, τ)|hk(τ) dv(aik)(τ)

∣∣∣∣
+

2∑
j=1

∣∣∣∣ ∑
τ∈It0t

|ci(t, τ)||dja0ii(τ) · (1 + (−1)jdja0ii(τ))
−1| |djaik(τ)|hi(τ)

∣∣∣∣ ≤ bik hi(t)

for t ∈ I−t0(δ) and t ∈ I+t0(δ), respectively (i ̸= k; i, k = 1, . . . , n)

are valid for some b0 > 0 and δ > 0. Let, moreover, respectively,

lim
t→t0∓

(∣∣∣∣
t∫

t0∓

|ci(t, τ)|
hi(t)

dv(fi)(τ)

∣∣∣∣
+

2∑
j=1

∑
τ∈It0t

|ci(t, τ)|
hi(t)

|dja0ii(τ) · (1 + (−1)jdja0ii(τ))
−1| |djfi(τ)|

)
= 0 (i = 1, . . . , n),

where a0ii(t) ≡ −[aii(t) sgn(t − t0)]
v
− sgn(t − t0) (i = 1, . . . , n), and ci is the Cauchy function of the

equation dx = x da0ii(t) for i ∈ {1, . . . , n}. Then problem (1.1), (1.2) is H-well-posed.

Corollary 3.1. Let I be a closed interval and there exist a constant matrix B = (bik)
n
i,k=1 ∈ Rn×n

+
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such that conditions (2.1) and (2.5) hold, and the estimates

J (a0ii)(t)− J (a0ii)(τ) ≤ µi ln t− t0
τ − t0

for t, τ ∈ It0 , (t− t0)(τ − t0) > 0, |τ − t0| ≤ |t− t0| (i = 1, . . . , n), (3.1)

lim
τ→t0∓

∣∣∣[aii(t) sgn(t− t0)
]v
+
−
[
aii(τ) sgn(τ − t0)

]v
+

∣∣∣
≤ bii for t ∈ I−t0(δ) and t ∈ I+t0(δ), respectively (i = 1, . . . , n)

and

lim
τ→t0∓

∣∣v(aik)(t)− v(aik)(τ) +

2∑
j=1

∑
s∈It0τ

|dja0ii(s) · (1 + (−1)jdja0ii(s))
−1| |djaik(s)| ≤ bik

for t ∈ I−t0(δ) and t ∈ I+t0(δ), respectively (i ̸= k; i, k = 1, . . . , n)

are valid for some µi ≥ 0 (i = 1, . . . , n) and δ > 0, where a0ii(t) ≡ −[aii(t) sgn(t − t0)]
v
− sgn(t − t0)

(i = 1, . . . , n). Let, moreover, respectively,

lim
t→t0∓

(∣∣∣∣
t∫

t0∓

1

|τ − t0|µi
dv(fi)(τ)

∣∣∣∣
+

2∑
j=1

∑
τ∈It0τ

1

|τ − t0|µi
|dja0ii(τ) · (1 + (−1)jdja0ii(τ))

−1| |djfi(τ)|
)

= 0 (i = 1, . . . , n).

Then system (1.1) under the condition

lim
t→t0∓

xi(t)

|t− t0|µi
= 0 (i = 1, . . . , n) (3.2)

is H-well-posed.

Remark 3.1. Let, in addition to the conditions of Corollary 3.1, the condition

lim
t→t0∓

sup ξji(t) < +∞ (j = 1, 2; i = 1, . . . , n) (3.3)

hold, where

ξji(t) =
∑
τ∈Itj

n∑
k=1

|τ − t0|µk |djaik(τ)|+ |djfi(τ)| for t ∈ It0∩ ]a1, a2[ (j = 1, 2; i = 1, . . . , n), (3.4)

It1 = ]a1, t] and It2 = [a1, t[ for a1 < t < t0, It1 = ]t, a2] and It2 = [t, a2[ for t0 < t < a2. Then the
solution of problem (1.1), (3.2) belongs to BVloc(I,Rn).

Corollary 3.2. Let I be a closed interval and there exist a constant matrix B = (bik)
n
i,k=1 ∈ Rn×n

+

such that conditions (2.1) and (2.5) hold, and estimates (2.10), (3.1) for µi = 0 (i = 1, . . . , n) and

∣∣∣∣
t∫

t0∓

|τ − t0| dv(aik))(τ)
∣∣∣∣+ 2∑

j=1

∑
τ∈It0t

|τ − t0||dja0ii(τ) · (1+ (−1)jdja0ii(τ))
−1| |djaik(τ)| ≤ bik|t− t0|

for t ∈ I−t0(δ) and t ∈ I+t0(δ), respectively (i ̸= k; i, k = 1, . . . , n)
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are valid for some δ > 0, where a0ii(t) ≡ −[aii(t) sgn(t−t0)]
v
− sgn(t−t0) (i = 1, . . . , n). Let, moreover,

respectively,

lim
t→t0∓

1

|t− t0|

(
|v(fi)(t)− v(fi)(t0∓)|

+

2∑
j=1

∑
τ∈It0τ

|dja0ii(τ) · (1 + (−1)jdja0ii(τ))
−1| |djfi(τ)|

)
= 0 (i = 1, . . . , n).

Then problem (1.1), (2.13) is H-well-posed.

Remark 3.2. Let, in addition to the conditions of Corollary 3.2, condition (3.3) hold, where the
functions ξji (j = 1, 2; i = 1, . . . , n) are defined by (3.4), µi = 1 (i = 1, . . . , n), and the intervals
Itj (j = 1, 2) are defined as in Remark 3.1. Then the solution of problem (1.1), (2.13) belongs to
BVloc(I,Rn).

Corollary 3.3. Let I be a closed interval and let conditions (2.5) and (2.14) hold, where a0ii(t) ≡
−[aii(t) sgn(t−t0)]

v
− sgn(t−t0) (i = 1, . . . , n), λi ≥ 0 (i = 1, . . . , n), and the functions a∗ii(t) sgn(t−t0)

(i = 1, . . . , n) are nondecreasing on the interval I. Let, moreover,

∣∣∣∣
t∫

t0∓

|τ − t0|λi−λk dv(aik))τ)

∣∣∣∣
+

2∑
j=1

∣∣∣∣ ∑
τ∈It0t

|τ − t0|λi−λk |dja0ii(τ) · (1 + (−1)jdja0ii(τ))
−1| |djaik(τ)|

∣∣∣∣ < +∞

for t ∈ I+t0 and t ∈ I−t0 , respectively (i ̸= k; i, k = 1, . . . , n)

and

∣∣∣∣
t∫

t0∓

|τ − t0|λi dv(fi))(τ)

∣∣∣∣+ 2∑
j=1

∑
τ∈It0t

|τ − t0|λi−λk |dja0ii(τ) · (1+ (−1)jdja0ii(τ))
−1| |djfi(τ)| < +∞

for t ∈ I−t0 and t ∈ I+t0 , respectively (i = 1, . . . , n).

Then system (1.1) under the condition

lim
t→t0∓

(
|t− t0|λi xi(t)

)
= 0 (i = 1, . . . , n) (3.5)

is H-well-posed.

Remark 3.3. Let the conditions of Corollary (3.3) hold, where λi = 0 (i = 1, . . . , n). Let, in
addition, condition (3.3) hold, where the functions ξji (j = 1, 2; i = 1, . . . , n) are defined by (3.4),
µi = 0 (i = 1, . . . , n), and the intervals Itj (j = 1, 2) are defined as in Remark 3.1. Then the solution
of problem (1.1), (3.5) belongs to BVloc(I,Rn).

Remark 3.4. In Remarks 3.1–3.3, condition (3.3) is essential, i.e., if the condition is violated, then the
conclusion of our remarks are not true. Below, we reduce the corresponding example. Let I = [0, 1],
n = 1, t0 = 0, tn = 1/

√
n (n = 1, 2, . . . ), the function a : I → R is defined by

a(0) = 0, a(1) = − ln 2, a(t) = ln
(
kn(t− tn) +

1

n

)
for tn ≤ t < tn−1 (n = 2, 3, . . . ),

where kn = (n − 2)(2n(n − 1)(tn − tn−1))
−1 (n = 2, 3, . . . ). It is evident that the singular Cauchy

problem
dx = xda(t), lim

t→0
t−1|x(t)| = 0
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has the unique solution x defined by the equalities

x(t) = kn(t− tn) +
1

n
for tn ≤ t < tn−1 (n = 2, 3, . . . ), x(1) = − ln 2.

Moreover, we have d2x(t) ≡ 0 and d1x(tn) = 1/2 (n = 2, 3, . . . ). Thus we conclude that x ∈
BVloc(It0 ;R), but x ̸∈ BVloc(I;R). Besides, taking into account that the function a(t) is non-
increasing on the intervals tn ≤ t < tn−1 (n = 2, 3, . . . ), we conclude that [a(t)]v+ = 0 on these
intervals. Therefore, due to the equalities d2a(t) ≡ 0 and d1a(tn) = 1/2 (n = 2, 3, . . . ), all the
conditions of our remarks are fulfilled with the exclusion of (3.3).
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